text
stringlengths 7
318k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
439
|
---|---|---|---|
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โ ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Text to speech
[[open-in-colab]]
ใใญในใ่ชญใฟไธใ (TTS) ใฏใใใญในใใใ่ช็ถใช้ณๅฃฐใไฝๆใใใฟในใฏใงใใ้ณๅฃฐใฏ่คๆฐใฎๅฝขๅผใง็ๆใงใใพใใ
่จ่ชใจ่คๆฐใฎ่ฉฑ่
ๅใใ็พๅจใใใใคใใฎใใญในใ่ชญใฟไธใใขใใซใ ๐ค Transformers ใงๅฉ็จๅฏ่ฝใงใใ
[Bark](../model_doc/bark)ใ[MMS](../model_doc/mms)ใ[VITS](../model_doc/vits)ใใใใณ [SpeechT5](../model_doc/speecht5)ใ
`text-to-audio`ใใคใใฉใคใณ (ใพใใฏใใฎๅฅๅ - `text-to-speech`) ใไฝฟ็จใใฆใ้ณๅฃฐใ็ฐกๅใซ็ๆใงใใพใใ Bark ใชใฉใฎไธ้จใฎใขใใซใฏใ
็ฌใใใใๆฏใๆณฃใใชใฉใฎ้่จ่ชใณใใฅใใฑใผใทใงใณใ็ๆใใใใ้ณๆฅฝใ่ฟฝๅ ใใใใใใใใซๆกไปถไปใใใใใจใใงใใพใใ
Bark ใง`text-to-speech`ใใคใใฉใคใณใไฝฟ็จใใๆนๆณใฎไพใๆฌกใซ็คบใใพใใ
```py
>>> from transformers import pipeline
>>> pipe = pipeline("text-to-speech", model="suno/bark-small")
>>> text = "[clears throat] This is a test ... and I just took a long pause."
>>> output = pipe(text)
```
ใใผใใใใฏใง็ตๆใฎ้ณๅฃฐใ่ใใใใซไฝฟ็จใงใใใณใผใ ในใใใใใๆฌกใซ็คบใใพใใ
```python
>>> from IPython.display import Audio
>>> Audio(output["audio"], rate=output["sampling_rate"])
```
Bark ใใใณใใฎไปใฎไบๅใใฌใผใใณใฐใใใ TTS ใขใใซใใงใใใใจใฎ่ฉณ็ดฐใชไพใซใคใใฆใฏใๆฌกใฎใใญใฅใกใณใใๅ็
งใใฆใใ ใใใ
[้ณๅฃฐใณใผใน](https://huggingface.co/learn/audio-course/chapter6/pre-trained_models)ใ
TTS ใขใใซใๅพฎ่ชฟๆดใใๅ ดๅใ็พๅจๅพฎ่ชฟๆดใงใใใฎใฏ SpeechT5 ใฎใฟใงใใ SpeechT5 ใฏใๆฌกใฎ็ตใฟๅใใใงไบๅใใฌใผใใณใฐใใใฆใใพใใ
้ณๅฃฐใใใใญในใใธใฎใใผใฟใจใใญในใใใ้ณๅฃฐใธใฎใใผใฟใไธกๆนใฎใใญในใใซๅ
ฑๆใใใ้ ใใใ่กจ็พใฎ็ตฑไธใใใ็ฉบ้ใๅญฆ็ฟใงใใใใใซใใพใใ
ใใใฆในใใผใใใใใฏใๅใไบๅใใฌใผใใณใฐๆธใฟใขใใซใใใพใใพใชใฟในใฏใซๅใใใฆๅพฎ่ชฟๆดใงใใใใจใๆๅณใใพใใใใใซใSpeechT5
X ใใฏใใซ ในใใผใซใผใฎๅใ่พผใฟใ้ใใฆ่คๆฐใฎในใใผใซใผใใตใใผใใใพใใ
ใใฎใฌใคใใฎๆฎใใฎ้จๅใงใฏใๆฌกใฎๆนๆณใ่ชฌๆใใพใใ
1. [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) ใฎใชใฉใณใ่ช (`nl`) ่จ่ชใตใใปใใไธใฎ่ฑ่ช้ณๅฃฐใงๅ
ใ
ใใฌใผใใณใฐใใใ [SpeechT5](../model_doc/speecht5) ใๅพฎ่ชฟๆดใใพใใ ใใผใฟใปใใใ
2. ใใคใใฉใคใณใไฝฟ็จใใใ็ดๆฅไฝฟ็จใใใใฎ 2 ใคใฎๆนๆณใฎใใใใใงใๆด็ทดใใใใขใใซใๆจ่ซใซไฝฟ็จใใพใใ
ๅงใใๅใซใๅฟ
่ฆใชใฉใคใใฉใชใใในใฆใคใณในใใผใซใใใฆใใใใจใ็ขบ่ชใใฆใใ ใใใ
```bash
pip install datasets soundfile speechbrain accelerate
```
SpeechT5 ใฎใในใฆใฎๆฉ่ฝใใพใ ๆญฃๅผใชใชใผในใซใใผใธใใใฆใใชใใใใใฝใผในใใ ๐คTransformers ใใคใณในใใผใซใใพใใ
```bash
pip install git+https://github.com/huggingface/transformers.git
```
<Tip>
ใใฎใฌใคใใซๅพใใซใฏใGPU ใๅฟ
่ฆใงใใใใผใใใใฏใงไฝๆฅญใใฆใใๅ ดๅใฏใๆฌกใฎ่กใๅฎ่กใใฆ GPU ใๅฉ็จๅฏ่ฝใใฉใใใ็ขบ่ชใใพใใ
```bash
!nvidia-smi
```
</Tip>
Hugging Face ใขใซใฆใณใใซใญใฐใคใณใใฆใใขใใซใใขใใใญใผใใใฆใณใใฅใใใฃใจๅ
ฑๆใใใใจใใๅงใใใพใใใใญใณใใใ่กจ็คบใใใใใใใผใฏใณใๅ
ฅๅใใฆใญใฐใคใณใใพใใ
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load the dataset
[VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) ใฏใไปฅไธใงๆงๆใใใๅคง่ฆๆจกใชๅค่จ่ช้ณๅฃฐใณใผใในใงใใ
ใใผใฟใฏ 2009 ๅนดใใ 2020 ๅนดใฎๆฌงๅท่ญฐไผใฎใคใใณใ่จ้ฒใใฝใผในใจใใฆใใพใใ 15 ไปถๅใฎใฉใใซไปใ้ณๅฃฐๆๅญ่ตทใใใใผใฟใๅซใพใใฆใใพใใ
ใจใผใญใใใฎ่จ่ชใใใฎใฌใคใใงใฏใชใฉใณใ่ชใฎใตใใปใใใไฝฟ็จใใฆใใพใใใ่ช็ฑใซๅฅใฎใตใใปใใใ้ธๆใใฆใใ ใใใ
VoxPopuli ใพใใฏใใฎไปใฎ่ชๅ้ณๅฃฐ่ช่ญ (ASR) ใใผใฟใปใใใฏๆ้ฉใงใฏใชใๅฏ่ฝๆงใใใใใจใซๆณจๆใใฆใใ ใใใ
TTS ใขใใซใใใฌใผใใณใฐใใใใใฎใชใใทใงใณใ้ๅฐใชใใใฏใฐใฉใฆใณใใใคใบใชใฉใASR ใซใจใฃใฆๆ็ใจใชใๆฉ่ฝใฏๆฌกใฎใจใใใงใใ
้ๅธธใTTS ใงใฏๆใพใใใใใพใใใใใ ใใๆ้ซๅ่ณชใๅค่จ่ชใใใซใในใใผใซใผใฎ TTS ใใผใฟใปใใใ่ฆใคใใใฎใฏ้ๅธธใซๅฐ้ฃใชๅ ดๅใใใใพใใ
ๆๆฆ็ใ
ใใผใฟใใญใผใใใพใใใ:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("facebook/voxpopuli", "nl", split="train")
>>> len(dataset)
20968
```
ๅพฎ่ชฟๆดใซใฏ 20968 ๅใฎไพใงๅๅใงใใ SpeechT5 ใฏใชใผใใฃใช ใใผใฟใฎใตใณใใชใณใฐ ใฌใผใใ 16 kHz ใงใใใใจใๆณๅฎใใฆใใใใใ
ใใผใฟใปใใๅ
ใฎไพใใใฎ่ฆไปถใๆบใใใฆใใใใจใ็ขบ่ชใใฆใใ ใใใ
```py
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
```
## Preprocess the data
ไฝฟ็จใใใขใใซ ใใงใใฏใใคใณใใๅฎ็พฉใใ้ฉๅใชใใญใปใใตใใญใผใใใใใจใใๅงใใพใใใใ
```py
>>> from transformers import SpeechT5Processor
>>> checkpoint = "microsoft/speecht5_tts"
>>> processor = SpeechT5Processor.from_pretrained(checkpoint)
```
### Text cleanup for SpeechT5 tokenization
ใพใใฏใใญในใใใผใฟใใฏใชใผใณใขใใใใใใจใใๅงใใพใใใใญในใใๅฆ็ใใใซใฏใใใญใปใใตใฎใใผใฏใใคใถใผ้จๅใๅฟ
่ฆใงใใ
```py
>>> tokenizer = processor.tokenizer
```
ใใผใฟใปใใใฎไพใซใฏใ`raw_text`ๆฉ่ฝใจ `normalized_text`ๆฉ่ฝใๅซใพใใฆใใพใใใใญในใๅ
ฅๅใจใใฆใฉใฎๆฉ่ฝใไฝฟ็จใใใใๆฑบใใใจใใฏใ
SpeechT5 ใใผใฏใใคใถใผใซใฏๆฐๅคใฎใใผใฏใณใใชใใใจใ่ๆ
ฎใใฆใใ ใใใ `normalized_text`ใซใฏๆฐๅญใๆธใใใฆใใพใ
ใใญในใใจใใฆๅบๅใใพใใใใใใฃใฆใใใใฏใใ้ฉๅใงใใใๅ
ฅๅใใญในใใจใใฆ `normalized_text` ใไฝฟ็จใใใใจใใๅงใใใพใใ
SpeechT5 ใฏ่ฑ่ชใงใใฌใผใใณใฐใใใฆใใใใใใชใฉใณใ่ชใฎใใผใฟใปใใๅ
ใฎ็นๅฎใฎๆๅญใ่ช่ญใใชใๅฏ่ฝๆงใใใใพใใใใ
ๆฎใฃใฆใใใใใซใใใใใฎๆๅญใฏ `<unk>`ใใผใฏใณใซๅคๆใใใพใใใใ ใใใชใฉใณใ่ชใงใฏใ`ร `ใชใฉใฎ็นๅฎใฎๆๅญใฏ
้ณ็ฏใๅผท่ชฟใใใใจใซๆ
ฃใใฆใใพใใใใญในใใฎๆๅณใไฟๆใใใใใซใใใฎๆๅญใ้ๅธธใฎ`a`ใซ็ฝฎใๆใใใใจใใงใใพใใ
ใตใใผใใใใฆใใชใใใผใฏใณใ่ญๅฅใใใซใฏใ`SpeechT5Tokenizer`ใไฝฟ็จใใฆใใผใฟใปใใๅ
ใฎใในใฆใฎไธๆใฎๆๅญใๆฝๅบใใพใใ
ๆๅญใใใผใฏใณใจใใฆๆฑใใพใใใใใ่กใใซใฏใไปฅไธใ้ฃ็ตใใ `extract_all_chars` ใใใใณใฐ้ขๆฐใไฝๆใใพใใ
ใในใฆใฎไพใใใฎ่ปขๅใ 1 ใคใฎๆๅญๅใซใพใจใใใใใๆๅญใปใใใซๅคๆใใพใใ
ใในใฆใฎๆๅญ่ตทใใใไธๅบฆใซๅฉ็จใงใใใใใซใ`dataset.map()`ใง`bโโatched=True`ใจ`batch_size=-1`ใๅฟ
ใ่จญๅฎใใฆใใ ใใใ
ใใใใณใฐๆฉ่ฝใ
```py
>>> def extract_all_chars(batch):
... all_text = " ".join(batch["normalized_text"])
... vocab = list(set(all_text))
... return {"vocab": [vocab], "all_text": [all_text]}
>>> vocabs = dataset.map(
... extract_all_chars,
... batched=True,
... batch_size=-1,
... keep_in_memory=True,
... remove_columns=dataset.column_names,
... )
>>> dataset_vocab = set(vocabs["vocab"][0])
>>> tokenizer_vocab = {k for k, _ in tokenizer.get_vocab().items()}
```
ใใใงใ2 ใคใฎๆๅญใปใใใใงใใพใใใ1 ใคใฏใใผใฟใปใใใฎ่ชๅฝใๆใกใใใ 1 ใคใฏใใผใฏใใคใถใผใฎ่ชๅฝใๆใกใพใใ
ใใผใฟใปใใๅ
ใงใตใใผใใใใฆใใชใๆๅญใ็นๅฎใใใซใฏใใใใ 2 ใคใฎใปใใใฎๅทฎๅใๅใใใจใใงใใพใใ็ตๆใจใใฆ
set ใซใฏใใใผใฟใปใใใซใฏใใใใใผใฏใใคใถใผใซใฏๅซใพใใฆใใชใๆๅญใๅซใพใใพใใ
```py
>>> dataset_vocab - tokenizer_vocab
{' ', 'ร ', 'รง', 'รจ', 'รซ', 'รญ', 'รฏ', 'รถ', 'รผ'}
```
ๅใฎๆ้ ใง็นๅฎใใใใตใใผใใใใฆใใชใๆๅญใๅฆ็ใใใซใฏใใใใใฎๆๅญใ
ๆๅนใชใใผใฏใณใในใใผในใฏใใผใฏใใคใถใผใงใใงใซ `โ` ใซ็ฝฎใๆใใใใฆใใใใใๅๅฅใซๅฆ็ใใๅฟ
่ฆใใชใใใจใซๆณจๆใใฆใใ ใใใ
```py
>>> replacements = [
... ("ร ", "a"),
... ("รง", "c"),
... ("รจ", "e"),
... ("รซ", "e"),
... ("รญ", "i"),
... ("รฏ", "i"),
... ("รถ", "o"),
... ("รผ", "u"),
... ]
>>> def cleanup_text(inputs):
... for src, dst in replacements:
... inputs["normalized_text"] = inputs["normalized_text"].replace(src, dst)
... return inputs
>>> dataset = dataset.map(cleanup_text)
```
ใใญในใๅ
ใฎ็นๆฎๆๅญใๆฑใฃใใฎใงใไปๅบฆใฏ้ณๅฃฐใใผใฟใซ็ฆ็นใ็งปใใพใใ
### Speakers
VoxPopuli ใใผใฟใปใใใซใฏ่คๆฐใฎ่ฉฑ่
ใฎ้ณๅฃฐใๅซใพใใฆใใพใใใใใผใฟใปใใใซใฏไฝไบบใฎ่ฉฑ่
ใๅซใพใใฆใใใฎใงใใใใ?ใซ
ใใใๆฑบๅฎใใใจใไธๆใฎ่ฉฑ่
ใฎๆฐใจใๅ่ฉฑ่
ใใใผใฟใปใใใซๅฏไธใใไพใฎๆฐใๆฐใใใใจใใงใใพใใ
ใใผใฟใปใใใซใฏๅ่จ 20,968 ๅใฎไพใๅซใพใใฆใใใใใฎๆ
ๅ ฑใซใใใๅๅธใใใๆทฑใ็่งฃใงใใใใใซใชใใพใใ
่ฌๆผ่
ใจใใผใฟๅ
ใฎไพใ
```py
>>> from collections import defaultdict
>>> speaker_counts = defaultdict(int)
>>> for speaker_id in dataset["speaker_id"]:
... speaker_counts[speaker_id] += 1
```
ใในใใฐใฉใ ใใใญใใใใใจใๅ่ฉฑ่
ใซใฉใใ ใใฎใใผใฟใใใใใๆๆกใงใใพใใ
```py
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> plt.hist(speaker_counts.values(), bins=20)
>>> plt.ylabel("Speakers")
>>> plt.xlabel("Examples")
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_speakers_histogram.png" alt="Speakers histogram"/>
</div>
ใในใใฐใฉใ ใใใใใผใฟใปใใๅ
ใฎ่ฉฑ่
ใฎ็ด 3 ๅใฎ 1 ใฎไพใ 100 ๆชๆบใงใใใใจใใใใใพใใ
็ด 10 ไบบใฎ่ฌๆผ่
ใ 500 ไปฅไธใฎไพใๆใฃใฆใใพใใใใฌใผใใณใฐๅน็ใๅไธใใใใใผใฟใปใใใฎใใฉใณในใใจใใใใซใๆฌกใฎใใจใๅถ้ใงใใพใใ
100 ๏ฝ 400 ๅใฎไพใๅซใใใผใฟใ่ฌๆผ่
ใซๆไพใใพใใ
```py
>>> def select_speaker(speaker_id):
... return 100 <= speaker_counts[speaker_id] <= 400
>>> dataset = dataset.filter(select_speaker, input_columns=["speaker_id"])
```
ๆฎใใฎในใใผใซใผใฎๆฐใ็ขบ่ชใใฆใฟใพใใใใ
```py
>>> len(set(dataset["speaker_id"]))
42
```
ๆฎใใฎไพใใใใคใใใ่ฆใฆใฟใพใใใใ
```py
>>> len(dataset)
9973
```
็ด 40 ไบบใฎใฆใใผใฏใช่ฌๆผ่
ใใใฎ 10,000 ๅผฑใฎไพใๆฎใใพใใใใใใงๅๅใงใใ
ไพใๅฐใชใในใใผใซใผใฎไธญใซใฏใไพใ้ทใๅ ดๅใๅฎ้ใซใฏใใๅคใใฎ้ณๅฃฐใๅฉ็จใงใใๅ ดๅใใใใใจใซๆณจๆใใฆใใ ใใใใใใใ
ๅ่ฉฑ่
ใฎ้ณๅฃฐใฎๅ่จ้ใๆฑบๅฎใใใซใฏใใใผใฟใปใใๅ
จไฝใในใญใฃใณใใๅฟ
่ฆใใใใพใใ
ๅใชใผใใฃใช ใใกใคใซใฎใญใผใใจใใณใผใใไผดใๆ้ใฎใใใใใญใปในใใใฎใใใใใใงใฏใใฎในใใใใในใญใใใใใใจใซใใพใใใ
### Speaker embeddings
TTS ใขใใซใ่คๆฐใฎในใใผใซใผใๅบๅฅใงใใใใใซใใใซใฏใใตใณใใซใใจใซในใใผใซใผใฎๅใ่พผใฟใไฝๆใใๅฟ
่ฆใใใใพใใ
ในใใผใซใผใฎๅใ่พผใฟใฏใ็นๅฎใฎในใใผใซใผใฎ้ณๅฃฐ็นๆงใใญใฃใใใฃใใใขใใซใธใฎ่ฟฝๅ ๅ
ฅๅใงใใ
ใใใใฎในใใผใซใผๅใ่พผใฟใ็ๆใใใซใฏใไบๅใใฌใผใใณใฐใใใ [spkrec-xvect-voxceleb](https://huggingface.co/speechbrain/spkrec-xvect-voxceleb) ใไฝฟ็จใใพใใ
SpeechBrain ใฎใขใใซใ
ๅ
ฅๅใชใผใใฃใชๆณขๅฝขใๅใๅใใ512 ่ฆ็ด ใฎใใฏใใซใๅบๅใใ้ขๆฐ `create_speaker_embedding()` ใไฝๆใใพใใ
ๅฏพๅฟใใในใใผใซใผๅใ่พผใฟใๅซใพใใพใใ
```py
>>> import os
>>> import torch
>>> from speechbrain.pretrained import EncoderClassifier
>>> spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> speaker_model = EncoderClassifier.from_hparams(
... source=spk_model_name,
... run_opts={"device": device},
... savedir=os.path.join("/tmp", spk_model_name),
... )
>>> def create_speaker_embedding(waveform):
... with torch.no_grad():
... speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
... speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
... speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
... return speaker_embeddings
```
`speechbrain/spkrec-xvect-voxceleb`ใขใใซใฏใVoxCeleb ใใใฎ่ฑ่ช้ณๅฃฐใงใใฌใผใใณใฐใใใใใจใซๆณจๆใใใใจใ้่ฆใงใใ
ใใผใฟใปใใใงใใใใใฎใฌใคใใฎใใฌใผใใณใฐไพใฏใชใฉใณใ่ชใงใใใใฎใขใใซใฏไปๅพใ็ๆใใใใจไฟกใใฆใใพใใใ
ใชใฉใณใ่ชใฎใใผใฟใปใใใซ้ฉๅใช่ฉฑ่
ๅใ่พผใฟใ่กใฃใฆใใใใฎไปฎๅฎใฏใในใฆใฎๅ ดๅใซๅฝใฆใฏใพใใชใๅฏ่ฝๆงใใใใพใใ
ๆ้ฉใช็ตๆใๅพใใซใฏใๆๅใซใฟใผใฒใใ้ณๅฃฐใง X ใใฏใใซ ใขใใซใใใฌใผใใณใฐใใใใจใใๅงใใใพใใใใใซใใใใขใใซใ็ขบๅฎใซ
ใชใฉใณใ่ชใซๅญๅจใใ็ฌ็นใฎ้ณๅฃฐ็นๅพดใใใใใๆใใใใจใใงใใพใใ
### Processing the dataset
ๆๅพใซใใขใใซใๆๅพ
ใใๅฝขๅผใซใใผใฟใๅฆ็ใใพใใใใใๅใ่พผใ `prepare_dataset` ้ขๆฐใไฝๆใใพใใ
ใใใฏ 1 ใคใฎไพใงใใใ`SpeechT5Processor` ใชใใธใงใฏใใไฝฟ็จใใฆๅ
ฅๅใใญในใใใใผใฏใณๅใใใฟใผใฒใใ ใชใผใใฃใชใใญใฐใกใซ ในใใฏใใญใฐใฉใ ใซใญใผใใใพใใ
ใพใใ่ฟฝๅ ใฎๅ
ฅๅใจใใฆในใใผใซใผใฎๅใ่พผใฟใ่ฟฝๅ ใใๅฟ
่ฆใใใใพใใ
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example = processor(
... text=example["normalized_text"],
... audio_target=audio["array"],
... sampling_rate=audio["sampling_rate"],
... return_attention_mask=False,
... )
... # strip off the batch dimension
... example["labels"] = example["labels"][0]
... # use SpeechBrain to obtain x-vector
... example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
... return example
```
ๅไธใฎไพใ่ฆใฆใๅฆ็ใๆญฃใใใใจใ็ขบ่ชใใพใใ
```py
>>> processed_example = prepare_dataset(dataset[0])
>>> list(processed_example.keys())
['input_ids', 'labels', 'stop_labels', 'speaker_embeddings']
```
ในใใผใซใผใฎใจใณใใใฃใณใฐใฏ 512 ่ฆ็ด ใฎใใฏใใซใงใใๅฟ
่ฆใใใใพใใ
```py
>>> processed_example["speaker_embeddings"].shape
(512,)
```
ใฉใใซใฏใ80 ใกใซ ใใณใๅซใใญใฐใกใซ ในใใฏใใญใฐใฉใ ใงใใๅฟ
่ฆใใใใพใใ
```py
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> plt.imshow(processed_example["labels"].T)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_logmelspectrogram_1.png" alt="Log-mel spectrogram with 80 mel bins"/>
</div>
่ฃ่ถณ: ใใฎในใใฏใใญใฐใฉใ ใใใใใซใใใจๆใใๅ ดๅใฏใไฝๅจๆณขใ้
็ฝฎใใ่ฆๅใซๆ
ฃใใฆใใใใจใๅๅ ใงใใๅฏ่ฝๆงใใใใพใใ
ใใญใใใฎไธ้จใซ้ซๅจๆณขใไธ้จใซ้ซๅจๆณขใ่กจ็คบใใใพใใใใ ใใmatplotlib ใฉใคใใฉใชใไฝฟ็จใใฆในใใฏใใญใฐใฉใ ใ็ปๅใจใใฆใใญใใใใๅ ดๅใ
Y ่ปธใๅ่ปขใใใในใใฏใใญใฐใฉใ ใไธไธ้ใซ่กจ็คบใใใพใใ
ๆฌกใซใๅฆ็้ขๆฐใใใผใฟใปใใๅ
จไฝใซ้ฉ็จใใพใใใใใซใฏ 5 ๏ฝ 10 ๅใใใใพใใ
```py
>>> dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)
```
ใใผใฟใปใใๅ
ใฎไธ้จใฎไพใใใขใใซใๅฆ็ใงใใๆๅคงๅ
ฅๅ้ท (600 ใใผใฏใณ) ใ่ถ
ใใฆใใใใจใ็คบใ่ญฆๅใ่กจ็คบใใใพใใ
ใใใใฎไพใใใผใฟใปใใใใๅ้คใใพใใใใใงใฏใใใซ้ฒใใงใใใๅคงใใชใใใ ใตใคใบใๅฏ่ฝใซใใใใใซใ200 ใใผใฏใณใ่ถ
ใใใใฎใฏใในใฆๅ้คใใพใใ
```py
>>> def is_not_too_long(input_ids):
... input_length = len(input_ids)
... return input_length < 200
>>> dataset = dataset.filter(is_not_too_long, input_columns=["input_ids"])
>>> len(dataset)
8259
```
ๆฌกใซใๅบๆฌ็ใชใใฌใผใใณใฐ/ใในใๅๅฒใไฝๆใใพใใ
```py
>>> dataset = dataset.train_test_split(test_size=0.1)
```
### Data collator
่คๆฐใฎไพใ 1 ใคใฎใใใใซ็ตๅใใใซใฏใใซในใฟใ ใใผใฟ็
งๅๅจใๅฎ็พฉใใๅฟ
่ฆใใใใพใใใใฎใณใฌใผใฟใผใฏใ็ญใใทใผใฑใณในใใใใฃใณใฐใงๅใ่พผใฟใพใใ
ใใผใฏใณใไฝฟ็จใใฆใใในใฆใฎไพใๅใ้ทใใซใชใใใใซใใพใใในใใฏใใญใฐใฉใ ใฉใใซใฎๅ ดๅใๅใ่พผใพใใ้จๅใฏ็นๅฅใชๅค `-100` ใซ็ฝฎใๆใใใใพใใใใฎ็นๅฅใชไพกๅคใฏ
ในใใฏใใญใฐใฉใ ๆๅคฑใ่จ็ฎใใใจใใซใในใใฏใใญใฐใฉใ ใฎใใฎ้จๅใ็ก่ฆใใใใใซใขใใซใซๆ็คบใใพใใ
```py
>>> from dataclasses import dataclass
>>> from typing import Any, Dict, List, Union
>>> @dataclass
... class TTSDataCollatorWithPadding:
... processor: Any
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
... label_features = [{"input_values": feature["labels"]} for feature in features]
... speaker_features = [feature["speaker_embeddings"] for feature in features]
... # collate the inputs and targets into a batch
... batch = processor.pad(input_ids=input_ids, labels=label_features, return_tensors="pt")
... # replace padding with -100 to ignore loss correctly
... batch["labels"] = batch["labels"].masked_fill(batch.decoder_attention_mask.unsqueeze(-1).ne(1), -100)
... # not used during fine-tuning
... del batch["decoder_attention_mask"]
... # round down target lengths to multiple of reduction factor
... if model.config.reduction_factor > 1:
... target_lengths = torch.tensor([len(feature["input_values"]) for feature in label_features])
... target_lengths = target_lengths.new(
... [length - length % model.config.reduction_factor for length in target_lengths]
... )
... max_length = max(target_lengths)
... batch["labels"] = batch["labels"][:, :max_length]
... # also add in the speaker embeddings
... batch["speaker_embeddings"] = torch.tensor(speaker_features)
... return batch
```
SpeechT5 ใงใฏใใขใใซใฎใใณใผใ้จๅใธใฎๅ
ฅๅใ 2 ๅใฎ 1 ใซๅๆธใใใพใใใคใพใใใในใฆใฎใใผใฟใ็ ดๆฃใใใพใใ
ใฟใผใฒใใ ใทใผใฑใณในใใใฎไปใฎใฟใคใ ในใใใใๆฌกใซใใใณใผใใฏ 2 ๅใฎ้ทใใฎใทใผใฑใณในใไบๆธฌใใพใใใชใชใธใใซไปฅๆฅ
ใฟใผใฒใใ ใทใผใฑใณในใฎ้ทใใๅฅๆฐใงใใๅฏ่ฝๆงใใใๅ ดๅใใใผใฟ็
งๅๆฉ่ฝใฏใใใใฎๆๅคง้ทใๅใๆจใฆใฆใ
2ใฎๅๆฐใ
```py
>>> data_collator = TTSDataCollatorWithPadding(processor=processor)
```
## Train the model
ใใญใปใใตใฎใญใผใใซไฝฟ็จใใใฎใจๅใใใงใใฏใใคใณใใใไบๅใใฌใผใใณใฐใใใใขใใซใใญใผใใใพใใ
```py
>>> from transformers import SpeechT5ForTextToSpeech
>>> model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
```
`use_cache=True`ใชใใทใงใณใฏใๅพ้
ใใงใใฏใใคใณใใจไบๆๆงใใใใพใใใใใฌใผใใณใฐใฎใใใซ็กๅนใซใใพใใ
```py
>>> model.config.use_cache = False
```
ใใฌใผใใณใฐๅผๆฐใๅฎ็พฉใใพใใใใใงใฏใใใฌใผใใณใฐ ใใญใปในไธญใซ่ฉไพกใกใใชใฏในใ่จ็ฎใใฆใใพใใใไปฃใใใซใ
ๆๅคฑใ ใใ่ฆใฆใใ ใใใ
```python
>>> from transformers import Seq2SeqTrainingArguments
>>> training_args = Seq2SeqTrainingArguments(
... output_dir="speecht5_finetuned_voxpopuli_nl", # change to a repo name of your choice
... per_device_train_batch_size=4,
... gradient_accumulation_steps=8,
... learning_rate=1e-5,
... warmup_steps=500,
... max_steps=4000,
... gradient_checkpointing=True,
... fp16=True,
... evaluation_strategy="steps",
... per_device_eval_batch_size=2,
... save_steps=1000,
... eval_steps=1000,
... logging_steps=25,
... report_to=["tensorboard"],
... load_best_model_at_end=True,
... greater_is_better=False,
... label_names=["labels"],
... push_to_hub=True,
... )
```
`Trainer`ใชใใธใงใฏใใใคใณในใฟใณในๅใใใขใใซใใใผใฟใปใใใใใผใฟ็
งๅๅจใใใใซๆธกใใพใใ
```py
>>> from transformers import Seq2SeqTrainer
>>> trainer = Seq2SeqTrainer(
... args=training_args,
... model=model,
... train_dataset=dataset["train"],
... eval_dataset=dataset["test"],
... data_collator=data_collator,
... tokenizer=processor,
... )
```
ใใใงใใใฌใผใใณใฐใ้ๅงใใๆบๅใๆดใใพใใใใใฌใผใใณใฐใซใฏๆฐๆ้ใใใใพใใ GPU ใซๅฟใใฆใ
ใใฌใผใใณใฐใ้ๅงใใใจใใซใCUDA ใฎใใกใขใชไธ่ถณใใจใฉใผใ็บ็ใใๅฏ่ฝๆงใใใใพใใใใฎๅ ดๅใๆธใใใใจใใงใใพใ
`per_device_train_batch_size`ใ 2 ๅใซๅขๅใใ`gradient_accumulation_steps`ใ 2 ๅใซๅขใใใฆ่ฃๆญฃใใพใใ
```py
>>> trainer.train()
```
ใใคใใฉใคใณใงใใงใใฏใใคใณใใไฝฟ็จใงใใใใใซใใใซใฏใๅฟ
ใใใญใปใใตใใใงใใฏใใคใณใใจใจใใซไฟๅญใใฆใใ ใใใ
```py
>>> processor.save_pretrained("YOUR_ACCOUNT_NAME/speecht5_finetuned_voxpopuli_nl")
```
ๆ็ตใขใใซใ ๐ค ใใใซใใใทใฅใใพใใ
```py
>>> trainer.push_to_hub()
```
## Inference
### Inference with a pipeline
ใขใใซใๅพฎ่ชฟๆดใใใฎใงใใใใๆจ่ซใซไฝฟ็จใงใใใใใซใชใใพใใใ
ใพใใๅฏพๅฟใใใใคใใฉใคใณใงใใใไฝฟ็จใใๆนๆณใ่ฆใฆใฟใพใใใใ `"text-to-speech"` ใใคใใฉใคใณใไฝๆใใพใใใ
ใใงใใฏใใคใณใ:
```py
>>> from transformers import pipeline
>>> pipe = pipeline("text-to-speech", model="YOUR_ACCOUNT_NAME/speecht5_finetuned_voxpopuli_nl")
```
ใใฌใผใทใงใณใๅธๆใใใชใฉใณใ่ชใฎใใญในใใ้ธๆใใฆใใ ใใใไพ:
```py
>>> text = "hallo allemaal, ik praat nederlands. groetjes aan iedereen!"
```
ใใคใใฉใคใณใง SpeechT5 ใไฝฟ็จใใใซใฏใในใใผใซใผใฎๅใ่พผใฟใๅฟ
่ฆใงใใใในใ ใใผใฟใปใใใฎไพใใๅๅพใใฆใฟใพใใใใ
```py
>>> example = dataset["test"][304]
>>> speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
```
ใใใงใใใญในใใจในใใผใซใผใฎๅใ่พผใฟใใใคใใฉใคใณใซๆธกใใใจใใงใใๆฎใใฏใใคใใฉใคใณใๅฆ็ใใพใใ
```py
>>> forward_params = {"speaker_embeddings": speaker_embeddings}
>>> output = pipe(text, forward_params=forward_params)
>>> output
{'audio': array([-6.82714235e-05, -4.26525949e-04, 1.06134125e-04, ...,
-1.22392643e-03, -7.76011671e-04, 3.29112721e-04], dtype=float32),
'sampling_rate': 16000}
```
ใใฎๅพใ็ตๆใ่ใใใจใใงใใพใใ
```py
>>> from IPython.display import Audio
>>> Audio(output['audio'], rate=output['sampling_rate'])
```
### Run inference manually
ใใคใใฉใคใณใไฝฟ็จใใชใใฆใๅใๆจ่ซ็ตๆใๅพใใใจใใงใใพใใใใใๅคใใฎๆ้ ใๅฟ
่ฆใซใชใใพใใ
๐ค ใใใใใขใใซใใญใผใใใพใใ
```py
>>> model = SpeechT5ForTextToSpeech.from_pretrained("YOUR_ACCOUNT/speecht5_finetuned_voxpopuli_nl")
```
ใในใ ใใผใฟใปใใใใไพใ้ธๆใใฆใในใใผใซใผใฎๅใ่พผใฟใๅๅพใใพใใ
```py
>>> example = dataset["test"][304]
>>> speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
```
ๅ
ฅๅใใญในใใๅฎ็พฉใใใใผใฏใณๅใใพใใ
```py
>>> text = "hallo allemaal, ik praat nederlands. groetjes aan iedereen!"
>>> inputs = processor(text=text, return_tensors="pt")
```
ใขใใซใไฝฟ็จใใฆในใใฏใใญใฐใฉใ ใไฝๆใใพใใ
```py
>>> spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
```
ๆฌกใฎใใจใ่กใๅ ดๅใฏใในใใฏใใญใฐใฉใ ใ่ฆ่ฆๅใใพใใ
```py
>>> plt.figure()
>>> plt.imshow(spectrogram.T)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/tts_logmelspectrogram_2.png" alt="Generated log-mel spectrogram"/>
</div>
ๆๅพใซใใใณใผใใผใไฝฟ็จใใฆในใใฏใใญใฐใฉใ ใใตใฆใณใใซๅคๆใใพใใ
```py
>>> with torch.no_grad():
... speech = vocoder(spectrogram)
>>> from IPython.display import Audio
>>> Audio(speech.numpy(), rate=16000)
```
็งใใกใฎ็ต้จใงใฏใใใฎใขใใซใใๆบ่ถณใฎใใ็ตๆใๅพใใฎใฏ้ฃใใๅ ดๅใใใใพใใในใใผใซใผใฎๅ่ณช
ๅใ่พผใฟใฏ้่ฆใช่ฆ็ด ใงใใใใใงใใ SpeechT5 ใฏ่ฑ่ชใฎ x ใใฏใใซใงไบๅใใฌใผใใณใฐใใใฆใใใใใๆ้ซใฎใใใฉใผใใณในใ็บๆฎใใพใ
่ฑ่ชในใใผใซใผใฎๅใ่พผใฟใไฝฟ็จใใๅ ดๅใๅๆ้ณๅฃฐใฎ้ณ่ณชใๆชใๅ ดๅใฏใๅฅใฎในใใผใซใผๅใ่พผใฟใไฝฟ็จใใฆใฟใฆใใ ใใใ
ใใฌใผใใณใฐๆ้ใ้ทใใใใจใ็ตๆใฎ่ณชใๅไธใใๅฏ่ฝๆงใใใใพใใใใใงใใใใฎในใใผใใฏๆใใใซ่ฑ่ชใงใฏใชใใชใฉใณใ่ชใงใใ
่ฉฑ่
ใฎ้ณๅฃฐ็นๆงใใญใฃใใใฃใใพใ (ไพใฎๅ
ใฎ้ณๅฃฐใจๆฏ่ผ)ใ
ใใ 1 ใคๅฎ้จใในใใใจใฏใใขใใซใฎๆงๆใงใใใใจใใฐใ`config.reduction_factor = 1`ใไฝฟ็จใใฆใฟใฆใใ ใใใ
ใใใซใใ็ตๆใๆนๅใใใใใฉใใใ็ขบ่ชใใฆใใ ใใใ
ๆๅพใซใๅซ็็้
ๆ
ฎใ่ๆ
ฎใใใใจใไธๅฏๆฌ ใงใใ TTS ใใฏใใญใธใผใซใฏๆฐๅคใใฎๆ็จใช็จ้ใใใใพใใใ
ใพใใ็ฅใใชใใใกใซ่ชฐใใฎๅฃฐใๅฝ่ฃ
ใใใชใฉใๆชๆใฎใใ็ฎ็ใซไฝฟ็จใใใๅฏ่ฝๆงใใใใพใใใ้กใใใพใ
TTS ใฏ่ณขๆใใค่ฒฌไปปใๆใฃใฆไฝฟ็จใใฆใใ ใใใ
| transformers/docs/source/ja/tasks/text-to-speech.md/0 | {
"file_path": "transformers/docs/source/ja/tasks/text-to-speech.md",
"repo_id": "transformers",
"token_count": 12020
} | 255 |
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers ์ค์น ๋ฐฉ๋ฒ
! pip install transformers datasets
# ๋ง์ง๋ง ๋ฆด๋ฆฌ์ค ๋์ ์์ค์์ ์ค์นํ๋ ค๋ฉด, ์ ๋ช
๋ น์ ์ฃผ์์ผ๋ก ๋ฐ๊พธ๊ณ ์๋ ๋ช
๋ น์ ํด์ ํ์ธ์.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| transformers/docs/source/ko/_config.py/0 | {
"file_path": "transformers/docs/source/ko/_config.py",
"repo_id": "transformers",
"token_count": 257
} | 256 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โ ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ๐ค Tokenizers ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ํ ํฌ๋์ด์ ์ฌ์ฉํ๊ธฐ[[use-tokenizers-from-tokenizers]]
[`PreTrainedTokenizerFast`]๋ [๐ค Tokenizers](https://huggingface.co/docs/tokenizers) ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ๊ธฐ๋ฐํฉ๋๋ค. ๐ค Tokenizers ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ ํ ํฌ๋์ด์ ๋
๐ค Transformers๋ก ๋งค์ฐ ๊ฐ๋จํ๊ฒ ๋ถ๋ฌ์ฌ ์ ์์ต๋๋ค.
๊ตฌ์ฒด์ ์ธ ๋ด์ฉ์ ๋ค์ด๊ฐ๊ธฐ ์ ์, ๋ช ์ค์ ์ฝ๋๋ก ๋๋ฏธ ํ ํฌ๋์ด์ ๋ฅผ ๋ง๋ค์ด ๋ณด๊ฒ ์ต๋๋ค:
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
์ฐ๋ฆฌ๊ฐ ์ ์ํ ํ์ผ์ ํตํด ์ด์ ํ์ต๋ ํ ํฌ๋์ด์ ๋ฅผ ๊ฐ๊ฒ ๋์์ต๋๋ค. ์ด ๋ฐํ์์์ ๊ณ์ ์ฌ์ฉํ๊ฑฐ๋ JSON ํ์ผ๋ก ์ ์ฅํ์ฌ ๋์ค์ ์ฌ์ฉํ ์ ์์ต๋๋ค.
## ํ ํฌ๋์ด์ ๊ฐ์ฒด๋ก๋ถํฐ ์ง์ ๋ถ๋ฌ์ค๊ธฐ[[loading-directly-from-the-tokenizer-object]]
๐ค Transformers ๋ผ์ด๋ธ๋ฌ๋ฆฌ์์ ์ด ํ ํฌ๋์ด์ ๊ฐ์ฒด๋ฅผ ํ์ฉํ๋ ๋ฐฉ๋ฒ์ ์ดํด๋ณด๊ฒ ์ต๋๋ค.
[`PreTrainedTokenizerFast`] ํด๋์ค๋ ์ธ์คํด์คํ๋ *ํ ํฌ๋์ด์ * ๊ฐ์ฒด๋ฅผ ์ธ์๋ก ๋ฐ์ ์ฝ๊ฒ ์ธ์คํด์คํํ ์ ์์ต๋๋ค:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
์ด์ `fast_tokenizer` ๊ฐ์ฒด๋ ๐ค Transformers ํ ํฌ๋์ด์ ์์ ๊ณต์ ํ๋ ๋ชจ๋ ๋ฉ์๋์ ํจ๊ป ์ฌ์ฉํ ์ ์์ต๋๋ค! ์์ธํ ๋ด์ฉ์ [ํ ํฌ๋์ด์ ํ์ด์ง](main_classes/tokenizer)๋ฅผ ์ฐธ์กฐํ์ธ์.
## JSON ํ์ผ์์ ๋ถ๋ฌ์ค๊ธฐ[[loading-from-a-JSON-file]]
<!--In order to load a tokenizer from a JSON file, let's first start by saving our tokenizer:-->
JSON ํ์ผ์์ ํ ํฌ๋์ด์ ๋ฅผ ๋ถ๋ฌ์ค๊ธฐ ์ํด, ๋จผ์ ํ ํฌ๋์ด์ ๋ฅผ ์ ์ฅํด ๋ณด๊ฒ ์ต๋๋ค:
```python
>>> tokenizer.save("tokenizer.json")
```
JSON ํ์ผ์ ์ ์ฅํ ๊ฒฝ๋ก๋ `tokenizer_file` ๋งค๊ฐ๋ณ์๋ฅผ ์ฌ์ฉํ์ฌ [`PreTrainedTokenizerFast`] ์ด๊ธฐํ ๋ฉ์๋์ ์ ๋ฌํ ์ ์์ต๋๋ค:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
์ด์ `fast_tokenizer` ๊ฐ์ฒด๋ ๐ค Transformers ํ ํฌ๋์ด์ ์์ ๊ณต์ ํ๋ ๋ชจ๋ ๋ฉ์๋์ ํจ๊ป ์ฌ์ฉํ ์ ์์ต๋๋ค! ์์ธํ ๋ด์ฉ์ [ํ ํฌ๋์ด์ ํ์ด์ง](main_classes/tokenizer)๋ฅผ ์ฐธ์กฐํ์ธ์.
| transformers/docs/source/ko/fast_tokenizers.md/0 | {
"file_path": "transformers/docs/source/ko/fast_tokenizers.md",
"repo_id": "transformers",
"token_count": 1829
} | 257 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
โ ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# CPU์์ ํจ์จ์ ์ธ ์ถ๋ก ํ๊ธฐ [[efficient-inference-on-cpu]]
์ด ๊ฐ์ด๋๋ CPU์์ ๋๊ท๋ชจ ๋ชจ๋ธ์ ํจ์จ์ ์ผ๋ก ์ถ๋ก ํ๋ ๋ฐฉ๋ฒ์ ์ค์ ์ ๋๊ณ ์์ต๋๋ค.
## ๋ ๋น ๋ฅธ ์ถ๋ก ์ ์ํ `BetterTransformer` [[bettertransformer-for-faster-inference]]
์ฐ๋ฆฌ๋ ์ต๊ทผ CPU์์ ํ
์คํธ, ์ด๋ฏธ์ง ๋ฐ ์ค๋์ค ๋ชจ๋ธ์ ๋น ๋ฅธ ์ถ๋ก ์ ์ํด `BetterTransformer`๋ฅผ ํตํฉํ์ต๋๋ค. ์ด ํตํฉ์ ๋ํ ๋ ์์ธํ ๋ด์ฉ์ [์ด ๋ฌธ์](https://huggingface.co/docs/optimum/bettertransformer/overview)๋ฅผ ์ฐธ์กฐํ์ธ์.
## PyTorch JIT ๋ชจ๋ (TorchScript) [[pytorch-jitmode-torchscript]]
TorchScript๋ PyTorch ์ฝ๋์์ ์ง๋ ฌํ์ ์ต์ ํ๊ฐ ๊ฐ๋ฅํ ๋ชจ๋ธ์ ์์ฑํ ๋ ์ฐ์
๋๋ค. TorchScript๋ก ๋ง๋ค์ด์ง ํ๋ก๊ทธ๋จ์ ๊ธฐ์กด Python ํ๋ก์ธ์ค์์ ์ ์ฅํ ๋ค, ์ข
์์ฑ์ด ์๋ ์๋ก์ด ํ๋ก์ธ์ค๋ก ๊ฐ์ ธ์ฌ ์ ์์ต๋๋ค. PyTorch์ ๊ธฐ๋ณธ ์ค์ ์ธ `eager` ๋ชจ๋์ ๋น๊ตํ์๋, `jit` ๋ชจ๋๋ ์ฐ์ฐ์ ๊ฒฐํฉ๊ณผ ๊ฐ์ ์ต์ ํ ๋ฐฉ๋ฒ๋ก ์ ํตํด ๋ชจ๋ธ ์ถ๋ก ์์ ๋๋ถ๋ถ ๋ ๋์ ์ฑ๋ฅ์ ์ ๊ณตํฉ๋๋ค.
TorchScript์ ๋ํ ์น์ ํ ์๊ฐ๋ [PyTorch TorchScript ํํ ๋ฆฌ์ผ](https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html#tracing-modules)์ ์ฐธ์กฐํ์ธ์.
### JIT ๋ชจ๋์ ํจ๊ปํ๋ IPEX ๊ทธ๋ํ ์ต์ ํ [[ipex-graph-optimization-with-jitmode]]
Intelยฎ Extension for PyTorch(IPEX)๋ Transformers ๊ณ์ด ๋ชจ๋ธ์ jit ๋ชจ๋์์ ์ถ๊ฐ์ ์ธ ์ต์ ํ๋ฅผ ์ ๊ณตํฉ๋๋ค. jit ๋ชจ๋์ ๋๋ถ์ด Intelยฎ Extension for PyTorch(IPEX)๋ฅผ ํ์ฉํ์๊ธธ ๊ฐ๋ ฅํ ๊ถ์ฅ๋๋ฆฝ๋๋ค. Transformers ๋ชจ๋ธ์์ ์์ฃผ ์ฌ์ฉ๋๋ ์ผ๋ถ ์ฐ์ฐ์ ํจํด์ ์ด๋ฏธ jit ๋ชจ๋ ์ฐ์ฐ์ ๊ฒฐํฉ(operator fusion)์ ํํ๋ก Intelยฎ Extension for PyTorch(IPEX)์์ ์ง์๋๊ณ ์์ต๋๋ค. Multi-head-attention, Concat Linear, Linear+Add, Linear+Gelu, Add+LayerNorm ๊ฒฐํฉ ํจํด ๋ฑ์ด ์ด์ฉ ๊ฐ๋ฅํ๋ฉฐ ํ์ฉํ์ ๋ ์ฑ๋ฅ์ด ์ฐ์ํฉ๋๋ค. ์ฐ์ฐ์ ๊ฒฐํฉ์ ์ด์ ์ ์ฌ์ฉ์์๊ฒ ๊ณ ์ค๋ํ ์ ๋ฌ๋ฉ๋๋ค. ๋ถ์์ ๋ฐ๋ฅด๋ฉด, ์ง์ ์๋ต, ํ
์คํธ ๋ถ๋ฅ ๋ฐ ํ ํฐ ๋ถ๋ฅ์ ๊ฐ์ ๊ฐ์ฅ ์ธ๊ธฐ ์๋ NLP ํ์คํฌ ์ค ์ฝ 70%๊ฐ ์ด๋ฌํ ๊ฒฐํฉ ํจํด์ ์ฌ์ฉํ์ฌ Float32 ์ ๋ฐ๋์ BFloat16 ํผํฉ ์ ๋ฐ๋ ๋ชจ๋์์ ์ฑ๋ฅ์์ ์ด์ ์ ์ป์ ์ ์์ต๋๋ค.
[IPEX ๊ทธ๋ํ ์ต์ ํ](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/graph_optimization.html)์ ๋ํ ์์ธํ ์ ๋ณด๋ฅผ ํ์ธํ์ธ์.
#### IPEX ์ค์น: [[ipex-installation]]
IPEX ๋ฐฐํฌ ์ฃผ๊ธฐ๋ PyTorch๋ฅผ ๋ฐ๋ผ์ ์ด๋ฃจ์ด์ง๋๋ค. ์์ธํ ์ ๋ณด๋ [IPEX ์ค์น ๋ฐฉ๋ฒ](https://intel.github.io/intel-extension-for-pytorch/)์ ํ์ธํ์ธ์.
### JIT ๋ชจ๋ ์ฌ์ฉ๋ฒ [[usage-of-jitmode]]
ํ๊ฐ ๋๋ ์์ธก์ ์ํด Trainer์์ JIT ๋ชจ๋๋ฅผ ์ฌ์ฉํ๋ ค๋ฉด Trainer์ ๋ช
๋ น ์ธ์์ `jit_mode_eval`์ ์ถ๊ฐํด์ผ ํฉ๋๋ค.
<Tip warning={true}>
PyTorch์ ๋ฒ์ ์ด 1.14.0 ์ด์์ด๋ผ๋ฉด, jit ๋ชจ๋๋ jit.trace์์ dict ์
๋ ฅ์ด ์ง์๋๋ฏ๋ก, ๋ชจ๋ ๋ชจ๋ธ์ ์์ธก๊ณผ ํ๊ฐ๊ฐ ๊ฐ์ ๋ ์ ์์ต๋๋ค.
PyTorch์ ๋ฒ์ ์ด 1.14.0 ๋ฏธ๋ง์ด๋ผ๋ฉด, ์ง์ ์๋ต ๋ชจ๋ธ๊ณผ ๊ฐ์ด forward ๋งค๊ฐ๋ณ์์ ์์๊ฐ jit.trace์ ํํ ์
๋ ฅ ์์์ ์ผ์นํ๋ ๋ชจ๋ธ์ ๋์ด ๋ ์ ์์ต๋๋ค. ํ
์คํธ ๋ถ๋ฅ ๋ชจ๋ธ๊ณผ ๊ฐ์ด forward ๋งค๊ฐ๋ณ์ ์์๊ฐ jit.trace์ ํํ ์
๋ ฅ ์์์ ๋ค๋ฅธ ๊ฒฝ์ฐ, jit.trace๊ฐ ์คํจํ๋ฉฐ ์์ธ๊ฐ ๋ฐ์ํฉ๋๋ค. ์ด๋ ์์ธ์ํฉ์ ์ฌ์ฉ์์๊ฒ ์๋ฆฌ๊ธฐ ์ํด Logging์ด ์ฌ์ฉ๋ฉ๋๋ค.
</Tip>
[Transformers ์ง์ ์๋ต](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)์ ์ฌ์ฉ ์ฌ๋ก ์์๋ฅผ ์ฐธ์กฐํ์ธ์.
- CPU์์ jit ๋ชจ๋๋ฅผ ์ฌ์ฉํ ์ถ๋ก :
<pre>python run_qa.py \
--model_name_or_path csarron/bert-base-uncased-squad-v1 \
--dataset_name squad \
--do_eval \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/ \
--no_cuda \
<b>--jit_mode_eval </b></pre>
- CPU์์ IPEX์ ํจ๊ป jit ๋ชจ๋๋ฅผ ์ฌ์ฉํ ์ถ๋ก :
<pre>python run_qa.py \
--model_name_or_path csarron/bert-base-uncased-squad-v1 \
--dataset_name squad \
--do_eval \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/ \
--no_cuda \
<b>--use_ipex \</b>
<b>--jit_mode_eval</b></pre>
| transformers/docs/source/ko/perf_infer_cpu.md/0 | {
"file_path": "transformers/docs/source/ko/perf_infer_cpu.md",
"repo_id": "transformers",
"token_count": 3075
} | 258 |
- sections:
- local: index
title: ๐ค Transformers
- local: quicktour
title: Lawatan cepat
- local: installation
title: Pemasangan
title: Mulakan
- sections:
- local: pipeline_tutorial
title: Jalankan inferens dengan saluran paip
- local: autoclass_tutorial
title: Tulis kod mudah alih dengan AutoClass
- local: preprocessing
title: Praproses data
- local: training
title: Perhalusi model yang telah dilatih
- local: run_scripts
title: Latih dengan skrip
- local: accelerate
title: Sediakan latihan yang diedarkan dengan ๐ค Accelerate
- local: model_sharing
title: Kongsi model anda
- local: transformers_agents
title: Ejen
title: Tutorials
- sections:
- sections:
- local: tasks/sequence_classification
title: Klasifikasi teks
- local: tasks/token_classification
title: Klasifikasi token
- local: tasks/question_answering
title: Soalan menjawab
- local: tasks/language_modeling
title: Pemodelan bahasa sebab-akibat
- local: tasks/masked_language_modeling
title: Pemodelan bahasa Masked
- local: tasks/translation
title: Terjemahan
- local: tasks/summarization
title: Rumusan
- local: tasks/multiple_choice
title: Pilihan
title: Natural Language Processing
isExpanded: false
- sections:
- local: tasks/audio_classification
title: Klasifikasi audio
- local: tasks/asr
title: Pengecaman pertuturan automatik
title: Audio
isExpanded: false
- sections:
- local: tasks/image_classification
title: Klasifikasi imej
- local: tasks/semantic_segmentation
title: Segmentasi semantik
- local: tasks/video_classification
title: Klasifikasi video
- local: tasks/object_detection
title: Pengesanan objek
- local: tasks/zero_shot_object_detection
title: Pengesanan objek Zero-Shot
- local: tasks/zero_shot_image_classification
title: Klasifikasi imej tangkapan Zero-Shot
- local: tasks/monocular_depth_estimation
title: Anggaran kedalaman
title: Visi komputer
isExpanded: false
- sections:
- local: tasks/image_captioning
title: Kapsyen imej
- local: tasks/document_question_answering
title: Menjawab Soalan Dokumen
- local: tasks/text-to-speech
title: Teks kepada ucapan
title: Multimodal
isExpanded: false
title: Panduan Tugasan
- sections:
- local: fast_tokenizers
title: Gunakan tokenizer cepat dari ๐ค Tokenizers
- local: multilingual
title: Jalankan inferens dengan model berbilang bahasa
- local: generation_strategies
title: Sesuaikan strategi penjanaan teks
- local: create_a_model
title: Gunakan API khusus model
- local: custom_models
title: Kongsi model tersuai
- local: sagemaker
title: Jalankan latihan di Amazon SageMaker
- local: serialization
title: Eksport ke ONNX
- local: torchscript
title: Eksport ke TorchScript
- local: benchmarks
title: Penanda aras
- local: Buku nota dengan contoh
title: Notebooks with examples
- local: Sumber komuniti
title: Community resources
- local: Sumber komuniti
title: Custom Tools and Prompts
- local: Alat dan Gesaan Tersuai
title: Selesaikan masalah
title: Panduan Developer
- sections:
- local: performance
title: Gambaran keseluruhan
- local: perf_train_gpu_one
title: Latihan pada satu GPU
- local: perf_train_gpu_many
title: Latihan pada banyak GPU
- local: perf_train_cpu
title: Latihan mengenai CPU
- local: perf_train_cpu_many
title: Latihan pada banyak CPU
- local: perf_train_tpu
title: Latihan mengenai TPU
- local: perf_train_tpu_tf
title: Latihan tentang TPU dengan TensorFlow
- local: perf_train_special
title: Latihan mengenai Perkakasan Khusus
- local: perf_infer_cpu
title: Inferens pada CPU
- local: perf_infer_gpu_one
title: Inferens pada satu GPU
- local: perf_infer_gpu_many
title: Inferens pada banyak GPUs
- local: perf_infer_special
title: Inferens pada Perkakasan Khusus
- local: perf_hardware
title: Perkakasan tersuai untuk latihan
- local: big_models
title: Menghidupkan model besar
- local: debugging
title: Penyahpepijatan
- local: hpo_train
title: Carian Hiperparameter menggunakan API Pelatih
- local: tf_xla
title: Penyepaduan XLA untuk Model TensorFlow
title: Prestasi dan kebolehskalaan
- sections:
- local: contributing
title: Bagaimana untuk menyumbang kepada transformer?
- local: add_new_model
title: Bagaimana untuk menambah model pada ๐ค Transformers?
- local: add_tensorflow_model
title: Bagaimana untuk menukar model Transformers kepada TensorFlow?
- local: add_new_pipeline
title: Bagaimana untuk menambah saluran paip ke ๐ค Transformers?
- local: testing
title: Ujian
- local: pr_checks
title: Menyemak Permintaan Tarik
title: Sumbangkan
- sections:
- local: philosophy
title: Falsafah
- local: glossary
title: Glosari
- local: task_summary
title: Apa ๐ค Transformers boleh buat
- local: tasks_explained
title: Bagaimana ๐ค Transformers menyelesaikan tugasan
- local: model_summary
title: Keluarga model Transformer
- local: tokenizer_summary
title: Ringkasan tokenizer
- local: attention
title: Mekanisme perhatian
- local: pad_truncation
title: Padding dan pemotongan
- local: bertology
title: BERTology
- local: perplexity
title: Kekeliruan model panjang tetap
- local: pipeline_webserver
title: Saluran paip untuk inferens pelayan web
title: Panduan konsep
- sections:
- sections:
- local: main_classes/agent
title: Ejen dan Alat
- local: model_doc/auto
title: Kelas Auto
- local: main_classes/callback
title: Panggilan balik
- local: main_classes/configuration
title: Configuration
- local: main_classes/data_collator
title: Data Collator
- local: main_classes/keras_callbacks
title: Keras callbacks
- local: main_classes/logging
title: Logging
- local: main_classes/model
title: Models
- local: main_classes/text_generation
title: Text Generation
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: Optimization
- local: main_classes/output
title: Model outputs
- local: main_classes/pipelines
title: Pipelines
- local: main_classes/processors
title: Processors
- local: main_classes/quantization
title: Quantization
- local: main_classes/tokenizer
title: Tokenizer
- local: main_classes/trainer
title: Trainer
- local: main_classes/deepspeed
title: DeepSpeed Integration
- local: main_classes/feature_extractor
title: Feature Extractor
- local: main_classes/image_processor
title: Image Processor
title: Main Classes
- sections:
- isExpanded: false
sections:
- local: model_doc/albert
title: ALBERT
- local: model_doc/bart
title: BART
- local: model_doc/barthez
title: BARThez
- local: model_doc/bartpho
title: BARTpho
- local: model_doc/bert
title: BERT
- local: model_doc/bert-generation
title: BertGeneration
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: Bertweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
title: BigBirdPegasus
- local: model_doc/biogpt
title: BioGpt
- local: model_doc/blenderbot
title: Blenderbot
- local: model_doc/blenderbot-small
title: Blenderbot Small
- local: model_doc/bloom
title: BLOOM
- local: model_doc/bort
title: BORT
- local: model_doc/byt5
title: ByT5
- local: model_doc/camembert
title: CamemBERT
- local: model_doc/canine
title: CANINE
- local: model_doc/codegen
title: CodeGen
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/cpm
title: CPM
- local: model_doc/cpmant
title: CPMANT
- local: model_doc/ctrl
title: CTRL
- local: model_doc/deberta
title: DeBERTa
- local: model_doc/deberta-v2
title: DeBERTa-v2
- local: model_doc/dialogpt
title: DialoGPT
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/dpr
title: DPR
- local: model_doc/electra
title: ELECTRA
- local: model_doc/encoder-decoder
title: Encoder Decoder Models
- local: model_doc/ernie
title: ERNIE
- local: model_doc/ernie_m
title: ErnieM
- local: model_doc/esm
title: ESM
- local: model_doc/flan-t5
title: FLAN-T5
- local: model_doc/flan-ul2
title: FLAN-UL2
- local: model_doc/flaubert
title: FlauBERT
- local: model_doc/fnet
title: FNet
- local: model_doc/fsmt
title: FSMT
- local: model_doc/funnel
title: Funnel Transformer
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
title: GPT Neo
- local: model_doc/gpt_neox
title: GPT NeoX
- local: model_doc/gpt_neox_japanese
title: GPT NeoX Japanese
- local: model_doc/gptj
title: GPT-J
- local: model_doc/gpt2
title: GPT2
- local: model_doc/gpt_bigcode
title: GPTBigCode
- local: model_doc/gptsan-japanese
title: GPTSAN Japanese
- local: model_doc/gpt-sw3
title: GPTSw3
- local: model_doc/herbert
title: HerBERT
- local: model_doc/ibert
title: I-BERT
- local: model_doc/jukebox
title: Jukebox
- local: model_doc/led
title: LED
- local: model_doc/llama
title: LLaMA
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
title: LongT5
- local: model_doc/luke
title: LUKE
- local: model_doc/m2m_100
title: M2M100
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
title: MarkupLM
- local: model_doc/mbart
title: MBart and MBart-50
- local: model_doc/mega
title: MEGA
- local: model_doc/megatron-bert
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/mluke
title: mLUKE
- local: model_doc/mobilebert
title: MobileBERT
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mt5
title: MT5
- local: model_doc/mvp
title: MVP
- local: model_doc/nezha
title: NEZHA
- local: model_doc/nllb
title: NLLB
- local: model_doc/nllb-moe
title: NLLB-MoE
- local: model_doc/nystromformer
title: Nystrรถmformer
- local: model_doc/open-llama
title: Open-Llama
- local: model_doc/opt
title: OPT
- local: model_doc/pegasus
title: Pegasus
- local: model_doc/pegasus_x
title: PEGASUS-X
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/plbart
title: PLBart
- local: model_doc/prophetnet
title: ProphetNet
- local: model_doc/qdqbert
title: QDQBert
- local: model_doc/rag
title: RAG
- local: model_doc/realm
title: REALM
- local: model_doc/reformer
title: Reformer
- local: model_doc/rembert
title: RemBERT
- local: model_doc/retribert
title: RetriBERT
- local: model_doc/roberta
title: RoBERTa
- local: model_doc/roberta-prelayernorm
title: RoBERTa-PreLayerNorm
- local: model_doc/roc_bert
title: RoCBert
- local: model_doc/roformer
title: RoFormer
- local: model_doc/rwkv
title: RWKV
- local: model_doc/splinter
title: Splinter
- local: model_doc/squeezebert
title: SqueezeBERT
- local: model_doc/switch_transformers
title: SwitchTransformers
- local: model_doc/t5
title: T5
- local: model_doc/t5v1.1
title: T5v1.1
- local: model_doc/tapex
title: TAPEX
- local: model_doc/transfo-xl
title: Transformer XL
- local: model_doc/ul2
title: UL2
- local: model_doc/xmod
title: X-MOD
- local: model_doc/xglm
title: XGLM
- local: model_doc/xlm
title: XLM
- local: model_doc/xlm-prophetnet
title: XLM-ProphetNet
- local: model_doc/xlm-roberta
title: XLM-RoBERTa
- local: model_doc/xlm-roberta-xl
title: XLM-RoBERTa-XL
- local: model_doc/xlm-v
title: XLM-V
- local: model_doc/xlnet
title: XLNet
- local: model_doc/yoso
title: YOSO
title: Text models
- isExpanded: false
sections:
- local: model_doc/beit
title: BEiT
- local: model_doc/bit
title: BiT
- local: model_doc/conditional_detr
title: Conditional DETR
- local: model_doc/convnext
title: ConvNeXT
- local: model_doc/convnextv2
title: ConvNeXTV2
- local: model_doc/cvt
title: CvT
- local: model_doc/deformable_detr
title: Deformable DETR
- local: model_doc/deit
title: DeiT
- local: model_doc/deta
title: DETA
- local: model_doc/detr
title: DETR
- local: model_doc/dinat
title: DiNAT
- local: model_doc/dit
title: DiT
- local: model_doc/dpt
title: DPT
- local: model_doc/efficientformer
title: EfficientFormer
- local: model_doc/efficientnet
title: EfficientNet
- local: model_doc/focalnet
title: FocalNet
- local: model_doc/glpn
title: GLPN
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/levit
title: LeViT
- local: model_doc/mask2former
title: Mask2Former
- local: model_doc/maskformer
title: MaskFormer
- local: model_doc/mobilenet_v1
title: MobileNetV1
- local: model_doc/mobilenet_v2
title: MobileNetV2
- local: model_doc/mobilevit
title: MobileViT
- local: model_doc/nat
title: NAT
- local: model_doc/poolformer
title: PoolFormer
- local: model_doc/regnet
title: RegNet
- local: model_doc/resnet
title: ResNet
- local: model_doc/segformer
title: SegFormer
- local: model_doc/swiftformer
title: SwiftFormer
- local: model_doc/swin
title: Swin Transformer
- local: model_doc/swinv2
title: Swin Transformer V2
- local: model_doc/swin2sr
title: Swin2SR
- local: model_doc/table-transformer
title: Table Transformer
- local: model_doc/timesformer
title: TimeSformer
- local: model_doc/upernet
title: UperNet
- local: model_doc/van
title: VAN
- local: model_doc/videomae
title: VideoMAE
- local: model_doc/vit
title: Vision Transformer (ViT)
- local: model_doc/vit_hybrid
title: ViT Hybrid
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/vit_msn
title: ViTMSN
- local: model_doc/yolos
title: YOLOS
title: Vision models
- isExpanded: false
sections:
- local: model_doc/audio-spectrogram-transformer
title: Audio Spectrogram Transformer
- local: model_doc/clap
title: CLAP
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
title: MCTCT
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
title: SEW-D
- local: model_doc/speech_to_text
title: Speech2Text
- local: model_doc/speech_to_text_2
title: Speech2Text2
- local: model_doc/speecht5
title: SpeechT5
- local: model_doc/unispeech
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-conformer
title: Wav2Vec2-Conformer
- local: model_doc/wav2vec2_phoneme
title: Wav2Vec2Phoneme
- local: model_doc/wavlm
title: WavLM
- local: model_doc/whisper
title: Whisper
- local: model_doc/xls_r
title: XLS-R
- local: model_doc/xlsr_wav2vec2
title: XLSR-Wav2Vec2
title: Audio models
- isExpanded: false
sections:
- local: model_doc/align
title: ALIGN
- local: model_doc/altclip
title: AltCLIP
- local: model_doc/blip
title: BLIP
- local: model_doc/blip-2
title: BLIP-2
- local: model_doc/bridgetower
title: BridgeTower
- local: model_doc/chinese_clip
title: Chinese-CLIP
- local: model_doc/clip
title: CLIP
- local: model_doc/clipseg
title: CLIPSeg
- local: model_doc/data2vec
title: Data2Vec
- local: model_doc/deplot
title: DePlot
- local: model_doc/donut
title: Donut
- local: model_doc/flava
title: FLAVA
- local: model_doc/git
title: GIT
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
title: LayoutLMV2
- local: model_doc/layoutlmv3
title: LayoutLMV3
- local: model_doc/layoutxlm
title: LayoutXLM
- local: model_doc/lilt
title: LiLT
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/matcha
title: MatCha
- local: model_doc/mgp-str
title: MGP-STR
- local: model_doc/oneformer
title: OneFormer
- local: model_doc/owlvit
title: OWL-ViT
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/pix2struct
title: Pix2Struct
- local: model_doc/sam
title: Segment Anything
- local: model_doc/speech-encoder-decoder
title: Speech Encoder Decoder Models
- local: model_doc/tapas
title: TAPAS
- local: model_doc/trocr
title: TrOCR
- local: model_doc/tvlt
title: TVLT
- local: model_doc/vilt
title: ViLT
- local: model_doc/vision-encoder-decoder
title: Vision Encoder Decoder Models
- local: model_doc/vision-text-dual-encoder
title: Vision Text Dual Encoder
- local: model_doc/visual_bert
title: VisualBERT
- local: model_doc/xclip
title: X-CLIP
title: Multimodal models
- isExpanded: false
sections:
- local: model_doc/decision_transformer
title: Decision Transformer
- local: model_doc/trajectory_transformer
title: Trajectory Transformer
title: Reinforcement learning models
- isExpanded: false
sections:
- local: model_doc/informer
title: Informer
- local: model_doc/time_series_transformer
title: Time Series Transformer
title: Time series models
- isExpanded: false
sections:
- local: model_doc/graphormer
title: Graphormer
title: Graph models
title: Models
- sections:
- local: internal/modeling_utils
title: Custom Layers and Utilities
- local: internal/pipelines_utils
title: Utilities for pipelines
- local: internal/tokenization_utils
title: Utilities for Tokenizers
- local: internal/trainer_utils
title: Utilities for Trainer
- local: internal/generation_utils
title: Utilities for Generation
- local: internal/image_processing_utils
title: Utilities for Image Processors
- local: internal/audio_utils
title: Utilities for Audio processing
- local: internal/file_utils
title: General Utilities
- local: internal/time_series_utils
title: Utilities for Time Series
title: Internal Helpers
title: API
| transformers/docs/source/ms/_toctree.yml/0 | {
"file_path": "transformers/docs/source/ms/_toctree.yml",
"repo_id": "transformers",
"token_count": 12527
} | 259 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
โ ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ไฝฟ็จ ๐ค Tokenizers ไธญ็ๅ่ฏๅจ
[`PreTrainedTokenizerFast`] ไพ่ตไบ [๐ค Tokenizers](https://huggingface.co/docs/tokenizers) ๅบใไป ๐ค Tokenizers ๅบ่ทๅพ็ๅ่ฏๅจๅฏไปฅ่ขซ่ฝปๆพๅฐๅ ่ฝฝๅฐ ๐ค Transformers ไธญใ
ๅจไบ่งฃๅ
ทไฝๅ
ๅฎนไนๅ๏ผ่ฎฉๆไปฌๅ
็จๅ ่กไปฃ็ ๅๅปบไธไธช่ๆ็ๅ่ฏๅจ๏ผ
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
็ฐๅจ๏ผๆไปฌๆฅๆไบไธไธช้ๅฏนๆไปฌๅฎไน็ๆไปถ่ฟ่ก่ฎญ็ป็ๅ่ฏๅจใๆไปฌๅฏไปฅๅจๅฝๅ่ฟ่กๆถไธญ็ปง็ปญไฝฟ็จๅฎ๏ผๆ่
ๅฐๅ
ถไฟๅญๅฐไธไธช JSON ๆไปถไปฅไพๅฐๆฅ้ๅคไฝฟ็จใ
## ็ดๆฅไปๅ่ฏๅจๅฏน่ฑกๅ ่ฝฝ
่ฎฉๆไปฌ็็ๅฆไฝๅฉ็จ ๐ค Transformers ๅบไธญ็่ฟไธชๅ่ฏๅจๅฏน่ฑกใ[`PreTrainedTokenizerFast`] ็ฑปๅ
่ฎธ้่ฟๆฅๅๅทฒๅฎไพๅ็ *tokenizer* ๅฏน่ฑกไฝไธบๅๆฐ๏ผ่ฟ่ก่ฝปๆพๅฎไพๅ๏ผ
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
็ฐๅจๅฏไปฅไฝฟ็จ่ฟไธชๅฏน่ฑก๏ผไฝฟ็จ ๐ค Transformers ๅ่ฏๅจๅ
ฑไบซ็ๆๆๆนๆณ๏ผๅๅพ[ๅ่ฏๅจ้กต้ข](main_classes/tokenizer)ไบ่งฃๆดๅคไฟกๆฏใ
## ไป JSON ๆไปถๅ ่ฝฝ
ไธบไบไป JSON ๆไปถไธญๅ ่ฝฝๅ่ฏๅจ๏ผ่ฎฉๆไปฌๅ
ไฟๅญๆไปฌ็ๅ่ฏๅจ๏ผ
```python
>>> tokenizer.save("tokenizer.json")
```
ๆไปฌไฟๅญๆญคๆไปถ็่ทฏๅพๅฏไปฅ้่ฟ `tokenizer_file` ๅๆฐไผ ้็ป [`PreTrainedTokenizerFast`] ๅๅงๅๆนๆณ๏ผ
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
็ฐๅจๅฏไปฅไฝฟ็จ่ฟไธชๅฏน่ฑก๏ผไฝฟ็จ ๐ค Transformers ๅ่ฏๅจๅ
ฑไบซ็ๆๆๆนๆณ๏ผๅๅพ[ๅ่ฏๅจ้กต้ข](main_classes/tokenizer)ไบ่งฃๆดๅคไฟกๆฏใ
| transformers/docs/source/zh/fast_tokenizers.md/0 | {
"file_path": "transformers/docs/source/zh/fast_tokenizers.md",
"repo_id": "transformers",
"token_count": 1249
} | 260 |
<!---
Copyright 2021 The Google Flax Team Authors and HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Question Answering examples
Based on the script [`run_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/flax/question-answering/run_qa.py).
