text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class ChineseCLIPProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) image_processor_map = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } self.image_processor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = ChineseCLIPProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = ChineseCLIPProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, BertTokenizer) self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, ChineseCLIPImageProcessor) self.assertIsInstance(processor_fast.image_processor, ChineseCLIPImageProcessor) def test_save_load_pretrained_additional_features(self): processor = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(cls_token="(CLS)", sep_token="(SEP)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False) processor = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token="(CLS)", sep_token="(SEP)", do_normalize=False ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, BertTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, ChineseCLIPImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "Alexandra,T-shirt的价格是15便士。" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "Alexandra,T-shirt的价格是15便士。" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = ChineseCLIPProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "Alexandra,T-shirt的价格是15便士。" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
transformers/tests/models/chinese_clip/test_processor_chinese_clip.py/0
{ "file_path": "transformers/tests/models/chinese_clip/test_processor_chinese_clip.py", "repo_id": "transformers", "token_count": 3436 }
384
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import itertools import os import random import tempfile import unittest import numpy as np from datasets import Audio, load_dataset from transformers import ClvpFeatureExtractor from transformers.testing_utils import check_json_file_has_correct_format, require_torch, slow from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() # Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class ClvpFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=10, hop_length=160, chunk_length=8, padding_value=0.0, sampling_rate=4_000, return_attention_mask=False, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.feature_size = feature_size self.chunk_length = chunk_length self.hop_length = hop_length def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, } # Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTester.prepare_inputs_for_common def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size speech_inputs = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs @require_torch class ClvpFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = ClvpFeatureExtractor def setUp(self): self.feat_extract_tester = ClvpFeatureExtractionTester(self) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() # Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_from_and_save_pretrained def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) # Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_to_json_file def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test truncation required speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs] np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated] encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_double_precision_pad def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100, 32).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.float32) def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", Audio(sampling_rate=22050)) # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples] @slow def test_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = torch.tensor( [ 0.9271, 1.1405, 1.4419, 1.2470, 1.2438, 1.1787, 1.0595, 1.0570, 1.1070, 1.2205, 1.2376, 1.2997, 1.1131, 1.0843, 1.0459, 1.1858, 1.2323, 1.3582, 1.3401, 1.3770, 1.4173, 1.3381, 1.2291, 1.0854, 1.2116, 1.1873, 1.2178, 1.2137, 1.3001, 1.4274 ] ) # fmt: on input_speech, sr = self._load_datasamples(1) feature_extractor = ClvpFeatureExtractor.from_pretrained("susnato/clvp_dev") input_features = feature_extractor(input_speech, sampling_rate=sr[0], return_tensors="pt").input_features self.assertEqual(input_features.shape, (1, 80, 517)) self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
transformers/tests/models/clvp/test_feature_extraction_clvp.py/0
{ "file_path": "transformers/tests/models/clvp/test_feature_extraction_clvp.py", "repo_id": "transformers", "token_count": 4543 }
385
# coding=utf-8 # Copyright 2022s HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import ConvNextImageProcessor class ConvNextImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, crop_pct=0.875, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 20} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.crop_pct = crop_pct self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_pct": self.crop_pct, } def expected_output_image_shape(self, images): return self.num_channels, self.size["shortest_edge"], self.size["shortest_edge"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ConvNextImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ConvNextImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ConvNextImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "crop_pct")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"shortest_edge": 42})
transformers/tests/models/convnext/test_image_processing_convnext.py/0
{ "file_path": "transformers/tests/models/convnext/test_image_processing_convnext.py", "repo_id": "transformers", "token_count": 1614 }
386
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch CvT model. """ import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class CvtConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "embed_dim")) self.parent.assertTrue(hasattr(config, "num_heads")) class CvtModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, embed_dim=[16, 32, 48], num_heads=[1, 2, 3], depth=[1, 2, 10], patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], patch_padding=[2, 1, 1], stride_kv=[2, 2, 2], cls_token=[False, False, True], attention_drop_rate=[0.0, 0.0, 0.0], initializer_range=0.02, layer_norm_eps=1e-12, is_training=True, use_labels=True, num_labels=2, # Check ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_sizes = patch_sizes self.patch_stride = patch_stride self.patch_padding = patch_padding self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.num_channels = num_channels self.embed_dim = embed_dim self.num_heads = num_heads self.stride_kv = stride_kv self.depth = depth self.cls_token = cls_token self.attention_drop_rate = attention_drop_rate self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = CvtModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for i in range(len(self.depth)): height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = CvtForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = CvtModelTester(self) self.config_tester = ConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Cvt does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Cvt does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Cvt does not support input and output embeddings") def test_model_common_attributes(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depth) self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CvtModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class CvtModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def test_inference_image_classification_head(self): model = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/cvt/test_modeling_cvt.py/0
{ "file_path": "transformers/tests/models/cvt/test_modeling_cvt.py", "repo_id": "transformers", "token_count": 4331 }
387
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch DecisionTransformer model. """ import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class DecisionTransformerModelTester: def __init__( self, parent, batch_size=13, seq_length=7, act_dim=6, state_dim=17, hidden_size=23, max_length=11, is_training=True, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.act_dim = act_dim self.state_dim = state_dim self.hidden_size = hidden_size self.max_length = max_length self.is_training = is_training def prepare_config_and_inputs(self): states = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) actions = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) rewards = floats_tensor((self.batch_size, self.seq_length, 1)) returns_to_go = floats_tensor((self.batch_size, self.seq_length, 1)) timesteps = ids_tensor((self.batch_size, self.seq_length), vocab_size=1000) attention_mask = random_attention_mask((self.batch_size, self.seq_length)) config = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def get_config(self): return DecisionTransformerConfig( batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, ) def create_and_check_model( self, config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ): model = DecisionTransformerModel(config=config) model.to(torch_device) model.eval() result = model(states, actions, rewards, returns_to_go, timesteps, attention_mask) self.parent.assertEqual(result.state_preds.shape, states.shape) self.parent.assertEqual(result.action_preds.shape, actions.shape) self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) = config_and_inputs inputs_dict = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class DecisionTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (DecisionTransformerModel,) if is_torch_available() else () all_generative_model_classes = () pipeline_model_mapping = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids test_generate_without_input_ids = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features test_pruning = False test_resize_embeddings = False test_head_masking = False test_attention_outputs = False test_hidden_states_output = False test_inputs_embeds = False test_model_common_attributes = False test_gradient_checkpointing = False test_torchscript = False def setUp(self): self.model_tester = DecisionTransformerModelTester(self) self.config_tester = ConfigTester(self, config_class=DecisionTransformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DecisionTransformerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @require_torch class DecisionTransformerModelIntegrationTest(unittest.TestCase): @slow def test_autoregressive_prediction(self): """ An integration test that performs autoregressive prediction of state, action and return from a sequence of state, actions and returns. Test is performed over two timesteps. """ NUM_STEPS = 2 # number of steps of autoregressive prediction we will perform TARGET_RETURN = 10 # defined by the RL environment, may be normalized model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert") model = model.to(torch_device) config = model.config torch.manual_seed(0) state = torch.randn(1, 1, config.state_dim).to(device=torch_device, dtype=torch.float32) # env.reset() expected_outputs = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]], device=torch_device ) returns_to_go = torch.tensor(TARGET_RETURN, device=torch_device, dtype=torch.float32).reshape(1, 1, 1) states = state actions = torch.zeros(1, 0, config.act_dim, device=torch_device, dtype=torch.float32) rewards = torch.zeros(1, 0, device=torch_device, dtype=torch.float32) timesteps = torch.tensor(0, device=torch_device, dtype=torch.long).reshape(1, 1) for step in range(NUM_STEPS): actions = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=torch_device)], dim=1) rewards = torch.cat([rewards, torch.zeros(1, 1, device=torch_device)], dim=1) attention_mask = torch.ones(1, states.shape[1]).to(dtype=torch.long, device=states.device) with torch.no_grad(): _, action_pred, _ = model( states=states, actions=actions, rewards=rewards, returns_to_go=returns_to_go, timesteps=timesteps, attention_mask=attention_mask, return_dict=False, ) self.assertEqual(action_pred.shape, actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1e-4)) state, reward, _, _ = ( # env.step(action) torch.randn(1, 1, config.state_dim).to(device=torch_device, dtype=torch.float32), 1.0, False, {}, ) actions[-1] = action_pred[0, -1] states = torch.cat([states, state], dim=1) pred_return = returns_to_go[0, -1] - reward returns_to_go = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1)], dim=1) timesteps = torch.cat( [timesteps, torch.ones((1, 1), device=torch_device, dtype=torch.long) * (step + 1)], dim=1 )
transformers/tests/models/decision_transformer/test_modeling_decision_transformer.py/0
{ "file_path": "transformers/tests/models/decision_transformer/test_modeling_decision_transformer.py", "repo_id": "transformers", "token_count": 4241 }
388
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import DPRConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DPRContextEncoder, DPRQuestionEncoder, DPRReader, DPRReaderTokenizer from transformers.models.dpr.modeling_dpr import ( DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class DPRModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=False, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, projection_dim=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.projection_dim = projection_dim def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return DPRConfig( projection_dim=self.projection_dim, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_context_encoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DPRContextEncoder(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) def create_and_check_question_encoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DPRQuestionEncoder(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) def create_and_check_reader( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DPRReader(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids} return config, inputs_dict @require_torch class DPRModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DPRContextEncoder, DPRQuestionEncoder, DPRReader, ) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": DPRQuestionEncoder} if is_torch_available() else {} test_resize_embeddings = False test_missing_keys = False # why? test_pruning = False test_head_masking = False def setUp(self): self.model_tester = DPRModelTester(self) self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_context_encoder_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_context_encoder(*config_and_inputs) def test_question_encoder_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_question_encoder(*config_and_inputs) def test_reader_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reader(*config_and_inputs) def test_init_changed_config(self): config = self.model_tester.prepare_config_and_inputs()[0] model = DPRQuestionEncoder(config=config) model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = DPRQuestionEncoder.from_pretrained(tmp_dirname, projection_dim=512) self.assertIsNotNone(model) @slow def test_model_from_pretrained(self): for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DPRContextEncoder.from_pretrained(model_name) self.assertIsNotNone(model) for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DPRContextEncoder.from_pretrained(model_name) self.assertIsNotNone(model) for model_name in DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DPRQuestionEncoder.from_pretrained(model_name) self.assertIsNotNone(model) for model_name in DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DPRReader.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class DPRModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False) model.to(torch_device) input_ids = torch.tensor( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]], dtype=torch.long, device=torch_device ) # [CLS] hello, is my dog cute? [SEP] output = model(input_ids)[0] # embedding shape = (1, 768) # compare the actual values for a slice. expected_slice = torch.tensor( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output[:, :10], expected_slice, atol=1e-4)) @slow def test_reader_inference(self): tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") model.to(torch_device) encoded_inputs = tokenizer( questions="What is love ?", titles="Haddaway", texts="What Is Love is a song recorded by the artist Haddaway", padding=True, return_tensors="pt", ) encoded_inputs.to(torch_device) outputs = model(**encoded_inputs) # compare the actual values for a slice. expected_start_logits = torch.tensor( [[-10.3005, -10.7765, -11.4872, -11.6841, -11.9312, -10.3002, -9.8544, -11.7378, -12.0821, -10.2975]], dtype=torch.float, device=torch_device, ) expected_end_logits = torch.tensor( [[-11.0684, -11.7041, -11.5397, -10.3465, -10.8791, -6.8443, -11.9959, -11.0364, -10.0096, -6.8405]], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(outputs.start_logits[:, :10], expected_start_logits, atol=1e-4)) self.assertTrue(torch.allclose(outputs.end_logits[:, :10], expected_end_logits, atol=1e-4))
transformers/tests/models/dpr/test_modeling_dpr.py/0
{ "file_path": "transformers/tests/models/dpr/test_modeling_dpr.py", "repo_id": "transformers", "token_count": 5466 }
389
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ElectraConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ) from transformers.models.electra.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST class ElectraModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1) config = self.get_config() return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ) def get_config(self): return ElectraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, _, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_electra_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = ElectraModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_electra_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = ElectraModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_electra_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = ElectraForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_electra_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = ElectraForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_electra_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = ElectraForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_electra_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = ElectraForPreTraining(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length)) def create_and_check_electra_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = ElectraForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_electra_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = ElectraForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_electra_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_choices = self.num_choices model = ElectraForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class ElectraModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ElectraModel, ElectraForPreTraining, ElectraForMaskedLM, ElectraForCausalLM, ElectraForMultipleChoice, ElectraForTokenClassification, ElectraForSequenceClassification, ElectraForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": ElectraModel, "fill-mask": ElectraForMaskedLM, "question-answering": ElectraForQuestionAnswering, "text-classification": ElectraForSequenceClassification, "text-generation": ElectraForCausalLM, "token-classification": ElectraForTokenClassification, "zero-shot": ElectraForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = ElectraModelTester(self) self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_electra_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_model(*config_and_inputs) def test_electra_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_electra_model_as_decoder(*config_and_inputs) def test_electra_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_electra_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs) def test_for_pre_training(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ElectraModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_electra_for_causal_lm(*config_and_inputs) @require_torch class ElectraModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = ElectraModel.from_pretrained("google/electra-small-discriminator") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 256)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.4471, 0.6821, -0.3265], [0.4627, 0.5255, -0.3668], [0.4532, 0.3313, -0.4344]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers/tests/models/electra/test_modeling_electra.py/0
{ "file_path": "transformers/tests/models/electra/test_modeling_electra.py", "repo_id": "transformers", "token_count": 8357 }
390
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import random import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import FlavaImageProcessor, FlavaProcessor from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) @require_vision class FlavaProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write("".join([x + "\n" for x in vocab_tokens])) image_processor_map = { "image_mean": FLAVA_IMAGE_MEAN, "image_std": FLAVA_IMAGE_STD, "do_normalize": True, "do_resize": True, "size": 224, "do_center_crop": True, "crop_size": 224, "input_size_patches": 14, "total_mask_patches": 75, "mask_group_max_patches": None, "mask_group_min_patches": 16, "mask_group_min_aspect_ratio": 0.3, "mask_group_max_aspect_ratio": None, "codebook_do_resize": True, "codebook_size": 112, "codebook_do_center_crop": True, "codebook_crop_size": 112, "codebook_do_map_pixels": True, "codebook_do_normalize": True, "codebook_image_mean": FLAVA_CODEBOOK_MEAN, "codebook_image_std": FLAVA_CODEBOOK_STD, } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return FlavaImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = FlavaProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = FlavaProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = FlavaProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = FlavaProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, BertTokenizer) self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, FlavaImageProcessor) self.assertIsInstance(processor_fast.image_processor, FlavaImageProcessor) def test_save_load_pretrained_additional_features(self): processor = FlavaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = FlavaProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, BertTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, FlavaImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) # With rest of the args random.seed(1234) input_feat_extract = image_processor( image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np" ) random.seed(1234) input_processor = processor( images=image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # add extra args inputs = processor(text=input_str, images=image_input, return_codebook_pixels=True, return_image_mask=True) self.assertListEqual( list(inputs.keys()), [ "input_ids", "token_type_ids", "attention_mask", "pixel_values", "codebook_pixel_values", "bool_masked_pos", ], ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
transformers/tests/models/flava/test_processor_flava.py/0
{ "file_path": "transformers/tests/models/flava/test_processor_flava.py", "repo_id": "transformers", "token_count": 4041 }
391
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np import transformers from transformers import GPT2Tokenizer, GPTNeoConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gpt_neo.modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel if is_torch_available(): import torch class FlaxGPTNeoModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, attention_types=[[["global", "local"], 1]], intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, window_size=7, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.attention_types = attention_types self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.window_size = window_size self.initializer_range = initializer_range self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = GPTNeoConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, max_position_embeddings=self.max_position_embeddings, use_cache=False, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, window_size=self.window_size, attention_types=self.attention_types, ) return (config, input_ids, input_mask) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxGPTNeoModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxGPTNeoModel, FlaxGPTNeoForCausalLM) if is_flax_available() else () all_generative_model_classes = (FlaxGPTNeoForCausalLM,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxGPTNeoModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) @slow def test_batch_generation(self): tokenizer = GPT2Tokenizer.from_pretrained("gpt2", pad_token="<|endoftext|>", padding_side="left") inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True) model = FlaxGPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M") model.do_sample = False model.config.pad_token_id = model.config.eos_token_id jit_generate = jax.jit(model.generate) output_sequences = jit_generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], pad_token_id=tokenizer.pad_token_id ).sequences output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True) expected_string = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(output_string, expected_string) # overwrite from common since `attention_mask` in combination # with `causal_mask` behaves slighly differently @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) batch_size, seq_length = pt_inputs["input_ids"].shape rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): pt_inputs["attention_mask"][batch_idx, :start_index] = 0 pt_inputs["attention_mask"][batch_idx, start_index:] = 1 prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() self.assertEqual( len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2) # overwrite from common since `attention_mask` in combination # with `causal_mask` behaves slighly differently @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) batch_size, seq_length = pt_inputs["input_ids"].shape rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): pt_inputs["attention_mask"][batch_idx, :start_index] = 0 pt_inputs["attention_mask"][batch_idx, start_index:] = 1 prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual( len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("EleutherAI/gpt-neo-125M") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
transformers/tests/models/gpt_neo/test_modeling_flax_gpt_neo.py/0
{ "file_path": "transformers/tests/models/gpt_neo/test_modeling_flax_gpt_neo.py", "repo_id": "transformers", "token_count": 6851 }
392
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class TFLayoutLMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t bbox = tf.convert_to_tensor(bbox) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMModel(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForMaskedLM(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForSequenceClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForTokenClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForQuestionAnswering(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFLayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFLayoutLMModel.from_pretrained(model_name) self.assertIsNotNone(model) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]]) # noqa: E231 attention_mask = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],]) # noqa: E231 bbox = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]]) # noqa: E231 token_type_ids = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]]) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class TFLayoutLMModelIntegrationTest(unittest.TestCase): @slow def test_forward_pass_no_head(self): model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the sequence output on [0, :3, :3] expected_slice = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) # test the pooled output on [1, :3] expected_slice = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) @slow def test_forward_pass_sequence_classification(self): # initialize model with randomly initialized sequence classification head model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar loss = outputs.loss expected_shape = (2,) self.assertEqual(loss.shape, expected_shape) # test the shape of the logits logits = outputs.logits expected_shape = (2, 2) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_token_classification(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # test the shape of the logits logits = outputs.logits expected_shape = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_question_answering(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the shape of the logits expected_shape = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape, expected_shape) self.assertEqual(outputs.end_logits.shape, expected_shape)
transformers/tests/models/layoutlm/test_modeling_tf_layoutlm.py/0
{ "file_path": "transformers/tests/models/layoutlm/test_modeling_tf_layoutlm.py", "repo_id": "transformers", "token_count": 7442 }
393
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import LongformerConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerSelfAttention, ) class LongformerModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, attention_window=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.attention_window = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window + 1` locations # (assuming no token with global attention, otherwise the last dimension of attentions # is x + self.attention_window + 1, where x is the number of tokens with global attention) self.key_length = self.attention_window + 2 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return LongformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, attention_window=self.attention_window, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def create_and_check_attention_mask_determinism( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerModel(config=config) model.to(torch_device) model.eval() attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"] output_without_mask = model(input_ids)["last_hidden_state"] self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4)) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_global_attention_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerModel(config=config) model.to(torch_device) model.eval() global_attention_mask = input_mask.clone() global_attention_mask[:, input_mask.shape[-1] // 2] = 0 global_attention_mask = global_attention_mask.to(torch_device) result = model( input_ids, attention_mask=input_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, ) result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask) result = model(input_ids, global_attention_mask=global_attention_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LongformerForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, global_attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LongformerForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LongformerForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = LongformerForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, global_attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs global_attention_mask = torch.zeros_like(input_ids) global_attention_mask[:, -1] = 1 inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "global_attention_mask": global_attention_mask, } return config, inputs_dict def prepare_config_and_inputs_for_question_answering(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs # Replace sep_token_id by some random id input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item() # Make sure there are exactly three sep_token_id input_ids[:, -3:] = config.sep_token_id input_mask = torch.ones_like(input_ids) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels @require_torch class LongformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): test_pruning = False # pruning is not supported test_torchscript = False all_model_classes = ( ( LongformerModel, LongformerForMaskedLM, LongformerForSequenceClassification, LongformerForQuestionAnswering, LongformerForTokenClassification, LongformerForMultipleChoice, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": LongformerModel, "fill-mask": LongformerForMaskedLM, "question-answering": LongformerForQuestionAnswering, "text-classification": LongformerForSequenceClassification, "token-classification": LongformerForTokenClassification, "zero-shot": LongformerForSequenceClassification, } if is_torch_available() else {} ) # Need to use `0.6` instead of `0.5` for `test_disk_offload` model_split_percents = [0.6, 0.7, 0.9] # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = LongformerModelTester(self) self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_attention_mask_determinism(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs) def test_model_global_attention_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # longformer cannot keep gradients in attentions or hidden states return @require_torch @require_sentencepiece @require_tokenizers class LongformerModelIntegrationTest(unittest.TestCase): def _get_hidden_states(self): return torch.tensor( [ [ [ 4.98332758e-01, 2.69175139e00, -7.08081422e-03, 1.04915401e00, -1.83476661e00, 7.67220476e-01, 2.98580543e-01, 2.84803992e-02, ], [ -7.58357372e-01, 4.20635998e-01, -4.04739919e-02, 1.59924145e-01, 2.05135748e00, -1.15997978e00, 5.37166397e-01, 2.62873606e-01, ], [ -1.69438001e00, 4.17574660e-01, -1.49196962e00, -1.76483717e00, -1.94566312e-01, -1.71183858e00, 7.72903565e-01, -1.11557056e00, ], [ 5.44028163e-01, 2.05466114e-01, -3.63045868e-01, 2.41865062e-01, 3.20348382e-01, -9.05611176e-01, -1.92690727e-01, -1.19917547e00, ], ] ], dtype=torch.float32, device=torch_device, ) def test_diagonalize(self): hidden_states = self._get_hidden_states() hidden_states = hidden_states.reshape((1, 8, 4)) # set seq length = 8, hidden dim = 4 chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2) window_overlap_size = chunked_hidden_states.shape[2] self.assertTrue(window_overlap_size == 4) padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states) self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1) # first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000] self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3)) self.assertTrue( torch.allclose( padded_hidden_states[0, 0, 0, 4:], torch.zeros((3,), device=torch_device, dtype=torch.float32), atol=1e-3, ) ) # last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629] self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3)) self.assertTrue( torch.allclose( padded_hidden_states[0, 0, -1, :3], torch.zeros((3,), device=torch_device, dtype=torch.float32), atol=1e-3, ) ) def test_pad_and_transpose_last_two_dims(self): hidden_states = self._get_hidden_states() self.assertEqual(hidden_states.shape, (1, 4, 8)) padding = (0, 0, 0, 1) padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding) self.assertEqual(padded_hidden_states.shape, (1, 8, 5)) expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32) self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6)) self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6)) def test_chunk(self): hidden_states = self._get_hidden_states() batch_size = 1 seq_length = 8 hidden_size = 4 hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size)) chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2) # expected slices across chunk and seq length dim expected_slice_along_seq_length = torch.tensor( [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32 ) expected_slice_along_chunk = torch.tensor( [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32 ) self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3)) self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3)) self.assertEqual(chunked_hidden_states.shape, (1, 3, 4, 4)) def test_mask_invalid_locations(self): hidden_states = self._get_hidden_states() batch_size = 1 seq_length = 8 hidden_size = 4 hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size)) chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2) hid_states_1 = chunked_hidden_states.clone() LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1) self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8) hid_states_2 = chunked_hidden_states.clone() LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2) self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24) hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3] LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2) self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24) hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :] LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2) self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12) def test_layer_local_attn(self): model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") model.eval() layer = model.encoder.layer[0].attention.self.to(torch_device) hidden_states = self._get_hidden_states() batch_size, seq_length, hidden_size = hidden_states.size() attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device) attention_mask[:, -2:] = -10000 is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() output_hidden_states = layer( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, )[0] self.assertEqual(output_hidden_states.shape, (1, 4, 8)) self.assertTrue( torch.allclose( output_hidden_states[0, 1], torch.tensor( [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) def test_layer_global_attn(self): model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") model.eval() layer = model.encoder.layer[0].attention.self.to(torch_device) hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0) batch_size, seq_length, hidden_size = hidden_states.size() attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device) # create attn mask attention_mask[0, -2:] = 10000.0 attention_mask[0, -1:] = -10000.0 attention_mask[1, 1:] = 10000.0 is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() output_hidden_states = layer( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, )[0] self.assertEqual(output_hidden_states.shape, (2, 4, 8)) self.assertTrue( torch.allclose( output_hidden_states[0, 2], torch.tensor( [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) self.assertTrue( torch.allclose( output_hidden_states[1, -2], torch.tensor( [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) def test_layer_attn_probs(self): model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny") model.eval() layer = model.encoder.layer[0].attention.self.to(torch_device) hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0) batch_size, seq_length, hidden_size = hidden_states.size() attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device) # create attn mask attention_mask[0, -2:] = 10000.0 attention_mask[0, -1:] = -10000.0 attention_mask[1, 1:] = 10000.0 is_index_masked = attention_mask < 0 is_index_global_attn = attention_mask > 0 is_global_attn = is_index_global_attn.flatten().any().item() output_hidden_states, local_attentions, global_attentions = layer( hidden_states, attention_mask=attention_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, output_attentions=True, ) self.assertEqual(local_attentions.shape, (2, 4, 2, 8)) self.assertEqual(global_attentions.shape, (2, 2, 3, 4)) # All tokens with global attention have weight 0 in local attentions. self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0)) self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0)) # The weight of all tokens with local attention must sum to 1. self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6)) self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6)) self.assertTrue( torch.allclose( local_attentions[0, 0, 0, :], torch.tensor( [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) self.assertTrue( torch.allclose( local_attentions[1, 0, 0, :], torch.tensor( [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) # All the global attention weights must sum to 1. self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6)) self.assertTrue( torch.allclose( global_attentions[0, 0, 1, :], torch.tensor( [0.2500, 0.2500, 0.2500, 0.2500], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) self.assertTrue( torch.allclose( global_attentions[1, 0, 0, :], torch.tensor( [0.2497, 0.2500, 0.2499, 0.2504], dtype=torch.float32, device=torch_device, ), atol=1e-3, ) ) @slow def test_inference_no_head(self): model = LongformerModel.from_pretrained("allenai/longformer-base-4096") model.to(torch_device) # 'Hello world!' input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device) attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) output = model(input_ids, attention_mask=attention_mask)[0] output_without_mask = model(input_ids)[0] expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device) self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4)) self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4)) @slow def test_inference_no_head_long(self): model = LongformerModel.from_pretrained("allenai/longformer-base-4096") model.to(torch_device) # 'Hello world! ' repeated 1000 times input_ids = torch.tensor( [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device ) # long input attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device) global_attention_mask[:, [1, 4, 21]] = 1 # Set global attention on a few random positions output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0] expected_output_sum = torch.tensor(74585.8594, device=torch_device) expected_output_mean = torch.tensor(0.0243, device=torch_device) self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) @slow def test_inference_masked_lm_long(self): model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096") model.to(torch_device) # 'Hello world! ' repeated 1000 times input_ids = torch.tensor( [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device ) # long input input_ids = input_ids.to(torch_device) loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple() expected_loss = torch.tensor(0.0074, device=torch_device) expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device) expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device) self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4)) self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4)) self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))
transformers/tests/models/longformer/test_modeling_longformer.py/0
{ "file_path": "transformers/tests/models/longformer/test_modeling_longformer.py", "repo_id": "transformers", "token_count": 15408 }
394
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MaskFormer Swin model. """ import collections import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class MaskFormerSwinModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=2, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, type_sequence_label_size=10, encoder_stride=8, out_features=["stage1", "stage2", "stage3"], out_indices=[1, 2, 3], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.type_sequence_label_size = type_sequence_label_size self.encoder_stride = encoder_stride self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = MaskFormerSwinModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim)) def create_and_check_backbone(self, config, pixel_values, labels): model = MaskFormerSwinBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, [16, 32, 64]) # verify ValueError with self.parent.assertRaises(ValueError): config.out_features = ["stem"] model = MaskFormerSwinBackbone(config=config) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class MaskFormerSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} fx_compatible = False test_torchscript = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = MaskFormerSwinModelTester(self) self.config_tester = ConfigTester(self, config_class=MaskFormerSwinConfig, embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def test_multi_gpu_data_parallel_forward(self): pass def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) @unittest.skip("Swin does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("Swin does not support feedforward chunking") def test_feed_forward_chunking(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def test_attention_outputs(self): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def test_save_load_fast_init_to_base(self): pass def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Swin has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) def test_hidden_states_output_with_padding(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.patch_size = 3 image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def test_model_from_pretrained(self): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def test_initialization(self): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def test_gradient_checkpointing_backward_compatibility(self): pass def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) @require_torch class MaskFormerSwinBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (MaskFormerSwinBackbone,) if is_torch_available() else () config_class = MaskFormerSwinConfig def setUp(self): self.model_tester = MaskFormerSwinModelTester(self) # Overriding as returned hidden states are tuples of tensors instead of a single tensor def test_backbone_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() batch_size = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: backbone = backbone_class(config) backbone.to(torch_device) backbone.eval() outputs = backbone(**inputs_dict) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, tuple) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True outputs = backbone(**inputs_dict, output_hidden_states=True) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) h_batch_size, _, h_n_channels = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: outputs = backbone(**inputs_dict, output_attentions=True) self.assertIsNotNone(outputs.attentions)
transformers/tests/models/maskformer/test_modeling_maskformer_swin.py/0
{ "file_path": "transformers/tests/models/maskformer/test_modeling_maskformer_swin.py", "repo_id": "transformers", "token_count": 8052 }
395
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the MgpstrProcessor. """ import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class MgpstrProcessorTest(unittest.TestCase): image_processing_class = ViTImageProcessor if is_vision_available() else None @property def image_processor_dict(self): return self.prepare_image_processor_dict() def setUp(self): self.image_size = (3, 32, 128) self.tmpdirname = tempfile.mkdtemp() vocab = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") image_processor_map = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return MgpstrTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images.""" image_input = np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) image_input = Image.fromarray(np.moveaxis(image_input, 0, -1)) return image_input def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() image_processor = self.get_image_processor() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) processor.save_pretrained(self.tmpdirname) processor = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=False) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer, MgpstrTokenizer) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_save_load_pretrained_additional_features(self): tokenizer = self.get_tokenizer() image_processor = self.get_image_processor() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer, MgpstrTokenizer) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "test" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "test" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["pixel_values", "labels"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.char_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) decode_strs = [seq.replace(" ", "") for seq in decoded_tok] self.assertListEqual(decode_strs, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = None image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names) def test_processor_batch_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) char_input = torch.randn(1, 27, 38) bpe_input = torch.randn(1, 27, 50257) wp_input = torch.randn(1, 27, 30522) results = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()), ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"])
transformers/tests/models/mgp_str/test_processor_mgp_str.py/0
{ "file_path": "transformers/tests/models/mgp_str/test_processor_mgp_str.py", "repo_id": "transformers", "token_count": 3186 }
396
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MRA model. """ import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class MraModelTester: def __init__( self, parent, batch_size=2, seq_length=8, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=36, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MraModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = MraModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MraForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = MraForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MraForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = MraForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = MraForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class MraModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) test_pruning = False test_headmasking = False test_torchscript = False has_attentions = False all_generative_model_classes = () pipeline_model_mapping = ( { "feature-extraction": MraModel, "fill-mask": MraForMaskedLM, "question-answering": MraForQuestionAnswering, "text-classification": MraForSequenceClassification, "token-classification": MraForTokenClassification, "zero-shot": MraForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = MraModelTester(self) self.config_tester = ConfigTester(self, config_class=MraConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = MraModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="MRA does not output attentions") def test_attention_outputs(self): return @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class MraModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = MraModel.from_pretrained("uw-madison/mra-base-512-4") input_ids = torch.arange(256).unsqueeze(0) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 256, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_masked_lm(self): model = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4") input_ids = torch.arange(256).unsqueeze(0) with torch.no_grad(): output = model(input_ids)[0] vocab_size = 50265 expected_shape = torch.Size((1, 256, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_masked_lm_long_input(self): model = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3") input_ids = torch.arange(4096).unsqueeze(0) with torch.no_grad(): output = model(input_ids)[0] vocab_size = 50265 expected_shape = torch.Size((1, 4096, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/mra/test_modeling_mra.py/0
{ "file_path": "transformers/tests/models/mra/test_modeling_mra.py", "repo_id": "transformers", "token_count": 7505 }
397
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right EN_CODE = 256047 RO_CODE = 256145 @require_sentencepiece @require_tokenizers class NllbTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = NllbTokenizer rust_tokenizer_class = NllbTokenizerFast test_rust_tokenizer = True test_sentencepiece = True from_pretrained_kwargs = {} def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_full_tokenizer(self): tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) # overwrite from test_tokenization_common to speed up test def test_save_pretrained(self): self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=True tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=False tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) @require_torch def test_prepare_seq2seq_batch(self): if not self.test_seq2seq: return tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. src_text = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: batch = tokenizer.prepare_seq2seq_batch( src_texts=src_text, tgt_texts=tgt_text, max_length=3, max_target_length=10, return_tensors="pt", src_lang="eng_Latn", tgt_lang="ron_Latn", ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # max_target_length will default to max_length if not specified batch = tokenizer.prepare_seq2seq_batch( src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 3) batch_encoder_only = tokenizer.prepare_seq2seq_batch( src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) self.assertNotIn("decoder_input_ids", batch_encoder_only) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.") def test_save_slow_from_fast_and_reload_fast(self): pass def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) r_output = tokenizer_r.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, # , from_slow=True <- unfortunately too slow to convert ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a <special> token") cr_output = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @unittest.skip("Need to fix this after #26538") def test_training_new_tokenizer(self): pass @require_torch @require_sentencepiece @require_tokenizers class NllbDistilledIntegrationTest(unittest.TestCase): checkpoint_name = "facebook/nllb-200-distilled-600M" src_text = [ " UN Chief Says There Is No Military Solution in Syria", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] expected_src_tokens = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def setUpClass(cls): cls.tokenizer: NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn" ) cls.pad_token_id = 1 return cls def test_language_codes(self): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"], 256001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"], 256002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"], 256057) def test_enro_tokenizer_batch_encode_plus(self): ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, ids) def test_enro_tokenizer_decode_ignores_language_codes(self): self.assertIn(RO_CODE, self.tokenizer.all_special_ids) generated_ids = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: skip result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_romanian) self.assertNotIn(self.tokenizer.eos_token, result) def test_enro_tokenizer_truncation(self): src_text = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], str) desired_max_length = 10 ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] self.assertEqual(ids[-1], 2) self.assertEqual(ids[0], EN_CODE) self.assertEqual(len(ids), desired_max_length) def test_mask_token(self): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [256203, 3]) def test_special_tokens_unaffacted_by_save_load(self): tmpdirname = tempfile.mkdtemp() original_special_tokens = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(tmpdirname) new_tok = NllbTokenizer.from_pretrained(tmpdirname) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens) @require_torch def test_enro_tokenizer_prepare_batch(self): batch = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), return_tensors="pt", ) batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 15), batch.input_ids.shape) self.assertEqual((2, 15), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, result) self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) def test_seq2seq_max_length(self): batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt") targets = self.tokenizer( text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt" ) labels = targets["input_ids"] batch["decoder_input_ids"] = shift_tokens_right( labels, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def test_tokenizer_translation(self): inputs = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(inputs), { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, }, ) @require_torch def test_legacy_behaviour(self): self.tokenizer.legacy_behaviour = True inputs = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids, [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) self.tokenizer.legacy_behaviour = False inputs = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids, [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
transformers/tests/models/nllb/test_tokenization_nllb.py/0
{ "file_path": "transformers/tests/models/nllb/test_tokenization_nllb.py", "repo_id": "transformers", "token_count": 9104 }
398
