text
stringlengths 7
318k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
439
|
---|---|---|---|
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for BridgeTower.
"""
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class BridgeTowerProcessor(ProcessorMixin):
r"""
Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single
processor.
[`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and
[`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and
[`~BridgeTowerProcessor.decode`] for more information.
Args:
image_processor (`BridgeTowerImageProcessor`):
An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input.
tokenizer (`RobertaTokenizerFast`):
An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "BridgeTowerImageProcessor"
tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchEncoding:
"""
This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and
[`RobertaTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
# add pixel_values + pixel_mask
encoding_image_processor = self.image_processor(
images, return_tensors=return_tensors, do_normalize=True, do_center_crop=True, **kwargs
)
encoding.update(encoding_image_processor)
return encoding
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| transformers/src/transformers/models/bridgetower/processing_bridgetower.py/0 | {
"file_path": "transformers/src/transformers/models/bridgetower/processing_bridgetower.py",
"repo_id": "transformers",
"token_count": 1929
} | 316 |
# coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CANINE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class CanineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CANINE
[google/canine-s](https://huggingface.co/google/canine-s) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the deep Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoders.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoders, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
type_vocab_size (`int`, *optional*, defaults to 16):
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 57344):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 57345):
End of stream token id.
downsampling_rate (`int`, *optional*, defaults to 4):
The rate at which to downsample the original character sequence length before applying the deep Transformer
encoder.
upsampling_kernel_size (`int`, *optional*, defaults to 4):
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
projecting back from `hidden_size`*2 to `hidden_size`.
num_hash_functions (`int`, *optional*, defaults to 8):
The number of hash functions to use. Each hash function has its own embedding matrix.
num_hash_buckets (`int`, *optional*, defaults to 16384):
The number of hash buckets to use.
local_transformer_stride (`int`, *optional*, defaults to 128):
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
TPU/XLA memory alignment.
Example:
```python
>>> from transformers import CanineConfig, CanineModel
>>> # Initializing a CANINE google/canine-s style configuration
>>> configuration = CanineConfig()
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
>>> model = CanineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "canine"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=16384,
type_vocab_size=16,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=0xE000,
eos_token_id=0xE001,
downsampling_rate=4,
upsampling_kernel_size=4,
num_hash_functions=8,
num_hash_buckets=16384,
local_transformer_stride=128, # Good TPU/XLA memory alignment.
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Character config:
self.downsampling_rate = downsampling_rate
self.upsampling_kernel_size = upsampling_kernel_size
self.num_hash_functions = num_hash_functions
self.num_hash_buckets = num_hash_buckets
self.local_transformer_stride = local_transformer_stride
| transformers/src/transformers/models/canine/configuration_canine.py/0 | {
"file_path": "transformers/src/transformers/models/canine/configuration_canine.py",
"repo_id": "transformers",
"token_count": 2532
} | 317 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Audio/Text processor class for CLAP
"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class ClapProcessor(ProcessorMixin):
r"""
Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor.
[`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the
[`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information.
Args:
feature_extractor ([`ClapFeatureExtractor`]):
The audio processor is a required input.
tokenizer ([`RobertaTokenizerFast`]):
The tokenizer is a required input.
"""
feature_extractor_class = "ClapFeatureExtractor"
tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, text=None, audios=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to
encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the
doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
and T the sample length of the audio.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`.
"""
sampling_rate = kwargs.pop("sampling_rate", None)
if text is None and audios is None:
raise ValueError("You have to specify either text or audios. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if audios is not None:
audio_features = self.feature_extractor(
audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs
)
if text is not None and audios is not None:
encoding["input_features"] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
| transformers/src/transformers/models/clap/processing_clap.py/0 | {
"file_path": "transformers/src/transformers/models/clap/processing_clap.py",
"repo_id": "transformers",
"token_count": 2177
} | 318 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for CLIPSeg
"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class CLIPSegProcessor(ProcessorMixin):
r"""
Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.
[`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
[`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.
Args:
image_processor ([`ViTImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`CLIPTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "ViTImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
(C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and visual_prompt is None and images is None:
raise ValueError("You have to specify either text, visual prompt or images.")
if text is not None and visual_prompt is not None:
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if visual_prompt is not None:
prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if visual_prompt is not None and images is not None:
encoding = {
"pixel_values": image_features.pixel_values,
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
encoding = {
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
| transformers/src/transformers/models/clipseg/processing_clipseg.py/0 | {
"file_path": "transformers/src/transformers/models/clipseg/processing_clipseg.py",
"repo_id": "transformers",
"token_count": 3092
} | 319 |
# coding=utf-8
# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"Salesforce/codegen-350M-mono": 2048,
}
class CodeGenTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import CodeGenTokenizerFast
>>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (CodeGen tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = CodeGenTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
if kwargs.pop("add_bos_token", False):
model_id = kwargs.pop("name_or_path", "")
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token. "
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly."
)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def decode(
self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
truncate_before_pattern: Optional[List[str]] = None,
**kwargs,
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether or not to clean up the tokenization spaces. If `None`, will default to
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
A list of regular expression strings that will be used to truncate the returned string. This can be
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
decoded_text = super().decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
return decoded_text
def truncate(self, completion, truncate_before_pattern):
def find_re(string, pattern, start_pos):
m = pattern.search(string, start_pos)
return m.start() if m else -1
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
prints = list(re.finditer("^print", completion, re.MULTILINE))
if len(prints) > 1:
completion = completion[: prints[1].start()]
defs = list(re.finditer("^def", completion, re.MULTILINE))
if len(defs) > 1:
completion = completion[: defs[1].start()]
start_pos = 0
terminals_pos = [
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
]
if len(terminals_pos) > 0:
return completion[: min(terminals_pos)]
else:
return completion
| transformers/src/transformers/models/codegen/tokenization_codegen_fast.py/0 | {
"file_path": "transformers/src/transformers/models/codegen/tokenization_codegen_fast.py",
"repo_id": "transformers",
"token_count": 4249
} | 320 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ConvNext checkpoints from the original repository.
URL: https://github.com/facebookresearch/ConvNeXt"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, ConvNextForImageClassification, ConvNextImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_convnext_config(checkpoint_url):
config = ConvNextConfig()
if "tiny" in checkpoint_url:
depths = [3, 3, 9, 3]
hidden_sizes = [96, 192, 384, 768]
if "small" in checkpoint_url:
depths = [3, 3, 27, 3]
hidden_sizes = [96, 192, 384, 768]
if "base" in checkpoint_url:
depths = [3, 3, 27, 3]
hidden_sizes = [128, 256, 512, 1024]
if "large" in checkpoint_url:
depths = [3, 3, 27, 3]
hidden_sizes = [192, 384, 768, 1536]
if "xlarge" in checkpoint_url:
depths = [3, 3, 27, 3]
hidden_sizes = [256, 512, 1024, 2048]
if "1k" in checkpoint_url:
num_labels = 1000
filename = "imagenet-1k-id2label.json"
expected_shape = (1, 1000)
else:
num_labels = 21841
filename = "imagenet-22k-id2label.json"
expected_shape = (1, 21841)
repo_id = "huggingface/label-files"
config.num_labels = num_labels
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
if "1k" not in checkpoint_url:
# this dataset contains 21843 labels but the model only has 21841
# we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18
del id2label[9205]
del id2label[15027]
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
config.hidden_sizes = hidden_sizes
config.depths = depths
return config, expected_shape
def rename_key(name):
if "downsample_layers.0.0" in name:
name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings")
if "downsample_layers.0.1" in name:
name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on
if "downsample_layers.1.0" in name:
name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0")
if "downsample_layers.1.1" in name:
name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1")
if "downsample_layers.2.0" in name:
name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0")
if "downsample_layers.2.1" in name:
name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1")
if "downsample_layers.3.0" in name:
name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0")
if "downsample_layers.3.1" in name:
name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1")
if "stages" in name and "downsampling_layer" not in name:
# stages.0.0. for instance should be renamed to stages.0.layers.0.
name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :]
if "stages" in name:
name = name.replace("stages", "encoder.stages")
if "norm" in name:
name = name.replace("norm", "layernorm")
if "gamma" in name:
name = name.replace("gamma", "layer_scale_parameter")
if "head" in name:
name = name.replace("head", "classifier")
return name
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our ConvNext structure.