**Note:** This script only works with models that have a fast tokenizer (backed by the ๐ค Tokenizers library) as it
uses special features of those tokenizers. You can check if your favorite model has a fast tokenizer in
[this table](https://huggingface.co/transformers/index.html#supported-frameworks), if it doesn't you can still use the old version
of the script.
The following example fine-tunes BERT on SQuAD:
```bash
python run_qa.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--max_seq_length 384 \
--doc_stride 128 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--per_device_train_batch_size 12 \
--output_dir ./bert-qa-squad \
--eval_steps 1000 \
--push_to_hub
```
Using the command above, the script will train for 2 epochs and run eval after each epoch.
Metrics and hyperparameters are stored in Tensorflow event files in `--output_dir`.
You can see the results by running `tensorboard` in that directory:
```bash
$ tensorboard --logdir .
```
or directly on the hub under *Training metrics*.
Training with the previously defined hyper-parameters yields the following results:
```bash
f1 = 88.62
exact_match = 81.34
```
sample Metrics - [tfhub.dev](https://tensorboard.dev/experiment/6gU75Hx8TGCnc6tr4ZgI9Q)
Here is an example training on 4 TITAN RTX GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python run_qa.py \
--model_name_or_path bert-large-uncased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 6 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./wwm_uncased_finetuned_squad/ \
--eval_steps 1000 \
--push_to_hub
```
Training with the previously defined hyper-parameters yields the following results:
```bash
f1 = 93.31
exact_match = 87.04
```
### Usage notes
Note that when contexts are long they may be split into multiple training cases, not all of which may contain
the answer span.
As-is, the example script will train on SQuAD or any other question-answering dataset formatted the same way, and can handle user
inputs as well.
### Memory usage and data loading
One thing to note is that all data is loaded into memory in this script. Most question answering datasets are small
enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle
data streaming.
| transformers/examples/flax/question-answering/README.md/0 | {
"file_path": "transformers/examples/flax/question-answering/README.md",
"repo_id": "transformers",
"token_count": 1047
} | 261 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning a ๐ค Flax Transformers model on token classification tasks (NER, POS, CHUNKS)"""
import json
import logging
import math
import os
import random
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple
import datasets
import evaluate
import jax
import jax.numpy as jnp
import numpy as np
import optax
from datasets import ClassLabel, load_dataset
from flax import struct, traverse_util
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from huggingface_hub import Repository, create_repo
from tqdm import tqdm
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
FlaxAutoModelForTokenClassification,
HfArgumentParser,
is_tensorboard_available,
)
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
Array = Any
Dataset = datasets.arrow_dataset.Dataset
PRNGKey = Any
@dataclass
class TrainingArguments:
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
overwrite_output_dir: bool = field(
default=False,
metadata={
"help": (
"Overwrite the content of the output directory. "
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
push_to_hub: bool = field(
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
)
hub_model_id: str = field(
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
)
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
def __post_init__(self):
if self.output_dir is not None:
self.output_dir = os.path.expanduser(self.output_dir)
def to_dict(self):
"""
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
the token values by removing their value.
"""
d = asdict(self)
for k, v in d.items():
if isinstance(v, Enum):
d[k] = v.value
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
d[k] = [x.value for x in v]
if k.endswith("_token"):
d[k] = f"<{k.upper()}>"
return d
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
text_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
)
label_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: int = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. If set, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": (
"Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
)
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
self.task_name = self.task_name.lower()
def create_train_state(
model: FlaxAutoModelForTokenClassification,
learning_rate_fn: Callable[[int], float],
num_labels: int,
training_args: TrainingArguments,
) -> train_state.TrainState:
"""Create initial training state."""
class TrainState(train_state.TrainState):
"""Train state with an Optax optimizer.
The two functions below differ depending on whether the task is classification
or regression.
Args:
logits_fn: Applied to last layer to obtain the logits.
loss_fn: Function to compute the loss.
"""
logits_fn: Callable = struct.field(pytree_node=False)
loss_fn: Callable = struct.field(pytree_node=False)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
# find out all LayerNorm parameters
layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
layer_norm_named_params = {
layer[-2:]
for layer_norm_name in layer_norm_candidates
for layer in flat_params.keys()
if layer_norm_name in "".join(layer).lower()
}
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
tx = optax.adamw(
learning_rate=learning_rate_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
def cross_entropy_loss(logits, labels):
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
return jnp.mean(xentropy)
return TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=tx,
logits_fn=lambda logits: logits.argmax(-1),
loss_fn=cross_entropy_loss,
)
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
steps_per_epoch = len(dataset) // batch_size
perms = jax.random.permutation(rng, len(dataset))
perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch.
perms = perms.reshape((steps_per_epoch, batch_size))
for perm in perms:
batch = dataset[perm]
batch = {k: np.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
def eval_data_collator(dataset: Dataset, batch_size: int):
"""Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop."""
batch_idx = np.arange(len(dataset))
steps_per_epoch = math.ceil(len(dataset) / batch_size)
batch_idx = np.array_split(batch_idx, steps_per_epoch)
for idx in batch_idx:
batch = dataset[idx]
batch = {k: np.array(v) for k, v in batch.items()}
yield batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_ner", model_args, data_args, framework="flax")
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Handle the repository creation
if training_args.push_to_hub:
# Retrieve of infer repo_name
repo_name = training_args.hub_model_id
if repo_name is None:
repo_name = Path(training_args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
# Clone repo locally
repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
# 'tokens' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
else:
# Loading the dataset from local csv or json file.
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.
if raw_datasets["train"] is not None:
column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features
else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features
if data_args.text_column_name is not None:
text_column_name = data_args.text_column_name
elif "tokens" in column_names:
text_column_name = "tokens"
else:
text_column_name = column_names[0]
if data_args.label_column_name is not None:
label_column_name = data_args.label_column_name
elif f"{data_args.task_name}_tags" in column_names:
label_column_name = f"{data_args.task_name}_tags"
else:
label_column_name = column_names[1]
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
label_to_id = {i: i for i in range(len(label_list))}
else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
label2id=label_to_id,
id2label={i: l for l, i in label_to_id.items()},
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
if config.model_type in {"gpt2", "roberta"}:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
add_prefix_space=True,
)
else:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
model = FlaxAutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# Preprocessing the datasets
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples[text_column_name],
max_length=data_args.max_seq_length,
padding="max_length",
truncation=True,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
for i, label in enumerate(examples[label_column_name]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
processed_raw_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_raw_datasets["train"]
eval_dataset = processed_raw_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Define a summary writer
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(training_args.output_dir)
summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)})
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
num_epochs = int(training_args.num_train_epochs)
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
train_batch_size = training_args.per_device_train_batch_size * jax.local_device_count()
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
eval_batch_size = training_args.per_device_eval_batch_size * jax.local_device_count()
learning_rate_fn = create_learning_rate_fn(
len(train_dataset),
train_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
)
state = create_train_state(model, learning_rate_fn, num_labels=num_labels, training_args=training_args)
# define step functions
def train_step(
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
) -> Tuple[train_state.TrainState, float]:
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
targets = batch.pop("labels")
def loss_fn(params):
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss = state.loss_fn(logits, targets)
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
return new_state, metrics, new_dropout_rng
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))
def eval_step(state, batch):
logits = state.apply_fn(**batch, params=state.params, train=False)[0]
return state.logits_fn(logits)
p_eval_step = jax.pmap(eval_step, axis_name="batch")
metric = evaluate.load("seqeval", cache_dir=model_args.cache_dir)
def get_labels(y_pred, y_true):
# Transform predictions and references tensos to numpy arrays
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
for pred, gold_label in zip(y_pred, y_true)
]
true_labels = [
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
for pred, gold_label in zip(y_pred, y_true)
]
return true_predictions, true_labels
def compute_metrics():
results = metric.compute()
if data_args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
logger.info(f"===== Starting training ({num_epochs} epochs) =====")
train_time = 0
# make sure weights are replicated on each device
state = replicate(state)
train_time = 0
step_per_epoch = len(train_dataset) // train_batch_size
total_steps = step_per_epoch * num_epochs
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
train_start = time.time()
train_metrics = []
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# train
for step, batch in enumerate(
tqdm(
train_data_collator(input_rng, train_dataset, train_batch_size),
total=step_per_epoch,
desc="Training...",
position=1,
)
):
state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs)
train_metrics.append(train_metric)
cur_step = (epoch * step_per_epoch) + (step + 1)
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
# Save metrics
train_metric = unreplicate(train_metric)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
epochs.write(
f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
f" {train_metric['learning_rate']})"
)
train_metrics = []
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
eval_metrics = {}
# evaluate
for batch in tqdm(
eval_data_collator(eval_dataset, eval_batch_size),
total=math.ceil(len(eval_dataset) / eval_batch_size),
desc="Evaluating ...",
position=2,
):
labels = batch.pop("labels")
predictions = pad_shard_unpad(p_eval_step)(
state, batch, min_device_batch=per_device_eval_batch_size
)
predictions = np.array(predictions)
labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
preds, refs = get_labels(predictions, labels)
metric.add_batch(
predictions=preds,
references=refs,
)
eval_metrics = compute_metrics()
if data_args.return_entity_level_metrics:
logger.info(f"Step... ({cur_step}/{total_steps} | Validation metrics: {eval_metrics}")
else:
logger.info(
f"Step... ({cur_step}/{total_steps} | Validation f1: {eval_metrics['f1']}, Validation Acc:"
f" {eval_metrics['accuracy']})"
)
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, cur_step)
if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps):
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(unreplicate(state.params))
model.save_pretrained(training_args.output_dir, params=params)
tokenizer.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"
# Eval after training
if training_args.do_eval:
eval_metrics = {}
eval_loader = eval_data_collator(eval_dataset, eval_batch_size)
for batch in tqdm(eval_loader, total=len(eval_dataset) // eval_batch_size, desc="Evaluating ...", position=2):
labels = batch.pop("labels")
predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size)
predictions = np.array(predictions)
labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
preds, refs = get_labels(predictions, labels)
metric.add_batch(predictions=preds, references=refs)
eval_metrics = compute_metrics()
if jax.process_index() == 0:
eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
path = os.path.join(training_args.output_dir, "eval_results.json")
with open(path, "w") as f:
json.dump(eval_metrics, f, indent=4, sort_keys=True)
if __name__ == "__main__":
main()
| transformers/examples/flax/token-classification/run_flax_ner.py/0 | {
"file_path": "transformers/examples/flax/token-classification/run_flax_ner.py",
"repo_id": "transformers",
"token_count": 14777
} | 262 |
#!/usr/bin/env bash
# for seqeval metrics import
pip install -r ../requirements.txt
## The relevant files are currently on a shared Google
## drive at https://drive.google.com/drive/folders/1kC0I2UGl2ltrluI9NqDjaQJGw5iliw_J
## Monitor for changes and eventually migrate to use the `datasets` library
curl -L 'https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
curl -L 'https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
python3 scripts/preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
python3 scripts/preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
python3 scripts/preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SEED=1
export OUTPUT_DIR_NAME=germeval-model
export CURRENT_DIR=${PWD}
export OUTPUT_DIR=${CURRENT_DIR}/${OUTPUT_DIR_NAME}
mkdir -p $OUTPUT_DIR
# Add parent directory to python path to access lightning_base.py
export PYTHONPATH="../":"${PYTHONPATH}"
python3 run_ner.py --data_dir ./ \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--train_batch_size $BATCH_SIZE \
--seed $SEED \
--gpus 1 \
--do_train \
--do_predict
| transformers/examples/legacy/pytorch-lightning/run_ner.sh/0 | {
"file_path": "transformers/examples/legacy/pytorch-lightning/run_ner.sh",
"repo_id": "transformers",
"token_count": 724
} | 263 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export TPU_NUM_CORES=8
# the proper usage is documented in the README, you need to specify data_dir, output_dir and model_name_or_path
# run ./finetune_tpu.sh --help to see all the possible options
python xla_spawn.py --num_cores $TPU_NUM_CORES \
finetune_trainer.py \
--learning_rate=3e-5 \
--do_train --do_eval \
--evaluation_strategy steps \
--prediction_loss_only \
--n_val 1000 \
"$@"
| transformers/examples/legacy/seq2seq/finetune_tpu.sh/0 | {
"file_path": "transformers/examples/legacy/seq2seq/finetune_tpu.sh",
"repo_id": "transformers",
"token_count": 323
} | 264 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import Seq2SeqDataset, pickle_save
def save_len_file(
tokenizer_name, data_dir, max_source_length=1024, max_target_length=1024, consider_target=False, **kwargs
):
"""Save max(src_len, tgt_len) for each example to allow dynamic batching."""
tok = AutoTokenizer.from_pretrained(tokenizer_name)
train_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="train", **kwargs)
pad = tok.pad_token_id
def get_lens(ds):
dl = tqdm(
DataLoader(ds, batch_size=512, num_workers=8, shuffle=False, collate_fn=ds.collate_fn),
desc=str(ds.len_file),
)
max_lens = []
for batch in dl:
src_lens = batch["input_ids"].ne(pad).sum(1).tolist()
tgt_lens = batch["labels"].ne(pad).sum(1).tolist()
if consider_target:
for src, tgt in zip(src_lens, tgt_lens):
max_lens.append(max(src, tgt))
else:
max_lens.extend(src_lens)
return max_lens
train_lens = get_lens(train_ds)
val_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="val", **kwargs)
val_lens = get_lens(val_ds)
pickle_save(train_lens, train_ds.len_file)
pickle_save(val_lens, val_ds.len_file)
if __name__ == "__main__":
fire.Fire(save_len_file)
| transformers/examples/legacy/seq2seq/save_len_file.py/0 | {
"file_path": "transformers/examples/legacy/seq2seq/save_len_file.py",
"repo_id": "transformers",
"token_count": 869
} | 265 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export WANDB_PROJECT=distil-marian
export BS=64
export m=sshleifer/student_marian_en_ro_6_3
export MAX_LEN=128
export TPU_NUM_CORES=8
python xla_spawn.py --num_cores $TPU_NUM_CORES \
finetune_trainer.py \
--tokenizer_name $m --model_name_or_path $m \
--data_dir $ENRO_DIR \
--output_dir marian_en_ro_6_3 --overwrite_output_dir \
--learning_rate=3e-4 \
--warmup_steps 500 \
--per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \
--freeze_encoder --freeze_embeds \
--num_train_epochs=6 \
--save_steps 500 --eval_steps 500 \
--logging_first_step --logging_steps 200 \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN \
--val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN \
--do_train --do_eval \
--evaluation_strategy steps \
--prediction_loss_only \
--task translation --label_smoothing_factor 0.1 \
"$@"
| transformers/examples/legacy/seq2seq/train_distil_marian_enro_tpu.sh/0 | {
"file_path": "transformers/examples/legacy/seq2seq/train_distil_marian_enro_tpu.sh",
"repo_id": "transformers",
"token_count": 559
} | 266 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning XLNet for question answering with beam search using ๐ค Accelerate.
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.
import argparse
import json
import logging
import math
import os
import random
from pathlib import Path
import datasets
import evaluate
import numpy as np
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from utils_qa import postprocess_qa_predictions_with_beam_search
import transformers
from transformers import (
AdamW,
DataCollatorWithPadding,
EvalPrediction,
SchedulerType,
XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizerFast,
default_data_collator,
get_scheduler,
)
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = get_logger(__name__)
def save_prefixed_metrics(results, output_dir, file_name: str = "all_results.json", metric_key_prefix: str = "eval"):
"""
Save results while prefixing metric names.
Args:
results: (:obj:`dict`):
A dictionary of results.
output_dir: (:obj:`str`):
An output directory.
file_name: (:obj:`str`, `optional`, defaults to :obj:`all_results.json`):
An output file name.
metric_key_prefix: (:obj:`str`, `optional`, defaults to :obj:`eval`):
A metric name prefix.
"""
# Prefix all keys with metric_key_prefix + '_'
for key in list(results.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
results[f"{metric_key_prefix}_{key}"] = results.pop(key)
with open(os.path.join(output_dir, file_name), "w") as f:
json.dump(results, f, indent=4)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a Question Answering task")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--preprocessing_num_workers", type=int, default=1, help="A csv or a json file containing the training data."
)
parser.add_argument("--do_predict", action="store_true", help="Eval the question answering model")
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--test_file", type=str, default=None, help="A csv or a json file containing the Prediction data."
)
parser.add_argument(
"--max_seq_length",
type=int,
default=384,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_seq_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--doc_stride",
type=int,
default=128,
help="When splitting up a long document into chunks how much stride to take between chunks.",
)
parser.add_argument(
"--n_best_size",
type=int,
default=20,
help="The total number of n-best predictions to generate when looking for an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help=(
"The threshold used to select the null answer: if the best answer has a score that is less than "
"the score of the null answer minus this threshold, the null answer is selected for this example. "
"Only useful when `version_2_with_negative=True`."
),
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, some of the examples do not have an answer.",
)
parser.add_argument(
"--max_answer_length",
type=int,
default=30,
help=(
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
),
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
),
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument(
"--max_predict_samples",
type=int,
default=None,
help="For debugging purposes or quicker training, truncate the number of prediction examples to this",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
args = parser.parse_args()
# Sanity checks
if (
args.dataset_name is None
and args.train_file is None
and args.validation_file is None
and args.test_file is None
):
raise ValueError("Need either a dataset name or a training/validation/test file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.test_file is not None:
extension = args.test_file.split(".")[-1]
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_qa_beam_search_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
extension = args.train_file.split(".")[-1]
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.validation_file.split(".")[-1]
if args.test_file is not None:
data_files["test"] = args.test_file
extension = args.test_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files, field="data")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = XLNetConfig.from_pretrained(args.model_name_or_path)
tokenizer = XLNetTokenizerFast.from_pretrained(args.model_name_or_path)
model = XLNetForQuestionAnswering.from_pretrained(
args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
)
# Preprocessing the datasets.
# Preprocessing is slightly different for training and evaluation.
column_names = raw_datasets["train"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
pad_on_right = tokenizer.padding_side == "right"
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the "
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
# Training preprocessing
def prepare_train_features(examples):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
return_token_type_ids=True,
padding="max_length",
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# The offset mappings will give us a map from token to character position in the original context. This will
# help us compute the start_positions and end_positions.
offset_mapping = tokenized_examples.pop("offset_mapping")
# The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers).
special_tokens = tokenized_examples.pop("special_tokens_mask")
# Let's label those examples!
tokenized_examples["start_positions"] = []
tokenized_examples["end_positions"] = []
tokenized_examples["is_impossible"] = []
tokenized_examples["cls_index"] = []
tokenized_examples["p_mask"] = []
for i, offsets in enumerate(offset_mapping):
# We will label impossible answers with the index of the CLS token.
input_ids = tokenized_examples["input_ids"][i]
cls_index = input_ids.index(tokenizer.cls_token_id)
tokenized_examples["cls_index"].append(cls_index)
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples["token_type_ids"][i]
for k, s in enumerate(special_tokens[i]):
if s:
sequence_ids[k] = 3
context_idx = 1 if pad_on_right else 0
# Build the p_mask: non special tokens and context gets 0.0, the others get 1.0.
# The cls token gets 1.0 too (for predictions of empty answers).
tokenized_examples["p_mask"].append(
[
0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0
for k, s in enumerate(sequence_ids)
]
)
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
answers = examples[answer_column_name][sample_index]
# If no answers are given, set the cls_index as answer.
if len(answers["answer_start"]) == 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
tokenized_examples["is_impossible"].append(1.0)
else:
# Start/end character index of the answer in the text.
start_char = answers["answer_start"][0]
end_char = start_char + len(answers["text"][0])
# Start token index of the current span in the text.
token_start_index = 0
while sequence_ids[token_start_index] != context_idx:
token_start_index += 1
# End token index of the current span in the text.
token_end_index = len(input_ids) - 1
while sequence_ids[token_end_index] != context_idx:
token_end_index -= 1
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
tokenized_examples["is_impossible"].append(1.0)
else:
# Otherwise move the token_start_index and token_end_index to the two ends of the answer.
# Note: we could go after the last offset if the answer is the last word (edge case).
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
token_start_index += 1
tokenized_examples["start_positions"].append(token_start_index - 1)
while offsets[token_end_index][1] >= end_char:
token_end_index -= 1
tokenized_examples["end_positions"].append(token_end_index + 1)
tokenized_examples["is_impossible"].append(0.0)
return tokenized_examples
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if args.max_train_samples is not None:
# We will select sample from whole data if argument is specified
train_dataset = train_dataset.select(range(args.max_train_samples))
# Create train feature from dataset
with accelerator.main_process_first():
train_dataset = train_dataset.map(
prepare_train_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
train_dataset = train_dataset.select(range(args.max_train_samples))
# Validation preprocessing
def prepare_validation_features(examples):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
return_token_type_ids=True,
padding="max_length",
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers).
special_tokens = tokenized_examples.pop("special_tokens_mask")
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
tokenized_examples["example_id"] = []
# We still provide the index of the CLS token and the p_mask to the model, but not the is_impossible label.
tokenized_examples["cls_index"] = []
tokenized_examples["p_mask"] = []
for i, input_ids in enumerate(tokenized_examples["input_ids"]):
# Find the CLS token in the input ids.
cls_index = input_ids.index(tokenizer.cls_token_id)
tokenized_examples["cls_index"].append(cls_index)
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples["token_type_ids"][i]
for k, s in enumerate(special_tokens[i]):
if s:
sequence_ids[k] = 3
context_idx = 1 if pad_on_right else 0
# Build the p_mask: non special tokens and context gets 0.0, the others 1.0.
tokenized_examples["p_mask"].append(
[
0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0
for k, s in enumerate(sequence_ids)
]
)
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_idx else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_examples = raw_datasets["validation"]
if args.max_eval_samples is not None:
# We will select sample from whole data
eval_examples = eval_examples.select(range(args.max_eval_samples))
# Validation Feature Creation
with accelerator.main_process_first():
eval_dataset = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if args.max_eval_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
eval_dataset = eval_dataset.select(range(args.max_eval_samples))
if args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_examples = raw_datasets["test"]
if args.max_predict_samples is not None:
# We will select sample from whole data
predict_examples = predict_examples.select(range(args.max_predict_samples))
# Predict Feature Creation
with accelerator.main_process_first():
predict_dataset = predict_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
predict_dataset = predict_dataset.select(range(args.max_predict_samples))
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataset_for_model = eval_dataset.remove_columns(["example_id", "offset_mapping"])
eval_dataloader = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
if args.do_predict:
predict_dataset_for_model = predict_dataset.remove_columns(["example_id", "offset_mapping"])
predict_dataloader = DataLoader(
predict_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
# Post-processing:
def post_processing_function(examples, features, predictions, stage="eval"):
# Post-processing: we match the start logits and end logits to answers in the original context.
predictions, scores_diff_json = postprocess_qa_predictions_with_beam_search(
examples=examples,
features=features,
predictions=predictions,
version_2_with_negative=args.version_2_with_negative,
n_best_size=args.n_best_size,
max_answer_length=args.max_answer_length,
start_n_top=model.config.start_n_top,
end_n_top=model.config.end_n_top,
output_dir=args.output_dir,
prefix=stage,
)
# Format the result to the format the metric expects.
if args.version_2_with_negative:
formatted_predictions = [
{"id": k, "prediction_text": v, "no_answer_probability": scores_diff_json[k]}
for k, v in predictions.items()
]
else:
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
metric = evaluate.load("squad_v2" if args.version_2_with_negative else "squad")
def create_and_fill_np_array(start_or_end_logits, dataset, max_len):
"""
Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor
Args:
start_or_end_logits(:obj:`tensor`):
This is the output predictions of the model. We can only enter either start or end logits.
eval_dataset: Evaluation dataset
max_len(:obj:`int`):
The maximum length of the output tensor. ( See the model.eval() part for more details )
"""
step = 0
# create a numpy array and fill it with -100.
logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float32)
# Now since we have create an array now we will populate it with the outputs gathered using accelerator.gather_for_metrics
for i, output_logit in enumerate(start_or_end_logits): # populate columns
# We have to fill it such that we have to take the whole tensor and replace it on the newly created array
# And after every iteration we have to change the step
batch_size = output_logit.shape[0]
cols = output_logit.shape[1]
if step + batch_size < len(dataset):
logits_concat[step : step + batch_size, :cols] = output_logit
else:
logits_concat[step:, :cols] = output_logit[: len(dataset) - step]
step += batch_size
return logits_concat
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("qa_beam_search_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
accelerator.save_state(f"step_{completed_steps}")
if completed_steps >= args.max_train_steps:
break
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
# initialize all lists to collect the batches
all_start_top_log_probs = []
all_start_top_index = []
all_end_top_log_probs = []
all_end_top_index = []
all_cls_logits = []
model.eval()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
start_top_log_probs = outputs.start_top_log_probs
start_top_index = outputs.start_top_index
end_top_log_probs = outputs.end_top_log_probs
end_top_index = outputs.end_top_index
cls_logits = outputs.cls_logits
if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered
start_top_log_probs = accelerator.pad_across_processes(start_top_log_probs, dim=1, pad_index=-100)
start_top_index = accelerator.pad_across_processes(start_top_index, dim=1, pad_index=-100)
end_top_log_probs = accelerator.pad_across_processes(end_top_log_probs, dim=1, pad_index=-100)
end_top_index = accelerator.pad_across_processes(end_top_index, dim=1, pad_index=-100)
cls_logits = accelerator.pad_across_processes(cls_logits, dim=1, pad_index=-100)
all_start_top_log_probs.append(accelerator.gather_for_metrics(start_top_log_probs).cpu().numpy())
all_start_top_index.append(accelerator.gather_for_metrics(start_top_index).cpu().numpy())
all_end_top_log_probs.append(accelerator.gather_for_metrics(end_top_log_probs).cpu().numpy())
all_end_top_index.append(accelerator.gather_for_metrics(end_top_index).cpu().numpy())
all_cls_logits.append(accelerator.gather_for_metrics(cls_logits).cpu().numpy())
max_len = max([x.shape[1] for x in all_end_top_log_probs]) # Get the max_length of the tensor
# concatenate all numpy arrays collected above
start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, eval_dataset, max_len)
start_top_index_concat = create_and_fill_np_array(all_start_top_index, eval_dataset, max_len)
end_top_log_probs_concat = create_and_fill_np_array(all_end_top_log_probs, eval_dataset, max_len)
end_top_index_concat = create_and_fill_np_array(all_end_top_index, eval_dataset, max_len)
cls_logits_concat = np.concatenate(all_cls_logits, axis=0)
# delete the list of numpy arrays
del start_top_log_probs
del start_top_index
del end_top_log_probs
del end_top_index
del cls_logits
outputs_numpy = (
start_top_log_probs_concat,
start_top_index_concat,
end_top_log_probs_concat,
end_top_index_concat,
cls_logits_concat,
)
prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy)
eval_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"Evaluation metrics: {eval_metric}")
if args.do_predict:
# initialize all lists to collect the batches
all_start_top_log_probs = []
all_start_top_index = []
all_end_top_log_probs = []
all_end_top_index = []
all_cls_logits = []
model.eval()
for step, batch in enumerate(predict_dataloader):
with torch.no_grad():
outputs = model(**batch)
start_top_log_probs = outputs.start_top_log_probs
start_top_index = outputs.start_top_index
end_top_log_probs = outputs.end_top_log_probs
end_top_index = outputs.end_top_index
cls_logits = outputs.cls_logits
if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered
start_top_log_probs = accelerator.pad_across_processes(start_top_log_probs, dim=1, pad_index=-100)
start_top_index = accelerator.pad_across_processes(start_top_index, dim=1, pad_index=-100)
end_top_log_probs = accelerator.pad_across_processes(end_top_log_probs, dim=1, pad_index=-100)
end_top_index = accelerator.pad_across_processes(end_top_index, dim=1, pad_index=-100)
cls_logits = accelerator.pad_across_processes(cls_logits, dim=1, pad_index=-100)
all_start_top_log_probs.append(accelerator.gather_for_metrics(start_top_log_probs).cpu().numpy())
all_start_top_index.append(accelerator.gather_for_metrics(start_top_index).cpu().numpy())
all_end_top_log_probs.append(accelerator.gather_for_metrics(end_top_log_probs).cpu().numpy())
all_end_top_index.append(accelerator.gather_for_metrics(end_top_index).cpu().numpy())
all_cls_logits.append(accelerator.gather_for_metrics(cls_logits).cpu().numpy())
max_len = max([x.shape[1] for x in all_end_top_log_probs]) # Get the max_length of the tensor
# concatenate all numpy arrays collected above
start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, predict_dataset, max_len)
start_top_index_concat = create_and_fill_np_array(all_start_top_index, predict_dataset, max_len)
end_top_log_probs_concat = create_and_fill_np_array(all_end_top_log_probs, predict_dataset, max_len)
end_top_index_concat = create_and_fill_np_array(all_end_top_index, predict_dataset, max_len)
cls_logits_concat = np.concatenate(all_cls_logits, axis=0)
# delete the list of numpy arrays
del start_top_log_probs
del start_top_index
del end_top_log_probs
del end_top_index
del cls_logits
outputs_numpy = (
start_top_log_probs_concat,
start_top_index_concat,
end_top_log_probs_concat,
end_top_index_concat,
cls_logits_concat,
)
prediction = post_processing_function(predict_examples, predict_dataset, outputs_numpy)
predict_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"Predict metrics: {predict_metric}")
if args.with_tracking:
log = {
"squad_v2" if args.version_2_with_negative else "squad": eval_metric,
"train_loss": total_loss,
"epoch": epoch,
"step": completed_steps,
}
if args.do_predict:
log["squad_v2_predict" if args.version_2_with_negative else "squad_predict"] = predict_metric
accelerator.log(log)
if args.checkpointing_steps == "epoch":
accelerator.save_state(f"epoch_{epoch}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
logger.info(json.dumps(eval_metric, indent=4))
save_prefixed_metrics(eval_metric, args.output_dir)
if __name__ == "__main__":
main()
| transformers/examples/pytorch/question-answering/run_qa_beam_search_no_trainer.py/0 | {
"file_path": "transformers/examples/pytorch/question-answering/run_qa_beam_search_no_trainer.py",
"repo_id": "transformers",
"token_count": 19782
} | 267 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/CTRL/Transformer-XL/XLNet)
"""
import argparse
import inspect
import logging
from typing import Tuple
import torch
from accelerate import PartialState
from accelerate.utils import set_seed
from transformers import (
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
CTRLLMHeadModel,
CTRLTokenizer,
GenerationMixin,
GPT2LMHeadModel,
GPT2Tokenizer,
GPTJForCausalLM,
LlamaForCausalLM,
LlamaTokenizer,
OpenAIGPTLMHeadModel,
OpenAIGPTTokenizer,
OPTForCausalLM,
TransfoXLLMHeadModel,
TransfoXLTokenizer,
XLMTokenizer,
XLMWithLMHeadModel,
XLNetLMHeadModel,
XLNetTokenizer,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
MODEL_CLASSES = {
"gpt2": (GPT2LMHeadModel, GPT2Tokenizer),
"ctrl": (CTRLLMHeadModel, CTRLTokenizer),
"openai-gpt": (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
"xlnet": (XLNetLMHeadModel, XLNetTokenizer),
"transfo-xl": (TransfoXLLMHeadModel, TransfoXLTokenizer),
"xlm": (XLMWithLMHeadModel, XLMTokenizer),
"gptj": (GPTJForCausalLM, AutoTokenizer),
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"opt": (OPTForCausalLM, GPT2Tokenizer),
}
# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PREFIX = """In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""
#
# Functions to prepare models' input
#
def prepare_ctrl_input(args, _, tokenizer, prompt_text):
if args.temperature > 0.7:
logger.info("CTRL typically works better with lower temperatures (and lower top_k).")
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False)
if not any(encoded_prompt[0] == x for x in tokenizer.control_codes.values()):
logger.info("WARNING! You are not starting your generation from a control code so you won't get good results")
return prompt_text
def prepare_xlm_input(args, model, tokenizer, prompt_text):
# kwargs = {"language": None, "mask_token_id": None}
# Set the language
use_lang_emb = hasattr(model.config, "use_lang_emb") and model.config.use_lang_emb
if hasattr(model.config, "lang2id") and use_lang_emb:
available_languages = model.config.lang2id.keys()
if args.xlm_language in available_languages:
language = args.xlm_language
else:
language = None
while language not in available_languages:
language = input("Using XLM. Select language in " + str(list(available_languages)) + " >>> ")
model.config.lang_id = model.config.lang2id[language]
# kwargs["language"] = tokenizer.lang2id[language]
# TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers
# XLM masked-language modeling (MLM) models need masked token
# is_xlm_mlm = "mlm" in args.model_name_or_path
# if is_xlm_mlm:
# kwargs["mask_token_id"] = tokenizer.mask_token_id
return prompt_text
def prepare_xlnet_input(args, _, tokenizer, prompt_text):
prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX
prompt_text = prefix + prompt_text
return prompt_text
def prepare_transfoxl_input(args, _, tokenizer, prompt_text):
prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX
prompt_text = prefix + prompt_text
return prompt_text
PREPROCESSING_FUNCTIONS = {
"ctrl": prepare_ctrl_input,
"xlm": prepare_xlm_input,
"xlnet": prepare_xlnet_input,
"transfo-xl": prepare_transfoxl_input,
}
def adjust_length_to_model(length, max_sequence_length):
if length < 0 and max_sequence_length > 0:
length = max_sequence_length
elif 0 < max_sequence_length < length:
length = max_sequence_length # No generation bigger than model size
elif length < 0:
length = MAX_LENGTH # avoid infinite loop
return length
def sparse_model_config(model_config):
embedding_size = None
if hasattr(model_config, "hidden_size"):
embedding_size = model_config.hidden_size
elif hasattr(model_config, "n_embed"):
embedding_size = model_config.n_embed
elif hasattr(model_config, "n_embd"):
embedding_size = model_config.n_embd
num_head = None
if hasattr(model_config, "num_attention_heads"):
num_head = model_config.num_attention_heads
elif hasattr(model_config, "n_head"):
num_head = model_config.n_head
if embedding_size is None or num_head is None or num_head == 0:
raise ValueError("Check the model config")
num_embedding_size_per_head = int(embedding_size / num_head)
if hasattr(model_config, "n_layer"):
num_layer = model_config.n_layer
elif hasattr(model_config, "num_hidden_layers"):
num_layer = model_config.num_hidden_layers
else:
raise ValueError("Number of hidden layers couldn't be determined from the model config")
return num_layer, num_head, num_embedding_size_per_head
def generate_past_key_values(model, batch_size, seq_len):
num_block_layers, num_attention_heads, num_embedding_size_per_head = sparse_model_config(model.config)
if model.config.model_type == "bloom":
past_key_values = tuple(
(
torch.empty(int(num_attention_heads * batch_size), num_embedding_size_per_head, seq_len)
.to(model.dtype)
.to(model.device),
torch.empty(int(num_attention_heads * batch_size), seq_len, num_embedding_size_per_head)
.to(model.dtype)
.to(model.device),
)
for _ in range(num_block_layers)
)
else:
past_key_values = tuple(
(
torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head)
.to(model.dtype)
.to(model.device),
torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head)
.to(model.dtype)
.to(model.device),
)
for _ in range(num_block_layers)
)
return past_key_values
def prepare_jit_inputs(inputs, model, tokenizer):
batch_size = len(inputs)
dummy_input = tokenizer.batch_encode_plus(inputs, return_tensors="pt")
dummy_input = dummy_input.to(model.device)
if model.config.use_cache:
dummy_input["past_key_values"] = generate_past_key_values(model, batch_size, 1)
dummy_input["attention_mask"] = torch.cat(
[
torch.zeros(dummy_input["attention_mask"].shape[0], 1)
.to(dummy_input["attention_mask"].dtype)
.to(model.device),
dummy_input["attention_mask"],
],
-1,
)
return dummy_input
class _ModelFallbackWrapper(GenerationMixin):
__slots__ = ("_optimized", "_default")
def __init__(self, optimized, default):
self._optimized = optimized
self._default = default
def __call__(self, *args, **kwargs):
if kwargs["past_key_values"] is None and self._default.config.use_cache:
kwargs["past_key_values"] = generate_past_key_values(self._default, kwargs["input_ids"].shape[0], 0)
kwargs.pop("position_ids", None)
for k in list(kwargs.keys()):
if kwargs[k] is None or isinstance(kwargs[k], bool):
kwargs.pop(k)
outputs = self._optimized(**kwargs)
lm_logits = outputs[0]
past_key_values = outputs[1]
fixed_output = CausalLMOutputWithPast(
loss=None,
logits=lm_logits,
past_key_values=past_key_values,
hidden_states=None,
attentions=None,
)
return fixed_output
def __getattr__(self, item):
return getattr(self._default, item)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, use_cache=None, **kwargs
):
return self._default.prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, **kwargs
)
def _reorder_cache(
self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return self._default._reorder_cache(past_key_values, beam_idx)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument("--prompt", type=str, default="")
parser.add_argument("--length", type=int, default=20)
parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped")
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="temperature of 1.0 has no effect, lower tend toward greedy sampling",
)
parser.add_argument(
"--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2"
)
parser.add_argument("--k", type=int, default=0)
parser.add_argument("--p", type=float, default=0.9)
parser.add_argument("--prefix", type=str, default="", help="Text added prior to input.")
parser.add_argument("--padding_text", type=str, default="", help="Deprecated, the use of `--prefix` is preferred.")
parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.")
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--use_cpu",
action="store_true",
help="Whether or not to use cpu. If set to False, " "we will use gpu/npu or mps device if available",
)
parser.add_argument("--num_return_sequences", type=int, default=1, help="The number of samples to generate.")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument("--jit", action="store_true", help="Whether or not to use jit trace to accelerate inference")
args = parser.parse_args()
# Initialize the distributed state.
distributed_state = PartialState(cpu=args.use_cpu)
logger.warning(f"device: {distributed_state.device}, 16-bits inference: {args.fp16}")
if args.seed is not None:
set_seed(args.seed)
# Initialize the model and tokenizer
try:
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
except KeyError:
raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)")
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = model_class.from_pretrained(args.model_name_or_path)
# Set the model to the right device
model.to(distributed_state.device)
if args.fp16:
model.half()
max_seq_length = getattr(model.config, "max_position_embeddings", 0)
args.length = adjust_length_to_model(args.length, max_sequence_length=max_seq_length)
logger.info(args)
prompt_text = args.prompt if args.prompt else input("Model prompt >>> ")
# Different models need different input formatting and/or extra arguments
requires_preprocessing = args.model_type in PREPROCESSING_FUNCTIONS.keys()
if requires_preprocessing:
prepare_input = PREPROCESSING_FUNCTIONS.get(args.model_type)
preprocessed_prompt_text = prepare_input(args, model, tokenizer, prompt_text)
if model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
tokenizer_kwargs = {"add_space_before_punct_symbol": True}
else:
tokenizer_kwargs = {}
encoded_prompt = tokenizer.encode(
preprocessed_prompt_text, add_special_tokens=False, return_tensors="pt", **tokenizer_kwargs
)
else:
prefix = args.prefix if args.prefix else args.padding_text
encoded_prompt = tokenizer.encode(prefix + prompt_text, add_special_tokens=False, return_tensors="pt")
encoded_prompt = encoded_prompt.to(distributed_state.device)
if encoded_prompt.size()[-1] == 0:
input_ids = None
else:
input_ids = encoded_prompt
if args.jit:
jit_input_texts = ["enable jit"]
jit_inputs = prepare_jit_inputs(jit_input_texts, model, tokenizer)
torch._C._jit_set_texpr_fuser_enabled(False)
model.config.return_dict = False
if hasattr(model, "forward"):
sig = inspect.signature(model.forward)
else:
sig = inspect.signature(model.__call__)
jit_inputs = tuple(jit_inputs[key] for key in sig.parameters if jit_inputs.get(key, None) is not None)
traced_model = torch.jit.trace(model, jit_inputs, strict=False)
traced_model = torch.jit.freeze(traced_model.eval())
traced_model(*jit_inputs)
traced_model(*jit_inputs)
model = _ModelFallbackWrapper(traced_model, model)
output_sequences = model.generate(
input_ids=input_ids,
max_length=args.length + len(encoded_prompt[0]),
temperature=args.temperature,
top_k=args.k,
top_p=args.p,
repetition_penalty=args.repetition_penalty,
do_sample=True,
num_return_sequences=args.num_return_sequences,
)
# Remove the batch dimension when returning multiple sequences
if len(output_sequences.shape) > 2:
output_sequences.squeeze_()
generated_sequences = []
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
generated_sequence = generated_sequence.tolist()
# Decode text
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
# Remove all text after the stop token
text = text[: text.find(args.stop_token) if args.stop_token else None]
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
total_sequence = (
prompt_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
)
generated_sequences.append(total_sequence)
print(total_sequence)
return generated_sequences
if __name__ == "__main__":
main()
| transformers/examples/pytorch/text-generation/run_generation.py/0 | {
"file_path": "transformers/examples/pytorch/text-generation/run_generation.py",
"repo_id": "transformers",
"token_count": 6877
} | 268 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on HANS."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import numpy as np
import torch
from utils_hans import HansDataset, InputFeatures, hans_processors, hans_tasks_num_labels
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import is_main_process
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(
metadata={"help": "The name of the task to train selected in the list: " + ", ".join(hans_processors.keys())}
)
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def hans_data_collator(features: List[InputFeatures]) -> Dict[str, torch.Tensor]:
"""
Data collator that removes the "pairID" key if present.
"""
batch = default_data_collator(features)
_ = batch.pop("pairID", None)
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = hans_tasks_num_labels[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
HansDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
)
if training_args.do_train
else None
)
eval_dataset = (
HansDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
evaluate=True,
)
if training_args.do_eval
else None
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=hans_data_collator,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
output = trainer.predict(eval_dataset)
preds = output.predictions
preds = np.argmax(preds, axis=1)
pair_ids = [ex.pairID for ex in eval_dataset]
output_eval_file = os.path.join(training_args.output_dir, "hans_predictions.txt")
label_list = eval_dataset.get_labels()
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
writer.write("pairID,gold_label\n")
for pid, pred in zip(pair_ids, preds):
writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
trainer._log(output.metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers/examples/research_projects/adversarial/run_hans.py/0 | {
"file_path": "transformers/examples/research_projects/adversarial/run_hans.py",
"repo_id": "transformers",
"token_count": 3302
} | 269 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class SummarizationDataProcessingTest(unittest.TestCase):
def setUp(self):
self.block_size = 10
def test_fit_to_block_sequence_too_small(self):
"""Pad the sequence with 0 if the sequence is smaller than the block size."""
sequence = [1, 2, 3, 4]
expected_output = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_fit_to_block_sequence_fit_exactly(self):
"""Do nothing if the sequence is the right size."""
sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
expected_output = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_fit_to_block_sequence_too_big(self):
"""Truncate the sequence if it is too long."""
sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
expected_output = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_process_story_no_highlights(self):
"""Processing a story with no highlights returns an empty list for the summary."""
raw_story = """It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this."""
_, summary_lines = process_story(raw_story)
self.assertEqual(summary_lines, [])
def test_process_empty_story(self):
"""An empty story returns an empty collection of lines."""
raw_story = ""
story_lines, summary_lines = process_story(raw_story)
self.assertEqual(story_lines, [])
self.assertEqual(summary_lines, [])
def test_process_story_with_missing_period(self):
raw_story = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
story_lines, summary_lines = process_story(raw_story)
expected_story_lines = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(expected_story_lines, story_lines)
expected_summary_lines = ["It was the best of times."]
self.assertEqual(expected_summary_lines, summary_lines)
def test_build_mask_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(sequence, 0).numpy(), expected.numpy())
def test_build_mask(self):
sequence = torch.tensor([1, 2, 3, 4, 23, 23, 23])
expected = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(sequence, 23).numpy(), expected.numpy())
def test_build_mask_with_padding_equal_to_one(self):
sequence = torch.tensor([8, 2, 3, 4, 1, 1, 1])
expected = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(sequence, 1).numpy(), expected.numpy())
def test_compute_token_type_ids(self):
separator = 101
batch = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
expected = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
result = compute_token_type_ids(batch, separator)
np.testing.assert_array_equal(result, expected)
| transformers/examples/research_projects/bertabs/test_utils_summarization.py/0 | {
"file_path": "transformers/examples/research_projects/bertabs/test_utils_summarization.py",
"repo_id": "transformers",
"token_count": 1749
} | 270 |
import gzip
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from huggingface_hub.utils import insecure_hashlib
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
PATTERN = re.compile(r"\s+")
def get_hash(example):
"""Get hash of content field."""
return {"hash": insecure_hashlib.md5(re.sub(PATTERN, "", example["content"]).encode("utf-8")).hexdigest()}
def line_stats(example):
"""Calculates mean and max line length of file."""
line_lengths = [len(line) for line in example["content"].splitlines()]
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}
def alpha_stats(example):
"""Calculates mean and max line length of file."""
alpha_frac = np.mean([c.isalnum() for c in example["content"]])
return {"alpha_frac": alpha_frac}
def check_uniques(example, uniques):
"""Check if current hash is still in set of unique hashes and remove if true."""
if example["hash"] in uniques:
uniques.remove(example["hash"])
return True
else:
return False
def is_autogenerated(example, scan_width=5):
"""Check if file is autogenerated by looking for keywords in the first few lines of the file."""
keywords = ["auto-generated", "autogenerated", "automatically generated"]
lines = example["content"].splitlines()
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def is_config_or_test(example, scan_width=5, coeff=0.05):
"""Check if file is a configuration file or a unit test by :
1- looking for keywords in the first few lines of the file.
2- counting number of occurrence of the words 'config' and 'test' with respect to number of lines.
"""
keywords = ["unit tests", "test file", "configuration file"]
lines = example["content"].splitlines()
count_config = 0
count_test = 0
# first test
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
nlines = example["content"].count("\n")
threshold = int(coeff * nlines)
for line in lines:
count_config += line.lower().count("config")
count_test += line.lower().count("test")
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def has_no_keywords(example):
"""Check if a python file has none of the keywords for: funcion, class, for loop, while loop."""
keywords = ["def ", "class ", "for ", "while "]
lines = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def has_few_assignments(example, minimum=4):
"""Check if file uses symbol '=' less than `minimum` times."""
lines = example["content"].splitlines()
counter = 0
for line in lines:
counter += line.lower().count("=")
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def char_token_ratio(example):
"""Compute character/token ratio of the file with tokenizer."""
input_ids = tokenizer(example["content"], truncation=False)["input_ids"]
ratio = len(example["content"]) / len(input_ids)
return {"ratio": ratio}
def preprocess(example):
"""Chain all preprocessing steps into one function to not fill cache."""
results = {}
results.update(get_hash(example))
results.update(line_stats(example))
results.update(alpha_stats(example))
results.update(char_token_ratio(example))
results.update(is_autogenerated(example))
results.update(is_config_or_test(example))
results.update(has_no_keywords(example))
results.update(has_few_assignments(example))
return results
def filter(example, uniques, args):
"""Filter dataset with heuristics. Config, test and has_no_keywords files are removed with a given probability."""
if not check_uniques(example, uniques):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def compress_file(file_path):
"""Compress a file with g-zip."""
with open(file_path, "rb") as f_in:
with gzip.open(str(file_path) + ".gz", "wb", compresslevel=6) as f_out:
shutil.copyfileobj(f_in, f_out)
os.unlink(file_path)
# Settings
parser = HfArgumentParser(PreprocessingArguments)
args = parser.parse_args()
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train")
print(f"Time to load dataset: {time.time()-t_start:.2f}")
# Run preprocessing
t_start = time.time()
ds = ds.map(preprocess, num_proc=args.num_workers)
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
# Deduplicate hashes
uniques = set(ds.unique("hash"))
frac = len(uniques) / len(ds)
print(f"Fraction of duplicates: {1-frac:.2%}")
# Deduplicate data and apply heuristics
t_start = time.time()
ds_filter = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
print(f"Size of filtered dataset: {len(ds_filter)}")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
t_start = time.time()
ds_filter, duplicate_clusters = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}")
print(f"Size of deduplicate dataset: {len(ds_filter)}")
# Save data in batches of samples_per_file
output_dir = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / "duplicate_clusters.json", "w") as f:
json.dump(duplicate_clusters, f)
data_dir = output_dir / "data"
data_dir.mkdir(exist_ok=True)
t_start = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
file_path = str(data_dir / f"file-{file_number+1:012}.json")
end_index = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f"Time to save dataset: {time.time()-t_start:.2f}")
| transformers/examples/research_projects/codeparrot/scripts/preprocessing.py/0 | {
"file_path": "transformers/examples/research_projects/codeparrot/scripts/preprocessing.py",
"repo_id": "transformers",
"token_count": 2776
} | 271 |
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
PATH_TO_DATA=/h/xinji/projects/GLUE
MODEL_TYPE=bert # bert or roberta
MODEL_SIZE=base # base or large
DATASET=MRPC # SST-2, MRPC, RTE, QNLI, QQP, or MNLI
MODEL_NAME=${MODEL_TYPE}-${MODEL_SIZE}
EPOCHS=10
if [ $MODEL_TYPE = 'bert' ]
then
EPOCHS=3
MODEL_NAME=${MODEL_NAME}-uncased
fi
python -u run_glue_deebert.py \
--model_type $MODEL_TYPE \
--model_name_or_path $MODEL_NAME \
--task_name $DATASET \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $PATH_TO_DATA/$DATASET \
--max_seq_length 128 \
--per_gpu_eval_batch_size=1 \
--per_gpu_train_batch_size=8 \
--learning_rate 2e-5 \
--num_train_epochs $EPOCHS \
--overwrite_output_dir \
--seed 42 \
--output_dir ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \
--plot_data_dir ./results/ \
--save_steps 0 \
--overwrite_cache \
--eval_after_first_stage
| transformers/examples/research_projects/deebert/train_deebert.sh/0 | {
"file_path": "transformers/examples/research_projects/deebert/train_deebert.sh",
"repo_id": "transformers",
"token_count": 417
} | 272 |
{
"vocab_size": 50265,
"hidden_size": 768,
"num_hidden_layers": 6,
"num_attention_heads": 12,
"intermediate_size": 3072,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 514,
"type_vocab_size": 1,
"initializer_range": 0.02,
"layer_norm_eps": 0.00001
} | transformers/examples/research_projects/distillation/training_configs/distilroberta-base.json/0 | {
"file_path": "transformers/examples/research_projects/distillation/training_configs/distilroberta-base.json",
"repo_id": "transformers",
"token_count": 178
} | 273 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The Google Research Authors and The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for constructing PyTrees of PartitionSpecs."""
# utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_unmatched = object()
# For specifying empty leaf dict `{}`
empty_dict = object()
def _match(qs, ks):
"""Return True if regexes in qs match any window of strings in tuple ks."""
# compile regexes and force complete match
qts = tuple((re.compile(x + "$") for x in qs))
for i in range(len(ks) - len(qs) + 1):
matches = [x.match(y) for x, y in zip(qts, ks[i:])]
if matches and all(matches):
return True
return False
def _replacement_rules(rules):
def replace(key, val):
for rule, replacement in rules:
if _match(rule, key):
return replacement
return val
return replace
# PartitionSpec for GPTNeo
# replicate the hidden dim and shard feed-forward and head dim
def _get_partition_rules():
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", None)),
(("transformer", "wte", "embedding"), P("mp", None)),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")),
(("attention", "out_proj", "kernel"), P("mp", None)),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(None, "mp")),
(("mlp", "c_fc", "bias"), P("mp")),
(("mlp", "c_proj", "kernel"), P("mp", None)),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def set_partitions(in_dict):
rules = _get_partition_rules()
replace = _replacement_rules(rules)
initd = {k: _unmatched for k in flatten_dict(in_dict)}
result = {k: replace(k, v) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(result))
| transformers/examples/research_projects/jax-projects/model_parallel/partitions.py/0 | {
"file_path": "transformers/examples/research_projects/jax-projects/model_parallel/partitions.py",
"repo_id": "transformers",
"token_count": 1130
} | 274 |
import getopt
import json
import os
# import numpy as np
import sys
from collections import OrderedDict
import datasets
import numpy as np
import torch
from modeling_frcnn import GeneralizedRCNN
from processing_image import Preprocess
from utils import Config
"""
USAGE:
``python extracting_data.py -i <img_dir> -o <dataset_file>.datasets <batch_size>``
"""
TEST = False
CONFIG = Config.from_pretrained("unc-nlp/frcnn-vg-finetuned")
DEFAULT_SCHEMA = datasets.Features(
OrderedDict(
{
"attr_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"attr_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"boxes": datasets.Array2D((CONFIG.MAX_DETECTIONS, 4), dtype="float32"),
"img_id": datasets.Value("int32"),
"obj_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"obj_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"roi_features": datasets.Array2D((CONFIG.MAX_DETECTIONS, 2048), dtype="float32"),
"sizes": datasets.Sequence(length=2, feature=datasets.Value("float32")),
"preds_per_image": datasets.Value(dtype="int32"),
}
)
)
class Extract:
def __init__(self, argv=sys.argv[1:]):
inputdir = None
outputfile = None
subset_list = None
batch_size = 1
opts, args = getopt.getopt(argv, "i:o:b:s", ["inputdir=", "outfile=", "batch_size=", "subset_list="])
for opt, arg in opts:
if opt in ("-i", "--inputdir"):
inputdir = arg
elif opt in ("-o", "--outfile"):
outputfile = arg
elif opt in ("-b", "--batch_size"):
batch_size = int(arg)
elif opt in ("-s", "--subset_list"):
subset_list = arg
assert inputdir is not None # and os.path.isdir(inputdir), f"{inputdir}"
assert outputfile is not None and not os.path.isfile(outputfile), f"{outputfile}"
if subset_list is not None:
with open(os.path.realpath(subset_list)) as f:
self.subset_list = {self._vqa_file_split()[0] for x in tryload(f)}
else:
self.subset_list = None
self.config = CONFIG
if torch.cuda.is_available():
self.config.model.device = "cuda"
self.inputdir = os.path.realpath(inputdir)
self.outputfile = os.path.realpath(outputfile)
self.preprocess = Preprocess(self.config)
self.model = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.config)
self.batch = batch_size if batch_size != 0 else 1
self.schema = DEFAULT_SCHEMA
def _vqa_file_split(self, file):
img_id = int(file.split(".")[0].split("_")[-1])
filepath = os.path.join(self.inputdir, file)
return (img_id, filepath)
@property
def file_generator(self):
batch = []
for i, file in enumerate(os.listdir(self.inputdir)):
if self.subset_list is not None and i not in self.subset_list:
continue
batch.append(self._vqa_file_split(file))
if len(batch) == self.batch:
temp = batch
batch = []
yield list(map(list, zip(*temp)))
for i in range(1):
yield list(map(list, zip(*batch)))
def __call__(self):
# make writer
if not TEST:
writer = datasets.ArrowWriter(features=self.schema, path=self.outputfile)
# do file generator
for i, (img_ids, filepaths) in enumerate(self.file_generator):
images, sizes, scales_yx = self.preprocess(filepaths)
output_dict = self.model(
images,
sizes,
scales_yx=scales_yx,
padding="max_detections",
max_detections=self.config.MAX_DETECTIONS,
pad_value=0,
return_tensors="np",
location="cpu",
)
output_dict["boxes"] = output_dict.pop("normalized_boxes")
if not TEST:
output_dict["img_id"] = np.array(img_ids)
batch = self.schema.encode_batch(output_dict)
writer.write_batch(batch)
if TEST:
break
# finalizer the writer
if not TEST:
num_examples, num_bytes = writer.finalize()
print(f"Success! You wrote {num_examples} entry(s) and {num_bytes >> 20} mb")
def tryload(stream):
try:
data = json.load(stream)
try:
data = list(data.keys())
except Exception:
data = [d["img_id"] for d in data]
except Exception:
try:
data = eval(stream.read())
except Exception:
data = stream.read().split("\n")
return data
if __name__ == "__main__":
extract = Extract(sys.argv[1:])
extract()
if not TEST:
dataset = datasets.Dataset.from_file(extract.outputfile)
# wala!
# print(np.array(dataset[0:2]["roi_features"]).shape)
| transformers/examples/research_projects/lxmert/extracting_data.py/0 | {
"file_path": "transformers/examples/research_projects/lxmert/extracting_data.py",
"repo_id": "transformers",
"token_count": 2528
} | 275 |
# Copyright 2020-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Count remaining (non-zero) weights in the encoder (i.e. the transformer layers).
Sparsity and remaining weights levels are equivalent: sparsity % = 100 - remaining weights %.
"""
import argparse
import os
import torch
from emmental.modules import ThresholdBinarizer, TopKBinarizer
def main(args):
serialization_dir = args.serialization_dir
pruning_method = args.pruning_method
threshold = args.threshold
st = torch.load(os.path.join(serialization_dir, "pytorch_model.bin"), map_location="cpu")
remaining_count = 0 # Number of remaining (not pruned) params in the encoder
encoder_count = 0 # Number of params in the encoder
print("name".ljust(60, " "), "Remaining Weights %", "Remaining Weight")
for name, param in st.items():
if "encoder" not in name:
continue
if "mask_scores" in name:
if pruning_method == "topK":
mask_ones = TopKBinarizer.apply(param, threshold).sum().item()
elif pruning_method == "sigmoied_threshold":
mask_ones = ThresholdBinarizer.apply(param, threshold, True).sum().item()
elif pruning_method == "l0":
l, r = -0.1, 1.1
s = torch.sigmoid(param)
s_bar = s * (r - l) + l
mask = s_bar.clamp(min=0.0, max=1.0)
mask_ones = (mask > 0.0).sum().item()
else:
raise ValueError("Unknown pruning method")
remaining_count += mask_ones
print(name.ljust(60, " "), str(round(100 * mask_ones / param.numel(), 3)).ljust(20, " "), str(mask_ones))
else:
encoder_count += param.numel()
if "bias" in name or "LayerNorm" in name:
remaining_count += param.numel()
print("")
print("Remaining Weights (global) %: ", 100 * remaining_count / encoder_count)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pruning_method",
choices=["l0", "topK", "sigmoied_threshold"],
type=str,
required=True,
help=(
"Pruning Method (l0 = L0 regularization, topK = Movement pruning, sigmoied_threshold = Soft movement"
" pruning)"
),
)
parser.add_argument(
"--threshold",
type=float,
required=False,
help=(
"For `topK`, it is the level of remaining weights (in %) in the fine-pruned model. "
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared. "
"Not needed for `l0`"
),
)
parser.add_argument(
"--serialization_dir",
type=str,
required=True,
help="Folder containing the model that was previously fine-pruned",
)
args = parser.parse_args()
main(args)
| transformers/examples/research_projects/movement-pruning/counts_parameters.py/0 | {
"file_path": "transformers/examples/research_projects/movement-pruning/counts_parameters.py",
"repo_id": "transformers",
"token_count": 1428
} | 276 |
# coding=utf-8
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for training models with pytorch-quantization"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
logger = logging.getLogger(__name__)
name_width = 50 # max width of layer names
qname_width = 70 # max width of quantizer names
# ========================================== Quant Trainer API ==========================================
def add_arguments(parser):
"""Add arguments to parser for functions defined in quant_trainer."""
group = parser.add_argument_group("quant_trainer arguments")
group.add_argument("--wprec", type=int, default=8, help="weight precision")
group.add_argument("--aprec", type=int, default=8, help="activation precision")
group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling")
group.add_argument("--quant-disable", action="store_true", help="disable all quantizers")
group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers")
group.add_argument("--quant-disable-keyword", type=str, nargs="+", help="disable quantizers by keyword")
group.add_argument("--quant-disable-layer-module", type=str, help="disable quantizers by keyword under layer.")
group.add_argument("--quant-enable-layer-module", type=str, help="enable quantizers by keyword under layer")
group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use")
group.add_argument("--percentile", default=None, type=float, help="percentile for PercentileCalibrator")
group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv")
group.add_argument("--clip-gelu", metavar="N", type=float, help="clip gelu output maximum value to N")
group.add_argument(
"--recalibrate-weights",
action="store_true",
help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
),
)
def set_default_quantizers(args):
"""Set default quantizers before creating the model."""
if args.calibrator == "max":
calib_method = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator")
calib_method = "histogram"
elif args.calibrator == "mse":
calib_method = "histogram"
else:
raise ValueError(f"Invalid calibrator {args.calibrator}")
input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method)
weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)))
quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
def configure_model(model, args, calib=False, eval=False):
"""Function called before the training loop."""
logger.info("Configuring Model for Quantization")
logger.info(f"using quantization package {pytorch_quantization.__file__}")
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(model, ["embeddings"], which="weight", _disabled=True)
if args.quant_disable:
set_quantizer_by_name(model, [""], _disabled=True)
if args.quant_disable_keyword:
set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True)
if args.quant_disable_layer_module:
set_quantizer_by_name(model, [r"layer.\d+." + args.quant_disable_layer_module], _disabled=True)
if args.quant_enable_layer_module:
set_quantizer_by_name(model, [r"layer.\d+." + args.quant_enable_layer_module], _disabled=False)
if args.recalibrate_weights:
recalibrate_weights(model)
if args.fuse_qkv:
fuse_qkv(model, args)
if args.clip_gelu:
clip_gelu(model, args.clip_gelu)
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(model)
def enable_calibration(model):
"""Enable calibration of all *_input_quantizer modules in model."""
logger.info("Enabling Calibration")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"{name:80}: {module}")
def finish_calibration(model, args):
"""Disable calibration and load amax for all "*_input_quantizer modules in model."""
logger.info("Loading calibrated amax")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
if isinstance(module._calibrator, calib.MaxCalibrator):
module.load_calib_amax()
else:
module.load_calib_amax("percentile", percentile=args.percentile)
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(model)
# ========================================== Helper Function ==========================================
def fuse_qkv(model, args):
"""Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM.
Force the weight and output scale factors to match by taking the max of (Q,K,V).
"""
def fuse3(qq, qk, qv):
for mod in [qq, qk, qv]:
if not hasattr(mod, "_amax"):
print(" WARNING: NO AMAX BUFFER")
return
q = qq._amax.detach().item()
k = qk._amax.detach().item()
v = qv._amax.detach().item()
amax = max(q, k, v)
qq._amax.fill_(amax)
qk._amax.fill_(amax)
qv._amax.fill_(amax)
logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}")
for name, mod in model.named_modules():
if name.endswith(".attention.self"):
logger.info(f"FUSE_QKV: {name:{name_width}}")
fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer)
if args.quant_per_tensor:
fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer)
def clip_gelu(model, maxval):
"""Clip activations generated by GELU to maxval when quantized.
Implemented by adjusting the amax of the following input_quantizer.