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import Pix2StructImageProcessor class Pix2StructImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, size=None, do_normalize=True, do_convert_rgb=True, patch_size=None, ): size = size if size is not None else {"height": 20, "width": 20} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.size = size self.do_normalize = do_normalize self.do_convert_rgb = do_convert_rgb self.max_patches = [512, 1024, 2048, 4096] self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16} def prepare_image_processor_dict(self): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def prepare_dummy_image(self): img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") return raw_image def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class Pix2StructImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Pix2StructImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = Pix2StructImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processor = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_normalize")) self.assertTrue(hasattr(image_processor, "do_convert_rgb")) def test_expected_patches(self): dummy_image = self.image_processor_tester.prepare_dummy_image() image_processor = self.image_processing_class(**self.image_processor_dict) max_patch = 2048 inputs = image_processor(dummy_image, return_tensors="pt", max_patches=max_patch) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606), atol=1e-3, rtol=1e-3)) def test_call_pil(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def test_call_vqa(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 image_processor.is_vqa = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(ValueError): encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches dummy_text = "Hello" encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch, header_text=dummy_text ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch, header_text=dummy_text ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def test_call_numpy(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def test_call_numpy_4_channels(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors self.image_processor_tester.num_channels = 4 image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch, input_data_format="channels_first" ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch, input_data_format="channels_first" ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) self.image_processor_tester.num_channels = 3 def test_call_pytorch(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @require_torch @require_vision class Pix2StructImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Pix2StructImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = Pix2StructImageProcessingTester(self, num_channels=4) self.expected_encoded_image_num_channels = 3 @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processor = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_normalize")) self.assertTrue(hasattr(image_processor, "do_convert_rgb")) def test_call_pil(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_numpy(self): return super().test_call_numpy() @unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_pytorch(self): return super().test_call_torch() @unittest.skip("Pix2StructImageProcessor does treat numpy and PIL 4 channel images consistently") # FIXME Amy def test_call_numpy_4_channels(self): return super().test_call_torch()
transformers/tests/models/pix2struct/test_image_processing_pix2struct.py/0
{ "file_path": "transformers/tests/models/pix2struct/test_image_processing_pix2struct.py", "repo_id": "transformers", "token_count": 6116 }
399
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class ProphetNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = ProphetNetTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) @require_torch def test_prepare_batch(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased") src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) result = list(batch.input_ids.numpy()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_2 + [102]
transformers/tests/models/prophetnet/test_tokenization_prophetnet.py/0
{ "file_path": "transformers/tests/models/prophetnet/test_tokenization_prophetnet.py", "repo_id": "transformers", "token_count": 3445 }
400
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class RealmRetrieverTest(TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() self.num_block_records = 5 # Realm tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] realm_tokenizer_path = os.path.join(self.tmpdirname, "realm_tokenizer") os.makedirs(realm_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(realm_tokenizer_path, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) realm_block_records_path = os.path.join(self.tmpdirname, "realm_block_records") os.makedirs(realm_block_records_path, exist_ok=True) def get_tokenizer(self) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) def get_config(self): config = RealmConfig(num_block_records=self.num_block_records) return config def get_dummy_dataset(self): dataset = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def get_dummy_block_records(self): block_records = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ], dtype=object, ) return block_records def get_dummy_retriever(self): retriever = RealmRetriever( block_records=self.get_dummy_block_records(), tokenizer=self.get_tokenizer(), ) return retriever def test_retrieve(self): config = self.get_config() retriever = self.get_dummy_retriever() tokenizer = retriever.tokenizer retrieved_block_ids = np.array([0, 3], dtype="long") question_input_ids = tokenizer(["Test question"]).input_ids answer_ids = tokenizer( ["the fourth"], add_special_tokens=False, return_token_type_ids=False, return_attention_mask=False, ).input_ids max_length = config.reader_seq_len has_answers, start_pos, end_pos, concat_inputs = retriever( retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np" ) self.assertEqual(len(has_answers), 2) self.assertEqual(len(start_pos), 2) self.assertEqual(len(end_pos), 2) self.assertEqual(concat_inputs.input_ids.shape, (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape, (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]), ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"], ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]), ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"], ) def test_block_has_answer(self): config = self.get_config() retriever = self.get_dummy_retriever() tokenizer = retriever.tokenizer retrieved_block_ids = np.array([0, 3, 5], dtype="long") question_input_ids = tokenizer(["Test question"]).input_ids answer_ids = tokenizer( ["the fourth", "longer longer"], add_special_tokens=False, return_token_type_ids=False, return_attention_mask=False, ).input_ids max_length = config.reader_seq_len has_answers, start_pos, end_pos, _ = retriever( retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np" ) self.assertEqual([False, True, True], has_answers) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], start_pos) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], end_pos) def test_save_load_pretrained(self): retriever = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records")) # Test local path retriever = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records")) self.assertEqual(retriever.block_records[0], b"This is the first record") # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download: mock_hf_hub_download.return_value = os.path.join( os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME ) retriever = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa") self.assertEqual(retriever.block_records[0], b"This is the first record")
transformers/tests/models/realm/test_retrieval_realm.py/0
{ "file_path": "transformers/tests/models/realm/test_retrieval_realm.py", "repo_id": "transformers", "token_count": 3280 }
401
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the Tensorflow ResNet model. """ from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class TFResNetModelTester: def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return ResNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, ) def create_and_check_model(self, config, pixel_values, labels): model = TFResNetModel(config=config) result = model(pixel_values) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = TFResNetForImageClassification(config) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFResNetModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ResNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False test_onnx = False has_attentions = False def setUp(self): self.model_tester = TFResNetModelTester(self) self.config_tester = ConfigTester(self, config_class=ResNetConfig, has_text_modality=False) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="ResNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ResNet does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() layers_type = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: config.layer_type = layer_type inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFResNetModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFResNetModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant([-11.1069, -9.7877, -8.3777]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4))
transformers/tests/models/resnet/test_modeling_tf_resnet.py/0
{ "file_path": "transformers/tests/models/resnet/test_modeling_tf_resnet.py", "repo_id": "transformers", "token_count": 3896 }
402
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class TFRoFormerModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFRoFormerModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_lm_head( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TFRoFormerForCausalLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } prediction_scores = model(inputs)["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFRoFormerForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFRoFormerForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFRoFormerForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFRoFormerForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFRoFormerForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFRoFormerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # TODO: add `prepare_inputs_for_generation` for `TFRoFormerForCausalLM` def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def setUp(self): self.model_tester = TFRoFormerModelTester(self) self.config_tester = ConfigTester(self, config_class=RoFormerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base") self.assertIsNotNone(model) @require_tf class TFRoFormerModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] # TODO Replace vocab size vocab_size = 50000 expected_shape = [1, 6, vocab_size] self.assertEqual(output.shape, expected_shape) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. expected_slice = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) @require_tf class TFRoFormerSinusoidalPositionalEmbeddingTest(unittest.TestCase): tolerance = 1e-4 def test_basic(self): input_ids = tf.constant([[4, 10]]) emb1 = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6) emb = emb1(input_ids.shape) desired_weights = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(emb, desired_weights, atol=self.tolerance) def test_positional_emb_weights_against_roformer(self): desired_weights = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) emb1 = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512) emb1([2, 16, 512]) weights = emb1.weight[:3, :5] tf.debugging.assert_near(weights, desired_weights, atol=self.tolerance) @require_tf class TFRoFormerSelfAttentionRotaryPositionEmbeddingTest(unittest.TestCase): tolerance = 1e-4 def test_apply_rotary_position_embeddings(self): # 2,12,16,64 query_layer = tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.float32), shape=(2, 12, 16, 64)) / 100 key_layer = -tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.float32), shape=(2, 12, 16, 64)) / 100 embed_positions = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64) sinusoidal_pos = embed_positions([2, 16, 768])[None, None, :, :] query_layer, key_layer = TFRoFormerSelfAttention.apply_rotary_position_embeddings( sinusoidal_pos, query_layer, key_layer ) desired_query_layer = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) desired_key_layer = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8], desired_query_layer, atol=self.tolerance) tf.debugging.assert_near(key_layer[0, 0, :6, :8], desired_key_layer, atol=self.tolerance)
transformers/tests/models/roformer/test_modeling_tf_roformer.py/0
{ "file_path": "transformers/tests/models/roformer/test_modeling_tf_roformer.py", "repo_id": "transformers", "token_count": 7807 }
403
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SegformerImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_reduce_labels=False, ): size = size if size is not None else {"height": 30, "width": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_reduce_labels = do_reduce_labels def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) def prepare_semantic_single_inputs(): dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") image = Image.open(dataset[0]["file"]) map = Image.open(dataset[1]["file"]) return image, map def prepare_semantic_batch_inputs(): dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") image1 = Image.open(dataset[0]["file"]) map1 = Image.open(dataset[1]["file"]) image2 = Image.open(dataset[2]["file"]) map2 = Image.open(dataset[3]["file"]) return [image1, image2], [map1, map2] @require_torch @require_vision class SegformerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = SegformerImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = SegformerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_reduce_labels")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 30, "width": 30}) self.assertEqual(image_processor.do_reduce_labels, False) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, reduce_labels=True) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.do_reduce_labels, True) def test_call_segmentation_maps(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) maps = [] for image in image_inputs: self.assertIsInstance(image, torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched encoding = image_processing(image_inputs, maps, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test not batched input (PIL images) image, segmentation_map = prepare_semantic_single_inputs() encoding = image_processing(image, segmentation_map, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched input (PIL images) images, segmentation_maps = prepare_semantic_batch_inputs() encoding = image_processing(images, segmentation_maps, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 2, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) def test_reduce_labels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 image, map = prepare_semantic_single_inputs() encoding = image_processing(image, map, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 150) image_processing.do_reduce_labels = True encoding = image_processing(image, map, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255)
transformers/tests/models/segformer/test_image_processing_segformer.py/0
{ "file_path": "transformers/tests/models/segformer/test_image_processing_segformer.py", "repo_id": "transformers", "token_count": 4300 }
404
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Speech2Text model. """ import copy import inspect import os import tempfile import unittest from transformers import Speech2TextConfig from transformers.testing_utils import ( is_torch_available, require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, require_torchaudio, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import Speech2TextForConditionalGeneration, Speech2TextModel, Speech2TextProcessor from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextDecoder, Speech2TextEncoder def prepare_speech_to_text_inputs_dict( config, input_features, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_features.ne(0) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { # "input_ids": input_features, "input_features": input_features, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_torch class Speech2TextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=32, input_feat_per_channel=24, input_channels=1, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, max_source_positions=20, max_target_positions=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = conv_kernel_sizes self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_features = floats_tensor( [self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size ) attention_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.long, device=torch_device) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2) config = self.get_config() inputs_dict = prepare_speech_to_text_inputs_dict( config, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) return config, inputs_dict def get_config(self): return Speech2TextConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, num_conv_layers=self.num_conv_layers, conv_kernel_sizes=self.conv_kernel_sizes, conv_channels=self.conv_channels, input_feat_per_channel=self.input_feat_per_channel, input_channels=self.input_channels, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, max_source_positions=self.max_source_positions, max_target_positions=self.max_target_positions, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_subsampled_output_lengths(self, input_lengths): """ Computes the output length of the convolutional layers """ for i in range(self.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def create_and_check_model_forward(self, config, inputs_dict): model = Speech2TextModel(config=config).to(torch_device).eval() input_features = inputs_dict["input_features"] decoder_input_ids = inputs_dict["decoder_input_ids"] # first forward pass last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state self.parent.assertTrue(last_hidden_state.shape, (13, 7, 16)) def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = Speech2TextModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["decoder_input_ids"] attention_mask = inputs_dict["decoder_attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = Speech2TextModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = Speech2TextEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder( inputs_dict["input_features"], attention_mask=inputs_dict["attention_mask"] )[0] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = Speech2TextDecoder.from_pretrained(tmpdirname).to(torch_device) encoder_attention_mask = encoder._get_feature_vector_attention_mask( encoder_last_hidden_state.shape[1], inputs_dict["attention_mask"] ) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=encoder_attention_mask, )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Speech2TextModel, Speech2TextForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (Speech2TextForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( {"automatic-speech-recognition": Speech2TextForConditionalGeneration, "feature-extraction": Speech2TextModel} if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False input_name = "input_features" def setUp(self): self.model_tester = Speech2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Speech2TextConfig) self.maxDiff = 3000 def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # not implemented currently def test_inputs_embeds(self): pass # training is not supported yet def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_features = input_dict["input_features"] attention_mask = input_dict["attention_mask"] model = Speech2TextForConditionalGeneration(config).eval().to(torch_device) input_features = input_features.half() model.half() model.generate(input_features, attention_mask=attention_mask) model.generate(input_features, num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length) subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # make sure that decoder_input_ids are resized if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_generate_without_input_ids(self): pass @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = input_ids[:, :, 0] input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + model._get_decoder_start_token_id() attention_mask = None return encoder_outputs, input_ids, attention_mask def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1): batch_size, seq_length = input_ids.shape[:2] subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) num_sequences_in_output = batch_size * num_return_sequences gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # scores self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config) # Attentions # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, batch_size, config, subsampled_seq_length ) # decoder self._check_attentions_for_generate( num_sequences_in_output, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, batch_size, config, subsampled_seq_length ) # decoder self._check_hidden_states_for_generate( num_sequences_in_output, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward input_features = inputs["input_features"] attention_mask = inputs["attention_mask"] decoder_input_ids = inputs["decoder_input_ids"] decoder_attention_mask = inputs["decoder_attention_mask"] traced_model = torch.jit.trace( model, (input_features, attention_mask, decoder_input_ids, decoder_attention_mask) ) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): # Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) @unittest.skip("Test failing, @RocketNight is looking into it") def test_tf_from_pt_safetensors(self): pass @require_torch @require_torchaudio @require_sentencepiece @require_tokenizers @slow class Speech2TextModelIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(1) input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device) generated_ids = model.generate(input_features) generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" ] self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) def test_generation_librispeech_batched(self): model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="pt", padding=True) input_features = inputs.input_features.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) generated_ids = model.generate(input_features, attention_mask=attention_mask) generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister cultar's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and roast beef looming before us" " similes drawn from eating and its results occur most readily to the mind", "he has grave doubts whether sir frederick leyton's work is really greek after all and can discover in it" " but little of rocky ithaca", ] self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
transformers/tests/models/speech_to_text/test_modeling_speech_to_text.py/0
{ "file_path": "transformers/tests/models/speech_to_text/test_modeling_speech_to_text.py", "repo_id": "transformers", "token_count": 15739 }
405
# coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import SqueezeBertTokenizer, SqueezeBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class SqueezeBertTokenizationTest(BertTokenizationTest): tokenizer_class = SqueezeBertTokenizer rust_tokenizer_class = SqueezeBertTokenizerFast test_rust_tokenizer = True def get_rust_tokenizer(self, **kwargs): return SqueezeBertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) @slow def test_sequence_builders(self): tokenizer = SqueezeBertTokenizer.from_pretrained("squeezebert/squeezebert-mnli-headless") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [ tokenizer.sep_token_id ]
transformers/tests/models/squeezebert/test_tokenization_squeezebert.py/0
{ "file_path": "transformers/tests/models/squeezebert/test_tokenization_squeezebert.py", "repo_id": "transformers", "token_count": 644 }
406
# coding=utf-8 # Copyright 2018 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import T5Config, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ByT5Tokenizer, T5Tokenizer, TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model class TFT5ModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_labels = True self.vocab_size = 99 self.n_positions = 14 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.d_ff = 37 self.relative_attention_num_buckets = 8 self.dropout_rate = 0.1 self.initializer_factor = 0.002 self.eos_token_id = 1 self.pad_token_id = 0 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_labels = None if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = T5Config( vocab_size=self.vocab_size, n_positions=self.n_positions, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, ) return (config, input_ids, input_mask, token_labels) def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels): model = TFT5Model(config=config) inputs = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } result = model(inputs) result = model(input_ids, decoder_attention_mask=input_mask, decoder_input_ids=input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertListEqual(list(encoder_output.shape), [self.batch_size, self.seq_length, self.hidden_size]) self.parent.assertListEqual(list(decoder_output.shape), [self.batch_size, self.seq_length, self.hidden_size]) # There should be `num_layers` key value embeddings stored in decoder_past[1] self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels): model = TFT5ForConditionalGeneration(config=config) inputs_dict = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } result = model(inputs_dict) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_t5_decoder_model_past(self, config, input_ids, decoder_input_ids, attention_mask): model = TFT5Model(config=config).get_decoder() input_ids = input_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) output_from_no_past = model(next_input_ids)[0] output_from_past = model(next_tokens, past_key_values=outputs.past_key_values)[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_t5_decoder_model_attention_mask_past( self, config, input_ids, decoder_input_ids, attention_mask ): model = TFT5Model(config=config).get_decoder() # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat( [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0] output_from_past = model(next_tokens, past_key_values=outputs.past_key_values, attention_mask=attn_mask)[0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).numpy().item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_t5_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, attention_mask ): model = TFT5Model(config=config).get_decoder() input_ids = input_ids[:1, :] attention_mask = attention_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=outputs.past_key_values )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, token_labels) = config_and_inputs inputs_dict = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } return config, inputs_dict @require_tf class TFT5ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): is_encoder_decoder = True all_model_classes = (TFT5Model, TFT5ForConditionalGeneration) if is_tf_available() else () all_generative_model_classes = (TFT5ForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFT5ForConditionalGeneration, "feature-extraction": TFT5Model, "summarization": TFT5ForConditionalGeneration, "text2text-generation": TFT5ForConditionalGeneration, "translation": TFT5ForConditionalGeneration, } if is_tf_available() else {} ) test_onnx = False def setUp(self): self.model_tester = TFT5ModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_t5_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_model(*config_and_inputs) def test_t5_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_t5_model(config, *config_and_inputs[1:]) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs) def test_t5_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_decoder_model_past(*config_and_inputs) def test_t5_decoder_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_t5_decoder_model_attention_mask_past(*config_and_inputs) def test_t5_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # `create_and_check_t5_decoder_model_past_large_inputs` has special inputs: # (config, input_ids, decoder_input_ids, attention_mask) # and we have to prepare it correctly here. config, input_ids, input_mask, token_labels = config_and_inputs config_and_inputs = (config, input_ids, None, input_mask) self.model_tester.create_and_check_t5_decoder_model_past_large_inputs(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFT5Model.from_pretrained("t5-small") self.assertIsNotNone(model) def test_generate_with_headmasking(self): # TODO: Fix head-masking according to PyTorch T5 model pass # This test is run in `TFT5EncoderOnlyModelTest`, where the main layer has the same inputs as the model @unittest.skip(reason="The inputs of the Main Layer are different.") def test_keras_save_load(self): pass @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass class TFT5EncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests use_attention_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, is_training=False, dropout_rate=0.1, initializer_factor=0.002, is_encoder_decoder=False, eos_token_id=1, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.is_encoder_decoder = is_encoder_decoder self.scope = None self.is_training = is_training def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def create_and_check_model( self, config, input_ids, attention_mask, ): model = TFT5EncoderModel(config=config) result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class TFT5EncoderOnlyModelTest(TFModelTesterMixin, unittest.TestCase): is_encoder_decoder = False all_model_classes = (TFT5EncoderModel,) if is_tf_available() else () test_onnx = False def setUp(self): self.model_tester = TFT5EncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # is not able to be part of a pipeline def test_train_pipeline_custom_model(self): pass @require_tf @require_sentencepiece @require_tokenizers class TFT5GenerationIntegrationTests(unittest.TestCase): @slow def test_greedy_xla_generate_simple(self): model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") # two examples with different lengths to confirm that attention masks are operational in XLA sentences = [ "Translate English to German: Today is a beautiful day.", "Translate English to German: I have four cats, three dogs, two birds, and a horse.", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids xla_generate = tf.function(model.generate, jit_compile=True) output_ids = model.generate(input_ids) output_ids_xla = xla_generate(input_ids) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True) expected_output_string = [ "Heute ist ein schöner Tag.", "Ich habe vier Katzen, drei Hunde, zwei Vögel und ein Pferd.", ] self.assertListEqual(expected_output_string, output_strings) self.assertListEqual(expected_output_string, output_strings_xla) @slow def test_greedy_generate(self): model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") sentences = ["Yesterday, my name was", "Today is a beautiful day and"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids], "no_repeat_ngram_size": 3, "do_sample": False, "repetition_penalty": 2.2, } output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = ["Yesterday, my name was", "Heute ist ein schöne Tag und"] self.assertListEqual(expected_output_string, output_strings) @slow def test_sample_xla_generate_simple(self): # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible # and that we can seed both versions. # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") sentence = "Translate English to German: I have two bananas" input_ids = tokenizer(sentence, return_tensors="tf", padding=True).input_ids expected_output_string = ["Ich habe zwei Bananen"] expected_output_string_xla = ["Ich habe 2 Bananen"] # seed set -> deterministic sampling sequence -> deterministic generation output_ids = model.generate(input_ids, do_sample=True, seed=[42, 0]) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) self.assertListEqual(expected_output_string, output_strings) xla_generate = tf.function(model.generate, jit_compile=True) # seed set -> deterministic sampling sequence -> deterministic generation output_ids_xla = xla_generate(input_ids, do_sample=True, seed=[42, 0]) output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True) self.assertListEqual(expected_output_string_xla, output_strings_xla) @slow def test_sample_generate(self): model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") sentences = ["I really love my", "Translate English to German: the transformers are truly amazing"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "do_sample": True, "bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids], "no_repeat_ngram_size": 3, "repetition_penalty": 2.2, "temperature": 0.8, "top_k": 500, "top_p": 0.9, "seed": [20, 0], # seed set -> deterministic sampling sequence -> deterministic generation } # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = ["- I really love my way of this.", "die Transformatoren sind wirklich erstaunlich"] self.assertListEqual(expected_output_string, output_strings) # TODO (ydshieh): undo skip once a fix is done on TF side. @unittest.skip("Skip for now as TF 2.13 breaks it on GPU") @slow def test_beam_search_xla_generate_simple(self): model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") # tests XLA with task specific arguments task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_fr", {}) model.config.update(translation_config) # two examples with different lengths to confirm that attention masks are operational in XLA sentences = [ model.config.prefix + "Today is a beautiful day.", model.config.prefix + "I have four cats, three dogs, two birds, and a horse.", ] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids xla_generate = tf.function(model.generate, jit_compile=True) output_ids = model.generate(input_ids, num_beams=2) output_ids_xla = xla_generate(input_ids, num_beams=2) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) output_strings_xla = tokenizer.batch_decode(output_ids_xla, skip_special_tokens=True) expected_output_string = [ "Aujourd'hui est une belle journée.", "J'ai quatre chats, trois chiens, deux oiseaux et un cheval.", ] self.assertListEqual(expected_output_string, output_strings) self.assertListEqual(expected_output_string, output_strings_xla) @slow def test_beam_search_generate(self): model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") sentences = ["I really love my", "Translate English to German: the transformers are truly amazing"] input_ids = tokenizer(sentences, return_tensors="tf", padding=True).input_ids generation_kwargs = { "bad_words_ids": [tokenizer("my").input_ids, tokenizer("ein schöner").input_ids], "no_repeat_ngram_size": 3, "do_sample": False, "repetition_penalty": 2.2, "num_beams": 4, } output_ids = model.generate(input_ids, **generation_kwargs) output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) expected_output_string = ["Ich liebe es so sehr!", "die Transformatoren sind wirklich erstaunlich"] self.assertListEqual(expected_output_string, output_strings) @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass @require_tf @require_sentencepiece @require_tokenizers class TFT5ModelIntegrationTests(unittest.TestCase): @cached_property def model(self): return TFT5ForConditionalGeneration.from_pretrained("t5-base") @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -4.771147 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_v1_1_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_v1.1_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1.1_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFT5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small") tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -14.757326 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_byt5_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.9.1 >>> path_to_byt5_small_checkpoint = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None) >>> vocab = t5.data.ByteVocabulary() >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFT5ForConditionalGeneration.from_pretrained("google/byt5-small") tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -7.592465 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_summarization(self): model = self.model tok = T5Tokenizer.from_pretrained("t5-base") FRANCE_ARTICLE = ( # @noqa "Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) SHORTER_ARTICLE = ( "(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) IRAN_ARTICLE = ( "(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) ARTICLE_SUBWAY = ( "New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) expected_summaries = [ 'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a' " cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one" " magazine says .", "the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a" " preliminary examination into the situation in the occupied Palestinian territory . as members of the" " court, Palestinians may be subject to counter-charges as well .", "the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:" " the debate that has already begun since the announcement of the new framework will likely result in more" " heat than light . the deal would reduce Iran's low-enriched uranium stockpile, cut centrifuges and" " implement a rigorous inspection regime .", "prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two" ' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10' " times, with nine of her marriages occurring between 1999 and 2002 .", ] task_specific_config = getattr(model.config, "task_specific_params", {}) summarization_config = task_specific_config.get("summarization", {}) model.config.update(summarization_config) dct = tok( [model.config.prefix + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]], max_length=512, padding="max_length", truncation=True, return_tensors="tf", ) self.assertEqual(512, dct["input_ids"].shape[1]) hypotheses_batch = model.generate( input_ids=dct["input_ids"], attention_mask=dct["attention_mask"], num_beams=4, length_penalty=2.0, max_length=142, min_length=56, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) decoded = [ tok.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in hypotheses_batch ] self.assertListEqual( expected_summaries, decoded, ) @slow def test_translation_en_to_de(self): tok = T5Tokenizer.from_pretrained("t5-base") model = self.model task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_de", {}) self.model.config.update(translation_config) original_input = '"Luigi often said to me that he never wanted the brothers to end up in court", she wrote.' expected_translation = ( '"Luigi sagte mir oft, dass er nie wollte, dass die Brüder am Gericht sitzen", schrieb sie.' ) input_ids = tok.encode(model.config.prefix + original_input, return_tensors="tf") output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=50, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation) @slow def test_translation_en_to_fr(self): model = self.model tok = T5Tokenizer.from_pretrained("t5-base") task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_fr", {}) model.config.update(translation_config) en_text = ( ' This image section from an infrared recording by the Spitzer telescope shows a "family portrait" of' " countless generations of stars: the oldest stars are seen as blue dots. " ) new_truncated_translation = ( "Cette section d'images provenant de l'enregistrement infrarouge effectué par le télescope Spitzer montre " "un " "« portrait familial » de générations innombrables d’étoiles : les plus anciennes sont observées " "sous forme " "de points bleus." ) input_ids = tok(model.config.prefix + en_text, return_tensors="tf").input_ids output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=100, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, new_truncated_translation) @slow def test_translation_en_to_ro(self): model = self.model tok = T5Tokenizer.from_pretrained("t5-base") task_specific_config = getattr(model.config, "task_specific_params", {}) translation_config = task_specific_config.get("translation_en_to_ro", {}) model.config.update(translation_config) original_input = "Taco Bell said it plans to add 2,000 locations in the US by 2022." expected_translation = "Taco Bell a declarat că intenţionează să adauge 2 000 de locaţii în SUA până în 2022." input_ids = tok.encode(model.config.prefix + original_input, return_tensors="tf") output = model.generate( input_ids=input_ids, num_beams=4, length_penalty=2.0, max_length=50, no_repeat_ngram_size=3, do_sample=False, early_stopping=True, ) translation = tok.decode(output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertEqual(translation, expected_translation)
transformers/tests/models/t5/test_modeling_tf_t5.py/0
{ "file_path": "transformers/tests/models/t5/test_modeling_tf_t5.py", "repo_id": "transformers", "token_count": 21525 }
407
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import inspect import random import unittest from datasets import Audio, load_dataset from transformers import UnivNetConfig, UnivNetFeatureExtractor from transformers.testing_utils import ( is_torch_available, require_torch, require_torch_gpu, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, floats_tensor, ) if is_torch_available(): import torch from transformers import UnivNetModel class UnivNetModelTester: def __init__( self, parent, batch_size=2, seq_length=7, in_channels=8, hidden_channels=8, num_mel_bins=20, kernel_predictor_hidden_channels=8, seed=0, is_training=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.in_channels = in_channels self.hidden_channels = hidden_channels self.num_mel_bins = num_mel_bins self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels self.seed = seed self.is_training = is_training def prepare_noise_sequence(self): generator = torch.manual_seed(self.seed) noise_shape = (self.seq_length, self.in_channels) # Create noise on CPU for reproducibility noise_sequence = torch.randn(noise_shape, generator=generator, dtype=torch.float) return noise_sequence def prepare_config_and_inputs(self): spectrogram = floats_tensor([self.seq_length, self.num_mel_bins], scale=1.0) noise_sequence = self.prepare_noise_sequence() noise_sequence = noise_sequence.to(spectrogram.device) config = self.get_config() return config, spectrogram, noise_sequence def get_config(self): return UnivNetConfig( model_in_channels=self.in_channels, model_hidden_channels=self.hidden_channels, num_mel_bins=self.num_mel_bins, kernel_predictor_hidden_channels=self.kernel_predictor_hidden_channels, ) def create_and_check_model(self, config, spectrogram, noise_sequence): model = UnivNetModel(config=config).to(torch_device).eval() result = model(spectrogram, noise_sequence)[0] self.parent.assertEqual(result.shape, (1, self.seq_length * 256)) def prepare_config_and_inputs_for_common(self): config, spectrogram, noise_sequence = self.prepare_config_and_inputs() inputs_dict = {"input_features": spectrogram, "noise_sequence": noise_sequence} return config, inputs_dict @require_torch class UnivNetModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (UnivNetModel,) if is_torch_available() else () # UnivNetModel currently cannot be traced with torch.jit.trace. test_torchscript = False # The UnivNetModel is not a transformer and does not use any attention mechanisms, so skip transformer/attention # related tests. test_pruning = False test_resize_embeddings = False test_resize_position_embeddings = False test_head_masking = False # UnivNetModel is not a sequence classification model. test_mismatched_shapes = False # UnivNetModel does not have a base_model_prefix attribute. test_missing_keys = False # UnivNetModel does not implement a parallelize method. test_model_parallel = False is_encoder_decoder = False has_attentions = False input_name = "input_features" def setUp(self): self.model_tester = UnivNetModelTester(self) self.config_tester = ConfigTester(self, config_class=UnivNetConfig) @unittest.skip(reason="fix this once it gets more usage") def test_multi_gpu_data_parallel_forward(self): super().test_multi_gpu_data_parallel_forward() def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @unittest.skip(reason="UnivNetModel does not output hidden_states.") def test_hidden_states_output(self): pass @unittest.skip(reason="UnivNetModel.forward does not accept an inputs_embeds argument.") def test_inputs_embeds(self): pass @unittest.skip(reason="UnivNetModel does not use input embeddings and thus has no get_input_embeddings method.") def test_model_common_attributes(self): pass @unittest.skip(reason="UnivNetModel does not support all arguments tested, such as output_hidden_states.") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="UnivNetModel does not output hidden_states.") def test_retain_grad_hidden_states_attentions(self): pass def test_batched_inputs_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() batched_spectrogram = inputs["input_features"].unsqueeze(0).repeat(2, 1, 1) batched_noise_sequence = inputs["noise_sequence"].unsqueeze(0).repeat(2, 1, 1) with torch.no_grad(): batched_outputs = model( batched_spectrogram.to(torch_device), batched_noise_sequence.to(torch_device), )[0] self.assertEqual( batched_spectrogram.shape[0], batched_outputs.shape[0], msg="Got different batch dims for input and output", ) def test_unbatched_inputs_outputs(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(inputs["input_features"].to(torch_device), inputs["noise_sequence"].to(torch_device))[ 0 ] self.assertTrue(outputs.shape[0] == 1, msg="Unbatched input should create batched output with bsz = 1") def test_unbatched_batched_outputs_consistency(self): config, inputs = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() unbatched_spectrogram = inputs["input_features"].detach().clone() unbatched_noise_sequence = inputs["noise_sequence"].detach().clone() batched_spectrogram = inputs["input_features"].unsqueeze(0) batched_noise_sequence = inputs["noise_sequence"].unsqueeze(0) with torch.no_grad(): unbatched_outputs = model( unbatched_spectrogram.to(torch_device), unbatched_noise_sequence.to(torch_device), )[0] batched_outputs = model( batched_spectrogram.to(torch_device), batched_noise_sequence.to(torch_device), )[0] torch.testing.assert_close(unbatched_outputs, batched_outputs) @require_torch_gpu @slow class UnivNetModelIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def _load_datasamples(self, num_samples, sampling_rate=24000): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", Audio(sampling_rate=sampling_rate)) # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples] def get_inputs(self, device, num_samples: int = 3, noise_length: int = 10, seed: int = 0): generator = torch.manual_seed(seed) # Note: hardcode model_in_channels -> 64 if num_samples == 1: noise_sequence_shape = (64, noise_length) else: noise_sequence_shape = (num_samples, 64, noise_length) # Explicity generate noise_sequence on CPU for consistency. noise_sequence = torch.randn(noise_sequence_shape, generator=generator, dtype=torch.float32, device="cpu") # Put noise_sequence on the desired device. noise_sequence = noise_sequence.to(device) # Note: hardcode num_mel_channels -> 100 if num_samples == 1: spectrogram_shape = [100, noise_length] else: spectrogram_shape = [num_samples, 100, noise_length] spectrogram = floats_tensor(spectrogram_shape, scale=1.0, rng=random.Random(seed)) # Note: spectrogram should already be on torch_device # Permute to match diffusers implementation if num_samples == 1: noise_sequence = noise_sequence.transpose(1, 0) spectrogram = spectrogram.transpose(1, 0) else: noise_sequence = noise_sequence.transpose(2, 1) spectrogram = spectrogram.transpose(2, 1) inputs = { "input_features": spectrogram, "noise_sequence": noise_sequence, "generator": generator, } return inputs def test_model_inference_batched(self): # Load sample checkpoint from Tortoise TTS model = UnivNetModel.from_pretrained("dg845/univnet-dev") model.eval().to(torch_device) # Get batched noise and spectrogram inputs. input_speech = self.get_inputs(torch_device, num_samples=3) with torch.no_grad(): waveform = model(**input_speech)[0] waveform = waveform.cpu() waveform_mean = torch.mean(waveform) waveform_stddev = torch.std(waveform) waveform_slice = waveform[-1, -9:].flatten() EXPECTED_MEAN = torch.tensor(-0.19989729) EXPECTED_STDDEV = torch.tensor(0.35230172) EXPECTED_SLICE = torch.tensor([-0.3408, -0.6045, -0.5052, 0.1160, -0.1556, -0.0405, -0.3024, -0.5290, -0.5019]) torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-4, rtol=1e-5) def test_model_inference_unbatched(self): # Load sample checkpoint from Tortoise TTS model = UnivNetModel.from_pretrained("dg845/univnet-dev") model.eval().to(torch_device) # Get unbatched noise and spectrogram inputs. input_speech = self.get_inputs(torch_device, num_samples=1) with torch.no_grad(): waveform = model(**input_speech)[0] waveform = waveform.cpu() waveform_mean = torch.mean(waveform) waveform_stddev = torch.std(waveform) waveform_slice = waveform[-1, -9:].flatten() EXPECTED_MEAN = torch.tensor(-0.22895093) EXPECTED_STDDEV = torch.tensor(0.33986747) EXPECTED_SLICE = torch.tensor([-0.3276, -0.5504, -0.3484, 0.3574, -0.0373, -0.1826, -0.4880, -0.6431, -0.5162]) torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=1e-3, rtol=1e-5) def test_integration(self): feature_extractor = UnivNetFeatureExtractor.from_pretrained("dg845/univnet-dev") model = UnivNetModel.from_pretrained("dg845/univnet-dev") model.eval().to(torch_device) audio, sr = self._load_datasamples(1, sampling_rate=feature_extractor.sampling_rate) input_features = feature_extractor(audio, sampling_rate=sr[0], return_tensors="pt").input_features input_features = input_features.to(device=torch_device) input_speech = self.get_inputs(torch_device, num_samples=1, noise_length=input_features.shape[1]) input_speech["input_features"] = input_features with torch.no_grad(): waveform = model(**input_speech)[0] waveform = waveform.cpu() waveform_mean = torch.mean(waveform) waveform_stddev = torch.std(waveform) waveform_slice = waveform[-1, -9:].flatten() EXPECTED_MEAN = torch.tensor(0.00051374) EXPECTED_STDDEV = torch.tensor(0.058105603) # fmt: off EXPECTED_SLICE = torch.tensor([-4.3934e-04, -1.8203e-04, -3.3033e-04, -3.8716e-04, -1.6125e-04, 3.5389e-06, -3.3149e-04, -3.7613e-04, -2.3331e-04]) # fmt: on torch.testing.assert_close(waveform_mean, EXPECTED_MEAN, atol=5e-6, rtol=1e-5) torch.testing.assert_close(waveform_stddev, EXPECTED_STDDEV, atol=1e-4, rtol=1e-5) torch.testing.assert_close(waveform_slice, EXPECTED_SLICE, atol=5e-6, rtol=1e-5)
transformers/tests/models/univnet/test_modeling_univnet.py/0
{ "file_path": "transformers/tests/models/univnet/test_modeling_univnet.py", "repo_id": "transformers", "token_count": 6460 }
408
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VisionTextDualEncoder model. """ import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image # Inspired by # https://github.com/rwightman/pytorch-image-models/blob/b9bd960a032c75ca6b808ddeed76bee5f3ed4972/timm/models/layers/helpers.py # From PyTorch internals def to_2tuple(x): if isinstance(x, collections.abc.Iterable): return x return (x, x) @require_flax class VisionTextDualEncoderMixin: def get_vision_text_model(self, config, text_config): pass def prepare_config_and_inputs(self): pass def get_pretrained_model_and_inputs(self): pass def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): diff = np.abs((a - b)).max() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") def check_model_from_pretrained_configs( self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs ): config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config) model = FlaxVisionTextDualEncoderModel(config) output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim)) def check_vision_text_dual_encoder_from_pretrained( self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs ): vision_model, text_model = self.get_vision_text_model(vision_config, text_config) kwargs = {"vision_model": vision_model, "text_model": text_model} model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs) output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim)) def check_save_load(self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs): vision_model, text_model = self.get_vision_text_model(vision_config, text_config) kwargs = {"vision_model": vision_model, "text_model": text_model} model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs) output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) out_1 = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname) after_output = model(input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask) out_2 = after_output[0] max_diff = np.amax(np.abs(out_2 - out_1)) self.assertLessEqual(max_diff, 1e-3) def check_vision_text_output_attention( self, text_config, input_ids, attention_mask, vision_config, pixel_values=None, **kwargs ): vision_model, text_model = self.get_vision_text_model(vision_config, text_config) kwargs = {"vision_model": vision_model, "text_model": text_model} model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**kwargs) output = model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, output_attentions=True ) vision_attentions = output.vision_model_output.attentions self.assertEqual(len(vision_attentions), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = to_2tuple(vision_model.config.image_size) patch_size = to_2tuple(vision_model.config.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) text_attentions = output.text_model_output.attentions self.assertEqual(len(text_attentions), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict): pt_model.to(torch_device) pt_model.eval() # prepare inputs flax_inputs = inputs_dict pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = FlaxVisionTextDualEncoderModel.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple() self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = VisionTextDualEncoderModel.from_pretrained(tmpdirname, from_flax=True) pt_model_loaded.to(torch_device) pt_model_loaded.eval() with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 4e-2) def check_equivalence_pt_to_flax(self, vision_config, text_config, inputs_dict): config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config) pt_model = VisionTextDualEncoderModel(config) fx_model = FlaxVisionTextDualEncoderModel(config) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def check_equivalence_flax_to_pt(self, vision_config, text_config, inputs_dict): config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_config, text_config) pt_model = VisionTextDualEncoderModel(config) fx_model = FlaxVisionTextDualEncoderModel(config) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict) def test_model_from_pretrained_configs(self): inputs_dict = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**inputs_dict) def test_vision_text_dual_encoder_from_pretrained(self): inputs_dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**inputs_dict) def test_save_load(self): inputs_dict = self.prepare_config_and_inputs() self.check_save_load(**inputs_dict) def test_vision_text_output_attention(self): inputs_dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**inputs_dict) @is_pt_flax_cross_test def test_pt_flax_equivalence(self): config_inputs_dict = self.prepare_config_and_inputs() vision_config = config_inputs_dict.pop("vision_config") text_config = config_inputs_dict.pop("text_config") inputs_dict = config_inputs_dict self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict) self.check_equivalence_flax_to_pt(vision_config, text_config, inputs_dict) @slow def test_real_model_save_load_from_pretrained(self): model_2, inputs = self.get_pretrained_model_and_inputs() outputs = model_2(**inputs) out_2 = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_2.save_pretrained(tmp_dirname) model_1 = FlaxVisionTextDualEncoderModel.from_pretrained(tmp_dirname) after_outputs = model_1(**inputs) out_1 = after_outputs[0] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @require_flax class FlaxViTBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert", vision_from_pt=True, text_from_pt=True, ) batch_size = 13 pixel_values = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) input_ids = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) attention_mask = random_attention_mask([batch_size, 4]) inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def get_vision_text_model(self, vision_config, text_config): vision_model = FlaxViTModel(vision_config) text_model = FlaxBertModel(text_config) return vision_model, text_model def prepare_config_and_inputs(self): vit_model_tester = FlaxViTModelTester(self) bert_model_tester = FlaxBertModelTester(self) vision_config_and_inputs = vit_model_tester.prepare_config_and_inputs() text_config_and_inputs = bert_model_tester.prepare_config_and_inputs() vision_config, pixel_values = vision_config_and_inputs text_config, input_ids, token_type_ids, attention_mask = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class FlaxCLIPVisionBertModelTest(VisionTextDualEncoderMixin, unittest.TestCase): def get_pretrained_model_and_inputs(self): model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert", vision_from_pt=True, text_from_pt=True, ) batch_size = 13 pixel_values = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) input_ids = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) attention_mask = random_attention_mask([batch_size, 4]) inputs = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def get_vision_text_model(self, vision_config, text_config): vision_model = FlaxCLIPVisionModel(vision_config) text_model = FlaxBertModel(text_config) return vision_model, text_model def prepare_config_and_inputs(self): clip_model_tester = FlaxCLIPVisionModelTester(self) bert_model_tester = FlaxBertModelTester(self) vision_config_and_inputs = clip_model_tester.prepare_config_and_inputs() text_config_and_inputs = bert_model_tester.prepare_config_and_inputs() vision_config, pixel_values = vision_config_and_inputs text_config, input_ids, token_type_ids, attention_mask = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class FlaxVisionTextDualEncoderIntegrationTest(unittest.TestCase): @slow def test_inference(self): model = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0) processor = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor( text=["una foto di un gatto", "una foto di un cane"], images=image, padding=True, return_tensors="np" ) outputs = model(**inputs) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) expected_logits = np.array([[1.2284727, 0.3104122]]) self.assertTrue(np.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
transformers/tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py/0
{ "file_path": "transformers/tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py", "repo_id": "transformers", "token_count": 6782 }
409