"""
# define ConvNext configuration based on URL
config, expected_shape = get_convnext_config(checkpoint_url)
# load original state_dict from URL
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"]
# rename keys
for key in state_dict.copy().keys():
val = state_dict.pop(key)
state_dict[rename_key(key)] = val
# add prefix to all keys expect classifier head
for key in state_dict.copy().keys():
val = state_dict.pop(key)
if not key.startswith("classifier"):
key = "convnext." + key
state_dict[key] = val
# load HuggingFace model
model = ConvNextForImageClassification(config)
model.load_state_dict(state_dict)
model.eval()
# Check outputs on an image, prepared by ConvNextImageProcessor
size = 224 if "224" in checkpoint_url else 384
image_processor = ConvNextImageProcessor(size=size)
pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values
logits = model(pixel_values).logits
# note: the logits below were obtained without center cropping
if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth":
expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth":
expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth":
expected_logits = torch.tensor([0.4525, 0.7539, 0.0308])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth":
expected_logits = torch.tensor([0.3561, 0.6350, -0.0384])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth":
expected_logits = torch.tensor([0.4174, -0.0989, 0.1489])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth":
expected_logits = torch.tensor([0.2513, -0.1349, -0.1613])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth":
expected_logits = torch.tensor([1.2980, 0.3631, -0.1198])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth":
expected_logits = torch.tensor([1.2963, 0.1227, 0.1723])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth":
expected_logits = torch.tensor([1.7956, 0.8390, 0.2820])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth":
expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth":
expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth":
expected_logits = torch.tensor([0.2681, 0.2365, 0.6246])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth":
expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth":
expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379])
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth":
expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444])
else:
raise ValueError(f"Unknown URL: {checkpoint_url}")
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3)
assert logits.shape == expected_shape
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
print("Pushing model to the hub...")
model_name = "convnext"
if "tiny" in checkpoint_url:
model_name += "-tiny"
elif "small" in checkpoint_url:
model_name += "-small"
elif "base" in checkpoint_url:
model_name += "-base"
elif "xlarge" in checkpoint_url:
model_name += "-xlarge"
elif "large" in checkpoint_url:
model_name += "-large"
if "224" in checkpoint_url:
model_name += "-224"
elif "384" in checkpoint_url:
model_name += "-384"
if "22k" in checkpoint_url and "1k" not in checkpoint_url:
model_name += "-22k"
if "22k" in checkpoint_url and "1k" in checkpoint_url:
model_name += "-22k-1k"
model.push_to_hub(
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
organization="nielsr",
commit_message="Add model",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
type=str,
help="URL of the original ConvNeXT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model directory.",
)
args = parser.parse_args()
convert_convnext_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/convnext/convert_convnext_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4224
} | 321 |
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CPMAnt."""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"openbmb/cpm-ant-10b": 1024,
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
class WordpieceTokenizer(object):
def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, token):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
return [self.unk_token]
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token)
start += 1
else:
sub_tokens.append(cur_substr)
start = end
return sub_tokens
class CpmAntTokenizer(PreTrainedTokenizer):
"""
Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bod_token (`str`, *optional*, defaults to `"<d>"`):
The beginning of document token.
eod_token (`str`, *optional*, defaults to `"</d>"`):
The end of document token.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token.
line_token (`str`, *optional*, defaults to `"</n>"`):
The line token.
space_token (`str`, *optional*, defaults to `"</_>"`):
The space token.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
add_prefix_space = False
def __init__(
self,
vocab_file,
bod_token="<d>",
eod_token="</d>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
unk_token="<unk>",
line_token="</n>",
space_token="</_>",
padding_side="left",
**kwargs,
):
requires_backends(self, ["jieba"])
self.bod_token = bod_token
self.eod_token = eod_token
self.encoder = load_vocab(vocab_file)
self.encoder[" "] = self.encoder[space_token]
self.encoder["\n"] = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
self.decoder = {v: k for k, v in self.encoder.items()}
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token)
super().__init__(
bod_token=bod_token,
eod_token=eod_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
unk_token=unk_token,
line_token=line_token,
space_token=space_token,
padding_side=padding_side,
**kwargs,
)
@property
def bod_token_id(self):
return self.encoder[self.bod_token]
@property
def eod_token_id(self):
return self.encoder[self.eod_token]
@property
def newline_id(self):
return self.encoder["\n"]
@property
def vocab_size(self) -> int:
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def _tokenize(self, text):
"""Tokenize a string."""
output_tokens = []
for x in jieba.cut(text, cut_all=False):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(x))
return output_tokens
def _decode(self, token_ids, **kwargs):
"""Decode ids into a string."""
token_ids = [i for i in token_ids if i >= 0]
token_ids = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(token_ids, **kwargs)
def check(self, token):
return token in self.encoder
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return "".join(tokens)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
index = 0
if " " in self.encoder:
self.encoder["</_>"] = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
self.encoder["</n>"] = self.encoder["\n"]
del self.encoder["\n"]
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A CPMAnt sequence has the following format:
- single sequence: `[BOS] Sequence`.
Args:
token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added.
token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added.
Returns:
`List[int]`: The model input with special tokens.
"""
if token_ids_1 is None:
return [self.bos_token_id] + token_ids_0
return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`): List of IDs.
token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
return [1] + ([0] * len(token_ids_0))
| transformers/src/transformers/models/cpmant/tokenization_cpmant.py/0 | {
"file_path": "transformers/src/transformers/models/cpmant/tokenization_cpmant.py",
"repo_id": "transformers",
"token_count": 4580
} | 322 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert data2vec checkpoint."""
import argparse
import os
import pathlib
import fairseq
import torch
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import (
Data2VecTextConfig,
Data2VecTextForMaskedLM,
Data2VecTextForSequenceClassification,
Data2VecTextModel,
)
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
# IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
# File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("0.9.0"):
raise Exception("requires fairseq >= 0.9.0")
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
SAMPLE_TEXT = "Hello world! cécé herlolip"
def convert_data2vec_checkpoint_to_pytorch(
data2vec_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool
):
"""
Copy/paste/tweak data2vec's weights to our BERT structure.
"""
data2vec_checkpoint_dir, data2vec_checkpoint_file_name = os.path.split(data2vec_checkpoint_path)
data2vec = Data2VecTextModel.from_pretrained(
data2vec_checkpoint_dir, checkpoint_file=data2vec_checkpoint_file_name
)
data2vec.eval() # disable dropout
data2vec_model = data2vec.models[0]
data2vec_sent_encoder = data2vec_model.encoder.sentence_encoder
config = Data2VecTextConfig(
vocab_size=data2vec_sent_encoder.embed_tokens.num_embeddings,
hidden_size=data2vec_model.args.encoder_embed_dim,
num_hidden_layers=data2vec_model.args.encoder_layers,
num_attention_heads=data2vec_model.args.encoder_attention_heads,
intermediate_size=data2vec_model.args.encoder_ffn_embed_dim,
max_position_embeddings=514,
type_vocab_size=1,
layer_norm_eps=1e-5, # PyTorch default used in fairseq
)
if classification_head:
config.num_labels = data2vec.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our BERT config:", config)
model = Data2VecTextForSequenceClassification(config) if classification_head else Data2VecTextForMaskedLM(config)
model.eval()
# Now let's copy all the weights.
# Embeddings
model.data2vec_text.embeddings.word_embeddings.weight = data2vec_sent_encoder.embed_tokens.weight
model.data2vec_text.embeddings.position_embeddings.weight = data2vec_sent_encoder.embed_positions.weight
model.data2vec_text.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
model.data2vec_text.embeddings.token_type_embeddings.weight
) # just zero them out b/c data2vec doesn't use them.