"""
for name, mod in model.named_modules():
if name.endswith(".output.dense") and not name.endswith("attention.output.dense"):
amax_init = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=maxval)
amax = mod._input_quantizer._amax.data.detach().item()
logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}")
def expand_amax(model):
"""Expand per-tensor amax to be per channel, where each channel is assigned the per-tensor amax."""
for name, mod in model.named_modules():
if hasattr(mod, "_weight_quantizer") and mod._weight_quantizer.axis is not None:
k = mod.weight.shape[0]
amax = mod._weight_quantizer._amax.detach()
mod._weight_quantizer._amax = torch.ones(k, dtype=amax.dtype, device=amax.device) * amax
print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}")
def recalibrate_weights(model):
"""Performs max calibration on the weights and updates amax."""
for name, mod in model.named_modules():
if hasattr(mod, "_weight_quantizer"):
if not hasattr(mod.weight_quantizer, "_amax"):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER")
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
axis_set = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis)
reduce_axis = set(range(len(mod.weight.size()))) - axis_set
amax = pytorch_quantization.utils.reduce_amax(mod.weight, axis=reduce_axis, keepdims=True).detach()
logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}")
mod._weight_quantizer._amax = amax
def print_model_summary(model, name_width=25, line_width=180, ignore=None):
"""Print model quantization configuration."""
if ignore is None:
ignore = []
elif not isinstance(ignore, list):
ignore = [ignore]
name_width = 0
for name, mod in model.named_modules():
if not hasattr(mod, "weight"):
continue
name_width = max(name_width, len(name))
for name, mod in model.named_modules():
input_q = getattr(mod, "_input_quantizer", None)
weight_q = getattr(mod, "_weight_quantizer", None)
if not hasattr(mod, "weight"):
continue
if type(mod) in ignore:
continue
if [True for s in ignore if isinstance(s, str) and s in name]:
continue
act_str = f"Act:{input_q.extra_repr()}"
wgt_str = f"Wgt:{weight_q.extra_repr()}"
s = f"{name:{name_width}} {act_str} {wgt_str}"
if len(s) <= line_width:
logger.info(s)
else:
logger.info(f"{name:{name_width}} {act_str}")
logger.info(f'{" ":{name_width}} {wgt_str}')
def print_quant_summary(model):
"""Print summary of all quantizer modules in the model."""
count = 0
for name, mod in model.named_modules():
if isinstance(mod, pytorch_quantization.nn.TensorQuantizer):
print(f"{name:80} {mod}")
count += 1
print(f"{count} TensorQuantizers found in model")
def set_quantizer(name, mod, quantizer, k, v):
"""Set attributes for mod.quantizer."""
quantizer_mod = getattr(mod, quantizer, None)
if quantizer_mod is not None:
assert hasattr(quantizer_mod, k)
setattr(quantizer_mod, k, v)
else:
logger.warning(f"{name} has no {quantizer}")
def set_quantizers(name, mod, which="both", **kwargs):
"""Set quantizer attributes for mod."""
s = f"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
if which in ["input", "both"]:
set_quantizer(name, mod, "_input_quantizer", k, v)
if which in ["weight", "both"]:
set_quantizer(name, mod, "_weight_quantizer", k, v)
logger.info(s)
def set_quantizer_by_name(model, names, **kwargs):
"""Set quantizer attributes for layers where name contains a substring in names."""
for name, mod in model.named_modules():
if hasattr(mod, "_input_quantizer") or hasattr(mod, "_weight_quantizer"):
for n in names:
if re.search(n, name):
set_quantizers(name, mod, **kwargs)
elif name.endswith("_quantizer"):
for n in names:
if re.search(n, name):
s = f"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
setattr(mod, k, v)
logger.info(s)
| transformers/examples/research_projects/quantization-qdqbert/quant_trainer.py/0 | {
"file_path": "transformers/examples/research_projects/quantization-qdqbert/quant_trainer.py",
"repo_id": "transformers",
"token_count": 5091
} | 277 |
"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py"""
import argparse
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
import torch.distributed as dist
import torch.distributed as torch_distrib
from pytorch_lightning.plugins.training_type import DDPPlugin
from torch.utils.data import DataLoader
from transformers import (
AutoConfig,
AutoTokenizer,
BartForConditionalGeneration,
BatchEncoding,
RagConfig,
RagSequenceForGeneration,
RagTokenForGeneration,
RagTokenizer,
T5ForConditionalGeneration,
)
from transformers import logging as transformers_logging
from transformers.integrations import is_ray_available
if is_ray_available():
import ray
from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever
from callbacks_rag import ( # noqa: E402 # isort:skipq
get_checkpoint_callback,
get_early_stopping_callback,
Seq2SeqLoggingCallback,
)
from distributed_pytorch_retriever import RagPyTorchDistributedRetriever # noqa: E402 # isort:skip
from utils_rag import ( # noqa: E402 # isort:skip
calculate_exact_match,
flatten_list,
get_git_info,
is_rag_model,
lmap,
pickle_save,
save_git_info,
save_json,
set_extra_model_params,
Seq2SeqDataset,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
transformers_logging.set_verbosity_info()
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class CustomDDP(DDPPlugin):
def init_ddp_connection(self, global_rank=None, world_size=None) -> None:
module = self.model
global_rank = global_rank if global_rank is not None else self.cluster_environment.global_rank()
world_size = world_size if world_size is not None else self.cluster_environment.world_size()
os.environ["MASTER_ADDR"] = self.cluster_environment.master_address()
os.environ["MASTER_PORT"] = str(self.cluster_environment.master_port())
if not torch.distributed.is_initialized():
logger.info(f"initializing ddp: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank + 1}/{world_size}")
torch_distrib.init_process_group(self.torch_distributed_backend, rank=global_rank, world_size=world_size)
if module.is_rag_model:
self.distributed_port = module.hparams.distributed_port
if module.distributed_retriever == "pytorch":
module.model.rag.retriever.init_retrieval(self.distributed_port)
elif module.distributed_retriever == "ray" and global_rank == 0:
# For the Ray retriever, only initialize it once when global
# rank is 0.
module.model.rag.retriever.init_retrieval()
class GenerativeQAModule(BaseTransformer):
mode = "generative_qa"
loss_names = ["loss"]
metric_names = ["em"]
val_metric = "em"
def __init__(self, hparams, **kwargs):
# when loading from a pytorch lightning checkpoint, hparams are passed as dict
if isinstance(hparams, dict):
hparams = AttrDict(hparams)
if hparams.model_type == "rag_sequence":
self.model_class = RagSequenceForGeneration
elif hparams.model_type == "rag_token":
self.model_class = RagTokenForGeneration
elif hparams.model_type == "bart":
self.model_class = BartForConditionalGeneration
else:
self.model_class = T5ForConditionalGeneration
self.is_rag_model = is_rag_model(hparams.model_type)
config_class = RagConfig if self.is_rag_model else AutoConfig
config = config_class.from_pretrained(hparams.model_name_or_path)
# set retriever parameters
config.index_name = hparams.index_name or config.index_name
config.passages_path = hparams.passages_path or config.passages_path
config.index_path = hparams.index_path or config.index_path
config.use_dummy_dataset = hparams.use_dummy_dataset
# set extra_model_params for generator configs and load_model
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout")
if self.is_rag_model:
if hparams.prefix is not None:
config.generator.prefix = hparams.prefix
config.label_smoothing = hparams.label_smoothing
hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator)
if hparams.distributed_retriever == "pytorch":
retriever = RagPyTorchDistributedRetriever.from_pretrained(hparams.model_name_or_path, config=config)
elif hparams.distributed_retriever == "ray":
# The Ray retriever needs the handles to the retriever actors.
retriever = RagRayDistributedRetriever.from_pretrained(
hparams.model_name_or_path, hparams.actor_handles, config=config
)
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever)
prefix = config.question_encoder.prefix
else:
if hparams.prefix is not None:
config.prefix = hparams.prefix
hparams, config = set_extra_model_params(extra_model_params, hparams, config)
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config)
prefix = config.prefix
tokenizer = (
RagTokenizer.from_pretrained(hparams.model_name_or_path)
if self.is_rag_model
else AutoTokenizer.from_pretrained(hparams.model_name_or_path)
)
super().__init__(hparams, config=config, tokenizer=tokenizer, model=model)
save_git_info(self.hparams.output_dir)
self.output_dir = Path(self.hparams.output_dir)
self.metrics_save_path = Path(self.output_dir) / "metrics.json"
self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
pickle_save(self.hparams, self.hparams_save_path)
self.step_count = 0
self.metrics = defaultdict(list)
self.dataset_kwargs: dict = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": prefix or "",
}
n_observations_per_split = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test": self.hparams.n_test,
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.target_lens = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
self.hparams.git_sha = get_git_info()["repo_sha"]
self.num_workers = hparams.num_workers
self.distributed_port = self.hparams.distributed_port
# For single GPU training, init_ddp_connection is not called.
# So we need to initialize the retrievers here.
if hparams.gpus <= 1:
if hparams.distributed_retriever == "ray":
self.model.retriever.init_retrieval()
elif hparams.distributed_retriever == "pytorch":
self.model.retriever.init_retrieval(self.distributed_port)
self.distributed_retriever = hparams.distributed_retriever
def forward(self, input_ids, **kwargs):
return self.model(input_ids, **kwargs)
def ids_to_clean_text(self, generated_ids: List[int]):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return lmap(str.strip, gen_text)
def _step(self, batch: dict) -> Tuple:
source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
rag_kwargs = {}
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(target_ids)
lm_labels = target_ids
elif isinstance(self.model, BartForConditionalGeneration):
decoder_input_ids = target_ids[:, :-1].contiguous()
lm_labels = target_ids[:, 1:].clone()
else:
assert self.is_rag_model
generator = self.model.rag.generator
if isinstance(generator, T5ForConditionalGeneration):
decoder_start_token_id = generator.config.decoder_start_token_id
decoder_input_ids = (
torch.cat(
[torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids],
dim=1,
)
if target_ids.shape[0] < self.target_lens["train"]
else generator._shift_right(target_ids)
)
elif isinstance(generator, BartForConditionalGeneration):
decoder_input_ids = target_ids
lm_labels = decoder_input_ids
rag_kwargs["reduce_loss"] = True
assert decoder_input_ids is not None
outputs = self(
source_ids,
attention_mask=source_mask,
decoder_input_ids=decoder_input_ids,
use_cache=False,
labels=lm_labels,
**rag_kwargs,
)
loss = outputs["loss"]
return (loss,)
@property
def pad(self) -> int:
raise NotImplementedError("pad not implemented")
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)
logs = {name: loss.detach() for name, loss in zip(self.loss_names, loss_tensors)}
# tokens per batch
tgt_pad_token_id = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
src_pad_token_id = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
logs["tpb"] = (
batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum()
)
return {"loss": loss_tensors[0], "log": logs}
def validation_step(self, batch, batch_idx) -> Dict:
return self._generative_step(batch)
def validation_epoch_end(self, outputs, prefix="val") -> Dict:
self.step_count += 1
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
gen_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss)
gen_metrics.update({k: v.item() for k, v in losses.items()})
# fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424
if dist.is_initialized():
dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM)
metrics_tensor = metrics_tensor / dist.get_world_size()
gen_metrics.update({self.val_metric: metrics_tensor.item()})
losses.update(gen_metrics)
metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
metrics["step_count"] = self.step_count
self.save_metrics(metrics, prefix) # writes to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metrics_tensor}
def save_metrics(self, latest_metrics, type_path) -> None:
self.metrics[type_path].append(latest_metrics)
save_json(self.metrics, self.metrics_save_path)
def calc_generative_metrics(self, preds, target) -> Dict:
return calculate_exact_match(preds, target)
def _generative_step(self, batch: dict) -> dict:
start_time = time.time()
batch = BatchEncoding(batch).to(device=self.model.device)
generated_ids = self.model.generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
do_deduplication=False, # rag specific parameter
use_cache=True,
min_length=1,
max_length=self.target_lens["val"],
)
gen_time = (time.time() - start_time) / batch["input_ids"].shape[0]
preds: List[str] = self.ids_to_clean_text(generated_ids)
target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"])
loss_tensors = self._step(batch)
base_metrics = dict(zip(self.loss_names, loss_tensors))
gen_metrics: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics)
return base_metrics
def test_step(self, batch, batch_idx):
return self._generative_step(batch)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, prefix="test")
def get_dataset(self, type_path) -> Seq2SeqDataset:
n_obs = self.n_obs[type_path]
max_target_length = self.target_lens[type_path]
dataset = Seq2SeqDataset(
self.tokenizer,
type_path=type_path,
n_obs=n_obs,
max_target_length=max_target_length,
**self.dataset_kwargs,
)
return dataset
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
dataset = self.get_dataset(type_path)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=shuffle,
num_workers=self.num_workers,
)
return dataloader
def train_dataloader(self) -> DataLoader:
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
return dataloader
def val_dataloader(self) -> DataLoader:
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
def test_dataloader(self) -> DataLoader:
return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count))
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
BaseTransformer.add_model_specific_args(parser, root_dir)
add_generic_args(parser, root_dir)
parser.add_argument(
"--max_source_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--max_target_length",
default=25,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--val_max_target_length",
default=25,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--test_max_target_length",
default=25,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
parser.add_argument(
"--prefix",
type=str,
default=None,
help="Prefix added at the beginning of each text, typically used with T5-based models.",
)
parser.add_argument(
"--early_stopping_patience",
type=int,
default=-1,
required=False,
help=(
"-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"
" val_check_interval will effect it."
),
)
parser.add_argument(
"--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training."
)
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token", "bart", "t5"],
type=str,
help=(
"RAG model type: sequence or token, if none specified, the type is inferred from the"
" model_name_or_path"
),
)
return parser
@staticmethod
def add_retriever_specific_args(parser):
parser.add_argument(
"--index_name",
type=str,
default=None,
help=(
"Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'"
" for a local index, or 'legacy' for the orignal one)"
),
)
parser.add_argument(
"--passages_path",
type=str,
default=None,
help=(
"Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever"
" documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
),
)
parser.add_argument(
"--index_path",
type=str,
default=None,
help=(
"Path to the faiss index for custom index. More info about custom indexes in the RagRetriever"
" documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
),
)
parser.add_argument(
"--distributed_retriever",
choices=["ray", "pytorch"],
type=str,
default="pytorch",
help=(
"What implementation to use for distributed retriever? If "
"pytorch is selected, the index is loaded on training "
"worker 0, and torch.distributed is used to handle "
"communication between training worker 0, and the other "
"training workers. If ray is selected, the Ray library is "
"used to create load the index on separate processes, "
"and Ray handles the communication between the training "
"workers and the retrieval actors."
),
)
parser.add_argument(
"--use_dummy_dataset",
type=bool,
default=False,
help=(
"Whether to use the dummy version of the dataset index. More info about custom indexes in the"
" RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
),
)
return parser
@staticmethod
def add_ray_specific_args(parser):
# Ray cluster address.
parser.add_argument(
"--ray-address",
default="auto",
type=str,
help=(
"The address of the Ray cluster to connect to. If not "
"specified, Ray will attempt to automatically detect the "
"cluster. Has no effect if pytorch is used as the distributed "
"retriever."
),
)
parser.add_argument(
"--num_retrieval_workers",
type=int,
default=1,
help=(
"The number of retrieval actors to use when Ray is selected "
"for the distributed retriever. Has no effect when "
"distributed_retriever is set to pytorch."
),
)
return parser
def main(args=None, model=None) -> GenerativeQAModule:
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
parser = GenerativeQAModule.add_retriever_specific_args(parser)
args = args or parser.parse_args()
Path(args.output_dir).mkdir(exist_ok=True)
named_actors = []
if args.distributed_retriever == "ray" and args.gpus > 1:
if not is_ray_available():
raise RuntimeError("Please install Ray to use the Ray distributed retriever.")
# Connect to an existing Ray cluster.
try:
ray.init(address=args.ray_address, namespace="rag")
except (ConnectionError, ValueError):
logger.warning(
"Connection to Ray cluster failed. Make sure a Ray "
"cluster is running by either using Ray's cluster "
"launcher (`ray up`) or by manually starting Ray on "
"each node via `ray start --head` for the head node "
"and `ray start --address='<ip address>:6379'` for "
"additional nodes. See "
"https://docs.ray.io/en/master/cluster/index.html "
"for more info."
)
raise
# Create Ray actors only for rank 0.
if ("LOCAL_RANK" not in os.environ or int(os.environ["LOCAL_RANK"]) == 0) and (
"NODE_RANK" not in os.environ or int(os.environ["NODE_RANK"]) == 0
):
remote_cls = ray.remote(RayRetriever)
named_actors = [
remote_cls.options(name="retrieval_worker_{}".format(i)).remote()
for i in range(args.num_retrieval_workers)
]
else:
logger.info(
"Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format(
os.environ["NODE_RANK"], os.environ["LOCAL_RANK"]
)
)
named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)]
args.actor_handles = named_actors
assert args.actor_handles == named_actors
if model is None:
model: GenerativeQAModule = GenerativeQAModule(args)
dataset = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith("/tmp")
or str(args.output_dir).startswith("/var")
):
training_logger = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
project = os.environ.get("WANDB_PROJECT", dataset)
training_logger = WandbLogger(name=model.output_dir.name, project=project)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
es_callback = (
get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
if args.early_stopping_patience >= 0
else False
)
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric),
early_stopping_callback=es_callback,
logger=training_logger,
custom_ddp_plugin=CustomDDP() if args.gpus > 1 else None,
profiler=pl.profiler.AdvancedProfiler() if args.profile else None,
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:
return model
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
parser = GenerativeQAModule.add_retriever_specific_args(parser)
parser = GenerativeQAModule.add_ray_specific_args(parser)
# Pytorch Lightning Profiler
parser.add_argument(
"--profile",
action="store_true",
help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.",
)
args = parser.parse_args()
main(args)
| transformers/examples/research_projects/rag/finetune_rag.py/0 | {
"file_path": "transformers/examples/research_projects/rag/finetune_rag.py",
"repo_id": "transformers",
"token_count": 11834
} | 278 |
# Script for verifying that run_bart_sum can be invoked from its directory
# Get tiny dataset with cnn_dm format (4 examples for train, val, test)
wget https://cdn-datasets.huggingface.co/summarization/cnn_tiny.tgz
tar -xzvf cnn_tiny.tgz
rm cnn_tiny.tgz
export OUTPUT_DIR_NAME=bart_utest_output
export CURRENT_DIR=${PWD}
export OUTPUT_DIR=${CURRENT_DIR}/${OUTPUT_DIR_NAME}
# Make output directory if it doesn't exist
mkdir -p $OUTPUT_DIR
# Add parent directory to python path to access lightning_base.py and testing_utils.py
export PYTHONPATH="../":"${PYTHONPATH}"
python finetune.py \
--data_dir=cnn_tiny/ \
--model_name_or_path=sshleifer/bart-tiny-random \
--learning_rate=3e-5 \
--train_batch_size=2 \
--eval_batch_size=2 \
--output_dir=$OUTPUT_DIR \
--num_train_epochs=1 \
--gpus=0 \
--do_train "$@"
rm -rf cnn_tiny
rm -rf $OUTPUT_DIR
| transformers/examples/research_projects/seq2seq-distillation/finetune_bart_tiny.sh/0 | {
"file_path": "transformers/examples/research_projects/seq2seq-distillation/finetune_bart_tiny.sh",
"repo_id": "transformers",
"token_count": 333
} | 279 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The Microsoft and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for tapex on table-based question answering tasks.
Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
"""
import logging
import os
import sys
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from functools import partial
from typing import List, Optional
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
import pandas as pd
from datasets import load_dataset
from filelock import FileLock
from wikisql_utils import _TYPE_CONVERTER, retrieve_wikisql_query_answer_tapas
import transformers
from transformers import (
AutoConfig,
BartForConditionalGeneration,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
TapexTokenizer,
set_seed,
)
from transformers.file_utils import is_offline_mode
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": (
"Pretrained tokenizer name or path if not the same as model_name. "
"By default we use BART-large tokenizer for TAPEX-large."
)
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default="wikisql", metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
# IMPORTANT: the initial BART model's decoding is penalized by no_repeat_ngram_size, and thus
# we should disable it here to avoid problematic generation
config.no_repeat_ngram_size = 0
config.max_length = 1024
config.early_stopping = False
# load tapex tokenizer
tokenizer = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
add_prefix_space=True,
)
# load Bart based Tapex model (default tapex-large)
model = BartForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = datasets["train"].column_names
elif training_args.do_eval:
column_names = datasets["validation"].column_names
elif training_args.do_predict:
column_names = datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_tableqa_function(examples, is_training=False):
"""
The is_training FLAG is used to identify if we could use the supervision
to truncate the table content if it is required.
"""
# this function is specific for WikiSQL since the util function need the data structure
# to retrieve the WikiSQL answer for each question
def _convert_table_types(_table):
"""Runs the type converter over the table cells."""
ret_table = deepcopy(_table)
types = ret_table["types"]
ret_table["real_rows"] = ret_table["rows"]
typed_rows = []
for row in ret_table["rows"]:
typed_row = []
for column, cell_value in enumerate(row):
typed_row.append(_TYPE_CONVERTER[types[column]](cell_value))
typed_rows.append(typed_row)
ret_table["rows"] = typed_rows
return ret_table
questions = [question.lower() for question in examples["question"]]
example_tables = examples["table"]
example_sqls = examples["sql"]
tables = [
pd.DataFrame.from_records(example_table["rows"], columns=example_table["header"])
for example_table in example_tables
]
# using tapas utils to obtain wikisql answer
answers = []
for example_sql, example_table in zip(example_sqls, example_tables):
tapas_table = _convert_table_types(example_table)
answer_list: List[str] = retrieve_wikisql_query_answer_tapas(tapas_table, example_sql)
# you can choose other delimiters to split each answer
answers.append(answer_list)
# IMPORTANT: we cannot pass by answers during evaluation, answers passed during training are used to
# truncate large tables in the train set!
if is_training:
model_inputs = tokenizer(
table=tables,
query=questions,
answer=answers,
max_length=data_args.max_source_length,
padding=padding,
truncation=True,
)
else:
model_inputs = tokenizer(
table=tables, query=questions, max_length=data_args.max_source_length, padding=padding, truncation=True
)
labels = tokenizer(
answer=[", ".join(answer) for answer in answers],
max_length=max_target_length,
padding=padding,
truncation=True,
)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# in training, we can use the answer as extra information to truncate large tables
preprocess_tableqa_function_training = partial(preprocess_tableqa_function, is_training=True)
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_tableqa_function_training,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_tableqa_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_tableqa_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
delimiter = ", "
# define example evaluation
def evaluate_example(predict_str: str, ground_str: str):
predict_spans = predict_str.split(delimiter)
ground_spans = ground_str.split(delimiter)
predict_values = defaultdict(lambda: 0)
ground_values = defaultdict(lambda: 0)
for span in predict_spans:
try:
predict_values[float(span)] += 1
except ValueError:
predict_values[span.strip()] += 1
for span in ground_spans:
try:
ground_values[float(span)] += 1
except ValueError:
ground_values[span.strip()] += 1
is_correct = predict_values == ground_values
return is_correct
def get_denotation_accuracy(predictions: List[str], references: List[str]):
assert len(predictions) == len(references)
correct_num = 0
for predict_str, ground_str in zip(predictions, references):
is_correct = evaluate_example(predict_str.lower(), ground_str.lower())
if is_correct:
correct_num += 1
return correct_num / len(predictions)
accuracy = get_denotation_accuracy(decoded_preds, decoded_labels)
result = {"denotation_accuracy": accuracy}
return result
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(
predict_dataset,
metric_key_prefix="predict",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
output_prediction_file = os.path.join(training_args.output_dir, "tapex_predictions.txt")
with open(output_prediction_file, "w") as writer:
writer.write("\n".join(predictions))
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers/examples/research_projects/tapex/run_wikisql_with_tapex.py/0 | {
"file_path": "transformers/examples/research_projects/tapex/run_wikisql_with_tapex.py",
"repo_id": "transformers",
"token_count": 11008
} | 280 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def freeze_module(module):
for param in module.parameters():
param.requires_grad = False
def get_device():
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations."
)
return device
def show_pil(img):
fig = plt.imshow(img)
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.show()
def get_timestamp():
current_time = datetime.now()
timestamp = current_time.strftime("%H:%M:%S")
return timestamp
| transformers/examples/research_projects/vqgan-clip/utils.py/0 | {
"file_path": "transformers/examples/research_projects/vqgan-clip/utils.py",
"repo_id": "transformers",
"token_count": 379
} | 281 |
#!/usr/bin/env python3
import logging
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import librosa
import torch
from datasets import DatasetDict, load_dataset
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForPreTraining,
is_apex_available,
trainer_utils,
)
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
verbose_logging: Optional[bool] = field(
default=False,
metadata={"help": "Whether to log verbose messages or not."},
)
max_gumbel_temperature: Optional[float] = field(
default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."}
)
min_gumbel_temperature: Optional[float] = field(
default=0.5, metadata={"help": "Minimum temperature for gumbel softmax."}
)
gumbel_temperature_decay: Optional[float] = field(
default=0.999995, metadata={"help": "Decay of gumbel temperature during training."}
)
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logging_level = logging.WARNING
if model_args.verbose_logging:
logging_level = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank):
logging_level = logging.INFO
logger.setLevel(logging_level)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: Optional[str] = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
validation_split_name: Optional[str] = field(
default="validation",
metadata={
"help": (
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
speech_file_column: Optional[str] = field(
default="file",
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
validation_split_percentage: Optional[int] = field(
default=1,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_duration_in_seconds: Optional[float] = field(
default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}
)
@dataclass
class DataCollatorForWav2Vec2Pretraining:
"""
Data collator that will dynamically pad the inputs received and prepare masked indices
for self-supervised pretraining.
Args:
model (:class:`~transformers.Wav2Vec2ForPreTraining`):
The Wav2Vec2 model used for pretraining. The data collator needs to have access
to config and ``_get_feat_extract_output_lengths`` function for correct padding.
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`):
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
model: Wav2Vec2ForPreTraining
feature_extractor: Wav2Vec2FeatureExtractor
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
max_length: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# reformat list to dict and set to pytorch format
batch = self.feature_extractor.pad(
features,
max_length=self.max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1])
batch_size = batch["input_values"].shape[0]
# make sure that no loss is computed on padded inputs
if batch["attention_mask"] is not None:
# compute real output lengths according to convolution formula
output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to(
torch.long
)
attention_mask = torch.zeros(
(batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask[
(torch.arange(attention_mask.shape[0], device=batch["input_values"].device), output_lengths - 1)
] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
# sample randomly masked indices
batch["mask_time_indices"] = _compute_mask_indices(
(batch_size, mask_indices_seq_length),
self.model.config.mask_time_prob,
self.model.config.mask_time_length,
attention_mask=attention_mask,
min_masks=2,
)
return batch
class Wav2Vec2PreTrainer(Trainer):
"""
Subclassed :class:`~transformers.Trainer` for Wav2Vec2-like pretraining. Trainer can decay gumbel softmax temperature during training.
"""
def __init__(self, *args, max_gumbel_temp=1, min_gumbel_temp=0, gumbel_temp_decay=1.0, **kwargs):
super().__init__(*args, **kwargs)
self.num_update_step = 0
self.max_gumbel_temp = max_gumbel_temp
self.min_gumbel_temp = min_gumbel_temp
self.gumbel_temp_decay = gumbel_temp_decay
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
if self.use_amp:
with autocast():
loss = self.compute_loss(model, inputs)
else:
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1 or self.deepspeed:
if model.module.config.ctc_loss_reduction == "mean":
loss = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
loss = loss.sum() / (inputs["mask_time_indices"]).sum()
else:
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(loss)
else:
loss.backward()
self.num_update_step += 1
# make sure gumbel softmax temperature is decayed
if self.args.n_gpu > 1 or self.deepspeed:
model.module.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)
)
else:
model.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)
)
return loss.detach()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
configure_logger(model_args, training_args)
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
datasets = DatasetDict()
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
)
else:
# make sure only "validation" and "train" keys remain"
datasets = DatasetDict()
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split="validation",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}",
cache_dir=model_args.cache_dir,
)
# only normalized-inputs-training is supported
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True
)
def prepare_dataset(batch):
# check that all files have the correct sampling rate
batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate)
return batch
# load audio files into numpy arrays
vectorized_datasets = datasets.map(
prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names
)
# filter audio files that are too long
vectorized_datasets = vectorized_datasets.filter(
lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
)
def normalize(batch):
return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate)
# normalize and transform to `BatchFeatures`
vectorized_datasets = vectorized_datasets.map(
normalize,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=vectorized_datasets["train"].column_names,
)
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
config = Wav2Vec2Config.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
gradient_checkpointing=training_args.gradient_checkpointing,
)
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
"PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
" ``config.feat_extract_norm='layer'"
)
model = Wav2Vec2ForPreTraining(config)
data_collator = DataCollatorForWav2Vec2Pretraining(model=model, feature_extractor=feature_extractor)
trainer = Wav2Vec2PreTrainer(
model=model,
data_collator=data_collator,
args=training_args,
train_dataset=vectorized_datasets["train"],
eval_dataset=vectorized_datasets["validation"],
tokenizer=feature_extractor,
max_gumbel_temp=model_args.max_gumbel_temperature,
min_gumbel_temp=model_args.min_gumbel_temperature,
gumbel_temp_decay=model_args.gumbel_temperature_decay,
)
trainer.train()
if __name__ == "__main__":
main()
| transformers/examples/research_projects/wav2vec2/run_pretrain.py/0 | {
"file_path": "transformers/examples/research_projects/wav2vec2/run_pretrain.py",
"repo_id": "transformers",
"token_count": 6513
} | 282 |
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for multiple choice.
"""
# You can also adapt this script on your own multiple choice task. Pointers for this are left as comments.
import json
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from pathlib import Path
from typing import Optional, Union
import datasets
import tensorflow as tf
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_NAME,
TF2_WEIGHTS_NAME,
AutoConfig,
AutoTokenizer,
DefaultDataCollator,
HfArgumentParser,
PushToHubCallback,
TFAutoModelForMultipleChoice,
TFTrainingArguments,
create_optimizer,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
logger = logging.getLogger(__name__)
# region Helper classes and functions
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that will dynamically pad the inputs for multiple choice received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch_size = len(features)
num_choices = len(features[0]["input_ids"])
flattened_features = [
[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
]
flattened_features = list(chain(*flattened_features))
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="np",
)
# Un-flatten
batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()}
# Add back labels
batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64)
return batch
# endregion
# region Arguments
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
def __post_init__(self):
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
# endregion
def main():
# region Argument parsing
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", model_args, data_args, framework="tensorflow")
output_dir = Path(training_args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# endregion
# region Logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# endregion
# region Checkpoints
checkpoint = None
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file():
checkpoint = output_dir
logger.info(
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
else:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to continue regardless."
)
# endregion
# Set seed before initializing model.
set_seed(training_args.seed)
# region Load datasets
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
else:
# Downloading and loading the swag dataset from the hub.
raw_datasets = load_dataset(
"swag",
"regular",
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# When using your own dataset or a different dataset from swag, you will probably need to change this.
ending_names = [f"ending{i}" for i in range(4)]
context_name = "sent1"
question_header_name = "sent2"
# endregion
# region Load model config and tokenizer
if checkpoint is not None:
config_path = training_args.output_dir
elif model_args.config_name:
config_path = model_args.config_name
else:
config_path = model_args.model_name_or_path
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
config_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# endregion
# region Dataset preprocessing
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
first_sentences = [[context] * 4 for context in examples[context_name]]
question_headers = examples[question_header_name]
second_sentences = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
]
# Flatten out
first_sentences = list(chain(*first_sentences))
second_sentences = list(chain(*second_sentences))
# Tokenize
tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True, max_length=max_seq_length)
# Un-flatten
data = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
return data
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if data_args.pad_to_max_length:
data_collator = DefaultDataCollator(return_tensors="np")
else:
# custom class defined above, as HF has no data collator for multiple choice
data_collator = DataCollatorForMultipleChoice(tokenizer)
# endregion
with training_args.strategy.scope():
# region Build model
if checkpoint is None:
model_path = model_args.model_name_or_path
else:
model_path = checkpoint
model = TFAutoModelForMultipleChoice.from_pretrained(
model_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
num_replicas = training_args.strategy.num_replicas_in_sync
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
if training_args.do_train:
num_train_steps = (len(train_dataset) // total_train_batch_size) * int(training_args.num_train_epochs)
if training_args.warmup_steps > 0:
num_warmup_steps = training_args.warmup_steps
elif training_args.warmup_ratio > 0:
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
else:
num_warmup_steps = 0
optimizer, lr_schedule = create_optimizer(
init_lr=training_args.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
adam_beta1=training_args.adam_beta1,
adam_beta2=training_args.adam_beta2,
adam_epsilon=training_args.adam_epsilon,
weight_decay_rate=training_args.weight_decay,
adam_global_clipnorm=training_args.max_grad_norm,
)
else:
optimizer = None
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=optimizer, metrics=["accuracy"], jit_compile=training_args.xla)
# endregion
# region Preparing push_to_hub and model card
push_to_hub_model_id = training_args.push_to_hub_model_id
model_name = model_args.model_name_or_path.split("/")[-1]
if not push_to_hub_model_id:
push_to_hub_model_id = f"{model_name}-finetuned-multiplechoice"
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice"}
if training_args.push_to_hub:
callbacks = [
PushToHubCallback(
output_dir=training_args.output_dir,
hub_model_id=push_to_hub_model_id,
hub_token=training_args.push_to_hub_token,
tokenizer=tokenizer,
**model_card_kwargs,
)
]
else:
callbacks = []
# endregion
# region Training
eval_metrics = None
if training_args.do_train:
dataset_options = tf.data.Options()
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
# yourself if you use this method, whereas they are automatically inferred from the model input names when
# using model.prepare_tf_dataset()
# For more info see the docs:
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset
tf_train_dataset = model.prepare_tf_dataset(
train_dataset,
shuffle=True,
batch_size=total_train_batch_size,
collate_fn=data_collator,
).with_options(dataset_options)
if training_args.do_eval:
validation_data = model.prepare_tf_dataset(
eval_dataset,
shuffle=False,
batch_size=total_eval_batch_size,
collate_fn=data_collator,
drop_remainder=True,
).with_options(dataset_options)
else:
validation_data = None
history = model.fit(
tf_train_dataset,
validation_data=validation_data,
epochs=int(training_args.num_train_epochs),
callbacks=callbacks,
)
eval_metrics = {key: val[-1] for key, val in history.history.items()}
# endregion
# region Evaluation
if training_args.do_eval and not training_args.do_train:
dataset_options = tf.data.Options()
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
# Do a standalone evaluation pass
tf_eval_dataset = model.prepare_tf_dataset(
eval_dataset,
shuffle=False,
batch_size=total_eval_batch_size,
collate_fn=data_collator,
drop_remainder=True,
).with_options(dataset_options)
eval_results = model.evaluate(tf_eval_dataset)
eval_metrics = {"val_loss": eval_results[0], "val_accuracy": eval_results[1]}
# endregion
if eval_metrics is not None and training_args.output_dir is not None:
output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
with open(output_eval_file, "w") as writer:
writer.write(json.dumps(eval_metrics))
# region Push to hub
if training_args.output_dir is not None and not training_args.push_to_hub:
# If we're not pushing to hub, at least save a local copy when we're done
model.save_pretrained(training_args.output_dir)
# endregion
if __name__ == "__main__":
main()
| transformers/examples/tensorflow/multiple-choice/run_swag.py/0 | {
"file_path": "transformers/examples/tensorflow/multiple-choice/run_swag.py",
"repo_id": "transformers",
"token_count": 10190
} | 283 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Translation example
This script shows an example of training a *translation* model with the ๐ค Transformers library.
For straightforward use-cases you may be able to use these scripts without modification, although we have also
included comments in the code to indicate areas that you may need to adapt to your own projects.
### Multi-GPU and TPU usage
By default, these scripts use a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs
can also be used by passing the name of the TPU resource with the `--tpu` argument.
### Example commands and caveats
MBart and some T5 models require special handling.
T5 models `t5-small`, `t5-base`, `t5-large`, `t5-3b` and `t5-11b` must use an additional argument: `--source_prefix "translate {source_lang} to {target_lang}"`. For example:
```bash
python run_translation.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--source_lang en \
--target_lang ro \
--source_prefix "translate English to Romanian: " \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--output_dir /tmp/tst-translation \
--per_device_train_batch_size=16 \
--per_device_eval_batch_size=16 \
--overwrite_output_dir
```
If you get a terrible BLEU score, make sure that you didn't forget to use the `--source_prefix` argument.
For the aforementioned group of T5 models it's important to remember that if you switch to a different language pair, make sure to adjust the source and target values in all 3 language-specific command line argument: `--source_lang`, `--target_lang` and `--source_prefix`.
MBart models require a different format for `--source_lang` and `--target_lang` values, e.g. instead of `en` it expects `en_XX`, for `ro` it expects `ro_RO`. The full MBart specification for language codes can be found [here](https://huggingface.co/facebook/mbart-large-cc25). For example:
```bash
python run_translation.py \
--model_name_or_path facebook/mbart-large-en-ro \
--do_train \
--do_eval \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--source_lang en_XX \
--target_lang ro_RO \
--output_dir /tmp/tst-translation \
--per_device_train_batch_size=16 \
--per_device_eval_batch_size=16 \
--overwrite_output_dir
```
| transformers/examples/tensorflow/translation/README.md/0 | {
"file_path": "transformers/examples/tensorflow/translation/README.md",
"repo_id": "transformers",
"token_count": 903
} | 284 |
#!/usr/bin/env python
# coding: utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
import json
import tempfile
from pathlib import Path
from transformers import FSMTConfig, FSMTForConditionalGeneration, FSMTTokenizer
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
mname_tiny = "tiny-wmt19-en-ru"
# Build
# borrowed from a test
vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
with tempfile.TemporaryDirectory() as tmpdirname:
build_dir = Path(tmpdirname)
src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"]
with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp : fp.write("\n".join(merges))
tokenizer = FSMTTokenizer(
langs=["en", "ru"],
src_vocab_size = len(vocab),
tgt_vocab_size = len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
config = FSMTConfig(
langs=['ru', 'en'],
src_vocab_size=1000, tgt_vocab_size=1000,
d_model=4,
encoder_layers=1, decoder_layers=1,
encoder_ffn_dim=4, decoder_ffn_dim=4,
encoder_attention_heads=1, decoder_attention_heads=1,
)
tiny_model = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")
# Test
batch = tokenizer(["Making tiny model"], return_tensors="pt")
outputs = tiny_model(**batch)
print("test output:", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| transformers/scripts/fsmt/fsmt-make-super-tiny-model.py/0 | {
"file_path": "transformers/scripts/fsmt/fsmt-make-super-tiny-model.py",
"repo_id": "transformers",
"token_count": 1246
} | 285 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def try_infer_format_from_ext(path: str):
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(ext):
return ext
raise Exception(
f"Unable to determine file format from file extension {path}. "
f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}"
)
def run_command_factory(args):
nlp = pipeline(
task=args.task,
model=args.model if args.model else None,
config=args.config,
tokenizer=args.tokenizer,
device=args.device,
)
format = try_infer_format_from_ext(args.input) if args.format == "infer" else args.format
reader = PipelineDataFormat.from_str(
format=format,
output_path=args.output,
input_path=args.input,
column=args.column if args.column else nlp.default_input_names,
overwrite=args.overwrite,
)
return RunCommand(nlp, reader)
class RunCommand(BaseTransformersCLICommand):
def __init__(self, nlp: Pipeline, reader: PipelineDataFormat):
self._nlp = nlp
self._reader = reader
@staticmethod
def register_subcommand(parser: ArgumentParser):
run_parser = parser.add_parser("run", help="Run a pipeline through the CLI")
run_parser.add_argument("--task", choices=get_supported_tasks(), help="Task to run")
run_parser.add_argument("--input", type=str, help="Path to the file to use for inference")
run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.")
run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.")
run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.")
run_parser.add_argument(
"--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)"
)
run_parser.add_argument(
"--column",
type=str,
help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)",
)
run_parser.add_argument(
"--format",
type=str,
default="infer",
choices=PipelineDataFormat.SUPPORTED_FORMATS,
help="Input format to read from",
)
run_parser.add_argument(
"--device",
type=int,
default=-1,
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
)
run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.")
run_parser.set_defaults(func=run_command_factory)
def run(self):
nlp, outputs = self._nlp, []
for entry in self._reader:
output = nlp(**entry) if self._reader.is_multi_columns else nlp(entry)
if isinstance(output, dict):
outputs.append(output)
else:
outputs += output
# Saving data
if self._nlp.binary_output:
binary_path = self._reader.save_binary(outputs)
logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}")
else:
self._reader.save(outputs)
| transformers/src/transformers/commands/run.py/0 | {
"file_path": "transformers/src/transformers/commands/run.py",
"repo_id": "transformers",
"token_count": 1665
} | 286 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
logger = logging.get_logger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class SquadDataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
model_type: str = field(
default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)}
)
data_dir: str = field(
default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
doc_stride: int = field(
default=128,
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
)
max_query_length: int = field(
default=64,
metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
},
)
max_answer_length: int = field(
default=30,
metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}
)
null_score_diff_threshold: float = field(
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
)
n_best_size: int = field(
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
)
lang_id: int = field(
default=0,
metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
},
)
threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
class Split(Enum):
train = "train"
dev = "dev"
class SquadDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
args: SquadDataTrainingArguments
features: List[SquadFeatures]
mode: Split
is_language_sensitive: bool
def __init__(
self,
args: SquadDataTrainingArguments,
tokenizer: PreTrainedTokenizer,
limit_length: Optional[int] = None,
mode: Union[str, Split] = Split.train,
is_language_sensitive: Optional[bool] = False,
cache_dir: Optional[str] = None,
dataset_format: Optional[str] = "pt",
):
self.args = args
self.is_language_sensitive = is_language_sensitive
self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
if isinstance(mode, str):
try:
mode = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name")
self.mode = mode
# Load data features from cache or dataset file
version_tag = "v2" if args.version_2_with_negative else "v1"
cached_features_file = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}",
)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not args.overwrite_cache:
start = time.time()
self.old_features = torch.load(cached_features_file)
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
self.features = self.old_features["features"]
self.dataset = self.old_features.get("dataset", None)
self.examples = self.old_features.get("examples", None)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run"
)
else:
if mode == Split.dev:
self.examples = self.processor.get_dev_examples(args.data_dir)
else:
self.examples = self.processor.get_train_examples(args.data_dir)
self.features, self.dataset = squad_convert_examples_to_features(
examples=self.examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=mode == Split.train,
threads=args.threads,
return_dataset=dataset_format,
)
start = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples},
cached_features_file,
)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
feature = self.features[i]
input_ids = torch.tensor(feature.input_ids, dtype=torch.long)
attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long)
token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long)
cls_index = torch.tensor(feature.cls_index, dtype=torch.long)
p_mask = torch.tensor(feature.p_mask, dtype=torch.float)
is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float)
inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask})
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible})
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)})
if self.mode == Split.train:
start_positions = torch.tensor(feature.start_position, dtype=torch.long)
end_positions = torch.tensor(feature.end_position, dtype=torch.long)
inputs.update({"start_positions": start_positions, "end_positions": end_positions})
return inputs
| transformers/src/transformers/data/datasets/squad.py/0 | {
"file_path": "transformers/src/transformers/data/datasets/squad.py",
"repo_id": "transformers",
"token_count": 4006
} | 287 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available
_import_structure = {
"configuration_utils": ["GenerationConfig"],
"streamers": ["TextIteratorStreamer", "TextStreamer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["beam_constraints"] = [
"Constraint",
"ConstraintListState",
"DisjunctiveConstraint",
"PhrasalConstraint",
]
_import_structure["beam_search"] = [
"BeamHypotheses",
"BeamScorer",
"BeamSearchScorer",
"ConstrainedBeamSearchScorer",
]
_import_structure["logits_process"] = [
"AlternatingCodebooksLogitsProcessor",
"ClassifierFreeGuidanceLogitsProcessor",
"EncoderNoRepeatNGramLogitsProcessor",
"EncoderRepetitionPenaltyLogitsProcessor",
"EpsilonLogitsWarper",
"EtaLogitsWarper",
"ExponentialDecayLengthPenalty",
"ForcedBOSTokenLogitsProcessor",
"ForcedEOSTokenLogitsProcessor",
"ForceTokensLogitsProcessor",
"HammingDiversityLogitsProcessor",
"InfNanRemoveLogitsProcessor",
"LogitNormalization",
"LogitsProcessor",
"LogitsProcessorList",
"LogitsWarper",
"MinLengthLogitsProcessor",
"MinNewTokensLengthLogitsProcessor",
"NoBadWordsLogitsProcessor",
"NoRepeatNGramLogitsProcessor",
"PrefixConstrainedLogitsProcessor",
"RepetitionPenaltyLogitsProcessor",
"SequenceBiasLogitsProcessor",
"SuppressTokensLogitsProcessor",
"SuppressTokensAtBeginLogitsProcessor",
"TemperatureLogitsWarper",
"TopKLogitsWarper",
"TopPLogitsWarper",
"TypicalLogitsWarper",
"UnbatchedClassifierFreeGuidanceLogitsProcessor",
"WhisperTimeStampLogitsProcessor",
]
_import_structure["stopping_criteria"] = [
"MaxNewTokensCriteria",
"MaxLengthCriteria",
"MaxTimeCriteria",
"StoppingCriteria",
"StoppingCriteriaList",
"validate_stopping_criteria",
]
_import_structure["utils"] = [
"GenerationMixin",
"top_k_top_p_filtering",
"GreedySearchEncoderDecoderOutput",
"GreedySearchDecoderOnlyOutput",
"SampleEncoderDecoderOutput",
"SampleDecoderOnlyOutput",
"BeamSearchEncoderDecoderOutput",
"BeamSearchDecoderOnlyOutput",
"BeamSampleEncoderDecoderOutput",
"BeamSampleDecoderOnlyOutput",
"ContrastiveSearchEncoderDecoderOutput",
"ContrastiveSearchDecoderOnlyOutput",
"GenerateBeamDecoderOnlyOutput",
"GenerateBeamEncoderDecoderOutput",
"GenerateDecoderOnlyOutput",
"GenerateEncoderDecoderOutput",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tf_logits_process"] = [
"TFForcedBOSTokenLogitsProcessor",
"TFForcedEOSTokenLogitsProcessor",
"TFForceTokensLogitsProcessor",
"TFLogitsProcessor",
"TFLogitsProcessorList",
"TFLogitsWarper",
"TFMinLengthLogitsProcessor",
"TFNoBadWordsLogitsProcessor",
"TFNoRepeatNGramLogitsProcessor",
"TFRepetitionPenaltyLogitsProcessor",
"TFSuppressTokensAtBeginLogitsProcessor",
"TFSuppressTokensLogitsProcessor",
"TFTemperatureLogitsWarper",
"TFTopKLogitsWarper",
"TFTopPLogitsWarper",
]
_import_structure["tf_utils"] = [
"TFGenerationMixin",
"tf_top_k_top_p_filtering",
"TFGreedySearchDecoderOnlyOutput",
"TFGreedySearchEncoderDecoderOutput",
"TFSampleEncoderDecoderOutput",
"TFSampleDecoderOnlyOutput",
"TFBeamSearchEncoderDecoderOutput",
"TFBeamSearchDecoderOnlyOutput",
"TFBeamSampleEncoderDecoderOutput",
"TFBeamSampleDecoderOnlyOutput",
"TFContrastiveSearchEncoderDecoderOutput",
"TFContrastiveSearchDecoderOnlyOutput",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["flax_logits_process"] = [
"FlaxForcedBOSTokenLogitsProcessor",
"FlaxForcedEOSTokenLogitsProcessor",
"FlaxForceTokensLogitsProcessor",
"FlaxLogitsProcessor",
"FlaxLogitsProcessorList",
"FlaxLogitsWarper",
"FlaxMinLengthLogitsProcessor",
"FlaxSuppressTokensAtBeginLogitsProcessor",
"FlaxSuppressTokensLogitsProcessor",
"FlaxTemperatureLogitsWarper",
"FlaxTopKLogitsWarper",
"FlaxTopPLogitsWarper",
"FlaxWhisperTimeStampLogitsProcessor",
]
_import_structure["flax_utils"] = [
"FlaxGenerationMixin",
"FlaxGreedySearchOutput",
"FlaxSampleOutput",
"FlaxBeamSearchOutput",
]
if TYPE_CHECKING:
from .configuration_utils import GenerationConfig
from .streamers import TextIteratorStreamer, TextStreamer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .beam_constraints import Constraint, ConstraintListState, DisjunctiveConstraint, PhrasalConstraint
from .beam_search import BeamHypotheses, BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
from .logits_process import (
AlternatingCodebooksLogitsProcessor,
ClassifierFreeGuidanceLogitsProcessor,
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
ForceTokensLogitsProcessor,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitNormalization,
LogitsProcessor,
LogitsProcessorList,
LogitsWarper,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
SuppressTokensAtBeginLogitsProcessor,
SuppressTokensLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
WhisperTimeStampLogitsProcessor,
)
from .stopping_criteria import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
from .utils import (
BeamSampleDecoderOnlyOutput,
BeamSampleEncoderDecoderOutput,
BeamSearchDecoderOnlyOutput,
BeamSearchEncoderDecoderOutput,
ContrastiveSearchDecoderOnlyOutput,
ContrastiveSearchEncoderDecoderOutput,
GenerateBeamDecoderOnlyOutput,
GenerateBeamEncoderDecoderOutput,
GenerateDecoderOnlyOutput,
GenerateEncoderDecoderOutput,
GenerationMixin,
GreedySearchDecoderOnlyOutput,
GreedySearchEncoderDecoderOutput,
SampleDecoderOnlyOutput,
SampleEncoderDecoderOutput,
top_k_top_p_filtering,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tf_logits_process import (
TFForcedBOSTokenLogitsProcessor,
TFForcedEOSTokenLogitsProcessor,
TFForceTokensLogitsProcessor,
TFLogitsProcessor,
TFLogitsProcessorList,
TFLogitsWarper,
TFMinLengthLogitsProcessor,
TFNoBadWordsLogitsProcessor,
TFNoRepeatNGramLogitsProcessor,
TFRepetitionPenaltyLogitsProcessor,
TFSuppressTokensAtBeginLogitsProcessor,
TFSuppressTokensLogitsProcessor,
TFTemperatureLogitsWarper,
TFTopKLogitsWarper,
TFTopPLogitsWarper,
)
from .tf_utils import (
TFBeamSampleDecoderOnlyOutput,
TFBeamSampleEncoderDecoderOutput,
TFBeamSearchDecoderOnlyOutput,
TFBeamSearchEncoderDecoderOutput,
TFContrastiveSearchDecoderOnlyOutput,
TFContrastiveSearchEncoderDecoderOutput,
TFGenerationMixin,
TFGreedySearchDecoderOnlyOutput,
TFGreedySearchEncoderDecoderOutput,
TFSampleDecoderOnlyOutput,
TFSampleEncoderDecoderOutput,
tf_top_k_top_p_filtering,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .flax_logits_process import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxForceTokensLogitsProcessor,
FlaxLogitsProcessor,
FlaxLogitsProcessorList,
FlaxLogitsWarper,
FlaxMinLengthLogitsProcessor,
FlaxSuppressTokensAtBeginLogitsProcessor,
FlaxSuppressTokensLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
FlaxWhisperTimeStampLogitsProcessor,
)
from .flax_utils import FlaxBeamSearchOutput, FlaxGenerationMixin, FlaxGreedySearchOutput, FlaxSampleOutput
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/generation/__init__.py/0 | {
"file_path": "transformers/src/transformers/generation/__init__.py",
"repo_id": "transformers",
"token_count": 4888
} | 288 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
DataClass = NewType("DataClass", Any)
DataClassType = NewType("DataClassType", Any)
# From https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
def string_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)."
)
def make_choice_type_function(choices: list) -> Callable[[str], Any]:
"""
Creates a mapping function from each choices string representation to the actual value. Used to support multiple
value types for a single argument.
Args:
choices (list): List of choices.
Returns:
Callable[[str], Any]: Mapping function from string representation to actual value for each choice.
"""
str_to_choice = {str(choice): choice for choice in choices}
return lambda arg: str_to_choice.get(arg, arg)
def HfArg(
*,
aliases: Union[str, List[str]] = None,
help: str = None,
default: Any = dataclasses.MISSING,
default_factory: Callable[[], Any] = dataclasses.MISSING,
metadata: dict = None,
**kwargs,
) -> dataclasses.Field:
"""Argument helper enabling a concise syntax to create dataclass fields for parsing with `HfArgumentParser`.
Example comparing the use of `HfArg` and `dataclasses.field`:
```
@dataclass
class Args:
regular_arg: str = dataclasses.field(default="Huggingface", metadata={"aliases": ["--example", "-e"], "help": "This syntax could be better!"})
hf_arg: str = HfArg(default="Huggingface", aliases=["--example", "-e"], help="What a nice syntax!")
```
Args:
aliases (Union[str, List[str]], optional):
Single string or list of strings of aliases to pass on to argparse, e.g. `aliases=["--example", "-e"]`.
Defaults to None.
help (str, optional): Help string to pass on to argparse that can be displayed with --help. Defaults to None.
default (Any, optional):
Default value for the argument. If not default or default_factory is specified, the argument is required.
Defaults to dataclasses.MISSING.
default_factory (Callable[[], Any], optional):
The default_factory is a 0-argument function called to initialize a field's value. It is useful to provide
default values for mutable types, e.g. lists: `default_factory=list`. Mutually exclusive with `default=`.
Defaults to dataclasses.MISSING.
metadata (dict, optional): Further metadata to pass on to `dataclasses.field`. Defaults to None.
Returns:
Field: A `dataclasses.Field` with the desired properties.
"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
metadata = {}
if aliases is not None:
metadata["aliases"] = aliases
if help is not None:
metadata["help"] = help
return dataclasses.field(metadata=metadata, default=default, default_factory=default_factory, **kwargs)
class HfArgumentParser(ArgumentParser):
"""
This subclass of `argparse.ArgumentParser` uses type hints on dataclasses to generate arguments.
The class is designed to play well with the native argparse. In particular, you can add more (non-dataclass backed)
arguments to the parser after initialization and you'll get the output back after parsing as an additional
namespace. Optional: To create sub argument groups use the `_argument_group_name` attribute in the dataclass.
"""
dataclass_types: Iterable[DataClassType]
def __init__(self, dataclass_types: Union[DataClassType, Iterable[DataClassType]], **kwargs):
"""
Args:
dataclass_types:
Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.
kwargs (`Dict[str, Any]`, *optional*):
Passed to `argparse.ArgumentParser()` in the regular way.
"""
# To make the default appear when using --help
if "formatter_class" not in kwargs:
kwargs["formatter_class"] = ArgumentDefaultsHelpFormatter
super().__init__(**kwargs)
if dataclasses.is_dataclass(dataclass_types):
dataclass_types = [dataclass_types]
self.dataclass_types = list(dataclass_types)
for dtype in self.dataclass_types:
self._add_dataclass_arguments(dtype)
@staticmethod
def _parse_dataclass_field(parser: ArgumentParser, field: dataclasses.Field):
field_name = f"--{field.name}"
kwargs = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type, str):
raise RuntimeError(
"Unresolved type detected, which should have been done with the help of "
"`typing.get_type_hints` method by default"
)
aliases = kwargs.pop("aliases", [])
if isinstance(aliases, str):
aliases = [aliases]
origin_type = getattr(field.type, "__origin__", field.type)
if origin_type is Union or (hasattr(types, "UnionType") and isinstance(origin_type, types.UnionType)):
if str not in field.type.__args__ and (
len(field.type.__args__) != 2 or type(None) not in field.type.__args__
):
raise ValueError(
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
" the argument parser only supports one type per argument."
f" Problem encountered in field '{field.name}'."
)
if type(None) not in field.type.__args__:
# filter `str` in Union
field.type = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
origin_type = getattr(field.type, "__origin__", field.type)
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
field.type = (
field.type.__args__[0] if isinstance(None, field.type.__args__[1]) else field.type.__args__[1]
)
origin_type = getattr(field.type, "__origin__", field.type)
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
bool_kwargs = {}
if origin_type is Literal or (isinstance(field.type, type) and issubclass(field.type, Enum)):
if origin_type is Literal:
kwargs["choices"] = field.type.__args__
else:
kwargs["choices"] = [x.value for x in field.type]
kwargs["type"] = make_choice_type_function(kwargs["choices"])
if field.default is not dataclasses.MISSING:
kwargs["default"] = field.default
else:
kwargs["required"] = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
bool_kwargs = copy(kwargs)
# Hack because type=bool in argparse does not behave as we want.
kwargs["type"] = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
default = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
kwargs["default"] = default
# This tells argparse we accept 0 or 1 value after --field_name
kwargs["nargs"] = "?"
# This is the value that will get picked if we do --field_name (without value)
kwargs["const"] = True
elif isclass(origin_type) and issubclass(origin_type, list):
kwargs["type"] = field.type.__args__[0]
kwargs["nargs"] = "+"
if field.default_factory is not dataclasses.MISSING:
kwargs["default"] = field.default_factory()
elif field.default is dataclasses.MISSING:
kwargs["required"] = True
else:
kwargs["type"] = field.type
if field.default is not dataclasses.MISSING:
kwargs["default"] = field.default
elif field.default_factory is not dataclasses.MISSING:
kwargs["default"] = field.default_factory()
else:
kwargs["required"] = True
parser.add_argument(field_name, *aliases, **kwargs)
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
bool_kwargs["default"] = False
parser.add_argument(f"--no_{field.name}", action="store_false", dest=field.name, **bool_kwargs)
def _add_dataclass_arguments(self, dtype: DataClassType):
if hasattr(dtype, "_argument_group_name"):
parser = self.add_argument_group(dtype._argument_group_name)
else:
parser = self
try:
type_hints: Dict[str, type] = get_type_hints(dtype)
except NameError:
raise RuntimeError(
f"Type resolution failed for {dtype}. Try declaring the class in global scope or "
"removing line of `from __future__ import annotations` which opts in Postponed "
"Evaluation of Annotations (PEP 563)"
)
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(ex):
python_version = ".".join(map(str, sys.version_info[:3]))
raise RuntimeError(
f"Type resolution failed for {dtype} on Python {python_version}. Try removing "
"line of `from __future__ import annotations` which opts in union types as "
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
"support Python versions that lower than 3.10, you need to use "
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
"`X | None`."
) from ex
raise
for field in dataclasses.fields(dtype):
if not field.init:
continue
field.type = type_hints[field.name]
self._parse_dataclass_field(parser, field)
def parse_args_into_dataclasses(
self,
args=None,
return_remaining_strings=False,
look_for_args_file=True,
args_filename=None,
args_file_flag=None,
) -> Tuple[DataClass, ...]:
"""
Parse command-line args into instances of the specified dataclass types.
This relies on argparse's `ArgumentParser.parse_known_args`. See the doc at:
docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args
Args:
args:
List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser)
return_remaining_strings:
If true, also return a list of remaining argument strings.
look_for_args_file:
If true, will look for a ".args" file with the same base name as the entry point script for this
process, and will append its potential content to the command line args.
args_filename:
If not None, will uses this file instead of the ".args" file specified in the previous argument.
args_file_flag:
If not None, will look for a file in the command-line args specified with this flag. The flag can be
specified multiple times and precedence is determined by the order (last one wins).
Returns:
Tuple consisting of:
- the dataclass instances in the same order as they were passed to the initializer.abspath
- if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser
after initialization.
- The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)
"""
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)):
args_files = []
if args_filename:
args_files.append(Path(args_filename))
elif look_for_args_file and len(sys.argv):
args_files.append(Path(sys.argv[0]).with_suffix(".args"))
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
args_file_parser = ArgumentParser()
args_file_parser.add_argument(args_file_flag, type=str, action="append")
# Use only remaining args for further parsing (remove the args_file_flag)
cfg, args = args_file_parser.parse_known_args(args=args)
cmd_args_file_paths = vars(cfg).get(args_file_flag.lstrip("-"), None)
if cmd_args_file_paths:
args_files.extend([Path(p) for p in cmd_args_file_paths])
file_args = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
args = file_args + args if args is not None else file_args + sys.argv[1:]
namespace, remaining_args = self.parse_known_args(args=args)
outputs = []
for dtype in self.dataclass_types:
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
inputs = {k: v for k, v in vars(namespace).items() if k in keys}
for k in keys:
delattr(namespace, k)
obj = dtype(**inputs)
outputs.append(obj)
if len(namespace.__dict__) > 0:
# additional namespace.
outputs.append(namespace)
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}")
return (*outputs,)
def parse_dict(self, args: Dict[str, Any], allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
"""
Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass
types.
Args:
args (`dict`):
dict containing config values
allow_extra_keys (`bool`, *optional*, defaults to `False`):
Defaults to False. If False, will raise an exception if the dict contains keys that are not parsed.
Returns:
Tuple consisting of:
- the dataclass instances in the same order as they were passed to the initializer.
"""
unused_keys = set(args.keys())
outputs = []
for dtype in self.dataclass_types:
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
inputs = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys())
obj = dtype(**inputs)
outputs.append(obj)
if not allow_extra_keys and unused_keys:
raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(unused_keys)}")
return tuple(outputs)
def parse_json_file(self, json_file: str, allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
"""
Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the
dataclass types.
Args:
json_file (`str` or `os.PathLike`):
File name of the json file to parse
allow_extra_keys (`bool`, *optional*, defaults to `False`):
Defaults to False. If False, will raise an exception if the json file contains keys that are not
parsed.
Returns:
Tuple consisting of:
- the dataclass instances in the same order as they were passed to the initializer.
"""
with open(Path(json_file), encoding="utf-8") as open_json_file:
data = json.loads(open_json_file.read())
outputs = self.parse_dict(data, allow_extra_keys=allow_extra_keys)
return tuple(outputs)
def parse_yaml_file(self, yaml_file: str, allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
"""
Alternative helper method that does not use `argparse` at all, instead loading a yaml file and populating the
dataclass types.
Args:
yaml_file (`str` or `os.PathLike`):
File name of the yaml file to parse
allow_extra_keys (`bool`, *optional*, defaults to `False`):
Defaults to False. If False, will raise an exception if the json file contains keys that are not
parsed.
Returns:
Tuple consisting of:
- the dataclass instances in the same order as they were passed to the initializer.
"""
outputs = self.parse_dict(yaml.safe_load(Path(yaml_file).read_text()), allow_extra_keys=allow_extra_keys)
return tuple(outputs)
| transformers/src/transformers/hf_argparser.py/0 | {
"file_path": "transformers/src/transformers/hf_argparser.py",
"repo_id": "transformers",
"token_count": 8210
} | 289 |
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <vector>
std::vector<at::Tensor> fast_hash_ver1_kernel(
at::Tensor query_mask,
at::Tensor query_vector,
at::Tensor key_mask,
at::Tensor key_vector,
int num_hash_f,
int hash_code_len,
bool use_cuda
);
at::Tensor lsh_cumulation_ver1_kernel(
at::Tensor query_mask,
at::Tensor query_hash_code,
at::Tensor key_mask,
at::Tensor key_hash_code,
at::Tensor value,
int hashtable_capacity,
bool use_cuda
);
at::Tensor lsh_weighted_cumulation_ver1_kernel(
at::Tensor query_mask,
at::Tensor query_hash_code,
at::Tensor query_weight,
at::Tensor key_mask,
at::Tensor key_hash_code,
at::Tensor key_weight,
at::Tensor value,
int hashtable_capacity,
bool use_cuda
);
at::Tensor lsh_weighted_cumulation_ver2_kernel(
at::Tensor query_mask,
at::Tensor query_hash_code,
at::Tensor query_weight,
at::Tensor key_mask,
at::Tensor key_hash_code,
at::Tensor key_weight,
at::Tensor value,
int hashtable_capacity,
bool use_cuda
);
at::Tensor lsh_weighted_cumulation_ver3_kernel(
at::Tensor query_mask,
at::Tensor query_hash_code,
at::Tensor query_weight,
at::Tensor key_mask,
at::Tensor key_hash_code,
at::Tensor key_weight,
at::Tensor value,
int hashtable_capacity,
bool use_cuda
);
at::Tensor lsh_weighted_cumulation_ver4_kernel(
at::Tensor query_mask,
at::Tensor query_hash_code,
at::Tensor query_weight,
at::Tensor key_mask,
at::Tensor key_hash_code,
at::Tensor key_weight,
at::Tensor value,
int hashtable_capacity,
bool use_cuda
);
| transformers/src/transformers/kernels/yoso/fast_lsh_cumulation.h/0 | {
"file_path": "transformers/src/transformers/kernels/yoso/fast_lsh_cumulation.h",
"repo_id": "transformers",
"token_count": 639
} | 290 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json",
}
class AlbertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
a configuration with the defaults will yield a similar configuration to that of the ALBERT
[albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30000):
Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
embedding_size (`int`, *optional*, defaults to 128):
Dimensionality of vocabulary embeddings.
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_hidden_groups (`int`, *optional*, defaults to 1):
Number of groups for the hidden layers, parameters in the same group are shared.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 16384):
The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
inner_group_num (`int`, *optional*, defaults to 1):
The number of inner repetition of attention and ffn.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
(e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 3):
End of stream token id.
Examples:
```python
>>> from transformers import AlbertConfig, AlbertModel
>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()
>>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig(
... hidden_size=768,
... num_attention_heads=12,
... intermediate_size=3072,
... )
>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "albert"
def __init__(
self,
vocab_size=30000,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
hidden_act="gelu_new",
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout_prob=0.1,
position_embedding_type="absolute",
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_groups = num_hidden_groups
self.num_attention_heads = num_attention_heads
self.inner_group_num = inner_group_num
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout_prob = classifier_dropout_prob
self.position_embedding_type = position_embedding_type
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert
class AlbertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
| transformers/src/transformers/models/albert/configuration_albert.py/0 | {
"file_path": "transformers/src/transformers/models/albert/configuration_albert.py",
"repo_id": "transformers",
"token_count": 3412
} | 291 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Autoformer model configuration"""
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
}
class AutoformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`AutoformerModel`]. It is used to instantiate an
Autoformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Autoformer
[huggingface/autoformer-tourism-monthly](https://huggingface.co/huggingface/autoformer-tourism-monthly)
architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
prediction_length (`int`):
The prediction length for the decoder. In other words, the prediction horizon of the model.
context_length (`int`, *optional*, defaults to `prediction_length`):
The context length for the encoder. If unset, the context length will be the same as the
`prediction_length`.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
loss (`string`, *optional*, defaults to `"nll"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood (nll) - which currently is the only supported one.
input_size (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
The lags of the input time series as covariates often dictated by the frequency. Default is `[1, 2, 3, 4,
5, 6, 7]`.
scaling (`bool`, *optional* defaults to `True`):
Whether to scale the input targets.
num_time_features (`int`, *optional*, defaults to 0):
The number of time features in the input time series.
num_dynamic_real_features (`int`, *optional*, defaults to 0):
The number of dynamic real valued features.
num_static_categorical_features (`int`, *optional*, defaults to 0):
The number of static categorical features.
num_static_real_features (`int`, *optional*, defaults to 0):
The number of static real valued features.
cardinality (`list[int]`, *optional*):
The cardinality (number of different values) for each of the static categorical features. Should be a list
of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
embedding_dimension (`list[int]`, *optional*):
The dimension of the embedding for each of the static categorical features. Should be a list of integers,
having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
d_model (`int`, *optional*, defaults to 64):
Dimensionality of the transformer layers.
encoder_layers (`int`, *optional*, defaults to 2):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 2):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
`"relu"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the encoder, and decoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each encoder layer.
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each decoder layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability used between the two layers of the feed-forward networks.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for each time step of inference.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
label_length (`int`, *optional*, defaults to 10):
Start token length of the Autoformer decoder, which is used for direct multi-step prediction (i.e.
non-autoregressive generation).
moving_average (`int`, defaults to 25):
The window size of the moving average. In practice, it's the kernel size in AvgPool1d of the Decomposition
Layer.
autocorrelation_factor (`int`, defaults to 3):
"Attention" (i.e. AutoCorrelation mechanism) factor which is used to find top k autocorrelations delays.
It's recommended in the paper to set it to a number between 1 and 5.
Example:
```python
>>> from transformers import AutoformerConfig, AutoformerModel
>>> # Initializing a default Autoformer configuration
>>> configuration = AutoformerConfig()
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = AutoformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "autoformer"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__(
self,
prediction_length: Optional[int] = None,
context_length: Optional[int] = None,
distribution_output: str = "student_t",
loss: str = "nll",
input_size: int = 1,
lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
scaling: bool = True,
num_time_features: int = 0,
num_dynamic_real_features: int = 0,
num_static_categorical_features: int = 0,
num_static_real_features: int = 0,
cardinality: Optional[List[int]] = None,
embedding_dimension: Optional[List[int]] = None,
d_model: int = 64,
encoder_attention_heads: int = 2,
decoder_attention_heads: int = 2,
encoder_layers: int = 2,
decoder_layers: int = 2,
encoder_ffn_dim: int = 32,
decoder_ffn_dim: int = 32,
activation_function: str = "gelu",
dropout: float = 0.1,
encoder_layerdrop: float = 0.1,
decoder_layerdrop: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
num_parallel_samples: int = 100,
init_std: float = 0.02,
use_cache: bool = True,
is_encoder_decoder=True,
# Autoformer arguments
label_length: int = 10,
moving_average: int = 25,
autocorrelation_factor: int = 3,
**kwargs,
):
# time series specific configuration
self.prediction_length = prediction_length
self.context_length = context_length if context_length is not None else prediction_length
self.distribution_output = distribution_output
self.loss = loss
self.input_size = input_size
self.num_time_features = num_time_features
self.lags_sequence = lags_sequence
self.scaling = scaling
self.num_dynamic_real_features = num_dynamic_real_features
self.num_static_real_features = num_static_real_features
self.num_static_categorical_features = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(cardinality) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`"
)
self.cardinality = cardinality
else:
self.cardinality = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(embedding_dimension) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`"
)
self.embedding_dimension = embedding_dimension
else:
self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features
self.d_model = d_model
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.activation_function = activation_function
self.init_std = init_std
self.use_cache = use_cache
# Autoformer
self.label_length = label_length
self.moving_average = moving_average
self.autocorrelation_factor = autocorrelation_factor
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def _number_of_features(self) -> int:
return (
sum(self.embedding_dimension)
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| transformers/src/transformers/models/autoformer/configuration_autoformer.py/0 | {
"file_path": "transformers/src/transformers/models/autoformer/configuration_autoformer.py",
"repo_id": "transformers",
"token_count": 4684
} | 292 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Huggingface Pytorch checkpoint to Tensorflow checkpoint."""