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import gc import glob import inspect import math import multiprocessing import os import tempfile import traceback import unittest import numpy as np import pytest from datasets import load_dataset from huggingface_hub import snapshot_download from transformers import Wav2Vec2Config, is_tf_available from transformers.testing_utils import ( CaptureLogger, is_flaky, is_pt_tf_cross_test, require_librosa, require_pyctcdecode, require_tf, run_test_in_subprocess, slow, ) from transformers.utils import is_librosa_available, is_pyctcdecode_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoFeatureExtractor, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification, TFWav2Vec2Model, Wav2Vec2Processor, ) from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices if is_pyctcdecode_available(): import pyctcdecode.decoder from transformers import Wav2Vec2ProcessorWithLM from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm if is_librosa_available(): import librosa def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout): error = None try: _ = in_queue.get(timeout=timeout) downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits # use a spawn pool, which should trigger a warning if different than fork with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool: transcription = processor.batch_decode(logits.numpy(), pool).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes") # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork multiprocessing.set_start_method("spawn", force=True) with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl: transcription = processor.batch_decode(logits.numpy()).text unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out) unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes") except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() @require_tf class TFWav2Vec2ModelTester: def __init__( self, parent, batch_size=3, seq_length=1024, is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0 attention_mask = tf.ones_like(input_values) config = Wav2Vec2Config( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, do_stable_layer_norm=self.do_stable_layer_norm, ) return config, input_values, attention_mask def create_and_check_model(self, config, input_values, attention_mask): model = TFWav2Vec2Model(config) result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 config.layerdrop = 0.0 model = TFWav2Vec2Model(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice, training=False).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_values = input_values[:3] attention_mask = tf.ones_like(input_values) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) # convert values that are over input_lengths to padding input_values = input_values * length_mask attention_mask = attention_mask * length_mask model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2) def check_seq_classifier_loss(self, loss, config, input_values, *args): model = TFWav2Vec2ForSequenceClassification(config) input_values = input_values[:3] attention_mask = tf.ones(input_values.shape, dtype=tf.int32) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = tf.random.uniform((input_values.shape[0],), maxval=len(model.config.id2label), dtype=tf.int32) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 training = False masked_loss = ( model(input_values, attention_mask=attention_mask, labels=labels, training=training).loss.numpy().item() ) unmasked_loss = model(input_values, labels=labels, training=training).loss.numpy().item() assert isinstance(masked_loss, float) assert isinstance(unmasked_loss, float) assert masked_loss != unmasked_loss def check_training(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) input_values = input_values * length_mask pad_size = max(max_length_labels) - labels.shape[1] labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100) loss = model(input_values, labels=labels, training=True).loss self.parent.assertFalse(tf.math.is_inf(loss)) def check_labels_out_of_vocab(self, config, input_values, *args): model = TFWav2Vec2ForCTC(config) input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 500) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_tf class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else () ) pipeline_model_mapping = ( {"audio-classification": TFWav2Vec2ForSequenceClassification, "feature-extraction": TFWav2Vec2Model} if is_tf_available() else {} ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) @is_flaky() def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="Wav2Vec2 has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_dataset_conversion(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_keras_fit(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) @require_tf class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else () ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFWav2Vec2ModelTester( self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True, scope="robust", ) self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37) # overwrite because input_values != input_ids def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # overwrite because input_values != input_ids def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_values = inputs_keywords.pop("input_values", None) outputs_keywords = model(input_values, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.output_seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_batched_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_batch_inference(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) # TODO (Joao): fix me @unittest.skip("Broke with TF 2.10") def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) def test_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_training(*config_and_inputs) @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_inputs_embeds(self): pass @unittest.skip(reason="Wav2Vec2 has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Wav2Vec2 has no input embeddings") def test_model_common_attributes(self): pass @slow def test_model_from_pretrained(self): model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsNotNone(model) @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_dataset_conversion(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch") def test_keras_fit(self): # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self, allow_missing_keys=False): # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Output all for aggressive testing config.output_hidden_states = True config.output_attentions = self.has_attentions # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. self._make_attention_mask_non_null(inputs_dict) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) tf_model = model_class(config) pt_model = pt_model_class(config) tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys ) pt_model = transformers.load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys ) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys ) # Original test: check without `labels` self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) @require_tf class TFWav2Vec2UtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) self.assertListEqual( tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)] ) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in tf.reduce_sum(mask, -1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) @require_tf @slow class TFWav2Vec2ModelIntegrationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_ctc_normal(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_normal_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) input_speech = self._load_datasamples(2) input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values logits = model(input_values).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_robust_batched(self): model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000) input_values = inputs.input_values attention_mask = inputs.attention_mask logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = tf.argmax(logits, axis=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with the thousands of spectators were trivialities not worth thinking about", "his instant panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_pool(self): downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample") file_path = glob.glob(downloaded_folder + "/*")[0] sample = librosa.load(file_path, sr=16_000)[0] model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm") input_values = processor(sample, return_tensors="tf").input_values logits = model(input_values).logits # test user-managed pool with multiprocessing.get_context("fork").Pool(2) as pool: transcription = processor.batch_decode(logits.numpy(), pool).text self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") # user-managed pool + num_processes should trigger a warning with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool( 2 ) as pool: transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text self.assertIn("num_process", cl.out) self.assertIn("it will be ignored", cl.out) self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes") @require_pyctcdecode @require_librosa def test_wav2vec2_with_lm_invalid_pool(self): run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None) def test_inference_keyword_spotting(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks") input_data = self._load_superb("ks", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask) predicted_logits, predicted_ids = ( tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(outputs.logits, axis=-1), ) expected_labels = [7, 6, 10, 9] expected_logits = tf.convert_to_tensor([6.1186, 11.8961, 10.2931, 6.0898]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2)) def test_inference_intent_classification(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic") input_data = self._load_superb("ic", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask=attention_mask) predicted_logits_action, predicted_ids_action = ( tf.math.reduce_max(outputs.logits[:, :6], axis=-1), tf.argmax(outputs.logits[:, :6], axis=-1), ) predicted_logits_object, predicted_ids_object = ( tf.math.reduce_max(outputs.logits[:, 6:20], axis=-1), tf.argmax(outputs.logits[:, 6:20], axis=-1), ) predicted_logits_location, predicted_ids_location = ( tf.math.reduce_max(outputs.logits[:, 20:24], axis=-1), tf.argmax(outputs.logits[:, 20:24], axis=-1), ) expected_labels_action = [0, 0, 2, 3] expected_logits_action = tf.convert_to_tensor([0.4568, 11.0848, 1.6621, 9.3841]) expected_labels_object = [3, 10, 3, 4] expected_logits_object = tf.convert_to_tensor([1.5322, 10.7094, 5.2469, 22.1318]) expected_labels_location = [0, 0, 0, 1] expected_logits_location = tf.convert_to_tensor([1.5335, 6.5096, 10.5704, 11.0569]) self.assertListEqual(predicted_ids_action.numpy().tolist(), expected_labels_action) self.assertListEqual(predicted_ids_object.numpy().tolist(), expected_labels_object) self.assertListEqual(predicted_ids_location.numpy().tolist(), expected_labels_location) self.assertTrue(np.allclose(predicted_logits_action, expected_logits_action, atol=1e-2)) self.assertTrue(np.allclose(predicted_logits_object, expected_logits_object, atol=1e-2)) self.assertTrue(np.allclose(predicted_logits_location, expected_logits_location, atol=1e-2)) def test_inference_speaker_identification(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid") input_data = self._load_superb("si", 4) output_logits = [] for example in input_data["speech"]: input = processor(example, return_tensors="tf", padding=True) output = model(input.input_values, attention_mask=None) output_logits.append(output.logits[0]) output_logits = tf.stack(output_logits) predicted_logits, predicted_ids = tf.math.reduce_max(output_logits, axis=-1), tf.argmax(output_logits, axis=-1) expected_labels = [251, 1, 1, 3] expected_logits = tf.convert_to_tensor([37.5627, 71.6362, 64.2419, 31.7778]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2)) def test_inference_emotion_recognition(self): model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er", from_pt=True) processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er") input_data = self._load_superb("er", 4) inputs = processor(input_data["speech"], return_tensors="tf", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask outputs = model(input_values, attention_mask=attention_mask) predicted_logits, predicted_ids = ( tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(outputs.logits, axis=-1), ) expected_labels = [1, 1, 2, 2] # s3prl logits for the same batch expected_logits = tf.convert_to_tensor([2.1722, 3.0779, 8.0287, 6.6797]) self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels) self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))
transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py/0
{ "file_path": "transformers/tests/models/wav2vec2/test_modeling_tf_wav2vec2.py", "repo_id": "transformers", "token_count": 17501 }
410
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import WhisperFeatureExtractor from transformers.testing_utils import check_json_file_has_correct_format, require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class WhisperFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=10, hop_length=160, chunk_length=8, padding_value=0.0, sampling_rate=4_000, return_attention_mask=False, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize self.feature_size = feature_size self.chunk_length = chunk_length self.hop_length = hop_length def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size speech_inputs = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = WhisperFeatureExtractor def setUp(self): self.feat_extract_tester = WhisperFeatureExtractionTester(self) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) dict_first = feat_extract_first.to_dict() dict_second = feat_extract_second.to_dict() mel_1 = feat_extract_first.mel_filters mel_2 = feat_extract_second.mel_filters self.assertTrue(np.allclose(mel_1, mel_2)) self.assertEqual(dict_first, dict_second) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test truncation required speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs] np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated] encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) @require_torch def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100, 32).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.float32) def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def test_torch_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="pt").input_features self.assertEqual(input_features.shape, (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) @unittest.mock.patch("transformers.models.whisper.feature_extraction_whisper.is_torch_available", lambda: False) def test_numpy_integration(self): # fmt: off EXPECTED_INPUT_FEATURES = np.array( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = WhisperFeatureExtractor() input_features = feature_extractor(input_speech, return_tensors="np").input_features self.assertEqual(input_features.shape, (1, 80, 3000)) self.assertTrue(np.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) def test_zero_mean_unit_variance_normalization_trunc_np_longest(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) audio = self._load_datasamples(1)[0] audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0] self.assertTrue(np.all(np.mean(audio) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3))
transformers/tests/models/whisper/test_feature_extraction_whisper.py/0
{ "file_path": "transformers/tests/models/whisper/test_feature_extraction_whisper.py", "repo_id": "transformers", "token_count": 5032 }
411
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class XLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = XLMTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = XLMTokenizer(self.vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_2 + [1]
transformers/tests/models/xlm/test_tokenization_xlm.py/0
{ "file_path": "transformers/tests/models/xlm/test_tokenization_xlm.py", "repo_id": "transformers", "token_count": 1506 }
412
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import XLMRobertaTokenizer, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XmodConfig, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, ) from transformers.models.xmod.modeling_xmod import XmodEmbeddings, create_position_ids_from_input_ids class XmodModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return XmodConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, default_language="en_XX", ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XmodModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = XmodModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = XmodForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = XmodForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XmodForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = XmodForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = XmodForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = XmodForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class XmodModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( XmodForCausalLM, XmodForMaskedLM, XmodModel, XmodForSequenceClassification, XmodForTokenClassification, XmodForMultipleChoice, XmodForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (XmodForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": XmodModel, "fill-mask": XmodForMaskedLM, "question-answering": XmodForQuestionAnswering, "text-classification": XmodForSequenceClassification, "text-generation": XmodForCausalLM, "token-classification": XmodForTokenClassification, "zero-shot": XmodForSequenceClassification, } if is_torch_available() else {} ) # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def setUp(self): self.model_tester = XmodModelTester(self) self.config_tester = ConfigTester(self, config_class=XmodConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is XmodEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = XmodEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is XmodEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = XmodEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_set_default_language(self): config = self.model_tester.prepare_config_and_inputs()[0] model = XmodForMaskedLM(config=config) model.set_default_language("en_XX") self.assertEqual(model.config.default_language, "en_XX") with self.assertRaises(ValueError): model.set_default_language("xx_XX") def test_freeze_embeddings_and_language_adapters(self): config = self.model_tester.prepare_config_and_inputs()[0] model = XmodForMaskedLM(config=config) num_trainable_params_before = sum(p.numel() for p in model.parameters() if p.requires_grad) model.freeze_embeddings_and_language_adapters() num_trainable_params_after = sum(p.numel() for p in model.parameters() if p.requires_grad) self.assertLess(num_trainable_params_after, num_trainable_params_before) @require_sentencepiece @require_tokenizers @require_torch class XmodModelIntegrationTest(unittest.TestCase): @slow def test_xmod_base(self): model = XmodModel.from_pretrained("facebook/xmod-base") # language en_XX model.set_default_language("en_XX") input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house expected_output_shape = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim expected_output_values_last_dim = torch.tensor( [[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724]] ) output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) # language de_DE model.set_default_language("de_DE") input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]]) # Der Hund ist niedlich und wohnt in einem Gartenhaus. expected_output_shape = torch.Size((1, 16, 768)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor( [[0.0162, 0.0075, -0.1882, 0.2335, -0.0952, -0.3994, -0.0317, -0.1174, 0.0177, 0.4280, -0.0240, -0.2138, 0.0785, -0.1045, -0.2811, -0.3220]] ) # fmt: on output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) @slow def test_xmod_large_prenorm(self): model = XmodModel.from_pretrained("facebook/xmod-large-prenorm") # language en_XX model.set_default_language("en_XX") input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house expected_output_shape = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor( [[-0.0121, -0.0194, -0.0240, -0.0160, -0.0205, -0.0159, -0.0243, -0.0206, -0.0161, -0.0335, -0.0196, -0.0141]] ) # fmt: on output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) # language de_DE model.set_default_language("de_DE") input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]]) # Der Hund ist niedlich und wohnt in einem Gartenhaus. expected_output_shape = torch.Size((1, 16, 1024)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor( [[-0.0120, -0.0262, -0.0253, -0.0112, -0.0128, -0.0164, -0.0080, -0.0081, -0.0192, -0.0117, -0.0170, -0.0120, -0.0210, -0.0173, -0.0078, -0.0122]] ) # fmt: on output = model(input_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) @slow def test_multilingual_batch(self): model = XmodModel.from_pretrained("facebook/xmod-base") # fmt: off input_ids = torch.tensor([ [0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2], [0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2], [0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2], [0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2], ]) # fmt: on lang_ids = torch.LongTensor([0, 8, 8, 0]) expected_output_shape = torch.Size((4, 12, 768)) # batch_size, sequence_length, embedding_vector_dim # fmt: off expected_output_values_last_dim = torch.tensor([ [-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724], [-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407], [-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407], [-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724], ]) # fmt: on output = model(input_ids, lang_ids=lang_ids)["last_hidden_state"].detach() self.assertEqual(output.shape, expected_output_shape) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) @slow def test_end_to_end_mask_fill(self): tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base") model = XmodForMaskedLM.from_pretrained("facebook/xmod-base", default_language="en_XX") model.to(torch_device) sentences = [ "Hello, my dog is a little <mask>.", "Hi <mask>!", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) probs = outputs.logits.softmax(dim=-1) _, predictions = probs.topk(1) predictions = predictions.squeeze(-1) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model(input_ids=inputs_non_padded) probs_non_padded = output_non_padded.logits.softmax(dim=-1) _, predictions_non_padded = probs_non_padded.topk(1) predictions_non_padded = predictions_non_padded.squeeze(-1) inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model(input_ids=inputs_padded) probs_padded = output_padded.logits.softmax(dim=-1) _, predictions_padded = probs_padded.topk(1) predictions_padded = predictions_padded.squeeze(-1) batch_out_sentence = tokenizer.batch_decode(predictions, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(predictions_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(predictions_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little girl.", "Hi everyone!", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
transformers/tests/models/xmod/test_modeling_xmod.py/0
{ "file_path": "transformers/tests/models/xmod/test_modeling_xmod.py", "repo_id": "transformers", "token_count": 13211 }
413
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectron2, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class Image: @staticmethod def open(*args, **kwargs): pass def load_image(_): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. INVOICE_URL = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class DocumentQuestionAnsweringPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def get_test_pipeline(self, model, tokenizer, processor): dqa_pipeline = pipeline( "document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor ) image = INVOICE_URL word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) question = "What is the placebo?" examples = [ { "image": load_image(image), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def run_pipeline_test(self, dqa_pipeline, examples): outputs = dqa_pipeline(examples, top_k=2) self.assertEqual( outputs, [ [ {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)}, {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)}, ] ] * 3, ) @require_torch @require_detectron2 @require_pytesseract def test_small_model_pt(self): dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2") image = INVOICE_URL question = "How many cats are there?" expected_output = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual(nested_simplify(outputs, decimals=4), expected_output) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual(nested_simplify(outputs, decimals=4), expected_output) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably image = "./tests/fixtures/tests_samples/COCO/000000039769.png" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual(outputs, []) # We can optionnally pass directly the words and bounding boxes image = "./tests/fixtures/tests_samples/COCO/000000039769.png" words = [] boxes = [] outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2) self.assertEqual(outputs, []) # TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented # @require_torch # def test_small_model_pt_donut(self): # dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut") # # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut") # image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png" # question = "How many cats are there?" # # outputs = dqa_pipeline(image=image, question=question, top_k=2) # self.assertEqual( # nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] # ) @slow @require_torch @require_detectron2 @require_pytesseract def test_large_model_pt(self): dqa_pipeline = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2, ) @slow @require_torch @require_detectron2 @require_pytesseract def test_large_model_pt_chunk(self): dqa_pipeline = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=50, ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def test_large_model_pt_layoutlm(self): tokenizer = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True ) dqa_pipeline = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=tokenizer, revision="3dc6de3", ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ], ) outputs = dqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2, ) word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) # This model should also work if `image` is set to None outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ], ) @slow @require_torch @require_pytesseract @require_vision def test_large_model_pt_layoutlm_chunk(self): tokenizer = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True ) dqa_pipeline = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=tokenizer, revision="3dc6de3", max_seq_len=50, ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ], ) outputs = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2, ) word_boxes = list(zip(*apply_tesseract(load_image(image), None, ""))) # This model should also work if `image` is set to None outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ], ) @slow @require_torch def test_large_model_pt_donut(self): dqa_pipeline = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) image = INVOICE_URL question = "What is the invoice number?" outputs = dqa_pipeline(image=image, question=question, top_k=2) self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}]) @require_tf @unittest.skip("Document question answering not implemented in TF") def test_small_model_tf(self): pass
transformers/tests/pipelines/test_pipelines_document_question_answering.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_document_question_answering.py", "repo_id": "transformers", "token_count": 6554 }
414
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import ( MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline, pipeline, ) from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torch_accelerator, slow, torch_device, ) from .test_pipelines_common import ANY VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]] # These 2 model types require different inputs than those of the usual text models. _TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class TokenClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING if model_mapping is not None: model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: tf_model_mapping = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def get_test_pipeline(self, model, tokenizer, processor): token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer) return token_classifier, ["A simple string", "A simple string that is quite a bit longer"] def run_pipeline_test(self, token_classifier, _): model = token_classifier.model tokenizer = token_classifier.tokenizer if not tokenizer.is_fast: return # Slow tokenizers do not return offsets mappings, so this test will fail outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "index": ANY(int), "word": ANY(str), } for i in range(n) ], ) outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"]) self.assertIsInstance(outputs, list) self.assertEqual(len(outputs), 2) n = len(outputs[0]) m = len(outputs[1]) self.assertEqual( nested_simplify(outputs), [ [ { "entity": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "index": ANY(int), "word": ANY(str), } for i in range(n) ], [ { "entity": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "index": ANY(int), "word": ANY(str), } for i in range(m) ], ], ) self.run_aggregation_strategy(model, tokenizer) def run_aggregation_strategy(self, model, tokenizer): token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple") self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first") self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max") self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="average" ) self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE) outputs = token_classifier("A simple string") self.assertIsInstance(outputs, list) n = len(outputs) self.assertEqual( nested_simplify(outputs), [ { "entity_group": ANY(str), "score": ANY(float), "start": ANY(int), "end": ANY(int), "word": ANY(str), } for i in range(n) ], ) with self.assertWarns(UserWarning): token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True) self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE) with self.assertWarns(UserWarning): token_classifier = pipeline( task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True ) self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST) @slow @require_torch def test_chunking(self): NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english" model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) tokenizer.model_max_length = 10 stride = 5 sentence = ( "Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. " "The company, based in New York City was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf." ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) token_classifier = TokenClassificationPipeline( model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride ) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, ], ) @require_torch def test_chunking_fast(self): # Note: We cannot run the test on "conflicts" on the chunking. # The problem is that the model is random, and thus the results do heavily # depend on the chunking, so we cannot expect "abcd" and "bcd" to find # the same entities. We defer to slow tests for this. pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification") sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs" results = pipe(sentence, aggregation_strategy="first") # This is what this random model gives on the full sentence self.assertEqual( nested_simplify(results), [ # This is 2 actual tokens {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"}, {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"}, ], ) # This will force the tokenizer to split after "city was". pipe.tokenizer.model_max_length = 12 self.assertEqual( pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)), "[CLS] the company, based in new york city was [SEP]", ) stride = 4 results = pipe(sentence, aggregation_strategy="first", stride=stride) self.assertEqual( nested_simplify(results), [ {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"}, # This is an extra entity found by this random model, but at least both original # entities are there {"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"}, {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"}, ], ) @require_torch @slow def test_spanish_bert(self): # https://github.com/huggingface/transformers/pull/4987 NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner" model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses.""" token_classifier = pipeline("ner", model=model, tokenizer=tokenizer) output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1}, {"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2}, {"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4}, {"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, {"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, {"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114}, ], ) @require_torch_accelerator @slow def test_accelerator(self): sentence = "This is dummy sentence" ner = pipeline( "token-classification", device=torch_device, aggregation_strategy=AggregationStrategy.SIMPLE, ) output = ner(sentence) self.assertEqual(nested_simplify(output), []) @require_torch @slow def test_dbmdz_english(self): # Other sentence NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english" model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) sentence = """Enzo works at the UN""" token_classifier = pipeline("ner", model=model, tokenizer=tokenizer) output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1}, {"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2}, {"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") output = token_classifier(sentence) self.assertEqual( nested_simplify(output[:3]), [ {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average") output = token_classifier(sentence) self.assertEqual( nested_simplify(output), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, ], ) @require_torch @slow def test_aggregation_strategy_byte_level_tokenizer(self): sentence = "Groenlinks praat over Schiphol." ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max") self.assertEqual( nested_simplify(ner(sentence)), [ {"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"}, {"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31}, ], ) @require_torch def test_aggregation_strategy_no_b_i_prefix(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") # Just to understand scores indexes in this test token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"} example = [ { "scores": np.array([0, 0, 0, 0, 0.9968166351318359]), # fmt : skip "index": 1, "is_subword": False, "word": "En", "start": 0, "end": 2, }, { "scores": np.array([0, 0, 0, 0, 0.9957635998725891]), # fmt : skip "index": 2, "is_subword": True, "word": "##zo", "start": 2, "end": 4, }, { "scores": np.array([0, 0, 0, 0.9986497163772583, 0]), # fmt : skip "index": 7, "word": "UN", "is_subword": False, "start": 11, "end": 13, }, ] self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)), [ {"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1}, {"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2}, {"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)), [ {"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) @require_torch def test_aggregation_strategy(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") # Just to understand scores indexes in this test self.assertEqual( token_classifier.model.config.id2label, {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"}, ) example = [ { "scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]), # fmt : skip "index": 1, "is_subword": False, "word": "En", "start": 0, "end": 2, }, { "scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]), # fmt : skip "index": 2, "is_subword": True, "word": "##zo", "start": 2, "end": 4, }, { "scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0]), # fmt : skip "index": 7, "word": "UN", "is_subword": False, "start": 11, "end": 13, }, ] self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)), [ {"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1}, {"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2}, {"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)), [ {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)), [ {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)), [ {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, ], ) @require_torch def test_aggregation_strategy_example2(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") # Just to understand scores indexes in this test self.assertEqual( token_classifier.model.config.id2label, {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"}, ) example = [ { # Necessary for AVERAGE "scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]), "is_subword": False, "index": 1, "word": "Ra", "start": 0, "end": 2, }, { "scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]), "is_subword": True, "word": "##ma", "start": 2, "end": 4, "index": 2, }, { # 4th score will have the higher average # 4th score is B-PER for this model # It's does not correspond to any of the subtokens. "scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]), "is_subword": True, "word": "##zotti", "start": 11, "end": 13, "index": 3, }, ] self.assertEqual( token_classifier.aggregate(example, AggregationStrategy.NONE), [ {"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1}, {"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2}, {"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3}, ], ) self.assertEqual( token_classifier.aggregate(example, AggregationStrategy.FIRST), [{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}], ) self.assertEqual( token_classifier.aggregate(example, AggregationStrategy.MAX), [{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}], ) self.assertEqual( nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)), [{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}], ) @require_torch @slow def test_aggregation_strategy_offsets_with_leading_space(self): sentence = "We're from New York" model_name = "brandon25/deberta-base-finetuned-ner" ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max") self.assertEqual( nested_simplify(ner(sentence)), [ {"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10}, {"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19}, ], ) @require_torch def test_gather_pre_entities(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") sentence = "Hello there" tokens = tokenizer( sentence, return_attention_mask=False, return_tensors="pt", truncation=True, return_special_tokens_mask=True, return_offsets_mapping=True, ) offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] input_ids = tokens["input_ids"].numpy()[0] # First element in [CLS] scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]]) pre_entities = token_classifier.gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy=AggregationStrategy.NONE, ) self.assertEqual( nested_simplify(pre_entities), [ {"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1}, { "word": "there", "scores": [0.8, 0.1, 0.1], "index": 2, "start": 6, "end": 11, "is_subword": False, }, ], ) @require_torch def test_word_heuristic_leading_space(self): model_name = "hf-internal-testing/tiny-random-deberta-v2" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") sentence = "I play the theremin" tokens = tokenizer( sentence, return_attention_mask=False, return_tensors="pt", return_special_tokens_mask=True, return_offsets_mapping=True, ) offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] input_ids = tokens["input_ids"].numpy()[0] scores = np.array([[1, 0] for _ in input_ids]) # values irrelevant for heuristic pre_entities = token_classifier.gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy=AggregationStrategy.FIRST, ) # ensure expected tokenization and correct is_subword values self.assertEqual( [(entity["word"], entity["is_subword"]) for entity in pre_entities], [("▁I", False), ("▁play", False), ("▁the", False), ("▁there", False), ("min", True)], ) @require_tf def test_tf_only(self): model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version # We test that if we don't specificy framework='tf', it gets detected automatically token_classifier = pipeline(task="ner", model=model_name) self.assertEqual(token_classifier.framework, "tf") @require_tf def test_small_model_tf(self): model_name = "hf-internal-testing/tiny-bert-for-token-classification" token_classifier = pipeline(task="token-classification", model=model_name, framework="tf") outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, ], ) @require_torch def test_no_offset_tokenizer(self): model_name = "hf-internal-testing/tiny-bert-for-token-classification" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt") outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None}, ], ) @require_torch def test_small_model_pt(self): model_name = "hf-internal-testing/tiny-bert-for-token-classification" token_classifier = pipeline(task="token-classification", model=model_name, framework="pt") outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, ], ) token_classifier = pipeline( task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"] ) outputs = token_classifier("This is a test !") self.assertEqual( nested_simplify(outputs), [], ) token_classifier = pipeline(task="token-classification", model=model_name, framework="pt") # Overload offset_mapping outputs = token_classifier( "This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)] ) self.assertEqual( nested_simplify(outputs), [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2}, ], ) # Batch size does not affect outputs (attention_mask are required) sentences = ["This is a test !", "Another test this is with longer sentence"] outputs = token_classifier(sentences) outputs_batched = token_classifier(sentences, batch_size=2) # Batching does not make a difference in predictions self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs)) self.assertEqual( nested_simplify(outputs_batched), [ [ {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, ], [], ], ) @require_torch def test_pt_ignore_subwords_slow_tokenizer_raises(self): model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) with self.assertRaises(ValueError): pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST) with self.assertRaises(ValueError): pipeline( task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE ) with self.assertRaises(ValueError): pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX) @slow @require_torch def test_simple(self): token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True) sentence = "Hello Sarah Jessica Parker who Jessica lives in New York" sentence2 = "This is a simple test" output = token_classifier(sentence) output_ = nested_simplify(output) self.assertEqual( output_, [ { "entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26, }, {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38}, {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56}, ], ) output = token_classifier([sentence, sentence2]) output_ = nested_simplify(output) self.assertEqual( output_, [ [ {"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26}, {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38}, {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56}, ], [], ], ) class TokenClassificationArgumentHandlerTestCase(unittest.TestCase): def setUp(self): self.args_parser = TokenClassificationArgumentHandler() def test_simple(self): string = "This is a simple input" inputs, offset_mapping = self.args_parser(string) self.assertEqual(inputs, [string]) self.assertEqual(offset_mapping, None) inputs, offset_mapping = self.args_parser([string, string]) self.assertEqual(inputs, [string, string]) self.assertEqual(offset_mapping, None) inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)]) self.assertEqual(inputs, [string]) self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]]) inputs, offset_mapping = self.args_parser( [string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]] ) self.assertEqual(inputs, [string, string]) self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]]) def test_errors(self): string = "This is a simple input" # 2 sentences, 1 offset_mapping, args with self.assertRaises(TypeError): self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]]) # 2 sentences, 1 offset_mapping, args with self.assertRaises(TypeError): self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)]) # 2 sentences, 1 offset_mapping, input_list with self.assertRaises(ValueError): self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]]) # 2 sentences, 1 offset_mapping, input_list with self.assertRaises(ValueError): self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)]) # 1 sentences, 2 offset_mapping with self.assertRaises(ValueError): self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]) # 0 sentences, 1 offset_mapping with self.assertRaises(TypeError): self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])
transformers/tests/pipelines/test_pipelines_token_classification.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_token_classification.py", "repo_id": "transformers", "token_count": 20538 }
415
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import sys import tempfile import unittest from contextlib import contextmanager from pathlib import Path git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 from check_copies import convert_to_localized_md, find_code_in_transformers, is_copy_consistent # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. REFERENCE_CODE = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ MOCK_BERT_CODE = """from ...modeling_utils import PreTrainedModel def bert_function(x): return x class BertAttention(nn.Module): def __init__(self, config): super().__init__() class BertModel(BertPreTrainedModel): def __init__(self, config): super().__init__() self.bert = BertEncoder(config) @add_docstring(BERT_DOCSTRING) def forward(self, x): return self.bert(x) """ MOCK_BERT_COPY_CODE = """from ...modeling_utils import PreTrainedModel # Copied from transformers.models.bert.modeling_bert.bert_function def bert_copy_function(x): return x # Copied from transformers.models.bert.modeling_bert.BertAttention class BertCopyAttention(nn.Module): def __init__(self, config): super().__init__() # Copied from transformers.models.bert.modeling_bert.BertModel with Bert->BertCopy all-casing class BertCopyModel(BertCopyPreTrainedModel): def __init__(self, config): super().__init__() self.bertcopy = BertCopyEncoder(config) @add_docstring(BERTCOPY_DOCSTRING) def forward(self, x): return self.bertcopy(x) """ MOCK_DUMMY_BERT_CODE_MATCH = """ class BertDummyModel: attr_1 = 1 attr_2 = 2 def __init__(self, a=1, b=2): self.a = a self.b = b # Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward def forward(self, c): return 1 def existing_common(self, c): return 4 def existing_diff_to_be_ignored(self, c): return 9 """ MOCK_DUMMY_ROBERTA_CODE_MATCH = """ # Copied from transformers.models.dummy_bert_match.modeling_dummy_bert_match.BertDummyModel with BertDummy->RobertaBertDummy class RobertaBertDummyModel: attr_1 = 1 attr_2 = 2 def __init__(self, a=1, b=2): self.a = a self.b = b # Ignore copy def only_in_roberta_to_be_ignored(self, c): return 3 # Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward def forward(self, c): return 1 def existing_common(self, c): return 4 # Ignore copy def existing_diff_to_be_ignored(self, c): return 6 """ MOCK_DUMMY_BERT_CODE_NO_MATCH = """ class BertDummyModel: attr_1 = 1 attr_2 = 2 def __init__(self, a=1, b=2): self.a = a self.b = b # Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward def forward(self, c): return 1 def only_in_bert(self, c): return 7 def existing_common(self, c): return 4 def existing_diff_not_ignored(self, c): return 8 def existing_diff_to_be_ignored(self, c): return 9 """ MOCK_DUMMY_ROBERTA_CODE_NO_MATCH = """ # Copied from transformers.models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel with BertDummy->RobertaBertDummy class RobertaBertDummyModel: attr_1 = 1 attr_2 = 3 def __init__(self, a=1, b=2): self.a = a self.b = b # Ignore copy def only_in_roberta_to_be_ignored(self, c): return 3 # Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward def forward(self, c): return 1 def only_in_roberta_not_ignored(self, c): return 2 def existing_common(self, c): return 4 def existing_diff_not_ignored(self, c): return 5 # Ignore copy def existing_diff_to_be_ignored(self, c): return 6 """ EXPECTED_REPLACED_CODE = """ # Copied from transformers.models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel with BertDummy->RobertaBertDummy class RobertaBertDummyModel: attr_1 = 1 attr_2 = 2 def __init__(self, a=1, b=2): self.a = a self.b = b # Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward def forward(self, c): return 1 def only_in_bert(self, c): return 7 def existing_common(self, c): return 4 def existing_diff_not_ignored(self, c): return 8 # Ignore copy def existing_diff_to_be_ignored(self, c): return 6 # Ignore copy def only_in_roberta_to_be_ignored(self, c): return 3 """ def replace_in_file(filename, old, new): with open(filename, "r", encoding="utf-8") as f: content = f.read() content = content.replace(old, new) with open(filename, "w", encoding="utf-8", newline="\n") as f: f.write(content) def create_tmp_repo(tmp_dir): """ Creates a mock repository in a temporary folder for testing. """ tmp_dir = Path(tmp_dir) if tmp_dir.exists(): shutil.rmtree(tmp_dir) tmp_dir.mkdir(exist_ok=True) model_dir = tmp_dir / "src" / "transformers" / "models" model_dir.mkdir(parents=True, exist_ok=True) models = { "bert": MOCK_BERT_CODE, "bertcopy": MOCK_BERT_COPY_CODE, "dummy_bert_match": MOCK_DUMMY_BERT_CODE_MATCH, "dummy_roberta_match": MOCK_DUMMY_ROBERTA_CODE_MATCH, "dummy_bert_no_match": MOCK_DUMMY_BERT_CODE_NO_MATCH, "dummy_roberta_no_match": MOCK_DUMMY_ROBERTA_CODE_NO_MATCH, } for model, code in models.items(): model_subdir = model_dir / model model_subdir.mkdir(exist_ok=True) with open(model_subdir / f"modeling_{model}.py", "w", encoding="utf-8", newline="\n") as f: f.write(code) @contextmanager def patch_transformer_repo_path(new_folder): """ Temporarily patches the variables defines in `check_copies` to use a different location for the repo. """ old_repo_path = check_copies.REPO_PATH old_doc_path = check_copies.PATH_TO_DOCS old_transformer_path = check_copies.TRANSFORMERS_PATH repo_path = Path(new_folder).resolve() check_copies.REPO_PATH = str(repo_path) check_copies.PATH_TO_DOCS = str(repo_path / "docs" / "source" / "en") check_copies.TRANSFORMERS_PATH = str(repo_path / "src" / "transformers") try: yield finally: check_copies.REPO_PATH = old_repo_path check_copies.PATH_TO_DOCS = old_doc_path check_copies.TRANSFORMERS_PATH = old_transformer_path class CopyCheckTester(unittest.TestCase): def test_find_code_in_transformers(self): with tempfile.TemporaryDirectory() as tmp_folder: create_tmp_repo(tmp_folder) with patch_transformer_repo_path(tmp_folder): code = find_code_in_transformers("models.bert.modeling_bert.BertAttention") reference_code = ( "class BertAttention(nn.Module):\n def __init__(self, config):\n super().__init__()\n" ) self.assertEqual(code, reference_code) def test_is_copy_consistent(self): path_to_check = ["src", "transformers", "models", "bertcopy", "modeling_bertcopy.py"] with tempfile.TemporaryDirectory() as tmp_folder: # Base check create_tmp_repo(tmp_folder) with patch_transformer_repo_path(tmp_folder): file_to_check = os.path.join(tmp_folder, *path_to_check) diffs = is_copy_consistent(file_to_check) self.assertEqual(diffs, []) # Base check with an inconsistency create_tmp_repo(tmp_folder) with patch_transformer_repo_path(tmp_folder): file_to_check = os.path.join(tmp_folder, *path_to_check) replace_in_file(file_to_check, "self.bertcopy(x)", "self.bert(x)") diffs = is_copy_consistent(file_to_check) self.assertEqual(diffs, [["models.bert.modeling_bert.BertModel", 22]]) _ = is_copy_consistent(file_to_check, overwrite=True) with open(file_to_check, "r", encoding="utf-8") as f: self.assertEqual(f.read(), MOCK_BERT_COPY_CODE) def test_is_copy_consistent_with_ignored_match(self): path_to_check = ["src", "transformers", "models", "dummy_roberta_match", "modeling_dummy_roberta_match.py"] with tempfile.TemporaryDirectory() as tmp_folder: # Base check create_tmp_repo(tmp_folder) with patch_transformer_repo_path(tmp_folder): file_to_check = os.path.join(tmp_folder, *path_to_check) diffs = is_copy_consistent(file_to_check) self.assertEqual(diffs, []) def test_is_copy_consistent_with_ignored_no_match(self): path_to_check = [ "src", "transformers", "models", "dummy_roberta_no_match", "modeling_dummy_roberta_no_match.py", ] with tempfile.TemporaryDirectory() as tmp_folder: # Base check with an inconsistency create_tmp_repo(tmp_folder) with patch_transformer_repo_path(tmp_folder): file_to_check = os.path.join(tmp_folder, *path_to_check) diffs = is_copy_consistent(file_to_check) # line 6: `attr_2 = 3` in `MOCK_DUMMY_ROBERTA_CODE_NO_MATCH`. # (which has a leading `\n`.) self.assertEqual( diffs, [["models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel", 6]] ) _ = is_copy_consistent(file_to_check, overwrite=True) with open(file_to_check, "r", encoding="utf-8") as f: self.assertEqual(f.read(), EXPECTED_REPLACED_CODE) def test_convert_to_localized_md(self): localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"] md_list = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) localized_md_list = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) converted_md_list_sample = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) num_models_equal, converted_md_list = convert_to_localized_md( md_list, localized_md_list, localized_readme["format_model_list"] ) self.assertFalse(num_models_equal) self.assertEqual(converted_md_list, converted_md_list_sample) num_models_equal, converted_md_list = convert_to_localized_md( md_list, converted_md_list, localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(num_models_equal) link_changed_md_list = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) link_unchanged_md_list = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) converted_md_list_sample = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) num_models_equal, converted_md_list = convert_to_localized_md( link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(converted_md_list, converted_md_list_sample)
transformers/tests/repo_utils/test_check_copies.py/0
{ "file_path": "transformers/tests/repo_utils/test_check_copies.py", "repo_id": "transformers", "token_count": 7781 }
416
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True, reason="Skipping test because should only be run when releasing minor transformers version", ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class SingleNodeTest(unittest.TestCase): def setUp(self): if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding="utf-8", check=True, ) assert hasattr(self, "env") def create_estimator(self, instance_count=1): # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=f"{self.env.base_job_name}-single", instance_count=instance_count, instance_type=self.instance_type, debugger_hook_config=False, hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path}, metric_definitions=self.env.metric_definitions, py_version="py36", ) def save_results_as_csv(self, job_name): TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") def test_glue(self): # create estimator estimator = self.create_estimator() # run training estimator.fit() # result dataframe result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping train_runtime = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json", "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile)
transformers/tests/sagemaker/test_single_node_gpu.py/0
{ "file_path": "transformers/tests/sagemaker/test_single_node_gpu.py", "repo_id": "transformers", "token_count": 1584 }
417