model.data2vec_text.embeddings.LayerNorm.weight = data2vec_sent_encoder.layernorm_embedding.weight
model.data2vec_text.embeddings.LayerNorm.bias = data2vec_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
layer: BertLayer = model.data2vec_text.encoder.layer[i]
data2vec_layer: TransformerSentenceEncoderLayer = data2vec_sent_encoder.layers[i]
# self attention
self_attn: BertSelfAttention = layer.attention.self
assert data2vec_layer.self_attn.k_proj.weight.data.shape == torch.Size(
(config.hidden_size, config.hidden_size)
), (
"Shape for data2vec_layer.self_attn.k_proj.weight.data should be"
f" {torch.Size((config.hidden_size, config.hidden_size))}"
)
assert data2vec_layer.self_attn.q_proj.weight.data.shape == torch.Size(
(config.hidden_size, config.hidden_size)
), (
"Shape for data2vec_layer.self_attn.q_proj.weight.data should be"
f" {torch.Size((config.hidden_size, config.hidden_size))}"
)
assert data2vec_layer.self_attn.v_proj.weight.data.shape == torch.Size(
(config.hidden_size, config.hidden_size)
), (
"Shape for data2vec_layer.self_attn.v_proj.weight.data should be"
f" {torch.Size((config.hidden_size, config.hidden_size))}"
)
self_attn.query.weight.data = data2vec_layer.self_attn.q_proj.weight
self_attn.query.bias.data = data2vec_layer.self_attn.q_proj.bias
self_attn.key.weight.data = data2vec_layer.self_attn.k_proj.weight
self_attn.key.bias.data = data2vec_layer.self_attn.k_proj.bias
self_attn.value.weight.data = data2vec_layer.self_attn.v_proj.weight
self_attn.value.bias.data = data2vec_layer.self_attn.v_proj.bias
# self-attention output
self_output: BertSelfOutput = layer.attention.output
assert (
self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape
), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}"
self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight
self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias
self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight
self_output.LayerNorm.bias = data2vec_layer.self_attn_layer_norm.bias
# intermediate
intermediate: BertIntermediate = layer.intermediate
assert (
intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape
), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}"
intermediate.dense.weight = data2vec_layer.fc1.weight
intermediate.dense.bias = data2vec_layer.fc1.bias
# output
bert_output: BertOutput = layer.output
assert (
bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape
), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}"
bert_output.dense.weight = data2vec_layer.fc2.weight
bert_output.dense.bias = data2vec_layer.fc2.bias
bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight
bert_output.LayerNorm.bias = data2vec_layer.final_layer_norm.bias
# end of layer
if classification_head:
model.classifier.dense.weight = data2vec.model.classification_heads["mnli"].dense.weight
model.classifier.dense.bias = data2vec.model.classification_heads["mnli"].dense.bias
model.classifier.out_proj.weight = data2vec.model.classification_heads["mnli"].out_proj.weight
model.classifier.out_proj.bias = data2vec.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
model.lm_head.dense.weight = data2vec_model.encoder.lm_head.dense.weight
model.lm_head.dense.bias = data2vec_model.encoder.lm_head.dense.bias
model.lm_head.layer_norm.weight = data2vec_model.encoder.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = data2vec_model.encoder.lm_head.layer_norm.bias
model.lm_head.decoder.weight = data2vec_model.encoder.lm_head.weight
model.lm_head.decoder.bias = data2vec_model.encoder.lm_head.bias
# Let's check that we get the same results.
input_ids: torch.Tensor = data2vec.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1
our_output = model(input_ids)[0]
if classification_head:
their_output = data2vec.model.classification_heads["mnli"](data2vec.extract_features(input_ids))
else:
their_output = data2vec_model(input_ids)[0]
print(our_output.shape, their_output.shape)
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
success = torch.allclose(our_output, their_output, atol=1e-3)
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
args = parser.parse_args()
convert_data2vec_checkpoint_to_pytorch(
args.checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3894
} | 323 |
# coding=utf-8
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model DeBERTa."""
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as sp
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/spm.model",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/spm.model",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/spm.model"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/spm.model"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/deberta-v2-xlarge": 512,
"microsoft/deberta-v2-xxlarge": 512,
"microsoft/deberta-v2-xlarge-mnli": 512,
"microsoft/deberta-v2-xxlarge-mnli": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"microsoft/deberta-v2-xlarge": {"do_lower_case": False},
"microsoft/deberta-v2-xxlarge": {"do_lower_case": False},
"microsoft/deberta-v2-xlarge-mnli": {"do_lower_case": False},
"microsoft/deberta-v2-xxlarge-mnli": {"do_lower_case": False},
}
VOCAB_FILES_NAMES = {"vocab_file": "spm.model"}
class DebertaV2Tokenizer(PreTrainedTokenizer):
r"""
Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
bos_token (`string`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
eos_token (`string`, *optional*, defaults to `"[SEP]"`):
The end of sequence token. When building a sequence using special tokens, this is not the token that is
used for the end of sequence. The token used is the `sep_token`.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=False,
split_by_punct=False,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.do_lower_case = do_lower_case
self.split_by_punct = split_by_punct
self.vocab_file = vocab_file
self._tokenizer = SPMTokenizer(
vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs
)
unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token
super().__init__(
do_lower_case=do_lower_case,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
split_by_punct=split_by_punct,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
self._tokenizer.special_tokens = self.all_special_tokens
@property
def vocab_size(self):
return len(self.vocab)
@property
def vocab(self):
return self._tokenizer.vocab
def get_vocab(self):
vocab = self.vocab.copy()
vocab.update(self.get_added_vocab())
return vocab
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
if self.do_lower_case:
text = text.lower()
return self._tokenizer.tokenize(text)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self._tokenizer.spm.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
return self._tokenizer.decode(tokens)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A DeBERTa sequence has the following format:
- single sequence: [CLS] X [SEP]
- pair of sequences: [CLS] A [SEP] B [SEP]
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", False)
if is_split_into_words or add_prefix_space:
text = " " + text
return (text, kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix)
class SPMTokenizer:
r"""
Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece).
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
def __init__(
self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None
):
self.split_by_punct = split_by_punct
self.vocab_file = vocab_file
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
if not os.path.exists(vocab_file):
raise FileNotFoundError(f"{vocab_file} does not exist!")