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def convert_pytorch_checkpoint_to_tf(model: BertModel, ckpt_dir: str, model_name: str):
"""
Args:
model: BertModel Pytorch model instance to be converted
ckpt_dir: Tensorflow model directory
model_name: model name
Currently supported HF models:
- Y BertModel
- N BertForMaskedLM
- N BertForPreTraining
- N BertForMultipleChoice
- N BertForNextSentencePrediction
- N BertForSequenceClassification
- N BertForQuestionAnswering
"""
tensors_to_transpose = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
var_map = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
state_dict = model.state_dict()
def to_tf_var_name(name: str):
for patt, repl in iter(var_map):
name = name.replace(patt, repl)
return f"bert/{name}"
def create_tf_var(tensor: np.ndarray, name: str, session: tf.Session):
tf_dtype = tf.dtypes.as_dtype(tensor.dtype)
tf_var = tf.get_variable(dtype=tf_dtype, shape=tensor.shape, name=name, initializer=tf.zeros_initializer())
session.run(tf.variables_initializer([tf_var]))
session.run(tf_var)
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
tf_name = to_tf_var_name(var_name)
torch_tensor = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose):
torch_tensor = torch_tensor.T
tf_var = create_tf_var(tensor=torch_tensor, name=tf_name, session=session)
tf_var.assign(tf.cast(torch_tensor, tf_var.dtype))
tf_weight = session.run(tf_var)
print(f"Successfully created {tf_name}: {np.allclose(tf_weight, torch_tensor)}")
saver = tf.train.Saver(tf.trainable_variables())
saver.save(session, os.path.join(ckpt_dir, model_name.replace("-", "_") + ".ckpt"))
def main(raw_args=None):
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True, help="model name e.g. bert-base-uncased")
parser.add_argument(
"--cache_dir", type=str, default=None, required=False, help="Directory containing pytorch model"
)
parser.add_argument("--pytorch_model_path", type=str, required=True, help="/path/to/<pytorch-model-name>.bin")
parser.add_argument("--tf_cache_dir", type=str, required=True, help="Directory in which to save tensorflow model")
args = parser.parse_args(raw_args)
model = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name,
state_dict=torch.load(args.pytorch_model_path),
cache_dir=args.cache_dir,
)
convert_pytorch_checkpoint_to_tf(model=model, ckpt_dir=args.tf_cache_dir, model_name=args.model_name)
if __name__ == "__main__":
main()
| transformers/src/transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py/0 | {
"file_path": "transformers/src/transformers/models/bert/convert_bert_pytorch_checkpoint_to_original_tf.py",
"repo_id": "transformers",
"token_count": 1657
} | 293 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig", "BigBirdOnnxConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_big_bird"] = ["BigBirdTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_big_bird_fast"] = ["BigBirdTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_big_bird"] = [
"BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST",
"BigBirdForCausalLM",
"BigBirdForMaskedLM",
"BigBirdForMultipleChoice",
"BigBirdForPreTraining",
"BigBirdForQuestionAnswering",
"BigBirdForSequenceClassification",
"BigBirdForTokenClassification",
"BigBirdLayer",
"BigBirdModel",
"BigBirdPreTrainedModel",
"load_tf_weights_in_big_bird",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_big_bird"] = [
"FlaxBigBirdForCausalLM",
"FlaxBigBirdForMaskedLM",
"FlaxBigBirdForMultipleChoice",
"FlaxBigBirdForPreTraining",
"FlaxBigBirdForQuestionAnswering",
"FlaxBigBirdForSequenceClassification",
"FlaxBigBirdForTokenClassification",
"FlaxBigBirdModel",
"FlaxBigBirdPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig, BigBirdOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_big_bird import BigBirdTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_big_bird_fast import BigBirdTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_big_bird import (
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdForCausalLM,
BigBirdForMaskedLM,
BigBirdForMultipleChoice,
BigBirdForPreTraining,
BigBirdForQuestionAnswering,
BigBirdForSequenceClassification,
BigBirdForTokenClassification,
BigBirdLayer,
BigBirdModel,
BigBirdPreTrainedModel,
load_tf_weights_in_big_bird,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
FlaxBigBirdPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/big_bird/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/big_bird/__init__.py",
"repo_id": "transformers",
"token_count": 1883
} | 294 |
# coding=utf-8
# Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BLIP-2 model."""
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM
from .configuration_blip_2 import Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Salesforce/blip2-opt-2.7b"
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"Salesforce/blip2-opt-2.7b",
# See all BLIP-2 models at https://huggingface.co/models?filter=blip
]
@dataclass
class Blip2ForConditionalGenerationModelOutput(ModelOutput):
"""
Class defining the outputs of [`Blip2ForConditionalGeneration`].
Args:
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Language modeling loss from the language model.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head of the language model.
vision_outputs (`BaseModelOutputWithPooling`):
Outputs of the vision encoder.
qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`):
Outputs of the Q-Former (Querying Transformer).
language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`):
Outputs of the language model.
"""
loss: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
vision_outputs: Optional[torch.FloatTensor] = None
qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k]
if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"]
else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->Blip2
class Blip2VisionEmbeddings(nn.Module):
def __init__(self, config: Blip2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
return embeddings
class Blip2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = nn.Dropout(config.attention_dropout)
# small tweak here compared to CLIP, no bias here
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False)
if config.qkv_bias:
q_bias = nn.Parameter(torch.zeros(self.embed_dim))
v_bias = nn.Parameter(torch.zeros(self.embed_dim))
else:
q_bias = None
v_bias = None
if q_bias is not None:
qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias))
self.qkv.bias = nn.Parameter(qkv_bias)
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
mixed_qkv = self.qkv(hidden_states)
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute(
2, 0, 3, 1, 4
)
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
attention_scores = attention_scores * self.scale
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
context_layer = context_layer.reshape(new_context_layer_shape)
output = self.projection(context_layer)
outputs = (output, attention_probs) if output_attentions else (output, None)
return outputs
# Copied from transformers.models.blip.modeling_blip.BlipMLP
class Blip2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->Blip2
class Blip2EncoderLayer(nn.Module):
def __init__(self, config: Blip2Config):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Blip2Attention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Blip2MLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
head_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Blip2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Blip2Config
base_model_prefix = "blip"
supports_gradient_checkpointing = True
_no_split_modules = ["Blip2Attention", "T5Block", "OPTDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keep_in_fp32_modules = ["wo"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_range
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=factor)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
if isinstance(module, Blip2VisionEmbeddings):
if hasattr(self.config, "vision_config"):
factor = self.config.vision_config.initializer_range
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
BLIP_2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Blip2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLIP_2_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for
details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLIP_2_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLIP_2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for
details.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be
provided to serve as text prompt, which the language model can continue.
Indices can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an
encoder-decoder language model (like T5) is used.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids)
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
Only relevant in case an encoder-decoder language model (like T5) is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->Blip2
class Blip2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Blip2EncoderLayer`].
Args:
config (`Blip2Config`):
The corresponding vision configuration for the `Blip2Encoder`.
"""
def __init__(self, config: Blip2Config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Blip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->Blip2, BLIP->BLIP_2
class Blip2VisionModel(Blip2PreTrainedModel):
main_input_name = "pixel_values"
config_class = Blip2VisionConfig
def __init__(self, config: Blip2VisionConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.embeddings = Blip2VisionEmbeddings(config)
self.encoder = Blip2Encoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.post_init()
@add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.embeddings
class Blip2QFormerMultiHeadAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
% (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.save_attention = False
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
mixed_query_layer = self.query(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
if is_cross_attention and self.save_attention:
self.save_attention_map(attention_probs)
attention_probs.register_hook(self.save_attn_gradients)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Blip2QFormer
class Blip2QFormerSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Blip2QFormerAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.attention = Blip2QFormerMultiHeadAttention(config, is_cross_attention)
self.output = Blip2QFormerSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Blip2QFormer
class Blip2QFormerIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Blip2QFormer
class Blip2QFormerOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Blip2QFormerLayer(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Blip2QFormerAttention(config)
self.layer_idx = layer_idx
if layer_idx % config.cross_attention_frequency == 0:
self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True)
self.has_cross_attention = True
else:
self.has_cross_attention = False
self.intermediate_query = Blip2QFormerIntermediate(config)
self.output_query = Blip2QFormerOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
query_length=0,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if query_length > 0:
query_attention_output = attention_output[:, :query_length, :]
if self.has_cross_attention:
if encoder_hidden_states is None:
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
cross_attention_outputs = self.crossattention(
query_attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
query_attention_output = cross_attention_outputs[0]
# add cross attentions if we output attention weights
outputs = outputs + cross_attention_outputs[1:-1]
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk_query,
self.chunk_size_feed_forward,
self.seq_len_dim,
query_attention_output,
)
if attention_output.shape[1] > query_length:
layer_output_text = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output[:, query_length:, :],
)
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
else:
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
def feed_forward_chunk_query(self, attention_output):
intermediate_output = self.intermediate_query(attention_output)
layer_output = self.output_query(intermediate_output, attention_output)
return layer_output
class Blip2QFormerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
query_length=0,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
query_length,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if layer_module.has_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class Blip2QFormerModel(Blip2PreTrainedModel):
"""
Querying Transformer (Q-Former), used in BLIP-2.
"""
def __init__(self, config: Blip2QFormerConfig):
super().__init__(config)
self.config = config
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.encoder = Blip2QFormerEncoder(config)
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self,
attention_mask: torch.Tensor,
input_shape: Tuple[int],
device: torch.device,
has_query: bool = False,
) -> torch.Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
device (`torch.device`):
The device of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
query_embeds: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
`(batch_size, sequence_length)`.
use_cache (`bool`, `optional`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# past_key_values_length
past_key_values_length = (
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
)
query_length = query_embeds.shape[1] if query_embeds is not None else 0
embedding_output = self.layernorm(query_embeds)
embedding_output = self.dropout(embedding_output)
input_shape = embedding_output.size()[:-1]
batch_size, seq_length = input_shape
device = embedding_output.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, list):
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
else:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if isinstance(encoder_attention_mask, list):
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
query_length=query_length,
)
sequence_output = encoder_outputs[0]
pooled_output = sequence_output[:, 0, :]
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
BLIP-2 Model for generating text and image features. The model consists of a vision encoder, Querying Transformer
(Q-Former) and a language model.
""",
BLIP_2_START_DOCSTRING,
)
class Blip2Model(Blip2PreTrainedModel):
config_class = Blip2Config
main_input_name = "pixel_values"
def __init__(self, config: Blip2Config):
super().__init__(config)
self.vision_model = Blip2VisionModel(config.vision_config)
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
self.qformer = Blip2QFormerModel(config.qformer_config)
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
if config.use_decoder_only_language_model:
language_model = AutoModelForCausalLM.from_config(config.text_config)
else:
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
# Update _tied_weights_keys using the base model used.
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.language_model.get_output_embeddings()
def get_encoder(self):
return self.language_model.get_encoder()
def get_decoder(self):
return self.language_model.get_decoder()
def _tie_weights(self):
if not self.config.use_decoder_only_language_model:
self.language_model.encoder.embed_tokens = self.language_model.shared
self.language_model.decoder.embed_tokens = self.language_model.shared
@add_start_docstrings_to_model_forward(BLIP_2_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns:
text_outputs (`CausalLMOutputWithPast`, or `tuple(torch.FloatTensor)` if `return_dict=False`):
The language model outputs. If `return_dict=True`, the output is a [`CausalLMOutputWithPast`] that
contains the language model logits, the past key values and the hidden states if
`output_hidden_states=True`.
Examples:
```python
>>> import torch
>>> from transformers import AutoTokenizer, Blip2Model
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> inputs = tokenizer(["a photo of a cat"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.use_decoder_only_language_model:
text_outputs = self.language_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
text_outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
)
return text_outputs
@add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns:
vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
contains the image features, the pooled image features and the hidden states if
`output_hidden_states=True`.
Examples:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Blip2Model
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_outputs = model.get_image_features(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return vision_outputs
@add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
def get_qformer_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns:
vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
contains the image features, the pooled image features and the hidden states if
`output_hidden_states=True`.
Examples:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import Blip2Processor, Blip2Model
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> qformer_outputs = model.get_qformer_features(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[0]
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return query_outputs
@add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import Blip2Processor, Blip2Model
>>> import torch
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "Question: how many cats are there? Answer:"
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# step 1: forward the images through the vision encoder,
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[0]
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
query_output = query_outputs[0]
# step 3: use the language model, conditioned on the query outputs and the prompt
language_model_inputs = self.language_projection(query_output)
language_model_attention_mask = torch.ones(
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds], dim=1)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
expected_device = language_model_attention_mask.device
attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1)
if self.config.use_decoder_only_language_model:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
# we compute the loss here since we need to take into account the sequence length of the query embeds
if labels is not None:
labels = labels.to(logits.device)
logits = logits[:, -labels.size(1) :, :]
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous().to(logits.device)
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction="mean")
loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
else:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
)
loss = outputs.loss if return_dict else outputs[0]
logits = outputs.logits if return_dict else outputs[1]
if not return_dict:
output = (logits, vision_outputs, query_outputs, outputs)
return ((loss,) + output) if loss is not None else output
return Blip2ForConditionalGenerationModelOutput(
loss=loss,
logits=logits,
vision_outputs=vision_outputs,
qformer_outputs=query_outputs,
language_model_outputs=outputs,
)
@add_start_docstrings(
"""
BLIP-2 Model for generating text given an image and an optional text prompt. The model consists of a vision
encoder, Querying Transformer (Q-Former) and a language model.
One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue
the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token.
<Tip>
Note that Flan-T5 checkpoints cannot be cast to float16. They are pre-trained using bfloat16.
</Tip>
""",
BLIP_2_START_DOCSTRING,
)
class Blip2ForConditionalGeneration(Blip2PreTrainedModel):
config_class = Blip2Config
main_input_name = "pixel_values"
def __init__(self, config: Blip2Config):
super().__init__(config)
self.vision_model = Blip2VisionModel(config.vision_config)
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
self.qformer = Blip2QFormerModel(config.qformer_config)
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
if config.use_decoder_only_language_model:
language_model = AutoModelForCausalLM.from_config(config.text_config)
else:
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
# Update _tied_weights_keys using the base model used.
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.language_model.get_output_embeddings()
def get_encoder(self):
return self.language_model.get_encoder()
def get_decoder(self):
return self.language_model.get_decoder()
def _tie_weights(self):
if not self.config.use_decoder_only_language_model:
self.language_model.encoder.embed_tokens = self.language_model.shared
self.language_model.decoder.embed_tokens = self.language_model.shared
def _preprocess_accelerate(self):
r"""
Some pre-processing hacks to make the model `accelerate` compatible. Check
https://github.com/huggingface/transformers/pull/21707 for more details.
"""
hf_device_map = self.hf_device_map
if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
# warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`.
logger.warning(
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
" Please pass a `device_map` that contains `language_model` to remove this warning."
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for"
" more details on creating a `device_map` for large models.",
)
if hasattr(self.language_model, "_hf_hook"):
self.language_model._hf_hook.io_same_device = True # For `generate` compatibility
@add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
r"""
Returns:
Examples:
Prepare processor, model and image input
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import Blip2Processor, Blip2ForConditionalGeneration
>>> import torch
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
>>> model = Blip2ForConditionalGeneration.from_pretrained(
... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16
... ) # doctest: +IGNORE_RESULT
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
```
Image captioning (without providing a text prompt):
```python
>>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
>>> generated_ids = model.generate(**inputs)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
>>> print(generated_text)
two cats laying on a couch
```
Visual question answering (prompt = question):
```python
>>> prompt = "Question: how many cats are there? Answer:"
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.float16)
>>> generated_ids = model.generate(**inputs)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
>>> print(generated_text)
two
```
Note that int8 inference is also supported through [bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
This greatly reduces the amount of memory used by the model while maintaining the same performance.
```python
>>> model = Blip2ForConditionalGeneration.from_pretrained(
... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.bfloat16
... ) # doctest: +IGNORE_RESULT
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)
>>> generated_ids = model.generate(**inputs)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
>>> print(generated_text)
two
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# step 1: forward the images through the vision encoder,
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[0]
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
query_output = query_outputs[0]
# step 3: use the language model, conditioned on the query outputs and the prompt
language_model_inputs = self.language_projection(query_output)
language_model_attention_mask = torch.ones(
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
expected_device = language_model_attention_mask.device
attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1)
if self.config.use_decoder_only_language_model:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
# we compute the loss here since we need to take into account the sequence length of the query embeds
if labels is not None:
labels = labels.to(logits.device)
logits = logits[:, -labels.size(1) :, :]
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous().to(logits.device)
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction="mean")
loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
else:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
)
loss = outputs.loss if return_dict else outputs[0]
logits = outputs.logits if return_dict else outputs[1]
if not return_dict:
output = (logits, vision_outputs, query_outputs, outputs)
return ((loss,) + output) if loss is not None else output
return Blip2ForConditionalGenerationModelOutput(
loss=loss,
logits=logits,
vision_outputs=vision_outputs,
qformer_outputs=query_outputs,
language_model_outputs=outputs,
)
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
"""
Overrides `generate` function to be able to use the model as a conditional generator.
Args:
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
Input images to be processed.
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
The sequence used as a prompt for the generation.
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
Mask to avoid performing attention on padding token indices
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
if hasattr(self, "hf_device_map"):
# preprocess for `accelerate`
self._preprocess_accelerate()
batch_size = pixel_values.shape[0]
image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=True,
)
query_output = query_outputs.last_hidden_state
language_model_inputs = self.language_projection(query_output)
language_attention_mask = torch.ones(
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
)
if input_ids is None:
input_ids = (
torch.LongTensor([[self.config.text_config.bos_token_id]])
.repeat(batch_size, 1)
.to(image_embeds.device)
)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)
# concatenate query embeddings with prompt embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
outputs = self.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
**generate_kwargs,
)
return outputs
| transformers/src/transformers/models/blip_2/modeling_blip_2.py/0 | {
"file_path": "transformers/src/transformers/models/blip_2/modeling_blip_2.py",
"repo_id": "transformers",
"token_count": 35021
} | 295 |
# coding=utf-8
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Bros model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bros import BrosConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "jinho8345/bros-base-uncased"
_CONFIG_FOR_DOC = "BrosConfig"
BROS_PRETRAINED_MODEL_ARCHIVE_LIST = [
"jinho8345/bros-base-uncased",
"jinho8345/bros-large-uncased",
# See all Bros models at https://huggingface.co/models?filter=bros
]
BROS_START_DOCSTRING = r"""
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BrosConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BROS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BrosProcessor`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
bounding box.
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
bbox_first_token_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@dataclass
class BrosSpadeOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores for entity initial tokens (before SoftMax).
subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`):
Classification scores for entity sequence tokens (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
initial_token_logits: torch.FloatTensor = None
subsequent_token_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class BrosPositionalEmbedding1D(nn.Module):
# Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15
def __init__(self, config):
super(BrosPositionalEmbedding1D, self).__init__()
self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d
inv_freq = 1 / (
10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d)
)
self.register_buffer("inv_freq", inv_freq)
def forward(self, pos_seq: torch.Tensor) -> torch.Tensor:
seq_size = pos_seq.size()
b1, b2, b3 = seq_size
sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
return pos_emb
class BrosPositionalEmbedding2D(nn.Module):
def __init__(self, config):
super(BrosPositionalEmbedding2D, self).__init__()
self.dim_bbox = config.dim_bbox
self.x_pos_emb = BrosPositionalEmbedding1D(config)
self.y_pos_emb = BrosPositionalEmbedding1D(config)
def forward(self, bbox: torch.Tensor) -> torch.Tensor:
stack = []
for i in range(self.dim_bbox):
if i % 2 == 0:
stack.append(self.x_pos_emb(bbox[..., i]))
else:
stack.append(self.y_pos_emb(bbox[..., i]))
bbox_pos_emb = torch.cat(stack, dim=-1)
return bbox_pos_emb
class BrosBboxEmbeddings(nn.Module):
def __init__(self, config):
super(BrosBboxEmbeddings, self).__init__()
self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config)
self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False)
def forward(self, bbox: torch.Tensor):
bbox_t = bbox.transpose(0, 1)
bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :]
bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos)
bbox_pos_emb = self.bbox_projection(bbox_pos_emb)
return bbox_pos_emb
class BrosTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.register_buffer(
"token_type_ids",
torch.zeros(
self.position_ids.size(),
dtype=torch.long,
device=self.position_ids.device,
),
persistent=False,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BrosSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[torch.Tensor] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
# bbox positional encoding
batch_size, n_head, seq_length, d_head = query_layer.shape
bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head)
bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3])
bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb))
attention_scores = attention_scores + bbox_pos_scores
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BrosModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Bros
class BrosSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BrosAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BrosSelfAttention(config)
self.output = BrosSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.self.num_attention_heads,
self.self.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states=hidden_states,
bbox_pos_emb=bbox_pos_emb,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Bros
class BrosIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BrosOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BrosLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BrosAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise Exception(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BrosAttention(config)
self.intermediate = BrosIntermediate(config)
self.output = BrosOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
bbox_pos_emb=bbox_pos_emb,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if hasattr(self, "crossattention"):
raise Exception(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BrosEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
bbox_pos_emb,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states=hidden_states,
bbox_pos_emb=bbox_pos_emb,
attention_mask=attention_mask,
head_mask=layer_head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Bros
class BrosPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BrosRelationExtractor(nn.Module):
def __init__(self, config):
super().__init__()
self.n_relations = config.n_relations
self.backbone_hidden_size = config.hidden_size
self.head_hidden_size = config.hidden_size
self.classifier_dropout_prob = config.classifier_dropout_prob
self.drop = nn.Dropout(self.classifier_dropout_prob)
self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size))
def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor):
query_layer = self.query(self.drop(query_layer))
dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1)
key_layer = torch.cat([key_layer, dummy_vec], axis=0)
key_layer = self.key(self.drop(key_layer))
query_layer = query_layer.view(
query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size
)
key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size)
relation_score = torch.matmul(
query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0)
) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer))
return relation_score
class BrosPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BrosConfig
base_model_prefix = "bros"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@add_start_docstrings(
"The bare Bros Model transformer outputting raw hidden-states without any specific head on top.",
BROS_START_DOCSTRING,
)
class BrosModel(BrosPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BrosTextEmbeddings(config)
self.bbox_embeddings = BrosBboxEmbeddings(config)
self.encoder = BrosEncoder(config)
self.pooler = BrosPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosModel
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if bbox is None:
raise ValueError("You have to specify bbox")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
# if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token
if bbox.shape[-1] == 4:
bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]]
scaled_bbox = bbox * self.config.bbox_scale
bbox_position_embeddings = self.bbox_embeddings(scaled_bbox)
encoder_outputs = self.encoder(
embedding_output,
bbox_pos_emb=bbox_position_embeddings,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
Bros Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BROS_START_DOCSTRING,
)
class BrosForTokenClassification(BrosPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bros = BrosModel(config)
classifier_dropout = (
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
bbox_first_token_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosForTokenClassification
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bros(
input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
if bbox_first_token_mask is not None:
bbox_first_token_mask = bbox_first_token_mask.view(-1)
loss = loss_fct(
logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask]
)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bros Model with a token classification head on top (initial_token_layers and subsequent_token_layer on top of the
hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. The initial_token_classifier is used to
predict the first token of each entity, and the subsequent_token_classifier is used to predict the subsequent
tokens within an entity. Compared to BrosForTokenClassification, this model is more robust to serialization errors
since it predicts next token from one token.
""",
BROS_START_DOCSTRING,
)
class BrosSpadeEEForTokenClassification(BrosPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.n_relations = config.n_relations
self.backbone_hidden_size = config.hidden_size
self.bros = BrosModel(config)
classifier_dropout = (
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
)
# Initial token classification for Entity Extraction (NER)
self.initial_token_classifier = nn.Sequential(
nn.Dropout(classifier_dropout),
nn.Linear(config.hidden_size, config.hidden_size),
nn.Dropout(classifier_dropout),
nn.Linear(config.hidden_size, config.num_labels),
)
# Subsequent token classification for Entity Extraction (NER)
self.subsequent_token_classifier = BrosRelationExtractor(config)
self.init_weights()
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BrosSpadeOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
bbox_first_token_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
initial_token_labels: Optional[torch.Tensor] = None,
subsequent_token_labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]:
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bros(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous()
subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0)
# make subsequent token (sequence token classification) mask
inv_attention_mask = 1 - attention_mask
batch_size, max_seq_length = inv_attention_mask.shape
device = inv_attention_mask.device
invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool()
subsequent_token_logits = subsequent_token_logits.masked_fill(
invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min
)
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
subsequent_token_logits = subsequent_token_logits.masked_fill(
self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min
)
subsequent_token_mask = attention_mask.view(-1).bool()
loss = None
if initial_token_labels is not None and subsequent_token_labels is not None:
loss_fct = CrossEntropyLoss()
# get initial token loss
initial_token_labels = initial_token_labels.view(-1)
if bbox_first_token_mask is not None:
bbox_first_token_mask = bbox_first_token_mask.view(-1)
initial_token_loss = loss_fct(
initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask],
initial_token_labels[bbox_first_token_mask],
)
else:
initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels)
subsequent_token_labels = subsequent_token_labels.view(-1)
subsequent_token_loss = loss_fct(
subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask],
subsequent_token_labels[subsequent_token_mask],
)
loss = initial_token_loss + subsequent_token_loss
if not return_dict:
output = (initial_token_logits, subsequent_token_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return BrosSpadeOutput(
loss=loss,
initial_token_logits=initial_token_logits,
subsequent_token_logits=subsequent_token_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bros Model with a token classification head on top (a entity_linker layer on top of the hidden-states output) e.g.
for Entity-Linking. The entity_linker is used to predict intra-entity links (one entity to another entity).
""",
BROS_START_DOCSTRING,
)
class BrosSpadeELForTokenClassification(BrosPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.n_relations = config.n_relations
self.backbone_hidden_size = config.hidden_size
self.bros = BrosModel(config)
(config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob)
self.entity_linker = BrosRelationExtractor(config)
self.init_weights()
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
bbox_first_token_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bros(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
batch_size, max_seq_length = attention_mask.shape
device = attention_mask.device
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
mask = bbox_first_token_mask.view(-1)
bbox_first_token_mask = torch.cat(
[
~bbox_first_token_mask,
torch.zeros([batch_size, 1], dtype=torch.bool).to(device),
],
axis=1,
)
logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min)
logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min)
loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask])
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/bros/modeling_bros.py/0 | {
"file_path": "transformers/src/transformers/models/bros/modeling_bros.py",
"repo_id": "transformers",
"token_count": 25108
} | 296 |
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_chinese_clip": [
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ChineseCLIPConfig",
"ChineseCLIPOnnxConfig",
"ChineseCLIPTextConfig",
"ChineseCLIPVisionConfig",
],
"processing_chinese_clip": ["ChineseCLIPProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
_import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_chinese_clip"] = [
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ChineseCLIPModel",
"ChineseCLIPPreTrainedModel",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/chinese_clip/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/chinese_clip/__init__.py",
"repo_id": "transformers",
"token_count": 1106
} | 297 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for CLVP
"""
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class ClvpFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a CLVP feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short
Time Fourier Transform` which should match pytorch's `torch.stft` equivalent.
Args:
feature_size (`int`, *optional*, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 22050):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
default_audio_length (`int`, *optional*, defaults to 6):
The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will
automatically be set to default_audio_length * `self.sampling_rate`.
hop_length (`int`, *optional*, defaults to 256):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
chunk_length (`int`, *optional*, defaults to 30):
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
sequences.
n_fft (`int`, *optional*, defaults to 1024):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
mel_norms (`list` of length `feature_size`, *optional*):
If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each
mel-filter.
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether to return the attention mask. If left to the default, it will return the attention mask.
[What are attention masks?](../glossary#attention-mask)
"""
model_input_names = ["input_features", "attention_mask"]
def __init__(
self,
feature_size=80,
sampling_rate=22050,
default_audio_length=6,
hop_length=256,
chunk_length=30,
n_fft=1024,
padding_value=0.0,
mel_norms=None,
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
self.n_samples = chunk_length * sampling_rate
self.nb_max_frames = self.n_samples // hop_length
self.sampling_rate = sampling_rate
self.default_audio_length = default_audio_length
self.mel_norms = mel_norms
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + (n_fft // 2),
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=8000.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="htk",
)
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
This method first computes the log-mel spectrogram of the provided audio then applies normalization along the
each mel-filterbank, if `mel_norms` is provided.
"""
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters,
log_mel=None,
)
log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None))
if self.mel_norms is not None:
log_spec = log_spec / np.array(self.mel_norms)[:, None]
return log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Optional[int] = None,
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
padding: Optional[str] = "max_length",
max_length: Optional[int] = None,
**kwargs,
) -> BatchFeature:
"""
`ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the
voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`.
First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length`
seconds long and then the log-mel spectrogram is extracted from it.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
truncation (`bool`, *optional*, default to `True`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether to return the attention mask. If left to the default, it will return the attention mask.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
padding_value (`float`, defaults to 0.0):
The value that is used to fill the padding values / vectors.
max_length (`int`, *optional*):
The maximum input length of the inputs.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
# make sure list is in array format
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
input_features = [
self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0]
]
if isinstance(input_features[0], List):
padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features]
else:
padded_inputs["input_features"] = input_features
return padded_inputs.convert_to_tensors(return_tensors)
| transformers/src/transformers/models/clvp/feature_extraction_clvp.py/0 | {
"file_path": "transformers/src/transformers/models/clvp/feature_extraction_clvp.py",
"repo_id": "transformers",
"token_count": 4454
} | 298 |
# coding=utf-8
# Copyright 2022 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ConvNext model."""
from __future__ import annotations
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_convnext import ConvNextConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ConvNextConfig"
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
class TFConvNextDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
class TFConvNextEmbeddings(keras.layers.Layer):
"""This class is comparable to (and inspired by) the SwinEmbeddings class
found in src/transformers/models/swin/modeling_swin.py.
"""
def __init__(self, config: ConvNextConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = keras.layers.Conv2D(
filters=config.hidden_sizes[0],
kernel_size=config.patch_size,
strides=config.patch_size,
name="patch_embeddings",
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
)
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
self.num_channels = config.num_channels
self.config = config
def call(self, pixel_values):
if isinstance(pixel_values, dict):
pixel_values = pixel_values["pixel_values"]
tf.debugging.assert_equal(
shape_list(pixel_values)[1],
self.num_channels,
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.layernorm(embeddings)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build([None, None, None, self.config.num_channels])
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
class TFConvNextLayer(keras.layers.Layer):
"""This corresponds to the `Block` class in the original implementation.
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
NHWC ordering, we can just apply the operations straight-away without the permutation.
Args:
config ([`ConvNextConfig`]): Model configuration class.
dim (`int`): Number of input channels.
drop_path (`float`): Stochastic depth rate. Default: 0.0.
"""
def __init__(self, config, dim, drop_path=0.0, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.config = config
self.dwconv = keras.layers.Conv2D(
filters=dim,
kernel_size=7,
padding="same",
groups=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="dwconv",
) # depthwise conv
self.layernorm = keras.layers.LayerNormalization(
epsilon=1e-6,
name="layernorm",
)
self.pwconv1 = keras.layers.Dense(
units=4 * dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="pwconv1",
) # pointwise/1x1 convs, implemented with linear layers
self.act = get_tf_activation(config.hidden_act)
self.pwconv2 = keras.layers.Dense(
units=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="pwconv2",
)
# Using `layers.Activation` instead of `tf.identity` to better control `training`
# behaviour.
self.drop_path = (
TFConvNextDropPath(drop_path, name="drop_path")
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
def build(self, input_shape: tf.TensorShape = None):
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
self.layer_scale_parameter = (
self.add_weight(
shape=(self.dim,),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_parameter",
)
if self.config.layer_scale_init_value > 0
else None
)
if self.built:
return
self.built = True
if getattr(self, "dwconv", None) is not None:
with tf.name_scope(self.dwconv.name):
self.dwconv.build([None, None, None, self.dim])
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, None, self.dim])
if getattr(self, "pwconv1", None) is not None:
with tf.name_scope(self.pwconv1.name):
self.pwconv1.build([None, None, self.dim])
if getattr(self, "pwconv2", None) is not None:
with tf.name_scope(self.pwconv2.name):
self.pwconv2.build([None, None, 4 * self.dim])
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
def call(self, hidden_states, training=False):
input = hidden_states
x = self.dwconv(hidden_states)
x = self.layernorm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.layer_scale_parameter is not None:
x = self.layer_scale_parameter * x
x = input + self.drop_path(x, training=training)
return x
class TFConvNextStage(keras.layers.Layer):
"""ConvNext stage, consisting of an optional downsampling layer + multiple residual blocks.
Args:
config (`ConvNextV2Config`):
Model configuration class.
in_channels (`int`):
Number of input channels.
out_channels (`int`):
Number of output channels.
depth (`int`):
Number of residual blocks.
drop_path_rates(`List[float]`):
Stochastic depth rates for each layer.
"""
def __init__(
self,
config: ConvNextConfig,
in_channels: int,
out_channels: int,
kernel_size: int = 2,
stride: int = 2,
depth: int = 2,
drop_path_rates: Optional[List[float]] = None,
**kwargs,
):
super().__init__(**kwargs)
if in_channels != out_channels or stride > 1:
self.downsampling_layer = [
keras.layers.LayerNormalization(
epsilon=1e-6,
name="downsampling_layer.0",
),
# Inputs to this layer will follow NHWC format since we
# transposed the inputs from NCHW to NHWC in the `TFConvNextEmbeddings`
# layer. All the outputs throughout the model will be in NHWC
# from this point on until the output where we again change to
# NCHW.
keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="downsampling_layer.1",
),
]
else:
self.downsampling_layer = [tf.identity]
drop_path_rates = drop_path_rates or [0.0] * depth
self.layers = [
TFConvNextLayer(
config,
dim=out_channels,
drop_path=drop_path_rates[j],
name=f"layers.{j}",
)
for j in range(depth)
]
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
def call(self, hidden_states):
for layer in self.downsampling_layer:
hidden_states = layer(hidden_states)
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
if self.in_channels != self.out_channels or self.stride > 1:
with tf.name_scope(self.downsampling_layer[0].name):
self.downsampling_layer[0].build([None, None, None, self.in_channels])
with tf.name_scope(self.downsampling_layer[1].name):
self.downsampling_layer[1].build([None, None, None, self.in_channels])
class TFConvNextEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.stages = []
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
drop_path_rates = tf.split(drop_path_rates, config.depths)
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
prev_chs = config.hidden_sizes[0]
for i in range(config.num_stages):
out_chs = config.hidden_sizes[i]
stage = TFConvNextStage(
config,
in_channels=prev_chs,
out_channels=out_chs,
stride=2 if i > 0 else 1,
depth=config.depths[i],
drop_path_rates=drop_path_rates[i],
name=f"stages.{i}",
)
self.stages.append(stage)
prev_chs = out_chs
def call(self, hidden_states, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
def build(self, input_shape=None):
for stage in self.stages:
with tf.name_scope(stage.name):
stage.build(None)
@keras_serializable
class TFConvNextMainLayer(keras.layers.Layer):
config_class = ConvNextConfig
def __init__(self, config: ConvNextConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFConvNextEmbeddings(config, name="embeddings")
self.encoder = TFConvNextEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
# We are setting the `data_format` like so because from here on we will revert to the
# NCHW output format
self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_first") if add_pooling_layer else None
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = encoder_outputs[0]
# Change to NCHW output format have uniformity in the modules
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
pooled_output = self.layernorm(self.pooler(last_hidden_state))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
hidden_states = hidden_states if output_hidden_states else ()
return (last_hidden_state, pooled_output) + hidden_states
return TFBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, self.config.hidden_sizes[-1]])
class TFConvNextPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConvNextConfig
base_model_prefix = "convnext"
main_input_name = "pixel_values"
CONVNEXT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
CONVNEXT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
"""
@add_start_docstrings(
"The bare ConvNext model outputting raw features without any specific head on top.",
CONVNEXT_START_DOCSTRING,
)
class TFConvNextModel(TFConvNextPreTrainedModel):
def __init__(self, config, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.convnext = TFConvNextMainLayer(config, add_pooling_layer=add_pooling_layer, name="convnext")
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFConvNextModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnext(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convnext", None) is not None:
with tf.name_scope(self.convnext.name):
self.convnext.build(None)
@add_start_docstrings(
"""
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
CONVNEXT_START_DOCSTRING,
)
class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ConvNextConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.convnext = TFConvNextMainLayer(config, name="convnext")
# Classifier head
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFConvNextForImageClassification
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnext(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convnext", None) is not None:
with tf.name_scope(self.convnext.name):
self.convnext.build(None)
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
| transformers/src/transformers/models/convnext/modeling_tf_convnext.py/0 | {
"file_path": "transformers/src/transformers/models/convnext/modeling_tf_convnext.py",
"repo_id": "transformers",
"token_count": 11603
} | 299 |
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 CTRL model."""
from __future__ import annotations
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_ctrl import CTRLConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Salesforce/ctrl"
_CONFIG_FOR_DOC = "CTRLConfig"
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [
"Salesforce/ctrl"
# See all CTRL models at https://huggingface.co/models?filter=ctrl
]
def angle_defn(pos, i, d_model_size):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / d_model_size)
return pos * angle_rates
def positional_encoding(position, d_model_size):
# create the sinusoidal pattern for the positional encoding
angle_rads = angle_defn(np.arange(position)[:, np.newaxis], np.arange(d_model_size)[np.newaxis, :], d_model_size)
sines = np.sin(angle_rads[:, 0::2])
cosines = np.cos(angle_rads[:, 1::2])
pos_encoding = tf.convert_to_tensor(np.concatenate([sines, cosines], axis=-1))
return pos_encoding
def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None):
# calculate attention
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(shape_list(k)[-1], dtype=matmul_qk.dtype)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += tf.cast(mask * -1e4, dtype=scaled_attention_logits.dtype)
if attention_mask is not None:
# Apply the attention mask
attention_mask = tf.cast(attention_mask, dtype=scaled_attention_logits.dtype)
scaled_attention_logits = scaled_attention_logits + attention_mask
attention_weights = stable_softmax(scaled_attention_logits, axis=-1)
# Mask heads if we want to
if head_mask is not None:
attention_weights = attention_weights * head_mask
output = tf.matmul(attention_weights, v)
return output, attention_weights
class TFMultiHeadAttention(keras.layers.Layer):
def __init__(self, d_model_size, num_heads, output_attentions=False, **kwargs):
super().__init__(**kwargs)
self.num_heads = num_heads
self.d_model_size = d_model_size
self.output_attentions = output_attentions
self.depth = int(d_model_size / self.num_heads)
self.Wq = keras.layers.Dense(d_model_size, name="Wq")
self.Wk = keras.layers.Dense(d_model_size, name="Wk")
self.Wv = keras.layers.Dense(d_model_size, name="Wv")
self.dense = keras.layers.Dense(d_model_size, name="dense")
def split_into_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=False):
batch_size = shape_list(q)[0]
q = self.Wq(q)
k = self.Wk(k)
v = self.Wv(v)
q = self.split_into_heads(q, batch_size)
k = self.split_into_heads(k, batch_size)
v = self.split_into_heads(v, batch_size)
if layer_past is not None:
past_key, past_value = tf.unstack(layer_past, axis=0)
k = tf.concat((past_key, k), axis=-2)
v = tf.concat((past_value, v), axis=-2)
if use_cache:
present = tf.stack((k, v), axis=0)
else:
present = (None,)
output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask)
scaled_attention = tf.transpose(output[0], perm=[0, 2, 1, 3])
attn = output[1]
original_size_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model_size))
output = self.dense(original_size_attention)
outputs = (output, present)
if output_attentions:
outputs = outputs + (attn,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "Wq", None) is not None:
with tf.name_scope(self.Wq.name):
self.Wq.build([None, None, self.d_model_size])
if getattr(self, "Wk", None) is not None:
with tf.name_scope(self.Wk.name):
self.Wk.build([None, None, self.d_model_size])
if getattr(self, "Wv", None) is not None:
with tf.name_scope(self.Wv.name):
self.Wv.build([None, None, self.d_model_size])
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.d_model_size])
class TFPointWiseFeedForwardLayer(keras.layers.Layer):
def __init__(self, d_model_size, dff, **kwargs):
super().__init__(**kwargs)
self.dense_0 = keras.layers.Dense(dff, activation="relu", name="0")
self.dense_2 = keras.layers.Dense(d_model_size, name="2")
self.d_model_size = d_model_size
self.dff = dff
def call(self, inputs, trainable=False):
dense_0_output = self.dense_0(inputs)
dense_2_output = self.dense_2(dense_0_output)
return dense_2_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense_0", None) is not None:
with tf.name_scope(self.dense_0.name):
self.dense_0.build([None, None, self.d_model_size])
if getattr(self, "dense_2", None) is not None:
with tf.name_scope(self.dense_2.name):
self.dense_2.build([None, None, self.dff])
class TFEncoderLayer(keras.layers.Layer):
def __init__(
self, d_model_size, num_heads, dff, rate=0.1, layer_norm_epsilon=1e-6, output_attentions=False, **kwargs
):
super().__init__(**kwargs)
self.output_attentions = output_attentions
self.multi_head_attention = TFMultiHeadAttention(
d_model_size, num_heads, output_attentions=self.output_attentions, name="multi_head_attention"
)
self.ffn = TFPointWiseFeedForwardLayer(d_model_size, dff, name="ffn")
self.layernorm1 = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layernorm1")
self.layernorm2 = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layernorm2")
self.dropout1 = keras.layers.Dropout(rate)
self.dropout2 = keras.layers.Dropout(rate)
self.d_model_size = d_model_size
def call(self, x, mask, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=False):
normed = self.layernorm1(x)
attn_outputs = self.multi_head_attention(
normed,
normed,
normed,
mask,
layer_past,
attention_mask,
head_mask,
use_cache,
output_attentions,
training=training,
)
attn_output = attn_outputs[0]
attn_output = self.dropout1(attn_output, training=training)
out1 = x + attn_output
out2 = self.layernorm2(out1)
ffn_output = self.ffn(out2)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = out1 + ffn_output
outputs = (out2,) + attn_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "multi_head_attention", None) is not None:
with tf.name_scope(self.multi_head_attention.name):
self.multi_head_attention.build(None)
if getattr(self, "ffn", None) is not None:
with tf.name_scope(self.ffn.name):
self.ffn.build(None)
if getattr(self, "layernorm1", None) is not None:
with tf.name_scope(self.layernorm1.name):
self.layernorm1.build([None, None, self.d_model_size])
if getattr(self, "layernorm2", None) is not None:
with tf.name_scope(self.layernorm2.name):
self.layernorm2.build([None, None, self.d_model_size])
@keras_serializable
class TFCTRLMainLayer(keras.layers.Layer):
config_class = CTRLConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.use_cache = config.use_cache
self.return_dict = config.use_return_dict
self.d_model_size = config.n_embd
self.num_layers = config.n_layer
self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size)
self.w = keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.n_embd,
embeddings_initializer=get_initializer(config.initializer_range),
name="w",
)
self.dropout = keras.layers.Dropout(config.embd_pdrop)
self.h = [
TFEncoderLayer(
config.n_embd,
config.n_head,
config.dff,
config.resid_pdrop,
config.layer_norm_epsilon,
self.output_attentions,
name=f"h_._{i}",
)
for i in range(config.n_layer)
]
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="layernorm")
def get_input_embeddings(self):
return self.w
def set_input_embeddings(self, new_embeddings):
self.w = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutputWithPast]:
# If using past key value states, only the last tokens
# should be given as an input
if past_key_values is not None:
if input_ids is not None:
input_ids = input_ids[:, -1:]
if inputs_embeds is not None:
inputs_embeds = inputs_embeds[:, -1:]
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1:]
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_length = 0
past_key_values = [None] * len(self.h)
else:
past_length = shape_list(past_key_values[0][0])[-2]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length, dtype=tf.int32), axis=0)
position_ids = tf.tile(position_ids, [input_shape[0], 1])
# Attention mask.
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1] + past_length))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
one_cst = tf.constant(1.0)
ten_thousand_cst = tf.constant(-10000.0)
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_layers
if token_type_ids is not None:
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
token_type_embeds = self.w(token_type_ids)
token_type_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, dtype=token_type_embeds.dtype))
else:
token_type_embeds = tf.constant(0.0)
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.w.input_dim)
inputs_embeds = self.w(input_ids)
seq_len = input_shape[-1]
mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
pos_embeds = tf.gather(self.pos_encoding, position_ids)
pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
hidden_states = inputs_embeds + pos_embeds + token_type_embeds
hidden_states = self.dropout(hidden_states, training=training)
output_shape = input_shape + [shape_list(hidden_states)[-1]]
presents = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, (h, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
outputs = h(
hidden_states,
mask,
layer_past,
attention_mask,
head_mask[i],
use_cache,
output_attentions,
training=training,
)
hidden_states, present = outputs[:2]
if use_cache:
presents = presents + (present,)
if output_attentions:
all_attentions = all_attentions + (outputs[2],)
hidden_states = self.layernorm(hidden_states)
hidden_states = tf.reshape(hidden_states, output_shape)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if output_attentions:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "w", None) is not None:
with tf.name_scope(self.w.name):
self.w.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.n_embd])
if getattr(self, "h", None) is not None:
for layer in self.h:
with tf.name_scope(layer.name):
layer.build(None)
class TFCTRLPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CTRLConfig
base_model_prefix = "transformer"
CTRL_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`CTRLConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CTRL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past` is `None` else `past[0].shape[-2]` (`sequence_length` of
input past key value states).
Indices of input sequence tokens in the vocabulary.
If `past` is used, only input IDs that do not have their past calculated should be passed as `input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
past (`List[tf.Tensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
`past` output below). Can be used to speed up sequential decoding. The token ids which have their past
given to this model should not be passed as input ids as they have already been computed.
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past` key value states are returned and can be used to speed up decoding (see `past`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.",
CTRL_START_DOCSTRING,
)
class TFCTRLModel(TFCTRLPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFCTRLMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutputWithPast]:
outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
class TFCTRLBiasLayer(keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
self.shape = shape
self.initializer = initializer
self.trainable = trainable
def build(self, input_shape):
self.bias = self.add_weight(
name="bias", shape=self.shape, initializer=self.initializer, trainable=self.trainable
)
super().build(input_shape)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"""
The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
CTRL_START_DOCSTRING,
)
class TFCTRLLMHeadModel(TFCTRLPreTrainedModel, TFCausalLanguageModelingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFCTRLMainLayer(config, name="transformer")
self.bias_layer = TFCTRLBiasLayer(
name="lm_head", shape=[1, config.vocab_size], initializer="zeros", trainable=True
)
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def get_bias(self):
return {"lm_head.bias": self.bias_layer.bias}
def set_bias(self, value):
# Replaces the existing layers containing bias for correct (de)serialization.
vocab_size = value["lm_head.bias"].shape[-1]
self.bias_layer = TFCTRLBiasLayer(
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=True
)
self.bias_layer.build(None)
self.bias_layer.bias.assign(value["lm_head.bias"])
# Copied from transformers.models.gpt2.modeling_tf_gpt2.TFGPT2LMHeadModel.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
inputs = tf.expand_dims(inputs[:, -1], -1)
if token_type_ids is not None:
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
position_ids = kwargs.get("position_ids", None)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None and position_ids is None:
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
if past_key_values:
position_ids = tf.expand_dims(position_ids[:, -1], -1)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"token_type_ids": token_type_ids,
}
@unpack_inputs
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFCausalLMOutputWithPast]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = tf.matmul(hidden_states, self.transformer.w.weights, transpose_b=True)
logits = self.bias_layer(logits)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
@add_start_docstrings(
"""
The CTRL Model transformer with a sequence classification head on top (linear layer).
[`TFCTRLForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1, GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
CTRL_START_DOCSTRING,
)
class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.classifier = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
use_bias=False,
)
self.transformer = TFCTRLMainLayer(config, name="transformer")
self.config = config
def get_output_embeddings(self):
# Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too.
logger.warning(
"Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed "
"in transformers v4.32."
)
return self.transformer.w
@unpack_inputs
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = self.classifier(hidden_states)
in_logits = None
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
- 1
)
sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1)
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
loss = None
if labels is not None:
if input_ids is not None:
batch_size, sequence_length = shape_list(input_ids)[:2]
else:
batch_size, sequence_length = shape_list(inputs_embeds)[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if not tf.is_tensor(sequence_lengths):
in_logits = logits[0:batch_size, sequence_lengths]
loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]))
pooled_logits = in_logits if in_logits is not None else logits
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.n_embd])
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
| transformers/src/transformers/models/ctrl/modeling_tf_ctrl.py/0 | {
"file_path": "transformers/src/transformers/models/ctrl/modeling_tf_ctrl.py",
"repo_id": "transformers",
"token_count": 17294
} | 300 |
# coding=utf-8
# Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Data2VecVision model."""
import collections.abc
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_data2vec_vision import Data2VecVisionConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Data2VecVisionConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k"
_IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote"
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/data2vec-vision-base-ft1k",
# See all Data2VecVision models at https://huggingface.co/models?filter=data2vec-vision
]
@dataclass
# Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision
class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of [`Data2VecVisionModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Data2VecVision
class Data2VecVisionDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.beit.modeling_beit.BeitEmbeddings with Beit->Data2VecVision
class Data2VecVisionEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = Data2VecVisionPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor:
embeddings, (patch_height, patch_width) = self.patch_embeddings(
pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None
)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
if self.position_embeddings is not None:
cls_tokens = cls_tokens + self.position_embeddings[:, :1, :]
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
embeddings = self.dropout(embeddings)
return embeddings, (patch_height, patch_width)
# Copied from transformers.models.beit.modeling_beit.BeitPatchEmbeddings with Beit->Data2VecVision
class Data2VecVisionPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
if position_embedding is not None:
# interpolate the position embedding to the corresponding size
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(
0, 3, 1, 2
)
position_embedding = nn.functional.interpolate(
position_embedding, size=(patch_height, patch_width), mode="bicubic"
)
embeddings = embeddings + position_embedding
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, (patch_height, patch_width)
# Copied from transformers.models.beit.modeling_beit.BeitSelfAttention with Beit->Data2VecVision
class Data2VecVisionSelfAttention(nn.Module):
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
if window_size:
self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size)
else:
self.relative_position_bias = None
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_scores = attention_scores + relative_position_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.beit.modeling_beit.BeitSelfOutput with Beit->Data2VecVision
class Data2VecVisionSelfOutput(nn.Module):
"""
The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.beit.modeling_beit.BeitAttention with Beit->Data2VecVision
class Data2VecVisionAttention(nn.Module):
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.attention = Data2VecVisionSelfAttention(config, window_size=window_size)
self.output = Data2VecVisionSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.beit.modeling_beit.BeitIntermediate with Beit->Data2VecVision
class Data2VecVisionIntermediate(nn.Module):
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.beit.modeling_beit.BeitOutput with Beit->Data2VecVision
class Data2VecVisionOutput(nn.Module):
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.beit.modeling_beit.BeitLayer with Beit->Data2VecVision,BEiT->Data2VecVision
class Data2VecVisionLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(
self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0
) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Data2VecVisionAttention(config, window_size=window_size)
self.intermediate = Data2VecVisionIntermediate(config)
self.output = Data2VecVisionOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
init_values = config.layer_scale_init_value
if init_values > 0:
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
else:
self.lambda_1, self.lambda_2 = None, None
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
relative_position_bias=relative_position_bias,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in Data2VecVision, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.beit.modeling_beit.BeitRelativePositionBias with Beit->Data2VecVision
class Data2VecVisionRelativePositionBias(nn.Module):
def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None:
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
def forward(self) -> torch.Tensor:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
# Copied from transformers.models.beit.modeling_beit.BeitEncoder with Beit->Data2VecVision
class Data2VecVisionEncoder(nn.Module):
def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.config = config
if config.use_shared_relative_position_bias:
self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size)
else:
self.relative_position_bias = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layer = nn.ModuleList(
[
Data2VecVisionLayer(
config,
window_size=window_size if config.use_relative_position_bias else None,
drop_path_rate=dpr[i],
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
relative_position_bias = (
self.relative_position_bias() if self.relative_position_bias is not None else None
)
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.beit.modeling_beit.BeitPreTrainedModel with Beit->Data2VecVision,beit->data2vec_vision
class Data2VecVisionPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Data2VecVisionConfig
base_model_prefix = "data2vec_vision"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DATA2VEC_VISION_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DATA2VEC_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BeitImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.",
DATA2VEC_VISION_START_DOCSTRING,
)
# Copied from transformers.models.beit.modeling_beit.BeitModel with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,True->False
class Data2VecVisionModel(Data2VecVisionPreTrainedModel):
def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None:
super().__init__(config)
self.config = config
self.embeddings = Data2VecVisionEmbeddings(config)
self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Data2VecVisionModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, Data2VecVisionModelOutputWithPooling]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:]
return Data2VecVisionModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.beit.modeling_beit.BeitPooler with Beit->Data2VecVision
class Data2VecVisionPooler(nn.Module):
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__()
self.layernorm = (
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
@add_start_docstrings(
"""
Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of
the final hidden states of the patch tokens) e.g. for ImageNet.
""",
DATA2VEC_VISION_START_DOCSTRING,
)
# Copied from transformers.models.beit.modeling_beit.BeitForImageClassification with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,beit->data2vec_vision
class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel):
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.data2vec_vision(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.beit.modeling_beit.BeitConvModule with Beit->Data2VecVision
class Data2VecVisionConvModule(nn.Module):
"""
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
padding: Union[int, Tuple[int, int], str] = 0,
bias: bool = False,
dilation: Union[int, Tuple[int, int]] = 1,
) -> None:
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
dilation=dilation,
)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = self.conv(input)
output = self.bn(output)
output = self.activation(output)
return output
# Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingBlock with Beit->Data2VecVision
class Data2VecVisionPyramidPoolingBlock(nn.Module):
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
super().__init__()
self.layers = [
nn.AdaptiveAvgPool2d(pool_scale),
Data2VecVisionConvModule(in_channels, channels, kernel_size=1),
]
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
# Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingModule with Beit->Data2VecVision
class Data2VecVisionPyramidPoolingModule(nn.Module):
"""
Pyramid Pooling Module (PPM) used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
align_corners (bool): align_corners argument of F.interpolate.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
self.blocks = []
for i, pool_scale in enumerate(pool_scales):
block = Data2VecVisionPyramidPoolingBlock(
pool_scale=pool_scale, in_channels=in_channels, channels=channels
)
self.blocks.append(block)
self.add_module(str(i), block)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
ppm_outs = []
for ppm in self.blocks:
ppm_out = ppm(x)
upsampled_ppm_out = nn.functional.interpolate(
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
# Copied from transformers.models.beit.modeling_beit.BeitUperHead with Beit->Data2VecVision
class Data2VecVisionUperHead(nn.Module):
"""
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
[UPerNet](https://arxiv.org/abs/1807.10221).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__()
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
self.channels = config.hidden_size
self.align_corners = False
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
# PSP Module
self.psp_modules = Data2VecVisionPyramidPoolingModule(
self.pool_scales,
self.in_channels[-1],
self.channels,
align_corners=self.align_corners,
)
self.bottleneck = Data2VecVisionConvModule(
self.in_channels[-1] + len(self.pool_scales) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
# FPN Module
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1)
fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
self.fpn_bottleneck = Data2VecVisionConvModule(
len(self.in_channels) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
def psp_forward(self, inputs):
x = inputs[-1]
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
output = self.bottleneck(psp_outs)
return output
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# build laterals
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
laterals.append(self.psp_forward(encoder_hidden_states))
# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
)
# build outputs
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
# append psp feature
fpn_outs.append(laterals[-1])
for i in range(used_backbone_levels - 1, 0, -1):
fpn_outs[i] = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
)
fpn_outs = torch.cat(fpn_outs, dim=1)
output = self.fpn_bottleneck(fpn_outs)
output = self.classifier(output)
return output
# Copied from transformers.models.beit.modeling_beit.BeitFCNHead with Beit->Data2VecVision
class Data2VecVisionFCNHead(nn.Module):
"""
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
[FCNNet](https://arxiv.org/abs/1411.4038>).
Args:
config (Data2VecVisionConfig): Configuration.
in_channels
kernel_size (int): The kernel size for convs in the head. Default: 3.
dilation (int): The dilation rate for convs in the head. Default: 1.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
config: Data2VecVisionConfig,
in_index: int = 2,
kernel_size: int = 3,
dilation: Union[int, Tuple[int, int]] = 1,
) -> None:
super().__init__()
self.in_channels = config.hidden_size
self.channels = config.auxiliary_channels
self.num_convs = config.auxiliary_num_convs
self.concat_input = config.auxiliary_concat_input
self.in_index = in_index
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
Data2VecVisionConvModule(
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
for i in range(self.num_convs - 1):
convs.append(
Data2VecVisionConvModule(
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
if self.num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = Data2VecVisionConvModule(
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
)
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# just take the relevant feature maps
hidden_states = encoder_hidden_states[self.in_index]
output = self.convs(hidden_states)
if self.concat_input:
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
output = self.classifier(output)
return output
@add_start_docstrings(
"""
Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
DATA2VEC_VISION_START_DOCSTRING,
)
# Copied from transformers.models.beit.modeling_beit.BeitForSemanticSegmentation with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,microsoft/beit-base-finetuned-ade-640-640->facebook/data2vec-vision-base,beit->data2vec_vision
class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel):
def __init__(self, config: Data2VecVisionConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False)
# FPNs
if len(self.config.out_indices) != 4:
raise ValueError(
"Data2VecVisionForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
"a base-sized architecture."
)
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(config.hidden_size),
nn.GELU(),
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# Semantic segmentation head(s)
self.decode_head = Data2VecVisionUperHead(config)
self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
def compute_loss(self, logits, auxiliary_logits, labels):
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
loss = main_loss
if auxiliary_logits is not None:
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss += self.config.auxiliary_loss_weight * auxiliary_loss
return loss
@add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base")
>>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.data2vec_vision(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features, and reshape
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
batch_size = pixel_values.shape[0]
patch_resolution = self.config.image_size // self.config.patch_size
features = [
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
]
# apply FPNs
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
logits = self.decode_head(features)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(features)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
loss = self.compute_loss(logits, auxiliary_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py/0 | {
"file_path": "transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py",
"repo_id": "transformers",
"token_count": 22669
} | 301 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DecisionTransformer model."""
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.cuda.amp import autocast
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_decision_transformer import DecisionTransformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "edbeeching/decision-transformer-gym-hopper-medium"
_CONFIG_FOR_DOC = "DecisionTransformerConfig"
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"edbeeching/decision-transformer-gym-hopper-medium",
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
]
# Copied from transformers.models.gpt2.modeling_gpt2.load_tf_weights_in_gpt2
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
"""Load tf checkpoints in a pytorch model"""
try:
import re
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(gpt2_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array.squeeze())
for name, array in zip(names, arrays):
name = name[6:] # skip "model/"
name = name.split("/")
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
scope_names = re.split(r"(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "w" or scope_names[0] == "g":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "b":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
pointer = getattr(pointer, scope_names[0])
pointer = getattr(pointer, "weight")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Attention with GPT2->DecisionTransformerGPT2
class DecisionTransformerGPT2Attention(nn.Module):
def __init__(self, config, is_cross_attention=False, layer_idx=None):
super().__init__()
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.split_size = self.embed_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale_attn_weights = config.scale_attn_weights
self.is_cross_attention = is_cross_attention
# Layer-wise attention scaling, reordering, and upcasting
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
self.layer_idx = layer_idx
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
if self.is_cross_attention:
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
else:
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
# Prune conv1d layers
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
# Update hyper params
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
self.num_heads = self.num_heads - len(heads)
self.pruned_heads = self.pruned_heads.union(heads)
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if self.scale_attn_weights:
attn_weights = attn_weights / torch.full(
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
)
# Layer-wise attention scaling
if self.scale_attn_by_inverse_layer_idx:
attn_weights = attn_weights / float(self.layer_idx + 1)
if not self.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
attn_weights = attn_weights.type(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
bsz, num_heads, q_seq_len, dk = query.size()
_, _, k_seq_len, _ = key.size()
# Preallocate attn_weights for `baddbmm`
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
# Compute Scale Factor
scale_factor = 1.0
if self.scale_attn_weights:
scale_factor /= float(value.size(-1)) ** 0.5
if self.scale_attn_by_inverse_layer_idx:
scale_factor /= float(self.layer_idx + 1)
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
with autocast(enabled=False):
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
if not self.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
if attn_weights.dtype != torch.float32:
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
attn_weights = attn_weights.type(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `DecisionTransformerGPT2Attention(..., is_cross_attention=True)`."
)
query = self.q_attn(hidden_states)
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
attention_mask = encoder_attention_mask
else:
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
if self.reorder_and_upcast_attn:
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
else:
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->DecisionTransformerGPT2
class DecisionTransformerGPT2MLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = Conv1D(intermediate_size, embed_dim)
self.c_proj = Conv1D(embed_dim, intermediate_size)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Block with GPT2->DecisionTransformerGPT2
class DecisionTransformerGPT2Block(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = DecisionTransformerGPT2Attention(config, layer_idx=layer_idx)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
if config.add_cross_attention:
self.crossattention = DecisionTransformerGPT2Attention(
config, is_cross_attention=True, layer_idx=layer_idx
)
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = DecisionTransformerGPT2MLP(inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_outputs = self.crossattention(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
class DecisionTransformerGPT2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DecisionTransformerConfig
load_tf_weights = load_tf_weights_in_gpt2
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, Conv1D)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/โN where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if "c_proj" in name and "weight" in name:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList(
[DecisionTransformerGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
)
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Model.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@dataclass
class DecisionTransformerOutput(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`):
Environment state predictions
action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`):
Model action predictions
return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`):
Predicted returns for each state
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
state_preds: torch.FloatTensor = None
action_preds: torch.FloatTensor = None
return_preds: torch.FloatTensor = None
hidden_states: torch.FloatTensor = None
attentions: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
class DecisionTransformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DecisionTransformerConfig
base_model_prefix = "decision_transformer"
main_input_name = "states"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DECISION_TRANSFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~DecisionTransformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DECISION_TRANSFORMER_INPUTS_DOCSTRING = r"""
Args:
states (`torch.FloatTensor` of shape `(batch_size, episode_length, state_dim)`):
The states for each step in the trajectory
actions (`torch.FloatTensor` of shape `(batch_size, episode_length, act_dim)`):
The actions taken by the "expert" policy for the current state, these are masked for auto regressive
prediction
rewards (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
The rewards for each state, action
returns_to_go (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
The returns for each state in the trajectory
timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`):
The timestep for each step in the trajectory
attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`):
Masking, used to mask the actions when performing autoregressive prediction
"""
@add_start_docstrings("The Decision Transformer Model", DECISION_TRANSFORMER_START_DOCSTRING)
class DecisionTransformerModel(DecisionTransformerPreTrainedModel):
"""
The model builds upon the GPT2 architecture to perform autoregressive prediction of actions in an offline RL
setting. Refer to the paper for more details: https://arxiv.org/abs/2106.01345
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.hidden_size = config.hidden_size
# note: the only difference between this GPT2Model and the default Huggingface version
# is that the positional embeddings are removed (since we'll add those ourselves)
self.encoder = DecisionTransformerGPT2Model(config)
self.embed_timestep = nn.Embedding(config.max_ep_len, config.hidden_size)
self.embed_return = torch.nn.Linear(1, config.hidden_size)
self.embed_state = torch.nn.Linear(config.state_dim, config.hidden_size)
self.embed_action = torch.nn.Linear(config.act_dim, config.hidden_size)
self.embed_ln = nn.LayerNorm(config.hidden_size)
# note: we don't predict states or returns for the paper
self.predict_state = torch.nn.Linear(config.hidden_size, config.state_dim)
self.predict_action = nn.Sequential(
*([nn.Linear(config.hidden_size, config.act_dim)] + ([nn.Tanh()] if config.action_tanh else []))
)
self.predict_return = torch.nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DECISION_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
states: Optional[torch.FloatTensor] = None,
actions: Optional[torch.FloatTensor] = None,
rewards: Optional[torch.FloatTensor] = None,
returns_to_go: Optional[torch.FloatTensor] = None,
timesteps: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import DecisionTransformerModel
>>> import torch
>>> model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium")
>>> # evaluation
>>> model = model.to(device)
>>> model.eval()
>>> env = gym.make("Hopper-v3")
>>> state_dim = env.observation_space.shape[0]
>>> act_dim = env.action_space.shape[0]
>>> state = env.reset()
>>> states = torch.from_numpy(state).reshape(1, 1, state_dim).to(device=device, dtype=torch.float32)
>>> actions = torch.zeros((1, 1, act_dim), device=device, dtype=torch.float32)
>>> rewards = torch.zeros(1, 1, device=device, dtype=torch.float32)
>>> target_return = torch.tensor(TARGET_RETURN, dtype=torch.float32).reshape(1, 1)
>>> timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1)
>>> attention_mask = torch.zeros(1, 1, device=device, dtype=torch.float32)
>>> # forward pass
>>> with torch.no_grad():
... state_preds, action_preds, return_preds = model(
... states=states,
... actions=actions,
... rewards=rewards,
... returns_to_go=target_return,
... timesteps=timesteps,
... attention_mask=attention_mask,
... return_dict=False,
... )
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = states.shape[0], states.shape[1]
if attention_mask is None:
# attention mask for GPT: 1 if can be attended to, 0 if not
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
# embed each modality with a different head
state_embeddings = self.embed_state(states)
action_embeddings = self.embed_action(actions)
returns_embeddings = self.embed_return(returns_to_go)
time_embeddings = self.embed_timestep(timesteps)
# time embeddings are treated similar to positional embeddings
state_embeddings = state_embeddings + time_embeddings
action_embeddings = action_embeddings + time_embeddings
returns_embeddings = returns_embeddings + time_embeddings
# this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...)
# which works nice in an autoregressive sense since states predict actions
stacked_inputs = (
torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1)
.permute(0, 2, 1, 3)
.reshape(batch_size, 3 * seq_length, self.hidden_size)
)
stacked_inputs = self.embed_ln(stacked_inputs)
# to make the attention mask fit the stacked inputs, have to stack it as well
stacked_attention_mask = (
torch.stack((attention_mask, attention_mask, attention_mask), dim=1)
.permute(0, 2, 1)
.reshape(batch_size, 3 * seq_length)
)
device = stacked_inputs.device
# we feed in the input embeddings (not word indices as in NLP) to the model
encoder_outputs = self.encoder(
inputs_embeds=stacked_inputs,
attention_mask=stacked_attention_mask,
position_ids=torch.zeros(stacked_attention_mask.shape, device=device, dtype=torch.long),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
x = encoder_outputs[0]
# reshape x so that the second dimension corresponds to the original
# returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t
x = x.reshape(batch_size, seq_length, 3, self.hidden_size).permute(0, 2, 1, 3)
# get predictions
return_preds = self.predict_return(x[:, 2]) # predict next return given state and action
state_preds = self.predict_state(x[:, 2]) # predict next state given state and action
action_preds = self.predict_action(x[:, 1]) # predict next action given state
if not return_dict:
return (state_preds, action_preds, return_preds)
return DecisionTransformerOutput(
last_hidden_state=encoder_outputs.last_hidden_state,
state_preds=state_preds,
action_preds=action_preds,
return_preds=return_preds,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
| transformers/src/transformers/models/decision_transformer/modeling_decision_transformer.py/0 | {
"file_path": "transformers/src/transformers/models/decision_transformer/modeling_decision_transformer.py",
"repo_id": "transformers",
"token_count": 18625
} | 302 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch DistilBERT model adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) and in
part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
"""
import math
from typing import Dict, List, Optional, Set, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import get_activation
from ...configuration_utils import PretrainedConfig
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_distilbert import DistilBertConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
_CONFIG_FOR_DOC = "DistilBertConfig"
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"distilbert-base-uncased",
"distilbert-base-uncased-distilled-squad",
"distilbert-base-cased",
"distilbert-base-cased-distilled-squad",
"distilbert-base-german-cased",
"distilbert-base-multilingual-cased",
"distilbert-base-uncased-finetuned-sst-2-english",
# See all DistilBERT models at https://huggingface.co/models?filter=distilbert
]
# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE #
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
def create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(out, modifier_rank=0):
if torch.distributed.get_rank() == 0:
_create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
else:
_create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
def _create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
out.requires_grad = False
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
class Embeddings(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
if config.sinusoidal_pos_embds:
create_sinusoidal_embeddings(
n_pos=config.max_position_embeddings, dim=config.dim, out=self.position_embeddings.weight
)
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
self.dropout = nn.Dropout(config.dropout)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids: torch.Tensor, input_embeds: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Parameters:
input_ids (torch.Tensor):
torch.tensor(bs, max_seq_length) The token ids to embed.
input_embeds (*optional*, torch.Tensor):
The pre-computed word embeddings. Can only be passed if the input ids are `None`.
Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type
embeddings)
"""
if input_ids is not None:
input_embeds = self.word_embeddings(input_ids) # (bs, max_seq_length, dim)
seq_length = input_embeds.size(1)
# Setting the position-ids to the registered buffer in constructor, it helps
# when tracing the model without passing position-ids, solves
# isues similar to issue #5664
if hasattr(self, "position_ids"):
position_ids = self.position_ids[:, :seq_length]
else:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length)
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim)
embeddings = input_embeds + position_embeddings # (bs, max_seq_length, dim)
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim)
embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim)
return embeddings
class MultiHeadSelfAttention(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.n_heads = config.n_heads
self.dim = config.dim
self.dropout = nn.Dropout(p=config.attention_dropout)
self.is_causal = False
# Have an even number of multi heads that divide the dimensions
if self.dim % self.n_heads != 0:
# Raise value errors for even multi-head attention nodes
raise ValueError(f"self.n_heads: {self.n_heads} must divide self.dim: {self.dim} evenly")
self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.pruned_heads: Set[int] = set()
self.attention_head_size = self.dim // self.n_heads
def prune_heads(self, heads: List[int]):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.q_lin = prune_linear_layer(self.q_lin, index)
self.k_lin = prune_linear_layer(self.k_lin, index)
self.v_lin = prune_linear_layer(self.v_lin, index)
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.dim = self.attention_head_size * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
query: torch.tensor(bs, seq_length, dim)
key: torch.tensor(bs, seq_length, dim)
value: torch.tensor(bs, seq_length, dim)
mask: torch.tensor(bs, seq_length)
Returns:
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
bs, q_length, dim = query.size()
k_length = key.size(1)
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
# assert key.size() == value.size()
dim_per_head = self.dim // self.n_heads
mask_reshp = (bs, 1, 1, k_length)
def shape(x: torch.Tensor) -> torch.Tensor:
"""separate heads"""
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x: torch.Tensor) -> torch.Tensor:
"""group heads"""
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, q_length, k_length)
mask = (mask == 0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
scores = scores.masked_fill(
mask, torch.tensor(torch.finfo(scores.dtype).min)
) # (bs, n_heads, q_length, k_length)
weights = nn.functional.softmax(scores, dim=-1) # (bs, n_heads, q_length, k_length)
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head)
context = unshape(context) # (bs, q_length, dim)
context = self.out_lin(context) # (bs, q_length, dim)
if output_attentions:
return (context, weights)
else:
return (context,)
class DistilBertFlashAttention2(MultiHeadSelfAttention):
"""
DistilBert flash attention module. This module inherits from `MultiHeadSelfAttention` as the weights of the module
stays untouched. The only required change would be on the forward pass where it needs to correctly call the public
API of flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
query: torch.tensor(bs, seq_length, dim)
key: torch.tensor(bs, seq_length, dim)
value: torch.tensor(bs, seq_length, dim)
mask: torch.tensor(bs, seq_length)
Returns:
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
batch_size, q_length, dim = query.size()
dim_per_head = self.dim // self.n_heads
def reshape(x: torch.Tensor) -> torch.Tensor:
"""separate heads"""
return x.view(batch_size, -1, self.n_heads, dim_per_head)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
query_states = reshape(self.q_lin(query))
key_states = reshape(self.k_lin(key))
value_states = reshape(self.v_lin(value))
attn_dropout = self.config.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
if query_states.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_lin.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_weights = self._flash_attention_forward(
query_states, key_states, value_states, mask, q_length, dropout=attn_dropout
)
attn_weights_reshaped = attn_weights.reshape(batch_size, q_length, self.n_heads * dim_per_head)
attn_output = self.out_lin(attn_weights_reshaped)
if output_attentions:
return (attn_output, attn_weights)
else:
return (attn_output,)
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward with causal=True->causal=False
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->n_heads
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class FFN(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.dropout = nn.Dropout(p=config.dropout)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
self.activation = get_activation(config.activation)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
def ff_chunk(self, input: torch.Tensor) -> torch.Tensor:
x = self.lin1(input)
x = self.activation(x)
x = self.lin2(x)
x = self.dropout(x)
return x
DISTILBERT_ATTENTION_CLASSES = {
"eager": MultiHeadSelfAttention,
"flash_attention_2": DistilBertFlashAttention2,
}
class TransformerBlock(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
# Have an even number of Configure multi-heads
if config.dim % config.n_heads != 0:
raise ValueError(f"config.n_heads {config.n_heads} must divide config.dim {config.dim} evenly")
self.attention = DISTILBERT_ATTENTION_CLASSES[config._attn_implementation](config)
self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
self.ffn = FFN(config)
self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
x: torch.tensor(bs, seq_length, dim)
attn_mask: torch.tensor(bs, seq_length)
Returns:
sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization.
"""
# Self-Attention
sa_output = self.attention(
query=x,
key=x,
value=x,
mask=attn_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
if output_attentions:
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
if type(sa_output) != tuple:
raise TypeError(f"sa_output must be a tuple but it is {type(sa_output)} type")
sa_output = sa_output[0]
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
# Feed Forward Network
ffn_output = self.ffn(sa_output) # (bs, seq_length, dim)
ffn_output: torch.Tensor = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
output = (ffn_output,)
if output_attentions:
output = (sa_weights,) + output
return output
class Transformer(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.n_layers = config.n_layers
self.layer = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)])
self.gradient_checkpointing = False
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: # docstyle-ignore
"""
Parameters:
x: torch.tensor(bs, seq_length, dim) Input sequence embedded.
attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence.
Returns:
hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top)
layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
Tuple of length n_layers with the hidden states from each layer.
Optional: only if output_hidden_states=True
all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
Tuple of length n_layers with the attention weights from each layer
Optional: only if output_attentions=True
"""
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_state = x
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_state,
attn_mask,
head_mask[i],
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_state,
attn_mask,
head_mask[i],
output_attentions,
)
hidden_state = layer_outputs[-1]
if output_attentions:
if len(layer_outputs) != 2:
raise ValueError(f"The length of the layer_outputs should be 2, but it is {len(layer_outputs)}")
attentions = layer_outputs[0]
all_attentions = all_attentions + (attentions,)
else:
if len(layer_outputs) != 1:
raise ValueError(f"The length of the layer_outputs should be 1, but it is {len(layer_outputs)}")
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
)
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
class DistilBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DistilBertConfig
load_tf_weights = None
base_model_prefix = "distilbert"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DISTILBERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DISTILBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
DISTILBERT_START_DOCSTRING,
)
class DistilBertModel(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.embeddings = Embeddings(config) # Embeddings
self.transformer = Transformer(config) # Encoder
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.embeddings.position_embeddings
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
num_position_embeds_diff = new_num_position_embeddings - self.config.max_position_embeddings
# no resizing needs to be done if the length stays the same
if num_position_embeds_diff == 0:
return
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
self.config.max_position_embeddings = new_num_position_embeddings
old_position_embeddings_weight = self.embeddings.position_embeddings.weight.clone()
self.embeddings.position_embeddings = nn.Embedding(self.config.max_position_embeddings, self.config.dim)
if self.config.sinusoidal_pos_embds:
create_sinusoidal_embeddings(
n_pos=self.config.max_position_embeddings, dim=self.config.dim, out=self.position_embeddings.weight
)
else:
with torch.no_grad():
if num_position_embeds_diff > 0:
self.embeddings.position_embeddings.weight[:-num_position_embeds_diff] = nn.Parameter(
old_position_embeddings_weight
)
else:
self.embeddings.position_embeddings.weight = nn.Parameter(
old_position_embeddings_weight[:num_position_embeds_diff]
)
# move position_embeddings to correct device
self.embeddings.position_embeddings.to(self.device)
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings: nn.Embedding):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[List[int]]]):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.transformer.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embeddings = self.embeddings(input_ids, inputs_embeds) # (bs, seq_length, dim)
if self._use_flash_attention_2:
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length)
return self.transformer(
x=embeddings,
attn_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"""DistilBert Model with a `masked language modeling` head on top.""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
_tied_weights_keys = ["vocab_projector.weight"]
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.activation = get_activation(config.activation)
self.distilbert = DistilBertModel(config)
self.vocab_transform = nn.Linear(config.dim, config.dim)
self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
self.vocab_projector = nn.Linear(config.dim, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
self.mlm_loss_fct = nn.CrossEntropyLoss()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.vocab_projector
def set_output_embeddings(self, new_embeddings: nn.Module):
self.vocab_projector = new_embeddings
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MaskedLMOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
dlbrt_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = dlbrt_output[0] # (bs, seq_length, dim)
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
prediction_logits = self.activation(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size)
mlm_loss = None
if labels is not None:
mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (prediction_logits,) + dlbrt_output[1:]
return ((mlm_loss,) + output) if mlm_loss is not None else output
return MaskedLMOutput(
loss=mlm_loss,
logits=prediction_logits,
hidden_states=dlbrt_output.hidden_states,
attentions=dlbrt_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.distilbert = DistilBertModel(config)
self.pre_classifier = nn.Linear(config.dim, config.dim)
self.classifier = nn.Linear(config.dim, config.num_labels)
self.dropout = nn.Dropout(config.seq_classif_dropout)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output) # (bs, dim)
logits = self.classifier(pooled_output) # (bs, num_labels)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.distilbert = DistilBertModel(config)
self.qa_outputs = nn.Linear(config.dim, config.num_labels)
if config.num_labels != 2:
raise ValueError(f"config.num_labels should be 2, but it is {config.num_labels}")
self.dropout = nn.Dropout(config.qa_dropout)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor, ...]]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim)
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous() # (bs, max_query_len)
end_logits = end_logits.squeeze(-1).contiguous() # (bs, max_query_len)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + distilbert_output[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForTokenClassification(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.distilbert = DistilBertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[TokenClassifierOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.distilbert(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForMultipleChoice(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.distilbert = DistilBertModel(config)
self.pre_classifier = nn.Linear(config.dim, config.dim)
self.classifier = nn.Linear(config.dim, 1)
self.dropout = nn.Dropout(config.seq_classif_dropout)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`)
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, DistilBertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
>>> model = DistilBertForMultipleChoice.from_pretrained("distilbert-base-cased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.distilbert(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
pooled_output = self.dropout(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output) # (bs * num_choices, 1)
reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/distilbert/modeling_distilbert.py/0 | {
"file_path": "transformers/src/transformers/models/distilbert/modeling_distilbert.py",
"repo_id": "transformers",
"token_count": 26581
} | 303 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import collections
from pathlib import Path
import torch
from torch.serialization import default_restore_location
from transformers import BertConfig, DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader
CheckpointState = collections.namedtuple(
"CheckpointState", ["model_dict", "optimizer_dict", "scheduler_dict", "offset", "epoch", "encoder_params"]
)
def load_states_from_checkpoint(model_file: str) -> CheckpointState:
print(f"Reading saved model from {model_file}")
state_dict = torch.load(model_file, map_location=lambda s, l: default_restore_location(s, "cpu"))
return CheckpointState(**state_dict)
class DPRState:
def __init__(self, src_file: Path):
self.src_file = src_file
def load_dpr_model(self):
raise NotImplementedError
@staticmethod
def from_type(comp_type: str, *args, **kwargs) -> "DPRState":
if comp_type.startswith("c"):
return DPRContextEncoderState(*args, **kwargs)
if comp_type.startswith("q"):
return DPRQuestionEncoderState(*args, **kwargs)
if comp_type.startswith("r"):
return DPRReaderState(*args, **kwargs)
else:
raise ValueError("Component type must be either 'ctx_encoder', 'question_encoder' or 'reader'.")
class DPRContextEncoderState(DPRState):
def load_dpr_model(self):
model = DPRContextEncoder(DPRConfig(**BertConfig.get_config_dict("bert-base-uncased")[0]))
print(f"Loading DPR biencoder from {self.src_file}")
saved_state = load_states_from_checkpoint(self.src_file)
encoder, prefix = model.ctx_encoder, "ctx_model."
# Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3
state_dict = {"bert_model.embeddings.position_ids": model.ctx_encoder.bert_model.embeddings.position_ids}
for key, value in saved_state.model_dict.items():
if key.startswith(prefix):
key = key[len(prefix) :]
if not key.startswith("encode_proj."):
key = "bert_model." + key
state_dict[key] = value
encoder.load_state_dict(state_dict)
return model
class DPRQuestionEncoderState(DPRState):
def load_dpr_model(self):
model = DPRQuestionEncoder(DPRConfig(**BertConfig.get_config_dict("bert-base-uncased")[0]))
print(f"Loading DPR biencoder from {self.src_file}")
saved_state = load_states_from_checkpoint(self.src_file)
encoder, prefix = model.question_encoder, "question_model."
# Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3
state_dict = {"bert_model.embeddings.position_ids": model.question_encoder.bert_model.embeddings.position_ids}
for key, value in saved_state.model_dict.items():
if key.startswith(prefix):
key = key[len(prefix) :]
if not key.startswith("encode_proj."):
key = "bert_model." + key
state_dict[key] = value
encoder.load_state_dict(state_dict)
return model
class DPRReaderState(DPRState):
def load_dpr_model(self):
model = DPRReader(DPRConfig(**BertConfig.get_config_dict("bert-base-uncased")[0]))
print(f"Loading DPR reader from {self.src_file}")
saved_state = load_states_from_checkpoint(self.src_file)
# Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3
state_dict = {
"encoder.bert_model.embeddings.position_ids": model.span_predictor.encoder.bert_model.embeddings.position_ids
}
for key, value in saved_state.model_dict.items():
if key.startswith("encoder.") and not key.startswith("encoder.encode_proj"):
key = "encoder.bert_model." + key[len("encoder.") :]
state_dict[key] = value
model.span_predictor.load_state_dict(state_dict)
return model
def convert(comp_type: str, src_file: Path, dest_dir: Path):
dest_dir = Path(dest_dir)
dest_dir.mkdir(exist_ok=True)
dpr_state = DPRState.from_type(comp_type, src_file=src_file)
model = dpr_state.load_dpr_model()
model.save_pretrained(dest_dir)
model.from_pretrained(dest_dir) # sanity check
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--type", type=str, help="Type of the component to convert: 'ctx_encoder', 'question_encoder' or 'reader'."
)
parser.add_argument(
"--src",
type=str,
help=(
"Path to the dpr checkpoint file. They can be downloaded from the official DPR repo"
" https://github.com/facebookresearch/DPR. Note that in the official repo, both encoders are stored in the"
" 'retriever' checkpoints."
),
)
parser.add_argument("--dest", type=str, default=None, help="Path to the output PyTorch model directory.")
args = parser.parse_args()
src_file = Path(args.src)
dest_dir = f"converted-{src_file.name}" if args.dest is None else args.dest
dest_dir = Path(dest_dir)
assert src_file.exists()
assert (
args.type is not None
), "Please specify the component type of the DPR model to convert: 'ctx_encoder', 'question_encoder' or 'reader'."
convert(args.type, src_file, dest_dir)
| transformers/src/transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2447
} | 304 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" EfficientFormer model configuration"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"snap-research/efficientformer-l1-300": (
"https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
),
}
class EfficientFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
[snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
Depth of each stage.
hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
Dimensionality of each stage.
downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
Whether or not to downsample inputs between two stages.
dim (`int`, *optional*, defaults to 448):
Number of channels in Meta3D layers
key_dim (`int`, *optional*, defaults to 32):
The size of the key in meta3D block.
attention_ratio (`int`, *optional*, defaults to 4):
Ratio of the dimension of the query and value to the dimension of the key in MSHA block
resolution (`int`, *optional*, defaults to 7)
Size of each patch
num_hidden_layers (`int`, *optional*, defaults to 5):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the 3D MetaBlock.
mlp_expansion_ratio (`int`, *optional*, defaults to 4):
Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
pool_size (`int`, *optional*, defaults to 3):
Kernel size of pooling layers.
downsample_patch_size (`int`, *optional*, defaults to 3):
The size of patches in downsampling layers.
downsample_stride (`int`, *optional*, defaults to 2):
The stride of convolution kernels in downsampling layers.
downsample_pad (`int`, *optional*, defaults to 1):
Padding in downsampling layers.
drop_path_rate (`int`, *optional*, defaults to 0):
Rate at which to increase dropout probability in DropPath.
num_meta3d_blocks (`int`, *optional*, defaults to 1):
The number of 3D MetaBlocks in the last stage.
distillation (`bool`, *optional*, defaults to `True`):
Whether to add a distillation head.
use_layer_scale (`bool`, *optional*, defaults to `True`):
Whether to scale outputs from token mixers.
layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
Factor by which outputs from token mixers are scaled.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to `224`):
The size (resolution) of each image.
Example:
```python
>>> from transformers import EfficientFormerConfig, EfficientFormerModel
>>> # Initializing a EfficientFormer efficientformer-l1 style configuration
>>> configuration = EfficientFormerConfig()
>>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
>>> model = EfficientFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "efficientformer"
def __init__(
self,
depths: List[int] = [3, 2, 6, 4],
hidden_sizes: List[int] = [48, 96, 224, 448],
downsamples: List[bool] = [True, True, True, True],
dim: int = 448,
key_dim: int = 32,
attention_ratio: int = 4,
resolution: int = 7,
num_hidden_layers: int = 5,
num_attention_heads: int = 8,
mlp_expansion_ratio: int = 4,
hidden_dropout_prob: float = 0.0,
patch_size: int = 16,
num_channels: int = 3,
pool_size: int = 3,
downsample_patch_size: int = 3,
downsample_stride: int = 2,
downsample_pad: int = 1,
drop_path_rate: float = 0.0,
num_meta3d_blocks: int = 1,
distillation: bool = True,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
hidden_act: str = "gelu",
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
batch_norm_eps: float = 1e-05,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.hidden_sizes = hidden_sizes
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.patch_size = patch_size
self.num_channels = num_channels
self.depths = depths
self.mlp_expansion_ratio = mlp_expansion_ratio
self.downsamples = downsamples
self.dim = dim
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.resolution = resolution
self.pool_size = pool_size
self.downsample_patch_size = downsample_patch_size
self.downsample_stride = downsample_stride
self.downsample_pad = downsample_pad
self.drop_path_rate = drop_path_rate
self.num_meta3d_blocks = num_meta3d_blocks
self.distillation = distillation
self.use_layer_scale = use_layer_scale
self.layer_scale_init_value = layer_scale_init_value
self.image_size = image_size
self.batch_norm_eps = batch_norm_eps
| transformers/src/transformers/models/efficientformer/configuration_efficientformer.py/0 | {
"file_path": "transformers/src/transformers/models/efficientformer/configuration_efficientformer.py",
"repo_id": "transformers",
"token_count": 3037
} | 305 |
# coding=utf-8
# Copyright 2023 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ErnieM model configuration"""
# Adapted from original paddlenlp repository.(https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/ernie_m/configuration.py)
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json",
"susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json",
}
class ErnieMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ErnieMModel`]. It is used to instantiate a
Ernie-M model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the `Ernie-M`
[susnato/ernie-m-base_pytorch](https://huggingface.co/susnato/ernie-m-base_pytorch) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 250002):
Vocabulary size of `inputs_ids` in [`ErnieMModel`]. Also is the vocab size of token embedding matrix.
Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling
[`ErnieMModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embedding layer, encoder layers and pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the feed-forward (ff) layer in the encoder. Input tensors to feed-forward layers are
firstly projected from hidden_size to intermediate_size, and then projected back to hidden_size. Typically
intermediate_size is larger than hidden_size.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function in the feed-forward layer. `"gelu"`, `"relu"` and any other torch
supported activation functions are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability used in `MultiHeadAttention` in all encoder layers to drop some attention target.
max_position_embeddings (`int`, *optional*, defaults to 514):
The maximum value of the dimensionality of position encoding, which dictates the maximum supported length
of an input sequence.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the normal initializer for initializing all weight matrices. The index of padding
token in the token vocabulary.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
act_dropout (`float`, *optional*, defaults to 0.0):
This dropout probability is used in `ErnieMEncoderLayer` after activation.
A normal_initializer initializes weight matrices as normal distributions. See
`ErnieMPretrainedModel._init_weights()` for how weights are initialized in `ErnieMModel`.
"""
model_type = "ernie_m"
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__(
self,
vocab_size: int = 250002,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 514,
initializer_range: float = 0.02,
pad_token_id: int = 1,
layer_norm_eps: float = 1e-05,
classifier_dropout=None,
act_dropout=0.0,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout = classifier_dropout
self.act_dropout = act_dropout
| transformers/src/transformers/models/ernie_m/configuration_ernie_m.py/0 | {
"file_path": "transformers/src/transformers/models/ernie_m/configuration_ernie_m.py",
"repo_id": "transformers",
"token_count": 2264
} | 306 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from functools import lru_cache
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple
import numpy as np
import torch
def rot_matmul(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Performs matrix multiplication of two rotation matrix tensors. Written out by hand to avoid AMP downcasting.
Args:
a: [*, 3, 3] left multiplicand
b: [*, 3, 3] right multiplicand
Returns:
The product ab
"""
def row_mul(i: int) -> torch.Tensor:
return torch.stack(
[
a[..., i, 0] * b[..., 0, 0] + a[..., i, 1] * b[..., 1, 0] + a[..., i, 2] * b[..., 2, 0],
a[..., i, 0] * b[..., 0, 1] + a[..., i, 1] * b[..., 1, 1] + a[..., i, 2] * b[..., 2, 1],
a[..., i, 0] * b[..., 0, 2] + a[..., i, 1] * b[..., 1, 2] + a[..., i, 2] * b[..., 2, 2],
],
dim=-1,
)
return torch.stack(
[
row_mul(0),
row_mul(1),
row_mul(2),
],
dim=-2,
)
def rot_vec_mul(r: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""
Applies a rotation to a vector. Written out by hand to avoid transfer to avoid AMP downcasting.
Args:
r: [*, 3, 3] rotation matrices
t: [*, 3] coordinate tensors
Returns:
[*, 3] rotated coordinates
"""
x, y, z = torch.unbind(t, dim=-1)
return torch.stack(
[
r[..., 0, 0] * x + r[..., 0, 1] * y + r[..., 0, 2] * z,
r[..., 1, 0] * x + r[..., 1, 1] * y + r[..., 1, 2] * z,
r[..., 2, 0] * x + r[..., 2, 1] * y + r[..., 2, 2] * z,
],
dim=-1,
)
@lru_cache(maxsize=None)
def identity_rot_mats(
batch_dims: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
) -> torch.Tensor:
rots = torch.eye(3, dtype=dtype, device=device, requires_grad=requires_grad)
rots = rots.view(*((1,) * len(batch_dims)), 3, 3)
rots = rots.expand(*batch_dims, -1, -1)
rots = rots.contiguous()
return rots
@lru_cache(maxsize=None)
def identity_trans(
batch_dims: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
) -> torch.Tensor:
trans = torch.zeros((*batch_dims, 3), dtype=dtype, device=device, requires_grad=requires_grad)
return trans
@lru_cache(maxsize=None)
def identity_quats(
batch_dims: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
) -> torch.Tensor:
quat = torch.zeros((*batch_dims, 4), dtype=dtype, device=device, requires_grad=requires_grad)
with torch.no_grad():
quat[..., 0] = 1
return quat
_quat_elements: List[str] = ["a", "b", "c", "d"]
_qtr_keys: List[str] = [l1 + l2 for l1 in _quat_elements for l2 in _quat_elements]
_qtr_ind_dict: Dict[str, int] = {key: ind for ind, key in enumerate(_qtr_keys)}
def _to_mat(pairs: List[Tuple[str, int]]) -> np.ndarray:
mat = np.zeros((4, 4))
for key, value in pairs:
ind = _qtr_ind_dict[key]
mat[ind // 4][ind % 4] = value
return mat
_QTR_MAT = np.zeros((4, 4, 3, 3))
_QTR_MAT[..., 0, 0] = _to_mat([("aa", 1), ("bb", 1), ("cc", -1), ("dd", -1)])
_QTR_MAT[..., 0, 1] = _to_mat([("bc", 2), ("ad", -2)])
_QTR_MAT[..., 0, 2] = _to_mat([("bd", 2), ("ac", 2)])
_QTR_MAT[..., 1, 0] = _to_mat([("bc", 2), ("ad", 2)])
_QTR_MAT[..., 1, 1] = _to_mat([("aa", 1), ("bb", -1), ("cc", 1), ("dd", -1)])
_QTR_MAT[..., 1, 2] = _to_mat([("cd", 2), ("ab", -2)])
_QTR_MAT[..., 2, 0] = _to_mat([("bd", 2), ("ac", -2)])
_QTR_MAT[..., 2, 1] = _to_mat([("cd", 2), ("ab", 2)])
_QTR_MAT[..., 2, 2] = _to_mat([("aa", 1), ("bb", -1), ("cc", -1), ("dd", 1)])
def quat_to_rot(quat: torch.Tensor) -> torch.Tensor:
"""
Converts a quaternion to a rotation matrix.
Args:
quat: [*, 4] quaternions
Returns:
[*, 3, 3] rotation matrices
"""
# [*, 4, 4]
quat = quat[..., None] * quat[..., None, :]
# [4, 4, 3, 3]
mat = _get_quat("_QTR_MAT", dtype=quat.dtype, device=quat.device)
# [*, 4, 4, 3, 3]
shaped_qtr_mat = mat.view((1,) * len(quat.shape[:-2]) + mat.shape)
quat = quat[..., None, None] * shaped_qtr_mat
# [*, 3, 3]
return torch.sum(quat, dim=(-3, -4))
def rot_to_quat(rot: torch.Tensor) -> torch.Tensor:
if rot.shape[-2:] != (3, 3):
raise ValueError("Input rotation is incorrectly shaped")
[[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = [[rot[..., i, j] for j in range(3)] for i in range(3)]
k = [
[
xx + yy + zz,
zy - yz,
xz - zx,
yx - xy,
],
[
zy - yz,
xx - yy - zz,
xy + yx,
xz + zx,
],
[
xz - zx,
xy + yx,
yy - xx - zz,
yz + zy,
],
[
yx - xy,
xz + zx,
yz + zy,
zz - xx - yy,
],
]
_, vectors = torch.linalg.eigh((1.0 / 3.0) * torch.stack([torch.stack(t, dim=-1) for t in k], dim=-2))
return vectors[..., -1]
_QUAT_MULTIPLY = np.zeros((4, 4, 4))
_QUAT_MULTIPLY[:, :, 0] = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
_QUAT_MULTIPLY[:, :, 1] = [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0]]
_QUAT_MULTIPLY[:, :, 2] = [[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, 1, 0, 0]]
_QUAT_MULTIPLY[:, :, 3] = [[0, 0, 0, 1], [0, 0, 1, 0], [0, -1, 0, 0], [1, 0, 0, 0]]
_QUAT_MULTIPLY_BY_VEC = _QUAT_MULTIPLY[:, 1:, :]
_CACHED_QUATS: Dict[str, np.ndarray] = {
"_QTR_MAT": _QTR_MAT,
"_QUAT_MULTIPLY": _QUAT_MULTIPLY,
"_QUAT_MULTIPLY_BY_VEC": _QUAT_MULTIPLY_BY_VEC,
}
@lru_cache(maxsize=None)
def _get_quat(quat_key: str, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
return torch.tensor(_CACHED_QUATS[quat_key], dtype=dtype, device=device)
def quat_multiply(quat1: torch.Tensor, quat2: torch.Tensor) -> torch.Tensor:
"""Multiply a quaternion by another quaternion."""
mat = _get_quat("_QUAT_MULTIPLY", dtype=quat1.dtype, device=quat1.device)
reshaped_mat = mat.view((1,) * len(quat1.shape[:-1]) + mat.shape)
return torch.sum(reshaped_mat * quat1[..., :, None, None] * quat2[..., None, :, None], dim=(-3, -2))
def quat_multiply_by_vec(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor:
"""Multiply a quaternion by a pure-vector quaternion."""
mat = _get_quat("_QUAT_MULTIPLY_BY_VEC", dtype=quat.dtype, device=quat.device)
reshaped_mat = mat.view((1,) * len(quat.shape[:-1]) + mat.shape)
return torch.sum(reshaped_mat * quat[..., :, None, None] * vec[..., None, :, None], dim=(-3, -2))
def invert_rot_mat(rot_mat: torch.Tensor) -> torch.Tensor:
return rot_mat.transpose(-1, -2)
def invert_quat(quat: torch.Tensor) -> torch.Tensor:
quat_prime = quat.clone()
quat_prime[..., 1:] *= -1
inv = quat_prime / torch.sum(quat**2, dim=-1, keepdim=True)
return inv
class Rotation:
"""
A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix
or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the
underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the
behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another.
"""
def __init__(
self,
rot_mats: Optional[torch.Tensor] = None,
quats: Optional[torch.Tensor] = None,
normalize_quats: bool = True,
):
"""
Args:
rot_mats:
A [*, 3, 3] rotation matrix tensor. Mutually exclusive with quats
quats:
A [*, 4] quaternion. Mutually exclusive with rot_mats. If normalize_quats is not True, must be a unit
quaternion
normalize_quats:
If quats is specified, whether to normalize quats
"""
if (rot_mats is None and quats is None) or (rot_mats is not None and quats is not None):
raise ValueError("Exactly one input argument must be specified")
if (rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or (quats is not None and quats.shape[-1] != 4):
raise ValueError("Incorrectly shaped rotation matrix or quaternion")
# Force full-precision
if quats is not None:
quats = quats.to(dtype=torch.float32)
if rot_mats is not None:
rot_mats = rot_mats.to(dtype=torch.float32)
if quats is not None and normalize_quats:
quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True)
self._rot_mats = rot_mats
self._quats = quats
@staticmethod
def identity(
shape,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rotation:
"""
Returns an identity Rotation.
Args:
shape:
The "shape" of the resulting Rotation object. See documentation for the shape property
dtype:
The torch dtype for the rotation
device:
The torch device for the new rotation
requires_grad:
Whether the underlying tensors in the new rotation object should require gradient computation
fmt:
One of "quat" or "rot_mat". Determines the underlying format of the new object's rotation
Returns:
A new identity rotation
"""
if fmt == "rot_mat":
rot_mats = identity_rot_mats(
shape,
dtype,
device,
requires_grad,
)
return Rotation(rot_mats=rot_mats, quats=None)
elif fmt == "quat":
quats = identity_quats(shape, dtype, device, requires_grad)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError(f"Invalid format: f{fmt}")
# Magic methods
def __getitem__(self, index: Any) -> Rotation:
"""
Allows torch-style indexing over the virtual shape of the rotation object. See documentation for the shape
property.
Args:
index:
A torch index. E.g. (1, 3, 2), or (slice(None,))
Returns:
The indexed rotation
"""
if type(index) != tuple:
index = (index,)
if self._rot_mats is not None:
rot_mats = self._rot_mats[index + (slice(None), slice(None))]
return Rotation(rot_mats=rot_mats)
elif self._quats is not None:
quats = self._quats[index + (slice(None),)]
return Rotation(quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __mul__(self, right: torch.Tensor) -> Rotation:
"""
Pointwise left multiplication of the rotation with a tensor. Can be used to e.g. mask the Rotation.
Args:
right:
The tensor multiplicand
Returns:
The product
"""
if not (isinstance(right, torch.Tensor)):
raise TypeError("The other multiplicand must be a Tensor")
if self._rot_mats is not None:
rot_mats = self._rot_mats * right[..., None, None]
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats * right[..., None]
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __rmul__(self, left: torch.Tensor) -> Rotation:
"""
Reverse pointwise multiplication of the rotation with a tensor.
Args:
left:
The left multiplicand
Returns:
The product
"""
return self.__mul__(left)
# Properties
@property
def shape(self) -> torch.Size:
"""
Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the
underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix
tensor, for example, the resulting shape would be [10].
Returns:
The virtual shape of the rotation object
"""
if self._rot_mats is not None:
return self._rot_mats.shape[:-2]
elif self._quats is not None:
return self._quats.shape[:-1]
else:
raise ValueError("Both rotations are None")
@property
def dtype(self) -> torch.dtype:
"""
Returns the dtype of the underlying rotation.
Returns:
The dtype of the underlying rotation
"""
if self._rot_mats is not None:
return self._rot_mats.dtype
elif self._quats is not None:
return self._quats.dtype
else:
raise ValueError("Both rotations are None")
@property
def device(self) -> torch.device:
"""
The device of the underlying rotation
Returns:
The device of the underlying rotation
"""
if self._rot_mats is not None:
return self._rot_mats.device
elif self._quats is not None:
return self._quats.device
else:
raise ValueError("Both rotations are None")
@property
def requires_grad(self) -> bool:
"""
Returns the requires_grad property of the underlying rotation
Returns:
The requires_grad property of the underlying tensor
"""
if self._rot_mats is not None:
return self._rot_mats.requires_grad
elif self._quats is not None:
return self._quats.requires_grad
else:
raise ValueError("Both rotations are None")
def get_rot_mats(self) -> torch.Tensor:
"""
Returns the underlying rotation as a rotation matrix tensor.
Returns:
The rotation as a rotation matrix tensor
"""
if self._rot_mats is not None:
return self._rot_mats
elif self._quats is not None:
return quat_to_rot(self._quats)
else:
raise ValueError("Both rotations are None")
def get_quats(self) -> torch.Tensor:
"""
Returns the underlying rotation as a quaternion tensor.
Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh.
Returns:
The rotation as a quaternion tensor.
"""
if self._rot_mats is not None:
return rot_to_quat(self._rot_mats)
elif self._quats is not None:
return self._quats
else:
raise ValueError("Both rotations are None")
def get_cur_rot(self) -> torch.Tensor:
"""
Return the underlying rotation in its current form
Returns:
The stored rotation
"""
if self._rot_mats is not None:
return self._rot_mats
elif self._quats is not None:
return self._quats
else:
raise ValueError("Both rotations are None")
# Rotation functions
def compose_q_update_vec(self, q_update_vec: torch.Tensor, normalize_quats: bool = True) -> Rotation:
"""
Returns a new quaternion Rotation after updating the current object's underlying rotation with a quaternion
update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the
desired (not necessarily unit) quaternion update.
Args:
q_update_vec:
A [*, 3] quaternion update tensor
normalize_quats:
Whether to normalize the output quaternion
Returns:
An updated Rotation
"""
quats = self.get_quats()
new_quats = quats + quat_multiply_by_vec(quats, q_update_vec)
return Rotation(
rot_mats=None,
quats=new_quats,
normalize_quats=normalize_quats,
)
def compose_r(self, r: Rotation) -> Rotation:
"""
Compose the rotation matrices of the current Rotation object with those of another.
Args:
r:
An update rotation object
Returns:
An updated rotation object
"""
r1 = self.get_rot_mats()
r2 = r.get_rot_mats()
new_rot_mats = rot_matmul(r1, r2)
return Rotation(rot_mats=new_rot_mats, quats=None)
def compose_q(self, r: Rotation, normalize_quats: bool = True) -> Rotation:
"""
Compose the quaternions of the current Rotation object with those of another.
Depending on whether either Rotation was initialized with quaternions, this function may call
torch.linalg.eigh.
Args:
r:
An update rotation object
Returns:
An updated rotation object
"""
q1 = self.get_quats()
q2 = r.get_quats()
new_quats = quat_multiply(q1, q2)
return Rotation(rot_mats=None, quats=new_quats, normalize_quats=normalize_quats)
def apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Apply the current Rotation as a rotation matrix to a set of 3D coordinates.
Args:
pts:
A [*, 3] set of points
Returns:
[*, 3] rotated points
"""
rot_mats = self.get_rot_mats()
return rot_vec_mul(rot_mats, pts)
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
The inverse of the apply() method.
Args:
pts:
A [*, 3] set of points
Returns:
[*, 3] inverse-rotated points
"""
rot_mats = self.get_rot_mats()
inv_rot_mats = invert_rot_mat(rot_mats)
return rot_vec_mul(inv_rot_mats, pts)
def invert(self) -> Rotation:
"""
Returns the inverse of the current Rotation.
Returns:
The inverse of the current Rotation
"""
if self._rot_mats is not None:
return Rotation(rot_mats=invert_rot_mat(self._rot_mats), quats=None)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=invert_quat(self._quats),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
# "Tensor" stuff
def unsqueeze(self, dim: int) -> Rotation:
"""
Analogous to torch.unsqueeze. The dimension is relative to the shape of the Rotation object.
Args:
dim: A positive or negative dimension index.
Returns:
The unsqueezed Rotation.
"""
if dim >= len(self.shape):
raise ValueError("Invalid dimension")
if self._rot_mats is not None:
rot_mats = self._rot_mats.unsqueeze(dim if dim >= 0 else dim - 2)
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats.unsqueeze(dim if dim >= 0 else dim - 1)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
@staticmethod
def cat(rs: Sequence[Rotation], dim: int) -> Rotation:
"""
Concatenates rotations along one of the batch dimensions. Analogous to torch.cat().
Note that the output of this operation is always a rotation matrix, regardless of the format of input
rotations.
Args:
rs:
A list of rotation objects
dim:
The dimension along which the rotations should be concatenated
Returns:
A concatenated Rotation object in rotation matrix format
"""
rot_mats = torch.cat(
[r.get_rot_mats() for r in rs],
dim=dim if dim >= 0 else dim - 2,
)
return Rotation(rot_mats=rot_mats, quats=None)
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rotation:
"""
Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can
be used e.g. to sum out a one-hot batch dimension.
Args:
fn:
A Tensor -> Tensor function to be mapped over the Rotation
Returns:
The transformed Rotation object
"""
if self._rot_mats is not None:
rot_mats = self._rot_mats.view(self._rot_mats.shape[:-2] + (9,))
rot_mats = torch.stack(list(map(fn, torch.unbind(rot_mats, dim=-1))), dim=-1)
rot_mats = rot_mats.view(rot_mats.shape[:-1] + (3, 3))
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = torch.stack(list(map(fn, torch.unbind(self._quats, dim=-1))), dim=-1)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def cuda(self) -> Rotation:
"""
Analogous to the cuda() method of torch Tensors
Returns:
A copy of the Rotation in CUDA memory
"""
if self._rot_mats is not None:
return Rotation(rot_mats=self._rot_mats.cuda(), quats=None)
elif self._quats is not None:
return Rotation(rot_mats=None, quats=self._quats.cuda(), normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def to(self, device: Optional[torch.device], dtype: Optional[torch.dtype]) -> Rotation:
"""
Analogous to the to() method of torch Tensors
Args:
device:
A torch device
dtype:
A torch dtype
Returns:
A copy of the Rotation using the new device and dtype
"""
if self._rot_mats is not None:
return Rotation(
rot_mats=self._rot_mats.to(device=device, dtype=dtype),
quats=None,
)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=self._quats.to(device=device, dtype=dtype),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
def detach(self) -> Rotation:
"""
Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph.
Returns:
A copy of the Rotation whose underlying Tensor has been detached from its torch graph
"""
if self._rot_mats is not None:
return Rotation(rot_mats=self._rot_mats.detach(), quats=None)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=self._quats.detach(),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
class Rigid:
"""
A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a
[*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch
dimensions of its component parts.
"""
def __init__(self, rots: Optional[Rotation], trans: Optional[torch.Tensor]):
"""
Args:
rots: A [*, 3, 3] rotation tensor
trans: A corresponding [*, 3] translation tensor
"""
# (we need device, dtype, etc. from at least one input)
batch_dims, dtype, device, requires_grad = None, None, None, None
if trans is not None:
batch_dims = trans.shape[:-1]
dtype = trans.dtype
device = trans.device
requires_grad = trans.requires_grad
elif rots is not None:
batch_dims = rots.shape
dtype = rots.dtype
device = rots.device
requires_grad = rots.requires_grad
else:
raise ValueError("At least one input argument must be specified")
if rots is None:
rots = Rotation.identity(
batch_dims,
dtype,
device,
requires_grad,
)
elif trans is None:
trans = identity_trans(
batch_dims,
dtype,
device,
requires_grad,
)
assert rots is not None
assert trans is not None
if (rots.shape != trans.shape[:-1]) or (rots.device != trans.device):
raise ValueError("Rots and trans incompatible")
# Force full precision. Happens to the rotations automatically.
trans = trans.to(dtype=torch.float32)
self._rots = rots
self._trans = trans
@staticmethod
def identity(
shape: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rigid:
"""
Constructs an identity transformation.
Args:
shape:
The desired shape
dtype:
The dtype of both internal tensors
device:
The device of both internal tensors
requires_grad:
Whether grad should be enabled for the internal tensors
Returns:
The identity transformation
"""
return Rigid(
Rotation.identity(shape, dtype, device, requires_grad, fmt=fmt),
identity_trans(shape, dtype, device, requires_grad),
)
def __getitem__(self, index: Any) -> Rigid:
"""
Indexes the affine transformation with PyTorch-style indices. The index is applied to the shared dimensions of
both the rotation and the translation.
E.g.::
r = Rotation(rot_mats=torch.rand(10, 10, 3, 3), quats=None) t = Rigid(r, torch.rand(10, 10, 3)) indexed =
t[3, 4:6] assert(indexed.shape == (2,)) assert(indexed.get_rots().shape == (2,))
assert(indexed.get_trans().shape == (2, 3))
Args:
index: A standard torch tensor index. E.g. 8, (10, None, 3),
or (3, slice(0, 1, None))
Returns:
The indexed tensor
"""
if type(index) != tuple:
index = (index,)
return Rigid(
self._rots[index],
self._trans[index + (slice(None),)],
)
def __mul__(self, right: torch.Tensor) -> Rigid:
"""
Pointwise left multiplication of the transformation with a tensor. Can be used to e.g. mask the Rigid.
Args:
right:
The tensor multiplicand
Returns:
The product
"""
if not (isinstance(right, torch.Tensor)):
raise TypeError("The other multiplicand must be a Tensor")
new_rots = self._rots * right
new_trans = self._trans * right[..., None]
return Rigid(new_rots, new_trans)
def __rmul__(self, left: torch.Tensor) -> Rigid:
"""
Reverse pointwise multiplication of the transformation with a tensor.
Args:
left:
The left multiplicand
Returns:
The product
"""
return self.__mul__(left)
@property
def shape(self) -> torch.Size:
"""
Returns the shape of the shared dimensions of the rotation and the translation.
Returns:
The shape of the transformation
"""
return self._trans.shape[:-1]
@property
def device(self) -> torch.device:
"""
Returns the device on which the Rigid's tensors are located.
Returns:
The device on which the Rigid's tensors are located
"""
return self._trans.device
def get_rots(self) -> Rotation:
"""
Getter for the rotation.
Returns:
The rotation object
"""
return self._rots
def get_trans(self) -> torch.Tensor:
"""
Getter for the translation.
Returns:
The stored translation
"""
return self._trans
def compose_q_update_vec(self, q_update_vec: torch.Tensor) -> Rigid:
"""
Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns
represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation.
Args:
q_vec: The quaternion update vector.
Returns:
The composed transformation.
"""
q_vec, t_vec = q_update_vec[..., :3], q_update_vec[..., 3:]
new_rots = self._rots.compose_q_update_vec(q_vec)
trans_update = self._rots.apply(t_vec)
new_translation = self._trans + trans_update
return Rigid(new_rots, new_translation)
def compose(self, r: Rigid) -> Rigid:
"""
Composes the current rigid object with another.
Args:
r:
Another Rigid object
Returns:
The composition of the two transformations
"""
new_rot = self._rots.compose_r(r._rots)
new_trans = self._rots.apply(r._trans) + self._trans
return Rigid(new_rot, new_trans)
def apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Applies the transformation to a coordinate tensor.
Args:
pts: A [*, 3] coordinate tensor.
Returns:
The transformed points.
"""
rotated = self._rots.apply(pts)
return rotated + self._trans
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Applies the inverse of the transformation to a coordinate tensor.
Args:
pts: A [*, 3] coordinate tensor
Returns:
The transformed points.
"""
pts = pts - self._trans
return self._rots.invert_apply(pts)
def invert(self) -> Rigid:
"""
Inverts the transformation.
Returns:
The inverse transformation.
"""
rot_inv = self._rots.invert()
trn_inv = rot_inv.apply(self._trans)
return Rigid(rot_inv, -1 * trn_inv)
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
"""
Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the
translation/rotation dimensions respectively.
Args:
fn:
A Tensor -> Tensor function to be mapped over the Rigid
Returns:
The transformed Rigid object
"""
new_rots = self._rots.map_tensor_fn(fn)
new_trans = torch.stack(list(map(fn, torch.unbind(self._trans, dim=-1))), dim=-1)
return Rigid(new_rots, new_trans)
def to_tensor_4x4(self) -> torch.Tensor:
"""
Converts a transformation to a homogenous transformation tensor.
Returns:
A [*, 4, 4] homogenous transformation tensor
"""
tensor = self._trans.new_zeros((*self.shape, 4, 4))
tensor[..., :3, :3] = self._rots.get_rot_mats()
tensor[..., :3, 3] = self._trans
tensor[..., 3, 3] = 1
return tensor
@staticmethod
def from_tensor_4x4(t: torch.Tensor) -> Rigid:
"""
Constructs a transformation from a homogenous transformation tensor.
Args:
t: [*, 4, 4] homogenous transformation tensor
Returns:
T object with shape [*]
"""
if t.shape[-2:] != (4, 4):
raise ValueError("Incorrectly shaped input tensor")
rots = Rotation(rot_mats=t[..., :3, :3], quats=None)
trans = t[..., :3, 3]
return Rigid(rots, trans)
def to_tensor_7(self) -> torch.Tensor:
"""
Converts a transformation to a tensor with 7 final columns, four for the quaternion followed by three for the
translation.
Returns:
A [*, 7] tensor representation of the transformation
"""
tensor = self._trans.new_zeros((*self.shape, 7))
tensor[..., :4] = self._rots.get_quats()
tensor[..., 4:] = self._trans
return tensor
@staticmethod
def from_tensor_7(t: torch.Tensor, normalize_quats: bool = False) -> Rigid:
if t.shape[-1] != 7:
raise ValueError("Incorrectly shaped input tensor")
quats, trans = t[..., :4], t[..., 4:]
rots = Rotation(rot_mats=None, quats=quats, normalize_quats=normalize_quats)
return Rigid(rots, trans)
@staticmethod
def from_3_points(
p_neg_x_axis: torch.Tensor, origin: torch.Tensor, p_xy_plane: torch.Tensor, eps: float = 1e-8
) -> Rigid:
"""
Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm.
Args:
p_neg_x_axis: [*, 3] coordinates
origin: [*, 3] coordinates used as frame origins
p_xy_plane: [*, 3] coordinates
eps: Small epsilon value
Returns:
A transformation object of shape [*]
"""
p_neg_x_axis_unbound = torch.unbind(p_neg_x_axis, dim=-1)
origin_unbound = torch.unbind(origin, dim=-1)
p_xy_plane_unbound = torch.unbind(p_xy_plane, dim=-1)
e0 = [c1 - c2 for c1, c2 in zip(origin_unbound, p_neg_x_axis_unbound)]
e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane_unbound, origin_unbound)]
denom = torch.sqrt(sum(c * c for c in e0) + eps * torch.ones_like(e0[0]))
e0 = [c / denom for c in e0]
dot = sum((c1 * c2 for c1, c2 in zip(e0, e1)))
e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)]
denom = torch.sqrt(sum((c * c for c in e1)) + eps * torch.ones_like(e1[0]))
e1 = [c / denom for c in e1]
e2 = [
e0[1] * e1[2] - e0[2] * e1[1],
e0[2] * e1[0] - e0[0] * e1[2],
e0[0] * e1[1] - e0[1] * e1[0],
]
rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1)
rots = rots.reshape(rots.shape[:-1] + (3, 3))
rot_obj = Rotation(rot_mats=rots, quats=None)
return Rigid(rot_obj, torch.stack(origin_unbound, dim=-1))
def unsqueeze(self, dim: int) -> Rigid:
"""
Analogous to torch.unsqueeze. The dimension is relative to the shared dimensions of the rotation/translation.
Args:
dim: A positive or negative dimension index.
Returns:
The unsqueezed transformation.
"""
if dim >= len(self.shape):
raise ValueError("Invalid dimension")
rots = self._rots.unsqueeze(dim)
trans = self._trans.unsqueeze(dim if dim >= 0 else dim - 1)
return Rigid(rots, trans)
@staticmethod
def cat(ts: Sequence[Rigid], dim: int) -> Rigid:
"""
Concatenates transformations along a new dimension.
Args:
ts:
A list of T objects
dim:
The dimension along which the transformations should be concatenated
Returns:
A concatenated transformation object
"""
rots = Rotation.cat([t._rots for t in ts], dim)
trans = torch.cat([t._trans for t in ts], dim=dim if dim >= 0 else dim - 1)
return Rigid(rots, trans)
def apply_rot_fn(self, fn: Callable[[Rotation], Rotation]) -> Rigid:
"""
Applies a Rotation -> Rotation function to the stored rotation object.
Args:
fn: A function of type Rotation -> Rotation
Returns:
A transformation object with a transformed rotation.
"""
return Rigid(fn(self._rots), self._trans)
def apply_trans_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
"""
Applies a Tensor -> Tensor function to the stored translation.
Args:
fn:
A function of type Tensor -> Tensor to be applied to the translation
Returns:
A transformation object with a transformed translation.
"""
return Rigid(self._rots, fn(self._trans))
def scale_translation(self, trans_scale_factor: float) -> Rigid:
"""
Scales the translation by a constant factor.
Args:
trans_scale_factor:
The constant factor
Returns:
A transformation object with a scaled translation.
"""
return self.apply_trans_fn(lambda t: t * trans_scale_factor)
def stop_rot_gradient(self) -> Rigid:
"""
Detaches the underlying rotation object
Returns:
A transformation object with detached rotations
"""
return self.apply_rot_fn(lambda r: r.detach())
@staticmethod
def make_transform_from_reference(
n_xyz: torch.Tensor, ca_xyz: torch.Tensor, c_xyz: torch.Tensor, eps: float = 1e-20
) -> Rigid:
"""
Returns a transformation object from reference coordinates.
Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard
way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
need to take care of such cases in your code.
Args:
n_xyz: A [*, 3] tensor of nitrogen xyz coordinates.
ca_xyz: A [*, 3] tensor of carbon alpha xyz coordinates.
c_xyz: A [*, 3] tensor of carbon xyz coordinates.
Returns:
A transformation object. After applying the translation and rotation to the reference backbone, the
coordinates will approximately equal to the input coordinates.
"""
translation = -1 * ca_xyz
n_xyz = n_xyz + translation
c_xyz = c_xyz + translation
c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)]
norm = torch.sqrt(eps + c_x**2 + c_y**2)
sin_c1 = -c_y / norm
cos_c1 = c_x / norm
c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3))
c1_rots[..., 0, 0] = cos_c1
c1_rots[..., 0, 1] = -1 * sin_c1
c1_rots[..., 1, 0] = sin_c1
c1_rots[..., 1, 1] = cos_c1
c1_rots[..., 2, 2] = 1
norm = torch.sqrt(eps + c_x**2 + c_y**2 + c_z**2)
sin_c2 = c_z / norm
cos_c2 = torch.sqrt(c_x**2 + c_y**2) / norm
c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
c2_rots[..., 0, 0] = cos_c2
c2_rots[..., 0, 2] = sin_c2
c2_rots[..., 1, 1] = 1
c2_rots[..., 2, 0] = -1 * sin_c2
c2_rots[..., 2, 2] = cos_c2
c_rots = rot_matmul(c2_rots, c1_rots)
n_xyz = rot_vec_mul(c_rots, n_xyz)
_, n_y, n_z = [n_xyz[..., i] for i in range(3)]
norm = torch.sqrt(eps + n_y**2 + n_z**2)
sin_n = -n_z / norm
cos_n = n_y / norm
n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
n_rots[..., 0, 0] = 1
n_rots[..., 1, 1] = cos_n
n_rots[..., 1, 2] = -1 * sin_n
n_rots[..., 2, 1] = sin_n
n_rots[..., 2, 2] = cos_n
rots = rot_matmul(n_rots, c_rots)
rots = rots.transpose(-1, -2)
translation = -1 * translation
rot_obj = Rotation(rot_mats=rots, quats=None)
return Rigid(rot_obj, translation)
def cuda(self) -> Rigid:
"""
Moves the transformation object to GPU memory
Returns:
A version of the transformation on GPU
"""
return Rigid(self._rots.cuda(), self._trans.cuda())
| transformers/src/transformers/models/esm/openfold_utils/rigid_utils.py/0 | {
"file_path": "transformers/src/transformers/models/esm/openfold_utils/rigid_utils.py",
"repo_id": "transformers",
"token_count": 19454
} | 307 |
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Flaubert model, based on XLM."""
import itertools
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import gelu
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
_CONFIG_FOR_DOC = "FlaubertConfig"
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"flaubert/flaubert_small_cased",
"flaubert/flaubert_base_uncased",
"flaubert/flaubert_base_cased",
"flaubert/flaubert_large_cased",
# See all Flaubert models at https://huggingface.co/models?filter=flaubert
]
# Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings
def create_sinusoidal_embeddings(n_pos, dim, out):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
out.requires_grad = False
# Copied from transformers.models.xlm.modeling_xlm.get_masks
def get_masks(slen, lengths, causal, padding_mask=None):
"""
Generate hidden states mask, and optionally an attention mask.
"""
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
if padding_mask is not None:
mask = padding_mask
else:
assert lengths.max().item() <= slen
mask = alen < lengths[:, None]
# attention mask is the same as mask, or triangular inferior attention (causal)
bs = lengths.size(0)
if causal:
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
else:
attn_mask = mask
# sanity check
assert mask.size() == (bs, slen)
assert causal is False or attn_mask.size() == (bs, slen, slen)
return mask, attn_mask
# Copied from transformers.models.xlm.modeling_xlm.MultiHeadAttention
class MultiHeadAttention(nn.Module):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config):
super().__init__()
self.layer_id = next(MultiHeadAttention.NEW_ID)
self.dim = dim
self.n_heads = n_heads
self.dropout = config.attention_dropout
assert self.dim % self.n_heads == 0
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
self.out_lin = nn.Linear(dim, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
attention_head_size = self.dim // self.n_heads
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
# Prune linear layers
self.q_lin = prune_linear_layer(self.q_lin, index)
self.k_lin = prune_linear_layer(self.k_lin, index)
self.v_lin = prune_linear_layer(self.v_lin, index)
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.dim = attention_head_size * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = input.size()
if kv is None:
klen = qlen if cache is None else cache["slen"] + qlen
else:
klen = kv.size(1)
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = self.dim // n_heads
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
def shape(x):
"""projection"""
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x):
"""compute context"""
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen)
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
outputs = (self.out_lin(context),)
if output_attentions:
outputs = outputs + (weights,)
return outputs
# Copied from transformers.models.xlm.modeling_xlm.TransformerFFN
class TransformerFFN(nn.Module):
def __init__(self, in_dim, dim_hidden, out_dim, config):
super().__init__()
self.dropout = config.dropout
self.lin1 = nn.Linear(in_dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, out_dim)
self.act = gelu if config.gelu_activation else nn.functional.relu
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
def forward(self, input):
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
def ff_chunk(self, input):
x = self.lin1(input)
x = self.act(x)
x = self.lin2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return x
FLAUBERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAUBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
`[0, ..., input_ids.size(-1)]`:
cache (`Dict[str, torch.FloatTensor]`, *optional*):
Dictionary strings to `torch.FloatTensor` that contains precomputed hidden-states (key and values in the
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
decoding. The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_xlm.XLMPredLayer with XLM->Flaubert
class FlaubertPredLayer(nn.Module):
"""
Prediction layer (cross_entropy or adaptive_softmax).
"""
def __init__(self, config):
super().__init__()
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
dim = config.emb_dim
if config.asm is False:
self.proj = nn.Linear(dim, config.n_words, bias=True)
else:
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
in_features=dim,
n_classes=config.n_words,
cutoffs=config.asm_cutoffs,
div_value=config.asm_div_value,
head_bias=True, # default is False
)
def forward(self, x, y=None):
"""Compute the loss, and optionally the scores."""
outputs = ()
if self.asm is False:
scores = self.proj(x)
outputs = (scores,) + outputs
if y is not None:
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean")
outputs = (loss,) + outputs
else:
scores = self.proj.log_prob(x)
outputs = (scores,) + outputs
if y is not None:
_, loss = self.proj(x, y)
outputs = (loss,) + outputs
return outputs
# Copied from transformers.models.xlm.modeling_xlm.XLMPreTrainedModel with XLM->Flaubert
class FlaubertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlaubertConfig
load_tf_weights = None
base_model_prefix = "transformer"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def dummy_inputs(self):
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
if self.config.use_lang_emb and self.config.n_langs > 1:
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
else:
langs_list = None
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list}
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Embedding):
if self.config is not None and self.config.embed_init_std is not None:
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, nn.Linear):
if self.config is not None and self.config.init_std is not None:
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
if module.bias is not None:
nn.init.constant_(module.bias, 0.0)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class FlaubertModel(FlaubertPreTrainedModel):
def __init__(self, config): # , dico, is_encoder, with_output):
super().__init__(config)
# encoder / decoder, output layer
self.is_encoder = config.is_encoder
self.is_decoder = not config.is_encoder
if self.is_decoder:
raise NotImplementedError("Currently Flaubert can only be used as an encoder")
# self.with_output = with_output
self.causal = config.causal
# dictionary / languages
self.n_langs = config.n_langs
self.use_lang_emb = config.use_lang_emb
self.n_words = config.n_words
self.eos_index = config.eos_index
self.pad_index = config.pad_index
# self.dico = dico
# self.id2lang = config.id2lang
# self.lang2id = config.lang2id
# assert len(self.dico) == self.n_words
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
# model parameters
self.dim = config.emb_dim # 512 by default
self.hidden_dim = self.dim * 4 # 2048 by default
self.n_heads = config.n_heads # 8 by default
self.n_layers = config.n_layers
self.dropout = config.dropout
self.attention_dropout = config.attention_dropout
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads"
# embeddings
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
if config.sinusoidal_embeddings:
create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
if config.n_langs > 1 and config.use_lang_emb:
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
# transformer layers
self.attentions = nn.ModuleList()
self.layer_norm1 = nn.ModuleList()
self.ffns = nn.ModuleList()
self.layer_norm2 = nn.ModuleList()
# if self.is_decoder:
# self.layer_norm15 = nn.ModuleList()
# self.encoder_attn = nn.ModuleList()
for _ in range(self.n_layers):
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# if self.is_decoder:
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
if hasattr(config, "pruned_heads"):
pruned_heads = config.pruned_heads.copy().items()
config.pruned_heads = {}
for layer, heads in pruned_heads:
if self.attentions[int(layer)].n_heads == config.n_heads:
self.prune_heads({int(layer): list(map(int, heads))})
# Initialize weights and apply final processing
self.post_init()
self.layerdrop = getattr(config, "layerdrop", 0.0)
self.pre_norm = getattr(config, "pre_norm", False)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
# Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.attentions[layer].prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
lengths: Optional[torch.LongTensor] = None,
cache: Optional[Dict[str, torch.FloatTensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# removed: src_enc=None, src_len=None
if input_ids is not None:
bs, slen = input_ids.size()
else:
bs, slen = inputs_embeds.size()[:-1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if lengths is None:
if input_ids is not None:
lengths = (input_ids != self.pad_index).sum(dim=1).long()
else:
lengths = torch.tensor([slen] * bs, device=device)
# mask = input_ids != self.pad_index
# check inputs
assert lengths.size(0) == bs
assert lengths.max().item() <= slen
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
# assert (src_enc is None) == (src_len is None)
# if src_enc is not None:
# assert self.is_decoder
# assert src_enc.size(0) == bs
# generate masks
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
# if self.is_decoder and src_enc is not None:
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
# Setting the position-ids to the registered buffer in constructor, it helps
# when tracing the model without passing position-ids, solves
# isues similar to issue #5664
if position_ids is None:
if hasattr(self, "position_ids"):
position_ids = self.position_ids[:, :slen]
position_ids = position_ids.expand((bs, slen))
else:
position_ids = torch.arange(slen, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand((bs, slen))
else:
assert position_ids.size() == (bs, slen) # (slen, bs)
# position_ids = position_ids.transpose(0, 1)
# langs
if langs is not None:
assert langs.size() == (bs, slen) # (slen, bs)
# langs = langs.transpose(0, 1)
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.n_layers)
# do not recompute cached elements
if cache is not None and input_ids is not None:
_slen = slen - cache["slen"]
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
if langs is not None:
langs = langs[:, -_slen:]
mask = mask[:, -_slen:]
attn_mask = attn_mask[:, -_slen:]
# embeddings
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds)
if langs is not None and self.use_lang_emb and self.config.n_langs > 1:
tensor = tensor + self.lang_embeddings(langs)
if token_type_ids is not None:
tensor = tensor + self.embeddings(token_type_ids)
tensor = self.layer_norm_emb(tensor)
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training)
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
# transformer layers
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
for i in range(self.n_layers):
# LayerDrop
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# self attention
if not self.pre_norm:
attn_outputs = self.attentions[i](
tensor,
attn_mask,
cache=cache,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
tensor = tensor + attn
tensor = self.layer_norm1[i](tensor)
else:
tensor_normalized = self.layer_norm1[i](tensor)
attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i])
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
tensor = tensor + attn
# encoder attention (for decoder only)
# if self.is_decoder and src_enc is not None:
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
# tensor = tensor + attn
# tensor = self.layer_norm15[i](tensor)
# FFN
if not self.pre_norm:
tensor = tensor + self.ffns[i](tensor)
tensor = self.layer_norm2[i](tensor)
else:
tensor_normalized = self.layer_norm2[i](tensor)
tensor = tensor + self.ffns[i](tensor_normalized)
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
# Add last hidden state
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# update cache length
if cache is not None:
cache["slen"] += tensor.size(1)
# move back sequence length to dimension 0
# tensor = tensor.transpose(0, 1)
if not return_dict:
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
@add_start_docstrings(
"""
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
FLAUBERT_START_DOCSTRING,
)
# Copied transformers.models.xlm.modeling_xlm.XLMWithLMHeadModel with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertWithLMHeadModel(FlaubertPreTrainedModel):
_tied_weights_keys = ["pred_layer.proj.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = FlaubertModel(config)
self.pred_layer = FlaubertPredLayer(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.pred_layer.proj
def set_output_embeddings(self, new_embeddings):
self.pred_layer.proj = new_embeddings
def prepare_inputs_for_generation(self, input_ids, **kwargs):
mask_token_id = self.config.mask_token_id
lang_id = self.config.lang_id
effective_batch_size = input_ids.shape[0]
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device)
input_ids = torch.cat([input_ids, mask_token], dim=1)
if lang_id is not None:
langs = torch.full_like(input_ids, lang_id)
else:
langs = None
return {"input_ids": input_ids, "langs": langs}
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<special1>",
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided.
if not return_dict:
return outputs + transformer_outputs[1:]
return MaskedLMOutput(
loss=outputs[0] if labels is not None else None,
logits=outputs[0] if labels is None else outputs[1],
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
e.g. for GLUE tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied transformers.models.xlm.modeling_xlm.XLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForSequenceClassification(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.transformer = FlaubertModel(config)
self.sequence_summary = SequenceSummary(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_xlm.XLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForTokenClassification(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = FlaubertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_xlm.XLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = FlaubertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAUBERT_START_DOCSTRING,
)
@dataclass
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert
class FlaubertForQuestionAnsweringOutput(ModelOutput):
"""
Base class for outputs of question answering models using a `SquadHead`.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top config.start_n_top start token possibilities (beam-search).
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
(beam-search).
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_top_log_probs: Optional[torch.FloatTensor] = None
start_top_index: Optional[torch.LongTensor] = None
end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnswering with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForQuestionAnswering(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = FlaubertModel(config)
self.qa_outputs = SQuADHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
is_impossible: Optional[torch.Tensor] = None,
cls_index: Optional[torch.Tensor] = None,
p_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels whether a question has an answer or no answer (SQuAD 2.0)
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the classification token to use as input for computing plausibility of the
answer.
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
masked. 0.0 mean token is not masked.
Returns:
Example:
```python
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
>>> import torch
>>> tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048")
>>> model = XLMForQuestionAnswering.from_pretrained("xlm-mlm-en-2048")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
outputs = self.qa_outputs(
output,
start_positions=start_positions,
end_positions=end_positions,
cls_index=cls_index,
is_impossible=is_impossible,
p_mask=p_mask,
return_dict=return_dict,
)
if not return_dict:
return outputs + transformer_outputs[1:]
return FlaubertForQuestionAnsweringOutput(
loss=outputs.loss,
start_top_log_probs=outputs.start_top_log_probs,
start_top_index=outputs.start_top_index,
end_top_log_probs=outputs.end_top_log_probs,
end_top_index=outputs.end_top_index,
cls_logits=outputs.cls_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformer.models.xlm.modeling_xlm.XLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForMultipleChoice(FlaubertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = FlaubertModel(config)
self.sequence_summary = SequenceSummary(config)
self.logits_proj = nn.Linear(config.num_labels, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
langs = langs.view(-1, langs.size(-1)) if langs is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
if lengths is not None:
logger.warning(
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
"attention mask instead."
)
lengths = None
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
| transformers/src/transformers/models/flaubert/modeling_flaubert.py/0 | {
"file_path": "transformers/src/transformers/models/flaubert/modeling_flaubert.py",
"repo_id": "transformers",
"token_count": 25255
} | 308 |
# coding=utf-8
# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for FNet model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
FNetTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
SPIECE_UNDERLINE = "โ"
class FNetTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" FNetTokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`AlbertTokenizerFast`]. Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `True`):
Whether or not to keep accents when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "token_type_ids"]
slow_tokenizer_class = FNetTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| transformers/src/transformers/models/fnet/tokenization_fnet_fast.py/0 | {
"file_path": "transformers/src/transformers/models/fnet/tokenization_fnet_fast.py",
"repo_id": "transformers",
"token_count": 3566
} | 309 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for Funnel Transformer."""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_model_names = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for name in _model_names}
PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names}
class FunnelTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
bos_token (`str`, `optional`, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, `optional`, defaults to `"</s>"`):
The end of sentence token.
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
slow_tokenizer_class = FunnelTokenizer
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
cls_token_type_id: int = 2
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
clean_text=True,
tokenize_chinese_chars=True,
strip_accents=None,
wordpieces_prefix="##",
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
bos_token=bos_token,
eos_token=eos_token,
clean_text=clean_text,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
wordpieces_prefix=wordpieces_prefix,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Funnel sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
Transformer sequence pair mask has the following format:
```
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
| transformers/src/transformers/models/funnel/tokenization_funnel_fast.py/0 | {
"file_path": "transformers/src/transformers/models/funnel/tokenization_funnel_fast.py",
"repo_id": "transformers",
"token_count": 4905
} | 310 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for GLPN."""
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class GLPNImageProcessor(BaseImageProcessor):
r"""
Constructs a GLPN image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
size_divisor (`int`, *optional*, defaults to 32):
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
overridden by `do_rescale` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size_divisor: int = 32,
resample=PILImageResampling.BILINEAR,
do_rescale: bool = True,
**kwargs,
) -> None:
self.do_resize = do_resize
self.do_rescale = do_rescale
self.size_divisor = size_divisor
self.resample = resample
super().__init__(**kwargs)
def resize(
self,
image: np.ndarray,
size_divisor: int,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
Args:
image (`np.ndarray`):
The image to resize.
size_divisor (`int`):
The image is resized so its height and width are rounded down to the closest multiple of
`size_divisor`.
resample:
`PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If `None`, the channel dimension format of the input
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not set, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The resized image.
"""
height, width = get_image_size(image, channel_dim=input_data_format)
# Rounds the height and width down to the closest multiple of size_divisor
new_h = height // size_divisor * size_divisor
new_w = width // size_divisor * size_divisor
image = resize(
image,
(new_h, new_w),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
def preprocess(
self,
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
do_resize: Optional[bool] = None,
size_divisor: Optional[int] = None,
resample=None,
do_rescale: Optional[bool] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess the given images.
Args:
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
When `do_resize` is `True`, images are resized so their height and width are rounded down to the
closest multiple of `size_divisor`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
`PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
resample = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("size_divisor is required for resizing")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError("Invalid image(s)")
# All transformations expect numpy arrays.
images = [to_numpy_array(img) for img in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/glpn/image_processing_glpn.py/0 | {
"file_path": "transformers/src/transformers/models/glpn/image_processing_glpn.py",
"repo_id": "transformers",
"token_count": 4257
} | 311 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPT Neo model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json",
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class GPTNeoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT
Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with
the defaults will yield a similar configuration to that of the GPTNeo
[EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different
tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_size (`int`, *optional*, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
num_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
attention_types (`List`, *optional*, defaults to `[[['global', 'local'], 12]]`):
The type of attention for each layer in a `List` of the following format `[[["attention_type"],
num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the
value of `attention_type` from `["global", "local"]`
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
window_size (`int`, *optional*, defaults to 256):
The size of the sliding window for local attention.
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
resid_dropout (`float`, *optional*, defaults to 0.0):
Residual dropout used in the attention pattern.
embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The
dropout ratio for the hidden layer.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
bos_token_id (`int`, *optional*, defaults to 50256):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 50256):
The id of the end of sentence token in the vocabulary.
Example:
```python
>>> from transformers import GPTNeoConfig, GPTNeoModel
>>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration
>>> configuration = GPTNeoConfig()
>>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration
>>> model = GPTNeoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt_neo"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=50257,
max_position_embeddings=2048,
hidden_size=2048,
num_layers=24,
attention_types=[[["global", "local"], 12]],
num_heads=16,
intermediate_size=None,
window_size=256,
activation_function="gelu_new",
resid_dropout=0.0,
embed_dropout=0.0,
attention_dropout=0.0,
classifier_dropout=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.intermediate_size = intermediate_size
self.window_size = window_size
self.activation_function = activation_function
self.resid_dropout = resid_dropout
self.embed_dropout = embed_dropout
self.attention_dropout = attention_dropout
self.classifier_dropout = classifier_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.attention_types = attention_types
self.attention_layers = self.expand_attention_types_params(attention_types)
if len(self.attention_layers) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers)}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument."
)
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@staticmethod
def expand_attention_types_params(attention_types):
attentions = []
for item in attention_types:
for _ in range(item[1]):
attentions.extend(item[0])
return attentions
def custom_unfold(input, dimension, size, step):
"""Custom torch.Tensor.unfold implementation to enable the export to ONNX."""
import torch
shape = input.size()
rank = len(shape)
sizedim = shape[dimension]
low_indices = torch.arange(0, sizedim, step)
min_length = torch.div(sizedim - size, step, rounding_mode="floor") + 1
indices = torch.arange(size) + low_indices[:min_length][:, None]
s = [slice(None)] * rank
s[dimension] = indices
sliced = input[s]
perm = list(range(0, rank + 1))
perm.append(perm.pop(dimension + 1))
return sliced.permute(perm)
def custom_get_block_length_and_num_blocks(seq_length, window_size):
"""
Custom implementation for GPTNeoAttentionMixin._get_block_length_and_num_blocks to enable the export to ONNX as
original implementation uses Python variables and control flow.
"""
import torch
candidates = torch.arange(1, window_size)
remainders = torch.remainder(seq_length, candidates)
divisor_indices = remainders == 0
divisors = candidates[divisor_indices]
largest_divisor = torch.max(divisors)
return largest_divisor, torch.div(seq_length, largest_divisor, rounding_mode="floor")
class GPTNeoOnnxConfig(OnnxConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_attention_heads(self) -> int:
return self._config.num_heads
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
| transformers/src/transformers/models/gpt_neo/configuration_gpt_neo.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_neo/configuration_gpt_neo.py",
"repo_id": "transformers",
"token_count": 4837
} | 312 |
# coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPT-J model configuration"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
logger = logging.get_logger(__name__)
GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class GPTJConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GPT-J
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50400):
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTJModel`].
n_positions (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
rotary_dim (`int`, *optional*, defaults to 64):
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import GPTJModel, GPTJConfig
>>> # Initializing a GPT-J 6B configuration
>>> configuration = GPTJConfig()
>>> # Initializing a model from the configuration
>>> model = GPTJModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gptj"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50400,
n_positions=2048,
n_embd=4096,
n_layer=28,
n_head=16,
rotary_dim=64,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.rotary_dim = rotary_dim
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
)
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
class GPTJOnnxConfig(OnnxConfigWithPast):
def __init__(
self,
config: PretrainedConfig,
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
| transformers/src/transformers/models/gptj/configuration_gptj.py/0 | {
"file_path": "transformers/src/transformers/models/gptj/configuration_gptj.py",
"repo_id": "transformers",
"token_count": 3773
} | 313 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert GroupViT checkpoints from the original repository.