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import random import unittest from pathlib import Path from transformers.testing_utils import ( is_pipeline_test, require_decord, require_pytesseract, require_timm, require_torch, require_torch_or_tf, require_vision, ) from transformers.utils import direct_transformers_import, logging from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests from .pipelines.test_pipelines_conversational import ConversationalPipelineTests from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests from .pipelines.test_pipelines_image_to_image import ImageToImagePipelineTests from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests from .pipelines.test_pipelines_question_answering import QAPipelineTests from .pipelines.test_pipelines_summarization import SummarizationPipelineTests from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests from .pipelines.test_pipelines_translation import TranslationPipelineTests from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests pipeline_test_mapping = { "audio-classification": {"test": AudioClassificationPipelineTests}, "automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests}, "conversational": {"test": ConversationalPipelineTests}, "depth-estimation": {"test": DepthEstimationPipelineTests}, "document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests}, "feature-extraction": {"test": FeatureExtractionPipelineTests}, "fill-mask": {"test": FillMaskPipelineTests}, "image-classification": {"test": ImageClassificationPipelineTests}, "image-segmentation": {"test": ImageSegmentationPipelineTests}, "image-to-image": {"test": ImageToImagePipelineTests}, "image-to-text": {"test": ImageToTextPipelineTests}, "mask-generation": {"test": MaskGenerationPipelineTests}, "object-detection": {"test": ObjectDetectionPipelineTests}, "question-answering": {"test": QAPipelineTests}, "summarization": {"test": SummarizationPipelineTests}, "table-question-answering": {"test": TQAPipelineTests}, "text2text-generation": {"test": Text2TextGenerationPipelineTests}, "text-classification": {"test": TextClassificationPipelineTests}, "text-generation": {"test": TextGenerationPipelineTests}, "text-to-audio": {"test": TextToAudioPipelineTests}, "token-classification": {"test": TokenClassificationPipelineTests}, "translation": {"test": TranslationPipelineTests}, "video-classification": {"test": VideoClassificationPipelineTests}, "visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests}, "zero-shot": {"test": ZeroShotClassificationPipelineTests}, "zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests}, "zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests}, "zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests}, } for task, task_info in pipeline_test_mapping.items(): test = task_info["test"] task_info["mapping"] = { "pt": getattr(test, "model_mapping", None), "tf": getattr(test, "tf_model_mapping", None), } # The default value `hf-internal-testing` is for running the pipeline testing against the tiny models on the Hub. # For debugging purpose, we can specify a local path which is the `output_path` argument of a previous run of # `utils/create_dummy_models.py`. TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing") if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing": TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json") else: TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json") with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp: tiny_model_summary = json.load(fp) PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers") # Dynamically import the Transformers module to grab the attribute classes of the processor form their names. transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS) logger = logging.get_logger(__name__) class PipelineTesterMixin: model_tester = None pipeline_model_mapping = None supported_frameworks = ["pt", "tf"] def run_task_tests(self, task): """Run pipeline tests for a specific `task` Args: task (`str`): A task name. This should be a key in the mapping `pipeline_test_mapping`. """ if task not in self.pipeline_model_mapping: self.skipTest( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: `{task}` is not in " f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`." ) model_architectures = self.pipeline_model_mapping[task] if not isinstance(model_architectures, tuple): model_architectures = (model_architectures,) if not isinstance(model_architectures, tuple): raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.") for model_architecture in model_architectures: model_arch_name = model_architecture.__name__ # Get the canonical name for _prefix in ["Flax", "TF"]: if model_arch_name.startswith(_prefix): model_arch_name = model_arch_name[len(_prefix) :] break tokenizer_names = [] processor_names = [] commit = None if model_arch_name in tiny_model_summary: tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"] processor_names = tiny_model_summary[model_arch_name]["processor_classes"] if "sha" in tiny_model_summary[model_arch_name]: commit = tiny_model_summary[model_arch_name]["sha"] # Adding `None` (if empty) so we can generate tests tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names processor_names = [None] if len(processor_names) == 0 else processor_names repo_name = f"tiny-random-{model_arch_name}" if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing": repo_name = model_arch_name self.run_model_pipeline_tests( task, repo_name, model_architecture, tokenizer_names, processor_names, commit ) def run_model_pipeline_tests(self, task, repo_name, model_architecture, tokenizer_names, processor_names, commit): """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names Args: task (`str`): A task name. This should be a key in the mapping `pipeline_test_mapping`. repo_name (`str`): A model repository id on the Hub. model_architecture (`type`): A subclass of `PretrainedModel` or `PretrainedModel`. tokenizer_names (`List[str]`): A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`. processor_names (`List[str]`): A list of names of subclasses of `BaseImageProcessor` or `FeatureExtractionMixin`. """ # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and # `run_pipeline_test`. pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__ for tokenizer_name in tokenizer_names: for processor_name in processor_names: if self.is_pipeline_test_to_skip( pipeline_test_class_name, model_architecture.config_class, model_architecture, tokenizer_name, processor_name, ): logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is " f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer " f"`{tokenizer_name}` | processor `{processor_name}`." ) continue self.run_pipeline_test(task, repo_name, model_architecture, tokenizer_name, processor_name, commit) def run_pipeline_test(self, task, repo_name, model_architecture, tokenizer_name, processor_name, commit): """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name The model will be loaded from a model repository on the Hub. Args: task (`str`): A task name. This should be a key in the mapping `pipeline_test_mapping`. repo_name (`str`): A model repository id on the Hub. model_architecture (`type`): A subclass of `PretrainedModel` or `PretrainedModel`. tokenizer_name (`str`): The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`. processor_name (`str`): The name of a subclass of `BaseImageProcessor` or `FeatureExtractionMixin`. """ repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}" if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing": model_type = model_architecture.config_class.model_type repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name) tokenizer = None if tokenizer_name is not None: tokenizer_class = getattr(transformers_module, tokenizer_name) tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit) processor = None if processor_name is not None: processor_class = getattr(transformers_module, processor_name) # If the required packages (like `Pillow` or `torchaudio`) are not installed, this will fail. try: processor = processor_class.from_pretrained(repo_id, revision=commit) except Exception: logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not load the " f"processor from `{repo_id}` with `{processor_name}`." ) return # TODO: Maybe not upload such problematic tiny models to Hub. if tokenizer is None and processor is None: logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load " f"any tokenizer / processor from `{repo_id}`." ) return # TODO: We should check if a model file is on the Hub repo. instead. try: model = model_architecture.from_pretrained(repo_id, revision=commit) except Exception: logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load " f"the model from `{repo_id}` with `{model_architecture}`." ) return pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__ if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, processor): logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is " f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer " f"`{tokenizer_name}` | processor `{processor_name}`." ) return # validate validate_test_components(self, task, model, tokenizer, processor) if hasattr(model, "eval"): model = model.eval() # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and # `run_pipeline_test`. task_test = pipeline_test_mapping[task]["test"]() pipeline, examples = task_test.get_test_pipeline(model, tokenizer, processor) if pipeline is None: # The test can disable itself, but it should be very marginal # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist) logger.warning( f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not get the " "pipeline for testing." ) return task_test.run_pipeline_test(pipeline, examples) def run_batch_test(pipeline, examples): # Need to copy because `Conversation` are stateful if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None: return # No batching for this and it's OK # 10 examples with batch size 4 means there needs to be a unfinished batch # which is important for the unbatcher def data(n): for _ in range(n): # Need to copy because Conversation object is mutated yield copy.deepcopy(random.choice(examples)) out = [] if task == "conversational": for item in pipeline(data(10), batch_size=4, max_new_tokens=5): out.append(item) else: for item in pipeline(data(10), batch_size=4): out.append(item) self.assertEqual(len(out), 10) run_batch_test(pipeline, examples) @is_pipeline_test def test_pipeline_audio_classification(self): self.run_task_tests(task="audio-classification") @is_pipeline_test def test_pipeline_automatic_speech_recognition(self): self.run_task_tests(task="automatic-speech-recognition") @is_pipeline_test def test_pipeline_conversational(self): self.run_task_tests(task="conversational") @is_pipeline_test @require_vision @require_timm @require_torch def test_pipeline_depth_estimation(self): self.run_task_tests(task="depth-estimation") @is_pipeline_test @require_pytesseract @require_torch @require_vision def test_pipeline_document_question_answering(self): self.run_task_tests(task="document-question-answering") @is_pipeline_test def test_pipeline_feature_extraction(self): self.run_task_tests(task="feature-extraction") @is_pipeline_test def test_pipeline_fill_mask(self): self.run_task_tests(task="fill-mask") @is_pipeline_test @require_torch_or_tf @require_vision def test_pipeline_image_classification(self): self.run_task_tests(task="image-classification") @is_pipeline_test @require_vision @require_timm @require_torch def test_pipeline_image_segmentation(self): self.run_task_tests(task="image-segmentation") @is_pipeline_test @require_vision def test_pipeline_image_to_text(self): self.run_task_tests(task="image-to-text") @unittest.skip(reason="`run_pipeline_test` is currently not implemented.") @is_pipeline_test @require_vision @require_torch def test_pipeline_mask_generation(self): self.run_task_tests(task="mask-generation") @is_pipeline_test @require_vision @require_timm @require_torch def test_pipeline_object_detection(self): self.run_task_tests(task="object-detection") @is_pipeline_test def test_pipeline_question_answering(self): self.run_task_tests(task="question-answering") @is_pipeline_test def test_pipeline_summarization(self): self.run_task_tests(task="summarization") @is_pipeline_test def test_pipeline_table_question_answering(self): self.run_task_tests(task="table-question-answering") @is_pipeline_test def test_pipeline_text2text_generation(self): self.run_task_tests(task="text2text-generation") @is_pipeline_test def test_pipeline_text_classification(self): self.run_task_tests(task="text-classification") @is_pipeline_test @require_torch_or_tf def test_pipeline_text_generation(self): self.run_task_tests(task="text-generation") @is_pipeline_test @require_torch def test_pipeline_text_to_audio(self): self.run_task_tests(task="text-to-audio") @is_pipeline_test def test_pipeline_token_classification(self): self.run_task_tests(task="token-classification") @is_pipeline_test def test_pipeline_translation(self): self.run_task_tests(task="translation") @is_pipeline_test @require_torch_or_tf @require_vision @require_decord def test_pipeline_video_classification(self): self.run_task_tests(task="video-classification") @is_pipeline_test @require_torch @require_vision def test_pipeline_visual_question_answering(self): self.run_task_tests(task="visual-question-answering") @is_pipeline_test def test_pipeline_zero_shot(self): self.run_task_tests(task="zero-shot") @is_pipeline_test @require_torch def test_pipeline_zero_shot_audio_classification(self): self.run_task_tests(task="zero-shot-audio-classification") @is_pipeline_test @require_vision def test_pipeline_zero_shot_image_classification(self): self.run_task_tests(task="zero-shot-image-classification") @is_pipeline_test @require_vision @require_torch def test_pipeline_zero_shot_object_detection(self): self.run_task_tests(task="zero-shot-object-detection") # This contains the test cases to be skipped without model architecture being involved. def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): """Skip some tests based on the classes or their names without the instantiated objects. This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail. """ # No fix is required for this case. if ( pipeline_test_casse_name == "DocumentQuestionAnsweringPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `DocumentQuestionAnsweringPipelineTests` requires a fast tokenizer. return True return False def is_pipeline_test_to_skip_more(self, pipeline_test_casse_name, config, model, tokenizer, processor): # noqa """Skip some more tests based on the information from the instantiated objects.""" # No fix is required for this case. if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer is not None and getattr(tokenizer, "pad_token", None) is None and not tokenizer.__class__.__name__.endswith("Fast") ): # `QAPipelineTests` doesn't work with a slow tokenizer that has no pad token. return True return False def validate_test_components(test_case, task, model, tokenizer, processor): # TODO: Move this to tiny model creation script # head-specific (within a model type) necessary changes to the config # 1. for `BlenderbotForCausalLM` if model.__class__.__name__ == "BlenderbotForCausalLM": model.config.encoder_no_repeat_ngram_size = 0 # TODO: Change the tiny model creation script: don't create models with problematic tokenizers # Avoid `IndexError` in embedding layers CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"] if tokenizer is not None: config_vocab_size = getattr(model.config, "vocab_size", None) # For CLIP-like models if config_vocab_size is None: if hasattr(model.config, "text_config"): config_vocab_size = getattr(model.config.text_config, "vocab_size", None) elif hasattr(model.config, "text_encoder"): config_vocab_size = getattr(model.config.text_encoder, "vocab_size", None) if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE: raise ValueError( "Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`." )
transformers/tests/test_pipeline_mixin.py/0
{ "file_path": "transformers/tests/test_pipeline_mixin.py", "repo_id": "transformers", "token_count": 9506 }
418
# coding=utf-8 # Copyright 2020 The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import unittest from dataclasses import dataclass from typing import Optional from transformers import AlbertForMaskedLM from transformers.testing_utils import require_torch from transformers.utils import ModelOutput, is_torch_available if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2 @dataclass class ModelOutputTest(ModelOutput): a: float b: Optional[float] = None c: Optional[float] = None class ModelOutputTester(unittest.TestCase): def test_get_attributes(self): x = ModelOutputTest(a=30) self.assertEqual(x.a, 30) self.assertIsNone(x.b) self.assertIsNone(x.c) with self.assertRaises(AttributeError): _ = x.d def test_index_with_ints_and_slices(self): x = ModelOutputTest(a=30, b=10) self.assertEqual(x[0], 30) self.assertEqual(x[1], 10) self.assertEqual(x[:2], (30, 10)) self.assertEqual(x[:], (30, 10)) x = ModelOutputTest(a=30, c=10) self.assertEqual(x[0], 30) self.assertEqual(x[1], 10) self.assertEqual(x[:2], (30, 10)) self.assertEqual(x[:], (30, 10)) def test_index_with_strings(self): x = ModelOutputTest(a=30, b=10) self.assertEqual(x["a"], 30) self.assertEqual(x["b"], 10) with self.assertRaises(KeyError): _ = x["c"] x = ModelOutputTest(a=30, c=10) self.assertEqual(x["a"], 30) self.assertEqual(x["c"], 10) with self.assertRaises(KeyError): _ = x["b"] def test_dict_like_properties(self): x = ModelOutputTest(a=30) self.assertEqual(list(x.keys()), ["a"]) self.assertEqual(list(x.values()), [30]) self.assertEqual(list(x.items()), [("a", 30)]) self.assertEqual(list(x), ["a"]) x = ModelOutputTest(a=30, b=10) self.assertEqual(list(x.keys()), ["a", "b"]) self.assertEqual(list(x.values()), [30, 10]) self.assertEqual(list(x.items()), [("a", 30), ("b", 10)]) self.assertEqual(list(x), ["a", "b"]) x = ModelOutputTest(a=30, c=10) self.assertEqual(list(x.keys()), ["a", "c"]) self.assertEqual(list(x.values()), [30, 10]) self.assertEqual(list(x.items()), [("a", 30), ("c", 10)]) self.assertEqual(list(x), ["a", "c"]) with self.assertRaises(Exception): x = x.update({"d": 20}) with self.assertRaises(Exception): del x["a"] with self.assertRaises(Exception): _ = x.pop("a") with self.assertRaises(Exception): _ = x.setdefault("d", 32) def test_set_attributes(self): x = ModelOutputTest(a=30) x.a = 10 self.assertEqual(x.a, 10) self.assertEqual(x["a"], 10) def test_set_keys(self): x = ModelOutputTest(a=30) x["a"] = 10 self.assertEqual(x.a, 10) self.assertEqual(x["a"], 10) def test_instantiate_from_dict(self): x = ModelOutputTest({"a": 30, "b": 10}) self.assertEqual(list(x.keys()), ["a", "b"]) self.assertEqual(x.a, 30) self.assertEqual(x.b, 10) def test_instantiate_from_iterator(self): x = ModelOutputTest([("a", 30), ("b", 10)]) self.assertEqual(list(x.keys()), ["a", "b"]) self.assertEqual(x.a, 30) self.assertEqual(x.b, 10) with self.assertRaises(ValueError): _ = ModelOutputTest([("a", 30), (10, 10)]) x = ModelOutputTest(a=(30, 30)) self.assertEqual(list(x.keys()), ["a"]) self.assertEqual(x.a, (30, 30)) @require_torch def test_torch_pytree(self): # ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves) # this is important for DistributedDataParallel gradient synchronization with static_graph=True import torch.utils._pytree as pytree x = ModelOutput({"a": 1.0, "c": 2.0}) self.assertFalse(pytree._is_leaf(x)) x = ModelOutputTest(a=1.0, c=2.0) self.assertFalse(pytree._is_leaf(x)) expected_flat_outs = [1.0, 2.0] expected_tree_spec = pytree.TreeSpec(ModelOutputTest, ["a", "c"], [pytree.LeafSpec(), pytree.LeafSpec()]) actual_flat_outs, actual_tree_spec = pytree.tree_flatten(x) self.assertEqual(expected_flat_outs, actual_flat_outs) self.assertEqual(expected_tree_spec, actual_tree_spec) unflattened_x = pytree.tree_unflatten(actual_flat_outs, actual_tree_spec) self.assertEqual(x, unflattened_x) if is_torch_greater_or_equal_than_2_2: self.assertEqual( pytree.treespec_dumps(actual_tree_spec), '[1, {"type": "tests.utils.test_model_output.ModelOutputTest", "context": "[\\"a\\", \\"c\\"]", "children_spec": [{"type": null, "context": null, "children_spec": []}, {"type": null, "context": null, "children_spec": []}]}]', ) # TODO: @ydshieh @unittest.skip("CPU OOM") @require_torch def test_export_serialization(self): if not is_torch_greater_or_equal_than_2_2: return model_cls = AlbertForMaskedLM model_config = model_cls.config_class() model = model_cls(model_config) input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)} ep = torch.export.export(model, (), input_dict) buffer = io.BytesIO() torch.export.save(ep, buffer) buffer.seek(0) loaded_ep = torch.export.load(buffer) input_dict = {"input_ids": torch.randint(0, 30000, (1, 512), dtype=torch.int64, requires_grad=False)} assert torch.allclose(model(**input_dict).logits, loaded_ep(**input_dict).logits) class ModelOutputTestNoDataclass(ModelOutput): """Invalid test subclass of ModelOutput where @dataclass decorator is not used""" a: float b: Optional[float] = None c: Optional[float] = None class ModelOutputSubclassTester(unittest.TestCase): def test_direct_model_output(self): # Check that direct usage of ModelOutput instantiates without errors ModelOutput({"a": 1.1}) def test_subclass_no_dataclass(self): # Check that a subclass of ModelOutput without @dataclass is invalid # A valid subclass is inherently tested other unit tests above. with self.assertRaises(TypeError): ModelOutputTestNoDataclass(a=1.1, b=2.2, c=3.3)
transformers/tests/utils/test_model_output.py/0
{ "file_path": "transformers/tests/utils/test_model_output.py", "repo_id": "transformers", "token_count": 3168 }
419
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os from get_test_info import get_tester_classes if __name__ == "__main__": failures = [] pattern = os.path.join("tests", "models", "**", "test_modeling_*.py") test_files = glob.glob(pattern) # TODO: deal with TF/Flax too test_files = [ x for x in test_files if not (x.startswith("test_modeling_tf_") or x.startswith("test_modeling_flax_")) ] for test_file in test_files: tester_classes = get_tester_classes(test_file) for tester_class in tester_classes: # A few tester classes don't have `parent` parameter in `__init__`. # TODO: deal this better try: tester = tester_class(parent=None) except Exception: continue if hasattr(tester, "get_config"): config = tester.get_config() for k, v in config.to_dict().items(): if isinstance(v, int): target = None if k in ["vocab_size"]: target = 100 elif k in ["max_position_embeddings"]: target = 128 elif k in ["hidden_size", "d_model"]: target = 40 elif k == ["num_layers", "num_hidden_layers", "num_encoder_layers", "num_decoder_layers"]: target = 5 if target is not None and v > target: failures.append( f"{tester_class.__name__} will produce a `config` of type `{config.__class__.__name__}`" f' with config["{k}"] = {v} which is too large for testing! Set its value to be smaller' f" than {target}." ) if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
transformers/utils/check_model_tester.py/0
{ "file_path": "transformers/utils/check_model_tester.py", "repo_id": "transformers", "token_count": 1240 }
420
from transformers import BertTokenizer class CustomTokenizer(BertTokenizer): pass
transformers/utils/test_module/custom_tokenization.py/0
{ "file_path": "transformers/utils/test_module/custom_tokenization.py", "repo_id": "transformers", "token_count": 25 }
421
import argparse import math import os import shlex import subprocess import uuid from distutils.util import strtobool import requests def parse_args(): # fmt: off parser = argparse.ArgumentParser() parser.add_argument("--command", type=str, default="", help="the command to run") parser.add_argument("--num-seeds", type=int, default=3, help="the number of random seeds") parser.add_argument("--start-seed", type=int, default=1, help="the number of the starting seed") parser.add_argument("--workers", type=int, default=0, help="the number of workers to run benchmark experimenets") parser.add_argument("--auto-tag", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="if toggled, the runs will be tagged with git tags, commit, and pull request number if possible") parser.add_argument("--slurm-template-path", type=str, default=None, help="the path to the slurm template file (see docs for more details)") parser.add_argument("--slurm-gpus-per-task", type=int, default=1, help="the number of gpus per task to use for slurm jobs") parser.add_argument("--slurm-total-cpus", type=int, default=50, help="the number of gpus per task to use for slurm jobs") parser.add_argument("--slurm-ntasks", type=int, default=1, help="the number of tasks to use for slurm jobs") parser.add_argument("--slurm-nodes", type=int, default=None, help="the number of nodes to use for slurm jobs") args = parser.parse_args() # fmt: on return args def run_experiment(command: str): command_list = shlex.split(command) print(f"running {command}") # Use subprocess.PIPE to capture the output fd = subprocess.Popen(command_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, errors = fd.communicate() return_code = fd.returncode assert return_code == 0, f"Command failed with error: {errors.decode('utf-8')}" # Convert bytes to string and strip leading/trailing whitespaces return output.decode("utf-8").strip() def autotag() -> str: wandb_tag = "" print("autotag feature is enabled") git_tag = "" try: git_tag = subprocess.check_output(["git", "describe", "--tags"]).decode("ascii").strip() print(f"identified git tag: {git_tag}") except subprocess.CalledProcessError as e: print(e) if len(git_tag) == 0: try: count = int(subprocess.check_output(["git", "rev-list", "--count", "HEAD"]).decode("ascii").strip()) hash = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode("ascii").strip() git_tag = f"no-tag-{count}-g{hash}" print(f"identified git tag: {git_tag}") except subprocess.CalledProcessError as e: print(e) wandb_tag = f"{git_tag}" git_commit = subprocess.check_output(["git", "rev-parse", "--verify", "HEAD"]).decode("ascii").strip() try: # try finding the pull request number on github prs = requests.get(f"https://api.github.com/search/issues?q=repo:huggingface/trl+is:pr+{git_commit}") if prs.status_code == 200: prs = prs.json() if len(prs["items"]) > 0: pr = prs["items"][0] pr_number = pr["number"] wandb_tag += f",pr-{pr_number}" print(f"identified github pull request: {pr_number}") except Exception as e: print(e) return wandb_tag if __name__ == "__main__": args = parse_args() if args.auto_tag: existing_wandb_tag = os.environ.get("WANDB_TAGS", "") wandb_tag = autotag() if len(wandb_tag) > 0: if len(existing_wandb_tag) > 0: os.environ["WANDB_TAGS"] = ",".join([existing_wandb_tag, wandb_tag]) else: os.environ["WANDB_TAGS"] = wandb_tag print("WANDB_TAGS: ", os.environ.get("WANDB_TAGS", "")) commands = [] for seed in range(0, args.num_seeds): commands += [" ".join([args.command, "--seed", str(args.start_seed + seed)])] print("======= commands to run:") for command in commands: print(command) if args.workers > 0 and args.slurm_template_path is None: from concurrent.futures import ThreadPoolExecutor executor = ThreadPoolExecutor(max_workers=args.workers, thread_name_prefix="cleanrl-benchmark-worker-") for command in commands: executor.submit(run_experiment, command) executor.shutdown(wait=True) else: print("not running the experiments because --workers is set to 0; just printing the commands to run") # SLURM logic if args.slurm_template_path is not None: if not os.path.exists("slurm"): os.makedirs("slurm") if not os.path.exists("slurm/logs"): os.makedirs("slurm/logs") print("======= slurm commands to run:") with open(args.slurm_template_path) as f: slurm_template = f.read() slurm_template = slurm_template.replace("{{array}}", f"0-{len(commands) - 1}%{args.workers}") slurm_template = slurm_template.replace( "{{seeds}}", f"({' '.join([str(args.start_seed + int(seed)) for seed in range(args.num_seeds)])})" ) slurm_template = slurm_template.replace("{{len_seeds}}", f"{args.num_seeds}") slurm_template = slurm_template.replace("{{command}}", args.command) slurm_template = slurm_template.replace("{{gpus_per_task}}", f"{args.slurm_gpus_per_task}") total_gpus = args.slurm_gpus_per_task * args.slurm_ntasks slurm_cpus_per_gpu = math.ceil(args.slurm_total_cpus / total_gpus) slurm_template = slurm_template.replace("{{cpus_per_gpu}}", f"{slurm_cpus_per_gpu}") slurm_template = slurm_template.replace("{{ntasks}}", f"{args.slurm_ntasks}") if args.slurm_nodes is not None: slurm_template = slurm_template.replace("{{nodes}}", f"#SBATCH --nodes={args.slurm_nodes}") else: slurm_template = slurm_template.replace("{{nodes}}", "") filename = str(uuid.uuid4()) open(os.path.join("slurm", f"{filename}.slurm"), "w").write(slurm_template) slurm_path = os.path.join("slurm", f"{filename}.slurm") print(f"saving command in {slurm_path}") if args.workers > 0: job_id = run_experiment(f"sbatch --parsable {slurm_path}") print(f"Job ID: {job_id}")
trl/benchmark/benchmark.py/0
{ "file_path": "trl/benchmark/benchmark.py", "repo_id": "trl", "token_count": 2824 }
422
# Multi Adapter RL (MARL) - a single base model for everything Here we present an approach that uses a single base model for the entire PPO algorithm - which includes retrieving the reference logits, computing the active logits and the rewards. This feature is experimental as we did not test the convergence of the approach. We encourage the community to let us know if they potentially face issues. ## Requirements You just need to install `peft` and optionally install `bitsandbytes` as well if you want to go for 8bit base models, for more memory efficient finetuning. ## Summary You need to address this approach in three stages that we summarize as follows: 1- Train a base model on the target domain (e.g. `imdb` dataset) - this is the Supervised Fine Tuning stage - it can leverage the `SFTTrainer` from TRL. 2- Train a reward model using `peft`. This is required in order to re-use the adapter during the RL optimisation process (step 3 below). We show an example of leveraging the `RewardTrainer` from TRL in [this example](https://github.com/huggingface/trl/tree/main/examples/scripts/reward_modeling.py) 3- Fine tune new adapters on the base model using PPO and the reward adapter. ("0 abstraction RL") Make sure to use the same model (i.e. same architecture and same weights) for the stages 2 & 3. ## Quickstart Let us assume you have trained your reward adapter on `llama-7b` model using `RewardTrainer` and pushed the weights on the hub under `trl-lib/llama-7b-hh-rm-adapter`. When doing PPO, before passing the model to `PPOTrainer` create your model as follows: ```python model_name = "huggyllama/llama-7b" rm_adapter_id = "trl-lib/llama-7b-hh-rm-adapter" # PPO adapter lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLMWithValueHead.from_pretrained( model_name, peft_config=lora_config, reward_adapter=rm_adapter_id, ) ... trainer = PPOTrainer( model=model, ... ) ... ``` Then inside your PPO training loop, call the `compute_reward_score` method by accessing the `model` attribute from `PPOTrainer`. ```python rewards = trainer.model.compute_reward_score(**inputs) ``` ## Advanced usage ### Control on the adapter name If you are familiar with the `peft` library, you know that you can use multiple adapters inside the same model. What you can do is train multiple adapters on the same base model to fine-tune on different policies. In this case, you want to be able to control the adapter name you want to activate back, after retrieving the reward. For that, simply pass the appropriate `adapter_name` to `ppo_adapter_name` argument when calling `compute_reward_score`. ```python adapter_name_policy_1 = "policy_1" rewards = trainer.model.compute_reward_score(**inputs, ppo_adapter_name=adapter_name_policy_1) ... ``` ### Using 4-bit and 8-bit base models For more memory efficient fine-tuning, you can load your base model in 8-bit or 4-bit while keeping the adapters in the default precision (float32). Just pass the appropriate arguments (i.e. `load_in_8bit=True` or `load_in_4bit=True`) to `AutoModelForCausalLMWithValueHead.from_pretrained` as follows (assuming you have installed `bitsandbytes`): ```python model_name = "llama-7b" rm_adapter_id = "trl-lib/llama-7b-hh-rm-adapter" # PPO adapter lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLMWithValueHead.from_pretrained( model_name, peft_config=lora_config, reward_adapter=rm_adapter_id, load_in_8bit=True, ) ... trainer = PPOTrainer( model=model, ... ) ... ```
trl/docs/source/multi_adapter_rl.mdx/0
{ "file_path": "trl/docs/source/multi_adapter_rl.mdx", "repo_id": "trl", "token_count": 1207 }
423
# 0. imports import torch from transformers import GPT2Tokenizer from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer # 1. load a pretrained model model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2") model_ref = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token # 2. initialize trainer ppo_config = {"mini_batch_size": 1, "batch_size": 1} config = PPOConfig(**ppo_config) ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer) # 3. encode a query query_txt = "This morning I went to the " query_tensor = tokenizer.encode(query_txt, return_tensors="pt").to(model.pretrained_model.device) # 4. generate model response generation_kwargs = { "min_length": -1, "top_k": 0.0, "top_p": 1.0, "do_sample": True, "pad_token_id": tokenizer.eos_token_id, "max_new_tokens": 20, } response_tensor = ppo_trainer.generate([item for item in query_tensor], return_prompt=False, **generation_kwargs) response_txt = tokenizer.decode(response_tensor[0]) # 5. define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0, device=model.pretrained_model.device)] # 6. train model with ppo train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
trl/examples/hello_world.py/0
{ "file_path": "trl/examples/hello_world.py", "repo_id": "trl", "token_count": 503 }
424
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from peft import LoraConfig from transformers import AutoTokenizer, HfArgumentParser, load_tool from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer, TextEnvironment os.environ["HF_ALLOW_CODE_EVAL"] = "1" os.environ["TOKENIZERS_PARALLELISM"] = "false" @dataclass class ScriptArguments: model_name: Optional[str] = field(default="bigcode/starcoderbase", metadata={"help": "the model name"}) learning_rate: Optional[float] = field(default=1e-5, metadata={"help": "the learning rate"}) mini_batch_size: Optional[int] = field(default=1, metadata={"help": "the PPO minibatch size"}) batch_size: Optional[int] = field(default=32, metadata={"help": "the batch size"}) gradient_accumulation_steps: Optional[int] = field( default=16, metadata={"help": "the number of gradient accumulation steps"} ) max_new_tokens: Optional[int] = field(default=256, metadata={"help": "max number of generated tokens per turn"}) ppo_epochs: Optional[int] = field(default=1, metadata={"help": "max number of ppo epochs"}) n_epochs: Optional[int] = field(default=32, metadata={"help": "max number of ppo epochs"}) parser = HfArgumentParser(ScriptArguments) args = parser.parse_args_into_dataclasses()[0] def exact_match_reward(responses, answers=None): """Reward if generated response contains correct answer.""" rewards = [] pattern = r"Result\s*=\s*(-?\d+(?:\.\d+)?)\s*<submit>" # generated by chatGPT for response, answer in zip(responses, answers): reward = 0.0 try: predicted_number = None match_pattern = re.findall(pattern, response) if match_pattern: predicted_number = float(match_pattern[0]) if predicted_number is not None: if np.abs((predicted_number - float(answer))) < 0.1: reward += 1.0 except: # noqa pass rewards.append(torch.tensor(reward)) return rewards def evaluate(test_dataloader, text_env, ppo_trainer): test_rewards = [] for test_batch in test_dataloader: _, _, _, rewards, _ = text_env.run(test_batch["query"], answers=test_batch["answer"]) test_rewards.extend(rewards) test_rewards = ppo_trainer.accelerator.gather_for_metrics( torch.stack(test_rewards).to(ppo_trainer.accelerator.device) ) return test_rewards.mean() lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["c_proj", "c_attn", "q_attn"], ) # set up models model = AutoModelForCausalLMWithValueHead.from_pretrained( args.model_name, use_auth_token=True, load_in_4bit=True, peft_config=lora_config, ) tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_auth_token=True) tokenizer.pad_token = tokenizer.eos_token ds = load_dataset("gsm8k", "main", split="train") ds = ds.rename_columns({"question": "query"}) ds = ds.map(lambda x: {"answer": x["answer"].split("#### ")[1]}) ds = ds.select(range(1, len(ds))) # skip the first sample which is used in prompt ds_test = load_dataset("gsm8k", "main", split="test") ds_test = ds_test.rename_columns({"question": "query"}) ds_test = ds_test.map(lambda x: {"answer": x["answer"].split("#### ")[1]}) test_dataloader = torch.utils.data.DataLoader(ds_test, batch_size=args.batch_size) # prompt prompt = """\ Example of using a Python API to solve math questions. Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left? <request><PythonInterpreter> def solution(): money_initial = 23 bagels = 5 bagel_cost = 3 money_spent = bagels * bagel_cost money_left = money_initial - money_spent result = money_left return result print(solution()) <call>72<response> Result = 72 <submit> Q: """ generation_kwargs = { "min_length": -1, "top_k": 0.0, "top_p": 1.0, "do_sample": True, "pad_token_id": tokenizer.eos_token_id, "eos_token_id": -1, "max_new_tokens": args.max_new_tokens, } # trainer ppo_config = PPOConfig( batch_size=args.batch_size, learning_rate=args.learning_rate, mini_batch_size=args.mini_batch_size, ppo_epochs=args.ppo_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, log_with="wandb", tracker_project_name="trl-gsm8k", remove_unused_columns=False, optimize_cuda_cache=True, ) ppo_trainer = PPOTrainer(config=ppo_config, model=model, tokenizer=tokenizer, dataset=ds) test_dataloader = ppo_trainer.accelerator.prepare(test_dataloader) # text env text_env = TextEnvironment( model, tokenizer, [load_tool("lvwerra/python-interpreter")], exact_match_reward, prompt, max_turns=2, generation_kwargs=generation_kwargs, ) # main training loop for epoch in range(args.n_epochs): for step, batch in enumerate(ppo_trainer.dataloader): if (step == 0) and (epoch % 4 == 0): # evaluate every 4 epochs reward_mean_test = evaluate(test_dataloader, text_env, ppo_trainer) else: reward_mean_test = None queries, responses, masks, rewards, histories = text_env.run(batch["query"], answers=batch["answer"]) train_stats = ppo_trainer.step(queries, responses, rewards, masks) # logging if reward_mean_test is not None: train_stats["env/reward_mean_test"] = reward_mean_test texts = { "query": batch["query"], "response": [tokenizer.decode(response) for response in responses], "answer": batch["answer"], } ppo_trainer.log_stats(train_stats, texts, rewards, columns_to_log=["query", "response", "answer"]) reward_mean_test = evaluate(test_dataloader, text_env, ppo_trainer) ppo_trainer.save_pretrained(f"model/{args.model_name}-gsm8k")
trl/examples/research_projects/tools/python_interpreter.py/0
{ "file_path": "trl/examples/research_projects/tools/python_interpreter.py", "repo_id": "trl", "token_count": 2614 }
425
[metadata] license_file = LICENSE [isort] ensure_newline_before_comments = True force_grid_wrap = 0 include_trailing_comma = True line_length = 119 lines_after_imports = 2 multi_line_output = 3 use_parentheses = True
trl/setup.cfg/0
{ "file_path": "trl/setup.cfg", "repo_id": "trl", "token_count": 77 }
426
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import pytest import torch from transformers import AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM from trl import AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead, create_reference_model ALL_CAUSAL_LM_MODELS = [ "trl-internal-testing/tiny-random-CodeGenForCausalLM", "trl-internal-testing/tiny-random-GPTJForCausalLM", "trl-internal-testing/tiny-random-GPTNeoForCausalLM", "trl-internal-testing/tiny-random-GPTNeoXForCausalLM", "trl-internal-testing/tiny-random-OPTForCausalLM", "trl-internal-testing/tiny-random-BloomForCausalLM", "trl-internal-testing/tiny-random-GPT2LMHeadModel", "trl-internal-testing/tiny-random-CodeGenForCausalLM-sharded", "trl-internal-testing/tiny-random-GPTNeoXForCausalLM-safetensors-sharded", "trl-internal-testing/tiny-random-GPTNeoXForCausalLM-safetensors", # "trl-internal-testing/tiny-random-LlamaForCausalLM", uncomment on the next transformers release ] ALL_SEQ2SEQ_MODELS = [ "trl-internal-testing/tiny-random-BartForConditionalGeneration", "trl-internal-testing/tiny-random-BigBirdPegasusForConditionalGeneration", "trl-internal-testing/tiny-random-BlenderbotForConditionalGeneration", "trl-internal-testing/tiny-random-BlenderbotSmallForConditionalGeneration", "trl-internal-testing/tiny-random-FSMTForConditionalGeneration", "trl-internal-testing/tiny-random-LEDForConditionalGeneration", "trl-internal-testing/tiny-random-LongT5ForConditionalGeneration", "trl-internal-testing/tiny-random-M2M100ForConditionalGeneration", "trl-internal-testing/tiny-random-MarianMTModel", "trl-internal-testing/tiny-random-MBartForConditionalGeneration", "trl-internal-testing/tiny-random-MT5ForConditionalGeneration", "trl-internal-testing/tiny-random-MvpForConditionalGeneration", "trl-internal-testing/tiny-random-PegasusForConditionalGeneration", "trl-internal-testing/tiny-random-PegasusXForConditionalGeneration", "trl-internal-testing/tiny-random-PLBartForConditionalGeneration", "trl-internal-testing/tiny-random-ProphetNetForConditionalGeneration", "trl-internal-testing/tiny-random-SwitchTransformersForConditionalGeneration", "trl-internal-testing/tiny-random-T5ForConditionalGeneration", ] class VHeadModelTester: all_model_names = None trl_model_class = None transformers_model_class = None def test_value_head(self): r""" Test if the v-head is added to the model successfully """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) assert hasattr(model, "v_head") def test_value_head_shape(self): r""" Test if the v-head has the correct shape """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) assert model.v_head.summary.weight.shape[0] == 1 def test_value_head_init_random(self): r""" Test if the v-head has been randomly initialized. We can check that by making sure the bias is different than zeros by default. """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) assert not torch.allclose(model.v_head.summary.bias, torch.zeros_like(model.v_head.summary.bias)) def test_value_head_not_str(self): r""" Test if the v-head is added to the model successfully, by passing a non `PretrainedModel` as an argument to `from_pretrained`. """ for model_name in self.all_model_names: pretrained_model = self.transformers_model_class.from_pretrained(model_name) model = self.trl_model_class.from_pretrained(pretrained_model) assert hasattr(model, "v_head") def test_from_save_trl(self): """ Test if the model can be saved and loaded from a directory and get the same weights Including the additional modules (e.g. v_head) """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model_from_save = self.trl_model_class.from_pretrained(tmp_dir) # Check if the weights are the same for key in model_from_save.state_dict(): assert torch.allclose(model_from_save.state_dict()[key], model.state_dict()[key]) def test_from_save_trl_sharded(self): """ Test if the model can be saved and loaded from a directory and get the same weights - sharded case """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model_from_save = self.trl_model_class.from_pretrained(tmp_dir) # Check if the weights are the same for key in model_from_save.state_dict(): assert torch.allclose(model_from_save.state_dict()[key], model.state_dict()[key]) def test_from_save_transformers_sharded(self): """ Test if the model can be saved and loaded using transformers and get the same weights - sharded case """ for model_name in self.all_model_names: transformers_model = self.trl_model_class.transformers_parent_class.from_pretrained(model_name) trl_model = self.trl_model_class.from_pretrained(model_name) with tempfile.TemporaryDirectory() as tmp_dir: trl_model.save_pretrained(tmp_dir, max_shard_size="1MB") transformers_model_from_save = self.trl_model_class.transformers_parent_class.from_pretrained(tmp_dir) # Check if the weights are the same for key in transformers_model.state_dict(): assert torch.allclose( transformers_model_from_save.state_dict()[key], transformers_model.state_dict()[key] ) def test_from_save_transformers(self): """ Test if the model can be saved and loaded using transformers and get the same weights. We override the test of the super class to check if the weights are the same. """ for model_name in self.all_model_names: transformers_model = self.trl_model_class.transformers_parent_class.from_pretrained(model_name) trl_model = self.trl_model_class.from_pretrained(model_name) with tempfile.TemporaryDirectory() as tmp_dir: trl_model.save_pretrained(tmp_dir) transformers_model_from_save = self.trl_model_class.transformers_parent_class.from_pretrained(tmp_dir) # Check if the weights are the same for key in transformers_model.state_dict(): assert torch.allclose( transformers_model_from_save.state_dict()[key], transformers_model.state_dict()[key] ) # Check if the trl model has the same keys as the transformers model # except the v_head for key in trl_model.state_dict(): if "v_head" not in key: assert key in transformers_model.state_dict() # check if the weights are the same assert torch.allclose(trl_model.state_dict()[key], transformers_model.state_dict()[key]) # check if they have the same modules assert set(transformers_model_from_save.state_dict().keys()) == set(transformers_model.state_dict().keys()) class CausalLMValueHeadModelTester(VHeadModelTester, unittest.TestCase): """ Testing suite for v-head models. """ all_model_names = ALL_CAUSAL_LM_MODELS trl_model_class = AutoModelForCausalLMWithValueHead transformers_model_class = AutoModelForCausalLM def tearDown(self): # free memory gc.collect() def test_inference(self): r""" Test if the model can be used for inference and outputs 3 values - logits, loss, and value states """ EXPECTED_OUTPUT_SIZE = 3 for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) outputs = model(input_ids) # Check if the outputs are of the right size - here # we always output 3 values - logits, loss, and value states assert len(outputs) == EXPECTED_OUTPUT_SIZE def test_dropout_config(self): r""" Test if we instantiate a model by adding `summary_drop_prob` to the config it will be added to the v_head """ for model_name in self.all_model_names: pretrained_model = self.transformers_model_class.from_pretrained(model_name) pretrained_model.config.summary_dropout_prob = 0.5 model = self.trl_model_class.from_pretrained(pretrained_model) # Check if v head of the model has the same dropout as the config assert model.v_head.dropout.p == pretrained_model.config.summary_dropout_prob def test_dropout_kwargs(self): r""" Test if we instantiate a model by adding `summary_drop_prob` to the config it will be added to the v_head """ for model_name in self.all_model_names: v_head_kwargs = {"summary_dropout_prob": 0.5} model = self.trl_model_class.from_pretrained(model_name, **v_head_kwargs) # Check if v head of the model has the same dropout as the config assert model.v_head.dropout.p == 0.5 model = self.trl_model_class.from_pretrained(model_name, summary_dropout_prob=0.5) # Check if v head of the model has the same dropout as the config assert model.v_head.dropout.p == 0.5 def test_generate(self): r""" Test if `generate` works for every model """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) # Just check if the generation works _ = model.generate(input_ids) def test_raise_error_not_causallm(self): # Test with a model without a LM head model_id = "trl-internal-testing/tiny-random-GPT2Model" # This should raise a ValueError with pytest.raises(ValueError): pretrained_model = AutoModelForCausalLM.from_pretrained(model_id) _ = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model.transformer) def test_transformers_bf16_kwargs(self): r""" Test if the transformers kwargs are correctly passed Here we check that loading a model in half precision works as expected, i.e. the weights of the `pretrained_model` attribute is loaded in half precision and you can run a dummy forward pass without any issue. """ for model_name in self.all_model_names: trl_model = self.trl_model_class.from_pretrained(model_name, torch_dtype=torch.bfloat16) lm_head_namings = self.trl_model_class.lm_head_namings assert any(hasattr(trl_model.pretrained_model, lm_head_naming) for lm_head_naming in lm_head_namings) for lm_head_naming in lm_head_namings: if hasattr(trl_model.pretrained_model, lm_head_naming): assert getattr(trl_model.pretrained_model, lm_head_naming).weight.dtype == torch.bfloat16 dummy_input = torch.LongTensor([[0, 1, 0, 1]]) # check dummy forward pass works in half precision _ = trl_model(dummy_input) @unittest.skip("This test needs to be run manually due to HF token issue.") def test_push_to_hub(self): for model_name in self.all_model_names: model = AutoModelForCausalLMWithValueHead.from_pretrained(model_name) if "sharded" in model_name: model.push_to_hub(model_name + "-ppo", use_auth_token=True, max_shard_size="1MB") else: model.push_to_hub(model_name + "-ppo", use_auth_token=True) model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(model_name + "-ppo") # check all keys assert model.state_dict().keys() == model_from_pretrained.state_dict().keys() for name, param in model.state_dict().items(): assert torch.allclose( param, model_from_pretrained.state_dict()[name] ), f"Parameter {name} is not the same after push_to_hub and from_pretrained" class Seq2SeqValueHeadModelTester(VHeadModelTester, unittest.TestCase): """ Testing suite for v-head models. """ all_model_names = ALL_SEQ2SEQ_MODELS trl_model_class = AutoModelForSeq2SeqLMWithValueHead transformers_model_class = AutoModelForSeq2SeqLM def tearDown(self): # free memory gc.collect() def test_inference(self): r""" Test if the model can be used for inference and outputs 3 values - logits, loss, and value states """ EXPECTED_OUTPUT_SIZE = 3 for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) decoder_input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) outputs = model(input_ids, decoder_input_ids=decoder_input_ids) # Check if the outputs are of the right size - here # we always output 3 values - logits, loss, and value states assert len(outputs) == EXPECTED_OUTPUT_SIZE def test_dropout_config(self): r""" Test if we instantiate a model by adding `summary_drop_prob` to the config it will be added to the v_head """ for model_name in self.all_model_names: pretrained_model = self.transformers_model_class.from_pretrained(model_name) pretrained_model.config.summary_dropout_prob = 0.5 model = self.trl_model_class.from_pretrained(pretrained_model) # Check if v head of the model has the same dropout as the config assert model.v_head.dropout.p == pretrained_model.config.summary_dropout_prob def test_dropout_kwargs(self): r""" Test if we instantiate a model by adding `summary_drop_prob` to the config it will be added to the v_head """ for model_name in self.all_model_names: v_head_kwargs = {"summary_dropout_prob": 0.5} model = self.trl_model_class.from_pretrained(model_name, **v_head_kwargs) # Check if v head of the model has the same dropout as the config assert model.v_head.dropout.p == 0.5 model = self.trl_model_class.from_pretrained(model_name, summary_dropout_prob=0.5) # Check if v head of the model has the same dropout as the config assert model.v_head.dropout.p == 0.5 def test_generate(self): r""" Test if `generate` works for every model """ for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) decoder_input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) # Just check if the generation works _ = model.generate(input_ids, decoder_input_ids=decoder_input_ids) def test_raise_error_not_causallm(self): # Test with a model without a LM head model_id = "trl-internal-testing/tiny-random-T5Model" # This should raise a ValueError with pytest.raises(ValueError): pretrained_model = AutoModel.from_pretrained(model_id) _ = self.trl_model_class.from_pretrained(pretrained_model) @unittest.skip("This test needs to be run manually due to HF token issue.") def test_push_to_hub(self): for model_name in self.all_model_names: model = self.trl_model_class.from_pretrained(model_name) if "sharded" in model_name: model.push_to_hub(model_name + "-ppo", use_auth_token=True, max_shard_size="1MB") else: model.push_to_hub(model_name + "-ppo", use_auth_token=True) model_from_pretrained = self.trl_model_class.from_pretrained(model_name + "-ppo") # check all keys assert model.state_dict().keys() == model_from_pretrained.state_dict().keys() for name, param in model.state_dict().items(): assert torch.allclose( param, model_from_pretrained.state_dict()[name] ), f"Parameter {name} is not the same after push_to_hub and from_pretrained" def test_transformers_bf16_kwargs(self): r""" Test if the transformers kwargs are correctly passed Here we check that loading a model in half precision works as expected, i.e. the weights of the `pretrained_model` attribute is loaded in half precision and you can run a dummy forward pass without any issue. """ for model_name in self.all_model_names: trl_model = self.trl_model_class.from_pretrained(model_name, torch_dtype=torch.bfloat16) lm_head_namings = self.trl_model_class.lm_head_namings if model_name == "trl-internal-testing/tiny-random-FSMTForConditionalGeneration": # skip the test for FSMT as it does not support mixed-prec continue assert any(hasattr(trl_model.pretrained_model, lm_head_naming) for lm_head_naming in lm_head_namings) for lm_head_naming in lm_head_namings: if hasattr(trl_model.pretrained_model, lm_head_naming): assert getattr(trl_model.pretrained_model, lm_head_naming).weight.dtype == torch.bfloat16 dummy_input = torch.LongTensor([[0, 1, 0, 1]]) # check dummy forward pass works in half precision _ = trl_model(input_ids=dummy_input, decoder_input_ids=dummy_input) class ReferenceModelTest(unittest.TestCase): def setUp(self): self.model = AutoModelForCausalLMWithValueHead.from_pretrained( "trl-internal-testing/tiny-random-GPT2LMHeadModel" ) self.test_input = torch.tensor([[0, 1, 2, 3]]) self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=1) self.layer_format = "pretrained_model.transformer.h.{layer}.attn.c_attn.weight" def test_independent_reference(self): layer_0 = self.layer_format.format(layer=0) layer_5 = self.layer_format.format(layer=4) ref_model = create_reference_model(self.model) first_layer_before = self.model.get_parameter(layer_0).data.clone() last_layer_before = self.model.get_parameter(layer_5).data.clone() first_ref_layer_before = ref_model.get_parameter(layer_0).data.clone() last_ref_layer_before = ref_model.get_parameter(layer_5).data.clone() output = self.model(input_ids=self.test_input, labels=self.test_input) output[1].backward() self.optimizer.step() first_layer_after = self.model.get_parameter(layer_0).data.clone() last_layer_after = self.model.get_parameter(layer_5).data.clone() first_ref_layer_after = ref_model.get_parameter(layer_0).data.clone() last_ref_layer_after = ref_model.get_parameter(layer_5).data.clone() # before optimization ref and model are identical assert (first_layer_before == first_ref_layer_before).all() assert (last_layer_before == last_ref_layer_before).all() # ref model stays identical after optimization assert (first_ref_layer_before == first_ref_layer_after).all() assert (last_ref_layer_before == last_ref_layer_after).all() # optimized model changes assert not (first_layer_before == first_layer_after).all() assert not (last_layer_before == last_layer_after).all() def test_shared_layers(self): layer_0 = self.layer_format.format(layer=0) layer_1 = self.layer_format.format(layer=1) ref_model = create_reference_model(self.model, num_shared_layers=1) first_layer_before = self.model.get_parameter(layer_0).data.clone() second_layer_before = self.model.get_parameter(layer_1).data.clone() first_ref_layer_before = ref_model.get_parameter(layer_0).data.clone() second_ref_layer_before = ref_model.get_parameter(layer_1).data.clone() output = self.model(input_ids=self.test_input, labels=self.test_input) output[1].backward() self.optimizer.step() first_layer_after = self.model.get_parameter(layer_0).data.clone() second_layer_after = self.model.get_parameter(layer_1).data.clone() first_ref_layer_after = ref_model.get_parameter(layer_0).data.clone() second_ref_layer_after = ref_model.get_parameter(layer_1).data.clone() # before optimization ref and model are identical assert (first_layer_before == first_ref_layer_before).all() assert (second_layer_before == second_ref_layer_before).all() # ref model stays identical after optimization assert (first_ref_layer_before == first_ref_layer_after).all() assert (second_ref_layer_before == second_ref_layer_after).all() # first layer of optimized model stays the same assert (first_layer_before == first_layer_after).all() # other layers in optimized model change assert not (second_layer_before == second_layer_after).all()
trl/tests/test_modeling_value_head.py/0
{ "file_path": "trl/tests/test_modeling_value_head.py", "repo_id": "trl", "token_count": 9527 }
427