spm.load(vocab_file)
bpe_vocab_size = spm.GetPieceSize()
# Token map
# <unk> 0+1
# <s> 1+1
# </s> 2+1
self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)}
self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)]
# self.vocab['[PAD]'] = 0
# self.vocab['[CLS]'] = 1
# self.vocab['[SEP]'] = 2
# self.vocab['[UNK]'] = 3
self.spm = spm
self.special_tokens = special_tokens
def __getstate__(self):
state = self.__dict__.copy()
state["spm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
self.spm.Load(self.vocab_file)
def tokenize(self, text):
return self._encode_as_pieces(text)
def convert_ids_to_tokens(self, ids):
tokens = []
for i in ids:
tokens.append(self.ids_to_tokens[i])
return tokens
def decode(self, tokens, start=-1, end=-1, raw_text=None):
if raw_text is None:
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.spm.decode_pieces(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.spm.decode_pieces(current_sub_tokens)
return out_string.strip()
else:
words = self.split_to_words(raw_text)
word_tokens = [self.tokenize(w) for w in words]
token2words = [0] * len(tokens)
tid = 0
for i, w in enumerate(word_tokens):
for k, t in enumerate(w):
token2words[tid] = i
tid += 1
word_start = token2words[start]
word_end = token2words[end] if end < len(tokens) else len(words)
text = "".join(words[word_start:word_end])
return text
# TODO add a deprecation cycle as this can have different behaviour from our API
def add_special_token(self, token):
if token not in self.special_tokens:
self.special_tokens.append(token)
if token not in self.vocab:
self.vocab[token] = len(self.vocab) - 1
self.ids_to_tokens.append(token)
return self.id(token)
def part_of_whole_word(self, token, is_bos=False):
logger.warning_once(
"The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`"
)
if is_bos:
return True
if (
len(token) == 1
and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0]))
) or token in self.special_tokens:
return False
word_start = b"\xe2\x96\x81".decode("utf-8")
return not token.startswith(word_start)
def pad(self):
return "[PAD]"
def bos(self):
return "[CLS]"
def eos(self):
return "[SEP]"
def unk(self):
return "[UNK]"
def mask(self):
return "[MASK]"
def sym(self, id):
return self.ids_to_tokens[id]
def id(self, sym):
logger.warning_once(
"The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`"
)
return self.vocab[sym] if sym in self.vocab else 1
def _encode_as_pieces(self, text):
text = convert_to_unicode(text)
if self.split_by_punct:
words = self._run_split_on_punc(text)
pieces = [self.spm.encode(w, out_type=str) for w in words]
return [p for w in pieces for p in w]
else:
return self.spm.encode(text, out_type=str)
def split_to_words(self, text):
pieces = self._encode_as_pieces(text)
word_start = b"\xe2\x96\x81".decode("utf-8")
words = []
offset = 0
prev_end = 0
for i, p in enumerate(pieces):
if p.startswith(word_start):
if offset > prev_end:
words.append(text[prev_end:offset])
prev_end = offset
w = p.replace(word_start, "")
else:
w = p
try:
s = text.index(w, offset)
pn = ""
k = i + 1
while k < len(pieces):
pn = pieces[k].replace(word_start, "")
if len(pn) > 0:
break
k += 1
if len(pn) > 0 and pn in text[offset:s]:
offset = offset + 1
else:
offset = s + len(w)
except Exception:
offset = offset + 1
if prev_end < offset:
words.append(text[prev_end:offset])
return words
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def save_pretrained(self, path: str, filename_prefix: str = None):
filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]]
if filename_prefix is not None:
filename = filename_prefix + "-" + filename
full_path = os.path.join(path, filename)
with open(full_path, "wb") as fs:
fs.write(self.spm.serialized_model_proto())
return (full_path,)
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError(f"Unsupported string type: {type(text)}")
| transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py/0 | {
"file_path": "transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py",
"repo_id": "transformers",
"token_count": 9944
} | 324 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DeiT."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class DeiTImageProcessor(BaseImageProcessor):
r"""
Constructs a DeiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling` filter, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PIL.Image.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample=None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/deit/image_processing_deit.py/0 | {
"file_path": "transformers/src/transformers/models/deit/image_processing_deit.py",
"repo_id": "transformers",
"token_count": 6426
} | 325 |
# coding=utf-8
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Open-Llama model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ....activations import ACT2FN
from ....modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from ....modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from ....modeling_utils import PreTrainedModel
from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_open_llama import OpenLlamaConfig
logger = logging.get_logger(__name__)
try:
from xformers import ops as xops
except ImportError:
xops = None
_CONFIG_FOR_DOC = "OpenLlamaConfig"
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->OpenLlama
class OpenLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
OpenLlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->OpenLlama
class OpenLlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->OpenLlama
class OpenLlamaLinearScalingRotaryEmbedding(OpenLlamaRotaryEmbedding):
"""OpenLlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->OpenLlama
class OpenLlamaDynamicNTKScalingRotaryEmbedding(OpenLlamaRotaryEmbedding):
"""OpenLlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class OpenLlamaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
dropout_prob: float,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
self.dropout = nn.Dropout(dropout_prob)
def forward(self, x):
out = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return self.dropout(out)
class OpenLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: OpenLlamaConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.dropout_prob = config.attention_dropout_prob
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
# Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->OpenLlama
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = OpenLlamaRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = OpenLlamaLinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = OpenLlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
if self.config.use_memory_efficient_attention and xops is not None and self.training:
attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = xops.memory_efficient_attention(
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask(), p=self.dropout_prob
)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class OpenLlamaDecoderLayer(nn.Module):
def __init__(self, config: OpenLlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = OpenLlamaAttention(config=config)
self.mlp = OpenLlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
dropout_prob=config.hidden_dropout_prob,
)
self.input_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
OPEN_LLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OpenLlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Open-Llama Model outputting raw hidden-states without any specific head on top.",
OPEN_LLAMA_START_DOCSTRING,
)
class OpenLlamaPreTrainedModel(PreTrainedModel):
config_class = OpenLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OpenLlamaDecoderLayer"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
if self.config.use_stable_embedding:
torch.nn.init.xavier_normal_(module.weight.data)
else:
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
OPEN_LLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Open-Llama Model outputting raw hidden-states without any specific head on top.",
OPEN_LLAMA_START_DOCSTRING,
)
class OpenLlamaModel(OpenLlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpenLlamaDecoderLayer`]
Args:
config: OpenLlamaConfig
"""
def __init__(self, config: OpenLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.use_stable_embedding:
self.embed_layer_norm = nn.LayerNorm(config.hidden_size)
else:
self.embed_layer_norm = None
self.layers = nn.ModuleList([OpenLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.embed_layer_norm:
inputs_embeds = self.embed_layer_norm(inputs_embeds)
# embed positions
if self.config.use_memory_efficient_attention and self.training:
attention_mask = None
elif attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
input_shape = (batch_size, seq_length)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class OpenLlamaForCausalLM(OpenLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = OpenLlamaModel(config)
if config.shared_input_output_embedding:
self.lm_head = None
else:
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM
>>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.shared_input_output_embedding:
logits = torch.einsum(
"blh,vh->blv", hidden_states.to(self.model.embed_tokens.weight.device), self.model.embed_tokens.weight
)
else:
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"""
The LLaMa Model transformer with a sequence classification head on top (linear layer).
[`OpenLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
OPEN_LLAMA_START_DOCSTRING,
)
class OpenLlamaForSequenceClassification(OpenLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = OpenLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
| transformers/src/transformers/models/deprecated/open_llama/modeling_open_llama.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/open_llama/modeling_open_llama.py",
"repo_id": "transformers",
"token_count": 19119
} | 326 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A TF 2.0 Adaptive Softmax for Transformer XL model.