URL: https://github.com/NVlabs/GroupViT
"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def rename_key(name):
# vision encoder
if "img_encoder.pos_embed" in name:
name = name.replace("img_encoder.pos_embed", "vision_model.embeddings.position_embeddings")
if "img_encoder.patch_embed.proj" in name:
name = name.replace("img_encoder.patch_embed.proj", "vision_model.embeddings.patch_embeddings.projection")
if "img_encoder.patch_embed.norm" in name:
name = name.replace("img_encoder.patch_embed.norm", "vision_model.embeddings.layernorm")
if "img_encoder.layers" in name:
name = name.replace("img_encoder.layers", "vision_model.encoder.stages")
if "blocks" in name and "res" not in name:
name = name.replace("blocks", "layers")
if "attn" in name and "pre_assign" not in name:
name = name.replace("attn", "self_attn")
if "proj" in name and "self_attn" in name and "text" not in name:
name = name.replace("proj", "out_proj")
if "pre_assign_attn.attn.proj" in name:
name = name.replace("pre_assign_attn.attn.proj", "pre_assign_attn.attn.out_proj")
if "norm1" in name:
name = name.replace("norm1", "layer_norm1")
if "norm2" in name and "pre_assign" not in name:
name = name.replace("norm2", "layer_norm2")
if "img_encoder.norm" in name:
name = name.replace("img_encoder.norm", "vision_model.layernorm")
# text encoder
if "text_encoder.token_embedding" in name:
name = name.replace("text_encoder.token_embedding", "text_model.embeddings.token_embedding")
if "text_encoder.positional_embedding" in name:
name = name.replace("text_encoder.positional_embedding", "text_model.embeddings.position_embedding.weight")
if "text_encoder.transformer.resblocks." in name:
name = name.replace("text_encoder.transformer.resblocks.", "text_model.encoder.layers.")
if "ln_1" in name:
name = name.replace("ln_1", "layer_norm1")
if "ln_2" in name:
name = name.replace("ln_2", "layer_norm2")
if "c_fc" in name:
name = name.replace("c_fc", "fc1")
if "c_proj" in name:
name = name.replace("c_proj", "fc2")
if "text_encoder" in name:
name = name.replace("text_encoder", "text_model")
if "ln_final" in name:
name = name.replace("ln_final", "final_layer_norm")
# projection layers
if "img_projector.linear_hidden." in name:
name = name.replace("img_projector.linear_hidden.", "visual_projection.")
if "img_projector.linear_out." in name:
name = name.replace("img_projector.linear_out.", "visual_projection.3.")
if "text_projector.linear_hidden" in name:
name = name.replace("text_projector.linear_hidden", "text_projection")
if "text_projector.linear_out" in name:
name = name.replace("text_projector.linear_out", "text_projection.3")
return name
def convert_state_dict(orig_state_dict, config):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
key_split = key.split(".")
stage_num, layer_num = int(key_split[2]), int(key_split[4])
dim = config.vision_config.hidden_size
if "weight" in key:
orig_state_dict[
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.q_proj.weight"
] = val[:dim, :]
orig_state_dict[
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.k_proj.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.v_proj.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.q_proj.bias"
] = val[:dim]
orig_state_dict[
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.k_proj.bias"
] = val[dim : dim * 2]
orig_state_dict[
f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.v_proj.bias"
] = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
key_split = key.split(".")
layer_num = int(key_split[3])
dim = config.text_config.hidden_size
if "weight" in key:
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :]
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[
dim : dim * 2, :
]
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :]
else:
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim]
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2]
orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:]
else:
new_name = rename_key(key)
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
orig_state_dict[new_name] = val.squeeze_()
else:
orig_state_dict[new_name] = val
return orig_state_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_groupvit_checkpoint(
checkpoint_path, pytorch_dump_folder_path, model_name="groupvit-gcc-yfcc", push_to_hub=False
):
"""
Copy/paste/tweak model's weights to the Transformers design.
"""
config = GroupViTConfig()
model = GroupViTModel(config).eval()
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
new_state_dict = convert_state_dict(state_dict, config)
missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False)
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(unexpected_keys) == 0)
# verify result
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
image = prepare_img()
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
if model_name == "groupvit-gcc-yfcc":
expected_logits = torch.tensor([[13.3523, 6.3629]])
elif model_name == "groupvit-gcc-redcaps":
expected_logits = torch.tensor([[16.1873, 8.6230]])
else:
raise ValueError(f"Model name {model_name} not supported.")
assert torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3)
processor.save_pretrained(pytorch_dump_folder_path)
model.save_pretrained(pytorch_dump_folder_path)
print("Successfully saved processor and model to", pytorch_dump_folder_path)
if push_to_hub:
print("Pushing to the hub...")
processor.push_to_hub(model_name, organization="nielsr")
model.push_to_hub(model_name, organization="nielsr")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model."
)
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint")
parser.add_argument(
"--model_name",
default="groupvit-gccy-fcc",
type=str,
help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the ๐ค hub using the provided `model_name`.",
)
args = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| transformers/src/transformers/models/groupvit/convert_groupvit_nvlab_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/groupvit/convert_groupvit_nvlab_to_hf.py",
"repo_id": "transformers",
"token_count": 4252
} | 314 |
# coding=utf-8
# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao,
# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team.
# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import decimal
import numpy as np
import torch
from torch import nn
from torch.autograd import Function
from ...utils import logging
logger = logging.get_logger(__name__)
class QuantEmbedding(nn.Module):
"""
Quantized version of `torch.nn.Embedding`. Adds quantization-specific arguments on top of `torch.nn.Embedding`.
Args:
weight_bit (`int`, *optional*, defaults to `8`):
Bitwidth for the quantized weight.
momentum (`float`, *optional*, defaults to `0.95`):
Momentum for updating the activation quantization range.
quant_mode (`bool`, *optional*, defaults to `False`):
Whether or not the layer is quantized.
"""
def __init__(
self,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
weight_bit=8,
momentum=0.95,
quant_mode=False,
):
super().__init__()
self.num_ = num_embeddings
self.dim = embedding_dim
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
self.sparse = sparse
self.weight = nn.Parameter(torch.zeros([num_embeddings, embedding_dim]))
self.register_buffer("weight_scaling_factor", torch.zeros(1))
self.register_buffer("weight_integer", torch.zeros_like(self.weight))
self.weight_bit = weight_bit
self.momentum = momentum
self.quant_mode = quant_mode
self.percentile_mode = False
self.weight_function = SymmetricQuantFunction.apply
def forward(self, x, positions=None, incremental_state=None):
if not self.quant_mode:
return (
nn.functional.embedding(
x,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
),
None,
)
w = self.weight
w_transform = w.data.detach()
w_min = w_transform.min().expand(1)
w_max = w_transform.max().expand(1)
self.weight_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, False)
self.weight_integer = self.weight_function(
self.weight, self.weight_bit, self.percentile_mode, self.weight_scaling_factor
)
emb_int = nn.functional.embedding(
x,
self.weight_integer,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return emb_int * self.weight_scaling_factor, self.weight_scaling_factor
class QuantAct(nn.Module):
"""
Quantizes the given activation.
Args:
activation_bit (`int`):
Bitwidth for the quantized activation.
act_range_momentum (`float`, *optional*, defaults to `0.95`):
Momentum for updating the activation quantization range.
per_channel (`bool`, *optional*, defaults to `False`):
Whether to or not use channel-wise quantization.
channel_len (`int`, *optional*):
Specify the channel length when set the *per_channel* True.
quant_mode (`bool`, *optional*, defaults to `False`):
Whether or not the layer is quantized.
"""
def __init__(self, activation_bit, act_range_momentum=0.95, per_channel=False, channel_len=None, quant_mode=False):
super().__init__()
self.activation_bit = activation_bit
self.act_range_momentum = act_range_momentum
self.quant_mode = quant_mode
self.per_channel = per_channel
self.percentile = False
self.act_function = SymmetricQuantFunction.apply
if not self.per_channel:
self.register_buffer("x_min", torch.zeros(1))
self.register_buffer("x_max", torch.zeros(1))
self.register_buffer("act_scaling_factor", torch.zeros(1))
self.x_min -= 1e-5
self.x_max += 1e-5
else:
raise NotImplementedError("per-channel mode is not currently supported for activation.")
def __repr__(self):
return (
f"{self.__class__.__name__}(activation_bit={self.activation_bit}, "
f"quant_mode: {self.quant_mode}, Act_min: {self.x_min.item():.2f}, "
f"Act_max: {self.x_max.item():.2f})"
)
def forward(
self,
x,
pre_act_scaling_factor=None,
identity=None,
identity_scaling_factor=None,
specified_min=None,
specified_max=None,
):
x_act = x if identity is None else identity + x
# collect running stats if training
if self.training:
assert not self.percentile, "percentile mode is not currently supported for activation."
assert not self.per_channel, "per-channel mode is not currently supported for activation."
x_min = x_act.data.min()
x_max = x_act.data.max()
assert (
x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0
), "NaN detected when computing min/max of the activation"
# Initialization
if self.x_min.min() > -1.1e-5 and self.x_max.max() < 1.1e-5:
self.x_min = self.x_min + x_min
self.x_max = self.x_max + x_max
# exponential moving average (EMA)
# use momentum to prevent the quantized values change greatly every iteration
elif self.act_range_momentum == -1:
self.x_min = torch.min(self.x_min, x_min)
self.x_max = torch.max(self.x_max, x_max)
else:
self.x_min = self.x_min * self.act_range_momentum + x_min * (1 - self.act_range_momentum)
self.x_max = self.x_max * self.act_range_momentum + x_max * (1 - self.act_range_momentum)
if not self.quant_mode:
return x_act, None
x_min = self.x_min if specified_min is None else specified_min
x_max = self.x_max if specified_max is None else specified_max
self.act_scaling_factor = symmetric_linear_quantization_params(
self.activation_bit, x_min, x_max, per_channel=self.per_channel
)
if pre_act_scaling_factor is None:
# this is for the input quantization
quant_act_int = self.act_function(x, self.activation_bit, self.percentile, self.act_scaling_factor)
else:
quant_act_int = FixedPointMul.apply(
x,
pre_act_scaling_factor,
self.activation_bit,
self.act_scaling_factor,
identity,
identity_scaling_factor,
)
correct_output_scale = self.act_scaling_factor.view(-1)
return quant_act_int * correct_output_scale, self.act_scaling_factor
class QuantLinear(nn.Module):
"""
Quantized version of `torch.nn.Linear`. Adds quantization-specific arguments on top of `torch.nn.Linear`.
Args:
weight_bit (`int`, *optional*, defaults to `8`):
Bitwidth for the quantized weight.
bias_bit (`int`, *optional*, defaults to `32`):
Bitwidth for the quantized bias.
per_channel (`bool`, *optional*, defaults to `False`):
Whether or not to use channel-wise quantization.
quant_mode (`bool`, *optional*, defaults to `False`):
Whether or not the layer is quantized.
"""
def __init__(
self, in_features, out_features, bias=True, weight_bit=8, bias_bit=32, per_channel=False, quant_mode=False
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.zeros([out_features, in_features]))
self.register_buffer("weight_integer", torch.zeros_like(self.weight))
self.register_buffer("fc_scaling_factor", torch.zeros(self.out_features))
if bias:
self.bias = nn.Parameter(torch.zeros(out_features))
self.register_buffer("bias_integer", torch.zeros_like(self.bias))
self.weight_bit = weight_bit
self.quant_mode = quant_mode
self.per_channel = per_channel
self.bias_bit = bias_bit
self.quant_mode = quant_mode
self.percentile_mode = False
self.weight_function = SymmetricQuantFunction.apply
def __repr__(self):
s = super().__repr__()
s = f"({s} weight_bit={self.weight_bit}, quant_mode={self.quant_mode})"
return s
def forward(self, x, prev_act_scaling_factor=None):
if not self.quant_mode:
return nn.functional.linear(x, weight=self.weight, bias=self.bias), None
# assert that prev_act_scaling_factor is a scalar tensor
assert prev_act_scaling_factor is not None and prev_act_scaling_factor.shape == (1,), (
"Input activation to the QuantLinear layer should be globally (non-channel-wise) quantized. "
"Please add a QuantAct layer with `per_channel = True` before this QuantAct layer"
)
w = self.weight
w_transform = w.data.detach()
if self.per_channel:
w_min, _ = torch.min(w_transform, dim=1, out=None)
w_max, _ = torch.max(w_transform, dim=1, out=None)
else:
w_min = w_transform.min().expand(1)
w_max = w_transform.max().expand(1)
self.fc_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, self.per_channel)
self.weight_integer = self.weight_function(
self.weight, self.weight_bit, self.percentile_mode, self.fc_scaling_factor
)
bias_scaling_factor = self.fc_scaling_factor * prev_act_scaling_factor
if self.bias is not None:
self.bias_integer = self.weight_function(self.bias, self.bias_bit, False, bias_scaling_factor)
prev_act_scaling_factor = prev_act_scaling_factor.view(1, -1)
x_int = x / prev_act_scaling_factor
return (
nn.functional.linear(x_int, weight=self.weight_integer, bias=self.bias_integer) * bias_scaling_factor,
bias_scaling_factor,
)
class IntGELU(nn.Module):
"""
Quantized version of `torch.nn.GELU`. Adds quantization-specific arguments on top of `torch.nn.GELU`.
Args:
quant_mode (`bool`, *optional*, defaults to `False`):
Whether or not the layer is quantized.
force_dequant (`str`, *optional*, defaults to `"none"`):
Force dequantize the layer if either "gelu" or "nonlinear" is given.
"""
def __init__(self, quant_mode=True, force_dequant="none"):
super().__init__()
self.quant_mode = quant_mode
if force_dequant in ["nonlinear", "gelu"]:
logger.info("Force dequantize gelu")
self.quant_mode = False
if not self.quant_mode:
self.activation_fn = nn.GELU()
self.k = 1.4142
self.const = 14 # dummy integer constant
self.coeff = [-0.2888, -1.769, 1] # a(x+b)**2 + c
self.coeff[2] /= self.coeff[0]
def int_erf(self, x_int, scaling_factor):
b_int = torch.floor(self.coeff[1] / scaling_factor)
c_int = torch.floor(self.coeff[2] / scaling_factor**2)
sign = torch.sign(x_int)
abs_int = torch.min(torch.abs(x_int), -b_int)
y_int = sign * ((abs_int + b_int) ** 2 + c_int)
scaling_factor = scaling_factor**2 * self.coeff[0]
# avoid overflow
y_int = floor_ste.apply(y_int / 2**self.const)
scaling_factor = scaling_factor * 2**self.const
return y_int, scaling_factor
def forward(self, x, scaling_factor=None):
if not self.quant_mode:
return self.activation_fn(x), None
x_int = x / scaling_factor
sigmoid_int, sigmoid_scaling_factor = self.int_erf(x_int, scaling_factor / self.k)
shift_int = 1.0 // sigmoid_scaling_factor
x_int = x_int * (sigmoid_int + shift_int)
scaling_factor = scaling_factor * sigmoid_scaling_factor / 2
return x_int * scaling_factor, scaling_factor
class IntSoftmax(nn.Module):
"""
Quantized version of `torch.nn.Softmax`. Adds quantization-specific arguments on top of `torch.nn.Softmax`.
Args:
output_bit (`int`):
Bitwidth for the layer output activation.
quant_mode (`bool`, *optional*, defaults to `False`):
Whether or not the layer is quantized.
force_dequant (`str`, *optional*, defaults to `"none"`):
Force dequantize the layer if either "softmax" or "nonlinear" is given.
"""
def __init__(self, output_bit, quant_mode=False, force_dequant="none"):
super().__init__()
self.output_bit = output_bit
self.max_bit = 32
self.quant_mode = quant_mode
if force_dequant in ["nonlinear", "softmax"]:
logger.info("Force dequantize softmax")
self.quant_mode = False
self.act = QuantAct(16, quant_mode=self.quant_mode)
self.x0 = -0.6931 # -ln2
self.const = 30 # dummy integer constant
self.coef = [0.35815147, 0.96963238, 1.0] # ax**2 + bx + c
self.coef[1] /= self.coef[0]
self.coef[2] /= self.coef[0]
def int_polynomial(self, x_int, scaling_factor):
with torch.no_grad():
b_int = torch.floor(self.coef[1] / scaling_factor)
c_int = torch.floor(self.coef[2] / scaling_factor**2)
z = (x_int + b_int) * x_int + c_int
scaling_factor = self.coef[0] * scaling_factor**2
return z, scaling_factor
def int_exp(self, x_int, scaling_factor):
with torch.no_grad():
x0_int = torch.floor(self.x0 / scaling_factor)
x_int = torch.max(x_int, self.const * x0_int)
q = floor_ste.apply(x_int / x0_int)
r = x_int - x0_int * q
exp_int, exp_scaling_factor = self.int_polynomial(r, scaling_factor)
exp_int = torch.clamp(floor_ste.apply(exp_int * 2 ** (self.const - q)), min=0)
scaling_factor = exp_scaling_factor / 2**self.const
return exp_int, scaling_factor
def forward(self, x, scaling_factor):
if not self.quant_mode:
return nn.functional.softmax(x, dim=-1), None
x_int = x / scaling_factor
x_int_max, _ = x_int.max(dim=-1, keepdim=True)
x_int = x_int - x_int_max
exp_int, exp_scaling_factor = self.int_exp(x_int, scaling_factor)
# Avoid overflow
exp, exp_scaling_factor = self.act(exp_int, exp_scaling_factor)
exp_int = exp / exp_scaling_factor
exp_int_sum = exp_int.sum(dim=-1, keepdim=True)
factor = floor_ste.apply(2**self.max_bit / exp_int_sum)
exp_int = floor_ste.apply(exp_int * factor / 2 ** (self.max_bit - self.output_bit))
scaling_factor = 1 / 2**self.output_bit
return exp_int * scaling_factor, scaling_factor
class IntLayerNorm(nn.Module):
"""
Quantized version of `torch.nn.LayerNorm`. Adds quantization-specific arguments on top of `torch.nn.LayerNorm`.
Args:
output_bit (`int`, *optional*, defaults to `8`):
Bitwidth for the layer output activation.
quant_mode (`bool`, *optional*, defaults to `False`):
Whether or not the layer is quantized.
force_dequant (`str`, *optional*, defaults to `"none"`):
Force dequantize the layer if either "layernorm" or "nonlinear" is given.
"""
def __init__(self, normalized_shape, eps, output_bit=8, quant_mode=False, force_dequant="none"):
super().__init__()
self.normalized_shape = normalized_shape
self.eps = eps
self.weight = nn.Parameter(torch.zeros(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.quant_mode = quant_mode
if force_dequant in ["nonlinear", "layernorm"]:
logger.info("Force dequantize layernorm")
self.quant_mode = False
self.register_buffer("shift", torch.zeros(1))
self.output_bit = output_bit
self.max_bit = 32
self.dim_sqrt = None
self.activation = QuantAct(self.output_bit, quant_mode=self.quant_mode)
def set_shift(self, y_int):
with torch.no_grad():
y_sq_int = y_int**2
var_int = torch.sum(y_sq_int, axis=2, keepdim=True)
shift = (torch.log2(torch.sqrt(var_int / 2**self.max_bit)).ceil()).max()
shift_old = self.shift
self.shift = torch.max(self.shift, shift)
logger.info(f"Dynamic shift adjustment: {int(shift_old)} -> {int(self.shift)}")
def overflow_fallback(self, y_int):
"""
This fallback function is called when overflow is detected during training time, and adjusts the `self.shift`
to avoid overflow in the subsequent runs.
"""
self.set_shift(y_int) # adjusts `self.shift`
y_int_shifted = floor_ste.apply(y_int / 2**self.shift)
y_sq_int = y_int_shifted**2
var_int = torch.sum(y_sq_int, axis=2, keepdim=True)
return var_int
def forward(self, x, scaling_factor=None):
if not self.quant_mode:
mean = x.mean(axis=2, keepdim=True)
y = x - mean
var = torch.mean(y**2, axis=2, keepdim=True)
x = y / torch.sqrt(self.eps + var)
x = x * self.weight + self.bias
return x, None
# compute sqrt of the feature dimension if it is the first run
if self.dim_sqrt is None:
n = torch.tensor(x.shape[2], dtype=torch.float)
self.dim_sqrt = torch.sqrt(n).to(x.device)
# Normalization: computes mean and variance(std)
x_int = x / scaling_factor
mean_int = round_ste.apply(x_int.mean(axis=2, keepdim=True))
y_int = x_int - mean_int
y_int_shifted = floor_ste.apply(y_int / 2**self.shift)
y_sq_int = y_int_shifted**2
var_int = torch.sum(y_sq_int, axis=2, keepdim=True)
# overflow handling in training time
if self.training:
# if overflow is detected
if var_int.max() >= 2**self.max_bit:
var_int = self.overflow_fallback(y_int)
assert var_int.max() < 2**self.max_bit + 0.1, (
"Error detected in overflow handling: "
"`var_int` exceeds `self.max_bit` (the maximum possible bit width)"
)
# To be replaced with integer-sqrt kernel that produces the same output
std_int = floor_ste.apply(torch.sqrt(var_int)) * 2**self.shift
factor = floor_ste.apply(2**31 / std_int)
y_int = floor_ste.apply(y_int * factor / 2)
scaling_factor = self.dim_sqrt / 2**30
# scaling and shifting
bias = self.bias.data.detach() / (self.weight.data.detach())
bias_int = floor_ste.apply(bias / scaling_factor)
y_int = y_int + bias_int
scaling_factor = scaling_factor * self.weight
x = y_int * scaling_factor
return x, scaling_factor
def get_percentile_min_max(input, lower_percentile, upper_percentile, output_tensor=False):
"""
Calculate the percentile max and min values in a given tensor
Args:
input (`torch.Tensor`):
The target tensor to calculate percentile max and min.
lower_percentile (`float`):
If 0.1, means we return the value of the smallest 0.1% value in the tensor as percentile min.
upper_percentile (`float`):
If 99.9, means we return the value of the largest 0.1% value in the tensor as percentile max.
output_tensor (`bool`, *optional*, defaults to `False`):
If True, this function returns tensors, otherwise it returns values.
Returns:
`Tuple(torch.Tensor, torch.Tensor)`: Percentile min and max value of *input*
"""
input_length = input.shape[0]
lower_index = round(input_length * (1 - lower_percentile * 0.01))
upper_index = round(input_length * upper_percentile * 0.01)
upper_bound = torch.kthvalue(input, k=upper_index).values
if lower_percentile == 0:
lower_bound = upper_bound * 0
# lower_index += 1
else:
lower_bound = -torch.kthvalue(-input, k=lower_index).values
if not output_tensor:
lower_bound = lower_bound.item()
upper_bound = upper_bound.item()
return lower_bound, upper_bound
def linear_quantize(input, scale, zero_point, inplace=False):
"""
Quantize single-precision input tensor to integers with the given scaling factor and zeropoint.
Args:
input (`torch.Tensor`):
Single-precision input tensor to be quantized.
scale (`torch.Tensor`):
Scaling factor for quantization.
zero_pint (`torch.Tensor`):
Shift for quantization.
inplace (`bool`, *optional*, defaults to `False`):
Whether to compute inplace or not.
Returns:
`torch.Tensor`: Linearly quantized value of *input* according to *scale* and *zero_point*.
"""
# reshape scale and zeropoint for convolutional weights and activation
if len(input.shape) == 4:
scale = scale.view(-1, 1, 1, 1)
zero_point = zero_point.view(-1, 1, 1, 1)
# reshape scale and zeropoint for linear weights
elif len(input.shape) == 2:
scale = scale.view(-1, 1)
zero_point = zero_point.view(-1, 1)
else:
scale = scale.view(-1)
zero_point = zero_point.view(-1)
# quantized = float / scale + zero_point
if inplace:
input.mul_(1.0 / scale).add_(zero_point).round_()
return input
return torch.round(1.0 / scale * input + zero_point)
def symmetric_linear_quantization_params(num_bits, saturation_min, saturation_max, per_channel=False):
"""
Compute the scaling factor with the given quantization range for symmetric quantization.
Args:
saturation_min (`torch.Tensor`):
Lower bound for quantization range.
saturation_max (`torch.Tensor`):
Upper bound for quantization range.
per_channel (`bool`, *optional*, defaults to `False`):
Whether to or not use channel-wise quantization.
Returns:
`torch.Tensor`: Scaling factor that linearly quantizes the given range between *saturation_min* and
*saturation_max*.
"""
# in this part, we do not need any gradient computation,
# in order to enforce this, we put torch.no_grad()
with torch.no_grad():
n = 2 ** (num_bits - 1) - 1
if per_channel:
scale, _ = torch.max(torch.stack([saturation_min.abs(), saturation_max.abs()], dim=1), dim=1)
scale = torch.clamp(scale, min=1e-8) / n
else:
scale = max(saturation_min.abs(), saturation_max.abs())
scale = torch.clamp(scale, min=1e-8) / n
return scale
class SymmetricQuantFunction(Function):
"""
Class to quantize the given floating-point values using symmetric quantization with given range and bitwidth.
"""
@staticmethod
def forward(ctx, x, k, percentile_mode, scale):
"""
Args:
x (`torch.Tensor`):
Floating point tensor to be quantized.
k (`int`):
Quantization bitwidth.
percentile_mode (`bool`):
Whether or not to use percentile calibration.
scale (`torch.Tensor`):
Pre-calculated scaling factor for *x*. Note that the current implementation of SymmetricQuantFunction
requires pre-calculated scaling factor.
Returns:
`torch.Tensor`: Symmetric-quantized value of *input*.
"""
zero_point = torch.tensor(0.0).to(scale.device)
n = 2 ** (k - 1) - 1
new_quant_x = linear_quantize(x, scale, zero_point, inplace=False)
new_quant_x = torch.clamp(new_quant_x, -n, n - 1)
ctx.scale = scale
return new_quant_x
@staticmethod
def backward(ctx, grad_output):
scale = ctx.scale
if len(grad_output.shape) == 4:
scale = scale.view(-1, 1, 1, 1)
# reshape scale and zeropoint for linear weights
elif len(grad_output.shape) == 2:
scale = scale.view(-1, 1)
else:
scale = scale.view(-1)
return grad_output.clone() / scale, None, None, None, None
class floor_ste(Function):
"""
Straight-through Estimator(STE) for torch.floor()
"""
@staticmethod
def forward(ctx, x):
return torch.floor(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone()
class round_ste(Function):
"""
Straight-through Estimator(STE) for torch.round()
"""
@staticmethod
def forward(ctx, x):
return torch.round(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone()
def batch_frexp(inputs, max_bit=31):
"""
Decompose the scaling factor into mantissa and twos exponent.
Args:
scaling_factor (`torch.Tensor`):
Target scaling factor to decompose.
Returns:
``Tuple(torch.Tensor, torch.Tensor)`: mantisa and exponent
"""
shape_of_input = inputs.size()
# trans the input to be a 1-d tensor
inputs = inputs.view(-1)
output_m, output_e = np.frexp(inputs.cpu().numpy())
tmp_m = []
for m in output_m:
int_m_shifted = int(
decimal.Decimal(m * (2**max_bit)).quantize(decimal.Decimal("1"), rounding=decimal.ROUND_HALF_UP)
)
tmp_m.append(int_m_shifted)
output_m = np.array(tmp_m)
output_e = float(max_bit) - output_e
return (
torch.from_numpy(output_m).to(inputs.device).view(shape_of_input),
torch.from_numpy(output_e).to(inputs.device).view(shape_of_input),
)
class FixedPointMul(Function):
"""
Function to perform fixed-point arithmetic that can match integer arithmetic on hardware.
Args:
pre_act (`torch.Tensor`):
Input tensor.
pre_act_scaling_factor (`torch.Tensor`):
Scaling factor of the input tensor *pre_act*.
bit_num (`int`):
Quantization bitwidth.
z_scaling_factor (`torch.Tensor`):
Scaling factor of the output tensor.
identity (`torch.Tensor`, *optional*):
Identity tensor, if exists.
identity_scaling_factor (`torch.Tensor`, *optional*):
Scaling factor of the identity tensor *identity*, if exists.
Returns:
`torch.Tensor`: Output tensor(*pre_act* if *identity* is not given, otherwise the addition of *pre_act* and
*identity*), whose scale is rescaled to *z_scaling_factor*.
"""
@staticmethod
def forward(
ctx,
pre_act,
pre_act_scaling_factor,
bit_num,
z_scaling_factor,
identity=None,
identity_scaling_factor=None,
):
if len(pre_act_scaling_factor.shape) == 3:
reshape = lambda x: x # noqa: E731
else:
reshape = lambda x: x.view(1, 1, -1) # noqa: E731
ctx.identity = identity
n = 2 ** (bit_num - 1) - 1
with torch.no_grad():
pre_act_scaling_factor = reshape(pre_act_scaling_factor)
if identity is not None:
identity_scaling_factor = reshape(identity_scaling_factor)
ctx.z_scaling_factor = z_scaling_factor
z_int = torch.round(pre_act / pre_act_scaling_factor)
_A = pre_act_scaling_factor.type(torch.double)
_B = (z_scaling_factor.type(torch.float)).type(torch.double)
new_scale = _A / _B
new_scale = reshape(new_scale)
m, e = batch_frexp(new_scale)
output = z_int.type(torch.double) * m.type(torch.double)
output = torch.round(output / (2.0**e))
if identity is not None:
# needs addition of identity activation
wx_int = torch.round(identity / identity_scaling_factor)
_A = identity_scaling_factor.type(torch.double)
_B = (z_scaling_factor.type(torch.float)).type(torch.double)
new_scale = _A / _B
new_scale = reshape(new_scale)
m1, e1 = batch_frexp(new_scale)
output1 = wx_int.type(torch.double) * m1.type(torch.double)
output1 = torch.round(output1 / (2.0**e1))
output = output1 + output
return torch.clamp(output.type(torch.float), -n - 1, n)
@staticmethod
def backward(ctx, grad_output):
identity_grad = None
if ctx.identity is not None:
identity_grad = grad_output.clone() / ctx.z_scaling_factor
return grad_output.clone() / ctx.z_scaling_factor, None, None, None, None, identity_grad, None
| transformers/src/transformers/models/ibert/quant_modules.py/0 | {
"file_path": "transformers/src/transformers/models/ibert/quant_modules.py",
"repo_id": "transformers",
"token_count": 13544
} | 315 |
# coding=utf-8
# Copyright 2023 Amazon and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Informer model."""
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
SampleTSPredictionOutput,
Seq2SeqTSModelOutput,
Seq2SeqTSPredictionOutput,
)
from ...modeling_utils import PreTrainedModel
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_informer import InformerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "InformerConfig"
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"huggingface/informer-tourism-monthly",
# See all Informer models at https://huggingface.co/models?filter=informer
]
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Informer
class InformerFeatureEmbedder(nn.Module):
"""
Embed a sequence of categorical features.
Args:
cardinalities (`list[int]`):
List of cardinalities of the categorical features.
embedding_dims (`list[int]`):
List of embedding dimensions of the categorical features.
"""
def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
super().__init__()
self.num_features = len(cardinalities)
self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])
def forward(self, features: torch.Tensor) -> torch.Tensor:
if self.num_features > 1:
# we slice the last dimension, giving an array of length
# self.num_features with shape (N,T) or (N)
cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
else:
cat_feature_slices = [features]
return torch.cat(
[
embed(cat_feature_slice.squeeze(-1))
for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)
],
dim=-1,
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Informer,TimeSeries->Informer
class InformerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: InformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Informer,TimeSeries->Informer
class InformerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: InformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Informer,TimeSeries->Informer
class InformerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: InformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
"""
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
Args:
input_tensor (`torch.FloatTensor`):
Input tensor, of which the average must be computed.
weights (`torch.FloatTensor`, *optional*):
Weights tensor, of the same shape as `input_tensor`.
dim (`int`, *optional*):
The dim along which to average `input_tensor`.
Returns:
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
"""
if weights is not None:
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
else:
return input_tensor.mean(dim=dim)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
"""
Computes the negative log likelihood loss from input distribution with respect to target.
"""
return -input.log_prob(target)
# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Informer
class InformerSinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
super().__init__(num_positions, embedding_dim)
self.weight = self._init_weight(self.weight)
@staticmethod
def _init_weight(out: nn.Parameter) -> nn.Parameter:
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = out.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
return out
@torch.no_grad()
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Info
class InformerValueEmbedding(nn.Module):
def __init__(self, feature_size, d_model):
super().__init__()
self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False)
def forward(self, x):
return self.value_projection(x)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Informer
class InformerAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[InformerConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class InformerProbSparseAttention(nn.Module):
"""Probabilistic Attention mechanism to select the "active"
queries rather than the "lazy" queries and provides a sparse Transformer thus mitigating the quadratic compute and
memory requirements of vanilla attention"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
sampling_factor: int = 5,
bias: bool = True,
):
super().__init__()
self.factor = sampling_factor
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
key_states_time_length = key_states.size(1) # L_K
log_key_states_time_length = np.ceil(np.log1p(key_states_time_length)).astype("int").item() # log_L_K
query_states_time_length = query_states.size(1) # L_Q
log_query_states_time_length = np.ceil(np.log1p(query_states_time_length)).astype("int").item() # log_L_Q
u_part = min(self.factor * query_states_time_length * log_key_states_time_length, key_states_time_length)
u = min(self.factor * log_query_states_time_length, query_states_time_length)
if key_states_time_length > 0:
index_sample = torch.randint(0, key_states_time_length, (u_part,))
k_sample = key_states[:, index_sample, :]
else:
k_sample = key_states
queries_keys_sample = torch.bmm(query_states, k_sample.transpose(1, 2)) # Q_K_sampled
# find the Top_k query with sparsity measurement
if u > 0:
sparsity_measurement = queries_keys_sample.max(dim=-1)[0] - torch.div(
queries_keys_sample.sum(dim=-1), key_states_time_length
) # M
top_u_sparsity_measurement = sparsity_measurement.topk(u, sorted=False)[1] # M_top
# calculate q_reduce: query_states[:, top_u_sparsity_measurement]
dim_for_slice = torch.arange(query_states.size(0)).unsqueeze(-1)
q_reduce = query_states[dim_for_slice, top_u_sparsity_measurement]
else:
q_reduce = query_states
top_u_sparsity_measurement = None
# Use q_reduce to calculate attention weights
attn_weights = torch.bmm(q_reduce, key_states.transpose(1, 2))
src_len = key_states.size(1)
if attn_weights.size() != (bsz * self.num_heads, u, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, u, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
prob_mask = attention_mask.expand(bsz, self.num_heads, tgt_len, src_len).reshape(
bsz * self.num_heads, tgt_len, src_len
)
if top_u_sparsity_measurement is not None:
dim_for_slice = torch.arange(prob_mask.size(0)).unsqueeze(-1)
prob_mask = prob_mask[dim_for_slice, top_u_sparsity_measurement, :]
attn_weights = attn_weights.view(bsz, self.num_heads, u, src_len) + prob_mask.view(
bsz, self.num_heads, u, src_len
)
attn_weights = attn_weights.view(bsz * self.num_heads, u, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, u, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, u, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, u, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, u, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
# calculate context for updating the attn_output, based on:
# https://github.com/zhouhaoyi/Informer2020/blob/ac59c7447135473fb2aafeafe94395f884d5c7a5/models/attn.py#L74
if self.is_decoder:
# cast to float32 before operation to avoid overflow
context = value_states.cumsum(dim=-2, dtype=torch.float32).to(value_states.dtype)
else:
v_mean_dim_time = value_states.mean(dim=-2)
context = (
v_mean_dim_time.unsqueeze(dim=1)
.expand(bsz * self.num_heads, query_states_time_length, v_mean_dim_time.size(-1))
.clone()
)
if top_u_sparsity_measurement is not None:
# update context: copy the attention output to the context at top_u_sparsity_measurement index
dim_for_slice = torch.arange(context.size(0)).unsqueeze(-1)
context[dim_for_slice, top_u_sparsity_measurement, :] = attn_output
attn_output = context
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# source: https://github.com/zhouhaoyi/Informer2020/blob/main/models/encoder.py
class InformerConvLayer(nn.Module):
def __init__(self, c_in):
super().__init__()
self.downConv = nn.Conv1d(
in_channels=c_in,
out_channels=c_in,
kernel_size=3,
padding=1,
padding_mode="circular",
)
self.norm = nn.BatchNorm1d(c_in)
self.activation = nn.ELU()
self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
x = self.downConv(x.permute(0, 2, 1))
x = self.norm(x)
x = self.activation(x)
x = self.maxPool(x)
x = x.transpose(1, 2)
return x
class InformerEncoderLayer(nn.Module):
def __init__(self, config: InformerConfig):
super().__init__()
self.embed_dim = config.d_model
if config.attention_type == "prob":
self.self_attn = InformerProbSparseAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
sampling_factor=config.sampling_factor,
)
else:
self.self_attn = InformerAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class InformerDecoderLayer(nn.Module):
def __init__(self, config: InformerConfig):
super().__init__()
self.embed_dim = config.d_model
if config.attention_type == "prob":
self.self_attn = InformerProbSparseAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
sampling_factor=config.sampling_factor,
is_decoder=True,
)
else:
self.self_attn = InformerAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = InformerAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class InformerPreTrainedModel(PreTrainedModel):
config_class = InformerConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
INFORMER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`TimeSeriesTransformerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
INFORMER_INPUTS_DOCSTRING = r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
Past values of the time series, that serve as context in order to predict the future. The sequence size of
this tensor must be larger than the `context_length` of the model, since the model will use the larger size
to construct lag features, i.e. additional values from the past which are added in order to serve as "extra
context".
The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if no
`lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length of
the past.
The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as
`static_categorical_features`, `static_real_features`, `past_time_features` and lags).
Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.
For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of
variates in the time series per time step.
past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
Required time features, which the model internally will add to `past_values`. These could be things like
"month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
could also be so-called "age" features, which basically help the model know "at which point in life" a
time-series is. Age features have small values for distant past time steps and increase monotonically the
more we approach the current time step. Holiday features are also a good example of time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
the position encodings are learned from scratch internally as parameters of the model, the Time Series
Transformer requires to provide additional time features. The Time Series Transformer only learns
additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features
must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in
`[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
Optional static categorical features for which the model will learn an embedding, which it will add to the
values of the time series.
Static categorical features are features which have the same value for all time steps (static over time).
A typical example of a static categorical feature is a time series ID.
static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
Optional static real features which the model will add to the values of the time series.
Static real features are features which have the same value for all time steps (static over time).
A typical example of a static real feature is promotion information.
future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)` or `(batch_size, prediction_length, input_size)`, *optional*):
Future values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs during training to learn to output, given the `past_values`.
The sequence length here is equal to `prediction_length`.
See the demo notebook and code snippets for details.
Optionally, during training any missing values need to be replaced with zeros and indicated via the
`future_observed_mask`.
For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of
variates in the time series per time step.
future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
Required time features for the prediction window, which the model internally will add to `future_values`.
These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as
Fourier features). These could also be so-called "age" features, which basically help the model know "at
which point in life" a time-series is. Age features have small values for distant past time steps and
increase monotonically the more we approach the current time step. Holiday features are also a good example
of time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
the position encodings are learned from scratch internally as parameters of the model, the Time Series
Transformer requires to provide additional time features. The Time Series Transformer only learns
additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features
must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
future_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `future_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
This mask is used to filter out missing values for the final loss calculation.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to
make sure the model can only look at previous inputs in order to predict the future.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class InformerEncoder(InformerPreTrainedModel):
"""
Informer encoder consisting of *config.encoder_layers* self attention layers with distillation layers. Each
attention layer is an [`InformerEncoderLayer`].
Args:
config: InformerConfig
"""
def __init__(self, config: InformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.gradient_checkpointing = False
if config.prediction_length is None:
raise ValueError("The `prediction_length` config needs to be specified.")
self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
self.embed_positions = InformerSinusoidalPositionalEmbedding(
config.context_length + config.prediction_length, config.d_model
)
self.layers = nn.ModuleList([InformerEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
if config.distil:
self.conv_layers = nn.ModuleList(
[InformerConvLayer(config.d_model) for _ in range(config.encoder_layers - 1)]
)
self.conv_layers.append(None)
else:
self.conv_layers = [None] * config.encoder_layers
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.value_embedding(inputs_embeds)
embed_pos = self.embed_positions(inputs_embeds.size())
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, (encoder_layer, conv_layer) in enumerate(zip(self.layers, self.conv_layers)):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
if conv_layer is not None:
output = self._gradient_checkpointing_func(conv_layer, layer_outputs[0])
layer_outputs = (output,) + layer_outputs[1:]
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
if conv_layer is not None:
output = conv_layer(layer_outputs[0])
layer_outputs = (output,) + layer_outputs[1:]
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerDecoder with TimeSeriesTransformer->Informer,TimeSeriesTransformerConfig->InformerConfig,time-series-transformer->informer,Transformer->Informer,TimeSeries->Informer
class InformerDecoder(InformerPreTrainedModel):
"""
Informer decoder consisting of *config.decoder_layers* layers. Each layer is a
[`InformerDecoderLayer`]
Args:
config: InformerConfig
"""
def __init__(self, config: InformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
if config.prediction_length is None:
raise ValueError("The `prediction_length` config needs to be specified.")
self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
self.embed_positions = InformerSinusoidalPositionalEmbedding(
config.context_length + config.prediction_length, config.d_model
)
self.layers = nn.ModuleList([InformerDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = inputs_embeds.size()[:-1]
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
hidden_states = self.value_embedding(inputs_embeds)
embed_pos = self.embed_positions(inputs_embeds.size(), past_key_values_length=self.config.context_length)
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Informer Model outputting raw hidden-states without any specific head on top.",
INFORMER_START_DOCSTRING,
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerModel with TimeSeriesTransformer->Informer,TIME_SERIES_TRANSFORMER->INFORMER,time-series-transformer->informer,TimeSeries->Informer
class InformerModel(InformerPreTrainedModel):
def __init__(self, config: InformerConfig):
super().__init__(config)
if config.scaling == "mean" or config.scaling is True:
self.scaler = InformerMeanScaler(config)
elif config.scaling == "std":
self.scaler = InformerStdScaler(config)
else:
self.scaler = InformerNOPScaler(config)
if config.num_static_categorical_features > 0:
self.embedder = InformerFeatureEmbedder(
cardinalities=config.cardinality,
embedding_dims=config.embedding_dimension,
)
# transformer encoder-decoder and mask initializer
self.encoder = InformerEncoder(config)
self.decoder = InformerDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@property
def _past_length(self) -> int:
return self.config.context_length + max(self.config.lags_sequence)
def get_lagged_subsequences(
self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0
) -> torch.Tensor:
"""
Returns lagged subsequences of a given sequence. Returns a tensor of shape (N, S, C, I),
where S = subsequences_length and I = len(indices), containing lagged subsequences. Specifically, lagged[i,
j, :, k] = sequence[i, -indices[k]-S+j, :].
Args:
sequence: Tensor
The sequence from which lagged subsequences should be extracted. Shape: (N, T, C).
subsequences_length : int
Length of the subsequences to be extracted.
shift: int
Shift the lags by this amount back.
"""
sequence_length = sequence.shape[1]
indices = [lag - shift for lag in self.config.lags_sequence]
if max(indices) + subsequences_length > sequence_length:
raise ValueError(
f"lags cannot go further than history length, found lag {max(indices)} "
f"while history length is only {sequence_length}"
)
lagged_values = []
for lag_index in indices:
begin_index = -lag_index - subsequences_length
end_index = -lag_index if lag_index > 0 else None
lagged_values.append(sequence[:, begin_index:end_index, ...])
return torch.stack(lagged_values, dim=-1)
def create_network_inputs(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
past_observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
):
# time feature
time_feat = (
torch.cat(
(
past_time_features[:, self._past_length - self.config.context_length :, ...],
future_time_features,
),
dim=1,
)
if future_values is not None
else past_time_features[:, self._past_length - self.config.context_length :, ...]
)
# target
if past_observed_mask is None:
past_observed_mask = torch.ones_like(past_values)
context = past_values[:, -self.config.context_length :]
observed_context = past_observed_mask[:, -self.config.context_length :]
_, loc, scale = self.scaler(context, observed_context)
inputs = (
(torch.cat((past_values, future_values), dim=1) - loc) / scale
if future_values is not None
else (past_values - loc) / scale
)
# static features
log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p()
log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log()
static_feat = torch.cat((log_abs_loc, log_scale), dim=1)
if static_real_features is not None:
static_feat = torch.cat((static_real_features, static_feat), dim=1)
if static_categorical_features is not None:
embedded_cat = self.embedder(static_categorical_features)
static_feat = torch.cat((embedded_cat, static_feat), dim=1)
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1)
# all features
features = torch.cat((expanded_static_feat, time_feat), dim=-1)
# lagged features
subsequences_length = (
self.config.context_length + self.config.prediction_length
if future_values is not None
else self.config.context_length
)
lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length)
lags_shape = lagged_sequence.shape
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]:
raise ValueError(
f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match"
)
# transformer inputs
transformer_inputs = torch.cat((reshaped_lagged_sequence, features), dim=-1)
return transformer_inputs, loc, scale, static_feat
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(INFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
past_observed_mask: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqTSModelOutput, Tuple]:
r"""
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import InformerModel
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = InformerModel.from_pretrained("huggingface/informer-tourism-monthly")
>>> # during training, one provides both past and future values
>>> # as well as possible additional features
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
>>> last_hidden_state = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_inputs, loc, scale, static_feat = self.create_network_inputs(
past_values=past_values,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask,
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
future_values=future_values,
future_time_features=future_time_features,
)
if encoder_outputs is None:
enc_input = transformer_inputs[:, : self.config.context_length, ...]
encoder_outputs = self.encoder(
inputs_embeds=enc_input,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
dec_input = transformer_inputs[:, self.config.context_length :, ...]
decoder_outputs = self.decoder(
inputs_embeds=dec_input,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs + (loc, scale, static_feat)
return Seq2SeqTSModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
loc=loc,
scale=scale,
static_features=static_feat,
)
@add_start_docstrings(
"The Informer Model with a distribution head on top for time-series forecasting.",
INFORMER_START_DOCSTRING,
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerForPrediction with TimeSeriesTransformer->Informer,TIME_SERIES_TRANSFORMER->INFORMER,time-series-transformer->informer
class InformerForPrediction(InformerPreTrainedModel):
def __init__(self, config: InformerConfig):
super().__init__(config)
self.model = InformerModel(config)
if config.distribution_output == "student_t":
self.distribution_output = StudentTOutput(dim=config.input_size)
elif config.distribution_output == "normal":
self.distribution_output = NormalOutput(dim=config.input_size)
elif config.distribution_output == "negative_binomial":
self.distribution_output = NegativeBinomialOutput(dim=config.input_size)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.d_model)
self.target_shape = self.distribution_output.event_shape
if config.loss == "nll":
self.loss = nll
else:
raise ValueError(f"Unknown loss function {config.loss}")
# Initialize weights of distribution_output and apply final processing
self.post_init()
def output_params(self, dec_output):
return self.parameter_projection(dec_output)
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
@torch.jit.ignore
def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution:
sliced_params = params
if trailing_n is not None:
sliced_params = [p[:, -trailing_n:] for p in params]
return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale)
@add_start_docstrings_to_model_forward(INFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
past_observed_mask: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
future_observed_mask: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqTSModelOutput, Tuple]:
r"""
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import InformerForPrediction
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = InformerForPrediction.from_pretrained(
... "huggingface/informer-tourism-monthly"
... )
>>> # during training, one provides both past and future values
>>> # as well as possible additional features
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
>>> loss = outputs.loss
>>> loss.backward()
>>> # during inference, one only provides past values
>>> # as well as possible additional features
>>> # the model autoregressively generates future values
>>> outputs = model.generate(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_time_features=batch["future_time_features"],
... )
>>> mean_prediction = outputs.sequences.mean(dim=1)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if future_values is not None:
use_cache = False
outputs = self.model(
past_values=past_values,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask,
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
future_values=future_values,
future_time_features=future_time_features,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
use_cache=use_cache,
return_dict=return_dict,
)
prediction_loss = None
params = None
if future_values is not None:
params = self.output_params(outputs[0]) # outputs.last_hidden_state
# loc is 3rd last and scale is 2nd last output
distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2])
loss = self.loss(distribution, future_values)
if future_observed_mask is None:
future_observed_mask = torch.ones_like(future_values)
if len(self.target_shape) == 0:
loss_weights = future_observed_mask
else:
loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False)
prediction_loss = weighted_average(loss, weights=loss_weights)
if not return_dict:
outputs = ((params,) + outputs[1:]) if params is not None else outputs[1:]
return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs
return Seq2SeqTSPredictionOutput(
loss=prediction_loss,
params=params,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
loc=outputs.loc,
scale=outputs.scale,
static_features=outputs.static_features,
)
@torch.no_grad()
def generate(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
future_time_features: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SampleTSPredictionOutput:
r"""
Greedily generate sequences of sample predictions from a model with a probability distribution head.
Parameters:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
Past values of the time series, that serve as context in order to predict the future. The sequence size
of this tensor must be larger than the `context_length` of the model, since the model will use the
larger size to construct lag features, i.e. additional values from the past which are added in order to
serve as "extra context".
The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if
no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length
of the past.
The `past_values` is what the Transformer encoder gets as input (with optional additional features,
such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags).
Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.
For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number
of variates in the time series per time step.
past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
Required time features, which the model internally will add to `past_values`. These could be things
like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features).
These could also be so-called "age" features, which basically help the model know "at which point in
life" a time-series is. Age features have small values for distant past time steps and increase
monotonically the more we approach the current time step. Holiday features are also a good example of
time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
where the position encodings are learned from scratch internally as parameters of the model, the Time
Series Transformer requires to provide additional time features. The Time Series Transformer only
learns additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
features must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
Required time features for the prediction window, which the model internally will add to sampled
predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors
(for instance as Fourier features). These could also be so-called "age" features, which basically help
the model know "at which point in life" a time-series is. Age features have small values for distant
past time steps and increase monotonically the more we approach the current time step. Holiday features
are also a good example of time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
where the position encodings are learned from scratch internally as parameters of the model, the Time
Series Transformer requires to provide additional time features. The Time Series Transformer only
learns additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
features must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
Optional static categorical features for which the model will learn an embedding, which it will add to
the values of the time series.
Static categorical features are features which have the same value for all time steps (static over
time).
A typical example of a static categorical feature is a time series ID.
static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
Optional static real features which the model will add to the values of the time series.
Static real features are features which have the same value for all time steps (static over time).
A typical example of a static real feature is promotion information.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
Return:
[`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for
multivariate predictions.
"""
outputs = self(
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
past_time_features=past_time_features,
past_values=past_values,
past_observed_mask=past_observed_mask,
future_time_features=future_time_features,
future_values=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
use_cache=True,
)
decoder = self.model.get_decoder()
enc_last_hidden = outputs.encoder_last_hidden_state
loc = outputs.loc
scale = outputs.scale
static_feat = outputs.static_features
num_parallel_samples = self.config.num_parallel_samples
repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_past_values = (
past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
) / repeated_scale
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, future_time_features.shape[1], -1)
features = torch.cat((expanded_static_feat, future_time_features), dim=-1)
repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0)
future_samples = []
# greedy decoding
for k in range(self.config.prediction_length):
lagged_sequence = self.model.get_lagged_subsequences(
sequence=repeated_past_values,
subsequences_length=1 + k,
shift=1,
)
lags_shape = lagged_sequence.shape
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
decoder_input = torch.cat((reshaped_lagged_sequence, repeated_features[:, : k + 1]), dim=-1)
dec_output = decoder(inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden)
dec_last_hidden = dec_output.last_hidden_state
params = self.parameter_projection(dec_last_hidden[:, -1:])
distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
next_sample = distr.sample()
repeated_past_values = torch.cat(
(repeated_past_values, (next_sample - repeated_loc) / repeated_scale), dim=1
)
future_samples.append(next_sample)
concat_future_samples = torch.cat(future_samples, dim=1)
return SampleTSPredictionOutput(
sequences=concat_future_samples.reshape(
(-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
)
)
| transformers/src/transformers/models/informer/modeling_informer.py/0 | {
"file_path": "transformers/src/transformers/models/informer/modeling_informer.py",
"repo_id": "transformers",
"token_count": 43141
} | 316 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
from ...utils.versions import require_version
require_version("tokenizers>=0.13.3")
if is_sentencepiece_available():
from .tokenization_llama import LlamaTokenizer
else:
LlamaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
},
"tokenizer_file": {
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
},
}
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
# fmt: off
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information."""
# fmt: on
class LlamaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no normalization.
```python
>>> from transformers import LlamaTokenizerFast
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
>>> tokenizer.encode("Hello this is a test")
[1, 15043, 445, 338, 263, 1243]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
The end of sequence token.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Llama should be used.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
slow_tokenizer_class = LlamaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
add_bos_token=True,
add_eos_token=False,
use_default_system_prompt=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
use_default_system_prompt=use_default_system_prompt,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.use_default_system_prompt = use_default_system_prompt
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
@property
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template
def default_chat_template(self):
"""
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
to fine-tune a model with more flexible role ordering!
The output should look something like:
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
<bos>[INST] Prompt [/INST]
The reference for this chat template is [this code
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
in the original repository.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
template = (
"{% if messages[0]['role'] == 'system' %}"
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present
"{% set system_message = messages[0]['content'] %}"
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
"{% else %}"
"{% set loop_messages = messages %}"
"{% set system_message = false %}"
"{% endif %}"
"{% for message in loop_messages %}" # Loop over all non-system messages
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
"{% endif %}"
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
"{% else %}"
"{% set content = message['content'] %}"
"{% endif %}"
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
"{% elif message['role'] == 'system' %}"
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
"{% elif message['role'] == 'assistant' %}"
"{{ ' ' + content.strip() + ' ' + eos_token }}"
"{% endif %}"
"{% endfor %}"
)
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
return template
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
| transformers/src/transformers/models/llama/tokenization_llama_fast.py/0 | {
"file_path": "transformers/src/transformers/models/llama/tokenization_llama_fast.py",
"repo_id": "transformers",
"token_count": 5204
} | 317 |
# coding=utf-8
# Copyright 2022 LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax LongT5 model."""
import copy
from typing import Any, Callable, List, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_longt5 import LongT5Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/long-t5-local-base"
_CONFIG_FOR_DOC = "LongT5Config"
remat = nn_partitioning.remat
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
def _pad_to_multiple(x: jnp.ndarray, block_len: int, axis: int, pad_value: int = 0) -> jnp.ndarray:
"""Pad an array so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[axis] % block_len
pad = [(0, 0)] * x.ndim
pad[axis] = (0, pad_len)
x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value)
return x
def _split_into_blocks(x: jnp.ndarray, block_len: int, axis: int) -> jnp.ndarray:
"""Split an input array into blocks of a given `block_len` along the given `axis`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[axis] % block_len != 0:
x = _pad_to_multiple(x, block_len, axis, pad_value=0)
num_blocks = x.shape[axis] // block_len
output_shape = x.shape[:axis] + (num_blocks, block_len) + x.shape[(axis + 1) :]
return x.reshape(output_shape)
def _concatenate_3_blocks(x: jnp.ndarray, block_axis: int, sequence_axis: int, pad_value: int = 0) -> jnp.ndarray:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://arxiv.org/pdf/2112.07916.pdf.
"""
num_blocks = x.shape[block_axis]
pad = [(0, 0)] * x.ndim
pad[block_axis] = (1, 1)
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value)
blocks_list: List[np.array] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_axis] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
return jnp.concatenate(blocks_list, axis=sequence_axis) # [batch_size, num_blocks, 3 * block_len, ...]
def _make_3block_relative_position_ids(block_len: int) -> jnp.ndarray:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = jnp.arange(3 * block_len, dtype=jnp.int32)
center_position_ids = position_ids[block_len:-block_len]
relative_position_ids = position_ids[None, :] - center_position_ids[:, None] # [block_len, 3 * block_len]
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: np.ndarray, block_len: int) -> jnp.ndarray:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = jnp.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
return jnp.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: np.ndarray, block_len: int) -> jnp.ndarray:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, axis=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_axis=1, sequence_axis=2)
_blocked_attention_mask = _blocked_attention_mask[..., None]
_3blocked_attention_mask = _3blocked_attention_mask[..., None, :]
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = jnp.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask[:, None, ...]
def _make_global_fixed_block_ids(attention_mask: np.ndarray, global_block_size: int) -> Tuple[jnp.ndarray, np.ndarray]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simlified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: np.ndarray) -> jnp.ndarray:
block_ends = (jnp.arange(seq_len) % global_block_size) == global_block_size - 1
true_block_ends = jnp.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1)[..., None]
block_ids = jnp.minimum(block_ids, full_blocks - 1)
return block_ids
fixed_block_mask = jnp.ones_like(attention_mask) / global_block_size
fixed_block_mask = jnp.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = jnp.where(attention_mask != 0.0, 1.0, -1000.0)
global_block_ids = jnp.maximum(
jnp.floor(mask + fixed_block_mask - 1.0), jnp.array(-1.0, dtype=attention_mask.dtype)
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = jnp.repeat(global_block_ids.max(axis=-1)[:, None], repeats=num_globals, axis=1)
else:
_sequence_block_ids_max = jnp.zeros((batch_size, 0), dtype=global_block_ids.dtype)
global_segment_ids = jnp.cumsum(jnp.ones((batch_size, num_globals)), axis=-1) - 1
global_segment_ids = jnp.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids, global_segment_ids
def _make_side_relative_position_ids(attention_mask: np.ndarray, global_block_size: int) -> np.ndarray:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = jnp.arange(global_seq_len)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position
def _create_global_aggregates(hidden_states: np.ndarray, block_ids: np.ndarray, global_seq_len: int) -> np.ndarray:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
one_hot_block_ids = jax.nn.one_hot(block_ids, global_seq_len)
return jnp.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerNorm with T5->LongT5
class FlaxLongT5LayerNorm(nn.Module):
hidden_size: int
dtype: jnp.dtype = jnp.float32
eps: float = 1e-6
weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones
def setup(self):
self.weight = self.param("weight", self.weight_init, (self.hidden_size,))
def __call__(self, hidden_states):
"""
Construct a layernorm module in the LongT5 style; No bias and no subtraction of mean.
"""
# layer norm should always be calculated in float32
variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True)
hidden_states = hidden_states / jnp.sqrt(variance + self.eps)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseActDense with T5->LongT5
class FlaxLongT5DenseActDense(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32
def setup(self):
wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5)
wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5)
self.wi = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wo = nn.Dense(
self.config.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wo_init_std),
dtype=self.dtype,
)
self.dropout = nn.Dropout(self.config.dropout_rate)
self.act = ACT2FN[self.config.dense_act_fn]
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseGatedActDense with T5->LongT5
class FlaxLongT5DenseGatedActDense(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5)
wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5)
self.wi_0 = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wi_1 = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wo = nn.Dense(
self.config.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wo_init_std),
dtype=self.dtype,
)
self.dropout = nn.Dropout(self.config.dropout_rate)
self.act = ACT2FN[self.config.dense_act_fn]
def __call__(self, hidden_states, deterministic):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerFF with T5->LongT5
class FlaxLongT5LayerFF(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.is_gated_act:
self.DenseReluDense = FlaxLongT5DenseGatedActDense(self.config, dtype=self.dtype)
else:
self.DenseReluDense = FlaxLongT5DenseActDense(self.config, dtype=self.dtype)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(self, hidden_states, deterministic=True):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic)
hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention with T5->LongT5
class FlaxLongT5Attention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, query_length, key_length):
"""Compute binned relative position bias"""
context_position = jnp.arange(query_length, dtype="i4")[:, None]
memory_position = jnp.arange(key_length, dtype="i4")[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=(not self.causal),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, :, :, :]
return values
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = jax.lax.dynamic_update_slice(cached_key.value, key, indices)
value = jax.lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions
# that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def _create_position_bias(
self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift
):
cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache)
key_length = key_states.shape[1]
query_length = key_length if cache_is_filled else query_states.shape[1]
if self.has_relative_attention_bias:
position_bias = self.compute_bias(query_length, key_length)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype)
# if key and values are already calculated, only the last query position bias should be taken
if cache_is_filled:
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
position_bias = jax.lax.dynamic_slice(
position_bias,
(0, 0, causal_attention_mask_shift, 0),
(1, self.n_heads, seq_length, max_decoder_length),
)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
use_cache=False,
output_attentions=False,
deterministic=True,
init_cache=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
# for fast decoding causal attention mask should be shifted
causal_attention_mask_shift = (
self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0
)
# create causal attention_mask; attention_mask has to be defined when model is causal
if self.causal:
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
# fast decoding for generate requires special attention_mask
if self.has_variable("cache", "cached_key"):
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_attention_mask = jax.lax.dynamic_slice(
causal_attention_mask,
(0, 0, causal_attention_mask_shift, 0),
(1, 1, seq_length, max_decoder_length),
)
# broadcast causal attention mask & attention mask to fit for merge
causal_attention_mask = jnp.broadcast_to(
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
)
attention_mask = jnp.broadcast_to(
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape
)
attention_mask = combine_masks(attention_mask, causal_attention_mask)
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# replace masked positions with -10_000
if attention_mask is not None:
mask_value = jnp.finfo(self.dtype).min
attention_mask = jax.lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, mask_value).astype(self.dtype),
)
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(
key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift
)
if attention_mask is not None:
position_bias = position_bias + attention_mask
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class FlaxLongT5LocalAttention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.local_radius = self.config.local_radius
self.block_len = self.local_radius + 1
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
@staticmethod
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = jnp.arange(3 * block_length, dtype="i4")
context_position = memory_position[block_length:-block_length]
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, None, :, :, :]
return values
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim)
def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if self.has_relative_attention_bias:
position_bias = self.compute_bias(block_len)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim)
query_states = _split_into_blocks(query_states, self.block_len, axis=1)
key_states = _split_into_blocks(key_states, self.block_len, axis=1)
value_states = _split_into_blocks(value_states, self.block_len, axis=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2)
value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
if attention_mask is not None:
attention_mask = _get_local_attention_mask(attention_mask, self.block_len)
# replace masked positions with -10_000
attention_mask = jax.lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, -1e10).astype(self.dtype),
)
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(self.block_len, attention_mask)
if attention_mask is not None:
position_bias = position_bias + attention_mask.swapaxes(1, 2)
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
attn_output = attn_output[:, :seq_length, :]
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class FlaxLongT5TransientGlobalAttention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.local_radius = self.config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = self.config.global_block_size
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
)
self.global_input_layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
@staticmethod
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = jnp.arange(3 * block_length, dtype="i4")
context_position = memory_position[block_length:-block_length]
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, None, :, :, :]
return values
def compute_side_bias(self, attention_mask: np.ndarray, global_segment_ids: np.ndarray) -> np.ndarray:
# (batch_size, 1, 1, seq_len, global_seq_len)
side_attention_mask = jnp.equal(attention_mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = jax.lax.select(
side_attention_mask > 0,
jnp.full(side_attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(side_attention_mask.shape, -1e10).astype(self.dtype),
)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(attention_mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, 1, num_heads, seq_len, global_seq_len)
side_bias = jnp.transpose(side_bias, (0, 3, 1, 2))
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim)
def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if self.has_relative_attention_bias:
position_bias = self.compute_bias(block_len)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
attention_mask if attention_mask is not None else jnp.ones((batch_size, seq_length)),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# Get global/side key/value_states
side_key_states = self.k(global_inputs)
side_value_states = self.v(global_inputs)
# reshape to (batch_size, global_seq_len, n_heads, head_dim)
side_key_states = self._split_heads(side_key_states)
side_value_states = self._split_heads(side_value_states)
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim)
query_states = _split_into_blocks(query_states, self.block_len, axis=1)
key_states = _split_into_blocks(key_states, self.block_len, axis=1)
value_states = _split_into_blocks(value_states, self.block_len, axis=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2)
value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = jnp.tile(side_key_states[:, None, ...], reps)
side_value_states = jnp.tile(side_value_states[:, None, ...], reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = jnp.concatenate((key_states, side_key_states), axis=2)
value_states = jnp.concatenate((value_states, side_value_states), axis=2)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
if attention_mask is not None:
local_attention_mask = _get_local_attention_mask(attention_mask, self.block_len)
local_attention_mask = jax.lax.select(
local_attention_mask > 0,
jnp.full(local_attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(local_attention_mask.shape, -1e10).astype(self.dtype),
)
else:
local_attention_mask = None
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(self.block_len, attention_mask)
if local_attention_mask is not None:
position_bias = position_bias + local_attention_mask.swapaxes(1, 2)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if attention_mask is None:
attention_mask = jnp.ones((batch_size, seq_length))
side_position_bias = self.compute_side_bias(attention_mask, global_segment_ids)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, axis=-2)
side_position_bias = jnp.swapaxes(side_position_bias, 1, 2)
position_bias = jnp.concatenate((position_bias, side_position_bias), axis=-1)
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
attn_output = attn_output[:, :seq_length, :]
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class FlaxLongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.LocalSelfAttention = FlaxLongT5LocalAttention(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
**kwargs: Any, # to accept init_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class FlaxLongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.TransientGlobalSelfAttention = FlaxLongT5TransientGlobalAttention(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
**kwargs: Any, # to accept init_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerSelfAttention with T5->LongT5
class FlaxLongT5LayerSelfAttention(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.SelfAttention = FlaxLongT5Attention(
self.config,
has_relative_attention_bias=self.has_relative_attention_bias,
causal=self.config.causal,
dtype=self.dtype,
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
init_cache=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCrossAttention with T5->LongT5
class FlaxLongT5LayerCrossAttention(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.EncDecAttention = FlaxLongT5Attention(
self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype
)
self.layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
attention_mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class FlaxLongT5Block(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.causal = self.config.causal
if self.causal:
attention_layer = FlaxLongT5LayerSelfAttention
elif self.config.encoder_attention_type == "local":
attention_layer = FlaxLongT5LayerLocalSelfAttention
elif self.config.encoder_attention_type == "transient-global":
attention_layer = FlaxLongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {self.config.encoder_attention_type}."
)
self.layer = (
attention_layer(
self.config,
has_relative_attention_bias=self.has_relative_attention_bias,
name=str(0),
dtype=self.dtype,
),
)
feed_forward_index = 1
if self.causal:
self.layer += (FlaxLongT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),)
feed_forward_index += 1
self.layer += (FlaxLongT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Block.__call__ with T5->LongT5
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
output_attentions=False,
return_dict=True,
deterministic=True,
init_cache=False,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = self_attention_outputs[0]
attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights
do_cross_attention = self.causal and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = cross_attention_outputs[0]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[1:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
outputs = outputs + attention_outputs
# returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
return outputs
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCollection with T5->LongT5
class FlaxLongT5LayerCollection(nn.Module):
config: LongT5Config
has_relative_attention_bias: bool
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxLongT5Block(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
output_attentions=False,
deterministic=True,
init_cache=False,
):
return self.layer(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5BlockCollection with T5->LongT5
class FlaxLongT5BlockCollection(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.causal = self.config.causal
if self.gradient_checkpointing:
FlaxLongT5CheckpointLayer = remat(FlaxLongT5LayerCollection, static_argnums=(6, 7, 8))
self.blocks = [
FlaxLongT5CheckpointLayer(
self.config,
has_relative_attention_bias=(i == 0),
dtype=self.dtype,
name=str(i),
)
for i in range(self.config.num_layers)
]
else:
self.blocks = [
FlaxLongT5LayerCollection(
self.config,
has_relative_attention_bias=(i == 0),
dtype=self.dtype,
name=str(i),
)
for i in range(self.config.num_layers)
]
def __call__(
self,
hidden_states=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
deterministic: bool = True,
init_cache: bool = False,
):
# Prepare head mask if needed
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.causal) else None
position_bias = None
encoder_decoder_position_bias = None
for i, layer_module in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
position_bias,
encoder_hidden_states,
encoder_attention_mask,
encoder_decoder_position_bias,
output_attentions,
deterministic,
init_cache,
)
hidden_states = layer_outputs[0]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[1]
if self.causal and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
if self.causal:
all_cross_attentions = all_cross_attentions + (layer_outputs[4],)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Stack with T5->LongT5
class FlaxLongT5Stack(nn.Module):
config: LongT5Config
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.causal = self.config.causal
self.block = FlaxLongT5BlockCollection(
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.final_layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache: bool = False,
):
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = outputs[0]
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
# Add last layer
all_hidden_states = None
if output_hidden_states:
all_hidden_states = outputs.hidden_states
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
if output_hidden_states:
return (
hidden_states,
all_hidden_states,
) + outputs[2:]
return (hidden_states,) + outputs[1:]
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
LONGT5_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For training, `decoder_input_ids` should be provided.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxLongT5PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: LongT5Config,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = jnp.ones_like(input_ids)
decoder_attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: jnp.ndarray = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if decoder_input_ids is None:
raise ValueError(
"Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed"
" here."
)
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# prepare decoder inputs
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(LONGT5_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=LongT5Config)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=LongT5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxLongT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
LONGT5_START_DOCSTRING = r"""
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention.