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import inspect import warnings from functools import wraps from typing import Callable, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from accelerate.state import PartialState from datasets import Dataset from datasets.arrow_writer import SchemaInferenceError from datasets.builder import DatasetGenerationError from transformers import ( AutoModelForCausalLM, AutoTokenizer, DataCollator, DataCollatorForLanguageModeling, PreTrainedModel, PreTrainedTokenizerBase, Trainer, TrainingArguments, ) from transformers.modeling_utils import unwrap_model from transformers.trainer_callback import TrainerCallback from transformers.trainer_utils import EvalPrediction from ..extras.dataset_formatting import get_formatting_func_from_dataset from ..import_utils import is_peft_available from .utils import ( ConstantLengthDataset, DataCollatorForCompletionOnlyLM, neftune_post_forward_hook, peft_module_casting_to_bf16, trl_sanitze_kwargs_for_tagging, ) if is_peft_available(): from peft import PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training class SFTTrainer(Trainer): r""" Class definition of the Supervised Finetuning Trainer (SFT Trainer). This class is a wrapper around the `transformers.Trainer` class and inherits all of its attributes and methods. The trainer takes care of properly initializing the PeftModel in case a user passes a `PeftConfig` object. Args: model (Union[`transformers.PreTrainedModel`, `nn.Module`, `str`]): The model to train, can be a `PreTrainedModel`, a `torch.nn.Module` or a string with the model name to load from cache or download. The model can be also converted to a `PeftModel` if a `PeftConfig` object is passed to the `peft_config` argument. args (Optional[`transformers.TrainingArguments`]): The arguments to tweak for training. Please refer to the official documentation of `transformers.TrainingArguments` for more information. data_collator (Optional[`transformers.DataCollator`]): The data collator to use for training. train_dataset (Optional[`datasets.Dataset`]): The dataset to use for training. We recommend users to use `trl.trainer.ConstantLengthDataset` to create their dataset. eval_dataset (Optional[Union[`datasets.Dataset`, Dict[`str`, `datasets.Dataset`]]]): The dataset to use for evaluation. We recommend users to use `trl.trainer.ConstantLengthDataset` to create their dataset. tokenizer (Optional[`transformers.PreTrainedTokenizer`]): The tokenizer to use for training. If not specified, the tokenizer associated to the model will be used. model_init (`Callable[[], transformers.PreTrainedModel]`): The model initializer to use for training. If None is specified, the default model initializer will be used. compute_metrics (`Callable[[transformers.EvalPrediction], Dict]`, *optional* defaults to None): The function used to compute metrics during evaluation. It should return a dictionary mapping metric names to metric values. If not specified, only the loss will be computed during evaluation. callbacks (`List[transformers.TrainerCallback]`): The callbacks to use for training. optimizers (`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): The optimizer and scheduler to use for training. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): The function to use to preprocess the logits before computing the metrics. peft_config (`Optional[PeftConfig]`): The PeftConfig object to use to initialize the PeftModel. dataset_text_field (`Optional[str]`): The name of the text field of the dataset, in case this is passed by a user, the trainer will automatically create a `ConstantLengthDataset` based on the `dataset_text_field` argument. formatting_func (`Optional[Callable]`): The formatting function to be used for creating the `ConstantLengthDataset`. max_seq_length (`Optional[int]`): The maximum sequence length to use for the `ConstantLengthDataset` and for automatically creating the Dataset. Defaults to `512`. infinite (`Optional[bool]`): Whether to use an infinite dataset or not. Defaults to `False`. num_of_sequences (`Optional[int]`): The number of sequences to use for the `ConstantLengthDataset`. Defaults to `1024`. chars_per_token (`Optional[float]`): The number of characters per token to use for the `ConstantLengthDataset`. Defaults to `3.6`. You can check how this is computed in the stack-llama example: https://github.com/huggingface/trl/blob/08f550674c553c36c51d1027613c29f14f3676a5/examples/stack_llama/scripts/supervised_finetuning.py#L53. packing (`Optional[bool]`): Used only in case `dataset_text_field` is passed. This argument is used by the `ConstantLengthDataset` to pack the sequences of the dataset. dataset_num_proc (`Optional[int]`): The number of workers to use to tokenize the data. Only used when `packing=False`. Defaults to None. dataset_batch_size (`int`): The number of examples to tokenize per batch. If batch_size <= 0 or batch_size == None, tokenize the full dataset as a single batch. Defaults to 1000. neftune_noise_alpha (`Optional[float]`): If not `None`, this will activate NEFTune noise embeddings. This has been proven to drastically improve model performances for instruction fine-tuning. Check out the original paper here: https://arxiv.org/abs/2310.05914 and the original code here: https://github.com/neelsjain/NEFTune model_init_kwargs: (`Optional[Dict]`, *optional*): Dict of Optional kwargs to pass when instantiating the model from a string dataset_kwargs: (`Optional[Dict]`, *optional*): Dict of Optional kwargs to pass when creating packed or non-packed datasets """ _tag_names = ["trl", "sft"] def __init__( self, model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, args: Optional[TrainingArguments] = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, model_init: Optional[Callable[[], PreTrainedModel]] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, peft_config: Optional["PeftConfig"] = None, dataset_text_field: Optional[str] = None, packing: Optional[bool] = False, formatting_func: Optional[Callable] = None, max_seq_length: Optional[int] = None, infinite: Optional[bool] = None, num_of_sequences: Optional[int] = 1024, chars_per_token: Optional[float] = 3.6, dataset_num_proc: Optional[int] = None, dataset_batch_size: int = 1000, neftune_noise_alpha: Optional[float] = None, model_init_kwargs: Optional[Dict] = None, dataset_kwargs: Optional[Dict] = None, ): if model_init_kwargs is None: model_init_kwargs = {} elif not isinstance(model, str): raise ValueError("You passed model_kwargs to the SFTTrainer. But your model is already instantiated.") if infinite is not None: warnings.warn( "The `infinite` argument is deprecated and will be removed in a future version of TRL. Use `TrainingArguments.max_steps` or `TrainingArguments.num_train_epochs` instead to control training length." ) if isinstance(model, str): warnings.warn( "You passed a model_id to the SFTTrainer. This will automatically create an " "`AutoModelForCausalLM` or a `PeftModel` (if you passed a `peft_config`) for you." ) model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) if packing and data_collator is not None and isinstance(data_collator, DataCollatorForCompletionOnlyLM): raise ValueError( "You passed a `DataCollatorForCompletionOnlyLM` to the SFTTrainer. This is not compatible with the `packing` argument." ) if is_peft_available() and peft_config is not None: if not isinstance(peft_config, PeftConfig): raise ValueError( "If you want to use the PeftModel, you need to pass a PeftConfig object to the SFTTrainer." f" and you passed a {type(peft_config)}." ) if not isinstance(model, PeftModel): _support_gc_kwargs = hasattr( args, "gradient_checkpointing_kwargs" ) and "gradient_checkpointing_kwargs" in list( inspect.signature(prepare_model_for_kbit_training).parameters ) gradient_checkpointing_kwargs = getattr(args, "gradient_checkpointing_kwargs", None) or {} if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): preprare_model_kwargs = { "use_gradient_checkpointing": getattr(args, "gradient_checkpointing", False) } if _support_gc_kwargs: preprare_model_kwargs["gradient_checkpointing_kwargs"] = gradient_checkpointing_kwargs model = prepare_model_for_kbit_training(model, **preprare_model_kwargs) if args is not None: args = dataclasses.replace(args, gradient_checkpointing=False) elif getattr(args, "gradient_checkpointing", False) and ( "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] ): # For backward compatibility with older versions of transformers if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) model = get_peft_model(model, peft_config) if args is not None and args.bf16 and getattr(model, "is_loaded_in_4bit", False): peft_module_casting_to_bf16(model) if tokenizer is None: tokenizer = AutoTokenizer.from_pretrained(model.config._name_or_path) if getattr(tokenizer, "pad_token", None) is None: tokenizer.pad_token = tokenizer.eos_token if max_seq_length is None: # to overcome some issues with broken tokenizers max_seq_length = min(tokenizer.model_max_length, 1024) warnings.warn( f"You didn't pass a `max_seq_length` argument to the SFTTrainer, this will default to {max_seq_length}" ) self.dataset_num_proc = dataset_num_proc self.dataset_batch_size = dataset_batch_size self._trainer_supports_neftune = hasattr(args, "neftune_noise_alpha") if neftune_noise_alpha is not None and self._trainer_supports_neftune: args.neftune_noise_alpha = neftune_noise_alpha warnings.warn( "You passed a `neftune_noise_alpha` argument to the SFTTrainer, the value you passed will override the one in the `TrainingArguments`." ) # self.neftune_noise_alpha is done at Trainer level elif not self._trainer_supports_neftune: self.neftune_noise_alpha = neftune_noise_alpha if formatting_func is None and dataset_text_field is None: # check if dataset has ChatML format or instruction format and is supported # if not stays #None formatting_func = get_formatting_func_from_dataset(train_dataset, tokenizer) if not packing: if dataset_text_field is None and formatting_func is None: raise ValueError( "You passed `packing=False` to the SFTTrainer, but you didn't pass a `dataset_text_field` or `formatting_func` argument." ) if data_collator is None: data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) # Pre-process the datasets only once per node. The remaining processes will use the cache. with PartialState().local_main_process_first(): if dataset_kwargs is None: dataset_kwargs = {} if train_dataset is not None: train_dataset = self._prepare_dataset( train_dataset, tokenizer, packing, dataset_text_field, max_seq_length, formatting_func, num_of_sequences, chars_per_token, remove_unused_columns=args.remove_unused_columns if args is not None else True, **dataset_kwargs, ) if eval_dataset is not None: _multiple = isinstance(eval_dataset, dict) _eval_datasets = eval_dataset if _multiple else {"singleton": eval_dataset} for _eval_dataset_name, _eval_dataset in _eval_datasets.items(): _eval_datasets[_eval_dataset_name] = self._prepare_dataset( _eval_dataset, tokenizer, packing, dataset_text_field, max_seq_length, formatting_func, num_of_sequences, chars_per_token, remove_unused_columns=args.remove_unused_columns if args is not None else True, **dataset_kwargs, ) if not _multiple: eval_dataset = _eval_datasets["singleton"] if tokenizer.padding_side is not None and tokenizer.padding_side != "right": warnings.warn( "You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to " "overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code." ) super().__init__( model=model, args=args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, model_init=model_init, compute_metrics=compute_metrics, callbacks=callbacks, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) if self.args.max_steps > 0 and packing: warnings.warn( "You passed `packing=True` to the SFTTrainer, and you are training your model with `max_steps` strategy. The dataset will be iterated until the `max_steps` are reached." ) self.train_dataset.infinite = True elif self.args.max_steps == -1 and packing: self.train_dataset.infinite = False @wraps(Trainer.train) def train(self, *args, **kwargs): # Activate neftune right before training. if self.neftune_noise_alpha is not None and not self._trainer_supports_neftune: self.model = self._trl_activate_neftune(self.model) output = super().train(*args, **kwargs) # After training we make sure to retrieve back the original forward pass method # for the embedding layer by removing the forward post hook. if self.neftune_noise_alpha is not None and not self._trainer_supports_neftune: unwrapped_model = unwrap_model(self.model) if is_peft_available() and isinstance(unwrapped_model, PeftModel): embeddings = unwrapped_model.base_model.model.get_input_embeddings() else: embeddings = unwrapped_model.get_input_embeddings() self.neftune_hook_handle.remove() del embeddings.neftune_noise_alpha return output @wraps(Trainer.push_to_hub) def push_to_hub(self, commit_message: Optional[str] = "End of training", blocking: bool = True, **kwargs) -> str: """ Overwrite the `push_to_hub` method in order to force-add the tag "sft" when pushing the model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details. """ kwargs = trl_sanitze_kwargs_for_tagging(model=self.model, tag_names=self._tag_names, kwargs=kwargs) return super().push_to_hub(commit_message=commit_message, blocking=blocking, **kwargs) def _prepare_dataset( self, dataset, tokenizer, packing, dataset_text_field, max_seq_length, formatting_func, num_of_sequences, chars_per_token, remove_unused_columns=True, append_concat_token=True, add_special_tokens=True, ): if dataset is None: raise ValueError("The dataset should not be None") # check if torch dataset / dataloader and do nothing if isinstance(dataset, (torch.utils.data.IterableDataset, torch.utils.data.Dataset, ConstantLengthDataset)): return dataset if not packing: return self._prepare_non_packed_dataloader( tokenizer, dataset, dataset_text_field, max_seq_length, formatting_func, add_special_tokens, remove_unused_columns, ) else: return self._prepare_packed_dataloader( tokenizer, dataset, dataset_text_field, max_seq_length, num_of_sequences, chars_per_token, formatting_func, append_concat_token, add_special_tokens, ) def _prepare_non_packed_dataloader( self, tokenizer, dataset, dataset_text_field, max_seq_length, formatting_func=None, add_special_tokens=True, remove_unused_columns=True, ): use_formatting_func = formatting_func is not None and dataset_text_field is None self._dataset_sanity_checked = False # Inspired from: https://huggingface.co/learn/nlp-course/chapter7/6?fw=pt def tokenize(element): outputs = tokenizer( element[dataset_text_field] if not use_formatting_func else formatting_func(element), add_special_tokens=add_special_tokens, truncation=True, padding=False, max_length=max_seq_length, return_overflowing_tokens=False, return_length=False, ) if use_formatting_func and not self._dataset_sanity_checked: if not isinstance(formatting_func(element), list): raise ValueError( "The `formatting_func` should return a list of processed strings since it can lead to silent bugs." ) else: self._dataset_sanity_checked = True return {"input_ids": outputs["input_ids"], "attention_mask": outputs["attention_mask"]} signature_columns = ["input_ids", "labels", "attention_mask"] extra_columns = list(set(dataset.column_names) - set(signature_columns)) if not remove_unused_columns and len(extra_columns) > 0: warnings.warn( "You passed `remove_unused_columns=False` on a non-packed dataset. This might create some issues with the default collator and yield to errors. If you want to " f"inspect dataset other columns (in this case {extra_columns}), you can subclass `DataCollatorForLanguageModeling` in case you used the default collator and create your own data collator in order to inspect the unused dataset columns." ) tokenized_dataset = dataset.map( tokenize, batched=True, remove_columns=dataset.column_names if remove_unused_columns else None, num_proc=self.dataset_num_proc, batch_size=self.dataset_batch_size, ) return tokenized_dataset def _prepare_packed_dataloader( self, tokenizer, dataset, dataset_text_field, max_seq_length, num_of_sequences, chars_per_token, formatting_func=None, append_concat_token=True, add_special_tokens=True, ): if dataset_text_field is not None or formatting_func is not None: if tokenizer is None: raise ValueError("You need to pass a tokenizer when using `dataset_text_field` with `SFTTrainer`.") constant_length_iterator = ConstantLengthDataset( tokenizer, dataset, dataset_text_field=dataset_text_field, formatting_func=formatting_func, seq_length=max_seq_length, infinite=False, num_of_sequences=num_of_sequences, chars_per_token=chars_per_token, eos_token_id=tokenizer.eos_token_id, append_concat_token=append_concat_token, add_special_tokens=add_special_tokens, ) def data_generator(constant_length_iterator): for i in constant_length_iterator: yield i try: packed_dataset = Dataset.from_generator( data_generator, gen_kwargs={"constant_length_iterator": constant_length_iterator} ) except (DatasetGenerationError, SchemaInferenceError): raise ValueError( "Error occurred while packing the dataset. Make sure that your dataset has enough samples to at least yield one packed sequence." ) return packed_dataset else: raise ValueError( "You need to pass a `dataset_text_field` or `formatting_func` argument to the SFTTrainer if you want to use the `ConstantLengthDataset`." ) def _trl_activate_neftune(self, model): r""" Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914 Since in transformers Trainer we do have an `_activate_neftune` method, we need to rename this method to avoid conflicts. """ unwrapped_model = unwrap_model(model) if is_peft_available() and isinstance(unwrapped_model, PeftModel): embeddings = unwrapped_model.base_model.model.get_input_embeddings() else: embeddings = unwrapped_model.get_input_embeddings() embeddings.neftune_noise_alpha = self.neftune_noise_alpha hook_handle = embeddings.register_forward_hook(neftune_post_forward_hook) self.neftune_hook_handle = hook_handle return model
trl/trl/trainer/sft_trainer.py/0
{ "file_path": "trl/trl/trainer/sft_trainer.py", "repo_id": "trl", "token_count": 10978 }
428
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Quick tour This guide aims to help you get started with 🤗 Accelerate quickly. It covers the essential steps you need to take to enable distributed training, as well as the adjustments that you need to make in some common scenarios. To help you navigate, the guide is split into two sections: * [Getting Started with 🤗 Accelerate](#getting-started-with--accelerate): start here to learn how to modify your script to enable distributed training with 🤗 Accelerate * [Common adaptations to the base case](#common-adaptations-to-the-base-case): check out this section for common deviations from the baseline scenario and what adjustments may need to be made to support them. ## Getting started with 🤗 Accelerate ### Enable distributed training in your script To use 🤗 Accelerate in your own training script, you have to modify four things: 1. Import the [`Accelerator`] main class and instantiate one in an `accelerator` object. ```python from accelerate import Accelerator accelerator = Accelerator() ``` Add this at the beginning of your training script as it will initialize everything necessary for distributed training. You don't need to indicate the kind of environment you are in (a single machine with a GPU, a machine with several GPUs, or several machines with multiple GPUs or a TPU), the library will detect this automatically. 2. Remove the `.to(device)` or `.cuda()` calls for your model and input data. The `accelerator` object will handle placing these objects on the right device for you. If you choose to leave those `.to(device)` calls, make sure to use the device provided by the `accelerator` object: `accelerator.device`. <Tip warning={true}> You can fully deactivate the automatic device placement by passing along `device_placement=False` when initializing the [`Accelerator`]. However, if you place your objects manually on the proper device, be careful to create your optimizer after putting your model on `accelerator.device` or your training will fail on TPU. </Tip> 3. Pass all PyTorch objects relevant to training (optimizer, model, dataloader(s), learning rate scheduler) to the [`~Accelerator.prepare`] method as soon as these objects are created, before starting your actual training loop: ```python model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) ``` **Important notes**: * You should always pass the the learning rate scheduler to [`~Accelerator.prepare`], however if the scheduler should *not* be stepped at each optimization step, pass `step_with_optimizer=False` to the [`Accelerator`] init. * While you can send your dataloader to [`~Accelerator.prepare`] on its own (and there are cases for doing so, such as distributed inference), it's best to send it to [`~Accelerator.prepare`] together with the model and optimizer. * If you wish to run distributed evaluation, send your validation dataloader to [`~Accelerator.prepare`] as well. There are some nuances to distributed validation, check the [Distributed evaluation](#add-distributed-evaluation) section of the guide. * Any instruction using your training dataloader length (for instance if you want to log the number of total training steps) should go after the call to [`~Accelerator.prepare`]. Passing `DataLoader` objects to the [`~Accelerator.prepare`] method ensures that your dataloader will be sharded across all GPUs/TPU cores available so that each one sees a different portion of the training dataset. In other words, if there are 8 processes and a dataset of 64 items, each process will see 8 of these items per iteration. Also, the random states of all processes will be synchronized at the beginning of each iteration through your dataloader, to make sure the data is shuffled the same way (if you decided to use `shuffle=True` or any kind of random sampler). <Tip> The actual batch size for your training will be the number of devices used multiplied by the batch size you set in your script. For instance, training on 4 GPUs with a batch size of 16 set when creating the training dataloader will train at an actual batch size of 64 (4 * 16). If you want the batch size remain the same regardless of how many GPUs the script is run on, you can use the option `split_batches=True` when creating and initializing [`Accelerator`]. Your training dataloader may change length when going through this method: if you run on X GPUs, it will have its length divided by X (since your actual batch size will be multiplied by X), unless you set `split_batches=True`. </Tip> 4. Replace the `loss.backward()` line with `accelerator.backward(loss)`. And you're all set! With all these changes, your script will run on your local machine as well as on multiple GPUs or a TPU! You can either use your favorite tool to launch the distributed training, or you can use the 🤗 Accelerate launcher. ### Add distributed evaluation You can perform regular evaluation in your training script if you leave your validation dataloader out of the [`~Accelerator.prepare`] method. In this case, you will need to put the input data on the `accelerator.device` manually. To perform distributed evaluation, send along your validation dataloader to the [`~Accelerator.prepare`] method: ```python validation_dataloader = accelerator.prepare(validation_dataloader) ``` Same as with your training dataloader, each device will only see part of the evaluation data should you run your script on multiple devices. This means you will need to group your predictions together which you can do with the [`~Accelerator.gather_for_metrics`] method. ```python for inputs, targets in validation_dataloader: predictions = model(inputs) # Gather all predictions and targets all_predictions, all_targets = accelerator.gather_for_metrics((predictions, targets)) # Example of use with a *Datasets.Metric* metric.add_batch(all_predictions, all_targets) ``` <Tip warning={true}> Similar to the training dataloader, passing your validation dataloader through [`~Accelerator.prepare`] may change it: if you run on X GPUs, it will have its length divided by X (since your actual batch size will be multiplied by X), unless you set `split_batches=True`. </Tip> Some data at the end of the dataset may be duplicated so the batch can be divided equally among all workers. As a result, metrics should be calculated through the [`~Accelerator.gather_for_metrics`] method to automatically remove the duplicated data while gathering and provide a more accurate metric. <Tip> If for some reason you don't wish to have this automatically done, [`~Accelerator.gather`] can be used instead to gather the data across all processes and this can manually be done instead. </Tip> <Tip warning={true}> The [`~Accelerator.gather`] and [`~Accelerator.gather_for_metrics`] methods require the tensors to be all the same size on each process. If you have tensors of different sizes on each process (for instance when dynamically padding to the maximum length in a batch), you should use the [`~Accelerator.pad_across_processes`] method to pad you tensor to the biggest size across processes. </Tip> ### Launch your distributed script You can use the regular commands to launch your distributed training (like `torch.distributed.run` for PyTorch) - they are fully compatible with 🤗 Accelerate. Alternatively, 🤗 Accelerate provides a CLI tool that unifies all launchers, so you only have to remember one command. \ To use it, run a quick configuration setup first on your machine and answer the questions: ```bash accelerate config ``` At the end of the setup, a *default_config.yaml* file will be saved in your cache folder for 🤗 Accelerate. That cache folder is (with decreasing order of priority): - The content of your environment variable `HF_HOME` suffixed with *accelerate*. - If it does not exist, the content of your environment variable `XDG_CACHE_HOME` suffixed with *huggingface/accelerate*. - If this does not exist either, the folder *~/.cache/huggingface/accelerate*. By specifying the `--config_file` flag you can specify an alternative location of the configuration file. Once the configuration setup is complete, you can test your setup by running: ```bash accelerate test ``` This will launch a short script that will test the distributed environment. If it runs without issues, you are ready for the next step! Note that if you specified a location for the config file in the previous step, you need to pass it here as well: ```bash accelerate test --config_file path_to_config.yaml ``` Now that this is done, you can run your script with the following command: ```bash accelerate launch path_to_script.py --args_for_the_script ``` If you stored the config file in a non-default location, you can indicate it to the launcher like this: ```bash accelerate launch --config_file path_to_config.yaml path_to_script.py --args_for_the_script ``` You can override any of the arguments determined by your config file. To see the complete list of parameters that you can pass in, run `accelerate launch -h`. (And further niche argument help by passing in partial commands, such as `accelerate launch --multi_gpu -h` for all `multi_gpu` args) Check out the [Launch tutorial](basic_tutorials/launch) for more information about launching your scripts. ## Common modifications of the base case The previous section covers the minimal essential steps to move a training script into a distributed setup with 🤗 Accelerate. Here we describe common modifications/deviations from the base case scenario and the adjustments you need to make to accommodate for them. ### Launch distributed training from a notebook Accelerate has a [`notebook_launcher`] to help you launch your training function from a notebook. This launcher supports launching a training with TPUs on Colab or Kaggle, as well as training on several GPUs and machines (if the machine on which you are running your notebook has them). Define a function responsible for your whole training and/or evaluation in a cell of the notebook, then execute a cell with the following code: ```python from accelerate import notebook_launcher notebook_launcher(training_function) ``` <Tip warning={true}> Your [`Accelerator`] object should only be defined inside the training function. This is because the initialization should be done inside the launcher only. </Tip> Check out the [Notebook Launcher tutorial](basic_tutorials/notebook) for more information about training on TPUs. ### Specifics of training on TPU If you want to launch your script on TPUs, there are a few caveats you should be aware of. Behind the scenes, the TPUs will create a graph of all the operations happening in your training step (forward pass, backward pass and optimizer step). This is why your first step of training will always be very long as building and compiling this graph for optimizations takes some time. The good news is that this compilation will be cached so the second step and all the following will be much faster. The bad news is that it only applies if all of your steps do exactly the same operations, which implies: - having all tensors of the same length in all your batches - having static code (i.e., not a for loop of length that could change from step to step) Having any of the things above change between two steps will trigger a new compilation which will, once again, take a lot of time. In practice, that means you must take special care to have all your tensors in your inputs of the same shape (so no dynamic padding for instance if you are in an NLP problem) and should not use layers with for loops that have different lengths depending on the inputs (such as an LSTM) or the training will be excruciatingly slow. To introduce special behavior in your script for TPUs you can check the `distributed_type` of your `accelerator`: ```python docstyle-ignore from accelerate import DistributedType if accelerator.distributed_type == DistributedType.TPU: # do something of static shape else: # go crazy and be dynamic ``` The [NLP example](https://github.com/huggingface/accelerate/blob/main/examples/nlp_example.py) shows an example in a situation with dynamic padding. One last thing to pay close attention to: if your model has tied weights (such as language models which tie the weights of the embedding matrix with the weights of the decoder), moving this model to the TPU (either yourself or after you passed your model to [`~Accelerator.prepare`]) will break the tying. You will need to retie the weights after. You can find an example of this in the [run_clm_no_trainer](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) script in the Transformers repository. Check out the [TPU tutorial](concept_guides/training_tpu) for more information about training on TPUs. ### Execute a statement only on one processes Some of your instructions only need to run for one process on a given server: for instance a data download or a log statement. To do this, wrap the statement in a test like this: ```python docstyle-ignore if accelerator.is_local_main_process: # Is executed once per server ``` Another example is progress bars: to avoid having multiple progress bars in your output, you should only display one on the local main process: ```python from tqdm.auto import tqdm progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) ``` The *local* means per machine: if you are running your training on two servers with several GPUs, the instruction will be executed once on each of those servers. If you need to execute something only once for all processes (and not per machine) for instance, uploading the final model to the 🤗 model hub, wrap it in a test like this: ```python docstyle-ignore if accelerator.is_main_process: # Is executed once only ``` For printing statements you only want executed once per machine, you can just replace the `print` function by `accelerator.print`. ### Defer execution on multiple GPUs When you run your usual script, instructions are executed in order. Using 🤗 Accelerate to deploy your script on several GPUs at the same time introduces a complication: while each process executes all instructions in order, some may be faster than others. You might need to wait for all processes to have reached a certain point before executing a given instruction. For instance, you shouldn't save a model before making sure every process is done with training. To do this, add the following line in your code: ``` accelerator.wait_for_everyone() ``` This instruction will block all the processes that arrive first until all the other processes have reached that point (if you run your script on just one GPU or CPU, this won't do anything). ### Save/load a model in a distributed setup Saving the model you trained might need a bit of adjustment: first you should wait for all processes to reach that point in the script as shown above, and then, you should unwrap your model before saving it. This is because when going through the [`~Accelerator.prepare`] method, your model may have been placed inside a bigger model, which deals with the distributed training. This in turn means that saving your model state dictionary without taking any precaution will take that potential extra layer into account, and you will end up with weights you can't load back in your base model. The [`~Accelerator.save_model`] method will help you to achieve that. It will unwrap your model and save the model state dictionary. Here is an example: ``` accelerator.wait_for_everyone() accelerator.save_model(model, save_directory) ``` The [`~Accelerator.save_model`] method can also save a model into sharded checkpoints or with safetensors format: ```python accelerator.wait_for_everyone() accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True) ``` If your script contains logic to load a checkpoint, we also recommend you load your weights in the unwrapped model (this is only useful if you use the load function after making your model go through [`~Accelerator.prepare`]). Here is an example: ```python unwrapped_model = accelerator.unwrap_model(model) path_to_checkpoint = os.path.join(save_directory,"pytorch_model.bin") unwrapped_model.load_state_dict(torch.load(path_to_checkpoint)) ``` Note that since all the model parameters are references to tensors, this will load your weights inside `model`. If you want to load a sharded checkpoint or a checkpoint with safetensors format into the model with a specific `device`, we recommend you to load it with [`~utils.load_checkpoint_in_model`] function. Here's an example: ```python load_checkpoint_in_model(unwrapped_model, save_directory, device_map={"":device}) ``` ### Save/load entire states When training your model, you may want to save the current state of the model, optimizer, random generators, and potentially learning rate schedulers to be restored in the _same script_. You can use [`~Accelerator.save_state`] and [`~Accelerator.load_state`] respectively to do so. To further customize where and how states saved through [`~Accelerator.save_state`] the [`~utils.ProjectConfiguration`] class can be used. For example if `automatic_checkpoint_naming` is enabled each saved checkpoint will be located then at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`. If you have registered any other stateful items to be stored through [`~Accelerator.register_for_checkpointing`] they will also be saved and/or loaded. <Tip> Every object passed to [`~Accelerator.register_for_checkpointing`] must have a `load_state_dict` and `state_dict` function to be stored </Tip> ### Use gradient clipping If you are using gradient clipping in your script, you should replace the calls to `torch.nn.utils.clip_grad_norm_` or `torch.nn.utils.clip_grad_value_` with [`~Accelerator.clip_grad_norm_`] and [`~Accelerator.clip_grad_value_`] respectively. ### Train with mixed precision If you are running your training in Mixed Precision with 🤗 Accelerate, you will get the best result with your loss being computed inside your model (like in Transformer models for instance). Every computation outside of the model will be executed in full precision (which is generally what you want for loss computation, especially if it involves a softmax). However, you might want to put your loss computation inside the [`~Accelerator.autocast`] context manager: ``` with accelerator.autocast(): loss = complex_loss_function(outputs, target): ``` Another caveat with Mixed Precision training is that the gradient will skip a few updates at the beginning and sometimes during training: because of the dynamic loss scaling strategy, there are points during training where the gradients have overflown, and the loss scaling factor is reduced to avoid this happening again at the next step. This means that you may update your learning rate scheduler when there was no update, which is fine in general, but may have an impact when you have very little training data, or if the first learning rate values of your scheduler are very important. In this case, you can skip the learning rate scheduler updates when the optimizer step was not done like this: ``` if not accelerator.optimizer_step_was_skipped: lr_scheduler.step() ``` ### Use gradient accumulation To perform gradient accumulation use [`~Accelerator.accumulate`] and specify a `gradient_accumulation_steps`. This will also automatically ensure the gradients are synced or unsynced when on multi-device training, check if the step should actually be performed, and auto-scale the loss: ```python accelerator = Accelerator(gradient_accumulation_steps=2) model, optimizer, training_dataloader = accelerator.prepare(model, optimizer, training_dataloader) for input, label in training_dataloader: with accelerator.accumulate(model): predictions = model(input) loss = loss_function(predictions, label) accelerator.backward(loss) optimizer.step() scheduler.step() optimizer.zero_grad() ```
accelerate/docs/source/quicktour.md/0
{ "file_path": "accelerate/docs/source/quicktour.md", "repo_id": "accelerate", "token_count": 5619 }
0
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Tracking There are a large number of experiment tracking API's available, however getting them all to work with in a multi-processing environment can oftentimes be complex. 🤗 Accelerate provides a general tracking API that can be used to log useful items during your script through [`Accelerator.log`] ## Integrated Trackers Currently `Accelerate` supports seven trackers out-of-the-box: - TensorBoard - WandB - CometML - Aim - MLFlow - ClearML - DVCLive To use any of them, pass in the selected type(s) to the `log_with` parameter in [`Accelerate`]: ```python from accelerate import Accelerator from accelerate.utils import LoggerType accelerator = Accelerator(log_with="all") # For all available trackers in the environment accelerator = Accelerator(log_with="wandb") accelerator = Accelerator(log_with=["wandb", LoggerType.TENSORBOARD]) ``` At the start of your experiment [`Accelerator.init_trackers`] should be used to setup your project, and potentially add any experiment hyperparameters to be logged: ```python hps = {"num_iterations": 5, "learning_rate": 1e-2} accelerator.init_trackers("my_project", config=hps) ``` When you are ready to log any data, [`Accelerator.log`] should be used. A `step` can also be passed in to correlate the data with a particular step in the training loop. ```python accelerator.log({"train_loss": 1.12, "valid_loss": 0.8}, step=1) ``` Once you've finished training, make sure to run [`Accelerator.end_training`] so that all the trackers can run their finish functionalities if they have any. ```python accelerator.end_training() ``` A full example is below: ```python from accelerate import Accelerator accelerator = Accelerator(log_with="all") config = { "num_iterations": 5, "learning_rate": 1e-2, "loss_function": str(my_loss_function), } accelerator.init_trackers("example_project", config=config) my_model, my_optimizer, my_training_dataloader = accelerate.prepare(my_model, my_optimizer, my_training_dataloader) device = accelerator.device my_model.to(device) for iteration in config["num_iterations"]: for step, batch in my_training_dataloader: my_optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = my_model(inputs) loss = my_loss_function(outputs, targets) accelerator.backward(loss) my_optimizer.step() accelerator.log({"training_loss": loss}, step=step) accelerator.end_training() ``` If a tracker requires a directory to save data to, such as `TensorBoard`, then pass the directory path to `project_dir`. The `project_dir` parameter is useful when there are other configurations to be combined with in the [`~utils.ProjectConfiguration`] data class. For example, you can save the TensorBoard data to `project_dir` and everything else can be logged in the `logging_dir` parameter of [`~utils.ProjectConfiguration`: ```python accelerator = Accelerator(log_with="tensorboard", project_dir=".") # use with ProjectConfiguration config = ProjectConfiguration(project_dir=".", logging_dir="another/directory") accelerator = Accelerator(log_with="tensorboard", project_config=config) ``` ## Implementing Custom Trackers To implement a new tracker to be used in `Accelerator`, a new one can be made through implementing the [`GeneralTracker`] class. Every tracker must implement three functions and have three properties: - `__init__`: - Should store a `run_name` and initialize the tracker API of the integrated library. - If a tracker stores their data locally (such as TensorBoard), a `logging_dir` parameter can be added. - `store_init_configuration`: - Should take in a `values` dictionary and store them as a one-time experiment configuration - `log`: - Should take in a `values` dictionary and a `step`, and should log them to the run - `name` (`str`): - A unique string name for the tracker, such as `"wandb"` for the wandb tracker. - This will be used for interacting with this tracker specifically - `requires_logging_directory` (`bool`): - Whether a `logging_dir` is needed for this particular tracker and if it uses one. - `tracker`: - This should be implemented as a `@property` function - Should return the internal tracking mechanism the library uses, such as the `run` object for `wandb`. Each method should also utilize the [`state.PartialState`] class if the logger should only be executed on the main process for instance. A brief example can be seen below with an integration with Weights and Biases, containing only the relevant information and logging just on the main process: ```python from accelerate.tracking import GeneralTracker, on_main_process from typing import Optional import wandb class MyCustomTracker(GeneralTracker): name = "wandb" requires_logging_directory = False @on_main_process def __init__(self, run_name: str): self.run_name = run_name run = wandb.init(self.run_name) @property def tracker(self): return self.run.run @on_main_process def store_init_configuration(self, values: dict): wandb.config(values) @on_main_process def log(self, values: dict, step: Optional[int] = None): wandb.log(values, step=step) ``` When you are ready to build your `Accelerator` object, pass in an **instance** of your tracker to [`Accelerator.log_with`] to have it automatically be used with the API: ```python tracker = MyCustomTracker("some_run_name") accelerator = Accelerator(log_with=tracker) ``` These also can be mixed with existing trackers, including with `"all"`: ```python tracker = MyCustomTracker("some_run_name") accelerator = Accelerator(log_with=[tracker, "all"]) ``` ## Accessing the internal tracker If some custom interactions with a tracker might be wanted directly, you can quickly access one using the [`Accelerator.get_tracker`] method. Just pass in the string corresponding to a tracker's `.name` attribute and it will return that tracker on the main process. This example shows doing so with wandb: ```python wandb_tracker = accelerator.get_tracker("wandb") ``` From there you can interact with `wandb`'s `run` object like normal: ```python wandb_run.log_artifact(some_artifact_to_log) ``` <Tip> Trackers built in Accelerate will automatically execute on the correct process, so if a tracker is only meant to be ran on the main process it will do so automatically. </Tip> If you want to truly remove Accelerate's wrapping entirely, you can achieve the same outcome with: ```python wandb_tracker = accelerator.get_tracker("wandb", unwrap=True) with accelerator.on_main_process: wandb_tracker.log_artifact(some_artifact_to_log) ``` ## When a wrapper cannot work If a library has an API that does not follow a strict `.log` with an overall dictionary such as Neptune.AI, logging can be done manually under an `if accelerator.is_main_process` statement: ```diff from accelerate import Accelerator + import neptune.new as neptune accelerator = Accelerator() + run = neptune.init(...) my_model, my_optimizer, my_training_dataloader = accelerate.prepare(my_model, my_optimizer, my_training_dataloader) device = accelerator.device my_model.to(device) for iteration in config["num_iterations"]: for batch in my_training_dataloader: my_optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = my_model(inputs) loss = my_loss_function(outputs, targets) total_loss += loss accelerator.backward(loss) my_optimizer.step() + if accelerator.is_main_process: + run["logs/training/batch/loss"].log(loss) ```
accelerate/docs/source/usage_guides/tracking.md/0
{ "file_path": "accelerate/docs/source/usage_guides/tracking.md", "repo_id": "accelerate", "token_count": 2703 }
1
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a ResNet50 on the Oxford-IIT Pet Dataset # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## # Function to get the label from the filename def extract_label(fname): stem = fname.split(os.path.sep)[-1] return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0] class PetsDataset(Dataset): def __init__(self, file_names, image_transform=None, label_to_id=None): self.file_names = file_names self.image_transform = image_transform self.label_to_id = label_to_id def __len__(self): return len(self.file_names) def __getitem__(self, idx): fname = self.file_names[idx] raw_image = PIL.Image.open(fname) image = raw_image.convert("RGB") if self.image_transform is not None: image = self.image_transform(image) label = extract_label(fname) if self.label_to_id is not None: label = self.label_to_id[label] return {"image": image, "label": label} def training_function(config, args): # Initialize accelerator if args.with_tracking: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) image_size = config["image_size"] if not isinstance(image_size, (list, tuple)): image_size = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run, config) # Grab all the image filenames file_names = [os.path.join(args.data_dir, fname) for fname in os.listdir(args.data_dir) if fname.endswith(".jpg")] # Build the label correspondences all_labels = [extract_label(fname) for fname in file_names] id_to_label = list(set(all_labels)) id_to_label.sort() label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)} # Set the seed before splitting the data. np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Split our filenames between train and validation random_perm = np.random.permutation(len(file_names)) cut = int(0.8 * len(file_names)) train_split = random_perm[:cut] eval_split = random_perm[cut:] # For training we use a simple RandomResizedCrop train_tfm = Compose([RandomResizedCrop(image_size, scale=(0.5, 1.0)), ToTensor()]) train_dataset = PetsDataset( [file_names[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id ) # For evaluation, we use a deterministic Resize eval_tfm = Compose([Resize(image_size), ToTensor()]) eval_dataset = PetsDataset([file_names[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id) # Instantiate dataloaders. train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size, num_workers=4) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Freezing the base model for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True # We normalize the batches of images to be a bit faster. mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None].to(accelerator.device) std = torch.tensor(model.default_cfg["std"])[None, :, None, None].to(accelerator.device) # Instantiate optimizer optimizer = torch.optim.Adam(params=model.parameters(), lr=lr / 25) # Instantiate learning rate scheduler lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=lr, epochs=num_epochs, steps_per_epoch=len(train_dataloader)) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the starting epoch so files are named properly starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # Now we train the model for epoch in range(starting_epoch, num_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) model.eval() accurate = 0 num_elems = 0 for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["label"])) accurate_preds = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() eval_metric = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, }, step=overall_step, ) if checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument("--data_dir", required=True, help="The data folder on disk.") parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--project_dir", type=str, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) args = parser.parse_args() config = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/complete_cv_example.py/0
{ "file_path": "accelerate/examples/complete_cv_example.py", "repo_id": "accelerate", "token_count": 5363 }
2
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from manim import * class Stage4(Scene): def construct(self): mem = Rectangle(height=0.5,width=0.5) fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0) meta_mem = Rectangle(height=0.25,width=0.25) cpu_left_col_base = [mem.copy() for i in range(6)] cpu_right_col_base = [mem.copy() for i in range(6)] cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0) cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0) cpu_rects = VGroup(cpu_left_col,cpu_right_col).arrange(RIGHT, buff=0) cpu_text = Text("CPU", font_size=24) cpu = Group(cpu_rects,cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) cpu.move_to([-2.5,-.5,0]) self.add(cpu) gpu_base = [mem.copy() for i in range(4)] gpu_rect = VGroup(*gpu_base).arrange(UP,buff=0) gpu_text = Text("GPU", font_size=24) gpu = Group(gpu_rect,gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) gpu.move_to([-1,-1,0]) self.add(gpu) model_base = [mem.copy() for i in range(6)] model_rect = VGroup(*model_base).arrange(RIGHT,buff=0) model_text = Text("Model", font_size=24) model = Group(model_rect,model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) model.move_to([3, -1., 0]) self.add(model) model_cpu_arr = [] model_meta_arr = [] for i,rect in enumerate(model_base): rect.set_stroke(YELLOW) cpu_target = Rectangle(height=0.46/4,width=0.46/3).set_stroke(width=0.).set_fill(YELLOW, opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN+LEFT), buff=0.02, direction=UP) cpu_target.set_x(cpu_target.get_x()+0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=UP, buff=0.) else: cpu_target.next_to(model_cpu_arr[i-1], direction=RIGHT, buff=0.) self.add(cpu_target) model_cpu_arr.append(cpu_target) self.add(*model_cpu_arr, *model_meta_arr) disk_left_col_base = [meta_mem.copy() for i in range(6)] disk_right_col_base = [meta_mem.copy() for i in range(6)] disk_left_col = VGroup(*disk_left_col_base).arrange(UP, buff=0) disk_right_col = VGroup(*disk_right_col_base).arrange(UP, buff=0) disk_rects = VGroup(disk_left_col,disk_right_col).arrange(RIGHT, buff=0) disk_text = Text("Disk", font_size=24) disk = Group(disk_rects,disk_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) disk.move_to([-4.,-1.25,0]) self.add(disk_text, disk_rects) cpu_disk_arr = [] for i in range(6): target = fill.copy().set_fill(BLUE, opacity=0.8) target.move_to(disk_left_col_base[i]).scale(0.5) cpu_disk_arr.append(target) self.add(*cpu_disk_arr) key = Square(side_length=2.2) key.move_to([-5, 2, 0]) key_text = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(key_text, key) blue_text = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint", font_size=18, ) blue_text.next_to(key_text, DOWN*2.4, aligned_edge=key_text.get_left()) self.add(blue_text) step_5 = MarkupText( f'The offloaded weights are all sent to the CPU.', font_size=24 ) step_5.move_to([2, 2, 0]) self.play(Write(step_5, run_time=3)) for i in range(6): rect = cpu_disk_arr[i] cp2 = rect.copy().set_fill(BLUE, opacity=0.8).scale(2.0) cp2.generate_target() cp2.target.move_to(model_base[i]) if i == 0: rect.set_fill(BLUE, opacity=0.8) rect.generate_target() rect.target.move_to(cpu_left_col_base[0]).scale(2.0) self.remove(*model_meta_arr, *model_cpu_arr, ) else: rect.generate_target() rect.target.move_to(cpu_left_col_base[i]).scale(2.0) self.play( MoveToTarget(rect), MoveToTarget(cp2), model_base[i].animate.set_stroke(WHITE) ) self.play(FadeOut(step_5)) step_5 = MarkupText( f'Finally, hooks are added to each weight in the model\nto transfer the weights from CPU to GPU\n\t\tand back when needed.', font_size=24 ) step_5.move_to([2, 2, 0]) self.play(Write(step_5, run_time=3)) arrows = [] animations = [] for i in range(6): a = Arrow(start=UP, end=DOWN, color=RED, buff=.5) a.next_to(model_base[i].get_left(), UP, buff=0.2) arrows.append(a) animations.append(Write(a)) self.play(*animations) self.wait()
accelerate/manim_animations/big_model_inference/stage_4.py/0
{ "file_path": "accelerate/manim_animations/big_model_inference/stage_4.py", "repo_id": "accelerate", "token_count": 2919 }
3
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter description = "Create a default config file for Accelerate with only a few flags set." def write_basic_config(mixed_precision="no", save_location: str = default_json_config_file, use_xpu: bool = False): """ Creates and saves a basic cluster config to be used on a local machine with potentially multiple GPUs. Will also set CPU if it is a CPU-only machine. Args: mixed_precision (`str`, *optional*, defaults to "no"): Mixed Precision to use. Should be one of "no", "fp16", or "bf16" save_location (`str`, *optional*, defaults to `default_json_config_file`): Optional custom save location. Should be passed to `--config_file` when using `accelerate launch`. Default location is inside the huggingface cache folder (`~/.cache/huggingface`) but can be overriden by setting the `HF_HOME` environmental variable, followed by `accelerate/default_config.yaml`. use_xpu (`bool`, *optional*, defaults to `False`): Whether to use XPU if available. """ path = Path(save_location) path.parent.mkdir(parents=True, exist_ok=True) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False mixed_precision = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) config = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() config["num_processes"] = num_gpus config["use_cpu"] = False if num_gpus > 1: config["distributed_type"] = "MULTI_GPU" else: config["distributed_type"] = "NO" elif is_xpu_available() and use_xpu: num_xpus = torch.xpu.device_count() config["num_processes"] = num_xpus config["use_cpu"] = False if num_xpus > 1: config["distributed_type"] = "MULTI_XPU" else: config["distributed_type"] = "NO" elif is_npu_available(): num_npus = torch.npu.device_count() config["num_processes"] = num_npus config["use_cpu"] = False if num_npus > 1: config["distributed_type"] = "MULTI_NPU" else: config["distributed_type"] = "NO" else: num_xpus = 0 config["use_cpu"] = True config["num_processes"] = 1 config["distributed_type"] = "NO" config["debug"] = False config = ClusterConfig(**config) config.to_json_file(path) return path def default_command_parser(parser, parents): parser = parser.add_parser("default", parents=parents, help=description, formatter_class=SubcommandHelpFormatter) parser.add_argument( "--config_file", default=default_json_config_file, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), dest="save_location", ) parser.add_argument( "--mixed_precision", choices=["no", "fp16", "bf16"], type=str, help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.", default="no", ) parser.set_defaults(func=default_config_command) return parser def default_config_command(args): config_file = write_basic_config(args.mixed_precision, args.save_location) if config_file: print(f"accelerate configuration saved at {config_file}")
accelerate/src/accelerate/commands/config/default.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/default.py", "repo_id": "accelerate", "token_count": 1955 }
4
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import tempfile import torch from .state import AcceleratorState, PartialState from .utils import ( PrecisionType, PrepareForLaunch, are_libraries_initialized, check_cuda_p2p_ib_support, is_mps_available, patch_environment, ) def test_launch(): "Verify a `PartialState` can be initialized." _ = PartialState() def notebook_launcher( function, args=(), num_processes=None, mixed_precision="no", use_port="29500", master_addr="127.0.0.1", node_rank=0, num_nodes=1, ): """ Launches a training function, using several processes or multiple nodes if it's possible in the current environment (TPU with multiple cores for instance). <Tip warning={true}> To use this function absolutely zero calls to a CUDA device must be made in the notebook session before calling. If any have been made, you will need to restart the notebook and make sure no cells use any CUDA capability. Setting `ACCELERATE_DEBUG_MODE="1"` in your environment will run a test before truly launching to ensure that none of those calls have been made. </Tip> Args: function (`Callable`): The training function to execute. If it accepts arguments, the first argument should be the index of the process run. args (`Tuple`): Tuple of arguments to pass to the function (it will receive `*args`). num_processes (`int`, *optional*): The number of processes to use for training. Will default to 8 in Colab/Kaggle if a TPU is available, to the number of GPUs available otherwise. mixed_precision (`str`, *optional*, defaults to `"no"`): If `fp16` or `bf16`, will use mixed precision training on multi-GPU. use_port (`str`, *optional*, defaults to `"29500"`): The port to use to communicate between processes when launching a multi-GPU training. master_addr (`str`, *optional*, defaults to `"127.0.0.1"`): The address to use for communication between processes. node_rank (`int`, *optional*, defaults to 0): The rank of the current node. num_nodes (`int`, *optional*, defaults to 1): The number of nodes to use for training. Example: ```python # Assume this is defined in a Jupyter Notebook on an instance with two GPUs from accelerate import notebook_launcher def train(*args): # Your training function here ... notebook_launcher(train, args=(arg1, arg2), num_processes=2, mixed_precision="fp16") ``` """ # Are we in a google colab or a Kaggle Kernel? in_colab = False in_kaggle = False if any(key.startswith("KAGGLE") for key in os.environ.keys()): in_kaggle = True elif "IPython" in sys.modules: in_colab = "google.colab" in str(sys.modules["IPython"].get_ipython()) try: mixed_precision = PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", None) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: num_processes = 8 launcher = PrepareForLaunch(function, distributed_type="TPU") print(f"Launching a training on {num_processes} TPU cores.") xmp.spawn(launcher, args=args, nprocs=num_processes, start_method="fork") elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on one CPU.") function(*args) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if node_rank >= num_nodes: raise ValueError("The node_rank must be less than the number of nodes.") if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) # Check for specific libraries known to initialize CUDA that users constantly use problematic_imports = are_libraries_initialized("bitsandbytes") if len(problematic_imports) > 0: err = ( "Could not start distributed process. Libraries known to initialize CUDA upon import have been " "imported already. Please keep these imports inside your training function to try and help with this:" ) for lib_name in problematic_imports: err += f"\n\t* `{lib_name}`" raise RuntimeError(err) patched_env = dict( nproc=num_processes, node_rank=node_rank, world_size=num_nodes * num_processes, master_addr=master_addr, master_port=use_port, mixed_precision=mixed_precision, ) # Check for CUDA P2P and IB issues if not check_cuda_p2p_ib_support(): patched_env["nccl_p2p_disable"] = "1" patched_env["nccl_ib_disable"] = "1" # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment(**patched_env): # First dummy launch if os.environ.get("ACCELERATE_DEBUG_MODE", "false").lower() == "true": launcher = PrepareForLaunch(test_launch, distributed_type="MULTI_GPU") try: start_processes(launcher, args=(), nprocs=num_processes, start_method="fork") except ProcessRaisedException as e: err = "An issue was found when verifying a stable environment for the notebook launcher." if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( f"{err}" "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic and causing CUDA to be initialized." ) from e else: raise RuntimeError(f"{err} The following error was raised: {e}") from e # Now the actual launch launcher = PrepareForLaunch(function, distributed_type="MULTI_GPU") print(f"Launching training on {num_processes} GPUs.") try: start_processes(launcher, args=args, nprocs=num_processes, start_method="fork") except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic and causing CUDA to be initialized." ) from e else: raise RuntimeError(f"An issue was found when launching the training: {e}") from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" print("Launching training on MPS.") elif torch.cuda.is_available(): print("Launching training on one GPU.") else: print("Launching training on CPU.") function(*args) def debug_launcher(function, args=(), num_processes=2): """ Launches a training function using several processes on CPU for debugging purposes. <Tip warning={true}> This function is provided for internal testing and debugging, but it's not intended for real trainings. It will only use the CPU. </Tip> Args: function (`Callable`): The training function to execute. args (`Tuple`): Tuple of arguments to pass to the function (it will receive `*args`). num_processes (`int`, *optional*, defaults to 2): The number of processes to use for training. """ from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=num_processes, master_addr="127.0.0.1", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ): launcher = PrepareForLaunch(function, debug=True) start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