"""
import tensorflow as tf
from ....modeling_tf_utils import keras
from ....tf_utils import shape_list
class TFAdaptiveSoftmaxMask(keras.layers.Layer):
def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.d_embed = d_embed
self.d_proj = d_proj
self.cutoffs = cutoffs + [vocab_size]
self.cutoff_ends = [0] + self.cutoffs
self.div_val = div_val
self.shortlist_size = self.cutoffs[0]
self.n_clusters = len(self.cutoffs) - 1
self.head_size = self.shortlist_size + self.n_clusters
self.keep_order = keep_order
self.out_layers = []
self.out_projs = []
def build(self, input_shape):
if self.n_clusters > 0:
self.cluster_weight = self.add_weight(
shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight"
)
self.cluster_bias = self.add_weight(
shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias"
)
if self.div_val == 1:
for i in range(len(self.cutoffs)):
if self.d_proj != self.d_embed:
weight = self.add_weight(
shape=(self.d_embed, self.d_proj),
initializer="zeros",
trainable=True,
name=f"out_projs_._{i}",
)
self.out_projs.append(weight)
else:
self.out_projs.append(None)
weight = self.add_weight(
shape=(self.vocab_size, self.d_embed),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._weight",
)
bias = self.add_weight(
shape=(self.vocab_size,),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._bias",
)
self.out_layers.append((weight, bias))
else:
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
d_emb_i = self.d_embed // (self.div_val**i)
weight = self.add_weight(
shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}"
)
self.out_projs.append(weight)
weight = self.add_weight(
shape=(r_idx - l_idx, d_emb_i),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._weight",
)
bias = self.add_weight(
shape=(r_idx - l_idx,),
initializer="zeros",
trainable=True,
name=f"out_layers_._{i}_._bias",
)
self.out_layers.append((weight, bias))
super().build(input_shape)
@staticmethod
def _logit(x, W, b, proj=None):
y = x
if proj is not None:
y = tf.einsum("ibd,ed->ibe", y, proj)
return tf.einsum("ibd,nd->ibn", y, W) + b
@staticmethod
def _gather_logprob(logprob, target):
lp_size = shape_list(logprob)
r = tf.range(lp_size[0], dtype=target.dtype)
idx = tf.stack([r, target], 1)
return tf.gather_nd(logprob, idx)
def call(self, hidden, target, return_mean=True, training=False):
head_logprob = 0
if self.n_clusters == 0:
output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0])
if target is not None:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
out = tf.nn.log_softmax(output, axis=-1)
else:
hidden_sizes = shape_list(hidden)
out = []
loss = tf.zeros(hidden_sizes[:2])
for i in range(len(self.cutoffs)):
l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
mask = (target >= l_idx) & (target < r_idx)
mask_idx = tf.where(mask)
cur_target = tf.boolean_mask(target, mask) - l_idx
if self.div_val == 1:
cur_W = self.out_layers[0][0][l_idx:r_idx]
cur_b = self.out_layers[0][1][l_idx:r_idx]
else:
cur_W = self.out_layers[i][0]
cur_b = self.out_layers[i][1]
if i == 0:
cur_W = tf.concat([cur_W, self.cluster_weight], 0)
cur_b = tf.concat([cur_b, self.cluster_bias], 0)
head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0])
head_logprob = tf.nn.log_softmax(head_logit)
out.append(head_logprob[..., : self.cutoffs[0]])
if target is not None:
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_logprob = self._gather_logprob(cur_head_logprob, cur_target)
else:
tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i])
tail_logprob = tf.nn.log_softmax(tail_logit)
cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster
logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(logprob_i)
if target is not None:
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_tail_logprob = tf.boolean_mask(tail_logprob, mask)
cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target)
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss))
out = tf.concat(out, axis=-1)
if target is not None:
if return_mean:
loss = tf.reduce_mean(loss)
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(loss)
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "")
return out
| transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py",
"repo_id": "transformers",
"token_count": 4106
} | 327 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Deformable DETR."""
import pathlib
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_processing_utils import BaseImageProcessor, get_size_dict
from ...image_transforms import (
PaddingMode,
center_to_corners_format,
corners_to_center_format,
pad,
rescale,
resize,
rgb_to_id,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
AnnotationFormat,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_batched,
is_scaled_image,
to_numpy_array,
valid_images,
validate_annotations,
)
from ...utils import (
is_flax_available,
is_jax_tensor,
is_tf_available,
is_tf_tensor,
is_torch_available,
is_torch_tensor,
is_torchvision_available,
is_vision_available,
logging,
)
from ...utils.generic import TensorType
if is_torch_available():
import torch
if is_torchvision_available():
from torchvision.ops.boxes import batched_nms
if is_vision_available():
import PIL
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
"""
height, width = image_size
if max_size is not None:
min_original_size = float(min((height, width)))
max_original_size = float(max((height, width)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (height <= width and height == size) or (width <= height and width == size):
return height, width
if width < height:
ow = size
oh = int(size * height / width)
else:
oh = size
ow = int(size * width / height)
return (oh, ow)
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
def get_resize_output_image_size(
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
image size is computed by keeping the aspect ratio of the input image size.
Args:
input_image (`np.ndarray`):
The image to resize.
size (`int` or `Tuple[int, int]` or `List[int]`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
return get_size_with_aspect_ratio(image_size, size, max_size)
# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
def get_numpy_to_framework_fn(arr) -> Callable:
"""
Returns a function that converts a numpy array to the framework of the input array.
Args:
arr (`np.ndarray`): The array to convert.
"""
if isinstance(arr, np.ndarray):
return np.array
if is_tf_available() and is_tf_tensor(arr):
import tensorflow as tf
return tf.convert_to_tensor
if is_torch_available() and is_torch_tensor(arr):
import torch
return torch.tensor
if is_flax_available() and is_jax_tensor(arr):
import jax.numpy as jnp
return jnp.array
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
"""
Squeezes an array, but only if the axis specified has dim 1.
"""
if axis is None:
return arr.squeeze()
try:
return arr.squeeze(axis=axis)
except ValueError:
return arr
# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
image_height, image_width = image_size
norm_annotation = {}
for key, value in annotation.items():
if key == "boxes":
boxes = value
boxes = corners_to_center_format(boxes)
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
norm_annotation[key] = boxes
else:
norm_annotation[key] = value
return norm_annotation
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
def max_across_indices(values: Iterable[Any]) -> List[Any]:
"""
Return the maximum value across all indices of an iterable of values.
"""
return [max(values_i) for values_i in zip(*values)]
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
"""
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
"""
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = np.asarray(mask, dtype=np.uint8)
mask = np.any(mask, axis=2)
masks.append(mask)
if masks:
masks = np.stack(masks, axis=0)
else:
masks = np.zeros((0, height, width), dtype=np.uint8)
return masks
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DETA
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DETA.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
# Get all COCO annotations for the given image.
annotations = target["annotations"]
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
classes = [obj["category_id"] for obj in annotations]
classes = np.asarray(classes, dtype=np.int64)
# for conversion to coco api
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
boxes = [obj["bbox"] for obj in annotations]
# guard against no boxes via resizing
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
new_target = {}
new_target["image_id"] = image_id
new_target["class_labels"] = classes[keep]
new_target["boxes"] = boxes[keep]
new_target["area"] = area[keep]
new_target["iscrowd"] = iscrowd[keep]
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
if annotations and "keypoints" in annotations[0]:
keypoints = [obj["keypoints"] for obj in annotations]
# Converting the filtered keypoints list to a numpy array
keypoints = np.asarray(keypoints, dtype=np.float32)
# Apply the keep mask here to filter the relevant annotations
keypoints = keypoints[keep]
num_keypoints = keypoints.shape[0]
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
new_target["keypoints"] = keypoints
if return_segmentation_masks:
segmentation_masks = [obj["segmentation"] for obj in annotations]
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
new_target["masks"] = masks[keep]
return new_target
# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DETA
def prepare_coco_panoptic_annotation(
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for DETA.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
if "segments_info" in target:
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
masks = rgb_to_id(masks)
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
masks = masks == ids[:, None, None]
masks = masks.astype(np.uint8)
if return_masks:
new_target["masks"] = masks
new_target["boxes"] = masks_to_boxes(masks)
new_target["class_labels"] = np.array(
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["iscrowd"] = np.asarray(
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["area"] = np.asarray(
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
)
return new_target
# Copied from transformers.models.detr.image_processing_detr.resize_annotation
def resize_annotation(
annotation: Dict[str, Any],
orig_size: Tuple[int, int],
target_size: Tuple[int, int],
threshold: float = 0.5,
resample: PILImageResampling = PILImageResampling.NEAREST,
):
"""
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
The resampling filter to use when resizing the masks.
"""
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
ratio_height, ratio_width = ratios
new_annotation = {}
new_annotation["size"] = target_size
for key, value in annotation.items():
if key == "boxes":
boxes = value
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
new_annotation["boxes"] = scaled_boxes
elif key == "area":
area = value
scaled_area = area * (ratio_width * ratio_height)
new_annotation["area"] = scaled_area
elif key == "masks":
masks = value[:, None]
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
masks = masks.astype(np.float32)
masks = masks[:, 0] > threshold
new_annotation["masks"] = masks
elif key == "size":
new_annotation["size"] = target_size
else:
new_annotation[key] = value
return new_annotation
class DetaImageProcessor(BaseImageProcessor):
r"""
Constructs a Deformable DETR image processor.