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`LongT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting raw hidden-stateswithout any specific head on top.",
LONGT5_START_DOCSTRING,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Module with T5->LongT5
class FlaxLongT5Module(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
self.encoder = FlaxLongT5Stack(
encoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxLongT5Stack(
decoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Model with T5->LongT5
class FlaxLongT5Model(FlaxLongT5PreTrainedModel):
module_class = FlaxLongT5Module
append_call_sample_docstring(FlaxLongT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
FLAX_LONGT5_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5Model.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="np"
... ).input_ids
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxLongT5Model, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxLongT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING)
# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5ForConditionalGenerationModule with T5->LongT5
class FlaxLongT5ForConditionalGenerationModule(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.model_dim = self.config.d_model
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = FlaxLongT5Stack(
encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxLongT5Stack(
decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = self.shared.variables["params"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = self.lm_head(sequence_output)
if not return_dict:
return (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxLongT5ForConditionalGeneration(FlaxLongT5PreTrainedModel):
module_class = FlaxLongT5ForConditionalGenerationModule
@add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=LongT5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxLongT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
decoder_outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.config.d_model**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = module.shared.variables["params"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = module.lm_head(sequence_output)
return lm_logits, decoder_outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
extended_attention_mask = jax.lax.dynamic_update_slice(
extended_attention_mask, decoder_attention_mask, (0, 0)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
return model_kwargs
FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
overwrite_call_docstring(
FlaxLongT5ForConditionalGeneration, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING
)
append_replace_return_docstrings(
FlaxLongT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
| transformers/src/transformers/models/longt5/modeling_flax_longt5.py/0 | {
"file_path": "transformers/src/transformers/models/longt5/modeling_flax_longt5.py",
"repo_id": "transformers",
"token_count": 46153
} | 318 |
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from torch import nn
from transformers import M2M100Config, M2M100ForConditionalGeneration
def remove_ignore_keys_(state_dict):
ignore_keys = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(k, None)
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def convert_fairseq_m2m100_checkpoint_from_disk(checkpoint_path):
m2m_100 = torch.load(checkpoint_path, map_location="cpu")
args = m2m_100["args"] or m2m_100["cfg"]["model"]
state_dict = m2m_100["model"]
remove_ignore_keys_(state_dict)
vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0]
config = M2M100Config(
vocab_size=vocab_size,
max_position_embeddings=1024,
encoder_layers=args.encoder_layers,
decoder_layers=args.decoder_layers,
encoder_attention_heads=args.encoder_attention_heads,
decoder_attention_heads=args.decoder_attention_heads,
encoder_ffn_dim=args.encoder_ffn_embed_dim,
decoder_ffn_dim=args.decoder_ffn_embed_dim,
d_model=args.encoder_embed_dim,
encoder_layerdrop=args.encoder_layerdrop,
decoder_layerdrop=args.decoder_layerdrop,
dropout=args.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_function="relu",
)
state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"]
model = M2M100ForConditionalGeneration(config)
model.model.load_state_dict(state_dict, strict=False)
model.lm_head = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
model = convert_fairseq_m2m100_checkpoint_from_disk(args.fairseq_pathร)
model.save_pretrained(args.pytorch_dump_folder_path)
| transformers/src/transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1220
} | 319 |
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for MarkupLM."""
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
BatchEncoding,
EncodedInput,
PreTokenizedInput,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/vocab.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/vocab.json",
},
"merges_file": {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/merges.txt",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/markuplm-base": 512,
"microsoft/markuplm-large": 512,
}
MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to encode the sequences with the special tokens relative to their model.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
`None`, this will use the predefined model maximum length if a maximum length is required by one of the
truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
truncation/padding to a maximum length will be deactivated.
stride (`int`, *optional*, defaults to 0):
If set to a number along with `max_length`, the overflowing tokens returned when
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("ยก"), ord("ยฌ") + 1)) + list(range(ord("ยฎ"), ord("รฟ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class MarkupLMTokenizer(PreTrainedTokenizer):
r"""
Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to
turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and
`xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
merges_file,
tags_dict,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
max_depth=50,
max_width=1000,
pad_width=1001,
pad_token_label=-100,
only_label_first_subword=True,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.tags_dict = tags_dict
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
# additional properties
self.max_depth = max_depth
self.max_width = max_width
self.pad_width = pad_width
self.unk_tag_id = len(self.tags_dict)
self.pad_tag_id = self.unk_tag_id + 1
self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth
self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tags_dict=tags_dict,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
max_depth=max_depth,
max_width=max_width,
pad_width=pad_width,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
**kwargs,
)
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
def get_xpath_seq(self, xpath):
"""
Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of
tag IDs and corresponding subscripts, taking into account max depth.
"""
xpath_tags_list = []
xpath_subs_list = []
xpath_units = xpath.split("/")
for unit in xpath_units:
if not unit.strip():
continue
name_subs = unit.strip().split("[")
tag_name = name_subs[0]
sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1])
xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id))
xpath_subs_list.append(min(self.max_width, sub))
xpath_tags_list = xpath_tags_list[: self.max_depth]
xpath_subs_list = xpath_subs_list[: self.max_depth]
xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list))
xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list))
return xpath_tags_list, xpath_subs_list
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
vocab = self.encoder.copy()
vocab.update(self.added_tokens_encoder)
return vocab
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
logger.warning(
"MarkupLM now does not support generative tasks, decoding is experimental and subject to change."
)
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
# save vocab_file
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
# save merge_file
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def build_xpath_tags_with_special_tokens(
self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None
) -> List[int]:
pad = [self.pad_xpath_tags_seq]
if len(xpath_tags_1) == 0:
return pad + xpath_tags_0 + pad
return pad + xpath_tags_0 + pad + xpath_tags_1 + pad
def build_xpath_subs_with_special_tokens(
self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None
) -> List[int]:
pad = [self.pad_xpath_subs_seq]
if len(xpath_subs_1) == 0:
return pad + xpath_subs_0 + pad
return pad + xpath_subs_0 + pad + xpath_subs_1 + pad
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Args:
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
xpaths: Union[List[List[int]], List[List[List[int]]]] = None,
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with node-level xpaths and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of
nodes).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
xpaths (`List[List[int]]`, `List[List[List[int]]]`):
Node-level xpaths.
node_labels (`List[int]`, `List[List[int]]`, *optional*):
Node-level integer labels (for token classification tasks).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = nodes
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Nodes must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be nodes
if not isinstance(text, (list, tuple)):
raise ValueError(
"Nodes must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
nodes = text if text_pair is None else text_pair
assert xpaths is not None, "You must provide corresponding xpaths"
if is_batched:
assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples"
for nodes_example, xpaths_example in zip(nodes, xpaths):
assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths"
else:
assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths"
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
xpaths: Optional[List[List[List[int]]]] = None,
node_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
xpaths: Optional[List[List[List[int]]]] = None,
node_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
batch_outputs = self._batch_prepare_for_model(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_text_or_text_pairs,
is_pair: bool = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens.
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
"""
batch_outputs = {}
for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)):
batch_text_or_text_pair, xpaths_example = example
outputs = self.prepare_for_model(
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
batch_text_or_text_pair[1] if is_pair else None,
xpaths_example,
node_labels=node_labels[idx] if node_labels is not None else None,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
def encode(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> List[int]:
encoded_inputs = self.encode_plus(
text=text,
text_pair=text_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
return encoded_inputs["input_ids"]
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a
list of list of strings (nodes of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
xpaths=xpaths,
text_pair=text_pair,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
return self.prepare_for_model(
text=text,
text_pair=text_pair,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def prepare_for_model(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
xpaths: Optional[List[List[int]]] = None,
node_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
combination of arguments will raise an error.
Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level
`node_labels` are turned into token-level `labels`. The node label is used for the first token of the node,
while remaining tokens are labeled with -100, such that they will be ignored by the loss function.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a
list of list of strings (nodes of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
tokens = []
pair_tokens = []
xpath_tags_seq = []
xpath_subs_seq = []
pair_xpath_tags_seq = []
pair_xpath_subs_seq = []
labels = []
if text_pair is None:
if node_labels is None:
# CASE 1: web page classification (training + inference) + CASE 2: token classification (inference)
for word, xpath in zip(text, xpaths):
if len(word) < 1: # skip empty nodes
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
else:
# CASE 2: token classification (training)
for word, xpath, label in zip(text, xpaths, node_labels):
if len(word) < 1: # skip empty nodes
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
if self.only_label_first_subword:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
else:
labels.extend([label] * len(word_tokens))
else:
# CASE 3: web page question answering (inference)
# text = question
# text_pair = nodes
tokens = self.tokenize(text)
xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))]
xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))]
for word, xpath in zip(text_pair, xpaths):
if len(word) < 1: # skip empty nodes
continue
word_tokens = self.tokenize(word)
pair_tokens.extend(word_tokens)
xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath)
pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens))
pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens))
# Create ids + pair_ids
ids = self.convert_tokens_to_ids(tokens)
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
if (
return_overflowing_tokens
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
and pair_ids is not None
):
raise ValueError(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
# Compute the total size of the returned encodings
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
# Truncation: Handle max sequence length
overflowing_tokens = []
overflowing_xpath_tags_seq = []
overflowing_xpath_subs_seq = []
overflowing_labels = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
(
ids,
xpath_tags_seq,
xpath_subs_seq,
pair_ids,
pair_xpath_tags_seq,
pair_xpath_subs_seq,
labels,
overflowing_tokens,
overflowing_xpath_tags_seq,
overflowing_xpath_subs_seq,
overflowing_labels,
) = self.truncate_sequences(
ids,
xpath_tags_seq=xpath_tags_seq,
xpath_subs_seq=xpath_subs_seq,
pair_ids=pair_ids,
pair_xpath_tags_seq=pair_xpath_tags_seq,
pair_xpath_subs_seq=pair_xpath_subs_seq,
labels=labels,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq
encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq
encoded_inputs["overflowing_labels"] = overflowing_labels
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq)
xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq)
if labels:
labels = [self.pad_token_label] + labels + [self.pad_token_label]
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq
xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq
# Build output dictionary
encoded_inputs["input_ids"] = sequence
encoded_inputs["xpath_tags_seq"] = xpath_tags_ids
encoded_inputs["xpath_subs_seq"] = xpath_subs_ids
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
if labels:
encoded_inputs["labels"] = labels
# Check lengths
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
def truncate_sequences(
self,
ids: List[int],
xpath_tags_seq: List[List[int]],
xpath_subs_seq: List[List[int]],
pair_ids: Optional[List[int]] = None,
pair_xpath_tags_seq: Optional[List[List[int]]] = None,
pair_xpath_subs_seq: Optional[List[List[int]]] = None,
labels: Optional[List[int]] = None,
num_tokens_to_remove: int = 0,
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
stride: int = 0,
) -> Tuple[List[int], List[int], List[int]]:
"""
Args:
Truncates a sequence pair in-place following the strategy.
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
xpath_tags_seq (`List[List[int]]`):
XPath tag IDs of the first sequence.
xpath_subs_seq (`List[List[int]]`):
XPath sub IDs of the first sequence.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
pair_xpath_tags_seq (`List[List[int]]`, *optional*):
XPath tag IDs of the second sequence.
pair_xpath_subs_seq (`List[List[int]]`, *optional*):
XPath sub IDs of the second sequence.
num_tokens_to_remove (`int`, *optional*, defaults to 0):
Number of tokens to remove using the truncation strategy.
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to
`False`):
The strategy to follow for truncation. Can be:
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).
stride (`int`, *optional*, defaults to 0):
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.
Returns:
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
of sequences (or a batch of pairs) is provided.
"""
if num_tokens_to_remove <= 0:
return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], []
if not isinstance(truncation_strategy, TruncationStrategy):
truncation_strategy = TruncationStrategy(truncation_strategy)
overflowing_tokens = []
overflowing_xpath_tags_seq = []
overflowing_xpath_subs_seq = []
overflowing_labels = []
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
):
if len(ids) > num_tokens_to_remove:
window_len = min(len(ids), stride + num_tokens_to_remove)
overflowing_tokens = ids[-window_len:]
overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:]
overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:]
ids = ids[:-num_tokens_to_remove]
xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove]
xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove]
labels = labels[:-num_tokens_to_remove]
else:
error_msg = (
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the first sequence has a length {len(ids)}. "
)
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
error_msg = (
error_msg + "Please select another truncation strategy than "
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
)
logger.error(error_msg)
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
logger.warning(
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
"truncation strategy. So the returned list will always be empty even if some "
"tokens have been removed."
)
for _ in range(num_tokens_to_remove):
if pair_ids is None or len(ids) > len(pair_ids):
ids = ids[:-1]
xpath_tags_seq = xpath_tags_seq[:-1]
xpath_subs_seq = xpath_subs_seq[:-1]
labels = labels[:-1]
else:
pair_ids = pair_ids[:-1]
pair_xpath_tags_seq = pair_xpath_tags_seq[:-1]
pair_xpath_subs_seq = pair_xpath_subs_seq[:-1]
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
if len(pair_ids) > num_tokens_to_remove:
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
overflowing_tokens = pair_ids[-window_len:]
overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:]
overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:]
pair_ids = pair_ids[:-num_tokens_to_remove]
pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove]
pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove]
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the second sequence has a length {len(pair_ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
"for instance 'longest_first' or 'only_first'."
)
return (
ids,
xpath_tags_seq,
xpath_subs_seq,
pair_ids,
pair_xpath_tags_seq,
pair_xpath_subs_seq,
labels,
overflowing_tokens,
overflowing_xpath_tags_seq,
overflowing_xpath_subs_seq,
overflowing_labels,
)
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Args:
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "xpath_tags_seq" in encoded_inputs:
encoded_inputs["xpath_tags_seq"] = (
encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference
)
if "xpath_subs_seq" in encoded_inputs:
encoded_inputs["xpath_subs_seq"] = (
encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference
)
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "xpath_tags_seq" in encoded_inputs:
encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[
"xpath_tags_seq"
]
if "xpath_subs_seq" in encoded_inputs:
encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[
"xpath_subs_seq"
]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
| transformers/src/transformers/models/markuplm/tokenization_markuplm.py/0 | {
"file_path": "transformers/src/transformers/models/markuplm/tokenization_markuplm.py",
"repo_id": "transformers",
"token_count": 32634
} | 320 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MobileNetV1 model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json",
"google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class MobileNetV1Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a
MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileNetV1
[google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
depth_multiplier (`float`, *optional*, defaults to 1.0):
Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32
channels. This is sometimes also called "alpha" or "width multiplier".
min_depth (`int`, *optional*, defaults to 8):
All layers will have at least this many channels.
hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
tf_padding (`bool`, *optional*, defaults to `True`):
Whether to use TensorFlow padding rules on the convolution layers.
classifier_dropout_prob (`float`, *optional*, defaults to 0.999):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 0.001):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import MobileNetV1Config, MobileNetV1Model
>>> # Initializing a "mobilenet_v1_1.0_224" style configuration
>>> configuration = MobileNetV1Config()
>>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration
>>> model = MobileNetV1Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilenet_v1"
def __init__(
self,
num_channels=3,
image_size=224,
depth_multiplier=1.0,
min_depth=8,
hidden_act="relu6",
tf_padding=True,
classifier_dropout_prob=0.999,
initializer_range=0.02,
layer_norm_eps=0.001,
**kwargs,
):
super().__init__(**kwargs)
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero.")
self.num_channels = num_channels
self.image_size = image_size
self.depth_multiplier = depth_multiplier
self.min_depth = min_depth
self.hidden_act = hidden_act
self.tf_padding = tf_padding
self.classifier_dropout_prob = classifier_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
class MobileNetV1OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4
| transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py/0 | {
"file_path": "transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py",
"repo_id": "transformers",
"token_count": 1942
} | 321 |
# coding=utf-8
# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
""" PyTorch MobileViT model."""
import math
from typing import Dict, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mobilevit import MobileViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "MobileViTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "apple/mobilevit-small"
_EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"apple/mobilevit-small",
"apple/mobilevit-x-small",
"apple/mobilevit-xx-small",
"apple/deeplabv3-mobilevit-small",
"apple/deeplabv3-mobilevit-x-small",
"apple/deeplabv3-mobilevit-xx-small",
# See all MobileViT models at https://huggingface.co/models?filter=mobilevit
]
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
"""
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
original TensorFlow repo. It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return int(new_value)
class MobileViTConvLayer(nn.Module):
def __init__(
self,
config: MobileViTConfig,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias: bool = False,
dilation: int = 1,
use_normalization: bool = True,
use_activation: Union[bool, str] = True,
) -> None:
super().__init__()
padding = int((kernel_size - 1) / 2) * dilation
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=1e-5,
momentum=0.1,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
class MobileViTInvertedResidual(nn.Module):
"""
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
"""
def __init__(
self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1
) -> None:
super().__init__()
expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
if stride not in [1, 2]:
raise ValueError(f"Invalid stride {stride}.")
self.use_residual = (stride == 1) and (in_channels == out_channels)
self.expand_1x1 = MobileViTConvLayer(
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
)
self.conv_3x3 = MobileViTConvLayer(
config,
in_channels=expanded_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=stride,
groups=expanded_channels,
dilation=dilation,
)
self.reduce_1x1 = MobileViTConvLayer(
config,
in_channels=expanded_channels,
out_channels=out_channels,
kernel_size=1,
use_activation=False,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
residual = features
features = self.expand_1x1(features)
features = self.conv_3x3(features)
features = self.reduce_1x1(features)
return residual + features if self.use_residual else features
class MobileViTMobileNetLayer(nn.Module):
def __init__(
self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1
) -> None:
super().__init__()
self.layer = nn.ModuleList()
for i in range(num_stages):
layer = MobileViTInvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if i == 0 else 1,
)
self.layer.append(layer)
in_channels = out_channels
def forward(self, features: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
features = layer_module(features)
return features
class MobileViTSelfAttention(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
super().__init__()
if hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size {hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class MobileViTSelfOutput(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class MobileViTAttention(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
super().__init__()
self.attention = MobileViTSelfAttention(config, hidden_size)
self.output = MobileViTSelfOutput(config, hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
self_outputs = self.attention(hidden_states)
attention_output = self.output(self_outputs)
return attention_output
class MobileViTIntermediate(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.dense = nn.Linear(hidden_size, intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class MobileViTOutput(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.dense = nn.Linear(intermediate_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class MobileViTTransformerLayer(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.attention = MobileViTAttention(config, hidden_size)
self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size)
self.output = MobileViTOutput(config, hidden_size, intermediate_size)
self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
attention_output = self.attention(self.layernorm_before(hidden_states))
hidden_states = attention_output + hidden_states
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output, hidden_states)
return layer_output
class MobileViTTransformer(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None:
super().__init__()
self.layer = nn.ModuleList()
for _ in range(num_stages):
transformer_layer = MobileViTTransformerLayer(
config,
hidden_size=hidden_size,
intermediate_size=int(hidden_size * config.mlp_ratio),
)
self.layer.append(transformer_layer)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
hidden_states = layer_module(hidden_states)
return hidden_states
class MobileViTLayer(nn.Module):
"""
MobileViT block: https://arxiv.org/abs/2110.02178
"""
def __init__(
self,
config: MobileViTConfig,
in_channels: int,
out_channels: int,
stride: int,
hidden_size: int,
num_stages: int,
dilation: int = 1,
) -> None:
super().__init__()
self.patch_width = config.patch_size
self.patch_height = config.patch_size
if stride == 2:
self.downsampling_layer = MobileViTInvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if dilation == 1 else 1,
dilation=dilation // 2 if dilation > 1 else 1,
)
in_channels = out_channels
else:
self.downsampling_layer = None
self.conv_kxk = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=in_channels,
kernel_size=config.conv_kernel_size,
)
self.conv_1x1 = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=hidden_size,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
self.transformer = MobileViTTransformer(
config,
hidden_size=hidden_size,
num_stages=num_stages,
)
self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.conv_projection = MobileViTConvLayer(
config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1
)
self.fusion = MobileViTConvLayer(
config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size
)
def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
patch_width, patch_height = self.patch_width, self.patch_height
patch_area = int(patch_width * patch_height)
batch_size, channels, orig_height, orig_width = features.shape
new_height = int(math.ceil(orig_height / patch_height) * patch_height)
new_width = int(math.ceil(orig_width / patch_width) * patch_width)
interpolate = False
if new_width != orig_width or new_height != orig_height:
# Note: Padding can be done, but then it needs to be handled in attention function.
features = nn.functional.interpolate(
features, size=(new_height, new_width), mode="bilinear", align_corners=False
)
interpolate = True
# number of patches along width and height
num_patch_width = new_width // patch_width
num_patch_height = new_height // patch_height
num_patches = num_patch_height * num_patch_width
# convert from shape (batch_size, channels, orig_height, orig_width)
# to the shape (batch_size * patch_area, num_patches, channels)
patches = features.reshape(
batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width
)
patches = patches.transpose(1, 2)
patches = patches.reshape(batch_size, channels, num_patches, patch_area)
patches = patches.transpose(1, 3)
patches = patches.reshape(batch_size * patch_area, num_patches, -1)
info_dict = {
"orig_size": (orig_height, orig_width),
"batch_size": batch_size,
"channels": channels,
"interpolate": interpolate,
"num_patches": num_patches,
"num_patches_width": num_patch_width,
"num_patches_height": num_patch_height,
}
return patches, info_dict
def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor:
patch_width, patch_height = self.patch_width, self.patch_height
patch_area = int(patch_width * patch_height)
batch_size = info_dict["batch_size"]
channels = info_dict["channels"]
num_patches = info_dict["num_patches"]
num_patch_height = info_dict["num_patches_height"]
num_patch_width = info_dict["num_patches_width"]
# convert from shape (batch_size * patch_area, num_patches, channels)
# back to shape (batch_size, channels, orig_height, orig_width)
features = patches.contiguous().view(batch_size, patch_area, num_patches, -1)
features = features.transpose(1, 3)
features = features.reshape(
batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width
)
features = features.transpose(1, 2)
features = features.reshape(
batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width
)
if info_dict["interpolate"]:
features = nn.functional.interpolate(
features, size=info_dict["orig_size"], mode="bilinear", align_corners=False
)
return features
def forward(self, features: torch.Tensor) -> torch.Tensor:
# reduce spatial dimensions if needed
if self.downsampling_layer:
features = self.downsampling_layer(features)
residual = features
# local representation
features = self.conv_kxk(features)
features = self.conv_1x1(features)
# convert feature map to patches
patches, info_dict = self.unfolding(features)
# learn global representations
patches = self.transformer(patches)
patches = self.layernorm(patches)
# convert patches back to feature maps
features = self.folding(patches, info_dict)
features = self.conv_projection(features)
features = self.fusion(torch.cat((residual, features), dim=1))
return features
class MobileViTEncoder(nn.Module):
def __init__(self, config: MobileViTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList()
self.gradient_checkpointing = False
# segmentation architectures like DeepLab and PSPNet modify the strides
# of the classification backbones
dilate_layer_4 = dilate_layer_5 = False
if config.output_stride == 8:
dilate_layer_4 = True
dilate_layer_5 = True
elif config.output_stride == 16:
dilate_layer_5 = True
dilation = 1
layer_1 = MobileViTMobileNetLayer(
config,
in_channels=config.neck_hidden_sizes[0],
out_channels=config.neck_hidden_sizes[1],
stride=1,
num_stages=1,
)
self.layer.append(layer_1)
layer_2 = MobileViTMobileNetLayer(
config,
in_channels=config.neck_hidden_sizes[1],
out_channels=config.neck_hidden_sizes[2],
stride=2,
num_stages=3,
)
self.layer.append(layer_2)
layer_3 = MobileViTLayer(
config,
in_channels=config.neck_hidden_sizes[2],
out_channels=config.neck_hidden_sizes[3],
stride=2,
hidden_size=config.hidden_sizes[0],
num_stages=2,
)
self.layer.append(layer_3)
if dilate_layer_4:
dilation *= 2
layer_4 = MobileViTLayer(
config,
in_channels=config.neck_hidden_sizes[3],
out_channels=config.neck_hidden_sizes[4],
stride=2,
hidden_size=config.hidden_sizes[1],
num_stages=4,
dilation=dilation,
)
self.layer.append(layer_4)
if dilate_layer_5:
dilation *= 2
layer_5 = MobileViTLayer(
config,
in_channels=config.neck_hidden_sizes[4],
out_channels=config.neck_hidden_sizes[5],
stride=2,
hidden_size=config.hidden_sizes[2],
num_stages=3,
dilation=dilation,
)
self.layer.append(layer_5)
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
)
else:
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
class MobileViTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileViTConfig
base_model_prefix = "mobilevit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MOBILEVIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOBILEVIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileViTImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MobileViT model outputting raw hidden-states without any specific head on top.",
MOBILEVIT_START_DOCSTRING,
)
class MobileViTModel(MobileViTPreTrainedModel):
def __init__(self, config: MobileViTConfig, expand_output: bool = True):
super().__init__(config)
self.config = config
self.expand_output = expand_output
self.conv_stem = MobileViTConvLayer(
config,
in_channels=config.num_channels,
out_channels=config.neck_hidden_sizes[0],
kernel_size=3,
stride=2,
)
self.encoder = MobileViTEncoder(config)
if self.expand_output:
self.conv_1x1_exp = MobileViTConvLayer(
config,
in_channels=config.neck_hidden_sizes[5],
out_channels=config.neck_hidden_sizes[6],
kernel_size=1,
)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer_index, heads in heads_to_prune.items():
mobilevit_layer = self.encoder.layer[layer_index]
if isinstance(mobilevit_layer, MobileViTLayer):
for transformer_layer in mobilevit_layer.transformer.layer:
transformer_layer.attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.conv_stem(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.expand_output:
last_hidden_state = self.conv_1x1_exp(encoder_outputs[0])
# global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False)
else:
last_hidden_state = encoder_outputs[0]
pooled_output = None
if not return_dict:
output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
return output + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
MOBILEVIT_START_DOCSTRING,
)
class MobileViTForImageClassification(MobileViTPreTrainedModel):
def __init__(self, config: MobileViTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevit = MobileViTModel(config)
# Classifier head
self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
self.classifier = (
nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(self.dropout(pooled_output))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
class MobileViTASPPPooling(nn.Module):
def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None:
super().__init__()
self.global_pool = nn.AdaptiveAvgPool2d(output_size=1)
self.conv_1x1 = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
spatial_size = features.shape[-2:]
features = self.global_pool(features)
features = self.conv_1x1(features)
features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False)
return features
class MobileViTASPP(nn.Module):
"""
ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTConfig) -> None:
super().__init__()
in_channels = config.neck_hidden_sizes[-2]
out_channels = config.aspp_out_channels
if len(config.atrous_rates) != 3:
raise ValueError("Expected 3 values for atrous_rates")
self.convs = nn.ModuleList()
in_projection = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
use_activation="relu",
)
self.convs.append(in_projection)
self.convs.extend(
[
MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
dilation=rate,
use_activation="relu",
)
for rate in config.atrous_rates
]
)
pool_layer = MobileViTASPPPooling(config, in_channels, out_channels)
self.convs.append(pool_layer)
self.project = MobileViTConvLayer(
config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu"
)
self.dropout = nn.Dropout(p=config.aspp_dropout_prob)
def forward(self, features: torch.Tensor) -> torch.Tensor:
pyramid = []
for conv in self.convs:
pyramid.append(conv(features))
pyramid = torch.cat(pyramid, dim=1)
pooled_features = self.project(pyramid)
pooled_features = self.dropout(pooled_features)
return pooled_features
class MobileViTDeepLabV3(nn.Module):
"""
DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTConfig) -> None:
super().__init__()
self.aspp = MobileViTASPP(config)
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
self.classifier = MobileViTConvLayer(
config,
in_channels=config.aspp_out_channels,
out_channels=config.num_labels,
kernel_size=1,
use_normalization=False,
use_activation=False,
bias=True,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
features = self.aspp(hidden_states[-1])
features = self.dropout(features)
features = self.classifier(features)
return features
@add_start_docstrings(
"""
MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC.
""",
MOBILEVIT_START_DOCSTRING,
)
class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel):
def __init__(self, config: MobileViTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevit = MobileViTModel(config, expand_output=False)
self.segmentation_head = MobileViTDeepLabV3(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small")
>>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevit(
pixel_values,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.segmentation_head(encoder_hidden_states)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
loss = loss_fct(upsampled_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
| transformers/src/transformers/models/mobilevit/modeling_mobilevit.py/0 | {
"file_path": "transformers/src/transformers/models/mobilevit/modeling_mobilevit.py",
"repo_id": "transformers",
"token_count": 17766
} | 322 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MRA model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json",
}
class MraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Mra
[uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MraModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 1):
The vocabulary size of the `token_type_ids` passed when calling [`MraModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
block_per_row (`int`, *optional*, defaults to 4):
Used to set the budget for the high resolution scale.
approx_mode (`str`, *optional*, defaults to `"full"`):
Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and
high resolution and `"sparse"` for only low resolution.
initial_prior_first_n_blocks (`int`, *optional*, defaults to 0):
The initial number of blocks for which high resolution is used.
initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0):
The number of diagonal blocks for which high resolution is used.
Example:
```python
>>> from transformers import MraConfig, MraModel
>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()
>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mra"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-5,
position_embedding_type="absolute",
block_per_row=4,
approx_mode="full",
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.block_per_row = block_per_row
self.approx_mode = approx_mode
self.initial_prior_first_n_blocks = initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
| transformers/src/transformers/models/mra/configuration_mra.py/0 | {
"file_path": "transformers/src/transformers/models/mra/configuration_mra.py",
"repo_id": "transformers",
"token_count": 2527
} | 323 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Nougat checkpoints using the original `nougat` library. URL:
https://github.com/facebookresearch/nougat/tree/main"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from nougat import NougatModel
from nougat.dataset.rasterize import rasterize_paper
from nougat.utils.checkpoint import get_checkpoint
from PIL import Image
from transformers import (
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
NougatImageProcessor,
NougatProcessor,
NougatTokenizerFast,
VisionEncoderDecoderModel,
)
def get_configs(model):
original_config = model.config
encoder_config = DonutSwinConfig(
image_size=original_config.input_size,
patch_size=4,
depths=original_config.encoder_layer,
num_heads=[4, 8, 16, 32],
window_size=original_config.window_size,
embed_dim=128,
)
decoder_config = MBartConfig(
is_decoder=True,
is_encoder_decoder=False,
add_cross_attention=True,
decoder_layers=original_config.decoder_layer,
max_position_embeddings=original_config.max_position_embeddings,
vocab_size=len(
model.decoder.tokenizer
), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json)
scale_embedding=True,
add_final_layer_norm=True,
tie_word_embeddings=False,
)
return encoder_config, decoder_config
# Copied from transformers.models.donut.convert_donut_to_pytorch.rename_key
def rename_key(name):
if "encoder.model" in name:
name = name.replace("encoder.model", "encoder")
if "decoder.model" in name:
name = name.replace("decoder.model", "decoder")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if name.startswith("encoder"):
if "layers" in name:
name = "encoder." + name
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name and "mask" not in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if name == "encoder.norm.weight":
name = "encoder.layernorm.weight"
if name == "encoder.norm.bias":
name = "encoder.layernorm.bias"
return name
# Copied from transformers.models.donut.convert_donut_to_pytorch.convert_state_dict
def convert_state_dict(orig_state_dict, model):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[3])
block_num = int(key_split[5])
dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias"
] = val[:dim]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias"
] = val[dim : dim * 2]
orig_state_dict[
f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias"
] = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def convert_nougat_checkpoint(model_tag, pytorch_dump_folder_path=None, push_to_hub=False):
# load original model
checkpoint_path = get_checkpoint(None, model_tag)
original_model = NougatModel.from_pretrained(checkpoint_path)
original_model.eval()
# load HuggingFace model
encoder_config, decoder_config = get_configs(original_model)
encoder = DonutSwinModel(encoder_config)
decoder = MBartForCausalLM(decoder_config)
model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
model.eval()
state_dict = original_model.state_dict()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# verify results on PDF
filepath = hf_hub_download(repo_id="ysharma/nougat", filename="input/nougat.pdf", repo_type="space")
images = rasterize_paper(pdf=filepath, return_pil=True)
image = Image.open(images[0])
tokenizer_file = checkpoint_path / "tokenizer.json"
tokenizer = NougatTokenizerFast(tokenizer_file=str(tokenizer_file))
tokenizer.pad_token = "<pad>"
tokenizer.bos_token = "<s>"
tokenizer.eos_token = "</s>"
tokenizer.unk_token = "<unk>"
tokenizer.model_max_length = original_model.config.max_length
size = {"height": original_model.config.input_size[0], "width": original_model.config.input_size[1]}
image_processor = NougatImageProcessor(
do_align_long_axis=original_model.config.align_long_axis,
size=size,
)
processor = NougatProcessor(image_processor=image_processor, tokenizer=tokenizer)
# verify pixel_values
pixel_values = processor(image, return_tensors="pt").pixel_values
original_pixel_values = original_model.encoder.prepare_input(image).unsqueeze(0)
assert torch.allclose(original_pixel_values, pixel_values)
# verify patch embeddings
original_patch_embed = original_model.encoder.model.patch_embed(pixel_values)
patch_embeddings, _ = model.encoder.embeddings(pixel_values)
assert torch.allclose(original_patch_embed, patch_embeddings)
# verify encoder hidden states
original_last_hidden_state = original_model.encoder(pixel_values)
last_hidden_state = model.encoder(pixel_values).last_hidden_state
assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2)
# NOTE original model does not use tied weights for embeddings of decoder
original_embeddings = original_model.decoder.model.model.decoder.embed_tokens
embeddings = model.decoder.model.decoder.embed_tokens
assert torch.allclose(original_embeddings.weight, embeddings.weight, atol=1e-3)
# verify decoder hidden states
prompt = "hello world"
decoder_input_ids = original_model.decoder.tokenizer(
prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
decoder_attention_mask = torch.ones_like(decoder_input_ids)
original_logits = original_model(
image_tensors=pixel_values, decoder_input_ids=decoder_input_ids, attention_mask=decoder_attention_mask
).logits
logits = model(
pixel_values,
decoder_input_ids=decoder_input_ids[:, :-1],
decoder_attention_mask=decoder_attention_mask[:, :-1],
).logits
assert torch.allclose(original_logits, logits, atol=1e-3)
# verify generation
outputs = model.generate(
pixel_values,
min_length=1,
max_length=30,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[
[tokenizer.unk_token_id],
],
return_dict_in_generate=True,
do_sample=False,
)
generated = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
if model_tag == "0.1.0-base":
expected_generation = "# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lblec"
elif model_tag == "0.1.0-small":
expected_generation = (
"# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lble"
)
else:
raise ValueError(f"Unexpected model tag: {model_tag}")
assert generated == expected_generation
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
tag_to_name = {"0.1.0-base": "nougat-base", "0.1.0-small": "nougat-small"}
model_name = tag_to_name[model_tag]
model.push_to_hub(f"facebook/{model_name}")
processor.push_to_hub(f"facebook/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_tag",
default="0.1.0-base",
required=False,
type=str,
choices=["0.1.0-base", "0.1.0-small"],
help="Tag of the original model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
required=False,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the ๐ค hub.",
)
args = parser.parse_args()
convert_nougat_checkpoint(args.model_tag, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/nougat/convert_nougat_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/nougat/convert_nougat_to_hf.py",
"repo_id": "transformers",
"token_count": 4666
} | 324 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_openai_checkpoint_to_pytorch(openai_checkpoint_folder_path, openai_config_file, pytorch_dump_folder_path):
# Construct model
if openai_config_file == "":
config = OpenAIGPTConfig()
else:
config = OpenAIGPTConfig.from_json_file(openai_config_file)
model = OpenAIGPTModel(config)
# Load weights from numpy
load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(model.state_dict(), pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--openai_checkpoint_folder_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--openai_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
args = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| transformers/src/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 987
} | 325 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for OWLv2
"""
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class Owlv2Processor(ProcessorMixin):
r"""
Constructs an Owlv2 processor which wraps [`Owlv2ImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into
a single processor that interits both the image processor and tokenizer functionalities. See the
[`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.
Args:
image_processor ([`Owlv2ImageProcessor`]):
The image processor is a required input.
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "Owlv2ImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor, tokenizer, **kwargs):
super().__init__(image_processor, tokenizer)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.__call__ with OWLViT->OWLv2
def __call__(self, text=None, images=None, query_images=None, padding="max_length", return_tensors="np", **kwargs):
"""
Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
`kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The query image to be prepared, one query image is expected per target image to be queried. Each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none."
)
if text is not None:
if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)):
encodings = [self.tokenizer(text, padding=padding, return_tensors=return_tensors, **kwargs)]
elif isinstance(text, List) and isinstance(text[0], List):
encodings = []
# Maximum number of queries across batch
max_num_queries = max([len(t) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(t) != max_num_queries:
t = t + [" "] * (max_num_queries - len(t))
encoding = self.tokenizer(t, padding=padding, return_tensors=return_tensors, **kwargs)
encodings.append(encoding)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0)
attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
encoding = BatchEncoding()
encoding["input_ids"] = input_ids
encoding["attention_mask"] = attention_mask
if query_images is not None:
encoding = BatchEncoding()
query_pixel_values = self.image_processor(
query_images, return_tensors=return_tensors, **kwargs
).pixel_values
encoding["query_pixel_values"] = query_pixel_values
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.post_process_object_detection with OWLViT->OWLv2
def post_process_object_detection(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer
to the docstring of this method for more information.
"""
return self.image_processor.post_process_object_detection(*args, **kwargs)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.post_process_image_guided_detection with OWLViT->OWLv2
def post_process_image_guided_detection(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OwlViTImageProcessor.post_process_one_shot_object_detection`].
Please refer to the docstring of this method for more information.
"""
return self.image_processor.post_process_image_guided_detection(*args, **kwargs)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.batch_decode
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.decode
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
| transformers/src/transformers/models/owlv2/processing_owlv2.py/0 | {
"file_path": "transformers/src/transformers/models/owlv2/processing_owlv2.py",
"repo_id": "transformers",
"token_count": 4083
} | 326 |
# coding=utf-8
# Copyright 2020 Google and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
PATTERNS = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def rename_state_dict_key(k):
for pegasus_name, hf_name in PATTERNS:
k = k.replace(pegasus_name, hf_name)
return k
# See appendix C of paper for all hyperparams
def convert_pegasus(tf_weights: dict, cfg_updates: dict) -> PegasusForConditionalGeneration:
cfg_kwargs = DEFAULTS.copy()
cfg_kwargs.update(cfg_updates)
cfg = PegasusConfig(**cfg_kwargs)
torch_model = PegasusForConditionalGeneration(cfg)
sd = torch_model.model.state_dict()
mapping = {}
for k, v in tf_weights.items():
new_k = rename_state_dict_key(k)
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
if "dense" in k or "proj" in new_k:
v = v.T
mapping[new_k] = torch.tensor(v, dtype=sd[new_k].dtype)
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
mapping["shared.weight"][cfg.pad_token_id] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1])
mapping["encoder.embed_tokens.weight"] = mapping["shared.weight"]
mapping["decoder.embed_tokens.weight"] = mapping["shared.weight"]
empty_biases = {k: torch.zeros_like(v) for k, v in sd.items() if k.endswith("bias") and k not in mapping}
mapping.update(**empty_biases)
missing, extra = torch_model.model.load_state_dict(mapping, strict=False)
unexpected_missing = [
k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"]
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def get_tf_weights_as_numpy(path="./ckpt/aeslc/model.ckpt-32000") -> Dict:
init_vars = tf.train.list_variables(path)
tf_weights = {}
ignore_name = ["Adafactor", "global_step"]
for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
skip_key = any(pat in name for pat in ignore_name)
if skip_key:
continue
array = tf.train.load_variable(path, name)
tf_weights[name] = array
return tf_weights
def convert_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str):
# save tokenizer first
dataset = Path(ckpt_path).parent.name
desired_max_model_length = task_specific_params[f"summarization_{dataset}"]["max_position_embeddings"]
tok = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=desired_max_model_length)
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(save_dir)
# convert model
tf_weights = get_tf_weights_as_numpy(ckpt_path)
cfg_updates = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
cfg_updates["task_specific_params"] = task_specific_params
torch_model = convert_pegasus(tf_weights, cfg_updates)
torch_model.save_pretrained(save_dir)
sd = torch_model.state_dict()
sd.pop("model.decoder.embed_positions.weight")
sd.pop("model.encoder.embed_positions.weight")
torch.save(sd, Path(save_dir) / "pytorch_model.bin")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
if args.save_dir is None:
dataset = Path(args.tf_ckpt_path).parent.name
args.save_dir = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| transformers/src/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2026
} | 327 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_plbart"] = ["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_plbart"] = [
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| transformers/src/transformers/models/plbart/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/plbart/__init__.py",
"repo_id": "transformers",
"token_count": 932
} | 328 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Processor class for Pop2Piano."""
import os
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...tokenization_utils import BatchEncoding, PaddingStrategy, TruncationStrategy
from ...utils import TensorType
class Pop2PianoProcessor(ProcessorMixin):
r"""
Constructs an Pop2Piano processor which wraps a Pop2Piano Feature Extractor and Pop2Piano Tokenizer into a single
processor.
[`Pop2PianoProcessor`] offers all the functionalities of [`Pop2PianoFeatureExtractor`] and [`Pop2PianoTokenizer`].
See the docstring of [`~Pop2PianoProcessor.__call__`] and [`~Pop2PianoProcessor.decode`] for more information.
Args:
feature_extractor (`Pop2PianoFeatureExtractor`):
An instance of [`Pop2PianoFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`Pop2PianoTokenizer`):
An instance of ['Pop2PianoTokenizer`]. The tokenizer is a required input.
"""
attributes = ["feature_extractor", "tokenizer"]
feature_extractor_class = "Pop2PianoFeatureExtractor"
tokenizer_class = "Pop2PianoTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(
self,
audio: Union[np.ndarray, List[float], List[np.ndarray]] = None,
sampling_rate: Union[int, List[int]] = None,
steps_per_beat: int = 2,
resample: Optional[bool] = True,
notes: Union[List, TensorType] = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
verbose: bool = True,
**kwargs,
) -> Union[BatchFeature, BatchEncoding]:
"""
This method uses [`Pop2PianoFeatureExtractor.__call__`] method to prepare log-mel-spectrograms for the model,
and [`Pop2PianoTokenizer.__call__`] to prepare token_ids from notes.
Please refer to the docstring of the above two methods for more information.
"""
# Since Feature Extractor needs both audio and sampling_rate and tokenizer needs both token_ids and
# feature_extractor_output, we must check for both.
if (audio is None and sampling_rate is None) and (notes is None):
raise ValueError(
"You have to specify at least audios and sampling_rate in order to use feature extractor or "
"notes to use the tokenizer part."
)
if audio is not None and sampling_rate is not None:
inputs = self.feature_extractor(
audio=audio,
sampling_rate=sampling_rate,
steps_per_beat=steps_per_beat,
resample=resample,
**kwargs,
)
if notes is not None:
encoded_token_ids = self.tokenizer(
notes=notes,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
if notes is None:
return inputs
elif audio is None or sampling_rate is None:
return encoded_token_ids
else:
inputs["token_ids"] = encoded_token_ids["token_ids"]
return inputs
def batch_decode(
self,
token_ids,
feature_extractor_output: BatchFeature,
return_midi: bool = True,
) -> BatchEncoding:
"""
This method uses [`Pop2PianoTokenizer.batch_decode`] method to convert model generated token_ids to midi_notes.
Please refer to the docstring of the above two methods for more information.
"""
return self.tokenizer.batch_decode(
token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=return_midi
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
return super().save_pretrained(save_directory, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(*args)
| transformers/src/transformers/models/pop2piano/processing_pop2piano.py/0 | {
"file_path": "transformers/src/transformers/models/pop2piano/processing_pop2piano.py",
"repo_id": "transformers",
"token_count": 2200
} | 329 |
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Qwen2 model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
}
class Qwen2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Qwen2Model, Qwen2Config
>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()
>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
| transformers/src/transformers/models/qwen2/configuration_qwen2.py/0 | {
"file_path": "transformers/src/transformers/models/qwen2/configuration_qwen2.py",
"repo_id": "transformers",
"token_count": 2536
} | 330 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch RoFormer model."""
import math
import os
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_roformer import RoFormerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base"
_CONFIG_FOR_DOC = "RoFormerConfig"
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"junnyu/roformer_chinese_small",
"junnyu/roformer_chinese_base",
"junnyu/roformer_chinese_char_small",
"junnyu/roformer_chinese_char_base",
"junnyu/roformer_small_discriminator",
"junnyu/roformer_small_generator",
# See all RoFormer models at https://huggingface.co/models?filter=roformer
]
# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->RoFormer
class RoFormerSinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
super().__init__(num_positions, embedding_dim)
self.weight = self._init_weight(self.weight)
@staticmethod
def _init_weight(out: nn.Parameter) -> nn.Parameter:
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = out.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
return out
@torch.no_grad()
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
def load_tf_weights_in_roformer(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name.replace("bert", "roformer"))
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if not pointer.shape == array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
class RoFormerEmbeddings(nn.Module):
"""Construct the embeddings from word and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class RoFormerSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
self.rotary_value = config.rotary_value
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
sinusoidal_pos=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
if sinusoidal_pos is not None:
if self.rotary_value:
query_layer, key_layer, value_layer = self.apply_rotary_position_embeddings(
sinusoidal_pos, query_layer, key_layer, value_layer
)
else:
query_layer, key_layer = self.apply_rotary_position_embeddings(
sinusoidal_pos, query_layer, key_layer
)
if past_key_value is not None:
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RoFormerModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
@staticmethod
def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None):
# https://kexue.fm/archives/8265
# sin [batch_size, num_heads, sequence_length, embed_size_per_head//2]
# cos [batch_size, num_heads, sequence_length, embed_size_per_head//2]
sin, cos = sinusoidal_pos.chunk(2, dim=-1)
# sin [ฮธ0,ฮธ1,ฮธ2......ฮธd/2-1] -> sin_pos [ฮธ0,ฮธ0,ฮธ1,ฮธ1,ฮธ2,ฮธ2......ฮธd/2-1,ฮธd/2-1]
sin_pos = torch.stack([sin, sin], dim=-1).reshape_as(sinusoidal_pos)
# cos [ฮธ0,ฮธ1,ฮธ2......ฮธd/2-1] -> cos_pos [ฮธ0,ฮธ0,ฮธ1,ฮธ1,ฮธ2,ฮธ2......ฮธd/2-1,ฮธd/2-1]
cos_pos = torch.stack([cos, cos], dim=-1).reshape_as(sinusoidal_pos)
# rotate_half_query_layer [-q1,q0,-q3,q2......,-qd-1,qd-2]
rotate_half_query_layer = torch.stack([-query_layer[..., 1::2], query_layer[..., ::2]], dim=-1).reshape_as(
query_layer
)
query_layer = query_layer * cos_pos + rotate_half_query_layer * sin_pos
# rotate_half_key_layer [-k1,k0,-k3,k2......,-kd-1,kd-2]
rotate_half_key_layer = torch.stack([-key_layer[..., 1::2], key_layer[..., ::2]], dim=-1).reshape_as(key_layer)
key_layer = key_layer * cos_pos + rotate_half_key_layer * sin_pos
if value_layer is not None:
# rotate_half_value_layer [-v1,v0,-v3,v2......,-vd-1,vd-2]
rotate_half_value_layer = torch.stack([-value_layer[..., 1::2], value_layer[..., ::2]], dim=-1).reshape_as(
value_layer
)
value_layer = value_layer * cos_pos + rotate_half_value_layer * sin_pos
return query_layer, key_layer, value_layer
return query_layer, key_layer
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->RoFormer
class RoFormerSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class RoFormerAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = RoFormerSelfAttention(config)
self.output = RoFormerSelfOutput(config)
self.pruned_heads = set()
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
# End Copy
def forward(
self,
hidden_states,
attention_mask=None,
sinusoidal_pos=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
sinusoidal_pos,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->RoFormer
class RoFormerIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->RoFormer
class RoFormerOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class RoFormerLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = RoFormerAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = RoFormerAttention(config)
self.intermediate = RoFormerIntermediate(config)
self.output = RoFormerOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
sinusoidal_pos=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
sinusoidal_pos,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention "
"layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
sinusoidal_pos,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class RoFormerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_positions = RoFormerSinusoidalPositionalEmbedding(
config.max_position_embeddings, config.hidden_size // config.num_attention_heads
)
self.layer = nn.ModuleList([RoFormerLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
# [sequence_length, embed_size_per_head] -> [batch_size, num_heads, sequence_length, embed_size_per_head]
sinusoidal_pos = self.embed_positions(hidden_states.shape[:-1], past_key_values_length)[None, None, :, :]
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
sinusoidal_pos,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
sinusoidal_pos,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class RoFormerPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class RoFormerLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = RoFormerPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->RoFormer
class RoFormerOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = RoFormerLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class RoFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RoFormerConfig
load_tf_weights = load_tf_weights_in_roformer
base_model_prefix = "roformer"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, RoFormerSinusoidalPositionalEmbedding):
pass
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
ROFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RoFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ROFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top.",
ROFORMER_START_DOCSTRING,
)
class RoFormerModel(RoFormerPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = RoFormerEmbeddings(config)
if config.embedding_size != config.hidden_size:
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
self.encoder = RoFormerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple[torch.Tensor]]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
if hasattr(self, "embeddings_project"):
embedding_output = self.embeddings_project(embedding_output)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING)
class RoFormerForMaskedLM(RoFormerPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `RoFormerForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roformer = RoFormerModel(config)
self.cls = RoFormerOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MaskedLMOutput, Tuple[torch.Tensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""RoFormer Model with a `language modeling` head on top for CLM fine-tuning.""", ROFORMER_START_DOCSTRING
)
class RoFormerForCausalLM(RoFormerPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `RoFormerForCausalLM` as a standalone, add `is_decoder=True.`")
self.roformer = RoFormerModel(config)
self.cls = RoFormerOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.Tensor]]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RoFormerForCausalLM, RoFormerConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
>>> config = RoFormerConfig.from_pretrained("junnyu/roformer_chinese_base")
>>> config.is_decoder = True
>>> model = RoFormerForCausalLM.from_pretrained("junnyu/roformer_chinese_base", config=config)
>>> inputs = tokenizer("ไปๅคฉๅคฉๆฐ้ๅธธๅฅฝใ", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
class RoFormerClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ROFORMER_START_DOCSTRING,
)
class RoFormerForSequenceClassification(RoFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roformer = RoFormerModel(config)
self.classifier = RoFormerClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ROFORMER_START_DOCSTRING,
)
class RoFormerForMultipleChoice(RoFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.roformer = RoFormerModel(config)
self.sequence_summary = SequenceSummary(config)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.roformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
pooled_output = self.sequence_summary(sequence_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ROFORMER_START_DOCSTRING,
)
class RoFormerForTokenClassification(RoFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roformer = RoFormerModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[TokenClassifierOutput, Tuple[torch.Tensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ROFORMER_START_DOCSTRING,
)
class RoFormerForQuestionAnswering(RoFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.roformer = RoFormerModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor]]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/roformer/modeling_roformer.py/0 | {
"file_path": "transformers/src/transformers/models/roformer/modeling_roformer.py",
"repo_id": "transformers",
"token_count": 29911
} | 331 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Segformer."""
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL.Image
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class SegformerImageProcessor(BaseImageProcessor):
r"""
Constructs a Segformer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs,
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use "
"`do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 512, "width": 512}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_reduce_labels = do_reduce_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure `do_reduce_labels` is updated if image
processor is created using from_dict and kwargs e.g. `SegformerImageProcessor.from_pretrained(checkpoint,
reduce_labels=True)`
"""
image_processor_dict = image_processor_dict.copy()
if "reduce_labels" in kwargs:
image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.reduce_label
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool,
do_resize: bool,
do_rescale: bool,
do_normalize: bool,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
rescale_factor: Optional[float] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image=image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single mask."""
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
input_data_format = ChannelDimension.FIRST
else:
added_channel_dim = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
# reduce zero label if needed
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=PILImageResampling.NEAREST,
size=size,
do_rescale=False,
do_normalize=False,
input_data_format=input_data_format,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
"""
Preprocesses a batch of images and optionally segmentation maps.
Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be
passed in as positional arguments.
"""
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
segmentation_maps (`ImageInput`, *optional*):
Segmentation map to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize` is applied.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
resample = resample if resample is not None else self.resample
size = size if size is not None else self.size
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
resample=resample,
size=size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_mask(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
size=size,
input_data_format=input_data_format,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->Segformer
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`SegformerForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| transformers/src/transformers/models/segformer/image_processing_segformer.py/0 | {
"file_path": "transformers/src/transformers/models/segformer/image_processing_segformer.py",
"repo_id": "transformers",
"token_count": 9996
} | 332 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for SigLIP.
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class SiglipProcessor(ProcessorMixin):
r"""
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`]):
The image processor is a required input.
tokenizer ([`SiglipTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "SiglipImageProcessor"
tokenizer_class = "SiglipTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: int = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` argument to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| transformers/src/transformers/models/siglip/processing_siglip.py/0 | {
"file_path": "transformers/src/transformers/models/siglip/processing_siglip.py",
"repo_id": "transformers",
"token_count": 2823
} | 333 |
# coding=utf-8
# Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Splinter model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, ModelOutput, QuestionAnsweringModelOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_splinter import SplinterConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "tau/splinter-base"
_CONFIG_FOR_DOC = "SplinterConfig"
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"tau/splinter-base",
"tau/splinter-base-qass",
"tau/splinter-large",
"tau/splinter-large-qass",
# See all Splinter models at https://huggingface.co/models?filter=splinter
]
class SplinterEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: Optional[int] = 0,
) -> Tuple:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Splinter
class SplinterSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in SplinterModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Splinter
class SplinterSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Splinter
class SplinterAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = SplinterSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = SplinterSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Splinter
class SplinterIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Splinter
class SplinterOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Splinter
class SplinterLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = SplinterAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = SplinterAttention(config, position_embedding_type="absolute")
self.intermediate = SplinterIntermediate(config)
self.output = SplinterOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Splinter
class SplinterEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([SplinterLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class SplinterPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SplinterConfig
base_model_prefix = "splinter"
supports_gradient_checkpointing = True
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SPLINTER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SplinterConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SPLINTER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `{0}`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Splinter Model transformer outputting raw hidden-states without any specific head on top.",
SPLINTER_START_DOCSTRING,
)
class SplinterModel(SplinterPreTrainedModel):
"""
The model is an encoder (with only self-attention) following the architecture described in [Attention is all you
need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = SplinterEmbeddings(config)
self.encoder = SplinterEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class SplinterFullyConnectedLayer(nn.Module):
def __init__(self, input_dim, output_dim, hidden_act="gelu"):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.dense = nn.Linear(self.input_dim, self.output_dim)
self.act_fn = ACT2FN[hidden_act]
self.LayerNorm = nn.LayerNorm(self.output_dim)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(inputs)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class QuestionAwareSpanSelectionHead(nn.Module):
"""
Implementation of Question-Aware Span Selection (QASS) head, described in Splinter's paper:
"""
def __init__(self, config):
super().__init__()
self.query_start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
self.query_end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
self.start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
self.end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size)
self.start_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.end_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
def forward(self, inputs, positions):
_, _, dim = inputs.size()
index = positions.unsqueeze(-1).repeat(1, 1, dim) # [batch_size, num_positions, dim]
gathered_reps = torch.gather(inputs, dim=1, index=index) # [batch_size, num_positions, dim]
query_start_reps = self.query_start_transform(gathered_reps) # [batch_size, num_positions, dim]
query_end_reps = self.query_end_transform(gathered_reps) # [batch_size, num_positions, dim]
start_reps = self.start_transform(inputs) # [batch_size, seq_length, dim]
end_reps = self.end_transform(inputs) # [batch_size, seq_length, dim]
hidden_states = self.start_classifier(query_start_reps) # [batch_size, num_positions, dim]
start_reps = start_reps.permute(0, 2, 1) # [batch_size, dim, seq_length]
start_logits = torch.matmul(hidden_states, start_reps)
hidden_states = self.end_classifier(query_end_reps)
end_reps = end_reps.permute(0, 2, 1)
end_logits = torch.matmul(hidden_states, end_reps)
return start_logits, end_logits
@add_start_docstrings(
"""
Splinter Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
SPLINTER_START_DOCSTRING,
)
class SplinterForQuestionAnswering(SplinterPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.splinter = SplinterModel(config)
self.splinter_qass = QuestionAwareSpanSelectionHead(config)
self.question_token_id = config.question_token_id
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
question_positions: Optional[torch.LongTensor] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size,
num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be
the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size,
sequence_length)`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
question_positions_were_none = False
if question_positions is None:
if input_ids is not None:
question_position_for_each_example = torch.argmax(
(torch.eq(input_ids, self.question_token_id)).int(), dim=-1
)
else:
question_position_for_each_example = torch.zeros(
inputs_embeds.size(0), dtype=torch.long, layout=inputs_embeds.layout, device=inputs_embeds.device
)
question_positions = question_position_for_each_example.unsqueeze(-1)
question_positions_were_none = True
outputs = self.splinter(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
start_logits, end_logits = self.splinter_qass(sequence_output, question_positions)
if question_positions_were_none:
start_logits, end_logits = start_logits.squeeze(1), end_logits.squeeze(1)
if attention_mask is not None:
start_logits = start_logits + (1 - attention_mask) * torch.finfo(start_logits.dtype).min
end_logits = end_logits + (1 - attention_mask) * torch.finfo(end_logits.dtype).min
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@dataclass
class SplinterForPreTrainingOutput(ModelOutput):
"""
Class for outputs of Splinter as a span selection model.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when start and end positions are provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@add_start_docstrings(
"""
Splinter Model for the recurring span selection task as done during the pretraining. The difference to the QA task
is that we do not have a question, but multiple question tokens that replace the occurrences of recurring spans
instead.
""",
SPLINTER_START_DOCSTRING,
)
class SplinterForPreTraining(SplinterPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.splinter = SplinterModel(config)
self.splinter_qass = QuestionAwareSpanSelectionHead(config)
self.question_token_id = config.question_token_id
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
SPLINTER_INPUTS_DOCSTRING.format("batch_size, num_questions, sequence_length")
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
question_positions: Optional[torch.LongTensor] = None,
) -> Union[Tuple, SplinterForPreTrainingOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*):
The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size,
num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be
the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size,
sequence_length)`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if question_positions is None and start_positions is not None and end_positions is not None:
raise TypeError("question_positions must be specified in order to calculate the loss")
elif question_positions is None and input_ids is None:
raise TypeError("question_positions must be specified when input_embeds is used")
elif question_positions is None:
question_positions = self._prepare_question_positions(input_ids)
outputs = self.splinter(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
batch_size, sequence_length, dim = sequence_output.size()
# [batch_size, num_questions, sequence_length]
start_logits, end_logits = self.splinter_qass(sequence_output, question_positions)
num_questions = question_positions.size(1)
if attention_mask is not None:
attention_mask_for_each_question = attention_mask.unsqueeze(1).expand(
batch_size, num_questions, sequence_length
)
start_logits = start_logits + (1 - attention_mask_for_each_question) * torch.finfo(start_logits.dtype).min
end_logits = end_logits + (1 - attention_mask_for_each_question) * torch.finfo(end_logits.dtype).min
total_loss = None
# [batch_size, num_questions, sequence_length]
if start_positions is not None and end_positions is not None:
# sometimes the start/end positions are outside our model inputs, we ignore these terms
start_positions.clamp_(0, max(0, sequence_length - 1))
end_positions.clamp_(0, max(0, sequence_length - 1))
# Ignore zero positions in the loss. Splinter never predicts zero
# during pretraining and zero is used for padding question
# tokens as well as for start and end positions of padded
# question tokens.
loss_fct = CrossEntropyLoss(ignore_index=self.config.pad_token_id)
start_loss = loss_fct(
start_logits.view(batch_size * num_questions, sequence_length),
start_positions.view(batch_size * num_questions),
)
end_loss = loss_fct(
end_logits.view(batch_size * num_questions, sequence_length),
end_positions.view(batch_size * num_questions),
)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return SplinterForPreTrainingOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _prepare_question_positions(self, input_ids: torch.Tensor) -> torch.Tensor:
rows, flat_positions = torch.where(input_ids == self.config.question_token_id)
num_questions = torch.bincount(rows)
positions = torch.full(
(input_ids.size(0), num_questions.max()),
self.config.pad_token_id,
dtype=torch.long,
device=input_ids.device,
)
cols = torch.cat([torch.arange(n) for n in num_questions])
positions[rows, cols] = flat_positions
return positions
| transformers/src/transformers/models/splinter/modeling_splinter.py/0 | {
"file_path": "transformers/src/transformers/models/splinter/modeling_splinter.py",
"repo_id": "transformers",
"token_count": 22234
} | 334 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {"configuration_t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config", "T5OnnxConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_t5"] = ["T5Tokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_t5_fast"] = ["T5TokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_t5"] = [
"T5_PRETRAINED_MODEL_ARCHIVE_LIST",
"T5EncoderModel",
"T5ForConditionalGeneration",
"T5Model",
"T5PreTrainedModel",
"load_tf_weights_in_t5",
"T5ForQuestionAnswering",
"T5ForSequenceClassification",
"T5ForTokenClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_t5"] = [
"TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFT5EncoderModel",
"TFT5ForConditionalGeneration",
"TFT5Model",
"TFT5PreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_t5"] = [
"FlaxT5EncoderModel",
"FlaxT5ForConditionalGeneration",
"FlaxT5Model",
"FlaxT5PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config, T5OnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_t5 import T5Tokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_t5_fast import T5TokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_t5 import (
T5_PRETRAINED_MODEL_ARCHIVE_LIST,
T5EncoderModel,
T5ForConditionalGeneration,
T5ForQuestionAnswering,
T5ForSequenceClassification,
T5ForTokenClassification,
T5Model,
T5PreTrainedModel,
load_tf_weights_in_t5,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_t5 import (
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST,
TFT5EncoderModel,
TFT5ForConditionalGeneration,
TFT5Model,
TFT5PreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_t5 import (
FlaxT5EncoderModel,
FlaxT5ForConditionalGeneration,
FlaxT5Model,
FlaxT5PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/t5/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/t5/__init__.py",
"repo_id": "transformers",
"token_count": 1938
} | 335 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {"configuration_umt5": ["UMT5Config", "UMT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_umt5"] = [
"UMT5EncoderModel",
"UMT5ForConditionalGeneration",
"UMT5ForQuestionAnswering",
"UMT5ForSequenceClassification",
"UMT5ForTokenClassification",
"UMT5Model",
"UMT5PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_umt5 import UMT5Config, UMT5OnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_umt5 import (
UMT5EncoderModel,
UMT5ForConditionalGeneration,
UMT5ForQuestionAnswering,
UMT5ForSequenceClassification,
UMT5ForTokenClassification,
UMT5Model,
UMT5PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/umt5/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/umt5/__init__.py",
"repo_id": "transformers",
"token_count": 736
} | 336 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for UnivNetModel."""
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
logger = logging.get_logger(__name__)
class UnivNetFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a UnivNet feature extractor.
This class extracts log-mel-filter bank features from raw speech using the short time Fourier Transform (STFT). The
STFT implementation follows that of TacoTron 2 and Hifi-GAN.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
Args:
feature_size (`int`, *optional*, defaults to 1):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
padding_value (`float`, *optional*, defaults to 0.0):
The value to pad with when applying the padding strategy defined by the `padding` argument to
[`UnivNetFeatureExtractor.__call__`]. Should correspond to audio silence. The `pad_end` argument to
`__call__` will also use this padding value.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether to perform Tacotron 2 normalization on the input. Normalizing can help to significantly improve the
performance for some models.
num_mel_bins (`int`, *optional*, defaults to 100):
The number of mel-frequency bins in the extracted spectrogram features. This should match
`UnivNetModel.config.num_mel_bins`.
hop_length (`int`, *optional*, defaults to 256):
The direct number of samples between sliding windows. Otherwise referred to as "shift" in many papers. Note
that this is different from other audio feature extractors such as [`SpeechT5FeatureExtractor`] which take
the `hop_length` in ms.
win_length (`int`, *optional*, defaults to 1024):
The direct number of samples for each sliding window. Note that this is different from other audio feature
extractors such as [`SpeechT5FeatureExtractor`] which take the `win_length` in ms.
win_function (`str`, *optional*, defaults to `"hann_window"`):
Name for the window function used for windowing, must be accessible via `torch.{win_function}`
filter_length (`int`, *optional*, defaults to 1024):
The number of FFT components to use. If `None`, this is determined using
`transformers.audio_utils.optimal_fft_length`.
max_length_s (`int`, *optional*, defaults to 10):
The maximum input lenght of the model in seconds. This is used to pad the audio.
fmin (`float`, *optional*, defaults to 0.0):
Minimum mel frequency in Hz.
fmax (`float`, *optional*):
Maximum mel frequency in Hz. If not set, defaults to `sampling_rate / 2`.
mel_floor (`float`, *optional*, defaults to 1e-09):
Minimum value of mel frequency banks. Note that the way [`UnivNetFeatureExtractor`] uses `mel_floor` is
different than in [`transformers.audio_utils.spectrogram`].
center (`bool`, *optional*, defaults to `False`):
Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
`t` will start at time `t * hop_length`.
compression_factor (`float`, *optional*, defaults to 1.0):
The multiplicative compression factor for dynamic range compression during spectral normalization.
compression_clip_val (`float`, *optional*, defaults to 1e-05):
The clip value applied to the waveform before applying dynamic range compression during spectral
normalization.
normalize_min (`float`, *optional*, defaults to -11.512925148010254):
The min value used for Tacotron 2-style linear normalization. The default is the original value from the
Tacotron 2 implementation.
normalize_max (`float`, *optional*, defaults to 2.3143386840820312):
The max value used for Tacotron 2-style linear normalization. The default is the original value from the
Tacotron 2 implementation.
model_in_channels (`int`, *optional*, defaults to 64):
The number of input channels to the [`UnivNetModel`] model. This should match
`UnivNetModel.config.model_in_channels`.
pad_end_length (`int`, *optional*, defaults to 10):
If padding the end of each waveform, the number of spectrogram frames worth of samples to append. The
number of appended samples will be `pad_end_length * hop_length`.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether or not [`~UnivNetFeatureExtractor.__call__`] should return `attention_mask`.
"""
model_input_names = ["input_features", "noise_sequence", "padding_mask"]
def __init__(
self,
feature_size: int = 1,
sampling_rate: int = 24000,
padding_value: float = 0.0,
do_normalize: bool = False,
num_mel_bins: int = 100,
hop_length: int = 256,
win_length: int = 1024,
win_function: str = "hann_window",
filter_length: Optional[int] = 1024,
max_length_s: int = 10,
fmin: float = 0.0,
fmax: Optional[float] = None,
mel_floor: float = 1e-9,
center: bool = False,
compression_factor: float = 1.0,
compression_clip_val: float = 1e-5,
normalize_min: float = -11.512925148010254,
normalize_max: float = 2.3143386840820312,
model_in_channels: int = 64,
pad_end_length: int = 10,
return_attention_mask=True,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.do_normalize = do_normalize
self.num_mel_bins = num_mel_bins
self.hop_length = hop_length
self.win_length = win_length
self.win_function = win_function
self.filter_length = filter_length
self.fmin = fmin
if fmax is None:
# Follows the librosa.filters.mel implementation
fmax = float(sampling_rate) / 2
self.fmax = fmax
self.mel_floor = mel_floor
self.max_length_s = max_length_s
self.num_max_samples = max_length_s * sampling_rate
if self.filter_length is None:
self.n_fft = optimal_fft_length(self.win_length)
else:
self.n_fft = self.filter_length
self.n_freqs = (self.n_fft // 2) + 1
self.window = window_function(window_length=self.win_length, name=self.win_function, periodic=True)
self.mel_filters = mel_filter_bank(
num_frequency_bins=self.n_freqs,
num_mel_filters=self.num_mel_bins,
min_frequency=self.fmin,
max_frequency=self.fmax,
sampling_rate=self.sampling_rate,
norm="slaney",
mel_scale="slaney",
)
self.center = center
self.compression_factor = compression_factor
self.compression_clip_val = compression_clip_val
self.normalize_min = normalize_min
self.normalize_max = normalize_max
self.model_in_channels = model_in_channels
self.pad_end_length = pad_end_length
def normalize(self, spectrogram):
return 2 * ((spectrogram - self.normalize_min) / (self.normalize_max - self.normalize_min)) - 1
def denormalize(self, spectrogram):
return self.normalize_min + (self.normalize_max - self.normalize_min) * ((spectrogram + 1) / 2)
def mel_spectrogram(self, waveform: np.ndarray) -> np.ndarray:
"""
Calculates log MEL spectrograms from a batch of waveforms. Note that the input waveform(s) will be padded by
`int(self.n_fft - self.hop_length) / 2` on both sides using the `reflect` padding mode.
Args:
waveform (`np.ndarray` of shape `(length,)`):
The input waveform. This must be a single real-valued, mono waveform.
Returns:
`numpy.ndarray`: Array containing a log-mel spectrogram of shape `(num_frames, num_mel_bins)`.