accelerate/src/accelerate/launchers.py/0
{ "file_path": "accelerate/src/accelerate/launchers.py", "repo_id": "accelerate", "token_count": 4790 }
5
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class DummyIterableDataset(IterableDataset): def __init__(self, data): self.data = data def __iter__(self): for element in self.data: yield element def create_accelerator(even_batches=True): accelerator = Accelerator(even_batches=even_batches) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def create_dataloader(accelerator: Accelerator, dataset_size: int, batch_size: int, iterable: bool = False): """ Create a simple DataLoader to use during the test cases """ if iterable: dataset = DummyIterableDataset(torch.as_tensor(range(dataset_size))) else: dataset = TensorDataset(torch.as_tensor(range(dataset_size))) dl = DataLoader(dataset, batch_size=batch_size) dl = accelerator.prepare(dl) return dl def verify_dataloader_batch_sizes( accelerator: Accelerator, dataset_size: int, batch_size: int, process_0_expected_batch_sizes: List[int], process_1_expected_batch_sizes: List[int], ): """ A helper function for verifying the batch sizes coming from a prepared dataloader in each process """ dl = create_dataloader(accelerator=accelerator, dataset_size=dataset_size, batch_size=batch_size) batch_sizes = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def test_default_ensures_even_batch_sizes(): accelerator = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( accelerator, dataset_size=3, batch_size=1, process_0_expected_batch_sizes=[1, 1], process_1_expected_batch_sizes=[1, 1], ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( accelerator, dataset_size=7, batch_size=2, process_0_expected_batch_sizes=[2, 2], process_1_expected_batch_sizes=[2, 2], ) def test_can_disable_even_batches(): accelerator = create_accelerator(even_batches=False) verify_dataloader_batch_sizes( accelerator, dataset_size=3, batch_size=1, process_0_expected_batch_sizes=[1, 1], process_1_expected_batch_sizes=[1], ) verify_dataloader_batch_sizes( accelerator, dataset_size=7, batch_size=2, process_0_expected_batch_sizes=[2, 2], process_1_expected_batch_sizes=[2, 1], ) def test_can_join_uneven_inputs(): accelerator = create_accelerator(even_batches=False) model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) batch_idxs = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(dl): output = ddp_model(batch[0].float()) loss = output.sum() loss.backward() batch_idxs.append(batch_idx) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def test_join_raises_warning_for_non_ddp_distributed(accelerator): with warnings.catch_warnings(record=True) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category, UserWarning) assert "only supported for multi-GPU" in str(w[-1].message) def test_join_can_override_even_batches(): default_even_batches = True overridden_even_batches = False accelerator = create_accelerator(even_batches=default_even_batches) model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) train_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) valid_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches): train_dl_overridden_value = train_dl.batch_sampler.even_batches valid_dl_overridden_value = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def test_join_can_override_for_mixed_type_dataloaders(): default_even_batches = True overridden_even_batches = False accelerator = create_accelerator(even_batches=default_even_batches) model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True) batch_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings("ignore") try: with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches): batch_dl_overridden_value = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def test_join_raises_warning_for_iterable_when_overriding_even_batches(): accelerator = create_accelerator() model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True) with warnings.catch_warnings(record=True) as w: with accelerator.join_uneven_inputs([ddp_model], even_batches=False): pass assert issubclass(w[-1].category, UserWarning) assert "only supported for map-style datasets" in str(w[-1].message) def main(): accelerator = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes") test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled") test_can_disable_even_batches() accelerator.print("Test joining uneven inputs") test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs") test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types") test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders") test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning") original_state = accelerator.state.distributed_type accelerator.state.distributed_type = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(accelerator) accelerator.state.distributed_type = original_state if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_distributed_data_loop.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_distributed_data_loop.py", "repo_id": "accelerate", "token_count": 3098 }
6
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import warnings from ast import literal_eval from typing import Any, Dict, List, Tuple import torch from ..commands.config.config_args import SageMakerConfig from ..utils import ( DynamoBackend, PrecisionType, is_ipex_available, is_npu_available, is_xpu_available, ) from ..utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS from ..utils.other import is_port_in_use, merge_dicts from .dataclasses import DistributedType, SageMakerDistributedType def _filter_args(args, parser, default_args=[]): """ Filters out all `accelerate` specific args """ new_args, _ = parser.parse_known_args(default_args) for key, value in vars(args).items(): if key in vars(new_args).keys(): setattr(new_args, key, value) return new_args def prepare_simple_launcher_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]: """ Prepares and returns the command list and an environment with the correct simple launcher environment variables. """ cmd = [] if args.no_python and args.module: raise ValueError("--module and --no_python cannot be used together") if not args.no_python: cmd.append(sys.executable) if args.module: cmd.append("-m") cmd.append(args.training_script) cmd.extend(args.training_script_args) current_env = os.environ.copy() current_env["ACCELERATE_USE_CPU"] = str(args.cpu or args.use_cpu) if args.debug: current_env["ACCELERATE_DEBUG_MODE"] = "true" if args.gpu_ids != "all" and args.gpu_ids is not None: if is_xpu_available(): current_env["ZE_AFFINITY_MASK"] = args.gpu_ids elif is_npu_available(): current_env["ASCEND_RT_VISIBLE_DEVICES"] = args.gpu_ids else: current_env["CUDA_VISIBLE_DEVICES"] = args.gpu_ids if args.num_machines > 1: current_env["MASTER_ADDR"] = args.main_process_ip current_env["MASTER_PORT"] = str(args.main_process_port) elif args.num_processes > 1: current_env["MASTER_ADDR"] = args.main_process_ip if args.main_process_ip is not None else "127.0.0.1" current_env["MASTER_PORT"] = str(args.main_process_port) if args.main_process_port is not None else "29500" try: mixed_precision = PrecisionType(args.mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision) try: dynamo_backend = DynamoBackend(args.dynamo_backend.upper()) except ValueError: raise ValueError( f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}." ) current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph) current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic) current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process) if is_ipex_available(): current_env["ACCELERATE_USE_IPEX"] = str(args.ipex).lower() current_env["ACCELERATE_USE_XPU"] = str(args.use_xpu).lower() return cmd, current_env def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]: """ Prepares and returns an environment with the correct multi-GPU environment variables. """ num_processes = getattr(args, "num_processes") num_machines = getattr(args, "num_machines") main_process_ip = getattr(args, "main_process_ip") main_process_port = getattr(args, "main_process_port") if num_machines > 1: setattr(args, "nproc_per_node", str(num_processes // num_machines)) setattr(args, "nnodes", str(num_machines)) setattr(args, "node_rank", int(args.machine_rank)) if getattr(args, "same_network", False): setattr(args, "master_addr", str(main_process_ip)) setattr(args, "master_port", str(main_process_port)) else: setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}") else: setattr(args, "nproc_per_node", str(num_processes)) if main_process_port is not None: setattr(args, "master_port", str(main_process_port)) if main_process_port is None: main_process_port = 29500 # only need to check port availability in main process, in case we have to start multiple launchers on the same machine # for some reasons like splitting log files. need_port_check = num_machines <= 1 or int(args.machine_rank) == 0 if need_port_check and is_port_in_use(main_process_port): raise ConnectionError( f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. " "Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)" " and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`." ) if args.module and args.no_python: raise ValueError("--module and --no_python cannot be used together") elif args.module: setattr(args, "module", True) elif args.no_python: setattr(args, "no_python", True) current_env = os.environ.copy() if args.debug: current_env["ACCELERATE_DEBUG_MODE"] = "true" gpu_ids = getattr(args, "gpu_ids", "all") if gpu_ids != "all" and args.gpu_ids is not None: if is_xpu_available(): current_env["ZE_AFFINITY_MASK"] = gpu_ids elif is_npu_available(): current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids else: current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids mixed_precision = args.mixed_precision.lower() try: mixed_precision = PrecisionType(mixed_precision) except ValueError: raise ValueError(f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}.") current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision) try: dynamo_backend = DynamoBackend(args.dynamo_backend.upper()) except ValueError: raise ValueError( f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}." ) current_env["ACCELERATE_DYNAMO_BACKEND"] = dynamo_backend.value current_env["ACCELERATE_DYNAMO_MODE"] = args.dynamo_mode current_env["ACCELERATE_DYNAMO_USE_FULLGRAPH"] = str(args.dynamo_use_fullgraph) current_env["ACCELERATE_DYNAMO_USE_DYNAMIC"] = str(args.dynamo_use_dynamic) if args.use_fsdp: current_env["ACCELERATE_USE_FSDP"] = "true" if args.fsdp_cpu_ram_efficient_loading and not args.fsdp_sync_module_states: raise ValueError("When using `--fsdp_cpu_ram_efficient_loading` set `--fsdp_sync_module_states` to `True`") current_env["FSDP_SHARDING_STRATEGY"] = str(args.fsdp_sharding_strategy) current_env["FSDP_OFFLOAD_PARAMS"] = str(args.fsdp_offload_params).lower() current_env["FSDP_MIN_NUM_PARAMS"] = str(args.fsdp_min_num_params) if args.fsdp_auto_wrap_policy is not None: current_env["FSDP_AUTO_WRAP_POLICY"] = str(args.fsdp_auto_wrap_policy) if args.fsdp_transformer_layer_cls_to_wrap is not None: current_env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = str(args.fsdp_transformer_layer_cls_to_wrap) if args.fsdp_backward_prefetch_policy is not None: warnings.warn( "`fsdp_backward_prefetch_policy` is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use" " `fsdp_backward_prefetch` instead", FutureWarning, ) args.fsdp_backward_prefetch = args.fsdp_backward_prefetch_policy if args.fsdp_backward_prefetch is not None: current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch) if args.fsdp_state_dict_type is not None: current_env["FSDP_STATE_DICT_TYPE"] = str(args.fsdp_state_dict_type) current_env["FSDP_FORWARD_PREFETCH"] = str(args.fsdp_forward_prefetch).lower() current_env["FSDP_USE_ORIG_PARAMS"] = str(args.fsdp_use_orig_params).lower() current_env["FSDP_CPU_RAM_EFFICIENT_LOADING"] = str(args.fsdp_cpu_ram_efficient_loading).lower() current_env["FSDP_SYNC_MODULE_STATES"] = str(args.fsdp_sync_module_states).lower() if args.use_megatron_lm: prefix = "MEGATRON_LM_" current_env["ACCELERATE_USE_MEGATRON_LM"] = "true" current_env[prefix + "TP_DEGREE"] = str(args.megatron_lm_tp_degree) current_env[prefix + "PP_DEGREE"] = str(args.megatron_lm_pp_degree) current_env[prefix + "GRADIENT_CLIPPING"] = str(args.megatron_lm_gradient_clipping) if args.megatron_lm_num_micro_batches is not None: current_env[prefix + "NUM_MICRO_BATCHES"] = str(args.megatron_lm_num_micro_batches) if args.megatron_lm_sequence_parallelism is not None: current_env[prefix + "SEQUENCE_PARALLELISM"] = str(args.megatron_lm_sequence_parallelism) if args.megatron_lm_recompute_activations is not None: current_env[prefix + "RECOMPUTE_ACTIVATIONS"] = str(args.megatron_lm_recompute_activations) if args.megatron_lm_use_distributed_optimizer is not None: current_env[prefix + "USE_DISTRIBUTED_OPTIMIZER"] = str(args.megatron_lm_use_distributed_optimizer) current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process) return current_env def prepare_deepspeed_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict[str, str]]: """ Prepares and returns the command list and an environment with the correct DeepSpeed environment variables. """ num_processes = getattr(args, "num_processes") num_machines = getattr(args, "num_machines") main_process_ip = getattr(args, "main_process_ip") main_process_port = getattr(args, "main_process_port") cmd = None # make sure launcher is not None if args.deepspeed_multinode_launcher is None: # set to default pdsh setattr(args, "deepspeed_multinode_launcher", DEEPSPEED_MULTINODE_LAUNCHERS[0]) if num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]: cmd = ["deepspeed", "--no_local_rank"] cmd.extend(["--hostfile", str(args.deepspeed_hostfile), "--launcher", str(args.deepspeed_multinode_launcher)]) if args.deepspeed_exclusion_filter is not None: cmd.extend( [ "--exclude", str(args.deepspeed_exclusion_filter), ] ) elif args.deepspeed_inclusion_filter is not None: cmd.extend( [ "--include", str(args.deepspeed_inclusion_filter), ] ) else: cmd.extend(["--num_gpus", str(args.num_processes // args.num_machines)]) cmd.extend(["--master_port", str(main_process_port)]) if args.module and args.no_python: raise ValueError("--module and --no_python cannot be used together") elif args.module: cmd.append("--module") elif args.no_python: cmd.append("--no_python") cmd.append(args.training_script) cmd.extend(args.training_script_args) elif num_machines > 1 and args.deepspeed_multinode_launcher == DEEPSPEED_MULTINODE_LAUNCHERS[1]: setattr(args, "nproc_per_node", str(num_processes // num_machines)) setattr(args, "nnodes", str(num_machines)) setattr(args, "node_rank", int(args.machine_rank)) if getattr(args, "same_network", False): setattr(args, "master_addr", str(main_process_ip)) setattr(args, "master_port", str(main_process_port)) else: setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}") else: setattr(args, "nproc_per_node", str(num_processes)) if main_process_port is not None: setattr(args, "master_port", str(main_process_port)) if main_process_port is None: main_process_port = 29500 # only need to check port availability in main process, in case we have to start multiple launchers on the same machine # for some reasons like splitting log files. need_port_check = num_machines <= 1 or int(args.machine_rank) == 0 if need_port_check and is_port_in_use(main_process_port): raise ConnectionError( f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. " "Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)" " and rerun your script. To automatically use the next open port (on a single node), you can set this to `0`." ) if args.module and args.no_python: raise ValueError("--module and --no_python cannot be used together") elif args.module: setattr(args, "module", True) elif args.no_python: setattr(args, "no_python", True) current_env = os.environ.copy() if args.debug: current_env["ACCELERATE_DEBUG_MODE"] = "true" gpu_ids = getattr(args, "gpu_ids", "all") if gpu_ids != "all" and args.gpu_ids is not None: if is_xpu_available(): current_env["ZE_AFFINITY_MASK"] = gpu_ids elif is_npu_available(): current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids else: current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids try: mixed_precision = PrecisionType(args.mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) current_env["PYTHONPATH"] = env_var_path_add("PYTHONPATH", os.path.abspath(".")) current_env["ACCELERATE_MIXED_PRECISION"] = str(mixed_precision) current_env["ACCELERATE_CONFIG_DS_FIELDS"] = str(args.deepspeed_fields_from_accelerate_config).lower() current_env["ACCELERATE_USE_DEEPSPEED"] = "true" if args.zero_stage is not None: current_env["ACCELERATE_DEEPSPEED_ZERO_STAGE"] = str(args.zero_stage) if args.gradient_accumulation_steps is not None: current_env["ACCELERATE_GRADIENT_ACCUMULATION_STEPS"] = str(args.gradient_accumulation_steps) if args.gradient_clipping is not None: current_env["ACCELERATE_GRADIENT_CLIPPING"] = str(args.gradient_clipping).lower() if args.offload_optimizer_device is not None: current_env["ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE"] = str(args.offload_optimizer_device).lower() if args.offload_param_device is not None: current_env["ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE"] = str(args.offload_param_device).lower() if args.zero3_init_flag is not None: current_env["ACCELERATE_DEEPSPEED_ZERO3_INIT"] = str(args.zero3_init_flag).lower() if args.zero3_save_16bit_model is not None: current_env["ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL"] = str(args.zero3_save_16bit_model).lower() if args.deepspeed_config_file is not None: current_env["ACCELERATE_DEEPSPEED_CONFIG_FILE"] = str(args.deepspeed_config_file) return cmd, current_env def prepare_tpu( args: argparse.Namespace, current_env: Dict[str, str], pod: bool = False ) -> Tuple[argparse.Namespace, Dict[str, str]]: """ Prepares and returns an environment with the correct TPU environment variables. """ if args.mixed_precision == "bf16": if args.downcast_bf16: current_env["XLA_DOWNCAST_BF16"] = "1" else: current_env["XLA_USE_BF16"] = "1" if args.debug: current_env["ACCELERATE_DEBUG_MODE"] = "true" if pod: # Take explicit args and set them up for XLA args.vm = args.tpu_vm args.tpu = args.tpu_name return args, current_env def _convert_nargs_to_dict(nargs: List[str]) -> Dict[str, str]: if len(nargs) < 0: return {} # helper function to infer type for argsparser def _infer_type(s): try: s = float(s) if s // 1 == s: return int(s) return s except ValueError: return s parser = argparse.ArgumentParser() _, unknown = parser.parse_known_args(nargs) for index, argument in enumerate(unknown): if argument.startswith(("-", "--")): action = None if index + 1 < len(unknown): # checks if next index would be in list if unknown[index + 1].startswith(("-", "--")): # checks if next element is an key # raise an error if element is store_true or store_false raise ValueError( "SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types" ) else: # raise an error if last element is store_true or store_false raise ValueError( "SageMaker doesn’t support argparse actions for `store_true` or `store_false`. Please define explicit types" ) # adds argument to parser based on action_store true if action is None: parser.add_argument(argument, type=_infer_type) else: parser.add_argument(argument, action=action) return { key: (literal_eval(value) if value in ("True", "False") else value) for key, value in parser.parse_args(nargs).__dict__.items() } def prepare_sagemager_args_inputs( sagemaker_config: SageMakerConfig, args: argparse.Namespace ) -> Tuple[argparse.Namespace, Dict[str, Any]]: # configure environment print("Configuring Amazon SageMaker environment") os.environ["AWS_DEFAULT_REGION"] = sagemaker_config.region # configure credentials if sagemaker_config.profile is not None: os.environ["AWS_PROFILE"] = sagemaker_config.profile elif args.aws_access_key_id is not None and args.aws_secret_access_key is not None: os.environ["AWS_ACCESS_KEY_ID"] = args.aws_access_key_id os.environ["AWS_SECRET_ACCESS_KEY"] = args.aws_secret_access_key else: raise EnvironmentError( "You need to provide an aws_access_key_id and aws_secret_access_key when not using aws_profile" ) # extract needed arguments source_dir = os.path.dirname(args.training_script) if not source_dir: # checks if string is empty source_dir = "." entry_point = os.path.basename(args.training_script) if not entry_point.endswith(".py"): raise ValueError(f'Your training script should be a python script and not "{entry_point}"') print("Converting Arguments to Hyperparameters") hyperparameters = _convert_nargs_to_dict(args.training_script_args) try: mixed_precision = PrecisionType(args.mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) try: dynamo_backend = DynamoBackend(args.dynamo_backend.upper()) except ValueError: raise ValueError( f"Unknown dynamo backend: {args.dynamo_backend.upper()}. Choose between {DynamoBackend.list()}." ) # Environment variables to be set for use during training job environment = { "ACCELERATE_USE_SAGEMAKER": "true", "ACCELERATE_MIXED_PRECISION": str(mixed_precision), "ACCELERATE_DYNAMO_BACKEND": dynamo_backend.value, "ACCELERATE_DYNAMO_MODE": args.dynamo_mode, "ACCELERATE_DYNAMO_USE_FULLGRAPH": str(args.dynamo_use_fullgraph), "ACCELERATE_DYNAMO_USE_DYNAMIC": str(args.dynamo_use_dynamic), "ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE": sagemaker_config.distributed_type.value, } # configure distribution set up distribution = None if sagemaker_config.distributed_type == SageMakerDistributedType.DATA_PARALLEL: distribution = {"smdistributed": {"dataparallel": {"enabled": True}}} # configure sagemaker inputs sagemaker_inputs = None if sagemaker_config.sagemaker_inputs_file is not None: print(f"Loading SageMaker Inputs from {sagemaker_config.sagemaker_inputs_file} file") sagemaker_inputs = {} with open(sagemaker_config.sagemaker_inputs_file) as file: for i, line in enumerate(file): if i == 0: continue l = line.split("\t") sagemaker_inputs[l[0]] = l[1].strip() print(f"Loaded SageMaker Inputs: {sagemaker_inputs}") # configure sagemaker metrics sagemaker_metrics = None if sagemaker_config.sagemaker_metrics_file is not None: print(f"Loading SageMaker Metrics from {sagemaker_config.sagemaker_metrics_file} file") sagemaker_metrics = [] with open(sagemaker_config.sagemaker_metrics_file) as file: for i, line in enumerate(file): if i == 0: continue l = line.split("\t") metric_dict = { "Name": l[0], "Regex": l[1].strip(), } sagemaker_metrics.append(metric_dict) print(f"Loaded SageMaker Metrics: {sagemaker_metrics}") # configure session print("Creating Estimator") args = { "image_uri": sagemaker_config.image_uri, "entry_point": entry_point, "source_dir": source_dir, "role": sagemaker_config.iam_role_name, "transformers_version": sagemaker_config.transformers_version, "pytorch_version": sagemaker_config.pytorch_version, "py_version": sagemaker_config.py_version, "base_job_name": sagemaker_config.base_job_name, "instance_count": sagemaker_config.num_machines, "instance_type": sagemaker_config.ec2_instance_type, "debugger_hook_config": False, "distribution": distribution, "hyperparameters": hyperparameters, "environment": environment, "metric_definitions": sagemaker_metrics, } if sagemaker_config.additional_args is not None: args = merge_dicts(sagemaker_config.additional_args, args) return args, sagemaker_inputs def env_var_path_add(env_var_name, path_to_add): """ Extends a path-based environment variable's value with a new path and returns the updated value. It's up to the caller to set it in os.environ. """ paths = [p for p in os.environ.get(env_var_name, "").split(":") if len(p) > 0] paths.append(str(path_to_add)) return ":".join(paths) class PrepareForLaunch: """ Prepare a function that will launched in a distributed setup. Args: launcher (`Callable`): The function to launch. distributed_type ([`~state.DistributedType`]): The distributed type to prepare for. debug (`bool`, *optional*, defaults to `False`): Whether or not this is a debug launch. """ def __init__(self, launcher, distributed_type="NO", debug=False): self.launcher = launcher self.distributed_type = DistributedType(distributed_type) self.debug = debug def __call__(self, index, *args): if self.debug: world_size = int(os.environ.get("WORLD_SIZE")) rdv_file = os.environ.get("ACCELERATE_DEBUG_RDV_FILE") torch.distributed.init_process_group( "gloo", rank=index, store=torch.distributed.FileStore(rdv_file, world_size), world_size=world_size, ) elif self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, DistributedType.MULTI_CPU, ): # Prepare the environment for torch.distributed os.environ["LOCAL_RANK"] = str(index) nproc = int(os.environ.get("NPROC", 1)) node_rank = int(os.environ.get("NODE_RANK", 0)) os.environ["RANK"] = str(nproc * node_rank + index) os.environ["FORK_LAUNCHED"] = str(1) self.launcher(*args)
accelerate/src/accelerate/utils/launch.py/0
{ "file_path": "accelerate/src/accelerate/utils/launch.py", "repo_id": "accelerate", "token_count": 10976 }
7
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_fsdp, require_multi_device, require_non_cpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) BERT_BASE_CASED = "bert-base-cased" FP16 = "fp16" BF16 = "bf16" dtypes = [FP16, BF16] @require_fsdp @require_non_cpu class FSDPPluginIntegration(AccelerateTestCase): def setUp(self): super().setUp() self.dist_env = dict( ACCELERATE_USE_FSDP="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def test_sharding_strategy(self): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy # check that giving enums works fine for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): env = self.dist_env.copy() env["FSDP_SHARDING_STRATEGY"] = f"{i + 1}" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1)) # check that giving names works fine for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): env = self.dist_env.copy() env["FSDP_SHARDING_STRATEGY"] = strategy with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1)) def test_backward_prefetch(self): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(FSDP_BACKWARD_PREFETCH): env = self.dist_env.copy() env["FSDP_BACKWARD_PREFETCH"] = prefetch_policy with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch, BackwardPrefetch(i + 1)) def test_state_dict_type(self): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(FSDP_STATE_DICT_TYPE): env = self.dist_env.copy() env["FSDP_STATE_DICT_TYPE"] = state_dict_type with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type, StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.rank0_only) def test_auto_wrap_policy(self): model = AutoModel.from_pretrained(BERT_BASE_CASED) for policy in FSDP_AUTO_WRAP_POLICY: env = self.dist_env.copy() env["FSDP_AUTO_WRAP_POLICY"] = policy if policy == "TRANSFORMER_BASED_WRAP": env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "BertLayer" elif policy == "SIZE_BASED_WRAP": env["FSDP_MIN_NUM_PARAMS"] = "2000" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(model) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) env = self.dist_env.copy() env["FSDP_AUTO_WRAP_POLICY"] = "TRANSFORMER_BASED_WRAP" env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "T5Layer" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() with self.assertRaises(Exception) as cm: fsdp_plugin.set_auto_wrap_policy(model) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) env = self.dist_env.copy() env["FSDP_AUTO_WRAP_POLICY"] = "SIZE_BASED_WRAP" env["FSDP_MIN_NUM_PARAMS"] = "0" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(model) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def test_mixed_precision(self): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: env = self.dist_env.copy() env["ACCELERATE_MIXED_PRECISION"] = mp_dtype with mockenv_context(**env): accelerator = Accelerator() if mp_dtype == "fp16": dtype = torch.float16 elif mp_dtype == "bf16": dtype = torch.bfloat16 mp_policy = MixedPrecision(param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=dtype) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy, mp_policy) if mp_dtype == FP16: self.assertTrue(isinstance(accelerator.scaler, ShardedGradScaler)) elif mp_dtype == BF16: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(True) def test_cpu_offload(self): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: env = self.dist_env.copy() env["FSDP_OFFLOAD_PARAMS"] = str(flag).lower() with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload, CPUOffload(offload_params=flag)) @require_fsdp @require_multi_device @slow class FSDPIntegrationTest(TempDirTestCase): def setUp(self): super().setUp() self.performance_lower_bound = 0.82 self.performance_configs = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] self.peak_memory_usage_upper_bound = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } self.n_train = 160 self.n_val = 160 mod_file = inspect.getfile(accelerate.test_utils) self.test_scripts_folder = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def test_performance(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_performance.py") cmd = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: cmd_config = cmd.copy() for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={strategy}") break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy()) def test_checkpointing(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_checkpointing.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): cmd_config = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={strategy}") if strategy != "FULL_SHARD": continue state_dict_config_index = len(cmd_config) for state_dict_type in FSDP_STATE_DICT_TYPE: # Todo: Currently failing for `LOCAL_STATE_DICT` with error # Unexpected key(s) in state_dict: "_fsdp_wrapped_module._flat_param". if state_dict_type == "LOCAL_STATE_DICT": continue cmd_config = cmd_config[:state_dict_config_index] cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy()) cmd_config = cmd_config[:-1] resume_from_checkpoint = os.path.join(self.tmpdir, "epoch_0") cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy()) def test_peak_memory_usage(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_peak_memory_usage.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): cmd_config = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={strategy}") break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy())
accelerate/tests/fsdp/test_fsdp.py/0
{ "file_path": "accelerate/tests/fsdp/test_fsdp.py", "repo_id": "accelerate", "token_count": 6989 }
8
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( device_count, execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_device, require_single_device, ) from accelerate.utils import patch_environment @require_huggingface_suite class MetricTester(unittest.TestCase): def setUp(self): mod_file = inspect.getfile(accelerate.test_utils) self.test_file_path = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 self.test_metrics = test_metrics @require_cpu def test_metric_cpu_noop(self): debug_launcher(self.test_metrics.main, num_processes=1) @require_cpu def test_metric_cpu_multi(self): debug_launcher(self.test_metrics.main) @require_single_device def test_metric_accelerator(self): self.test_metrics.main() @require_multi_device def test_metric_accelerator_multi(self): print(f"Found {device_count} devices.") cmd = ["torchrun", f"--nproc_per_node={device_count}", self.test_file_path] with patch_environment(omp_num_threads=1, ACCELERATE_LOG_LEVEL="INFO"): execute_subprocess_async(cmd, env=os.environ.copy())
accelerate/tests/test_metrics.py/0
{ "file_path": "accelerate/tests/test_metrics.py", "repo_id": "accelerate", "token_count": 750 }
9
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate hf_table_format = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) failed = [] group_info = [] no_error_payload = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} payload = [ { "type": "header", "text": { "type": "plain_text", "text": f"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] total_num_failed = 0 for log in Path().glob("*.log"): section_num_failed = 0 with open(log, "r") as f: for line in f: line = json.loads(line) if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) failed = [] log.unlink() message = "" all_files2failed = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" failed_table = [] files2failed = {} for test in failed_tests: data = test[0].split("::") data[0] = data[0].split("/")[-1] if data[0] not in files2failed: files2failed[data[0]] = [data[1:]] else: files2failed[data[0]] += [data[1:]] failed_table.append(data) files = [test[0] for test in failed_table] individual_files = list(set(files)) # Count number of instances in failed_tests table = [] for file in individual_files: table.append([file, len(files2failed[file])]) failed_table = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_files2failed.append(files2failed) if len(message) > 3000: err = "Too many failed tests, please see the full report in the Action results." offset = len(err) + 10 message = message[: 3000 - offset] + f"\n...\n```\n{err}" print(f"### {message}") else: message = "No failed tests! 🤗" print(f"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient client = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": md_report = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) action_button = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) response = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) ts = response.data["ts"] for failed_file in all_files2failed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name test_class = "" for i, row in enumerate(test_failures): if row[0] != test_class: test_class = row[0] else: test_failures[i][0] = "" payload = { "type": "section", "text": { "type": "mrkdwn", "text": f"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
accelerate/utils/log_reports.py/0
{ "file_path": "accelerate/utils/log_reports.py", "repo_id": "accelerate", "token_count": 2893 }
10
# Model arguments model_name_or_path: alignment-handbook/zephyr-7b-sft-full torch_dtype: null # Data training arguments dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # Training arguments with sensible defaults bf16: true beta: 0.01 loss_type: sigmoid do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: zephyr-7b-align-scan hub_model_revision: dpo-beta-0.01 learning_rate: 5.0e-7 logging_steps: 10 lr_scheduler_type: cosine max_prompt_length: 512 num_train_epochs: 1 optim: adamw_torch output_dir: data/zephyr-7b-align-scan-dpo-beta-0.01 per_device_train_batch_size: 8 per_device_eval_batch_size: 8 save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/pref_align_scan/dpo/config_zephyr.yaml/0
{ "file_path": "alignment-handbook/recipes/pref_align_scan/dpo/config_zephyr.yaml", "repo_id": "alignment-handbook", "token_count": 359 }
11
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re import packaging.version REPLACE_PATTERNS = { "init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), "setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), } REPLACE_FILES = { "init": "src/alignment/__init__.py", "setup": "setup.py", } README_FILE = "README.md" def update_version_in_file(fname, version, pattern): """Update the version in one file using a specific pattern.""" with open(fname, "r", encoding="utf-8", newline="\n") as f: code = f.read() re_pattern, replace = REPLACE_PATTERNS[pattern] replace = replace.replace("VERSION", version) code = re_pattern.sub(replace, code) with open(fname, "w", encoding="utf-8", newline="\n") as f: f.write(code) def global_version_update(version, patch=False): """Update the version in all needed files.""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(fname, version, pattern) def get_version(): """Reads the current version in the __init__.""" with open(REPLACE_FILES["init"], "r") as f: code = f.read() default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0] return packaging.version.parse(default_version) def pre_release_work(patch=False): """Do all the necessary pre-release steps.""" # First let's get the default version: base version if we are in dev, bump minor otherwise. default_version = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: default_version = default_version.base_version elif patch: default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: default_version = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. version = input(f"Which version are you releasing? [{default_version}]") if len(version) == 0: version = default_version print(f"Updating version to {version}.") global_version_update(version, patch=patch) def post_release_work(): """Do all the necessary post-release steps.""" # First let's get the current version current_version = get_version() dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0" current_version = current_version.base_version # Check with the user we got that right. version = input(f"Which version are we developing now? [{dev_version}]") if len(version) == 0: version = dev_version print(f"Updating version to {version}.") global_version_update(version) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") args = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
alignment-handbook/src/alignment/release.py/0
{ "file_path": "alignment-handbook/src/alignment/release.py", "repo_id": "alignment-handbook", "token_count": 1384 }
12
.PHONY: clean-ptx clean test clean-ptx: find target -name "*.ptx" -type f -delete echo "" > candle-kernels/src/lib.rs touch candle-kernels/build.rs touch candle-examples/build.rs touch candle-flash-attn/build.rs clean: cargo clean test: cargo test all: test
candle/Makefile/0
{ "file_path": "candle/Makefile", "repo_id": "candle", "token_count": 107 }
13
[package] name = "candle-core" version.workspace = true edition.workspace = true description.workspace = true repository.workspace = true keywords.workspace = true categories.workspace = true license.workspace = true readme = "README.md" [dependencies] accelerate-src = { workspace = true, optional = true } byteorder = { workspace = true } candle-kernels = { workspace = true, optional = true } candle-metal-kernels = { workspace = true, optional = true } metal = { workspace = true, optional = true} cudarc = { workspace = true, optional = true } gemm = { workspace = true } half = { workspace = true } intel-mkl-src = { workspace = true, optional = true } libc = { workspace = true, optional = true } memmap2 = { workspace = true } num-traits = { workspace = true } num_cpus = { workspace = true } rand = { workspace = true } rand_distr = { workspace = true } rayon = { workspace = true } safetensors = { workspace = true } thiserror = { workspace = true } yoke = { workspace = true } zip = { workspace = true } [dev-dependencies] anyhow = { workspace = true } clap = { workspace = true } criterion = { workspace = true } [features] default = [] cuda = ["cudarc", "dep:candle-kernels"] cudnn = ["cuda", "cudarc/cudnn"] mkl = ["dep:libc", "dep:intel-mkl-src"] accelerate = ["dep:libc", "dep:accelerate-src"] metal = ["dep:metal", "dep:candle-metal-kernels"] [[bench]] name = "bench_main" harness = false
candle/candle-core/Cargo.toml/0
{ "file_path": "candle/candle-core/Cargo.toml", "repo_id": "candle", "token_count": 468 }
14
use crate::{op::BackpropOp, op::Op, Error, Result, Tensor}; #[derive(Debug, Clone, PartialEq, Eq)] pub struct ParamsConv1D { pub(crate) b_size: usize, // Maybe we should have a version without l_in as this bit depends on the input and not only on // the weights. pub(crate) l_in: usize, pub(crate) c_out: usize, pub(crate) c_in: usize, pub(crate) k_size: usize, pub(crate) padding: usize, pub(crate) stride: usize, pub(crate) dilation: usize, } impl ParamsConv1D { pub(crate) fn l_out(&self) -> usize { (self.l_in + 2 * self.padding - self.dilation * (self.k_size - 1) - 1) / self.stride + 1 } pub(crate) fn out_dims(&self) -> Vec<usize> { let l_out = self.l_out(); vec![self.b_size, self.c_out, l_out] } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ParamsConvTranspose1D { pub(crate) b_size: usize, pub(crate) l_in: usize, pub(crate) c_out: usize, pub(crate) c_in: usize, pub(crate) k_size: usize, pub(crate) padding: usize, pub(crate) output_padding: usize, pub(crate) stride: usize, pub(crate) dilation: usize, } impl ParamsConvTranspose1D { pub(crate) fn l_out(&self) -> usize { (self.l_in - 1) * self.stride - 2 * self.padding + self.dilation * (self.k_size - 1) + self.output_padding + 1 } pub(crate) fn out_dims(&self) -> Vec<usize> { let l_out = self.l_out(); vec![self.b_size, self.c_out, l_out] } } #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub enum CudnnFwdAlgo { ImplicitGemm, ImplicitPrecompGemm, Gemm, Direct, Fft, FftTiling, Winograd, WinogradNonFused, Count, } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ParamsConv2D { pub(crate) b_size: usize, pub(crate) i_h: usize, pub(crate) i_w: usize, pub(crate) k_h: usize, pub(crate) k_w: usize, pub(crate) c_out: usize, pub(crate) c_in: usize, pub(crate) padding: usize, pub(crate) stride: usize, pub(crate) dilation: usize, pub cudnn_fwd_algo: Option<CudnnFwdAlgo>, } impl ParamsConv2D { pub(crate) fn out_h(&self) -> usize { (self.i_h + 2 * self.padding - self.dilation * (self.k_h - 1) - 1) / self.stride + 1 } pub(crate) fn out_w(&self) -> usize { (self.i_w + 2 * self.padding - self.dilation * (self.k_w - 1) - 1) / self.stride + 1 } pub(crate) fn out_dims(&self) -> Vec<usize> { vec![self.b_size, self.c_out, self.out_h(), self.out_w()] } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct ParamsConvTranspose2D { pub(crate) b_size: usize, pub(crate) i_h: usize, pub(crate) i_w: usize, pub(crate) k_h: usize, pub(crate) k_w: usize, pub(crate) c_out: usize, pub(crate) c_in: usize, pub(crate) padding: usize, pub(crate) output_padding: usize, pub(crate) stride: usize, pub(crate) dilation: usize, } impl ParamsConvTranspose2D { pub(crate) fn out_h(&self) -> usize { (self.i_h - 1) * self.stride + self.dilation * (self.k_h - 1) + self.output_padding + 1 - 2 * self.padding } pub(crate) fn out_w(&self) -> usize { (self.i_w - 1) * self.stride + self.dilation * (self.k_w - 1) + self.output_padding + 1 - 2 * self.padding } pub(crate) fn out_dims(&self) -> Vec<usize> { vec![self.b_size, self.c_out, self.out_h(), self.out_w()] } } impl Tensor { fn conv1d_single_group(&self, kernel: &Self, params: &ParamsConv1D) -> Result<Self> { let storage = self.storage() .conv1d(self.layout(), &kernel.storage(), kernel.layout(), params)?; let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::Conv1D { arg, kernel, padding: params.padding, stride: params.stride, dilation: params.dilation, }); let out_dims = params.out_dims(); Ok(crate::tensor::from_storage(storage, out_dims, op, false)) } /// Applies a 1D convolution over the input tensor. pub fn conv1d( &self, kernel: &Self, padding: usize, stride: usize, dilation: usize, groups: usize, ) -> Result<Self> { let (c_out, c_in_k, k_size) = kernel.dims3()?; let (b_size, c_in, l_in) = self.dims3()?; if c_in != c_in_k * groups { Err(Error::Conv1dInvalidArgs { inp_shape: self.shape().clone(), k_shape: kernel.shape().clone(), padding, stride, msg: "the number of in-channels on the input doesn't match the kernel size", } .bt())? } let params = ParamsConv1D { b_size, l_in, c_out: c_out / groups, c_in: c_in / groups, k_size, padding, stride, dilation, }; if groups == 1 { self.conv1d_single_group(kernel, &params) } else { let blocks = self.chunk(groups, 1)?; let kernel = kernel.chunk(groups, 0)?; let blocks = blocks .iter() .zip(&kernel) .map(|(block, kernel)| block.conv1d_single_group(kernel, &params)) .collect::<Result<Vec<_>>>()?; Tensor::cat(&blocks, 1) } } /// Applies a 1D transposed convolution over the input tensor. pub fn conv_transpose1d( &self, kernel: &Self, padding: usize, output_padding: usize, stride: usize, dilation: usize, ) -> Result<Self> { let (b_size, c_in, l_in) = self.dims3()?; let (c_in_k, c_out, k_size) = kernel.dims3()?; if c_in != c_in_k { crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})") } let params = ParamsConvTranspose1D { b_size, l_in, k_size, c_out, c_in, padding, output_padding, stride, dilation, }; let storage = self.storage().conv_transpose1d( self.layout(), &kernel.storage(), kernel.layout(), &params, )?; let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D { arg, kernel, padding: params.padding, output_padding: params.output_padding, stride: params.stride, dilation: params.dilation, }); let out_dims = params.out_dims(); Ok(crate::tensor::from_storage(storage, out_dims, op, false)) } fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> { let storage = self.storage() .conv2d(self.layout(), &kernel.storage(), kernel.layout(), params)?; let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::Conv2D { arg, kernel, padding: params.padding, stride: params.stride, dilation: params.dilation, }); let out_dims = params.out_dims(); Ok(crate::tensor::from_storage(storage, out_dims, op, false)) } /// Applies a 2D convolution over the input tensor. pub fn conv2d( &self, kernel: &Self, padding: usize, stride: usize, dilation: usize, groups: usize, ) -> Result<Self> { let (b_size, c_in, i_h, i_w) = self.dims4()?; let (c_out, c_in_k, k_h, k_w) = kernel.dims4()?; if c_in != c_in_k * groups { crate::bail!( "in_channel mismatch between input ({c_in}, groups {groups}) and kernel ({c_in_k})" ) } let params = ParamsConv2D { b_size, i_h, i_w, k_h, k_w, c_out: c_out / groups, c_in: c_in / groups, padding, stride, dilation, cudnn_fwd_algo: None, }; if groups == 1 { self.conv2d_single_group(kernel, &params) } else { let blocks = self.chunk(groups, 1)?; let kernel = kernel.chunk(groups, 0)?; let blocks = blocks .iter() .zip(&kernel) .map(|(block, kernel)| block.conv2d_single_group(kernel, &params)) .collect::<Result<Vec<_>>>()?; Tensor::cat(&blocks, 1) } } /// Applies a 2D transposed convolution over the input tensor. pub fn conv_transpose2d( &self, kernel: &Self, padding: usize, output_padding: usize, stride: usize, dilation: usize, ) -> Result<Self> { let (b_size, c_in, i_h, i_w) = self.dims4()?; let (c_in_k, c_out, k_h, k_w) = kernel.dims4()?; if c_in != c_in_k { crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})") } let params = ParamsConvTranspose2D { b_size, i_h, i_w, k_h, k_w, c_out, c_in, padding, output_padding, stride, dilation, }; let storage = self.storage().conv_transpose2d( self.layout(), &kernel.storage(), kernel.layout(), &params, )?; let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose2D { arg, kernel, padding: params.padding, output_padding: params.output_padding, stride: params.stride, dilation: params.dilation, }); let out_dims = params.out_dims(); Ok(crate::tensor::from_storage(storage, out_dims, op, false)) } }
candle/candle-core/src/conv.rs/0
{ "file_path": "candle/candle-core/src/conv.rs", "repo_id": "candle", "token_count": 5388 }
15
use crate::{DType, DeviceLocation, Layout, MetalError, Shape}; #[derive(Debug, Clone)] pub struct MatMulUnexpectedStriding { pub lhs_l: Layout, pub rhs_l: Layout, pub bmnk: (usize, usize, usize, usize), pub msg: &'static str, } /// Main library error type. #[derive(thiserror::Error, Debug)] pub enum Error { // === DType Errors === #[error("{msg}, expected: {expected:?}, got: {got:?}")] UnexpectedDType { msg: &'static str, expected: DType, got: DType, }, #[error("dtype mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")] DTypeMismatchBinaryOp { lhs: DType, rhs: DType, op: &'static str, }, #[error("unsupported dtype {0:?} for op {1}")] UnsupportedDTypeForOp(DType, &'static str), // === Dimension Index Errors === #[error("{op}: dimension index {dim} out of range for shape {shape:?}")] DimOutOfRange { shape: Shape, dim: i32, op: &'static str, }, #[error("{op}: duplicate dim index {dims:?} for shape {shape:?}")] DuplicateDimIndex { shape: Shape, dims: Vec<usize>, op: &'static str, }, // === Shape Errors === #[error("unexpected rank, expected: {expected}, got: {got} ({shape:?})")] UnexpectedNumberOfDims { expected: usize, got: usize, shape: Shape, }, #[error("{msg}, expected: {expected:?}, got: {got:?}")] UnexpectedShape { msg: String, expected: Shape, got: Shape, }, #[error( "Shape mismatch, got buffer of size {buffer_size} which is compatible with shape {shape:?}" )] ShapeMismatch { buffer_size: usize, shape: Shape }, #[error("shape mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")] ShapeMismatchBinaryOp { lhs: Shape, rhs: Shape, op: &'static str, }, #[error("shape mismatch in cat for dim {dim}, shape for arg 1: {first_shape:?} shape for arg {n}: {nth_shape:?}")] ShapeMismatchCat { dim: usize, first_shape: Shape, n: usize, nth_shape: Shape, }, #[error("Cannot divide tensor of shape {shape:?} equally along dim {dim} into {n_parts}")] ShapeMismatchSplit { shape: Shape, dim: usize, n_parts: usize, }, #[error("{op} can only be performed on a single dimension")] OnlySingleDimension { op: &'static str, dims: Vec<usize> }, #[error("empty tensor for {op}")] EmptyTensor { op: &'static str }, // === Device Errors === #[error("device mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")] DeviceMismatchBinaryOp { lhs: DeviceLocation, rhs: DeviceLocation, op: &'static str, }, // === Op Specific Errors === #[error("narrow invalid args {msg}: {shape:?}, dim: {dim}, start: {start}, len:{len}")] NarrowInvalidArgs { shape: Shape, dim: usize, start: usize, len: usize, msg: &'static str, }, #[error("conv1d invalid args {msg}: inp: {inp_shape:?}, k: {k_shape:?}, pad: {padding}, stride: {stride}")] Conv1dInvalidArgs { inp_shape: Shape, k_shape: Shape, padding: usize, stride: usize, msg: &'static str, }, #[error("{op} invalid index {index} with dim size {size}")] InvalidIndex { op: &'static str, index: usize, size: usize, }, #[error("cannot broadcast {src_shape:?} to {dst_shape:?}")] BroadcastIncompatibleShapes { src_shape: Shape, dst_shape: Shape }, #[error("cannot set variable {msg}")] CannotSetVar { msg: &'static str }, // Box indirection to avoid large variant. #[error("{0:?}")] MatMulUnexpectedStriding(Box<MatMulUnexpectedStriding>), #[error("{op} only supports contiguous tensors")] RequiresContiguous { op: &'static str }, #[error("{op} expects at least one tensor")] OpRequiresAtLeastOneTensor { op: &'static str }, #[error("{op} expects at least two tensors")] OpRequiresAtLeastTwoTensors { op: &'static str }, #[error("backward is not supported for {op}")] BackwardNotSupported { op: &'static str }, // === Other Errors === #[error("the candle crate has not been built with cuda support")] NotCompiledWithCudaSupport, #[error("the candle crate has not been built with metal support")] NotCompiledWithMetalSupport, #[error("cannot find tensor {path}")] CannotFindTensor { path: String }, // === Wrapped Errors === #[error(transparent)] Cuda(Box<dyn std::error::Error + Send + Sync>), #[error("Metal error {0}")] Metal(#[from] MetalError), #[error(transparent)] TryFromIntError(#[from] core::num::TryFromIntError), #[error("npy/npz error {0}")] Npy(String), /// Zip file format error. #[error(transparent)] Zip(#[from] zip::result::ZipError), /// Integer parse error. #[error(transparent)] ParseInt(#[from] std::num::ParseIntError), /// I/O error. #[error(transparent)] Io(#[from] std::io::Error), /// SafeTensor error. #[error(transparent)] SafeTensor(#[from] safetensors::SafeTensorError), #[error("unsupported safetensor dtype {0:?}")] UnsupportedSafeTensorDtype(safetensors::Dtype), /// Arbitrary errors wrapping. #[error(transparent)] Wrapped(Box<dyn std::error::Error + Send + Sync>), /// Adding path information to an error. #[error("path: {path:?} {inner}")] WithPath { inner: Box<Self>, path: std::path::PathBuf, }, #[error("{inner}\n{backtrace}")] WithBacktrace { inner: Box<Self>, backtrace: Box<std::backtrace::Backtrace>, }, /// User generated error message, typically created via `bail!`. #[error("{0}")] Msg(String), } pub type Result<T> = std::result::Result<T, Error>; impl Error { pub fn wrap(err: impl std::error::Error + Send + Sync + 'static) -> Self { Self::Wrapped(Box::new(err)).bt() } pub fn msg(err: impl std::error::Error + Send + Sync + 'static) -> Self { Self::Msg(err.to_string()).bt() } pub fn bt(self) -> Self { let backtrace = std::backtrace::Backtrace::capture(); match backtrace.status() { std::backtrace::BacktraceStatus::Disabled | std::backtrace::BacktraceStatus::Unsupported => self, _ => Self::WithBacktrace { inner: Box::new(self), backtrace: Box::new(backtrace), }, } } pub fn with_path<P: AsRef<std::path::Path>>(self, p: P) -> Self { Self::WithPath { inner: Box::new(self), path: p.as_ref().to_path_buf(), } } } #[macro_export] macro_rules! bail { ($msg:literal $(,)?) => { return Err($crate::Error::Msg(format!($msg).into()).bt()) }; ($err:expr $(,)?) => { return Err($crate::Error::Msg(format!($err).into()).bt()) }; ($fmt:expr, $($arg:tt)*) => { return Err($crate::Error::Msg(format!($fmt, $($arg)*).into()).bt()) }; } pub fn zip<T, U>(r1: Result<T>, r2: Result<U>) -> Result<(T, U)> { match (r1, r2) { (Ok(r1), Ok(r2)) => Ok((r1, r2)), (Err(e), _) => Err(e), (_, Err(e)) => Err(e), } }
candle/candle-core/src/error.rs/0
{ "file_path": "candle/candle-core/src/error.rs", "repo_id": "candle", "token_count": 3254 }
16