Args:
format (`str`, *optional*, defaults to `"coco_detection"`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in
the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image to the largest image in a batch and create a pixel mask. Can be
overridden by the `do_pad` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values", "pixel_mask"]
def __init__(
self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
do_pad: bool = True,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
size = get_size_dict(size, default_to_square=False)
super().__init__(**kwargs)
self.format = format
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DETA
def prepare_annotation(
self,
image: np.ndarray,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETA model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
logger.warning_once(
"The `prepare` method is deprecated and will be removed in a v4.33. "
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
"does not return the image anymore.",
)
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
return image, target
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
def convert_coco_poly_to_mask(self, *args, **kwargs):
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
return convert_coco_poly_to_mask(*args, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
def prepare_coco_detection(self, *args, **kwargs):
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
return prepare_coco_detection_annotation(*args, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
def prepare_coco_panoptic(self, *args, **kwargs):
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
return prepare_coco_panoptic_annotation(*args, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
The desired output size. Can contain keys `shortest_edge` and `longest_edge` or `height` and `width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
def resize_annotation(
self,
annotation,
orig_size,
size,
resample: PILImageResampling = PILImageResampling.NEAREST,
) -> Dict:
"""
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
"""
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
"""
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
`[center_x, center_y, width, height]` format.
"""
return normalize_annotation(annotation, image_size=image_size)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
def pad(
self,
images: List[np.ndarray],
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
image (`np.ndarray`):
Image to pad.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[List[Dict], List[List[Dict]]]] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample=None, # PILImageResampling
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
format: Optional[Union[str, AnnotationFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`List[Dict]` or `List[List[Dict]]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image after resizing.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead.",
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
size = get_size_dict(size=size, default_to_square=False)
resample = self.resample if resample is None else resample
do_rescale = self.do_rescale if do_rescale is None else do_rescale
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = self.do_normalize if do_normalize is None else do_normalize
image_mean = self.image_mean if image_mean is None else image_mean
image_std = self.image_std if image_std is None else image_std
do_pad = self.do_pad if do_pad is None else do_pad
format = self.format if format is None else format
if do_resize is not None and size is None:
raise ValueError("Size and max_size must be specified if do_resize is True.")
if do_rescale is not None and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize is not None and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
if not is_batched(images):
images = [images]
annotations = [annotations] if annotations is not None else None
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
images = prepared_images
annotations = prepared_annotations
del prepared_images, prepared_annotations
# transformations
if do_resize:
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
data = self.pad(
images, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format
)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
def post_process_object_detection(
self,
outputs,
threshold: float = 0.5,
target_sizes: Union[TensorType, List[Tuple]] = None,
nms_threshold: float = 0.7,
):
"""
Converts the output of [`DetaForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.5):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
nms_threshold (`float`, *optional*, defaults to 0.7):
NMS threshold.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
batch_size, num_queries, num_labels = out_logits.shape
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = out_logits.sigmoid()
all_scores = prob.view(batch_size, num_queries * num_labels).to(out_logits.device)
all_indexes = torch.arange(num_queries * num_labels)[None].repeat(batch_size, 1).to(out_logits.device)
all_boxes = torch.div(all_indexes, out_logits.shape[2], rounding_mode="floor")
all_labels = all_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for b in range(batch_size):
box = boxes[b]
score = all_scores[b]
lbls = all_labels[b]
pre_topk = score.topk(min(10000, num_queries * num_labels)).indices
box = box[pre_topk]
score = score[pre_topk]
lbls = lbls[pre_topk]
# apply NMS
keep_inds = batched_nms(box, score, lbls, nms_threshold)[:100]
score = score[keep_inds]
lbls = lbls[keep_inds]
box = box[keep_inds]
results.append(
{
"scores": score[score > threshold],
"labels": lbls[score > threshold],
"boxes": box[score > threshold],
}
)
return results
| transformers/src/transformers/models/deta/image_processing_deta.py/0 | {
"file_path": "transformers/src/transformers/models/deta/image_processing_deta.py",
"repo_id": "transformers",
"token_count": 20208
} | 328 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert DINOv2 checkpoints from the original repository.
URL: https://github.com/facebookresearch/dinov2/tree/main
"""
import argparse
import json
from pathlib import Path
import requests
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, Dinov2Config, Dinov2ForImageClassification, Dinov2Model
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_dinov2_config(model_name, image_classifier=False):
config = Dinov2Config(image_size=518, patch_size=14)
# size of the architecture
if "vits" in model_name:
config.hidden_size = 384
config.num_attention_heads = 6
elif "vitb" in model_name:
pass
elif "vitl" in model_name:
config.hidden_size = 1024
config.num_hidden_layers = 24
config.num_attention_heads = 16
elif "vitg" in model_name:
config.use_swiglu_ffn = True
config.hidden_size = 1536
config.num_hidden_layers = 40
config.num_attention_heads = 24
else:
raise ValueError("Model not supported")
if image_classifier:
repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json"
config.num_labels = 1000
config.id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
config.id2label = {int(k): v for k, v in config.id2label.items()}
return config
def create_rename_keys(config):
rename_keys = []
# fmt: off
# patch embedding layer
rename_keys.append(("cls_token", "embeddings.cls_token"))
rename_keys.append(("mask_token", "embeddings.mask_token"))
rename_keys.append(("pos_embed", "embeddings.position_embeddings"))
rename_keys.append(("patch_embed.proj.weight", "embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("patch_embed.proj.bias", "embeddings.patch_embeddings.projection.bias"))
for i in range(config.num_hidden_layers):
# layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"encoder.layer.{i}.norm1.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"encoder.layer.{i}.norm1.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"encoder.layer.{i}.norm2.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"encoder.layer.{i}.norm2.bias"))
# MLP
if config.use_swiglu_ffn:
rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"encoder.layer.{i}.mlp.w12.weight"))
rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"encoder.layer.{i}.mlp.w12.bias"))
rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"encoder.layer.{i}.mlp.w3.weight"))
rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"encoder.layer.{i}.mlp.w3.bias"))
else:
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"encoder.layer.{i}.mlp.fc1.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"encoder.layer.{i}.mlp.fc1.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"encoder.layer.{i}.mlp.fc2.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"encoder.layer.{i}.mlp.fc2.bias"))
# layerscale
rename_keys.append((f"blocks.{i}.ls1.gamma", f"encoder.layer.{i}.layer_scale1.lambda1"))
rename_keys.append((f"blocks.{i}.ls2.gamma", f"encoder.layer.{i}.layer_scale2.lambda1"))
# attention projection layer
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"encoder.layer.{i}.attention.output.dense.bias"))
# final layernorm
rename_keys.append(("norm.weight", "layernorm.weight"))
rename_keys.append(("norm.bias", "layernorm.bias"))
# fmt: on
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :]
state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def convert_dinov2_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our DINOv2 structure.
"""
# define default Dinov2 configuration
image_classifier = "1layer" in model_name
config = get_dinov2_config(model_name, image_classifier=image_classifier)
# load original model from torch hub
original_model = torch.hub.load("facebookresearch/dinov2", model_name.replace("_1layer", ""))
original_model.eval()
# load state_dict of original model, remove and rename some keys
state_dict = original_model.state_dict()
rename_keys = create_rename_keys(config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config)
for key, val in state_dict.copy().items():
val = state_dict.pop(key)
if "w12" in key:
key = key.replace("w12", "weights_in")
if "w3" in key:
key = key.replace("w3", "weights_out")
state_dict[key] = val
# load HuggingFace model
if image_classifier:
model = Dinov2ForImageClassification(config).eval()
model.dinov2.load_state_dict(state_dict)
model_name_to_classifier_dict_url = {
"dinov2_vits14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth",
"dinov2_vitb14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth",
"dinov2_vitl14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth",
"dinov2_vitg14_1layer": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth",
}
url = model_name_to_classifier_dict_url[model_name]
classifier_state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
model.classifier.weight = nn.Parameter(classifier_state_dict["weight"])
model.classifier.bias = nn.Parameter(classifier_state_dict["bias"])
else:
model = Dinov2Model(config).eval()
model.load_state_dict(state_dict)
# load image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
# preprocess image
transformations = transforms.Compose(
[
transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_DEFAULT_MEAN, # these are RGB mean+std values
std=IMAGENET_DEFAULT_STD, # across a large photo dataset.