"""
# Do custom padding based on the official MelGAN and Hifi-GAN implementations
# See https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/utils/stft.py#L84-L86
waveform = np.pad(
waveform,
(int((self.n_fft - self.hop_length) / 2), int((self.n_fft - self.hop_length) / 2)),
mode="reflect",
)
# Get the complex spectrogram.
# Note: waveform must be unbatched currently due to the implementation of spectrogram(...).
complex_spectrogram = spectrogram(
waveform,
window=self.window,
frame_length=self.n_fft,
hop_length=self.hop_length,
fft_length=self.n_fft,
power=None,
center=self.center,
mel_filters=None,
mel_floor=None,
)
# Apply the MEL filter bank and MEL floor manually since UnivNet uses a slightly different implementation
amplitude_spectrogram = np.sqrt(
np.real(complex_spectrogram) ** 2 + np.imag(complex_spectrogram) ** 2 + self.mel_floor
)
mel_spectrogram = np.matmul(self.mel_filters.T, amplitude_spectrogram)
# Perform spectral normalization to get the log mel spectrogram.
log_mel_spectrogram = np.log(
np.clip(mel_spectrogram, a_min=self.compression_clip_val, a_max=None) * self.compression_factor
)
# Return spectrogram with num_mel_bins last
return log_mel_spectrogram.T
def generate_noise(
self,
noise_length: int,
generator: Optional[np.random.Generator] = None,
) -> np.ndarray:
"""
Generates a random noise sequence of standard Gaussian noise for use in the `noise_sequence` argument of
[`UnivNetModel.forward`].
Args:
spectrogram_length (`int`):
The length (dim 0) of the generated noise.
model_in_channels (`int`, *optional*, defaults to `None`):
The number of features (dim 1) of the generated noise. This should correspond to the
`model_in_channels` of the [`UnivNetGan`] model. If not set, this will default to
`self.config.model_in_channels`.
generator (`numpy.random.Generator`, *optional*, defaults to `None`)
An optional `numpy.random.Generator` random number generator to control noise generation. If not set, a
new generator with fresh entropy will be created.
Returns:
`numpy.ndarray`: Array containing random standard Gaussian noise of shape `(noise_length,
model_in_channels)`.
"""
if generator is None:
generator = np.random.default_rng()
noise_shape = (noise_length, self.model_in_channels)
noise = generator.standard_normal(noise_shape, dtype=np.float32)
return noise
def batch_decode(self, waveforms, waveform_lengths=None) -> List[np.ndarray]:
r"""
Removes padding from generated audio after running [`UnivNetModel.forward`]. This returns a ragged list of 1D
audio waveform arrays and not a single tensor/array because in general the waveforms will have different
lengths after removing padding.
Args:
waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The batched output waveforms from the [`UnivNetModel`].
waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`, *optional*):
The batched lengths of each waveform before padding.
Returns:
`List[np.ndarray]`: A ragged list of 1D waveform arrays with padding removed.
"""
# Collapse the batched waveform tensor to a list of 1D audio waveforms
waveforms = [waveform.detach().clone().cpu().numpy() for waveform in waveforms]
if waveform_lengths is not None:
waveforms = [waveform[: waveform_lengths[i]] for i, waveform in enumerate(waveforms)]
return waveforms
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Optional[int] = None,
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_noise: bool = True,
generator: Optional[np.random.Generator] = None,
pad_end: bool = False,
pad_length: Optional[int] = None,
do_normalize: Optional[str] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the input `raw_speech` waveforms (according to the model's padding side and
padding index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
If `pad_end = True`, that padding will occur before the `padding` strategy is applied.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*, defaults to `True`):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_noise (`bool`, *optional*, defaults to `True`):
Whether to generate and return a noise waveform for use in [`UnivNetModel.forward`].
generator (`numpy.random.Generator`, *optional*, defaults to `None`):
An optional `numpy.random.Generator` random number generator to use when generating noise.
pad_end (`bool`, *optional*, defaults to `False`):
Whether to pad the end of each waveform with silence. This can help reduce artifacts at the end of the
generated audio sample; see https://github.com/seungwonpark/melgan/issues/8 for more details. This
padding will be done before the padding strategy specified in `padding` is performed.
pad_length (`int`, *optional*, defaults to `None`):
If padding the end of each waveform, the length of the padding in spectrogram frames. If not set, this
will default to `self.config.pad_end_length`.
do_normalize (`bool`, *optional*):
Whether to perform Tacotron 2 normalization on the input. Normalizing can help to significantly improve
the performance for some models. If not set, this will default to `self.config.do_normalize`.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.np.array` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray(raw_speech, dtype=np.float32)]
# Pad end to reduce artifacts
if pad_end:
pad_length = pad_length if pad_length is not None else self.pad_end_length
raw_speech = [
np.pad(waveform, (0, pad_length * self.hop_length), constant_values=self.padding_value)
for waveform in raw_speech
]
batched_speech = BatchFeature({"input_features": raw_speech})
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length if max_length is not None else self.num_max_samples,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
# make sure list is in array format
# input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
input_features = padded_inputs.get("input_features")
mel_spectrograms = [self.mel_spectrogram(waveform) for waveform in input_features]
if isinstance(input_features[0], List):
batched_speech["input_features"] = [np.asarray(mel, dtype=np.float32) for mel in mel_spectrograms]
else:
batched_speech["input_features"] = [mel.astype(np.float32) for mel in mel_spectrograms]
# convert attention_mask to correct format
attention_mask = padded_inputs.get("attention_mask")
if attention_mask is not None:
batched_speech["padding_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
if return_noise:
noise = [
self.generate_noise(spectrogram.shape[0], generator)
for spectrogram in batched_speech["input_features"]
]
batched_speech["noise_sequence"] = noise
if do_normalize:
batched_speech["input_features"] = [
self.normalize(spectrogram) for spectrogram in batched_speech["input_features"]
]
if return_tensors is not None:
batched_speech = batched_speech.convert_to_tensors(return_tensors)
return batched_speech
def to_dict(self) -> Dict[str, Any]:
output = super().to_dict()
# Don't serialize these as they are derived from the other properties.
names = ["window", "mel_filters", "n_fft", "n_freqs", "num_max_samples"]
for name in names:
if name in output:
del output[name]
return output
| transformers/src/transformers/models/univnet/feature_extraction_univnet.py/0 | {
"file_path": "transformers/src/transformers/models/univnet/feature_extraction_univnet.py",
"repo_id": "transformers",
"token_count": 9294
} | 337 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow VisionTextDualEncoder model."""
from __future__ import annotations
import re
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_utils import TFPreTrainedModel, keras, unpack_inputs
from ...tf_utils import shape_list
from ...utils import (
DUMMY_INPUTS,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_tf_auto import TFAutoModel
from ..clip.modeling_tf_clip import CLIPVisionConfig, TFCLIPOutput, TFCLIPVisionModel
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VisionTextDualEncoderConfig"
VISION_TEXT_DUAL_ENCODER_START_DOCSTRING = r"""
This class can be used to initialize a vision-text dual encoder model with any pretrained vision autoencoding model
as the vision encoder and any pretrained text model as the text encoder. The vision and text encoders are loaded
via the [`~TFAutoModel.from_pretrained`] method. The projection layers are automatically added to the model and
should be fine-tuned on a downstream task, like contrastive image-text modeling.
In [LiT: Zero-Shot Transfer with Locked-image Text Tuning](https://arxiv.org/abs/2111.07991) it is shown how
leveraging pre-trained (locked/frozen) image and text model for contrastive learning yields significant improvment
on new zero-shot vision tasks such as image classification or retrieval.
After such a Vision-Text-Dual-Encoder model has been trained/fine-tuned, it can be saved/loaded just like any other
models (see the examples for more information).
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a
regular Keras Model and refer to the TF documentation for all matter related to general usage and behavior.
Parameters:
config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VISION_TEXT_DUAL_ENCODER_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
VISION_TEXT_DUAL_ENCODER_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
an image processor (e.g. if you use ViT as the encoder, you should use [`AutoImageProcessor`]). See
[`ViTImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_tf_clip.contrastive_loss
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
return tf.math.reduce_mean(
keras.metrics.sparse_categorical_crossentropy(
y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
)
)
# Copied from transformers.models.clip.modeling_tf_clip.clip_loss
def clip_loss(similarity: tf.Tensor) -> tf.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(tf.transpose(similarity))
return (caption_loss + image_loss) / 2.0
@add_start_docstrings(VISION_TEXT_DUAL_ENCODER_START_DOCSTRING)
class TFVisionTextDualEncoderModel(TFPreTrainedModel):
config_class = VisionTextDualEncoderConfig
base_model_prefix = "vision_text_dual_encoder"
load_weight_prefix = "tf_vision_text_dual_encoder_model"
def __init__(
self,
config: Optional[VisionTextDualEncoderConfig] = None,
vision_model: Optional[TFPreTrainedModel] = None,
text_model: Optional[TFPreTrainedModel] = None,
):
if config is None and (vision_model is None or text_model is None):
raise ValueError("Either a configuration or an vision and a text model has to be provided")
if config is None:
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if vision_model is None:
if isinstance(config.vision_config, CLIPVisionConfig):
vision_model = TFCLIPVisionModel.from_config(config.vision_config, name="vision_model")
else:
vision_model = TFAutoModel.from_config(config.vision_config, name="vision_model")
if text_model is None:
text_model = TFAutoModel.from_config(config.text_config, name="text_model")
self.vision_model = vision_model
self.text_model = text_model
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.vision_model.config = self.config.vision_config
self.text_model.config = self.config.text_config
self.vision_embed_dim = config.vision_config.hidden_size
self.text_embed_dim = config.text_config.hidden_size
self.projection_dim = config.projection_dim
self.visual_projection = keras.layers.Dense(self.projection_dim, use_bias=False, name="visual_projection")
self.text_projection = keras.layers.Dense(self.projection_dim, use_bias=False, name="text_projection")
self.logit_scale = None
self.config = config
def build(self, input_shape=None):
if self.built:
return
self.built = True
# Build in the build() method to make sure the names are right
initializer = keras.initializers.Constant(self.config.logit_scale_init_value)
self.logit_scale = self.add_weight(shape=(1,), initializer=initializer, name="logit_scale")
if getattr(self, "visual_projection", None) is not None:
with tf.name_scope(self.visual_projection.name):
self.visual_projection.build([None, None, self.vision_embed_dim])
if getattr(self, "text_projection", None) is not None:
with tf.name_scope(self.text_projection.name):
self.text_projection.build([None, None, self.text_embed_dim])
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
with tf.name_scope(self.text_model.name):
self.text_model.build(None)
def tf_to_pt_weight_rename(self, tf_weight):
# Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models
# (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal.
# However, the name of that extra layer is the name of the MainLayer in the base model.
if "vision_model" in tf_weight:
if tf_weight.count("vision_model") == 1:
return (re.sub(r"vision_model\..*?\.", "vision_model.", tf_weight),)
elif tf_weight.count("vision_model") == 2:
return (re.sub(r"vision_model\..*?\.vision_model", "vision_model.vision_model", tf_weight),)
else:
raise ValueError(
f"Unexpected weight name {tf_weight}. Please file an issue on the"
" Transformers repo to let us know about this error!"
)
elif "text_model" in tf_weight:
return (re.sub(r"text_model\..*?\.", "text_model.", tf_weight),)
else:
return (tf_weight,)
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of [`TFCLIPTextModel`].
Examples:
```python
>>> from transformers import TFVisionTextDualEncoderModel, AutoTokenizer
>>> model = TFVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained("clip-italian/clip-italian")
>>> inputs = tokenizer(["una foto di un gatto", "una foto di un cane"], padding=True, return_tensors="np")
>>> text_features = model.get_text_features(**inputs)
```"""
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
the projection layer to the pooled output of [`TFCLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import TFVisionTextDualEncoderModel, AutoImageProcessor
>>> model = TFVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", from_pt=True)
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="np")
>>> image_features = model.get_image_features(**inputs)
```"""
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@unpack_inputs
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFCLIPOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: tf.Tensor | None = None,
pixel_values: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
return_loss: Optional[bool] = None,
token_type_ids: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import (
... TFVisionTextDualEncoderModel,
... VisionTextDualEncoderProcessor,
... AutoImageProcessor,
... AutoTokenizer,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "bert-base-uncased"
... )
>>> # contrastive training
>>> urls = [
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="np", padding=True
... )
>>> outputs = model(
... input_ids=inputs.input_ids,
... attention_mask=inputs.attention_mask,
... pixel_values=inputs.pixel_values,
... return_loss=True,
... )
>>> loss, logits_per_image = outputs.loss, outputs.logits_per_image # this is the image-text similarity score
>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = TFVisionTextDualEncoderModel.from_pretrained("vit-bert")
>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[1] # pooler_output
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1] # pooler_output
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / tf.norm(image_embeds, axis=-1, keepdims=True)
text_embeds = text_embeds / tf.norm(text_embeds, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = tf.math.exp(self.logit_scale)
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
logits_per_image = tf.transpose(logits_per_text)
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if loss.shape.rank == 0:
loss = tf.expand_dims(loss, 0)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return TFCLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
@classmethod
def from_vision_text_pretrained(
cls,
vision_model_name_or_path: str = None,
text_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> TFPreTrainedModel:
"""
Params:
vision_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the vision model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument.
text_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text configuration, use the prefix *text_* for each configuration parameter.
- To update the vision configuration, use the prefix *vision_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import TFVisionTextDualEncoderModel
>>> # initialize a model from pretrained ViT and BERT models. Note that the projection layers will be randomly initialized.
>>> model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = TFVisionTextDualEncoderModel.from_pretrained("./vit-bert")
```"""
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
# remove vision, text kwargs from kwargs
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
for key in kwargs_text.keys():
del kwargs["text_" + key]
# Load and initialize the vision and text model
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
if vision_model_name_or_path is None:
raise ValueError(
"If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
)
kwargs_vision["name"] = "vision_model"
kwargs_vision["load_weight_prefix"] = cls.load_weight_prefix
vision_config_dict, unused_args = PretrainedConfig.get_config_dict(vision_model_name_or_path, **kwargs)
if vision_config_dict.get("model_type", None) == "clip_vision_model":
vision_config = CLIPVisionConfig.from_dict(vision_config_dict)
else:
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
if vision_config.model_type == "clip_vision_model":
kwargs_vision["config"] = vision_config
vision_class = TFCLIPVisionModel
elif vision_config.model_type == "clip":
kwargs_vision["config"] = vision_config.vision_config
vision_class = TFCLIPVisionModel
else:
kwargs_vision["config"] = vision_config
vision_class = TFAutoModel
vision_model = vision_class.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
text_model = kwargs_text.pop("model", None)
if text_model is None:
if text_model_name_or_path is None:
raise ValueError(
"If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
)
kwargs_text["name"] = "text_model"
kwargs_text["load_weight_prefix"] = cls.load_weight_prefix
if "config" not in kwargs_text:
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = TFAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
# instantiate config with corresponding kwargs
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config, **kwargs)
# init model
model = cls(config=config, vision_model=vision_model, text_model=text_model)
# the projection layers are always newly initialized when loading the model
# using pre-trained vision and text model.
logger.warning(
"The projection layer and logit scale weights `['visual_projection.weight', 'text_projection.weight',"
" 'logit_scale']` are newly initialized. You should probably TRAIN this model on a down-stream task to be"
" able to use it for predictions and inference."
)
if vision_model.name != "vision_model":
raise ValueError("vision model must be created with the name `vision_model`.")
if text_model.name != "text_model":
raise ValueError("text model must be created with the name `text_model`.")
model.build_in_name_scope() # Ensure model is fully built
return model
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
input_ids = tf.constant(DUMMY_INPUTS, dtype=tf.int32)
batch_size, seq_len = input_ids.shape
VISION_DUMMY_INPUTS = tf.random.uniform(
shape=(
batch_size,
self.config.vision_config.num_channels,
self.config.vision_config.image_size,
self.config.vision_config.image_size,
),
dtype=tf.float32,
)
pixel_values = tf.constant(VISION_DUMMY_INPUTS)
dummy = {"pixel_values": pixel_values, "input_ids": input_ids}
return dummy
| transformers/src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py/0 | {
"file_path": "transformers/src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py",
"repo_id": "transformers",
"token_count": 11951
} | 338 |
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ViTDet backbone."""
import collections.abc
import math
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput, BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_vitdet import VitDetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "VitDetConfig"
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/vit-det-base",
# See all ViTDet models at https://huggingface.co/models?filter=vitdet
]
class VitDetEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) to be consumed by a Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.pretrain_image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
if config.use_absolute_position_embeddings:
# Initialize absolute positional embedding with pretrain image size.
num_positions = num_patches + 1
self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size))
else:
self.position_embeddings = None
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width):
"""
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the
original embeddings.
Args:
abs_pos_embeddings (`torch.Tensor`):
Absolute positional embeddings with (1, num_position, num_channels).
has_cls_token (`bool`):
If true, has 1 embedding in abs_pos_embeddings for cls token.
height (`int`):
Height of input image tokens.
width (`int`):
Width of input image tokens.
Returns:
Absolute positional embeddings after processing with shape (1, height, width, num_channels)
"""
if has_cls_token:
abs_pos_embeddings = abs_pos_embeddings[:, 1:]
num_position = abs_pos_embeddings.shape[1]
size = int(math.sqrt(num_position))
if size * size != num_position:
raise ValueError("Absolute position embeddings must be a square number.")
if size != height or size != width:
new_abs_pos_embeddings = nn.functional.interpolate(
abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2),
size=(height, width),
mode="bicubic",
align_corners=False,
)
return new_abs_pos_embeddings.permute(0, 2, 3, 1)
else:
return abs_pos_embeddings.reshape(1, height, width, -1)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
embeddings = self.projection(pixel_values)
if self.position_embeddings is not None:
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
embeddings = embeddings.permute(0, 2, 3, 1)
# add position embeddings
embeddings = embeddings + self.get_absolute_positions(
self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2]
)
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
embeddings = embeddings.permute(0, 3, 1, 2)
return embeddings
def get_rel_pos(q_size, k_size, rel_pos):
"""
Get relative positional embeddings according to the relative positions of query and key sizes.
Args:
q_size (`int`):
Size of query q.
k_size (`int`):
Size of key k.
rel_pos (`torch.Tensor`):
Relative position embeddings (num_embeddings, num_channels).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel position embeddings.
rel_pos_resized = nn.functional.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_relative_positions(attn, queries, rel_pos_h, rel_pos_w, q_size, k_size):
"""
Calculate decomposed Relative Positional Embeddings as introduced in
[MViT2](https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py).
Args:
attn (`torch.Tensor`):
Attention map.
queries (`torch.Tensor`):
Query q in the attention layer with shape (batch_size, queries_height * queries_width, num_channels).
rel_pos_h (`torch.Tensor`):
Relative position embeddings (Lh, num_channels) for height axis.
rel_pos_w (`torch.Tensor`):
Relative position embeddings (Lw, num_channels) for width axis.
q_size (`Tuple[int]`):
Spatial sequence size of query q with (queries_height, queries_width).
k_size (`Tuple[int]`]):
Spatial sequence size of key k with (keys_height, keys_width).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
queries_height, queries_width = q_size
keys_height, keys_width = k_size
relative_height = get_rel_pos(queries_height, keys_height, rel_pos_h)
relative_width = get_rel_pos(queries_width, keys_width, rel_pos_w)
batch_size, _, dim = queries.shape
r_q = queries.reshape(batch_size, queries_height, queries_width, dim)
relative_height = torch.einsum("bhwc,hkc->bhwk", r_q, relative_height)
relative_weight = torch.einsum("bhwc,wkc->bhwk", r_q, relative_width)
attn = (
attn.view(batch_size, queries_height, queries_width, keys_height, keys_width)
+ relative_height[:, :, :, :, None]
+ relative_weight[:, :, :, None, :]
).view(batch_size, queries_height * queries_width, keys_height * keys_width)
return attn
class VitDetAttention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(self, config, input_size=None):
"""
Args:
config (`VitDetConfig`):
Model configuration.
input_size (`Tuple[int]`, *optional*):
Input resolution, only required in case relative position embeddings are added.
"""
super().__init__()
dim = config.hidden_size
num_heads = config.num_attention_heads
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_relative_position_embeddings = config.use_relative_position_embeddings
if self.use_relative_position_embeddings:
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, hidden_state, output_attentions=False):
batch_size, height, width, _ = hidden_state.shape
# qkv with shape (3, batch_size, num_heads, height * width, num_channels)
qkv = self.qkv(hidden_state).reshape(batch_size, height * width, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# queries, keys and values have shape (batch_size * num_heads, height * width, num_channels)
queries, keys, values = qkv.reshape(3, batch_size * self.num_heads, height * width, -1).unbind(0)
attention_scores = (queries * self.scale) @ keys.transpose(-2, -1)
if self.use_relative_position_embeddings:
attention_scores = add_decomposed_relative_positions(
attention_scores, queries, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attention_probs = attention_scores.softmax(dim=-1)
hidden_state = attention_probs @ values
hidden_state = hidden_state.view(batch_size, self.num_heads, height, width, -1)
hidden_state = hidden_state.permute(0, 2, 3, 1, 4)
hidden_state = hidden_state.reshape(batch_size, height, width, -1)
hidden_state = self.proj(hidden_state)
if output_attentions:
attention_probs = attention_probs.reshape(
batch_size, self.num_heads, attention_probs.shape[-2], attention_probs.shape[-1]
)
outputs = (hidden_state, attention_probs)
else:
outputs = (hidden_state,)
return outputs
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class VitDetDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class VitDetLayerNorm(nn.Module):
"""
A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the
channel dimension for inputs that have shape (batch_size, channels, height, width).
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
"""
def __init__(self, normalized_shape, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.normalized_shape = (normalized_shape,)
def forward(self, x):
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class VitDetResBottleneckBlock(nn.Module):
"""
The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels
1x1, 3x3, 1x1.
"""
def __init__(self, config, in_channels, out_channels, bottleneck_channels):
"""
Args:
config (`VitDetConfig`):
Model configuration.
in_channels (`int`):
Number of input channels.
out_channels (`int`):
Number of output channels.
bottleneck_channels (`int`):
Number of output channels for the 3x3 "bottleneck" conv layers.
"""
super().__init__()
self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False)
self.norm1 = VitDetLayerNorm(bottleneck_channels)
self.act1 = ACT2FN[config.hidden_act]
self.conv2 = nn.Conv2d(bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False)
self.norm2 = VitDetLayerNorm(bottleneck_channels)
self.act2 = ACT2FN[config.hidden_act]
self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False)
self.norm3 = VitDetLayerNorm(out_channels)
def forward(self, x):
out = x
for layer in self.children():
out = layer(out)
out = x + out
return out
class VitDetMlp(nn.Module):
def __init__(self, config, in_features: int, hidden_features: int) -> None:
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = ACT2FN[config.hidden_act]
self.fc2 = nn.Linear(hidden_features, in_features)
self.drop = nn.Dropout(config.dropout_prob)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(hidden_state, window_size):
"""
Partition into non-overlapping windows with padding if needed.
Args:
hidden_state (`torch.Tensor`):
Input tokens with [batch_size, height, width, num_channels].
window_size (`int`):
Window size.
Returns:
`tuple(torch.FloatTensor)` comprising various elements:
- windows: windows after partition with [batch_size * num_windows, window_size, window_size, num_channels].
- (patch_height, patch_width): padded height and width before partition
"""
batch_size, height, width, num_channels = hidden_state.shape
pad_height = (window_size - height % window_size) % window_size
pad_width = (window_size - width % window_size) % window_size
if pad_height > 0 or pad_width > 0:
hidden_state = nn.functional.pad(hidden_state, (0, 0, 0, pad_width, 0, pad_height))
patch_height, patch_width = height + pad_height, width + pad_width
hidden_state = hidden_state.view(
batch_size, patch_height // window_size, window_size, patch_width // window_size, window_size, num_channels
)
windows = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows, (patch_height, patch_width)
def window_unpartition(windows, window_size, pad_height_width, height_width):
"""
Window unpartition into original sequences and removing padding.
Args:
windows (`torch.Tensor`):
Input tokens with [batch_size * num_windows, window_size, window_size, num_channels].
window_size (`int`):
Window size.
pad_height_width (`Tuple[int]`):
Padded height and width (patch_height, patch_width).
height_width (`Tuple[int]`):
Original height and width before padding.
Returns:
hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels].
"""
patch_height, patch_width = pad_height_width
height, width = height_width
batch_size = windows.shape[0] // (patch_height * patch_width // window_size // window_size)
hidden_state = windows.view(
batch_size, patch_height // window_size, patch_width // window_size, window_size, window_size, -1
)
hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, patch_height, patch_width, -1)
if patch_height > height or patch_width > width:
hidden_state = hidden_state[:, :height, :width, :].contiguous()
return hidden_state
class VitDetLayer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(
self, config: VitDetConfig, drop_path_rate: float = 0, window_size: int = 0, use_residual_block: bool = False
) -> None:
super().__init__()
dim = config.hidden_size
input_size = (config.image_size // config.patch_size, config.image_size // config.patch_size)
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = VitDetAttention(
config, input_size=input_size if window_size == 0 else (window_size, window_size)
)
self.drop_path = VitDetDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.mlp = VitDetMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio))
self.window_size = window_size
self.use_residual_block = use_residual_block
if self.use_residual_block:
# Use a residual block with bottleneck channel as dim // 2
self.residual = VitDetResBottleneckBlock(
config=config,
in_channels=dim,
out_channels=dim,
bottleneck_channels=dim // 2,
)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
hidden_states = hidden_states.permute(0, 2, 3, 1)
shortcut = hidden_states
hidden_states = self.norm1(hidden_states)
# Window partition
if self.window_size > 0:
height, width = hidden_states.shape[1], hidden_states.shape[2]
hidden_states, pad_height_width = window_partition(hidden_states, self.window_size)
self_attention_outputs = self.attention(
hidden_states,
output_attentions=output_attentions,
)
hidden_states = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# Reverse window partition
if self.window_size > 0:
hidden_states = window_unpartition(hidden_states, self.window_size, pad_height_width, (height, width))
# first residual connection
hidden_states = shortcut + self.drop_path(hidden_states)
hidden_states = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states)))
hidden_states = hidden_states.permute(0, 3, 1, 2)
if self.use_residual_block:
hidden_states = self.residual(hidden_states)
outputs = (hidden_states,) + outputs
return outputs
class VitDetEncoder(nn.Module):
def __init__(self, config: VitDetConfig) -> None:
super().__init__()
self.config = config
depth = config.num_hidden_layers
# stochastic depth decay rule
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, depth)]
layers = []
for i in range(depth):
layers.append(
VitDetLayer(
config,
drop_path_rate=drop_path_rate[i],
window_size=config.window_size if i in config.window_block_indices else 0,
use_residual_block=i in config.residual_block_indices,
)
)
self.layer = nn.ModuleList(layers)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def caffe2_msra_fill(module: nn.Module) -> None:
"""
Initialize `module.weight` using the "MSRAFill" implemented in Caffe2. Also initializes `module.bias` to 0.
Source: https://detectron2.readthedocs.io/en/latest/_modules/fvcore/nn/weight_init.html.
Args:
module (torch.nn.Module): module to initialize.
"""
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
class VitDetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VitDetConfig
base_model_prefix = "vitdet"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = []
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, VitDetEmbeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
elif isinstance(module, VitDetAttention) and self.config.use_relative_position_embeddings:
module.rel_pos_h.data = nn.init.trunc_normal_(
module.rel_pos_h.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
)
module.rel_pos_w.data = nn.init.trunc_normal_(
module.rel_pos_w.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
)
elif isinstance(module, VitDetResBottleneckBlock):
for layer in [module.conv1, module.conv2, module.conv3]:
caffe2_msra_fill(layer)
for layer in [module.norm1, module.norm2]:
layer.weight.data.fill_(1.0)
layer.bias.data.zero_()
# zero init last norm layer.
module.norm3.weight.data.zero_()
module.norm3.bias.data.zero_()
VITDET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`VitDetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VITDET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare VitDet Transformer model outputting raw hidden-states without any specific head on top.",
VITDET_START_DOCSTRING,
)
class VitDetModel(VitDetPreTrainedModel):
def __init__(self, config: VitDetConfig):
super().__init__(config)
self.config = config
self.embeddings = VitDetEmbeddings(config)
self.encoder = VitDetEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> VitDetEmbeddings:
return self.embeddings.projection
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
"""
Returns:
Examples:
```python
>>> from transformers import VitDetConfig, VitDetModel
>>> import torch
>>> config = VitDetConfig()
>>> model = VitDetModel(config)
>>> pixel_values = torch.randn(1, 3, 224, 224)
>>> with torch.no_grad():
... outputs = model(pixel_values)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 768, 14, 14]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
ViTDet backbone, to be used with frameworks like Mask R-CNN.
""",
VITDET_START_DOCSTRING,
)
class VitDetBackbone(VitDetPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.embeddings = VitDetEmbeddings(config)
self.encoder = VitDetEncoder(config)
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
# initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> VitDetEmbeddings:
return self.embeddings.projection
@add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import VitDetConfig, VitDetBackbone
>>> import torch
>>> config = VitDetConfig()
>>> model = VitDetBackbone(config)
>>> pixel_values = torch.randn(1, 3, 224, 224)
>>> with torch.no_grad():
... outputs = model(pixel_values)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 14, 14]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
feature_maps += (hidden_state,)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/vitdet/modeling_vitdet.py/0 | {
"file_path": "transformers/src/transformers/models/vitdet/modeling_vitdet.py",
"repo_id": "transformers",
"token_count": 14730
} | 339 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_wav2vec2"] = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_wav2vec2"] = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_wav2vec2"] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wav2vec2 import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2Config
from .feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor
from .processing_wav2vec2 import Wav2Vec2Processor
from .tokenization_wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2Tokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wav2vec2 import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForCTC,
Wav2Vec2ForMaskedLM,
Wav2Vec2ForPreTraining,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForXVector,
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wav2vec2 import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWav2Vec2ForCTC,
TFWav2Vec2ForSequenceClassification,
TFWav2Vec2Model,
TFWav2Vec2PreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wav2vec2 import (
FlaxWav2Vec2ForCTC,
FlaxWav2Vec2ForPreTraining,
FlaxWav2Vec2Model,
FlaxWav2Vec2PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/wav2vec2/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2/__init__.py",
"repo_id": "transformers",
"token_count": 1908
} | 340 |
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Wav2Vec2Conformer model configuration"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/wav2vec2-conformer-rel-pos-large": (
"https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large/resolve/main/config.json"
),
}
class Wav2Vec2ConformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Wav2Vec2ConformerModel`]. It is used to
instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
[facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`Wav2Vec2ConformerModel`]. Vocabulary size of the
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
method of [`Wav2Vec2ConformerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`Wav2Vec2ConformerForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for quantized feature encoder states.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the output of the feature encoder that's used by the quantizer.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`Wav2Vec2ConformerForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`Wav2Vec2ConformerForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`Wav2Vec2ConformerForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
add_adapter (`bool`, *optional*, defaults to `False`):
Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very
useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.
adapter_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adapter_stride (`int`, *optional*, defaults to 2):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
num_adapter_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
output_hidden_size (`int`, *optional*):
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
if `add_adapter is True`.
position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
`None` no relative position embedding is applied.
rotary_embedding_base (`int`, *optional*, defaults to 10000):
If `"rotary"` position embeddings are used, defines the size of the embedding base.
max_source_positions (`int`, *optional*, defaults to 5000):
if `"relative"` position embeddings are used, defines the maximum source input positions.
conv_depthwise_kernel_size (`int`, defaults to 31):
Kernel size of convolutional depthwise 1D layer in Conformer blocks.
conformer_conv_dropout (`float`, defaults to 0.1):
The dropout probability for all convolutional layers in Conformer blocks.
Example:
```python
>>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel
>>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> configuration = Wav2Vec2ConformerConfig()
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> model = Wav2Vec2ConformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "wav2vec2-conformer"
def __init__(
self,
vocab_size=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
feat_quantizer_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="sum",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
tdnn_dim=(512, 512, 512, 512, 1500),
tdnn_kernel=(5, 3, 3, 1, 1),
tdnn_dilation=(1, 2, 3, 1, 1),
xvector_output_dim=512,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
add_adapter=False,
adapter_kernel_size=3,
adapter_stride=2,
num_adapter_layers=3,
output_hidden_size=None,
position_embeddings_type="relative",
rotary_embedding_base=10000,
max_source_positions=5000,
conv_depthwise_kernel_size=31,
conformer_conv_dropout=0.1,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.use_weighted_layer_sum = use_weighted_layer_sum
self.max_source_positions = max_source_positions
self.position_embeddings_type = position_embeddings_type
self.rotary_embedding_base = rotary_embedding_base
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# Conformer-block related
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
self.conformer_conv_dropout = conformer_conv_dropout
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.feat_quantizer_dropout = feat_quantizer_dropout
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# adapter
self.add_adapter = add_adapter
self.adapter_kernel_size = adapter_kernel_size
self.adapter_stride = adapter_stride
self.num_adapter_layers = num_adapter_layers
self.output_hidden_size = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
self.tdnn_dim = list(tdnn_dim)
self.tdnn_kernel = list(tdnn_kernel)
self.tdnn_dilation = list(tdnn_dilation)
self.xvector_output_dim = xvector_output_dim
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
| transformers/src/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py",
"repo_id": "transformers",
"token_count": 8240
} | 341 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Whisper
"""
from typing import List, Optional, Union
import numpy as np
from ... import is_torch_available
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class WhisperFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Whisper feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time
Fourier Transform` which should match pytorch's `torch.stft` equivalent.
Args:
feature_size (`int`, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
hop_length (`int`, defaults to 160):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
chunk_length (`int`, defaults to 30):
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
sequences.
n_fft (`int`, defaults to 400):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
"""
model_input_names = ["input_features"]
def __init__(
self,
feature_size=80,
sampling_rate=16000,
hop_length=160,
chunk_length=30,
n_fft=400,
padding_value=0.0,
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
self.n_samples = chunk_length * sampling_rate
self.nb_max_frames = self.n_samples // hop_length
self.sampling_rate = sampling_rate
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=8000.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
)
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
implementation with 1e-5 tolerance.
"""
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters,
log_mel="log10",
)
log_spec = log_spec[:, :-1]
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
def _torch_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio using the PyTorch STFT implementation.
"""
waveform = torch.from_numpy(waveform).type(torch.float32)
window = torch.hann_window(self.n_fft)
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
mel_spec = mel_filters.T @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec.numpy()
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def zero_mean_unit_var_norm(
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
) -> List[np.ndarray]:
"""
Every array in the list is normalized to have zero mean and unit variance
"""
if attention_mask is not None:
attention_mask = np.array(attention_mask, np.int32)
normed_input_values = []
for vector, length in zip(input_values, attention_mask.sum(-1)):
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
if length < normed_slice.shape[0]:
normed_slice[length:] = padding_value
normed_input_values.append(normed_slice)
else:
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
return normed_input_values
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
padding: Optional[str] = "max_length",
max_length: Optional[int] = None,
sampling_rate: Optional[int] = None,
do_normalize: Optional[bool] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for
the STFT computation if available, otherwise a slower NumPy based one.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
truncation (`bool`, *optional*, default to `True`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle
bugs.
</Tip>
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
padding_value (`float`, defaults to 0.0):
The value that is used to fill the padding values / vectors.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
improve the performance of the model.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
# convert into correct format for padding
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length if max_length else self.n_samples,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask or do_normalize,
)
# zero-mean and unit-variance normalization
if do_normalize:
padded_inputs["input_features"] = self.zero_mean_unit_var_norm(
padded_inputs["input_features"],
attention_mask=padded_inputs["attention_mask"],
padding_value=self.padding_value,
)
padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0)
# make sure list is in array format
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
extract_fbank_features = (
self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features
)
input_features = [extract_fbank_features(waveform) for waveform in input_features[0]]
if isinstance(input_features[0], List):
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
else:
padded_inputs["input_features"] = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
| transformers/src/transformers/models/whisper/feature_extraction_whisper.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/feature_extraction_whisper.py",
"repo_id": "transformers",
"token_count": 5404
} | 342 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax XGLM model."""
import math
import random
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
)
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_xglm import XGLMConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/xglm-564M"
_CONFIG_FOR_DOC = "XGLMConfig"
XGLM_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`XGLMConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
XGLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(n_pos, dim, padding_idx=1):
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = np.exp(np.arange(half_dim) * -emb)
emb = np.expand_dims(np.arange(n_pos), 1) * np.expand_dims(emb, 0)
emb = np.concatenate([np.sin(emb), np.cos(emb)], 1)
emb = np.reshape(emb, (n_pos, dim))
if padding_idx is not None:
emb[padding_idx, :] = 0
return jnp.array(emb)
class FlaxXGLMAttention(nn.Module):
config: XGLMConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} "
f"and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend
# to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxXGLMDecoderLayer(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxXGLMAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
if self.config.add_cross_attention:
self.encoder_attn = FlaxXGLMAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer.__call__
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class FlaxXGLMDecoderLayerCollection(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxXGLMDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_layers)
]
self.layerdrop = self.config.layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_self_attns, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxXGLMModule(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_tokens = nn.Embed(
self.config.vocab_size,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
# XGLM is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.embed_positions = create_sinusoidal_positions(
self.config.max_position_embeddings + self.offset, embed_dim
)
self.layers = FlaxXGLMDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
position_ids = position_ids + self.offset
positions = jnp.take(self.embed_positions, position_ids, axis=0)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = self.layer_norm(last_hidden_states)
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_states,)
if not return_dict:
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_states,
hidden_states=hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
class FlaxXGLMPreTrainedModel(FlaxPreTrainedModel):
config_class = XGLMConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: XGLMConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
past_key_values: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if encoder_hidden_states is not None and encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxXGLMAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings(
"The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.",
XGLM_START_DOCSTRING,
)
class FlaxXGLMModel(FlaxXGLMPreTrainedModel):
module_class = FlaxXGLMModule
append_call_sample_docstring(
FlaxXGLMModel,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutputWithPastAndCrossAttentions,
_CONFIG_FOR_DOC,
)
class FlaxXGLMForCausalLMModule(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.model = FlaxXGLMModule(self.config, self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["embed_tokens"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
XGLM_START_DOCSTRING,
)
class FlaxXGLMForCausalLM(FlaxXGLMPreTrainedModel):
module_class = FlaxXGLMForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPT2 uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxXGLMForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
| transformers/src/transformers/models/xglm/modeling_flax_xglm.py/0 | {
"file_path": "transformers/src/transformers/models/xglm/modeling_flax_xglm.py",
"repo_id": "transformers",
"token_count": 14613
} | 343 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
XLNetTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
SPIECE_UNDERLINE = "โ"
# Segments (not really needed)
SEG_ID_A = 0
SEG_ID_B = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4
class XLNetTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" XLNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `False`):
Whether to keep accents when tokenizing.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
Additional special tokens used by the tokenizer.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
padding_side = "left"
slow_tokenizer_class = XLNetTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=False,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
additional_special_tokens=["<eop>", "<eod>"],
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self._pad_token_type_id = 3
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLNet sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return token_ids_0 + sep + cls
return token_ids_0 + sep + token_ids_1 + sep + cls
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls_segment_id = [2]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0] + cls_segment_id
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| transformers/src/transformers/models/xlnet/tokenization_xlnet_fast.py/0 | {
"file_path": "transformers/src/transformers/models/xlnet/tokenization_xlnet_fast.py",
"repo_id": "transformers",
"token_count": 4172
} | 344 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import sys
import warnings
from argparse import ArgumentParser
from pathlib import Path
from packaging import version
from .. import AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer
from ..utils import logging
from ..utils.import_utils import is_optimum_available
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import get_preprocessor
MIN_OPTIMUM_VERSION = "1.5.0"
ENCODER_DECODER_MODELS = ["vision-encoder-decoder"]
def export_with_optimum(args):
if is_optimum_available():
from optimum.version import __version__ as optimum_version
parsed_optimum_version = version.parse(optimum_version)
if parsed_optimum_version < version.parse(MIN_OPTIMUM_VERSION):
raise RuntimeError(
f"transformers.onnx requires optimum >= {MIN_OPTIMUM_VERSION} but {optimum_version} is installed. You "
"can upgrade optimum by running: pip install -U optimum[exporters]"
)
else:
raise RuntimeError(
"transformers.onnx requires optimum to run, you can install the library by running: pip install "
"optimum[exporters]"
)
cmd_line = [
sys.executable,
"-m",
"optimum.exporters.onnx",
f"--model {args.model}",
f"--task {args.feature}",
f"--framework {args.framework}" if args.framework is not None else "",
f"{args.output}",
]
proc = subprocess.Popen(cmd_line, stdout=subprocess.PIPE)
proc.wait()
logger.info(
"The export was done by optimum.exporters.onnx. We recommend using to use this package directly in future, as "
"transformers.onnx is deprecated, and will be removed in v5. You can find more information here: "
"https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model."
)
def export_with_transformers(args):
args.output = args.output if args.output.is_file() else args.output.joinpath("model.onnx")
if not args.output.parent.exists():
args.output.parent.mkdir(parents=True)
# Allocate the model
model = FeaturesManager.get_model_from_feature(
args.feature, args.model, framework=args.framework, cache_dir=args.cache_dir
)
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=args.feature)
onnx_config = model_onnx_config(model.config)
if model_kind in ENCODER_DECODER_MODELS:
encoder_model = model.get_encoder()
decoder_model = model.get_decoder()
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
decoder_onnx_config = onnx_config.get_decoder_config(
encoder_model.config, decoder_model.config, feature=args.feature
)
if args.opset is None:
args.opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
if args.opset < min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset):
raise ValueError(
f"Opset {args.opset} is not sufficient to export {model_kind}. At least "
f" {min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)} is required."
)
preprocessor = AutoFeatureExtractor.from_pretrained(args.model)
onnx_inputs, onnx_outputs = export(
preprocessor,
encoder_model,
encoder_onnx_config,
args.opset,
args.output.parent.joinpath("encoder_model.onnx"),
)
validate_model_outputs(
encoder_onnx_config,
preprocessor,
encoder_model,
args.output.parent.joinpath("encoder_model.onnx"),
onnx_outputs,
args.atol if args.atol else encoder_onnx_config.atol_for_validation,
)
preprocessor = AutoTokenizer.from_pretrained(args.model)
onnx_inputs, onnx_outputs = export(
preprocessor,
decoder_model,
decoder_onnx_config,
args.opset,
args.output.parent.joinpath("decoder_model.onnx"),
)
validate_model_outputs(
decoder_onnx_config,
preprocessor,
decoder_model,
args.output.parent.joinpath("decoder_model.onnx"),
onnx_outputs,
args.atol if args.atol else decoder_onnx_config.atol_for_validation,
)
logger.info(
f"All good, model saved at: {args.output.parent.joinpath('encoder_model.onnx').as_posix()},"
f" {args.output.parent.joinpath('decoder_model.onnx').as_posix()}"
)
else:
# Instantiate the appropriate preprocessor
if args.preprocessor == "auto":
preprocessor = get_preprocessor(args.model)
elif args.preprocessor == "tokenizer":
preprocessor = AutoTokenizer.from_pretrained(args.model)
elif args.preprocessor == "image_processor":
preprocessor = AutoImageProcessor.from_pretrained(args.model)
elif args.preprocessor == "feature_extractor":
preprocessor = AutoFeatureExtractor.from_pretrained(args.model)
elif args.preprocessor == "processor":
preprocessor = AutoProcessor.from_pretrained(args.model)
else:
raise ValueError(f"Unknown preprocessor type '{args.preprocessor}'")
# Ensure the requested opset is sufficient
if args.opset is None:
args.opset = onnx_config.default_onnx_opset
if args.opset < onnx_config.default_onnx_opset:
raise ValueError(
f"Opset {args.opset} is not sufficient to export {model_kind}. "
f"At least {onnx_config.default_onnx_opset} is required."
)
onnx_inputs, onnx_outputs = export(
preprocessor,
model,
onnx_config,
args.opset,
args.output,
)
if args.atol is None:
args.atol = onnx_config.atol_for_validation
validate_model_outputs(onnx_config, preprocessor, model, args.output, onnx_outputs, args.atol)
logger.info(f"All good, model saved at: {args.output.as_posix()}")
warnings.warn(
"The export was done by transformers.onnx which is deprecated and will be removed in v5. We recommend"
" using optimum.exporters.onnx in future. You can find more information here:"
" https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model.",
FutureWarning,
)
def main():
parser = ArgumentParser("Hugging Face Transformers ONNX exporter")
parser.add_argument(
"-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from."
)
parser.add_argument(
"--feature",
default="default",
help="The type of features to export the model with.",
)
parser.add_argument("--opset", type=int, default=None, help="ONNX opset version to export the model with.")
parser.add_argument(
"--atol", type=float, default=None, help="Absolute difference tolerance when validating the model."
)
parser.add_argument(
"--framework",
type=str,
choices=["pt", "tf"],
default=None,
help=(
"The framework to use for the ONNX export."
" If not provided, will attempt to use the local checkpoint's original framework"
" or what is available in the environment."
),
)
parser.add_argument("output", type=Path, help="Path indicating where to store generated ONNX model.")
parser.add_argument("--cache_dir", type=str, default=None, help="Path indicating where to store cache.")
parser.add_argument(
"--preprocessor",
type=str,
choices=["auto", "tokenizer", "feature_extractor", "image_processor", "processor"],
default="auto",
help="Which type of preprocessor to use. 'auto' tries to automatically detect it.",
)
parser.add_argument(
"--export_with_transformers",
action="store_true",
help=(
"Whether to use transformers.onnx instead of optimum.exporters.onnx to perform the ONNX export. It can be "
"useful when exporting a model supported in transformers but not in optimum, otherwise it is not "
"recommended."
),
)
args = parser.parse_args()
if args.export_with_transformers or not is_optimum_available():
export_with_transformers(args)
else:
export_with_optimum(args)
if __name__ == "__main__":
logger = logging.get_logger("transformers.onnx") # pylint: disable=invalid-name
logger.setLevel(logging.INFO)
main()
| transformers/src/transformers/onnx/__main__.py/0 | {
"file_path": "transformers/src/transformers/onnx/__main__.py",
"repo_id": "transformers",
"token_count": 3988
} | 345 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import GenericTensor, Pipeline, PipelineException, build_pipeline_init_args
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
@add_end_docstrings(
build_pipeline_init_args(has_tokenizer=True),
r"""
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
tokenizer_kwargs (`dict`, *optional*):
Additional dictionary of keyword arguments passed along to the tokenizer.""",
)
class FillMaskPipeline(Pipeline):
"""
Masked language modeling prediction pipeline using any `ModelWithLMHead`. See the [masked language modeling
examples](../task_summary#masked-language-modeling) for more information.
Example:
```python
>>> from transformers import pipeline
>>> fill_masker = pipeline(model="bert-base-uncased")
>>> fill_masker("This is a simple [MASK].")
[{'score': 0.042, 'token': 3291, 'token_str': 'problem', 'sequence': 'this is a simple problem.'}, {'score': 0.031, 'token': 3160, 'token_str': 'question', 'sequence': 'this is a simple question.'}, {'score': 0.03, 'token': 8522, 'token_str': 'equation', 'sequence': 'this is a simple equation.'}, {'score': 0.027, 'token': 2028, 'token_str': 'one', 'sequence': 'this is a simple one.'}, {'score': 0.024, 'token': 3627, 'token_str': 'rule', 'sequence': 'this is a simple rule.'}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This mask filling pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"fill-mask"`.
The models that this pipeline can use are models that have been trained with a masked language modeling objective,
which includes the bi-directional models in the library. See the up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=fill-mask).
<Tip>
This pipeline only works for inputs with exactly one token masked. Experimental: We added support for multiple
masks. The returned values are raw model output, and correspond to disjoint probabilities where one might expect
joint probabilities (See [discussion](https://github.com/huggingface/transformers/pull/10222)).
</Tip>
<Tip>
This pipeline now supports tokenizer_kwargs. For example try:
```python
>>> from transformers import pipeline
>>> fill_masker = pipeline(model="bert-base-uncased")
>>> tokenizer_kwargs = {"truncation": True}
>>> fill_masker(
... "This is a simple [MASK]. " + "...with a large amount of repeated text appended. " * 100,
... tokenizer_kwargs=tokenizer_kwargs,
... )
```
</Tip>
"""
def get_masked_index(self, input_ids: GenericTensor) -> np.ndarray:
if self.framework == "tf":
masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()
elif self.framework == "pt":
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False)
else:
raise ValueError("Unsupported framework")
return masked_index
def _ensure_exactly_one_mask_token(self, input_ids: GenericTensor) -> np.ndarray:
masked_index = self.get_masked_index(input_ids)
numel = np.prod(masked_index.shape)
if numel < 1:
raise PipelineException(
"fill-mask",
self.model.base_model_prefix,
f"No mask_token ({self.tokenizer.mask_token}) found on the input",
)
def ensure_exactly_one_mask_token(self, model_inputs: GenericTensor):
if isinstance(model_inputs, list):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0])
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(input_ids)
def preprocess(
self, inputs, return_tensors=None, tokenizer_kwargs=None, **preprocess_parameters
) -> Dict[str, GenericTensor]:
if return_tensors is None:
return_tensors = self.framework
if tokenizer_kwargs is None:
tokenizer_kwargs = {}
model_inputs = self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs)
self.ensure_exactly_one_mask_token(model_inputs)
return model_inputs
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
model_outputs["input_ids"] = model_inputs["input_ids"]
return model_outputs
def postprocess(self, model_outputs, top_k=5, target_ids=None):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
top_k = target_ids.shape[0]
input_ids = model_outputs["input_ids"][0]
outputs = model_outputs["logits"]
if self.framework == "tf":
masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0]
outputs = outputs.numpy()
logits = outputs[0, masked_index, :]
probs = stable_softmax(logits, axis=-1)
if target_ids is not None:
probs = tf.gather_nd(tf.squeeze(probs, 0), target_ids.reshape(-1, 1))
probs = tf.expand_dims(probs, 0)
topk = tf.math.top_k(probs, k=top_k)
values, predictions = topk.values.numpy(), topk.indices.numpy()
else:
masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1)
# Fill mask pipeline supports only one ${mask_token} per sample
logits = outputs[0, masked_index, :]
probs = logits.softmax(dim=-1)
if target_ids is not None:
probs = probs[..., target_ids]
values, predictions = probs.topk(top_k)
result = []
single_mask = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())):
row = []
for v, p in zip(_values, _predictions):
# Copy is important since we're going to modify this array in place
tokens = input_ids.numpy().copy()
if target_ids is not None:
p = target_ids[p].tolist()
tokens[masked_index[i]] = p
# Filter padding out:
tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
row.append(proposition)
result.append(row)
if single_mask:
return result[0]
return result
def get_target_ids(self, targets, top_k=None):
if isinstance(targets, str):
targets = [targets]
try:
vocab = self.tokenizer.get_vocab()
except Exception:
vocab = {}
target_ids = []
for target in targets:
id_ = vocab.get(target, None)
if id_ is None:
input_ids = self.tokenizer(
target,
add_special_tokens=False,
return_attention_mask=False,
return_token_type_ids=False,
max_length=1,
truncation=True,
)["input_ids"]
if len(input_ids) == 0:
logger.warning(
f"The specified target token `{target}` does not exist in the model vocabulary. "
"We cannot replace it with anything meaningful, ignoring it"
)
continue
id_ = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f"The specified target token `{target}` does not exist in the model vocabulary. "
f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`."
)
target_ids.append(id_)
target_ids = list(set(target_ids))
if len(target_ids) == 0:
raise ValueError("At least one target must be provided when passed.")
target_ids = np.array(target_ids)
return target_ids
def _sanitize_parameters(self, top_k=None, targets=None, tokenizer_kwargs=None):
preprocess_params = {}
if tokenizer_kwargs is not None:
preprocess_params["tokenizer_kwargs"] = tokenizer_kwargs
postprocess_params = {}
if targets is not None:
target_ids = self.get_target_ids(targets, top_k)
postprocess_params["target_ids"] = target_ids
if top_k is not None:
postprocess_params["top_k"] = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask", self.model.base_model_prefix, "The tokenizer does not define a `mask_token`."
)
return preprocess_params, {}, postprocess_params
def __call__(self, inputs, *args, **kwargs):
"""
Fill the masked token in the text(s) given as inputs.
Args:
args (`str` or `List[str]`):
One or several texts (or one list of prompts) with masked tokens.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first
resulting token will be used (with a warning, and that might be slower).
top_k (`int`, *optional*):
When passed, overrides the number of predictions to return.
Return:
A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys:
- **sequence** (`str`) -- The corresponding input with the mask token prediction.
- **score** (`float`) -- The corresponding probability.
- **token** (`int`) -- The predicted token id (to replace the masked one).
- **token_str** (`str`) -- The predicted token (to replace the masked one).
"""
outputs = super().__call__(inputs, **kwargs)
if isinstance(inputs, list) and len(inputs) == 1:
return outputs[0]
return outputs
| transformers/src/transformers/pipelines/fill_mask.py/0 | {
"file_path": "transformers/src/transformers/pipelines/fill_mask.py",
"repo_id": "transformers",
"token_count": 4992
} | 346 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import Pipeline, build_pipeline_init_args
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_image_processor=True))
class VisualQuestionAnsweringPipeline(Pipeline):
"""
Visual Question Answering pipeline using a `AutoModelForVisualQuestionAnswering`. This pipeline is currently only
available in PyTorch.
Example:
```python
>>> from transformers import pipeline
>>> oracle = pipeline(model="dandelin/vilt-b32-finetuned-vqa")
>>> image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/lena.png"
>>> oracle(question="What is she wearing ?", image=image_url)
[{'score': 0.948, 'answer': 'hat'}, {'score': 0.009, 'answer': 'fedora'}, {'score': 0.003, 'answer': 'clothes'}, {'score': 0.003, 'answer': 'sun hat'}, {'score': 0.002, 'answer': 'nothing'}]
>>> oracle(question="What is she wearing ?", image=image_url, top_k=1)
[{'score': 0.948, 'answer': 'hat'}]
>>> oracle(question="Is this a person ?", image=image_url, top_k=1)
[{'score': 0.993, 'answer': 'yes'}]
>>> oracle(question="Is this a man ?", image=image_url, top_k=1)
[{'score': 0.996, 'answer': 'no'}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This visual question answering pipeline can currently be loaded from [`pipeline`] using the following task
identifiers: `"visual-question-answering", "vqa"`.
The models that this pipeline can use are models that have been fine-tuned on a visual question answering task. See
the up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=visual-question-answering).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES)
def _sanitize_parameters(self, top_k=None, padding=None, truncation=None, timeout=None, **kwargs):
preprocess_params, postprocess_params = {}, {}
if padding is not None:
preprocess_params["padding"] = padding
if truncation is not None:
preprocess_params["truncation"] = truncation
if timeout is not None:
preprocess_params["timeout"] = timeout
if top_k is not None:
postprocess_params["top_k"] = top_k
return preprocess_params, {}, postprocess_params
def __call__(self, image: Union["Image.Image", str], question: str = None, **kwargs):
r"""
Answers open-ended questions about images. The pipeline accepts several types of inputs which are detailed
below:
- `pipeline(image=image, question=question)`
- `pipeline({"image": image, "question": question})`
- `pipeline([{"image": image, "question": question}])`
- `pipeline([{"image": image, "question": question}, {"image": image, "question": question}])`
Args:
image (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing a http link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images. If given a single image, it can be
broadcasted to multiple questions.
question (`str`, `List[str]`):
The question(s) asked. If given a single question, it can be broadcasted to multiple images.
top_k (`int`, *optional*, defaults to 5):
The number of top labels that will be returned by the pipeline. If the provided number is higher than
the number of labels available in the model configuration, it will default to the number of labels.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
A dictionary or a list of dictionaries containing the result. The dictionaries contain the following keys:
- **label** (`str`) -- The label identified by the model.
- **score** (`int`) -- The score attributed by the model for that label.
"""
if isinstance(image, (Image.Image, str)) and isinstance(question, str):
inputs = {"image": image, "question": question}
else:
"""
Supports the following format
- {"image": image, "question": question}
- [{"image": image, "question": question}]
- Generator and datasets
"""
inputs = image
results = super().__call__(inputs, **kwargs)
return results
def preprocess(self, inputs, padding=False, truncation=False, timeout=None):
image = load_image(inputs["image"], timeout=timeout)
model_inputs = self.tokenizer(
inputs["question"], return_tensors=self.framework, padding=padding, truncation=truncation
)
image_features = self.image_processor(images=image, return_tensors=self.framework)
model_inputs.update(image_features)
return model_inputs
def _forward(self, model_inputs):
if self.model.can_generate():
model_outputs = self.model.generate(**model_inputs)
else:
model_outputs = self.model(**model_inputs)
return model_outputs
def postprocess(self, model_outputs, top_k=5):
if self.model.can_generate():
return [
{"answer": self.tokenizer.decode(output_ids, skip_special_tokens=True).strip()}
for output_ids in model_outputs
]
else:
if top_k > self.model.config.num_labels:
top_k = self.model.config.num_labels
if self.framework == "pt":
probs = model_outputs.logits.sigmoid()[0]
scores, ids = probs.topk(top_k)
else:
raise ValueError(f"Unsupported framework: {self.framework}")
scores = scores.tolist()
ids = ids.tolist()
return [{"score": score, "answer": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)]
| transformers/src/transformers/pipelines/visual_question_answering.py/0 | {
"file_path": "transformers/src/transformers/pipelines/visual_question_answering.py",
"repo_id": "transformers",
"token_count": 2734
} | 347 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class ImageQuestionAnsweringTool(PipelineTool):
default_checkpoint = "dandelin/vilt-b32-finetuned-vqa"
description = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
name = "image_qa"
pre_processor_class = AutoProcessor
model_class = AutoModelForVisualQuestionAnswering
inputs = ["image", "text"]
outputs = ["text"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
super().__init__(*args, **kwargs)
def encode(self, image: "Image", question: str):
return self.pre_processor(image, question, return_tensors="pt")
def forward(self, inputs):
with torch.no_grad():
return self.model(**inputs).logits
def decode(self, outputs):
idx = outputs.argmax(-1).item()
return self.model.config.id2label[idx]
| transformers/src/transformers/tools/image_question_answering.py/0 | {
"file_path": "transformers/src/transformers/tools/image_question_answering.py",
"repo_id": "transformers",
"token_count": 646
} | 348 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
logger = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__)
class Seq2SeqTrainingArguments(TrainingArguments):
"""
Args:
sortish_sampler (`bool`, *optional*, defaults to `False`):
Whether to use a *sortish sampler* or not. Only possible if the underlying datasets are *Seq2SeqDataset*
for now but will become generally available in the near future.
It sorts the inputs according to lengths in order to minimize the padding size, with a bit of randomness
for the training set.
predict_with_generate (`bool`, *optional*, defaults to `False`):
Whether to use generate to calculate generative metrics (ROUGE, BLEU).
generation_max_length (`int`, *optional*):
The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
generation_num_beams (`int`, *optional*):
The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
generation_config (`str` or `Path` or [`~generation.GenerationConfig`], *optional*):
Allows to load a [`~generation.GenerationConfig`] from the `from_pretrained` method. This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a configuration file saved using the
[`~GenerationConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
- a [`~generation.GenerationConfig`] object.
"""
sortish_sampler: bool = field(default=False, metadata={"help": "Whether to use SortishSampler or not."})
predict_with_generate: bool = field(
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
)
generation_max_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `max_length` value of the model configuration."
)
},
)
generation_num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `num_beams` value of the model configuration."
)
},
)
generation_config: Optional[Union[str, Path, GenerationConfig]] = field(
default=None,
metadata={
"help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."
},
)
def to_dict(self):
"""
Serializes this instance while replace `Enum` by their values and `GenerationConfig` by dictionaries (for JSON
serialization support). It obfuscates the token values by removing their value.
"""
# filter out fields that are defined as field(init=False)
d = super().to_dict()
for k, v in d.items():
if isinstance(v, GenerationConfig):
d[k] = v.to_dict()
return d
| transformers/src/transformers/training_args_seq2seq.py/0 | {
"file_path": "transformers/src/transformers/training_args_seq2seq.py",
"repo_id": "transformers",
"token_count": 1641
} | 349 |
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
class TFBertTokenizer(metaclass=DummyObject):
_backends = ["tensorflow_text"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tensorflow_text"])
| transformers/src/transformers/utils/dummy_tensorflow_text_objects.py/0 | {
"file_path": "transformers/src/transformers/utils/dummy_tensorflow_text_objects.py",
"repo_id": "transformers",
"token_count": 109
} | 350 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
{% if cookiecutter.is_encoder_decoder_model == "False" %}
import unittest
from transformers import is_tf_available, {{cookiecutter.camelcase_modelname}}Config
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import (
TF{{cookiecutter.camelcase_modelname}}ForCausalLM,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Model,
)
class TF{{cookiecutter.camelcase_modelname}}ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = {{cookiecutter.camelcase_modelname}}Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TF{{cookiecutter.camelcase_modelname}}Model(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_base_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TF{{cookiecutter.camelcase_modelname}}Model(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TF{{cookiecutter.camelcase_modelname}}Model(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
# Also check the case where encoder outputs are not passed
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
prediction_scores = result["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_past(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config)
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_with_attn_mask(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
past_key_values = outputs.past_key_values
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat(
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
axis=1,
)
output_from_no_past = model(
next_input_ids,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TF{{cookiecutter.camelcase_modelname}}ForCausalLM(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
encoder_hidden_states = encoder_hidden_states[:1, :, :]
encoder_attention_mask = encoder_attention_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}ForCausalLM,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
)
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TF{{cookiecutter.camelcase_modelname}}ModelTester(self)
self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
"""Test the base model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Template classes interact badly with this test.")
def test_keras_fit(self):
pass
def test_causal_lm_base_model(self):
"""Test the base model of the causal LM model
is_deocder=True, no cross_attention, no encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)
def test_model_as_decoder(self):
"""Test the base model as a decoder (of an encoder-decoder architecture)
is_deocder=True + cross_attention + pass encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_causal_lm(self):
"""Test the causal LM model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model(*config_and_inputs)
def test_causal_lm_model_as_decoder(self):
"""Test the causal LM model as a decoder"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs)
def test_causal_lm_model_past(self):
"""Test causal LM model with `past_key_values`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs)
def test_causal_lm_model_past_with_attn_mask(self):
"""Test the causal LM model with `past_key_values` and `attention_mask`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)
def test_causal_lm_model_past_with_large_inputs(self):
"""Test the causal LM model with `past_key_values` and a longer decoder sequence length"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
"""Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TF{{cookiecutter.camelcase_modelname}}Model.from_pretrained("{{cookiecutter.checkpoint_identifier}}")
self.assertIsNotNone(model)
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TF{{cookiecutter.camelcase_modelname}}ForMaskedLM.from_pretrained("{{cookiecutter.checkpoint_identifier}}")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
# TODO Replace vocab size
vocab_size = 32000
expected_shape = [1, 6, vocab_size]
self.assertEqual(output.shape, expected_shape)
print(output[:, :3, :3])
# TODO Replace values below with what was printed above.
expected_slice = tf.constant(
[
[
[-0.05243197, -0.04498899, 0.05512108],
[-0.07444685, -0.01064632, 0.04352357],
[-0.05020351, 0.05530146, 0.00700043],
]
]
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
{% else %}
import unittest
from transformers import (
is_tf_available,
{{cookiecutter.camelcase_modelname}}Config,
{{cookiecutter.camelcase_modelname}}Tokenizer,
)
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers import (
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
TF{{cookiecutter.camelcase_modelname}}Model,
)
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelTester:
config_cls = {{cookiecutter.camelcase_modelname}}Config
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.config_cls(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_ids=[2],
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
**self.config_updates,
)
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = TF{{cookiecutter.camelcase_modelname}}Model(config=config).get_decoder()
input_ids = inputs_dict["input_ids"]
input_ids = input_ids[:1, :]
attention_mask = inputs_dict["attention_mask"][:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int32)
if decoder_attention_mask is None:
decoder_attention_mask = tf.concat([tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int32), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int32)], axis=-1)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model) if is_tf_available() else ()
all_generative_model_classes = (TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TF{{cookiecutter.camelcase_modelname}}ModelTester(self)
self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
@unittest.skip(reason="Template classes interact badly with this test.")
def test_keras_fit(self):
pass
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if tf.debugging.assert_near(a, b, atol=atol):
return True
raise
except Exception:
if len(prefix) > 0:
prefix = f"{prefix}: "
raise AssertionError(f"{prefix}{a} != {b}")
def _long_tensor(tok_lst):
return tf.constant(tok_lst, dtype=tf.int32)
TOLERANCE = 1e-4
@slow
@require_sentencepiece
@require_tokenizers
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase):
def test_inference_no_head(self):
model = TF{{cookiecutter.camelcase_modelname}}Model.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
# change to intended input here
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids)
output = model(**inputs_dict)[0]
expected_shape = (1, 11, 1024)
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = tf.Tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]],
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE)
def test_inference_with_head(self):
model = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
# change to intended input here
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids)
output = model(**inputs_dict)[0]
expected_shape = (1, 11, 1024)
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = tf.Tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]],
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE)
def test_seq_to_seq_generation(self):
hf = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
tok = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
batch_input = [
# string 1,
# string 2,
# string 3,
# string 4,
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
dct = tok.batch_encode_plus(
batch_input,
max_length=512,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="tf",
)
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
)
EXPECTED = [
# here expected 1,
# here expected 2,
# here expected 3,
# here expected 4,
]
generated = tok.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated == EXPECTED
{%- endif %}
| transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/test_modeling_tf_{{cookiecutter.lowercase_modelname}}.py/0 | {
"file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/test_modeling_tf_{{cookiecutter.lowercase_modelname}}.py",
"repo_id": "transformers",
"token_count": 17346
} | 351 |
{
"modelname": "NewTFENCDEC",
"uppercase_modelname": "NEW_TF_ENC_DEC",
"lowercase_modelname": "new_tf_enc_dec_template",
"camelcase_modelname": "NewTFEncDec",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "new-tf-enc-dec-base_template",
"tokenizer_type": "Based on BART",
"generate_tensorflow_pytorch_and_flax": "TensorFlow",
"is_encoder_decoder_model": "True"
}
| transformers/templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json/0 | {
"file_path": "transformers/templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json",
"repo_id": "transformers",
"token_count": 159
} | 352 |
# coding=utf-8
# Copyright 2023 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class StreamerTester(unittest.TestCase):
def test_text_streamer_matches_non_streaming(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
greedy_text = tokenizer.decode(greedy_ids[0])
with CaptureStdout() as cs:
streamer = TextStreamer(tokenizer)
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
streamer_text = cs.out[:-1]
self.assertEqual(streamer_text, greedy_text)
def test_iterator_streamer_matches_non_streaming(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
greedy_text = tokenizer.decode(greedy_ids[0])
streamer = TextIteratorStreamer(tokenizer)
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
streamer_text = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(streamer_text, greedy_text)
def test_text_streamer_skip_prompt(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
new_greedy_ids = greedy_ids[:, input_ids.shape[1] :]
new_greedy_text = tokenizer.decode(new_greedy_ids[0])
with CaptureStdout() as cs:
streamer = TextStreamer(tokenizer, skip_prompt=True)
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
streamer_text = cs.out[:-1]
self.assertEqual(streamer_text, new_greedy_text)
def test_text_streamer_decode_kwargs(self):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilgpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id
with CaptureStdout() as cs:
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer)
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
streamer_text = cs.out[:-1] # Remove the final "\n"
streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt")
self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1))
def test_iterator_streamer_timeout(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
streamer = TextIteratorStreamer(tokenizer, timeout=0.001)
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(Empty):
streamer_text = ""
for new_text in streamer:
streamer_text += new_text
| transformers/tests/generation/test_streamers.py/0 | {
"file_path": "transformers/tests/generation/test_streamers.py",
"repo_id": "transformers",
"token_count": 2340
} | 353 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
global_rng = random.Random()
if is_torch_available():
import torch
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class ASTFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=1,
padding_value=0.0,
sampling_rate=16000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = floats_list((self.batch_size, self.max_seq_length))
else:
# make sure that inputs increase in size
speech_inputs = [
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class ASTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = ASTFeatureExtractor
def setUp(self):
self.feat_extract_tester = ASTFeatureExtractionTester(self)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test not batched input
encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feat_extract(speech_inputs, padding=True, return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs, padding=True, return_tensors="np").input_values
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
@require_torch
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_values.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_values.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
@require_torch
def test_integration(self):
# fmt: off
EXPECTED_INPUT_VALUES = torch.tensor(
[-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776,
-1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133,
-1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936,
-0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869]
)
# fmt: on
input_speech = self._load_datasamples(1)
feature_extractor = ASTFeatureExtractor()
input_values = feature_extractor(input_speech, return_tensors="pt").input_values
self.assertEquals(input_values.shape, (1, 1024, 128))
self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-4))
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
self.assertDictEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
self.assertEqual(dict_first, dict_second)
# exact same tests than before, except that we simulate that torchaudio is not available
@require_torch
@unittest.mock.patch(
"transformers.models.audio_spectrogram_transformer.feature_extraction_audio_spectrogram_transformer.is_speech_available",
lambda: False,
)
class ASTFeatureExtractionWithoutTorchaudioTest(ASTFeatureExtractionTest):
def test_using_audio_utils(self):
# Tests that it uses audio_utils instead of torchaudio
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
self.assertTrue(hasattr(feat_extract, "window"))
self.assertTrue(hasattr(feat_extract, "mel_filters"))
from transformers.models.audio_spectrogram_transformer.feature_extraction_audio_spectrogram_transformer import (
is_speech_available,
)
self.assertFalse(is_speech_available())
| transformers/tests/models/audio_spectrogram_transformer/test_feature_extraction_audio_spectrogram_transformer.py/0 | {
"file_path": "transformers/tests/models/audio_spectrogram_transformer/test_feature_extraction_audio_spectrogram_transformer.py",
"repo_id": "transformers",
"token_count": 3869
} | 354 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.