use super::k_quants::{BlockQ2K, BlockQ4K, BlockQ4_0, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K}; use crate::Result; use byteorder::{ByteOrder, LittleEndian}; use half::f16; use core::arch::wasm32::*; #[inline(always)] pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> { let qk = QK8_0; if n % QK8_0 != 0 { crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}") } unsafe { let mut acc = f32x4_splat(0.0f32); for (x, y) in xs.iter().zip(ys.iter()) { let x1234 = v128_load(x.qs.as_ptr() as *const v128); let x12 = v128_and(x1234, u8x16_splat(0x0F)); let x12 = i8x16_sub(x12, i8x16_splat(8)); let x34 = u8x16_shr(x1234, 4); let x34 = i8x16_sub(x34, i8x16_splat(8)); let x1 = i16x8_extend_low_i8x16(x12); let y1 = i16x8_load_extend_i8x8(y.qs.as_ptr()); let sum_xy = i32x4_dot_i16x8(x1, y1); let x2 = i16x8_extend_high_i8x16(x12); let y2 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(8)); let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x2, y2)); let x3 = i16x8_extend_low_i8x16(x34); let y3 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(16)); let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x3, y3)); let x4 = i16x8_extend_high_i8x16(x34); let y4 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(24)); let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x4, y4)); let sum_xy = f32x4_convert_i32x4(sum_xy); // f32x4_relaxed_madd is nightly only. let d = f32x4_splat(f16::to_f32(x.d) * f16::to_f32(y.d)); let scaled = f32x4_mul(sum_xy, d); acc = f32x4_add(acc, scaled) } let res = f32x4_extract_lane::<0>(acc) + f32x4_extract_lane::<1>(acc) + f32x4_extract_lane::<2>(acc) + f32x4_extract_lane::<3>(acc); Ok(res) } } #[inline(always)] pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> Result<f32> { let qk = QK8_0; if n % QK8_0 != 0 { crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}") } unsafe { let mut acc = f32x4_splat(0.0f32); for (x, y) in xs.iter().zip(ys.iter()) { let x1 = i16x8_load_extend_i8x8(x.qs.as_ptr()); let y1 = i16x8_load_extend_i8x8(y.qs.as_ptr()); let sum_xy = i32x4_dot_i16x8(x1, y1); let x2 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(8)); let y2 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(8)); let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x2, y2)); let x3 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(16)); let y3 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(16)); let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x3, y3)); let x4 = i16x8_load_extend_i8x8(x.qs.as_ptr().add(24)); let y4 = i16x8_load_extend_i8x8(y.qs.as_ptr().add(24)); let sum_xy = i32x4_add(sum_xy, i32x4_dot_i16x8(x4, y4)); let sum_xy = f32x4_convert_i32x4(sum_xy); // f32x4_relaxed_madd is nightly only. let d = f32x4_splat(f16::to_f32(x.d) * f16::to_f32(y.d)); let scaled = f32x4_mul(sum_xy, d); acc = f32x4_add(acc, scaled) } let res = f32x4_extract_lane::<0>(acc) + f32x4_extract_lane::<1>(acc) + f32x4_extract_lane::<2>(acc) + f32x4_extract_lane::<3>(acc); Ok(res) } } #[inline(always)] pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}") } unsafe { let mut sumf = f32x4_splat(0f32); for (x, y) in xs.iter().zip(ys.iter()) { let mut q2: &[_] = &x.qs; let mut q8: &[_] = &y.qs; let sc = &x.scales; let mut summs = i32x4_splat(0); for i in (0..(QK_K / 16)).step_by(4) { let bsums = i32x4_load_extend_i16x4(y.bsums.as_ptr().add(i)); let scales = i32x4_shr( i32x4( sc[i] as i32, sc[i + 1] as i32, sc[i + 2] as i32, sc[i + 3] as i32, ), 4, ); summs = i32x4_add(summs, i32x4_mul(bsums, scales)) } let summs = f32x4_convert_i32x4(summs); let dall = y.d * x.d.to_f32(); let dmin = y.d * x.dmin.to_f32(); let mut isum = i32x4_splat(0); let mut is = 0; for _ in 0..(QK_K / 128) { let mut shift = 0; for _ in 0..4 { let d = (sc[is] & 0xF) as i32; is += 1; let mut isuml = i16x8_splat(0); for l in (0..16).step_by(8) { let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(l)); let q2 = i16x8_load_extend_u8x8(q2.as_ptr().add(l)); let q2 = v128_and(i16x8_shr(q2, shift), i16x8_splat(3)); isuml = i16x8_add(isuml, i16x8_mul(q2, q8)) } let dd = i32x4_splat(d); isum = i32x4_add(isum, i32x4_mul(i32x4_extend_low_i16x8(isuml), dd)); isum = i32x4_add(isum, i32x4_mul(i32x4_extend_high_i16x8(isuml), dd)); let d = (sc[is] & 0xF) as i32; is += 1; let mut isuml = i16x8_splat(0); for l in (16..32).step_by(8) { let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(l)); let q2 = i16x8_load_extend_u8x8(q2.as_ptr().add(l)); let q2 = v128_and(i16x8_shr(q2, shift), i16x8_splat(3)); isuml = i16x8_add(isuml, i16x8_mul(q2, q8)) } let dd = i32x4_splat(d); isum = i32x4_add(isum, i32x4_mul(i32x4_extend_low_i16x8(isuml), dd)); isum = i32x4_add(isum, i32x4_mul(i32x4_extend_high_i16x8(isuml), dd)); shift += 2; // adjust the indexing q8 = &q8[32..]; } // adjust the indexing q2 = &q2[32..]; } let isum = f32x4_convert_i32x4(isum); sumf = f32x4_add( sumf, f32x4_sub( f32x4_mul(isum, f32x4_splat(dall)), f32x4_mul(summs, f32x4_splat(dmin)), ), ); } let sumf = f32x4_extract_lane::<0>(sumf) + f32x4_extract_lane::<1>(sumf) + f32x4_extract_lane::<2>(sumf) + f32x4_extract_lane::<3>(sumf); Ok(sumf) } } #[inline(always)] pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}") } const KMASK1: u32 = 0x3f3f3f3f; const KMASK2: u32 = 0x0f0f0f0f; const KMASK3: u32 = 0x03030303; let mut utmp: [u32; 4] = [0; 4]; let mut scales: [u8; 8] = [0; 8]; let mut mins: [u8; 8] = [0; 8]; let mut aux8: [u8; QK_K] = [0; QK_K]; let mut sums = f32x4_splat(0f32); unsafe { for (y, x) in ys.iter().zip(xs.iter()) { let q4 = &x.qs; let q8 = &y.qs; for j in 0..QK_K / 64 { let q4_1 = v128_load(q4.as_ptr().add(32 * j) as *const v128); let q4_2 = v128_load(q4.as_ptr().add(32 * j + 16) as *const v128); v128_store( aux8.as_mut_ptr().add(64 * j) as *mut v128, v128_and(q4_1, u8x16_splat(0x0F)), ); v128_store( aux8.as_mut_ptr().add(64 * j + 16) as *mut v128, v128_and(q4_2, u8x16_splat(0x0F)), ); v128_store( aux8.as_mut_ptr().add(64 * j + 32) as *mut v128, u8x16_shr(q4_1, 4), ); v128_store( aux8.as_mut_ptr().add(64 * j + 48) as *mut v128, u8x16_shr(q4_2, 4), ); } LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]); utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4); let uaux = utmp[1] & KMASK1; utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4); utmp[2] = uaux; utmp[0] &= KMASK1; //extract scales and mins LittleEndian::write_u32_into(&utmp[0..2], &mut scales); LittleEndian::write_u32_into(&utmp[2..4], &mut mins); let mut sumi = i32x4_splat(0); for j in (0..QK_K / 16).step_by(4) { let bsums = i32x4_load_extend_i16x4(y.bsums.as_ptr().add(j)); let (m1, m2) = (mins[j / 2] as i32, mins[j / 2 + 1] as i32); let mins = i32x4(m1, m1, m2, m2); sumi = i32x4_add(sumi, i32x4_mul(bsums, mins)); } let mut aux32 = i32x4_splat(0i32); for (scale_i, scale) in scales.iter().enumerate() { let scale = i32x4_splat(*scale as i32); for j in 0..4 { let i = 32 * scale_i + 8 * j; let q8 = i16x8_load_extend_i8x8(q8.as_ptr().add(i)); let aux8 = i16x8_load_extend_u8x8(aux8.as_ptr().add(i)); let aux16 = i16x8_mul(q8, aux8); aux32 = i32x4_add(aux32, i32x4_mul(scale, i32x4_extend_low_i16x8(aux16))); aux32 = i32x4_add(aux32, i32x4_mul(scale, i32x4_extend_high_i16x8(aux16))); } } let aux32 = f32x4_convert_i32x4(aux32); let d = f32x4_splat(x.d.to_f32() * y.d); sums = f32x4_add(sums, f32x4_mul(aux32, d)); let dmin = x.dmin.to_f32() * y.d; let dmin = f32x4_splat(dmin); let sumi = f32x4_convert_i32x4(sumi); sums = f32x4_sub(sums, f32x4_mul(sumi, dmin)); } let sums = f32x4_extract_lane::<0>(sums) + f32x4_extract_lane::<1>(sums) + f32x4_extract_lane::<2>(sums) + f32x4_extract_lane::<3>(sums); Ok(sums) } } #[inline(always)] pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}") } let mut aux8 = [0i8; QK_K]; unsafe { let mut sums = f32x4_splat(0f32); for (x, y) in xs.iter().zip(ys.iter()) { let q4 = &x.ql; let qh = &x.qh; let q8 = &y.qs; let mut aux32 = f32x4_splat(0f32); for j in (0..QK_K).step_by(128) { let aux8 = aux8.as_mut_ptr().add(j); let q4 = &q4.as_ptr().add(j / 2); let qh = &qh.as_ptr().add(j / 4); for l in (0..32).step_by(16) { // aux8[l] = (((q4[l] & 0xF) | ((qh[l] & 3) << 4)) as i32 - 32) as i8; let a8 = v128_or( v128_and(v128_load(q4.add(l) as *const v128), u8x16_splat(0xF)), u8x16_shl( v128_and(v128_load(qh.add(l) as *const v128), u8x16_splat(3)), 4, ), ); let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32)); let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32)); v128_store( aux8.add(l) as *mut v128, i8x16_narrow_i16x8(a8_low, a8_high), ); // aux8[l + 32] = // (((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i32 - 32) as i8; let a8 = v128_or( v128_and(v128_load(q4.add(l + 32) as *const v128), u8x16_splat(0xF)), u8x16_shl( v128_and( u8x16_shr(v128_load(qh.add(l) as *const v128), 2), u8x16_splat(3), ), 4, ), ); let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32)); let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32)); v128_store( aux8.add(l + 32) as *mut v128, i8x16_narrow_i16x8(a8_low, a8_high), ); // aux8[l + 64] = (((q4[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i32 - 32) as i8; let a8 = v128_or( u8x16_shr(v128_load(q4.add(l) as *const v128), 4), u8x16_shl( v128_and( u8x16_shr(v128_load(qh.add(l) as *const v128), 4), u8x16_splat(3), ), 4, ), ); let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32)); let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32)); v128_store( aux8.add(l + 64) as *mut v128, i8x16_narrow_i16x8(a8_low, a8_high), ); // aux8[l + 96] = // (((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i32 - 32) as i8; let a8 = v128_or( u8x16_shr(v128_load(q4.add(l + 32) as *const v128), 4), u8x16_shl( v128_and( u8x16_shr(v128_load(qh.add(l) as *const v128), 6), u8x16_splat(3), ), 4, ), ); let a8_low = i16x8_sub(i16x8_extend_low_u8x16(a8), i16x8_splat(32)); let a8_high = i16x8_sub(i16x8_extend_high_u8x16(a8), i16x8_splat(32)); v128_store( aux8.add(l + 96) as *mut v128, i8x16_narrow_i16x8(a8_low, a8_high), ); } } for (j, &scale) in x.scales.iter().enumerate() { let scale = f32x4_splat(scale as f32); for offset in [0, 8] { let aux16 = i16x8_mul( i16x8_load_extend_i8x8(q8.as_ptr().add(16 * j + offset)), i16x8_load_extend_i8x8(aux8.as_ptr().add(16 * j + offset)), ); aux32 = f32x4_add( aux32, f32x4_mul(f32x4_convert_i32x4(i32x4_extend_low_i16x8(aux16)), scale), ); aux32 = f32x4_add( aux32, f32x4_mul(f32x4_convert_i32x4(i32x4_extend_high_i16x8(aux16)), scale), ); } } let d = f32x4_splat(x.d.to_f32() * y.d); sums = f32x4_add(sums, f32x4_mul(aux32, d)); } let sums = f32x4_extract_lane::<0>(sums) + f32x4_extract_lane::<1>(sums) + f32x4_extract_lane::<2>(sums) + f32x4_extract_lane::<3>(sums); Ok(sums) } } #[inline(always)] pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> { let qk = QK_K; if n % QK_K != 0 { crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}") } unsafe { let mut acc = f32x4_splat(0.0f32); for (xs, ys) in xs.iter().zip(ys.iter()) { let x_qs = xs.qs.as_ptr(); let y_qs = ys.qs.as_ptr(); let mut sumi = i32x4_splat(0); for j in (0..QK_K).step_by(8) { let xs = i16x8_load_extend_i8x8(x_qs.add(j)); let ys = i16x8_load_extend_i8x8(y_qs.add(j)); let sum_xy = i32x4_dot_i16x8(xs, ys); sumi = i32x4_add(sumi, sum_xy) } let d = f32x4_splat(xs.d * ys.d); acc = f32x4_add(acc, f32x4_mul(f32x4_convert_i32x4(sumi), d)) } let res = f32x4_extract_lane::<0>(acc) + f32x4_extract_lane::<1>(acc) + f32x4_extract_lane::<2>(acc) + f32x4_extract_lane::<3>(acc); Ok(res) } }
candle/candle-core/src/quantized/simd128.rs/0
{ "file_path": "candle/candle-core/src/quantized/simd128.rs", "repo_id": "candle", "token_count": 11617 }
17
use candle::{test_device, Device, IndexOp, Result, Tensor}; use candle_core as candle; fn contiguous(device: &Device) -> Result<()> { let tensor = Tensor::arange(0u32, 24u32, device)?.reshape((2, 3, 4))?; assert_eq!( tensor.to_vec3::<u32>()?, &[ [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]] ] ); assert_eq!( tensor.t()?.contiguous()?.to_vec3::<u32>()?, &[ [[0, 4, 8], [1, 5, 9], [2, 6, 10], [3, 7, 11]], [[12, 16, 20], [13, 17, 21], [14, 18, 22], [15, 19, 23]] ] ); assert_eq!( tensor.transpose(0, 1)?.contiguous()?.to_vec3::<u32>()?, &[ [[0, 1, 2, 3], [12, 13, 14, 15]], [[4, 5, 6, 7], [16, 17, 18, 19]], [[8, 9, 10, 11], [20, 21, 22, 23]] ] ); assert_eq!( tensor.transpose(0, 1)?.flatten_all()?.to_vec1::<u32>()?, &[0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7, 16, 17, 18, 19, 8, 9, 10, 11, 20, 21, 22, 23] ); assert_eq!( tensor .i(1..)? .transpose(0, 1)? .contiguous()? .to_vec3::<u32>()?, &[[[12, 13, 14, 15]], [[16, 17, 18, 19]], [[20, 21, 22, 23]]] ); assert_eq!( tensor.transpose(0, 2)?.contiguous()?.to_vec3::<u32>()?, &[ [[0, 12], [4, 16], [8, 20]], [[1, 13], [5, 17], [9, 21]], [[2, 14], [6, 18], [10, 22]], [[3, 15], [7, 19], [11, 23]] ] ); Ok(()) } test_device!(contiguous, contiguous_cpu, contiguous_gpu, contiguous_metal); #[test] fn strided_blocks() -> Result<()> { use candle::Device::Cpu; let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?; match tensor.strided_blocks() { candle::StridedBlocks::SingleBlock { start_offset, len } => { assert_eq!(start_offset, 0); assert_eq!(len, 24); } candle::StridedBlocks::MultipleBlocks { .. } => { panic!("unexpected block structure") } }; let tensor = Tensor::arange(0u32, 26u32, &Cpu)? .i(2..)? .reshape((2, 3, 4))?; match tensor.strided_blocks() { candle::StridedBlocks::SingleBlock { start_offset, len } => { assert_eq!(start_offset, 2); assert_eq!(len, 24); } candle::StridedBlocks::MultipleBlocks { .. } => { panic!("unexpected block structure") } }; let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?; let tensor = tensor.i(1)?; match tensor.strided_blocks() { candle::StridedBlocks::SingleBlock { start_offset, len } => { assert_eq!(start_offset, 12); assert_eq!(len, 12); } candle::StridedBlocks::MultipleBlocks { .. } => { panic!("unexpected block structure") } }; let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?; let tensor = tensor.i((.., 1))?; match tensor.strided_blocks() { candle::StridedBlocks::SingleBlock { start_offset, len } => { assert_eq!(start_offset, 0); assert_eq!(len, 8); assert_eq!(tensor.to_vec2::<u32>()?, &[[4, 5, 6, 7], [16, 17, 18, 19]]); } candle::StridedBlocks::MultipleBlocks { .. } => { panic!("unexpected block structure") } }; let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?; match tensor.t()?.strided_blocks() { candle::StridedBlocks::SingleBlock { .. } => { panic!("unexpected block structure") } candle::StridedBlocks::MultipleBlocks { block_start_index, block_len, } => { assert_eq!(block_len, 1); assert_eq!( block_start_index.collect::<Vec<_>>(), &[ 0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 12, 16, 20, 13, 17, 21, 14, 18, 22, 15, 19, 23 ] ) } }; let tensor = Tensor::arange(0u32, 24u32, &Cpu)?.reshape((2, 3, 4))?; match tensor.transpose(0, 1)?.strided_blocks() { candle::StridedBlocks::SingleBlock { .. } => { panic!("unexpected block structure") } candle::StridedBlocks::MultipleBlocks { block_start_index, block_len, } => { assert_eq!(block_len, 4); assert_eq!( block_start_index.collect::<Vec<_>>(), &[0, 12, 4, 16, 8, 20] ) } }; Ok(()) }
candle/candle-core/tests/layout_tests.rs/0
{ "file_path": "candle/candle-core/tests/layout_tests.rs", "repo_id": "candle", "token_count": 2556 }
18
//! The MNIST hand-written digit dataset. //! //! The files can be obtained from the following link: //! <http://yann.lecun.com/exdb/mnist/> use candle::{DType, Device, Error, Result, Tensor}; use hf_hub::{api::sync::Api, Repo, RepoType}; use parquet::file::reader::{FileReader, SerializedFileReader}; use std::fs::File; use std::io::{self, BufReader, Read}; fn read_u32<T: Read>(reader: &mut T) -> std::io::Result<u32> { use byteorder::ReadBytesExt; reader.read_u32::<byteorder::BigEndian>() } fn check_magic_number<T: Read>(reader: &mut T, expected: u32) -> Result<()> { let magic_number = read_u32(reader)?; if magic_number != expected { Err(io::Error::new( io::ErrorKind::Other, format!("incorrect magic number {magic_number} != {expected}"), ))?; } Ok(()) } fn read_labels(filename: &std::path::Path) -> Result<Tensor> { let mut buf_reader = BufReader::new(File::open(filename)?); check_magic_number(&mut buf_reader, 2049)?; let samples = read_u32(&mut buf_reader)?; let mut data = vec![0u8; samples as usize]; buf_reader.read_exact(&mut data)?; let samples = data.len(); Tensor::from_vec(data, samples, &Device::Cpu) } fn read_images(filename: &std::path::Path) -> Result<Tensor> { let mut buf_reader = BufReader::new(File::open(filename)?); check_magic_number(&mut buf_reader, 2051)?; let samples = read_u32(&mut buf_reader)? as usize; let rows = read_u32(&mut buf_reader)? as usize; let cols = read_u32(&mut buf_reader)? as usize; let data_len = samples * rows * cols; let mut data = vec![0u8; data_len]; buf_reader.read_exact(&mut data)?; let tensor = Tensor::from_vec(data, (samples, rows * cols), &Device::Cpu)?; tensor.to_dtype(DType::F32)? / 255. } pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<crate::vision::Dataset> { let dir = dir.as_ref(); let train_images = read_images(&dir.join("train-images-idx3-ubyte"))?; let train_labels = read_labels(&dir.join("train-labels-idx1-ubyte"))?; let test_images = read_images(&dir.join("t10k-images-idx3-ubyte"))?; let test_labels = read_labels(&dir.join("t10k-labels-idx1-ubyte"))?; Ok(crate::vision::Dataset { train_images, train_labels, test_images, test_labels, labels: 10, }) } fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor, Tensor)> { let samples = parquet.metadata().file_metadata().num_rows() as usize; let mut buffer_images: Vec<u8> = Vec::with_capacity(samples * 784); let mut buffer_labels: Vec<u8> = Vec::with_capacity(samples); for row in parquet.into_iter().flatten() { for (_name, field) in row.get_column_iter() { if let parquet::record::Field::Group(subrow) = field { for (_name, field) in subrow.get_column_iter() { if let parquet::record::Field::Bytes(value) = field { let image = image::load_from_memory(value.data()).unwrap(); buffer_images.extend(image.to_luma8().as_raw()); } } } else if let parquet::record::Field::Long(label) = field { buffer_labels.push(*label as u8); } } } let images = (Tensor::from_vec(buffer_images, (samples, 784), &Device::Cpu)? .to_dtype(DType::F32)? / 255.)?; let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?; Ok((images, labels)) } pub fn load() -> Result<crate::vision::Dataset> { let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?; let dataset_id = "mnist".to_string(); let repo = Repo::with_revision( dataset_id, RepoType::Dataset, "refs/convert/parquet".to_string(), ); let repo = api.repo(repo); let test_parquet_filename = repo .get("mnist/test/0000.parquet") .map_err(|e| Error::Msg(format!("Api error: {e}")))?; let train_parquet_filename = repo .get("mnist/train/0000.parquet") .map_err(|e| Error::Msg(format!("Api error: {e}")))?; let test_parquet = SerializedFileReader::new(std::fs::File::open(test_parquet_filename)?) .map_err(|e| Error::Msg(format!("Parquet error: {e}")))?; let train_parquet = SerializedFileReader::new(std::fs::File::open(train_parquet_filename)?) .map_err(|e| Error::Msg(format!("Parquet error: {e}")))?; let (test_images, test_labels) = load_parquet(test_parquet)?; let (train_images, train_labels) = load_parquet(train_parquet)?; Ok(crate::vision::Dataset { train_images, train_labels, test_images, test_labels, labels: 10, }) }
candle/candle-datasets/src/vision/mnist.rs/0
{ "file_path": "candle/candle-datasets/src/vision/mnist.rs", "repo_id": "candle", "token_count": 2129 }
19
# candle-dinov2 [DINOv2](https://github.com/facebookresearch/dinov2) is a computer vision model. In this example, it is used as an ImageNet classifier: the model returns the probability for the image to belong to each of the 1000 ImageNet categories. ## Running some example ```bash cargo run --example dinov2 --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg > mountain bike, all-terrain bike, off-roader: 43.67% > bicycle-built-for-two, tandem bicycle, tandem: 33.20% > crash helmet : 13.23% > unicycle, monocycle : 2.44% > maillot : 2.42% ``` ![Leading group, Giro d'Italia 2021](../yolo-v8/assets/bike.jpg)
candle/candle-examples/examples/dinov2/README.md/0
{ "file_path": "candle/candle-examples/examples/dinov2/README.md", "repo_id": "candle", "token_count": 250 }
20
/// This follows the lines of: /// https://github.com/johnma2006/mamba-minimal/blob/master/model.py /// Simple, minimal implementation of Mamba in one file of PyTorch. use candle::{IndexOp, Module, Result, Tensor, D}; use candle_nn::{RmsNorm, VarBuilder}; use candle_transformers::models::with_tracing::{linear, linear_no_bias, Linear}; #[derive(Debug, Clone, serde::Deserialize)] pub struct Config { d_model: usize, n_layer: usize, vocab_size: usize, pad_vocab_size_multiple: usize, } impl Config { fn vocab_size(&self) -> usize { let pad = self.pad_vocab_size_multiple; (self.vocab_size + pad - 1) / pad * pad } fn dt_rank(&self) -> usize { (self.d_model + 15) / 16 } fn d_conv(&self) -> usize { 4 } fn d_state(&self) -> usize { 16 } fn d_inner(&self) -> usize { self.d_model * 2 } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L177 #[derive(Clone, Debug)] pub struct MambaBlock { in_proj: Linear, conv1d: candle_nn::Conv1d, x_proj: Linear, dt_proj: Linear, a_log: Tensor, d: Tensor, out_proj: Linear, dt_rank: usize, } impl MambaBlock { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let d_inner = cfg.d_inner(); let d_conv = cfg.d_conv(); let d_state = cfg.d_state(); let dt_rank = cfg.dt_rank(); let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?; let conv_cfg = candle_nn::Conv1dConfig { groups: d_inner, padding: d_conv - 1, ..Default::default() }; let conv1d = candle_nn::conv1d(d_inner, d_inner, d_conv, conv_cfg, vb.pp("conv1d"))?; let x_proj = linear_no_bias(d_inner, dt_rank + d_state * 2, vb.pp("x_proj"))?; let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?; let a_log = vb.get((d_inner, d_state), "A_log")?; let d = vb.get(d_inner, "D")?; let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?; Ok(Self { in_proj, conv1d, x_proj, dt_proj, a_log, d, out_proj, dt_rank, }) } fn ssm(&self, xs: &Tensor) -> Result<Tensor> { let (_d_in, n) = self.a_log.dims2()?; let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?; let d = self.d.to_dtype(candle::DType::F32)?; let x_dbl = xs.apply(&self.x_proj)?; let delta = x_dbl.narrow(D::Minus1, 0, self.dt_rank)?; let b = x_dbl.narrow(D::Minus1, self.dt_rank, n)?; let c = x_dbl.narrow(D::Minus1, self.dt_rank + n, n)?; let delta = delta.contiguous()?.apply(&self.dt_proj)?; // softplus without threshold let delta = (delta.exp()? + 1.)?.log()?; let ss = selective_scan(xs, &delta, &a, &b, &c, &d)?; Ok(ss) } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L275 fn selective_scan( u: &Tensor, delta: &Tensor, a: &Tensor, b: &Tensor, c: &Tensor, d: &Tensor, ) -> Result<Tensor> { let (b_sz, l, d_in) = u.dims3()?; let n = a.dim(1)?; let delta = delta.t()?.reshape((b_sz, d_in, l, 1))?; // b d_in l 1 let delta_a = delta.broadcast_mul(&a.reshape((1, d_in, 1, n))?)?.exp()?; let delta_b_u = delta .broadcast_mul(&b.reshape((b_sz, 1, l, n))?)? .broadcast_mul(&u.t()?.reshape((b_sz, d_in, l, 1))?)?; let mut xs = Tensor::zeros((b_sz, d_in, n), delta_a.dtype(), delta_a.device())?; let mut ys = Vec::with_capacity(l); for i in 0..l { xs = ((delta_a.i((.., .., i))? * xs)? + delta_b_u.i((.., .., i))?)?; let y = xs.matmul(&c.i((.., i, ..))?.unsqueeze(2)?)?.squeeze(2)?; ys.push(y) } let ys = Tensor::stack(ys.as_slice(), 1)?; ys + u.broadcast_mul(d) } impl Module for MambaBlock { // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L206 fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (_b_sz, seq_len, _dim) = xs.dims3()?; let xs_and_res = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?; let (xs, res) = (&xs_and_res[0], &xs_and_res[1]); let xs = xs .t()? .apply(&self.conv1d)? .narrow(D::Minus1, 0, seq_len)? .t()?; let xs = candle_nn::ops::silu(&xs)?; let ys = (self.ssm(&xs)? * candle_nn::ops::silu(res))?; ys.apply(&self.out_proj) } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L143 #[derive(Clone, Debug)] pub struct ResidualBlock { mixer: MambaBlock, norm: RmsNorm, } impl ResidualBlock { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?; let mixer = MambaBlock::new(cfg, vb.pp("mixer"))?; Ok(Self { mixer, norm }) } } impl Module for ResidualBlock { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.apply(&self.norm)?.apply(&self.mixer)? + xs } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56 #[derive(Clone, Debug)] pub struct Model { embedding: candle_nn::Embedding, layers: Vec<ResidualBlock>, norm_f: RmsNorm, lm_head: Linear, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?; let mut layers = Vec::with_capacity(cfg.n_layer); let vb_l = vb.pp("layers"); for layer_idx in 0..cfg.n_layer { let layer = ResidualBlock::new(cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?; let lm_head = Linear::from_weights(embedding.embeddings().clone(), None); Ok(Self { embedding, layers, norm_f, lm_head, }) } } impl Module for Model { fn forward(&self, input_ids: &Tensor) -> Result<Tensor> { let (_b_size, seq_len) = input_ids.dims2()?; let mut xs = self.embedding.forward(input_ids)?; for layer in self.layers.iter() { xs = layer.forward(&xs)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm_f)? .apply(&self.lm_head) } }
candle/candle-examples/examples/mamba-minimal/model.rs/0
{ "file_path": "candle/candle-examples/examples/mamba-minimal/model.rs", "repo_id": "candle", "token_count": 3488 }
21
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{IndexOp, D}; use clap::{Parser, ValueEnum}; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { SqueezeNet, EfficientNet, } #[derive(Parser)] struct Args { #[arg(long)] image: String, #[arg(long)] model: Option<String>, /// The model to be used. #[arg(value_enum, long, default_value_t = Which::SqueezeNet)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let image = candle_examples::imagenet::load_image224(args.image)?; let image = match args.which { Which::SqueezeNet => image, Which::EfficientNet => image.permute((1, 2, 0))?, }; println!("loaded image {image:?}"); let model = match args.model { Some(model) => std::path::PathBuf::from(model), None => match args.which { Which::SqueezeNet => hf_hub::api::sync::Api::new()? .model("lmz/candle-onnx".into()) .get("squeezenet1.1-7.onnx")?, Which::EfficientNet => hf_hub::api::sync::Api::new()? .model("onnx/EfficientNet-Lite4".into()) .get("efficientnet-lite4-11.onnx")?, }, }; let model = candle_onnx::read_file(model)?; let graph = model.graph.as_ref().unwrap(); let mut inputs = std::collections::HashMap::new(); inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?); let mut outputs = candle_onnx::simple_eval(&model, inputs)?; let output = outputs.remove(&graph.output[0].name).unwrap(); let prs = match args.which { Which::SqueezeNet => candle_nn::ops::softmax(&output, D::Minus1)?, Which::EfficientNet => output, }; let prs = prs.i(0)?.to_vec1::<f32>()?; // Sort the predictions and take the top 5 let mut top: Vec<_> = prs.iter().enumerate().collect(); top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap()); let top = top.into_iter().take(5).collect::<Vec<_>>(); // Print the top predictions for &(i, p) in &top { println!( "{:50}: {:.2}%", candle_examples::imagenet::CLASSES[i], p * 100.0 ); } Ok(()) }
candle/candle-examples/examples/onnx/main.rs/0
{ "file_path": "candle/candle-examples/examples/onnx/main.rs", "repo_id": "candle", "token_count": 1042 }
22
# candle-replit-code: code completion specialized model. [replit-code-v1_5-3b](https://huggingface.co/replit/replit-code-v1_5-3b) is a language model specialized for code completion. This model uses 3.3B parameters in `bfloat16` (so the GPU version will only work on recent nvidia cards). ## Running some example ```bash cargo run --example replit-code --release -- --prompt 'def fibonacci(n): ' ``` This produces the following output. ``` def fibonacci(n): # write Fibonacci series up to n """Print a Fibonacci series up to n.""" a, b = 0, 1 while a < n: print(a, end=' ') a, b = b, a+b print() def fibonacci_loop(n): # write Fibonacci series up to n """Print a Fibonacci series up to n.""" result = [] a, b = 0, 1 while a < n: result.append(a) a, b = b, a+b return result def fibonacci_generator(n): # write Fibonacci series up to n """Print a Fibonacci series up to n.""" a, b = 0, 1 while a < n: yield a a, b = b, a+b ```
candle/candle-examples/examples/replit-code/README.md/0
{ "file_path": "candle/candle-examples/examples/replit-code/README.md", "repo_id": "candle", "token_count": 426 }
23
use candle::{IndexOp, Result, Tensor, D}; use tokenizers::Tokenizer; const LANGUAGES: [(&str, &str); 99] = [ ("en", "english"), ("zh", "chinese"), ("de", "german"), ("es", "spanish"), ("ru", "russian"), ("ko", "korean"), ("fr", "french"), ("ja", "japanese"), ("pt", "portuguese"), ("tr", "turkish"), ("pl", "polish"), ("ca", "catalan"), ("nl", "dutch"), ("ar", "arabic"), ("sv", "swedish"), ("it", "italian"), ("id", "indonesian"), ("hi", "hindi"), ("fi", "finnish"), ("vi", "vietnamese"), ("he", "hebrew"), ("uk", "ukrainian"), ("el", "greek"), ("ms", "malay"), ("cs", "czech"), ("ro", "romanian"), ("da", "danish"), ("hu", "hungarian"), ("ta", "tamil"), ("no", "norwegian"), ("th", "thai"), ("ur", "urdu"), ("hr", "croatian"), ("bg", "bulgarian"), ("lt", "lithuanian"), ("la", "latin"), ("mi", "maori"), ("ml", "malayalam"), ("cy", "welsh"), ("sk", "slovak"), ("te", "telugu"), ("fa", "persian"), ("lv", "latvian"), ("bn", "bengali"), ("sr", "serbian"), ("az", "azerbaijani"), ("sl", "slovenian"), ("kn", "kannada"), ("et", "estonian"), ("mk", "macedonian"), ("br", "breton"), ("eu", "basque"), ("is", "icelandic"), ("hy", "armenian"), ("ne", "nepali"), ("mn", "mongolian"), ("bs", "bosnian"), ("kk", "kazakh"), ("sq", "albanian"), ("sw", "swahili"), ("gl", "galician"), ("mr", "marathi"), ("pa", "punjabi"), ("si", "sinhala"), ("km", "khmer"), ("sn", "shona"), ("yo", "yoruba"), ("so", "somali"), ("af", "afrikaans"), ("oc", "occitan"), ("ka", "georgian"), ("be", "belarusian"), ("tg", "tajik"), ("sd", "sindhi"), ("gu", "gujarati"), ("am", "amharic"), ("yi", "yiddish"), ("lo", "lao"), ("uz", "uzbek"), ("fo", "faroese"), ("ht", "haitian creole"), ("ps", "pashto"), ("tk", "turkmen"), ("nn", "nynorsk"), ("mt", "maltese"), ("sa", "sanskrit"), ("lb", "luxembourgish"), ("my", "myanmar"), ("bo", "tibetan"), ("tl", "tagalog"), ("mg", "malagasy"), ("as", "assamese"), ("tt", "tatar"), ("haw", "hawaiian"), ("ln", "lingala"), ("ha", "hausa"), ("ba", "bashkir"), ("jw", "javanese"), ("su", "sundanese"), ]; /// Returns the token id for the selected language. pub fn detect_language( model: &mut super::Model, tokenizer: &Tokenizer, mel: &Tensor, ) -> Result<u32> { let (_bsize, _, seq_len) = mel.dims3()?; let mel = mel.narrow( 2, 0, usize::min(seq_len, model.config().max_source_positions), )?; let device = mel.device(); let language_token_ids = LANGUAGES .iter() .map(|(t, _)| crate::token_id(tokenizer, &format!("<|{t}|>"))) .collect::<Result<Vec<_>>>()?; let sot_token = crate::token_id(tokenizer, crate::m::SOT_TOKEN)?; let audio_features = model.encoder_forward(&mel, true)?; let tokens = Tensor::new(&[[sot_token]], device)?; let language_token_ids = Tensor::new(language_token_ids.as_slice(), device)?; let ys = model.decoder_forward(&tokens, &audio_features, true)?; let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?; let logits = logits.index_select(&language_token_ids, 0)?; let probs = candle_nn::ops::softmax(&logits, D::Minus1)?; let probs = probs.to_vec1::<f32>()?; let mut probs = LANGUAGES.iter().zip(probs.iter()).collect::<Vec<_>>(); probs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for ((_, language), p) in probs.iter().take(5) { println!("{language}: {p}") } let language = crate::token_id(tokenizer, &format!("<|{}|>", probs[0].0 .0))?; Ok(language) }
candle/candle-examples/examples/whisper/multilingual.rs/0
{ "file_path": "candle/candle-examples/examples/whisper/multilingual.rs", "repo_id": "candle", "token_count": 1846 }
24
pub const NAMES: [&str; 80] = [ "person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ];
candle/candle-examples/src/coco_classes.rs/0
{ "file_path": "candle/candle-examples/src/coco_classes.rs", "repo_id": "candle", "token_count": 648 }
25
/****************************************************************************** * Copyright (c) 2023, Tri Dao. ******************************************************************************/ #pragma once #include <cmath> #include <cute/tensor.hpp> #include <cutlass/numeric_types.h> #include "philox.cuh" #include "utils.h" namespace flash { using namespace cute; //////////////////////////////////////////////////////////////////////////////////////////////////// template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> __device__ inline void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) { static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); mi++) { summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0)); #pragma unroll for (int ni = 1; ni < size<1>(tensor); ni++) { summary(mi) = op(summary(mi), tensor(mi, ni)); } } } template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> __device__ inline void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) { CUTE_STATIC_ASSERT_V(size(dst) == size(src)); #pragma unroll for (int i = 0; i < size(dst); i++){ dst(i) = Allreduce<4>::run(src(i), op); } } template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator> __device__ inline void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) { thread_reduce_<zero_init>(tensor, summary, op); quad_allreduce_(summary, summary, op); } template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> __device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){ MaxOp<float> max_op; reduce_<zero_init>(tensor, max, max_op); } template<typename Engine0, typename Layout0, typename Engine1, typename Layout1> __device__ inline void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){ SumOp<float> sum_op; reduce_(tensor, sum, sum_op); } // Apply the exp to all the elements. template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) { static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { // If max is -inf, then all elements must have been -inf (possibly due to masking). // We don't want (-inf - (-inf)) since that would give NaN. // If we don't have float around M_LOG2E the multiplication is done in fp64. const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E)); #pragma unroll for (int ni = 0; ni < size<1>(tensor); ++ni) { // Instead of computing exp(x - max), we compute exp2(x * log_2(e) - // max * log_2(e)) This allows the compiler to use the ffma // instruction instead of fadd and fmul separately. tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); } } } // Apply the exp to all the elements. template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1> inline __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) { static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { MaxOp<float> max_op; max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0)); #pragma unroll for (int ni = 1; ni < size<1>(tensor); ni++) { max(mi) = max_op(max(mi), tensor(mi, ni)); } max(mi) = Allreduce<4>::run(max(mi), max_op); // If max is -inf, then all elements must have been -inf (possibly due to masking). // We don't want (-inf - (-inf)) since that would give NaN. const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale; sum(mi) = 0; #pragma unroll for (int ni = 0; ni < size<1>(tensor); ++ni) { // Instead of computing exp(x - max), we compute exp2(x * log_2(e) - // max * log_2(e)) This allows the compiler to use the ffma // instruction instead of fadd and fmul separately. tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled); sum(mi) += tensor(mi, ni); } SumOp<float> sum_op; sum(mi) = Allreduce<4>::run(sum(mi), sum_op); } } template <typename Engine, typename Layout> inline __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const int max_seqlen_k, const int col_idx_offset_ = 0) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout::rank == 2, "Only support 2D Tensor"); const int lane_id = threadIdx.x % 32; const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; if (col_idx >= max_seqlen_k) { // Without the "make_coord" we get wrong results #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { tensor(mi, make_coord(j, nj)) = -INFINITY; } } } } } template <bool HasWSLeft=true, typename Engine, typename Layout> inline __device__ void apply_mask_local(Tensor<Engine, Layout> &tensor, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset, const int max_seqlen_q, const int warp_row_stride, const int window_size_left, const int window_size_right) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout::rank == 2, "Only support 2D Tensor"); const int lane_id = threadIdx.x % 32; const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; #pragma unroll for (int mi = 0; mi < size<0, 1>(tensor); ++mi) { const int row_idx_base = row_idx_offset + mi * warp_row_stride; #pragma unroll for (int i = 0; i < size<0, 0>(tensor); ++i) { const int row_idx = row_idx_base + i * 8; const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left); const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right); #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; if (col_idx >= col_idx_limit_right || (HasWSLeft && col_idx < col_idx_limit_left)) { tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY; } } } // if (cute::thread0()) { // printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k); // print(tensor(make_coord(i, mi), _)); // // print(tensor(_, j + nj * size<1, 0>(tensor))); // } } } } template <typename Engine, typename Layout> inline __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset, const int max_seqlen_q, const int warp_row_stride) { // Causal masking is equivalent to local masking with window_size_left = infinity and window_size_right = 0 apply_mask_local</*HasWSLeft=*/false>(tensor, col_idx_offset_, max_seqlen_k, row_idx_offset, max_seqlen_q, warp_row_stride, -1, 0); } template <typename Engine0, typename Layout0, typename Engine1, typename Layout1> inline __device__ void apply_mask_causal_w_idx( Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol, const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset) { // tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N)) static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 2, "Only support 2D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol)); CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol)); #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { const int col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset + get<0>(idx_rowcol(mi, 0))); #pragma unroll for (int ni = 0; ni < size<1, 1>(tensor); ++ni) { if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) { tensor(mi, ni) = -INFINITY; } } // if (cute::thread0()) { // printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k); // print(tensor(_, make_coord(j, ni))); // // print(tensor(_, j + ni * size<1, 0>(tensor))); // } } } template <bool encode_dropout_in_sign_bit=false, typename Engine, typename Layout> inline __device__ void apply_dropout(Tensor<Engine, Layout> &tensor, uint8_t p_dropout_in_uint8_t, unsigned long long seed, unsigned long long offset, int block_row_start, int block_col_start, int block_row_stride) { // tensor has shape (8, MMA_M, MMA_N / 2) using T = typename Engine::value_type; auto encode_dropout = [](bool keep, T val) { return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0)); }; static_assert(decltype(size<2>(tensor))::value % 2 == 0); const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t); const uint32_t p_dropout_8bit_in_uint32_t = (uint32_t(p_dropout_8bit_in_uint16_t) << 16) | uint32_t(p_dropout_8bit_in_uint16_t); // if (cute::thread0()) { printf("threshold2 = 0x%x\n", p_dropout_8bit_in_uint32_t); } #pragma unroll for (int m = 0; m < size<1>(tensor); ++m, block_row_start += block_row_stride) { uint2 rowcol = make_uint2(block_row_start, block_col_start); #pragma unroll for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) { // if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col = %d\n", m, n, int(rowcol.x), int(rowcol.y));} uint4 random_uint4 = flash::philox(seed, reinterpret_cast<unsigned long long&>(rowcol), offset); // if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n", random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);} uint8_t (&rnd_8)[16] = reinterpret_cast<uint8_t (&)[16]>(random_uint4); // Special implementation for 16-bit types: we duplicate the threshold to the // low and high 16 bits of a 32-bit value, then use the f16x2 comparison instruction // to get a mask. The low 16 bits of the mask will be either 0xffff or 0x0000, // and the high 16 bits will be either 0xffff or 0x0000, depending on whether // the random value is less than the threshold. // We then do a bit-wise AND between the mask and the original value (in 32-bit). // We're exploiting the fact that floating point comparison is equivalent to integer // comparison, since we're comparing unsigned integers whose top 8-bits are zero. if (!encode_dropout_in_sign_bit && (std::is_same<T, cutlass::half_t>::value || std::is_same<T, cutlass::bfloat16_t>::value)) { uint16_t rnd_16[16]; #pragma unroll for (int i = 0; i < 16; i++) { rnd_16[i] = uint16_t(rnd_8[i]); } uint32_t (&rnd_32)[8] = reinterpret_cast<uint32_t (&)[8]>(rnd_16); #pragma unroll for (int j = 0; j < 2; j++) { Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j)); // if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j * 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); } // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); } #pragma unroll for (int i = 0; i < 4; i++) { uint32_t mask; asm volatile("set.le.u32.f16x2 %0, %1, %2;\n" : "=r"(mask) : "r"(rnd_32[j * 4 + i]), "r"(p_dropout_8bit_in_uint32_t)); tensor_uint32(i) &= mask; } // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); } } } else { #pragma unroll for (int j = 0; j < 2; j++) { #pragma unroll for (int i = 0; i < 8; i++) { tensor(i, m, n * 2 + j) = encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t, tensor(i, m, n * 2 + j)); } Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j)); // if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); } } } // // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) { // // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x, rnd_8.y, rnd_8.z, rnd_8.w); // // } } } } } // namespace flash
candle/candle-flash-attn/kernels/softmax.h/0
{ "file_path": "candle/candle-flash-attn/kernels/softmax.h", "repo_id": "candle", "token_count": 7224 }
26
#include<stdint.h> #include "cuda_fp16.h" template<typename T> __device__ void fill_with(T *buf, T value, const size_t numel) { for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { buf[i] = value; } } extern "C" __global__ void fill_u8(uint8_t *buf, uint8_t value, const size_t numel) { fill_with(buf, value, numel); } extern "C" __global__ void fill_u32(uint32_t *buf, uint32_t value, const size_t numel) { fill_with(buf, value, numel); } extern "C" __global__ void fill_i64(int64_t *buf, int64_t value, const size_t numel) { fill_with(buf, value, numel); } extern "C" __global__ void fill_f16(__half *buf, __half value, const size_t numel) { fill_with(buf, value, numel); } extern "C" __global__ void fill_f32(float *buf, float value, const size_t numel) { fill_with(buf, value, numel); } extern "C" __global__ void fill_f64(double *buf, double value, const size_t numel) { fill_with(buf, value, numel); } #if __CUDA_ARCH__ >= 800 #include <cuda_bf16.h> extern "C" __global__ void fill_bf16(__nv_bfloat16 *buf, __nv_bfloat16 value, const size_t numel) { fill_with(buf, value, numel); } #endif
candle/candle-kernels/src/fill.cu/0
{ "file_path": "candle/candle-kernels/src/fill.cu", "repo_id": "candle", "token_count": 472 }
27
#include <metal_stdlib> #include <metal_integer> #include <metal_atomic> using namespace metal; // Constants // 2^32 and 1/2^32. Useful for converting between float and uint. static constexpr constant ulong UNIF01_NORM32 = 4294967296; static constexpr constant float UNIF01_INV32 = 2.328306436538696289e-10; // 2 * pi static constexpr constant float TWO_PI = 2.0 * M_PI_F; static constexpr constant int3 S1 = {13, 19, 12}; static constexpr constant int3 S2 = {2, 25, 4}; static constexpr constant int3 S3 = {3, 11, 17}; // Used to prevent bad seeds. static constexpr constant uint64_t PHI[16] = { 0x9E3779B97F4A7C15, 0xF39CC0605CEDC834, 0x1082276BF3A27251, 0xF86C6A11D0C18E95, 0x2767F0B153D27B7F, 0x0347045B5BF1827F, 0x01886F0928403002, 0xC1D64BA40F335E36, 0xF06AD7AE9717877E, 0x85839D6EFFBD7DC6, 0x64D325D1C5371682, 0xCADD0CCCFDFFBBE1, 0x626E33B8D04B4331, 0xBBF73C790D94F79D, 0x471C4AB3ED3D82A5, 0xFEC507705E4AE6E5, }; // Combined Tausworthe and LCG Random Number Generator. // https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-37-efficient-random-number-generation-and-application // https://indico.cern.ch/event/93877/contributions/2118070/attachments/1104200/1575343/acat3_revised_final.pdf struct HybridTaus { float state; HybridTaus() thread = default; HybridTaus() threadgroup = default; HybridTaus() device = default; HybridTaus() constant = default; // Generate seeds for each thread. METAL_FUNC static uint4 seed_per_thread(const ulong4 seeds) { return uint4(ulong4(seeds) * ulong4(PHI[0], PHI[1], PHI[2], PHI[3]) * ulong4(1099087573UL)); } // Tausworthe generator. METAL_FUNC static uint taus(const uint z, const int3 s, const uint M) { uint b = (((z << s.x) ^ z) >> s.y); return (((z & M) << s.z) ^ b); } // LCG generator. METAL_FUNC static uint lcg(const uint z) { return (1664525 * z + 1013904223UL); } // Initialize the RNG state. METAL_FUNC static HybridTaus init(const ulong4 seeds) { uint4 seed = seed_per_thread(seeds); // Seed #1 uint z1 = taus(seed.x, S1, 4294967294UL); uint z2 = taus(seed.y, S2, 4294967288UL); uint z3 = taus(seed.z, S3, 4294967280UL); uint z4 = lcg(seed.x); // Seed #2 uint r1 = (z1^z2^z3^z4^seed.y); z1 = taus(r1, S1, 429496729UL); z2 = taus(r1, S2, 4294967288UL); z3 = taus(r1, S3, 429496280UL); z4 = lcg(r1); // Seed #3 r1 = (z1^z2^z3^z4^seed.z); z1 = taus(r1, S1, 429496729UL); z2 = taus(r1, S2, 4294967288UL); z3 = taus(r1, S3, 429496280UL); z4 = lcg(r1); // Seed #4 r1 = (z1^z2^z3^z4^seed.w); z1 = taus(r1, S1, 429496729UL); z2 = taus(r1, S2, 4294967288UL); z3 = taus(r1, S3, 429496280UL); z4 = lcg(r1); HybridTaus rng; rng.state = (z1^z2^z3^z4) * UNIF01_INV32; return rng; } METAL_FUNC float rand() { uint seed = this->state * UNIF01_NORM32; uint z1 = taus(seed, S1, 429496729UL); uint z2 = taus(seed, S2, 4294967288UL); uint z3 = taus(seed, S3, 429496280UL); uint z4 = lcg(seed); thread float result = this->state; this->state = (z1^z2^z3^z4) * UNIF01_INV32; return result; } }; template<typename T> METAL_FUNC void rand_uniform( constant size_t &size, constant float &min, constant float &max, device atomic_uint *seed, device T *out, uint tid [[thread_position_in_grid]] ) { if (tid >= size) { return; } float diff = abs(min - max); HybridTaus rng = HybridTaus::init({ulong(seed), tid, 1, 1}); out[tid] = static_cast<T>(rng.rand() * diff + min); if (tid == 0) { atomic_store_explicit(seed, uint(rng.rand() * UNIF01_NORM32), memory_order_relaxed); // Return early if tid == 0, otherwise we will write to out[size]. return; } // Use symmetry to fill the other half of the array. out[size - tid] = static_cast<T>(rng.rand() * diff + min); } // Create Gaussian normal distribution using Box-Muller transform: // https://en.wikipedia.org/wiki/Box–Muller_transform template<typename T> METAL_FUNC void normal( constant size_t &size, constant float &mean, constant float &stddev, device atomic_uint *seed, device T *out, uint tid [[thread_position_in_grid]] ) { if (tid >= size) { return; } HybridTaus rng = HybridTaus::init({ulong(seed), tid, 1, 1}); float u1 = rng.rand(); float u2 = rng.rand(); float cosval; float sinval = sincos(TWO_PI * u2, cosval); float mag = stddev * sqrt(-2.0 * log(u1)); float z0 = mag * cosval + mean; float z1 = mag * sinval + mean; out[tid] = static_cast<T>(z0); if (tid == 0) { atomic_store_explicit(seed, uint(rng.rand() * UNIF01_NORM32), memory_order_relaxed); // Return early if tid == 0, otherwise we will write to out[size]. return; } // Use symmetry to fill the other half of the array. out[size - tid] = static_cast<T>(z1); } #define UNIFORM_OP(NAME, T) \ kernel void rand_uniform_##NAME( \ constant size_t &size, \ constant float &min, \ constant float &max, \ device atomic_uint *seed, \ device T *out, \ uint tid [[thread_position_in_grid]] \ ) { \ rand_uniform<T>(size, min, max, seed, out, tid); \ } \ #define NORMAL_OP(NAME, T) \ kernel void rand_normal_##NAME( \ constant size_t &size, \ constant float &mean, \ constant float &stddev, \ device atomic_uint *seed, \ device T *out, \ uint tid [[thread_position_in_grid]] \ ) { \ normal<T>(size, mean, stddev, seed, out, tid); \ } \ #define RANDOM_OPS(NAME, T) \ UNIFORM_OP(NAME, T) \ NORMAL_OP(NAME, T) \ RANDOM_OPS(f32, float) RANDOM_OPS(f16, half) #if __METAL_VERSION__ >= 310 RANDOM_OPS(bf16, bfloat) #endif
candle/candle-metal-kernels/src/random.metal/0
{ "file_path": "candle/candle-metal-kernels/src/random.metal", "repo_id": "candle", "token_count": 3513 }
28
//! Embedding Layer. use candle::{Result, Tensor}; #[derive(Clone, Debug)] pub struct Embedding { embeddings: Tensor, hidden_size: usize, } impl Embedding { pub fn new(embeddings: Tensor, hidden_size: usize) -> Self { Self { embeddings, hidden_size, } } pub fn embeddings(&self) -> &Tensor { &self.embeddings } /// Get the hidden size of the embedding matrix pub fn hidden_size(&self) -> usize { self.hidden_size } } impl crate::Module for Embedding { fn forward(&self, indexes: &Tensor) -> Result<Tensor> { let mut final_dims = indexes.dims().to_vec(); final_dims.push(self.hidden_size); let indexes = indexes.flatten_all()?; let values = self.embeddings.index_select(&indexes, 0)?; let values = values.reshape(final_dims)?; Ok(values) } } pub fn embedding(in_size: usize, out_size: usize, vb: crate::VarBuilder) -> Result<Embedding> { let embeddings = vb.get_with_hints( (in_size, out_size), "weight", crate::Init::Randn { mean: 0., stdev: 1., }, )?; Ok(Embedding::new(embeddings, out_size)) }
candle/candle-nn/src/embedding.rs/0
{ "file_path": "candle/candle-nn/src/embedding.rs", "repo_id": "candle", "token_count": 571 }
29
/* Equivalent PyTorch code. import torch from torch.nn.functional import group_norm t = torch.tensor( [[[-0.3034, 0.2726, -0.9659], [-1.1845, -1.3236, 0.0172], [ 1.9507, 1.2554, -0.8625], [ 1.0682, 0.3604, 0.3985], [-0.4957, -0.4461, -0.9721], [ 1.5157, -0.1546, -0.5596]], [[-1.6698, -0.4040, -0.7927], [ 0.3736, -0.0975, -0.1351], [-0.9461, 0.5461, -0.6334], [-1.0919, -0.1158, 0.1213], [-0.9535, 0.1281, 0.4372], [-0.2845, 0.3488, 0.5641]]]) print(group_norm(t, num_groups=2)) print(group_norm(t, num_groups=3)) */ #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::Result; use candle::test_utils::to_vec3_round; use candle::{Device, Tensor}; use candle_nn::{GroupNorm, Module}; #[test] fn group_norm() -> Result<()> { let device = &Device::Cpu; let w = Tensor::from_vec(vec![1f32; 6], 6, device)?; let b = Tensor::from_vec(vec![0f32; 6], 6, device)?; let gn2 = GroupNorm::new(w.clone(), b.clone(), 6, 2, 1e-5)?; let gn3 = GroupNorm::new(w, b, 6, 3, 1e-5)?; let input = Tensor::new( &[ [ [-0.3034f32, 0.2726, -0.9659], [-1.1845, -1.3236, 0.0172], [1.9507, 1.2554, -0.8625], [1.0682, 0.3604, 0.3985], [-0.4957, -0.4461, -0.9721], [1.5157, -0.1546, -0.5596], ], [ [-1.6698, -0.4040, -0.7927], [0.3736, -0.0975, -0.1351], [-0.9461, 0.5461, -0.6334], [-1.0919, -0.1158, 0.1213], [-0.9535, 0.1281, 0.4372], [-0.2845, 0.3488, 0.5641], ], ], device, )?; assert_eq!( to_vec3_round(&gn2.forward(&input)?, 4)?, &[ [ [-0.1653, 0.3748, -0.7866], [-0.9916, -1.1220, 0.1353], [1.9485, 1.2965, -0.6896], [1.2769, 0.3628, 0.4120], [-0.7427, -0.6786, -1.3578], [1.8547, -0.3022, -0.8252] ], [ [-1.9342, 0.0211, -0.5793], [1.2223, 0.4945, 0.4365], [-0.8163, 1.4887, -0.3333], [-1.7960, -0.0392, 0.3875], [-1.5469, 0.3998, 0.9561], [-0.3428, 0.7970, 1.1845] ] ] ); assert_eq!( to_vec3_round(&gn3.forward(&input)?, 4)?, &[ [ [0.4560, 1.4014, -0.6313], [-0.9901, -1.2184, 0.9822], [1.4254, 0.6360, -1.7682], [0.4235, -0.3800, -0.3367], [-0.3890, -0.3268, -0.9862], [2.1325, 0.0386, -0.4691] ], [ [-1.8797, 0.0777, -0.5234], [1.2802, 0.5517, 0.4935], [-1.0102, 1.5327, -0.4773], [-1.2587, 0.4047, 0.8088], [-1.9074, 0.1691, 0.7625], [-0.6230, 0.5928, 1.0061] ] ] ); Ok(()) }
candle/candle-nn/tests/group_norm.rs/0
{ "file_path": "candle/candle-nn/tests/group_norm.rs", "repo_id": "candle", "token_count": 2154 }
30
## Installation From the `candle-pyo3` directory, enable a virtual env where you will want the candle package to be installed then run. ```bash maturin develop -r python test.py ``` ## Generating Stub Files for Type Hinting For type hinting support, the `candle-pyo3` package requires `*.pyi` files. You can automatically generate these files using the `stub.py` script. ### Steps: 1. Install the package using `maturin`. 2. Generate the stub files by running: ``` python stub.py ``` ### Validation: To ensure that the stub files match the current implementation, execute: ``` python stub.py --check ```
candle/candle-pyo3/README.md/0
{ "file_path": "candle/candle-pyo3/README.md", "repo_id": "candle", "token_count": 190 }
31
from .module import Module from typing import Optional, Tuple, Any from candle import Tensor import candle class Embedding(Module): """A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. Args: num_embeddings (int): size of the dictionary of embeddings embedding_dim (int): the size of each embedding vector Attributes: weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from :math:`\mathcal{N}(0, 1)` Shape: - Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` """ def __init__(self, num_embeddings: int, embedding_dim: int, device=None) -> None: factory_kwargs = {"device": device} super().__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim self.weight = candle.randn((num_embeddings, embedding_dim), **factory_kwargs) def forward(self, indexes: Tensor) -> Tensor: final_dims = list(indexes.shape) final_dims.append(self.embedding_dim) indexes = indexes.flatten_all() values = self.weight.index_select(indexes, 0) return values.reshape(final_dims)
candle/candle-pyo3/py_src/candle/nn/sparse.py/0
{ "file_path": "candle/candle-pyo3/py_src/candle/nn/sparse.py", "repo_id": "candle", "token_count": 590 }
32
use candle::{IndexOp, Result, Tensor, D}; use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; const IMG_SIZE: usize = 518; const PATCH_SIZE: usize = 14; const NUM_CLASSES: usize = 1000; fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { if bias { candle_nn::linear(in_dim, out_dim, vb) } else { candle_nn::linear_no_bias(in_dim, out_dim, vb) } } #[derive(Debug)] struct Attention { qkv: Linear, proj: Linear, num_heads: usize, scale: f64, } impl Attention { fn new( vb: VarBuilder, dim: usize, num_heads: usize, qkv_bias: bool, proj_bias: bool, ) -> Result<Self> { let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; let scale = 1. / ((dim / num_heads) as f64).sqrt(); Ok(Self { qkv, proj, num_heads, scale, }) } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (b, n, c) = xs.dims3()?; let qkv = self .qkv .forward(xs)? .reshape((b, n, 3, self.num_heads, c / self.num_heads))? .transpose(1, 2)? // 02134 .transpose(0, 1)? // 20134 .transpose(2, 3)?; // 20314 let q = (qkv.i(0)? * self.scale)?; let k = qkv.i(1)?; let v = qkv.i(2)?; let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?; let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; self.proj.forward(&attn) } } #[derive(Debug)] struct LayerScale { gamma: Tensor, } impl LayerScale { fn new(vb: VarBuilder, dim: usize) -> Result<Self> { let gamma = vb.get(dim, "gamma")?; Ok(Self { gamma }) } } impl Module for LayerScale { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.broadcast_mul(&self.gamma) } } #[derive(Debug)] struct Mlp { fc1: Linear, fc2: Linear, } impl Mlp { fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> { let out_features = in_features; let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; Ok(Self { fc1, fc2 }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.fc1.forward(xs)?.gelu()?; self.fc2.forward(&xs) } } #[derive(Debug)] struct Block { norm1: LayerNorm, attn: Attention, ls1: LayerScale, norm2: LayerNorm, mlp: Mlp, ls2: LayerScale, } impl Block { fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> { let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?; let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; Ok(Self { norm1, attn, ls1, norm2, mlp, ls2, }) } } impl Module for Block { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let residual = xs; let xs = self .ls1 .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; let xs = (xs + residual)?; let residual = &xs; let xs = self .ls2 .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; xs + residual } } #[derive(Debug)] struct PatchEmbed { proj: candle_nn::Conv2d, patch_size: (usize, usize), num_patches: usize, } impl PatchEmbed { fn new( vb: VarBuilder, img_size: usize, patch_size: usize, in_chans: usize, embed_dim: usize, ) -> Result<Self> { let config = candle_nn::Conv2dConfig { stride: patch_size, ..Default::default() }; let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; let num_patches = (img_size / patch_size) * (img_size / patch_size); Ok(Self { proj, patch_size: (patch_size, patch_size), num_patches, }) } } impl Module for PatchEmbed { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (_b, _c, h, w) = xs.dims4()?; let (patch_h, patch_w) = self.patch_size; if (h % patch_h) != 0 { candle::bail!("image height {h} is not a multiple of patch height {patch_h}") } if (w % patch_w) != 0 { candle::bail!("image width {w} is not a multiple of patch width {patch_w}") } let xs = self.proj.forward(xs)?; let (b, c, h, w) = xs.dims4()?; // flatten embeddings. xs.reshape((b, c, h * w))?.transpose(1, 2) } } #[derive(Debug)] pub struct DinoVisionTransformer { patch_embed: PatchEmbed, cls_token: Tensor, pos_embed: Tensor, blocks: Vec<Block>, norm: LayerNorm, head: Linear, } impl DinoVisionTransformer { pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> { let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; let num_tokens = 1; let pos_embed = vb.get( (1, patch_embed.num_patches + num_tokens, embed_dim), "pos_embed", )?; let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?; let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?; let vb_b = vb.pp("blocks"); let blocks = (0..depth) .map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads)) .collect::<Result<Vec<_>>>()?; Ok(Self { patch_embed, cls_token, pos_embed, blocks, norm, head, }) } fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> { let npatch = xs.dim(1)? - 1; let n = self.pos_embed.dim(1)? - 1; let sqrt_n = (n as f64).sqrt(); if npatch == n && w == h { return Ok(xs.clone()); } let class_pos_embed = self.pos_embed.i((.., ..1))?; let patch_pos_embed = self.pos_embed.i((.., 1..))?; let dim = xs.dim(D::Minus1)?; let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); let patch_pos_embed = patch_pos_embed .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? .transpose(2, 3)? .transpose(1, 2)?; // This uses bicubic interpolation in the original implementation. let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; let el_count = patch_pos_embed.shape().elem_count(); let patch_pos_embed = patch_pos_embed .transpose(1, 2)? .transpose(2, 3)? .reshape((1, el_count / dim, dim))?; Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1) } fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> { let (_b, _nc, w, h) = xs.dims4()?; let xs = self.patch_embed.forward(xs)?; let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?; &xs + &self.interpolate_pos_encoding(&xs, w, h)? } } impl Module for DinoVisionTransformer { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let mut xs = self.prepare_tokens_with_mask(xs)?; for blk in self.blocks.iter() { xs = blk.forward(&xs)? } let xs = self.norm.forward(&xs)?; let xs_norm_clstoken = xs.i((.., 0))?; let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?; let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?; self.head.forward(&xs) } } pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> { DinoVisionTransformer::new(vb, 12, 384, 6) }
candle/candle-transformers/src/models/dinov2.rs/0
{ "file_path": "candle/candle-transformers/src/models/dinov2.rs", "repo_id": "candle", "token_count": 4376 }
33