),
]
)
original_pixel_values = transformations(image).unsqueeze(0) # insert batch dimension
processor = BitImageProcessor(
size={"shortest_edge": 256},
resample=PILImageResampling.BICUBIC,
image_mean=IMAGENET_DEFAULT_MEAN,
image_std=IMAGENET_DEFAULT_STD,
)
pixel_values = processor(image, return_tensors="pt").pixel_values
assert torch.allclose(original_pixel_values, pixel_values)
with torch.no_grad():
outputs = model(pixel_values, output_hidden_states=True)
original_outputs = original_model(pixel_values)
# assert values
if image_classifier:
print("Predicted class:")
class_idx = outputs.logits.argmax(-1).item()
print(model.config.id2label[class_idx])
else:
assert outputs.last_hidden_state[:, 0].shape == original_outputs.shape
assert torch.allclose(outputs.last_hidden_state[:, 0], original_outputs, atol=1e-3)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model_name_to_hf_name = {
"dinov2_vits14": "dinov2-small",
"dinov2_vitb14": "dinov2-base",
"dinov2_vitl14": "dinov2-large",
"dinov2_vitg14": "dinov2-giant",
"dinov2_vits14_1layer": "dinov2-small-imagenet1k-1-layer",
"dinov2_vitb14_1layer": "dinov2-base-imagenet1k-1-layer",
"dinov2_vitl14_1layer": "dinov2-large-imagenet1k-1-layer",
"dinov2_vitg14_1layer": "dinov2-giant-imagenet1k-1-layer",
}
name = model_name_to_hf_name[model_name]
model.push_to_hub(f"facebook/{name}")
processor.push_to_hub(f"facebook/{name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="dinov2_vitb14",
type=str,
choices=[
"dinov2_vits14",
"dinov2_vitb14",
"dinov2_vitl14",
"dinov2_vitg14",
"dinov2_vits14_1layer",
"dinov2_vitb14_1layer",
"dinov2_vitl14_1layer",
"dinov2_vitg14_1layer",
],
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_dinov2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/dinov2/convert_dinov2_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/dinov2/convert_dinov2_to_hf.py",
"repo_id": "transformers",
"token_count": 5255
} | 329 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Donut Swin Transformer model.
This implementation is identical to a regular Swin Transformer, without final layer norm on top of the final hidden
states."""
import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_donut_swin import DonutSwinConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DonutSwinConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "https://huggingface.co/naver-clova-ix/donut-base"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = [
"naver-clova-ix/donut-base",
# See all Donut Swin models at https://huggingface.co/models?filter=donut
]
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
class DonutSwinEncoderOutput(ModelOutput):
"""
DonutSwin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin
class DonutSwinModelOutput(ModelOutput):
"""
DonutSwin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.swin.modeling_swin.window_partition
def window_partition(input_feature, window_size):
"""
Partitions the given input into windows.
"""
batch_size, height, width, num_channels = input_feature.shape
input_feature = input_feature.view(
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
)
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.window_reverse
def window_reverse(windows, window_size, height, width):
"""
Merges windows to produce higher resolution features.
"""
num_channels = windows.shape[-1]
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin
class DonutSwinEmbeddings(nn.Module):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = DonutSwinPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
if config.use_absolute_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
else:
self.position_embeddings = None
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
) -> Tuple[torch.Tensor]:
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings
class DonutSwinPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
class DonutSwinPatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.view(batch_size, height, width, num_channels)
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature)
input_feature = self.reduction(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.swin.modeling_swin.SwinDropPath
class DonutSwinDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin
class DonutSwinSelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
relative_position_bias = relative_position_bias.view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in DonutSwinModel forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.view(
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
class DonutSwinSelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin
class DonutSwinAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
self.self = DonutSwinSelfAttention(config, dim, num_heads, window_size)
self.output = DonutSwinSelfOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
class DonutSwinIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinOutput
class DonutSwinOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin
class DonutSwinLayer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.shift_size = shift_size
self.window_size = config.window_size
self.input_resolution = input_resolution
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = DonutSwinAttention(config, dim, num_heads, window_size=self.window_size)
self.drop_path = DonutSwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = DonutSwinIntermediate(config, dim)
self.output = DonutSwinOutput(config, dim)
def set_shift_and_window_size(self, input_resolution):
if min(input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(input_resolution)
def get_attn_mask(self, height, width, dtype):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if not always_partition:
self.set_shift_and_window_size(input_dimensions)
else:
pass
height, width = input_dimensions
batch_size, _, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
hidden_states = hidden_states.view(batch_size, height, width, channels)
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
if attn_mask is not None:
attn_mask = attn_mask.to(hidden_states_windows.device)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
# reverse cyclic shift
if self.shift_size > 0:
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.view(batch_size, height * width, channels)
hidden_states = shortcut + self.drop_path(attention_windows)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.output(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin
class DonutSwinStage(nn.Module):
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
super().__init__()
self.config = config
self.dim = dim
self.blocks = nn.ModuleList(
[
DonutSwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin
class DonutSwinEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.layers = nn.ModuleList(
[
DonutSwinStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
)
for i_layer in range(self.num_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
always_partition: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, DonutSwinEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
else:
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return DonutSwinEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin
class DonutSwinPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DonutSwinConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SWIN_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`DonutSwinConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SWIN_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`DonutImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Donut Swin Model transformer outputting raw hidden-states without any specific head on top.",
SWIN_START_DOCSTRING,
)
class DonutSwinModel(DonutSwinPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=DonutSwinModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DonutSwinModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return DonutSwinModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
| transformers/src/transformers/models/donut/modeling_donut_swin.py/0 | {
"file_path": "transformers/src/transformers/models/donut/modeling_donut_swin.py",
"repo_id": "transformers",
"token_count": 18061
} | 330 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ELECTRA checkpoint."""
import argparse
import torch
from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator):
# Initialise PyTorch model
config = ElectraConfig.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
if discriminator_or_generator == "discriminator":
model = ElectraForPreTraining(config)
elif discriminator_or_generator == "generator":
model = ElectraForMaskedLM(config)
else:
raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'")
# Load weights from tf checkpoint
load_tf_weights_in_electra(
model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator
)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--discriminator_or_generator",
default=None,
type=str,
required=True,
help=(
"Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or "
"'generator'."
),
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator
)
| transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/electra/convert_electra_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1018
} | 331 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
_import_structure = {
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_ernie"] = [
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/ernie/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/ernie/__init__.py",
"repo_id": "transformers",
"token_count": 927
} | 332 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Tuple, overload
import torch
import torch.types
from torch import nn
from . import residue_constants as rc
from .rigid_utils import Rigid, Rotation
from .tensor_utils import batched_gather
@overload
def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor:
...
@overload
def pseudo_beta_fn(
aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
...