use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear}; /// Phi model. /// https://huggingface.co/microsoft/phi-2 /// There is an alternative implementation of the phi model in mixformers.rs. /// This corresponds to the model update made with the following commit: /// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869 use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; use candle_nn::{Activation, VarBuilder}; use serde::Deserialize; // https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py #[derive(Debug, Clone, PartialEq, Deserialize)] pub struct Config { pub(crate) vocab_size: usize, pub(crate) hidden_size: usize, pub(crate) intermediate_size: usize, pub(crate) num_hidden_layers: usize, pub(crate) num_attention_heads: usize, pub(crate) num_key_value_heads: Option<usize>, pub(crate) hidden_act: Activation, pub(crate) max_position_embeddings: usize, pub(crate) layer_norm_eps: f64, pub(crate) tie_word_embeddings: bool, pub(crate) rope_theta: f32, pub(crate) partial_rotary_factor: f64, pub(crate) qk_layernorm: bool, } impl Config { fn num_key_value_heads(&self) -> usize { self.num_key_value_heads.unwrap_or(self.num_attention_heads) } fn head_dim(&self) -> usize { self.hidden_size / self.num_attention_heads } } #[derive(Debug, Clone)] struct RotaryEmbedding { dim: usize, sin: Tensor, cos: Tensor, } impl RotaryEmbedding { fn new(cfg: &Config, dev: &Device) -> Result<Self> { let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32)) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?; let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)? .to_dtype(DType::F32)? .reshape((cfg.max_position_embeddings, 1))?; let freqs = t.matmul(&inv_freq)?; let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?; Ok(Self { dim, sin: emb.sin()?, cos: emb.cos()?, }) } fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> { let (_b_size, _num_heads, seq_len, _headdim) = xs.dims4()?; let xs_rot = xs.i((.., .., .., ..self.dim))?; let xs_pass = xs.i((.., .., .., self.dim..))?; let xs12 = xs_rot.chunk(2, D::Minus1)?; let (xs1, xs2) = (&xs12[0], &xs12[1]); let c = self.cos.narrow(0, seqlen_offset, seq_len)?; let s = self.sin.narrow(0, seqlen_offset, seq_len)?; let rotate_half = Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)?; let xs_rot = (xs_rot.broadcast_mul(&c)? + rotate_half.broadcast_mul(&s)?)?; Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1) } } #[derive(Debug, Clone)] #[allow(clippy::upper_case_acronyms)] struct MLP { fc1: Linear, fc2: Linear, act: Activation, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?; let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?; Ok(Self { fc1, fc2, // This does not match the mixformers implementation where Gelu is used rather than // GeluNew. act: cfg.hidden_act, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2) } } #[derive(Clone)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, dense: Linear, kv_cache: Option<(Tensor, Tensor)>, q_layernorm: Option<LayerNorm>, k_layernorm: Option<LayerNorm>, rotary_emb: RotaryEmbedding, softmax_scale: f64, num_heads: usize, num_kv_heads: usize, head_dim: usize, span: tracing::Span, } fn get_mask(size: usize, device: &Device) -> Result<Tensor> { let mask: Vec<_> = (0..size) .flat_map(|i| (0..size).map(move |j| u8::from(j > i))) .collect(); Tensor::from_slice(&mask, (size, size), device) } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { let shape = mask.shape(); let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } impl Attention { fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads(); let head_dim = cfg.head_dim(); let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?; let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?; let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?; let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?; // Alternative rope scalings are not supported. let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?; let (q_layernorm, k_layernorm) = if cfg.qk_layernorm { let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?; let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?; (Some(q_layernorm), Some(k_layernorm)) } else { (None, None) }; let softmax_scale = 1f64 / (head_dim as f64).sqrt(); Ok(Self { q_proj, k_proj, v_proj, dense, kv_cache: None, q_layernorm, k_layernorm, rotary_emb, softmax_scale, num_heads, num_kv_heads, head_dim, span: tracing::span!(tracing::Level::TRACE, "attention"), }) } fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> { let n_rep = self.num_heads / self.num_kv_heads; if n_rep == 1 { Ok(xs) } else { let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?; xs.unsqueeze(2)? .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))? .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim)) } } fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> { let _enter = self.span.enter(); let (b_size, seq_len, _n_embd) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = match &self.q_layernorm { None => query_states, Some(ln) => query_states.apply(ln)?, }; let key_states = match &self.k_layernorm { None => key_states, Some(ln) => key_states.apply(ln)?, }; let query_states = query_states .reshape((b_size, seq_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; // Rotary embeddings. let seqlen_offset = match &self.kv_cache { None => 0, Some((prev_k, _)) => prev_k.dim(2)?, }; let query_states = self .rotary_emb .apply_rotary_emb(&query_states, seqlen_offset)?; let key_states = self .rotary_emb .apply_rotary_emb(&key_states, seqlen_offset)?; // KV cache. let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let k = Tensor::cat(&[prev_k, &key_states], 2)?; let v = Tensor::cat(&[prev_v, &value_states], 2)?; (k, v) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); // Repeat kv. let key_states = self.repeat_kv(key_states)?.contiguous()?; let value_states = self.repeat_kv(value_states)?.contiguous()?; let attn_weights = (query_states .to_dtype(DType::F32)? .contiguous()? .matmul(&key_states.to_dtype(DType::F32)?.t()?)? * self.softmax_scale)?; let attn_weights = match mask { None => attn_weights, Some(mask) => masked_fill( &attn_weights, &mask.broadcast_left((b_size, self.num_heads))?, f32::NEG_INFINITY, )?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?; let attn_output = attn_weights.matmul(&value_states)?; let attn_output = attn_output .transpose(1, 2)? .reshape((b_size, seq_len, ()))?; attn_output.apply(&self.dense) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } #[derive(Clone)] struct DecoderLayer { self_attn: Attention, mlp: MLP, input_layernorm: LayerNorm, span: tracing::Span, } impl DecoderLayer { fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let self_attn = Attention::new(cfg, vb.pp("self_attn"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; let input_layernorm = layer_norm( cfg.hidden_size, cfg.layer_norm_eps, vb.pp("input_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, span: tracing::span!(tracing::Level::TRACE, "block"), }) } fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> { let _enter = self.span.enter(); let residual = xs; let xs = xs.apply(&self.input_layernorm)?; let attn_outputs = self.self_attn.forward(&xs, mask)?; let feed_forward_hidden_states = self.mlp.forward(&xs)?; attn_outputs + feed_forward_hidden_states + residual } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Clone)] pub struct Model { embed_tokens: Embedding, layers: Vec<DecoderLayer>, final_layernorm: LayerNorm, lm_head: Linear, span: tracing::Span, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let vb_m = vb.pp("model"); let embed_tokens = Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let final_layernorm = layer_norm( cfg.hidden_size, cfg.layer_norm_eps, vb_m.pp("final_layernorm"), )?; let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_m = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?; layers.push(layer) } let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; Ok(Self { embed_tokens, layers, final_layernorm, lm_head, span: tracing::span!(tracing::Level::TRACE, "model"), }) } pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let (_b_size, seq_len) = xs.dims2()?; let mut xs = xs.apply(&self.embed_tokens)?; let mask = if seq_len <= 1 { None } else { Some(get_mask(seq_len, xs.device())?) }; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, mask.as_ref())?; } xs.apply(&self.final_layernorm)? .narrow(1, seq_len - 1, 1)? .apply(&self.lm_head)? .squeeze(1) } pub fn clear_kv_cache(&mut self) { self.layers.iter_mut().for_each(|b| b.clear_kv_cache()) } }
candle/candle-transformers/src/models/phi.rs/0
{ "file_path": "candle/candle-transformers/src/models/phi.rs", "repo_id": "candle", "token_count": 6392 }
34
use candle::{DType, IndexOp, Result, Tensor}; use candle_nn::{Module, VarBuilder}; use super::image_encoder::ImageEncoderViT; use super::mask_decoder::MaskDecoder; use super::prompt_encoder::PromptEncoder; use super::tiny_vit::{tiny_vit_5m, TinyViT}; const PROMPT_EMBED_DIM: usize = 256; pub const IMAGE_SIZE: usize = 1024; const VIT_PATCH_SIZE: usize = 16; const PRED_IOU_THRESH: f32 = 0.88; const STABILITY_SCORE_OFFSET: f32 = 1.0; const STABILITY_SCORE_THRESHOLD: f32 = 0.95; const MODEL_MASK_THRESHOLD: f32 = 0.0; const CROP_NMS_THRESH: f32 = 0.7; #[derive(Debug)] enum ImageEncoder { Original(ImageEncoderViT), TinyViT(TinyViT), } impl Module for ImageEncoder { fn forward(&self, xs: &Tensor) -> Result<Tensor> { match self { Self::Original(vit) => vit.forward(xs), Self::TinyViT(vit) => vit.forward(xs), } } } #[derive(Debug)] pub struct Sam { image_encoder: ImageEncoder, prompt_encoder: PromptEncoder, mask_decoder: MaskDecoder, pixel_mean: Tensor, pixel_std: Tensor, } impl Sam { pub fn new( encoder_embed_dim: usize, encoder_depth: usize, encoder_num_heads: usize, encoder_global_attn_indexes: &[usize], vb: VarBuilder, ) -> Result<Self> { let image_embedding_size = IMAGE_SIZE / VIT_PATCH_SIZE; let image_encoder = ImageEncoderViT::new( IMAGE_SIZE, VIT_PATCH_SIZE, 3, encoder_embed_dim, encoder_depth, encoder_num_heads, PROMPT_EMBED_DIM, /* qkv_bias */ true, /* use_rel_pos */ true, /* use_abs_pos */ true, /* window_size */ 14, /* global_attn_indexes */ encoder_global_attn_indexes, vb.pp("image_encoder"), )?; let prompt_encoder = PromptEncoder::new( PROMPT_EMBED_DIM, (image_embedding_size, image_embedding_size), (IMAGE_SIZE, IMAGE_SIZE), 16, vb.pp("prompt_encoder"), )?; let mask_decoder = MaskDecoder::new( PROMPT_EMBED_DIM, /* num_multitask_outputs */ 3, /* iou_head_depth */ 3, /* iou_head_hidden_dim */ 256, vb.pp("mask_decoder"), )?; let pixel_mean = Tensor::new(&[123.675f32, 116.28, 103.53], vb.device())?.reshape((3, 1, 1))?; let pixel_std = Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?; Ok(Self { image_encoder: ImageEncoder::Original(image_encoder), prompt_encoder, mask_decoder, pixel_std, pixel_mean, }) } pub fn new_tiny(vb: VarBuilder) -> Result<Self> { let image_embedding_size = IMAGE_SIZE / VIT_PATCH_SIZE; let image_encoder = tiny_vit_5m(vb.pp("image_encoder"))?; let prompt_encoder = PromptEncoder::new( PROMPT_EMBED_DIM, (image_embedding_size, image_embedding_size), (IMAGE_SIZE, IMAGE_SIZE), 16, vb.pp("prompt_encoder"), )?; let mask_decoder = MaskDecoder::new( PROMPT_EMBED_DIM, /* num_multitask_outputs */ 3, /* iou_head_depth */ 3, /* iou_head_hidden_dim */ 256, vb.pp("mask_decoder"), )?; let pixel_mean = Tensor::new(&[123.675f32, 116.28, 103.53], vb.device())?.reshape((3, 1, 1))?; let pixel_std = Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?; Ok(Self { image_encoder: ImageEncoder::TinyViT(image_encoder), prompt_encoder, mask_decoder, pixel_std, pixel_mean, }) } pub fn embeddings(&self, img: &Tensor) -> Result<Tensor> { let img = self.preprocess(img)?.unsqueeze(0)?; self.image_encoder.forward(&img) } pub fn forward( &self, img: &Tensor, points: &[(f64, f64, bool)], multimask_output: bool, ) -> Result<(Tensor, Tensor)> { let (_c, original_h, original_w) = img.dims3()?; let img = self.preprocess(img)?.unsqueeze(0)?; let img_embeddings = self.image_encoder.forward(&img)?; let (low_res_mask, iou) = self.forward_for_embeddings( &img_embeddings, original_h, original_w, points, multimask_output, )?; let mask = low_res_mask .upsample_nearest2d(IMAGE_SIZE, IMAGE_SIZE)? .get(0)? .i((.., ..original_h, ..original_w))?; Ok((mask, iou)) } /// Generate the mask and IOU predictions from some image embeddings and prompt. /// /// The prompt is specified as a list of points `(x, y, b)`. `x` and `y` are the point /// coordinates (between 0 and 1) and `b` is `true` for points that should be part of the mask /// and `false` for points that should be part of the background and so excluded from the mask. pub fn forward_for_embeddings( &self, img_embeddings: &Tensor, original_h: usize, original_w: usize, points: &[(f64, f64, bool)], multimask_output: bool, ) -> Result<(Tensor, Tensor)> { let image_pe = self.prompt_encoder.get_dense_pe()?; let points = if points.is_empty() { None } else { let n_points = points.len(); let xys = points .iter() .flat_map(|(x, y, _b)| { let x = (*x as f32) * (original_w as f32); let y = (*y as f32) * (original_h as f32); [x, y] }) .collect::<Vec<_>>(); let labels = points .iter() .map(|(_x, _y, b)| if *b { 1f32 } else { 0f32 }) .collect::<Vec<_>>(); let points = Tensor::from_vec(xys, (1, n_points, 2), img_embeddings.device())?; let labels = Tensor::from_vec(labels, (1, n_points), img_embeddings.device())?; Some((points, labels)) }; let points = points.as_ref().map(|xy| (&xy.0, &xy.1)); let (sparse_prompt_embeddings, dense_prompt_embeddings) = self.prompt_encoder.forward(points, None, None)?; self.mask_decoder.forward( img_embeddings, &image_pe, &sparse_prompt_embeddings, &dense_prompt_embeddings, multimask_output, ) } pub fn unpreprocess(&self, img: &Tensor) -> Result<Tensor> { let img = img .broadcast_mul(&self.pixel_std)? .broadcast_add(&self.pixel_mean)?; img.maximum(&img.zeros_like()?)? .minimum(&(img.ones_like()? * 255.)?) } pub fn preprocess(&self, img: &Tensor) -> Result<Tensor> { let (_c, h, w) = img.dims3()?; let img = img .to_dtype(DType::F32)? .broadcast_sub(&self.pixel_mean)? .broadcast_div(&self.pixel_std)?; if h > IMAGE_SIZE || w > IMAGE_SIZE { candle::bail!("image is too large ({w}, {h}), maximum size {IMAGE_SIZE}") } let img = img.pad_with_zeros(1, 0, IMAGE_SIZE - h)?; img.pad_with_zeros(2, 0, IMAGE_SIZE - w) } fn process_crop( &self, img: &Tensor, cb: CropBox, point_grids: &[(f64, f64)], ) -> Result<Vec<crate::object_detection::Bbox<Tensor>>> { // Crop the image and calculate embeddings. let img = img.i((.., cb.y0..cb.y1, cb.x0..cb.x1))?; let img = self.preprocess(&img)?.unsqueeze(0)?; let img_embeddings = self.image_encoder.forward(&img)?; let crop_w = cb.x1 - cb.x0; let crop_h = cb.y1 - cb.y0; // Generate masks for this crop. let image_pe = self.prompt_encoder.get_dense_pe()?; let points = point_grids .iter() .map(|&(x, y)| vec![x as f32 * crop_w as f32, y as f32 * crop_h as f32]) .collect::<Vec<_>>(); let mut bboxes = Vec::new(); for points in points.chunks(64) { // Run the model on this batch. let points_len = points.len(); let in_points = Tensor::new(points.to_vec(), img.device())?.unsqueeze(1)?; let in_labels = Tensor::ones((points_len, 1), DType::F32, img.device())?; let (sparse_prompt_embeddings, dense_prompt_embeddings) = self.prompt_encoder .forward(Some((&in_points, &in_labels)), None, None)?; let (low_res_mask, iou_predictions) = self.mask_decoder.forward( &img_embeddings, &image_pe, &sparse_prompt_embeddings, &dense_prompt_embeddings, /* multimask_output */ true, )?; let low_res_mask = low_res_mask.flatten(0, 1)?; let iou_predictions = iou_predictions.flatten(0, 1)?.to_vec1::<f32>()?; let dev = low_res_mask.device(); for (i, iou) in iou_predictions.iter().enumerate() { // Filter by predicted IoU. if *iou < PRED_IOU_THRESH { continue; } let low_res_mask = low_res_mask.get(i)?; // Calculate stability score. let bound = Tensor::new(MODEL_MASK_THRESHOLD + STABILITY_SCORE_OFFSET, dev)? .broadcast_as(low_res_mask.shape())?; let intersections = low_res_mask .ge(&bound)? .to_dtype(DType::F32)? .sum_all()? .to_vec0::<f32>()?; let bound = Tensor::new(MODEL_MASK_THRESHOLD - STABILITY_SCORE_OFFSET, dev)? .broadcast_as(low_res_mask.shape())?; let unions = low_res_mask .ge(&bound)? .to_dtype(DType::F32)? .sum_all()? .to_vec0::<f32>()?; let stability_score = intersections / unions; if stability_score < STABILITY_SCORE_THRESHOLD { continue; } // Threshold masks and calculate boxes. let low_res_mask = low_res_mask .ge(&Tensor::new(0f32, dev)?.broadcast_as(low_res_mask.shape())?)? .to_dtype(DType::U32)?; let low_res_mask_per_x = low_res_mask.sum(0)?.to_vec1::<u32>()?; let low_res_mask_per_y = low_res_mask.sum(1)?.to_vec1::<u32>()?; let min_max_x = min_max_indexes(&low_res_mask_per_x); let min_max_y = min_max_indexes(&low_res_mask_per_y); if let Some(((x0, x1), (y0, y1))) = min_max_x.zip(min_max_y) { let bbox = crate::object_detection::Bbox { xmin: x0 as f32, ymin: y0 as f32, xmax: x1 as f32, ymax: y1 as f32, confidence: *iou, data: low_res_mask, }; bboxes.push(bbox); } // TODO: // Filter boxes that touch crop boundaries // Compress to RLE. } } let mut bboxes = vec![bboxes]; // Remove duplicates within this crop. crate::object_detection::non_maximum_suppression(&mut bboxes, CROP_NMS_THRESH); // TODO: Return to the original image frame. Ok(bboxes.remove(0)) } pub fn generate_masks( &self, img: &Tensor, points_per_side: usize, crop_n_layer: usize, crop_overlap_ratio: f64, crop_n_points_downscale_factor: usize, ) -> Result<Vec<crate::object_detection::Bbox<Tensor>>> { let (_c, h, w) = img.dims3()?; let point_grids = build_all_layer_point_grids( points_per_side, crop_n_layer, crop_n_points_downscale_factor, ); let crop_boxes = generate_crop_boxes((h, w), crop_n_layer, crop_overlap_ratio); let mut bboxes = Vec::new(); for crop_box in crop_boxes.into_iter() { let layer_idx = crop_box.layer_idx; let b = self.process_crop(img, crop_box, &point_grids[layer_idx])?; bboxes.extend(b) } // TODO: remove duplicates Ok(bboxes) } } // Return the first and last indexes i for which values[i] > 0 fn min_max_indexes(values: &[u32]) -> Option<(usize, usize)> { let (mut min_i, mut max_i) = (usize::MAX, usize::MIN); for (i, &s) in values.iter().enumerate() { if s == 0 { continue; } min_i = usize::min(i, min_i); max_i = usize::max(i, max_i); } if max_i < min_i { None } else { Some((min_i, max_i)) } } #[derive(Debug)] struct CropBox { x0: usize, y0: usize, x1: usize, y1: usize, layer_idx: usize, } impl CropBox { fn new(x0: usize, y0: usize, x1: usize, y1: usize, layer_idx: usize) -> Self { Self { x0, y0, x1, y1, layer_idx, } } } fn generate_crop_boxes( (im_h, im_w): (usize, usize), n_layers: usize, overlap_ratio: f64, ) -> Vec<CropBox> { fn crop_len(orig_len: usize, n_crops: usize, overlap: usize) -> usize { f64::ceil((overlap * (n_crops - 1) + orig_len) as f64 / n_crops as f64) as usize } let short_side = usize::min(im_h, im_w); let mut crop_boxes = Vec::new(); // Original image. crop_boxes.push(CropBox::new(0, 0, im_w, im_h, 0)); for layer_idx in 1..=n_layers { let n_crops_per_side = 1 << layer_idx; let overlap = (overlap_ratio * short_side as f64 * 2. / n_crops_per_side as f64) as usize; let crop_w = crop_len(im_w, n_crops_per_side, overlap); let crop_h = crop_len(im_w, n_crops_per_side, overlap); for i_x in 0..n_crops_per_side { let x0 = (crop_w - overlap) * i_x; for i_y in 0..n_crops_per_side { let y0 = (crop_h - overlap) * i_y; let x1 = usize::min(im_w, x0 + crop_w); let y1 = usize::min(im_h, y0 + crop_h); crop_boxes.push(CropBox::new(x0, y0, x1, y1, layer_idx)); } } } crop_boxes } // Generates a 2D grid of points evenly spaced in [0,1]x[0,1]. fn build_point_grid(n_per_side: usize) -> Vec<(f64, f64)> { let offset = 1f64 / (2 * n_per_side) as f64; let mut points = Vec::with_capacity(n_per_side * n_per_side); for i_x in 0..n_per_side { let x = offset + i_x as f64 / n_per_side as f64; for i_y in 0..n_per_side { let y = offset + i_y as f64 / n_per_side as f64; points.push((x, y)) } } points } fn build_all_layer_point_grids( n_per_side: usize, n_layers: usize, scale_per_layer: usize, ) -> Vec<Vec<(f64, f64)>> { let mut points_by_layer = Vec::with_capacity(n_layers + 1); for i in 0..=n_layers { let n_points = n_per_side / scale_per_layer.pow(i as u32); points_by_layer.push(build_point_grid(n_points)) } points_by_layer }
candle/candle-transformers/src/models/segment_anything/sam.rs/0
{ "file_path": "candle/candle-transformers/src/models/segment_anything/sam.rs", "repo_id": "candle", "token_count": 8444 }
35
use crate::models::with_tracing::{linear_no_bias, Linear}; use candle::{DType, Device, Module, Result, Tensor, D}; use candle_nn::{Activation, LayerNorm, VarBuilder}; use std::sync::Arc; // https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/configuration_stablelm_epoch.py #[derive(Debug, Clone, PartialEq)] pub struct Config { pub(crate) vocab_size: usize, pub(crate) intermediate_size: usize, pub(crate) hidden_size: usize, pub(crate) num_hidden_layers: usize, pub(crate) num_attention_heads: usize, pub(crate) num_key_value_heads: usize, pub(crate) hidden_act: Activation, pub(crate) rope_pct: f64, pub(crate) rope_theta: f64, pub(crate) max_position_embeddings: usize, pub(crate) norm_eps: f64, pub(crate) use_cache: bool, pub(crate) use_flash_attn: bool, } impl Config { pub fn stablelm_3b_4e1t(use_flash_attn: bool) -> Self { Self { vocab_size: 50304, intermediate_size: 6912, hidden_size: 2560, num_hidden_layers: 32, num_attention_heads: 32, num_key_value_heads: 32, hidden_act: Activation::Silu, rope_pct: 0.25, rope_theta: 10_000., max_position_embeddings: 4096, norm_eps: 1e-5, use_cache: true, use_flash_attn, } } pub fn head_dim(&self) -> usize { self.hidden_size / self.num_attention_heads } pub fn rotary_ndims(&self) -> usize { (self.head_dim() as f64 * self.rope_pct) as usize } pub fn num_kv_groups(&self) -> usize { self.num_attention_heads / self.num_key_value_heads } } #[derive(Debug)] pub(crate) struct RotaryEmbedding { sin: Tensor, cos: Tensor, } fn rotate_half(xs: &Tensor) -> Result<Tensor> { let xs = xs.chunk(2, D::Minus1)?; Tensor::cat(&[&xs[1].neg()?, &xs[0]], D::Minus1) } impl RotaryEmbedding { pub(crate) fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> { let dim = cfg.rotary_ndims(); let max_seq_len = cfg.max_position_embeddings; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, max_seq_len as u32, dev)? .to_dtype(dtype)? .reshape((max_seq_len, 1))?; let freqs = t.matmul(&inv_freq)?; let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?; Ok(Self { sin: freqs.sin()?, cos: freqs.cos()?, }) } pub(crate) fn apply_rotary_emb_qkv( &self, q: &Tensor, k: &Tensor, seqlen_offset: usize, ) -> Result<(Tensor, Tensor)> { let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim) let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim) let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?; let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?; Ok((q_embed, k_embed)) } } #[derive(Debug)] #[allow(clippy::upper_case_acronyms)] struct MLP { gate_proj: Linear, up_proj: Linear, down_proj: Linear, act_fn: Activation, span: tracing::Span, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let hidden_sz = cfg.hidden_size; let intermediate_sz = cfg.intermediate_size; let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?; let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?; let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?; Ok(Self { gate_proj, up_proj, down_proj, act_fn: cfg.hidden_act, span: tracing::span!(tracing::Level::TRACE, "mlp"), }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?; let rhs = xs.apply(&self.up_proj)?; (lhs * rhs)?.apply(&self.down_proj) } } #[cfg(feature = "flash-attn")] fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal) } #[cfg(not(feature = "flash-attn"))] fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> { unimplemented!("compile with '--features flash-attn'") } #[derive(Debug)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, num_heads: usize, num_kv_heads: usize, num_kv_groups: usize, head_dim: usize, hidden_size: usize, rotary_emb: Arc<RotaryEmbedding>, kv_cache: Option<(Tensor, Tensor)>, use_cache: bool, rotary_ndims: usize, use_flash_attn: bool, span: tracing::Span, } impl Attention { fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { let hidden_sz = cfg.hidden_size; let head_dim = cfg.head_dim(); let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads; let q_proj = linear_no_bias(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?; let k_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?; let v_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?; let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, num_heads, num_kv_heads, num_kv_groups: cfg.num_kv_groups(), head_dim, hidden_size: hidden_sz, rotary_emb, kv_cache: None, use_cache: cfg.use_cache, rotary_ndims: cfg.rotary_ndims(), use_flash_attn: cfg.use_flash_attn, span: tracing::span!(tracing::Level::TRACE, "attn"), }) } fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> { let n_rep = self.num_kv_groups; if n_rep == 1 { Ok(xs) } else { let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?; xs.unsqueeze(2)? .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))? .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim)) } } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result<Tensor> { let _enter = self.span.enter(); let (b_sz, q_len, _) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = query_states .reshape((b_sz, q_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let (rot_ndims, pass_ndims) = (self.rotary_ndims, self.head_dim - self.rotary_ndims); let query_rot = query_states.narrow(D::Minus1, 0, rot_ndims)?; let query_pass = query_states.narrow(D::Minus1, rot_ndims, pass_ndims)?; let key_rot = key_states.narrow(D::Minus1, 0, rot_ndims)?; let key_pass = key_states.narrow(D::Minus1, rot_ndims, pass_ndims)?; let (query_rot, key_rot) = self.rotary_emb .apply_rotary_emb_qkv(&query_rot, &key_rot, seqlen_offset)?; let query_states = Tensor::cat(&[query_rot, query_pass], D::Minus1)?.contiguous()?; let key_states = Tensor::cat(&[key_rot, key_pass], D::Minus1)?.contiguous()?; let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; (key_states, value_states) } }; if self.use_cache { self.kv_cache = Some((key_states.clone(), value_states.clone())); } let key_states = self.repeat_kv(key_states)?.contiguous()?; let value_states = self.repeat_kv(value_states)?.contiguous()?; let attn_output = if self.use_flash_attn { // flash-attn expects (b_sz, seq_len, nheads, head_dim) let q = query_states.transpose(1, 2)?; let k = key_states.transpose(1, 2)?; let v = value_states.transpose(1, 2)?; let softmax_scale = 1f32 / (self.head_dim as f32).sqrt(); flash_attn(&q, &k, &v, softmax_scale, q_len > 1)?.transpose(1, 2)? } else { let scale = 1f64 / f64::sqrt(self.head_dim as f64); let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = match attention_mask { None => attn_weights, Some(mask) => attn_weights.broadcast_add(mask)?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; attn_weights.matmul(&value_states)? }; attn_output .transpose(1, 2)? .reshape((b_sz, q_len, self.hidden_size))? .apply(&self.o_proj) } } #[derive(Debug)] struct DecoderLayer { self_attn: Attention, mlp: MLP, input_layernorm: LayerNorm, post_attention_layernorm: LayerNorm, span: tracing::Span, } impl DecoderLayer { fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; let input_layernorm = candle_nn::layer_norm(cfg.hidden_size, cfg.norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = candle_nn::layer_norm( cfg.hidden_size, cfg.norm_eps, vb.pp("post_attention_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, post_attention_layernorm, span: tracing::span!(tracing::Level::TRACE, "layer"), }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result<Tensor> { let _enter = self.span.enter(); let residual = xs; let xs = self.input_layernorm.forward(xs)?; let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; let xs = (xs + residual)?; let residual = &xs; let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; residual + xs } } #[derive(Debug)] pub struct Model { embed_tokens: candle_nn::Embedding, layers: Vec<DecoderLayer>, norm: LayerNorm, lm_head: Linear, device: Device, dtype: DType, span: tracing::Span, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let vb_m = vb.pp("model"); let embed_tokens = candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_l = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm = candle_nn::layer_norm(cfg.hidden_size, cfg.norm_eps, vb_m.pp("norm"))?; let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; Ok(Self { embed_tokens, layers, norm, lm_head, device: vb.device().clone(), dtype: vb.dtype(), span: tracing::span!(tracing::Level::TRACE, "model"), }) } fn prepare_decoder_attention_mask( &self, b_size: usize, tgt_len: usize, seqlen_offset: usize, ) -> Result<Tensor> { // Sliding window mask? let mask: Vec<_> = (0..tgt_len) .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. })) .collect(); let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; let mask = if seqlen_offset > 0 { let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?; Tensor::cat(&[&mask0, &mask], D::Minus1)? } else { mask }; mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? .to_dtype(self.dtype) } pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> { let _enter = self.span.enter(); let (b_size, seq_len) = input_ids.dims2()?; let attention_mask = if seq_len <= 1 { None } else { let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; Some(mask) }; let mut xs = self.embed_tokens.forward(input_ids)?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } }
candle/candle-transformers/src/models/stable_lm.rs/0
{ "file_path": "candle/candle-transformers/src/models/stable_lm.rs", "repo_id": "candle", "token_count": 7500 }
36
use super::common::{AttnBlock, ResBlock, TimestepBlock}; use candle::{DType, Result, Tensor, D}; use candle_nn::VarBuilder; #[derive(Debug)] struct Block { res_block: ResBlock, ts_block: TimestepBlock, attn_block: AttnBlock, } #[derive(Debug)] pub struct WPrior { projection: candle_nn::Conv2d, cond_mapper_lin1: candle_nn::Linear, cond_mapper_lin2: candle_nn::Linear, blocks: Vec<Block>, out_ln: super::common::WLayerNorm, out_conv: candle_nn::Conv2d, c_r: usize, } impl WPrior { #[allow(clippy::too_many_arguments)] pub fn new( c_in: usize, c: usize, c_cond: usize, c_r: usize, depth: usize, nhead: usize, use_flash_attn: bool, vb: VarBuilder, ) -> Result<Self> { let projection = candle_nn::conv2d(c_in, c, 1, Default::default(), vb.pp("projection"))?; let cond_mapper_lin1 = candle_nn::linear(c_cond, c, vb.pp("cond_mapper.0"))?; let cond_mapper_lin2 = candle_nn::linear(c, c, vb.pp("cond_mapper.2"))?; let out_ln = super::common::WLayerNorm::new(c)?; let out_conv = candle_nn::conv2d(c, c_in * 2, 1, Default::default(), vb.pp("out.1"))?; let mut blocks = Vec::with_capacity(depth); for index in 0..depth { let res_block = ResBlock::new(c, 0, 3, vb.pp(format!("blocks.{}", 3 * index)))?; let ts_block = TimestepBlock::new(c, c_r, vb.pp(format!("blocks.{}", 3 * index + 1)))?; let attn_block = AttnBlock::new( c, c, nhead, true, use_flash_attn, vb.pp(format!("blocks.{}", 3 * index + 2)), )?; blocks.push(Block { res_block, ts_block, attn_block, }) } Ok(Self { projection, cond_mapper_lin1, cond_mapper_lin2, blocks, out_ln, out_conv, c_r, }) } pub fn gen_r_embedding(&self, r: &Tensor) -> Result<Tensor> { const MAX_POSITIONS: usize = 10000; let r = (r * MAX_POSITIONS as f64)?; let half_dim = self.c_r / 2; let emb = (MAX_POSITIONS as f64).ln() / (half_dim - 1) as f64; let emb = (Tensor::arange(0u32, half_dim as u32, r.device())?.to_dtype(DType::F32)? * -emb)? .exp()?; let emb = r.unsqueeze(1)?.broadcast_mul(&emb.unsqueeze(0)?)?; let emb = Tensor::cat(&[emb.sin()?, emb.cos()?], 1)?; let emb = if self.c_r % 2 == 1 { emb.pad_with_zeros(D::Minus1, 0, 1)? } else { emb }; emb.to_dtype(r.dtype()) } pub fn forward(&self, xs: &Tensor, r: &Tensor, c: &Tensor) -> Result<Tensor> { let x_in = xs; let mut xs = xs.apply(&self.projection)?; let c_embed = c .apply(&self.cond_mapper_lin1)? .apply(&|xs: &_| candle_nn::ops::leaky_relu(xs, 0.2))? .apply(&self.cond_mapper_lin2)?; let r_embed = self.gen_r_embedding(r)?; for block in self.blocks.iter() { xs = block.res_block.forward(&xs, None)?; xs = block.ts_block.forward(&xs, &r_embed)?; xs = block.attn_block.forward(&xs, &c_embed)?; } let ab = xs.apply(&self.out_ln)?.apply(&self.out_conv)?.chunk(2, 1)?; (x_in - &ab[0])? / ((&ab[1] - 1.)?.abs()? + 1e-5) } }
candle/candle-transformers/src/models/wuerstchen/prior.rs/0
{ "file_path": "candle/candle-transformers/src/models/wuerstchen/prior.rs", "repo_id": "candle", "token_count": 1920 }
37
export async function getEmbeddings( worker, weightsURL, tokenizerURL, configURL, modelID, sentences, updateStatus = null ) { return new Promise((resolve, reject) => { worker.postMessage({ weightsURL, tokenizerURL, configURL, modelID, sentences, }); function messageHandler(event) { if ("error" in event.data) { worker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { worker.removeEventListener("message", messageHandler); resolve(event.data); } if (updateStatus) updateStatus(event.data); } worker.addEventListener("message", messageHandler); }); } const MODELS = { intfloat_e5_small_v2: { base_url: "https://huggingface.co/intfloat/e5-small-v2/resolve/main/", search_prefix: "query: ", document_prefix: "passage: ", }, intfloat_e5_base_v2: { base_url: "https://huggingface.co/intfloat/e5-base-v2/resolve/main/", search_prefix: "query: ", document_prefix: "passage:", }, intfloat_multilingual_e5_small: { base_url: "https://huggingface.co/intfloat/multilingual-e5-small/resolve/main/", search_prefix: "query: ", document_prefix: "passage: ", }, sentence_transformers_all_MiniLM_L6_v2: { base_url: "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/refs%2Fpr%2F21/", search_prefix: "", document_prefix: "", }, sentence_transformers_all_MiniLM_L12_v2: { base_url: "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2/resolve/refs%2Fpr%2F4/", search_prefix: "", document_prefix: "", }, }; export function getModelInfo(id) { return { modelURL: MODELS[id].base_url + "model.safetensors", configURL: MODELS[id].base_url + "config.json", tokenizerURL: MODELS[id].base_url + "tokenizer.json", search_prefix: MODELS[id].search_prefix, document_prefix: MODELS[id].document_prefix, }; } export function cosineSimilarity(vec1, vec2) { const dot = vec1.reduce((acc, val, i) => acc + val * vec2[i], 0); const a = Math.sqrt(vec1.reduce((acc, val) => acc + val * val, 0)); const b = Math.sqrt(vec2.reduce((acc, val) => acc + val * val, 0)); return dot / (a * b); } export async function getWikiText(article) { // thanks to wikipedia for the API const URL = `https://en.wikipedia.org/w/api.php?action=query&prop=extracts&exlimit=1&titles=${article}&explaintext=1&exsectionformat=plain&format=json&origin=*`; return fetch(URL, { method: "GET", headers: { Accept: "application/json", }, }) .then((r) => r.json()) .then((data) => { const pages = data.query.pages; const pageId = Object.keys(pages)[0]; const extract = pages[pageId].extract; if (extract === undefined || extract === "") { throw new Error("No article found"); } return extract; }) .catch((error) => console.error("Error:", error)); }
candle/candle-wasm-examples/bert/utils.js/0
{ "file_path": "candle/candle-wasm-examples/bert/utils.js", "repo_id": "candle", "token_count": 1250 }
38
fn main() { wasm_logger::init(wasm_logger::Config::new(log::Level::Trace)); console_error_panic_hook::set_once(); yew::Renderer::<candle_wasm_example_llama2::App>::new().render(); }
candle/candle-wasm-examples/llama2-c/src/bin/app.rs/0
{ "file_path": "candle/candle-wasm-examples/llama2-c/src/bin/app.rs", "repo_id": "candle", "token_count": 83 }
39
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Segment Anything Model (SAM) Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> // base url for image examples const MODEL_BASEURL = "https://huggingface.co/lmz/candle-sam/resolve/main/"; // models base url const MODELS = { sam_mobile_tiny: { url: "mobile_sam-tiny-vitt.safetensors", }, sam_base: { url: "sam_vit_b_01ec64.safetensors", }, }; const samWorker = new Worker("./samWorker.js", { type: "module" }); async function segmentPoints( modelURL, // URL to the weights file modelID, // model ID imageURL, // URL to the image file points // {x, y} points to prompt image ) { return new Promise((resolve, reject) => { function messageHandler(event) { console.log(event.data); if ("status" in event.data) { updateStatus(event.data); } if ("error" in event.data) { samWorker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete-embedding") { samWorker.removeEventListener("message", messageHandler); resolve(); } if (event.data.status === "complete") { samWorker.removeEventListener("message", messageHandler); resolve(event.data.output); } } samWorker.addEventListener("message", messageHandler); samWorker.postMessage({ modelURL, modelID, imageURL, points, }); }); } function updateStatus(statusMessage) { statusOutput.innerText = event.data.message; } let copyMaskURL = null; let copyImageURL = null; const clearBtn = document.querySelector("#clear-btn"); const maskBtn = document.querySelector("#mask-btn"); const undoBtn = document.querySelector("#undo-btn"); const downloadBtn = document.querySelector("#download-btn"); const canvas = document.querySelector("#canvas"); const mask = document.querySelector("#mask"); const ctxCanvas = canvas.getContext("2d"); const ctxMask = mask.getContext("2d"); const fileUpload = document.querySelector("#file-upload"); const dropArea = document.querySelector("#drop-area"); const dropButtons = document.querySelector("#drop-buttons"); const imagesExamples = document.querySelector("#image-select"); const modelSelection = document.querySelector("#model"); const statusOutput = document.querySelector("#output-status"); //add event listener to file input fileUpload.addEventListener("input", (e) => { const target = e.target; if (target.files.length > 0) { const href = URL.createObjectURL(target.files[0]); clearImageCanvas(); copyImageURL = href; drawImageCanvas(href); setImageEmbeddings(href); togglePointMode(false); } }); // add event listener to drop-area dropArea.addEventListener("dragenter", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("dragleave", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); }); dropArea.addEventListener("dragover", (e) => { e.preventDefault(); }); dropArea.addEventListener("drop", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); const url = e.dataTransfer.getData("text/uri-list"); const files = e.dataTransfer.files; if (files.length > 0) { const href = URL.createObjectURL(files[0]); clearImageCanvas(); copyImageURL = href; drawImageCanvas(href); setImageEmbeddings(href); togglePointMode(false); } else if (url) { clearImageCanvas(); copyImageURL = url; drawImageCanvas(url); setImageEmbeddings(url); togglePointMode(false); } }); let hasImage = false; let isSegmenting = false; let isEmbedding = false; let currentImageURL = ""; let pointArr = []; let bgPointMode = false; //add event listener to image examples imagesExamples.addEventListener("click", (e) => { if (isEmbedding || isSegmenting) { return; } const target = e.target; if (target.nodeName === "IMG") { const href = target.src; clearImageCanvas(); copyImageURL = href; drawImageCanvas(href); setImageEmbeddings(href); } }); //add event listener to mask button maskBtn.addEventListener("click", () => { togglePointMode(); }); //add event listener to clear button clearBtn.addEventListener("click", () => { clearImageCanvas(); togglePointMode(false); pointArr = []; }); //add event listener to undo button undoBtn.addEventListener("click", () => { undoPoint(); }); // add event to download btn downloadBtn.addEventListener("click", async () => { // Function to load image blobs as Image elements asynchronously const loadImageAsync = (imageURL) => { return new Promise((resolve) => { const img = new Image(); img.onload = () => { resolve(img); }; img.crossOrigin = "anonymous"; img.src = imageURL; }); }; const originalImage = await loadImageAsync(copyImageURL); const maskImage = await loadImageAsync(copyMaskURL); // create main a board to draw const canvas = document.createElement("canvas"); const ctx = canvas.getContext("2d"); canvas.width = originalImage.width; canvas.height = originalImage.height; // Perform the mask operation ctx.drawImage(maskImage, 0, 0); ctx.globalCompositeOperation = "source-in"; ctx.drawImage(originalImage, 0, 0); // to blob const blobPromise = new Promise((resolve) => { canvas.toBlob(resolve); }); const blob = await blobPromise; const resultURL = URL.createObjectURL(blob); // download const link = document.createElement("a"); link.href = resultURL; link.download = "cutout.png"; link.click(); }); //add click event to canvas canvas.addEventListener("click", async (event) => { if (!hasImage || isEmbedding || isSegmenting) { return; } const backgroundMode = event.shiftKey ? bgPointMode^event.shiftKey : bgPointMode; const targetBox = event.target.getBoundingClientRect(); const x = (event.clientX - targetBox.left) / targetBox.width; const y = (event.clientY - targetBox.top) / targetBox.height; const ptsToRemove = []; for (const [idx, pts] of pointArr.entries()) { const d = Math.sqrt((pts[0] - x) ** 2 + (pts[1] - y) ** 2); if (d < 6 / targetBox.width) { ptsToRemove.push(idx); } } if (ptsToRemove.length > 0) { pointArr = pointArr.filter((_, idx) => !ptsToRemove.includes(idx)); } else { pointArr = [...pointArr, [x, y, !backgroundMode]]; } undoBtn.disabled = false; downloadBtn.disabled = false; if (pointArr.length == 0) { ctxMask.clearRect(0, 0, canvas.width, canvas.height); undoBtn.disabled = true; downloadBtn.disabled = true; return; } isSegmenting = true; const { maskURL } = await getSegmentationMask(pointArr); isSegmenting = false; copyMaskURL = maskURL; drawMask(maskURL, pointArr); }); async function undoPoint() { if (!hasImage || isEmbedding || isSegmenting) { return; } if (pointArr.length === 0) { return; } pointArr.pop(); if (pointArr.length === 0) { ctxMask.clearRect(0, 0, canvas.width, canvas.height); undoBtn.disabled = true; return; } isSegmenting = true; const { maskURL } = await getSegmentationMask(pointArr); isSegmenting = false; copyMaskURL = maskURL; drawMask(maskURL, pointArr); } function togglePointMode(mode) { bgPointMode = mode === undefined ? !bgPointMode : mode; maskBtn.querySelector("span").innerText = bgPointMode ? "Background Point" : "Mask Point"; if (bgPointMode) { maskBtn.querySelector("#mask-circle").setAttribute("hidden", ""); maskBtn.querySelector("#unmask-circle").removeAttribute("hidden"); } else { maskBtn.querySelector("#mask-circle").removeAttribute("hidden"); maskBtn.querySelector("#unmask-circle").setAttribute("hidden", ""); } } async function getSegmentationMask(points) { const modelID = modelSelection.value; const modelURL = MODEL_BASEURL + MODELS[modelID].url; const imageURL = currentImageURL; const { maskURL } = await segmentPoints( modelURL, modelID, imageURL, points ); return { maskURL }; } async function setImageEmbeddings(imageURL) { if (isEmbedding) { return; } canvas.classList.remove("cursor-pointer"); canvas.classList.add("cursor-wait"); clearBtn.disabled = true; const modelID = modelSelection.value; const modelURL = MODEL_BASEURL + MODELS[modelID].url; isEmbedding = true; await segmentPoints(modelURL, modelID, imageURL); canvas.classList.remove("cursor-wait"); canvas.classList.add("cursor-pointer"); clearBtn.disabled = false; isEmbedding = false; currentImageURL = imageURL; } function clearImageCanvas() { ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); ctxMask.clearRect(0, 0, canvas.width, canvas.height); hasImage = false; isEmbedding = false; isSegmenting = false; currentImageURL = ""; pointArr = []; clearBtn.disabled = true; canvas.parentElement.style.height = "auto"; dropButtons.classList.remove("invisible"); } function drawMask(maskURL, points) { if (!maskURL) { throw new Error("No mask URL provided"); } const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { mask.width = canvas.width; mask.height = canvas.height; ctxMask.save(); ctxMask.drawImage(canvas, 0, 0); ctxMask.globalCompositeOperation = "source-atop"; ctxMask.fillStyle = "rgba(255, 0, 0, 0.6)"; ctxMask.fillRect(0, 0, canvas.width, canvas.height); ctxMask.globalCompositeOperation = "destination-in"; ctxMask.drawImage(img, 0, 0); ctxMask.globalCompositeOperation = "source-over"; for (const pt of points) { if (pt[2]) { ctxMask.fillStyle = "rgba(0, 255, 255, 1)"; } else { ctxMask.fillStyle = "rgba(255, 255, 0, 1)"; } ctxMask.beginPath(); ctxMask.arc( pt[0] * canvas.width, pt[1] * canvas.height, 3, 0, 2 * Math.PI ); ctxMask.fill(); } ctxMask.restore(); }; img.src = maskURL; } function drawImageCanvas(imgURL) { if (!imgURL) { throw new Error("No image URL provided"); } ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { canvas.width = img.width; canvas.height = img.height; ctxCanvas.drawImage(img, 0, 0); canvas.parentElement.style.height = canvas.offsetHeight + "px"; hasImage = true; clearBtn.disabled = false; dropButtons.classList.add("invisible"); }; img.src = imgURL; } const observer = new ResizeObserver((entries) => { for (let entry of entries) { if (entry.target === canvas) { canvas.parentElement.style.height = canvas.offsetHeight + "px"; } } }); observer.observe(canvas); </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]">🕯️</span> <div> <h1 class="text-5xl font-bold">Candle Segment Anything</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> Zero-shot image segmentation with <a href="https://segment-anything.com" class="underline hover:text-blue-500 hover:no-underline" target="_blank" >Segment Anything Model (SAM)</a > and <a href="https://github.com/ChaoningZhang/MobileSAM" class="underline hover:text-blue-500 hover:no-underline" target="_blank" >MobileSAM </a >. It runs in the browser with a WASM runtime built with <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light"> <option value="sam_mobile_tiny" selected> Mobile SAM Tiny (40.6 MB) </option> <option value="sam_base">SAM Base (375 MB)</option> </select> </div> <div> <p class="text-xs italic max-w-lg"> <b>Note:</b> The model's first run may take a few seconds as it loads and caches the model in the browser, and then creates the image embeddings. Any subsequent clicks on points will be significantly faster. </p> </div> <div class="relative max-w-2xl"> <div class="flex justify-between items-center"> <div class="px-2 rounded-md inline text-xs"> <span id="output-status" class="m-auto font-light"></span> </div> <div class="flex gap-2"> <button id="mask-btn" title="Toggle Mask Point and Background Point" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center"> <span>Mask Point</span> <svg xmlns="http://www.w3.org/2000/svg" height="1em" viewBox="0 0 512 512"> <path id="mask-circle" d="M256 512a256 256 0 1 0 0-512 256 256 0 1 0 0 512z" /> <path id="unmask-circle" hidden d="M464 256a208 208 0 1 0-416 0 208 208 0 1 0 416 0zM0 256a256 256 0 1 1 512 0 256 256 0 1 1-512 0z" /> </svg> </button> <button id="undo-btn" disabled title="Undo Last Point" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center"> <svg xmlns="http://www.w3.org/2000/svg" height="1em" viewBox="0 0 512 512"> <path d="M48.5 224H40a24 24 0 0 1-24-24V72a24 24 0 0 1 41-17l41.6 41.6a224 224 0 1 1-1 317.8 32 32 0 0 1 45.3-45.3 160 160 0 1 0 1-227.3L185 183a24 24 0 0 1-17 41H48.5z" /> </svg> </button> <button id="clear-btn" disabled title="Clear Image" class="text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center"> <svg class="" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 13 12" height="1em"> <path d="M1.6.7 12 11.1M12 .7 1.6 11.1" stroke="#2E3036" stroke-width="2" /> </svg> </button> </div> </div> <div id="drop-area" class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative p-20 w-full overflow-hidden"> <div id="drop-buttons" class="flex flex-col items-center justify-center space-y-1 text-center relative z-10"> <svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" fill="#000" /> </svg> <div class="flex text-sm text-gray-600"> <label for="file-upload" class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700"> <span>Drag and drop your image here</span> <span class="block text-xs">or</span> <span class="block text-xs">Click to upload</span> </label> </div> <input id="file-upload" name="file-upload" type="file" class="sr-only" /> </div> <canvas id="canvas" class="absolute w-full"></canvas> <canvas id="mask" class="pointer-events-none absolute w-full"></canvas> </div> <div class="text-right py-2"> <button id="share-btn" class="bg-white rounded-md hover:outline outline-orange-200 disabled:opacity-50 invisible"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/share-to-community-sm.svg" /> </button> <button id="download-btn" title="Copy result (.png)" disabled class="p-1 px-2 text-xs font-medium bg-white rounded-2xl outline outline-gray-200 hover:outline-orange-200 disabled:opacity-50" > Download Cut-Out </button> </div> </div> <div> <div class="flex gap-3 items-center overflow-x-scroll" id="image-select"> <h3 class="font-medium">Examples:</h3> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg" class="cursor-pointer w-24 h-24 object-cover" /> </div> </div> </main> </body> </html>
candle/candle-wasm-examples/segment-anything/lib-example.html/0
{ "file_path": "candle/candle-wasm-examples/segment-anything/lib-example.html", "repo_id": "candle", "token_count": 10333 }
40
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <title>Welcome to Candle!</title> <link data-trunk rel="copy-file" href="yolov8s.safetensors" /> <link data-trunk rel="copy-file" href="bike.jpeg" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="app" data-type="main" /> <link data-trunk rel="rust" href="Cargo.toml" data-bin="worker" data-type="worker" /> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css"> </head> <body></body> </html>
candle/candle-wasm-examples/yolo/index.html/0
{ "file_path": "candle/candle-wasm-examples/yolo/index.html", "repo_id": "candle", "token_count": 322 }
41
 backend-test:J  xytest"Relu SingleReluZ x   b y   B
candle/test.onnx/0
{ "file_path": "candle/test.onnx", "repo_id": "candle", "token_count": 76 }
42
<script lang="ts"> import { onDestroy } from "svelte"; import IconCopy from "./icons/IconCopy.svelte"; import Tooltip from "./Tooltip.svelte"; export let classNames = ""; export let value: string; let isSuccess = false; let timeout: ReturnType<typeof setTimeout>; const handleClick = async () => { // writeText() can be unavailable or fail in some cases (iframe, etc) so we try/catch try { await navigator.clipboard.writeText(value); isSuccess = true; if (timeout) { clearTimeout(timeout); } timeout = setTimeout(() => { isSuccess = false; }, 1000); } catch (err) { console.error(err); } }; onDestroy(() => { if (timeout) { clearTimeout(timeout); } }); </script> <button class="btn rounded-lg border border-gray-200 px-2 py-2 text-sm shadow-sm transition-all hover:border-gray-300 active:shadow-inner dark:border-gray-700 dark:hover:border-gray-500 {classNames}" title={"Copy to clipboard"} type="button" on:click on:click={handleClick} > <div class="relative"> <slot> <IconCopy /> </slot> <Tooltip classNames={isSuccess ? "opacity-100" : "opacity-0"} /> </div> </button>
chat-ui/src/lib/components/CopyToClipBoardBtn.svelte/0
{ "file_path": "chat-ui/src/lib/components/CopyToClipBoardBtn.svelte", "repo_id": "chat-ui", "token_count": 433 }
43
<script lang="ts"> export let classNames = ""; export let label = "Copied"; export let position = "left-1/2 top-full transform -translate-x-1/2 translate-y-2"; </script> <div class=" pointer-events-none absolute rounded bg-black px-2 py-1 font-normal leading-tight text-white shadow transition-opacity {position} {classNames} " > <div class="absolute bottom-full left-1/2 h-0 w-0 -translate-x-1/2 transform border-4 border-t-0 border-black" style=" border-left-color: transparent; border-right-color: transparent; " /> {label} </div>
chat-ui/src/lib/components/Tooltip.svelte/0
{ "file_path": "chat-ui/src/lib/components/Tooltip.svelte", "repo_id": "chat-ui", "token_count": 216 }
44
<script lang="ts"> import { page } from "$app/stores"; import { PUBLIC_APP_ASSETS, PUBLIC_APP_NAME, PUBLIC_ORIGIN } from "$env/static/public"; import { base } from "$app/paths"; export let classNames = ""; </script> {#if PUBLIC_APP_ASSETS === "chatui"} <svg height="30" width="30" viewBox="0 0 30 30" xmlns="http://www.w3.org/2000/svg" class={classNames} > <path d="M4.06151 14.1464C4.06151 11.8818 4.9611 9.71004 6.56237 8.10877C8.16364 6.5075 10.3354 5.60791 12.6 5.60791H16.5231C18.6254 5.60791 20.6416 6.44307 22.1282 7.92965C23.6148 9.41624 24.45 11.4325 24.45 13.5348C24.45 15.6372 23.6148 17.6534 22.1282 19.14C20.6416 20.6266 18.6254 21.4618 16.5231 21.4618H7.08459L4.63844 23.8387C4.59547 23.8942 4.53557 23.9343 4.4678 23.9527C4.40004 23.9712 4.32811 23.9671 4.2629 23.941C4.1977 23.9149 4.14276 23.8683 4.10643 23.8082C4.07009 23.7481 4.05432 23.6778 4.06151 23.6079V14.1464Z" class="fill-primary-500" /> </svg> {:else} <object class={classNames} data="{PUBLIC_ORIGIN || $page.url.origin}{base}/{PUBLIC_APP_ASSETS}/logo.svg" title="{PUBLIC_APP_NAME} logo" /> {/if}
chat-ui/src/lib/components/icons/Logo.svelte/0
{ "file_path": "chat-ui/src/lib/components/icons/Logo.svelte", "repo_id": "chat-ui", "token_count": 550 }
45
import type { TextGenerationStreamOutput } from "@huggingface/inference"; import type OpenAI from "openai"; import type { Stream } from "openai/streaming"; /** * Transform a stream of OpenAI.Completions.Completion into a stream of TextGenerationStreamOutput */ export async function* openAICompletionToTextGenerationStream( completionStream: Stream<OpenAI.Completions.Completion> ) { let generatedText = ""; let tokenId = 0; for await (const completion of completionStream) { const { choices } = completion; const text = choices[0]?.text ?? ""; const last = choices[0]?.finish_reason === "stop"; if (text) { generatedText = generatedText + text; } const output: TextGenerationStreamOutput = { token: { id: tokenId++, text, logprob: 0, special: false, }, generated_text: last ? generatedText : null, details: null, }; yield output; } }
chat-ui/src/lib/server/endpoints/openai/openAICompletionToTextGenerationStream.ts/0
{ "file_path": "chat-ui/src/lib/server/endpoints/openai/openAICompletionToTextGenerationStream.ts", "repo_id": "chat-ui", "token_count": 310 }
46
import { writable } from "svelte/store"; export const pendingMessage = writable< | { content: string; files: File[]; } | undefined >();
chat-ui/src/lib/stores/pendingMessage.ts/0
{ "file_path": "chat-ui/src/lib/stores/pendingMessage.ts", "repo_id": "chat-ui", "token_count": 56 }
47
import type { Assistant } from "./Assistant"; import type { Message } from "./Message"; import type { Timestamps } from "./Timestamps"; export interface SharedConversation extends Timestamps { _id: string; hash: string; model: string; embeddingModel: string; title: string; messages: Message[]; preprompt?: string; assistantId?: Assistant["_id"]; }
chat-ui/src/lib/types/SharedConversation.ts/0
{ "file_path": "chat-ui/src/lib/types/SharedConversation.ts", "repo_id": "chat-ui", "token_count": 113 }
48
import type { Model } from "$lib/types/Model"; export const findCurrentModel = (models: Model[], id?: string): Model => models.find((m) => m.id === id) ?? models[0];
chat-ui/src/lib/utils/models.ts/0
{ "file_path": "chat-ui/src/lib/utils/models.ts", "repo_id": "chat-ui", "token_count": 54 }
49
export async function GET({ locals }) { if (locals.user) { const res = { id: locals.user._id, username: locals.user.username, name: locals.user.name, email: locals.user.email, avatarUrl: locals.user.avatarUrl, hfUserId: locals.user.hfUserId, }; return Response.json(res); } return Response.json({ message: "Must be signed in" }, { status: 401 }); }
chat-ui/src/routes/api/user/+server.ts/0
{ "file_path": "chat-ui/src/routes/api/user/+server.ts", "repo_id": "chat-ui", "token_count": 148 }
50
import { base } from "$app/paths"; import { authCondition } from "$lib/server/auth"; import { collections } from "$lib/server/database"; import { redirect } from "@sveltejs/kit"; export const actions = { async delete({ locals }) { // double check we have a user to delete conversations for if (locals.user?._id || locals.sessionId) { await collections.conversations.deleteMany({ ...authCondition(locals), }); } throw redirect(303, `${base}/`); }, };
chat-ui/src/routes/conversations/+page.server.ts/0
{ "file_path": "chat-ui/src/routes/conversations/+page.server.ts", "repo_id": "chat-ui", "token_count": 158 }
51
import { base } from "$app/paths"; import { redirect } from "@sveltejs/kit"; export async function load({ parent, params }) { const data = await parent(); const assistant = data.settings.assistants.find((id) => id === params.assistantId); if (!assistant) { throw redirect(302, `${base}/assistant/${params.assistantId}`); } return data; }
chat-ui/src/routes/settings/assistants/[assistantId]/+page.ts/0
{ "file_path": "chat-ui/src/routes/settings/assistants/[assistantId]/+page.ts", "repo_id": "chat-ui", "token_count": 115 }
52
{ "background_color": "#ffffff", "name": "Chat UI", "short_name": "Chat UI", "display": "standalone", "start_url": "/", "icons": [ { "src": "/chatui/icon-128x128.png", "sizes": "128x128", "type": "image/png" }, { "src": "/chatui/icon-256x256.png", "sizes": "256x256", "type": "image/png" }, { "src": "/chatui/icon-512x512.png", "sizes": "512x512", "type": "image/png" } ] }
chat-ui/static/chatui/manifest.json/0
{ "file_path": "chat-ui/static/chatui/manifest.json", "repo_id": "chat-ui", "token_count": 218 }
53
# Security Policy ## Supported Versions <!-- Use this section to tell people about which versions of your project are currently being supported with security updates. | Version | Supported | | ------- | ------------------ | | 5.1.x | :white_check_mark: | | 5.0.x | :x: | | 4.0.x | :white_check_mark: | | < 4.0 | :x: | --> Each major version is currently being supported with security updates. | Version | Supported | |---------|--------------------| | 1.x.x | :white_check_mark: | | 2.x.x | :white_check_mark: | ## Reporting a Vulnerability <!-- Use this section to tell people how to report a vulnerability. Tell them where to go, how often they can expect to get an update on a reported vulnerability, what to expect if the vulnerability is accepted or declined, etc. --> To report a security vulnerability, please contact: [email protected]
datasets/SECURITY.md/0
{ "file_path": "datasets/SECURITY.md", "repo_id": "datasets", "token_count": 306 }
54