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
is_gly = aatype == rc.restype_order["G"]
ca_idx = rc.atom_order["CA"]
cb_idx = rc.atom_order["CB"]
pseudo_beta = torch.where(
is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
all_atom_positions[..., ca_idx, :],
all_atom_positions[..., cb_idx, :],
)
if all_atom_masks is not None:
pseudo_beta_mask = torch.where(
is_gly,
all_atom_masks[..., ca_idx],
all_atom_masks[..., cb_idx],
)
return pseudo_beta, pseudo_beta_mask
else:
return pseudo_beta
def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
atom37_data = batched_gather(
atom14,
batch["residx_atom37_to_atom14"],
dim=-2,
no_batch_dims=len(atom14.shape[:-2]),
)
atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]
return atom37_data
def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor:
template_aatype = template_feats["template_aatype"]
torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
torsion_angles_mask = template_feats["template_torsion_angles_mask"]
template_angle_feat = torch.cat(
[
nn.functional.one_hot(template_aatype, 22),
torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14),
torsion_angles_mask,
],
dim=-1,
)
return template_angle_feat
def build_template_pair_feat(
batch: Dict[str, torch.Tensor],
min_bin: torch.types.Number,
max_bin: torch.types.Number,
no_bins: int,
use_unit_vector: bool = False,
eps: float = 1e-20,
inf: float = 1e8,
) -> torch.Tensor:
template_mask = batch["template_pseudo_beta_mask"]
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
# Compute distogram (this seems to differ slightly from Alg. 5)
tpb = batch["template_pseudo_beta"]
dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True)
lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2
upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
to_concat = [dgram, template_mask_2d[..., None]]
aatype_one_hot: torch.LongTensor = nn.functional.one_hot(
batch["template_aatype"],
rc.restype_num + 2,
)
n_res = batch["template_aatype"].shape[-1]
to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1))
to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1))
n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
rigids = Rigid.make_transform_from_reference(
n_xyz=batch["template_all_atom_positions"][..., n, :],
ca_xyz=batch["template_all_atom_positions"][..., ca, :],
c_xyz=batch["template_all_atom_positions"][..., c, :],
eps=eps,
)
points = rigids.get_trans()[..., None, :, :]
rigid_vec = rigids[..., None].invert_apply(points)
inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))
t_aa_masks = batch["template_all_atom_mask"]
template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
inv_distance_scalar = inv_distance_scalar * template_mask_2d
unit_vector = rigid_vec * inv_distance_scalar[..., None]
if not use_unit_vector:
unit_vector = unit_vector * 0.0
to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
to_concat.append(template_mask_2d[..., None])
act = torch.cat(to_concat, dim=-1)
act = act * template_mask_2d[..., None]
return act
def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor:
msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23)
msa_feat = [
msa_1hot,
batch["extra_has_deletion"].unsqueeze(-1),
batch["extra_deletion_value"].unsqueeze(-1),
]
return torch.cat(msa_feat, dim=-1)
def torsion_angles_to_frames(
r: Rigid,
alpha: torch.Tensor,
aatype: torch.Tensor,
rrgdf: torch.Tensor,
) -> Rigid:
# [*, N, 8, 4, 4]
default_4x4 = rrgdf[aatype, ...]
# [*, N, 8] transformations, i.e.
# One [*, N, 8, 3, 3] rotation matrix and
# One [*, N, 8, 3] translation matrix
default_r = r.from_tensor_4x4(default_4x4)
bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
bb_rot[..., 1] = 1
# [*, N, 8, 2]
alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)
# [*, N, 8, 3, 3]
# Produces rotation matrices of the form:
# [
# [1, 0 , 0 ],
# [0, a_2,-a_1],
# [0, a_1, a_2]
# ]
# This follows the original code rather than the supplement, which uses
# different indices.
all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape)
all_rots[..., 0, 0] = 1
all_rots[..., 1, 1] = alpha[..., 1]
all_rots[..., 1, 2] = -alpha[..., 0]
all_rots[..., 2, 1:] = alpha
all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None))
chi2_frame_to_frame = all_frames[..., 5]
chi3_frame_to_frame = all_frames[..., 6]
chi4_frame_to_frame = all_frames[..., 7]
chi1_frame_to_bb = all_frames[..., 4]
chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
all_frames_to_bb = Rigid.cat(
[
all_frames[..., :5],
chi2_frame_to_bb.unsqueeze(-1),
chi3_frame_to_bb.unsqueeze(-1),
chi4_frame_to_bb.unsqueeze(-1),
],
dim=-1,
)
all_frames_to_global = r[..., None].compose(all_frames_to_bb)
return all_frames_to_global
def frames_and_literature_positions_to_atom14_pos(
r: Rigid,
aatype: torch.Tensor,
default_frames: torch.Tensor,
group_idx: torch.Tensor,
atom_mask: torch.Tensor,
lit_positions: torch.Tensor,
) -> torch.Tensor:
# [*, N, 14]
group_mask = group_idx[aatype, ...]
# [*, N, 14, 8]
group_mask_one_hot: torch.LongTensor = nn.functional.one_hot(
group_mask,
num_classes=default_frames.shape[-3],
)
# [*, N, 14, 8]
t_atoms_to_global = r[..., None, :] * group_mask_one_hot
# [*, N, 14]
t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))
# [*, N, 14, 1]
atom_mask = atom_mask[aatype, ...].unsqueeze(-1)
# [*, N, 14, 3]
lit_positions = lit_positions[aatype, ...]
pred_positions = t_atoms_to_global.apply(lit_positions)
pred_positions = pred_positions * atom_mask
return pred_positions
| transformers/src/transformers/models/esm/openfold_utils/feats.py/0 | {
"file_path": "transformers/src/transformers/models/esm/openfold_utils/feats.py",
"repo_id": "transformers",
"token_count": 3763
} | 333 |
# coding=utf-8
# Copyright 2023 The Espnet authors, IMS Toucan authors, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch FastSpeech2Conformer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import ModelOutput, add_start_docstrings, logging, replace_return_docstrings
from .configuration_fastspeech2_conformer import (
FastSpeech2ConformerConfig,
FastSpeech2ConformerHifiGanConfig,
FastSpeech2ConformerWithHifiGanConfig,
)
logger = logging.get_logger(__name__)
FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"espnet/fastspeech2_conformer",
# See all FastSpeech2Conformer models at https://huggingface.co/models?filter=fastspeech2_conformer
]
@dataclass
class FastSpeech2ConformerModelOutput(ModelOutput):
"""
Output type of [`FastSpeech2ConformerModel`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
loss: Optional[torch.FloatTensor] = None
spectrogram: torch.FloatTensor = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
duration_outputs: torch.LongTensor = None
pitch_outputs: torch.FloatTensor = None
energy_outputs: torch.FloatTensor = None
@dataclass
class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput):
"""
Output type of [`FastSpeech2ConformerWithHifiGan`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Speech output as a result of passing the predicted mel spectrogram through the vocoder.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
waveform: torch.FloatTensor = None
_CONFIG_FOR_DOC = "FastSpeech2ConformerConfig"
FASTSPEECH2_CONFORMER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FastSpeech2ConformerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FastSpeech2ConformerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FastSpeech2ConformerWithHifiGanConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
def length_regulator(encoded_embeddings, duration_labels, speaking_speed=1.0):
"""
Length regulator for feed-forward Transformer.
This is the length regulator module described in `FastSpeech: Fast, Robust and Controllable Text to Speech`
https://arxiv.org/pdf/1905.09263.pdf. The length regulator expands char or phoneme-level embedding features to
frame-level by repeating each feature based on the corresponding predicted durations.
Args:
encoded_embeddings (`torch.Tensor` of shape `(batch_size, max_text_length, embedding_dim)`):
Batch of sequences of char or phoneme embeddings.
duration_labels (`torch.LongTensor` of shape `(batch_size, time)`):
Batch of durations of each frame.
speaking_speed (`float`, *optional*, defaults to 1.0):
Value to control speed of speech.
Returns:
`torch.Tensor`:
Replicated input tensor based on durations (batch_size, time*, embedding_dim).
"""
if speaking_speed <= 0:
raise ValueError("`speaking_speed` must be greater than 0.")
elif speaking_speed != 1.0:
duration_labels = torch.round(duration_labels.float() * speaking_speed).long()
if duration_labels.sum() == 0:
duration_labels[duration_labels.sum(dim=1).eq(0)] = 1
# Calculate the maximum length needed
max_len = torch.sum(duration_labels, dim=1).max()
# Create a padded tensor to hold the results
hidden_states = torch.zeros(
(encoded_embeddings.size(0), max_len, encoded_embeddings.size(2)),
dtype=torch.float,
device=encoded_embeddings.device,
)
# Loop through the batch and fill in the data
for i, (encoded_embedding, target_duration) in enumerate(zip(encoded_embeddings, duration_labels)):
repeated = torch.repeat_interleave(encoded_embedding, target_duration, dim=0)
hidden_states[i, : repeated.size(0)] = repeated
return hidden_states
class FastSpeech2ConformerDurationPredictor(nn.Module):
"""
Duration predictor module.
This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to
Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain
from the hidden embeddings of encoder.
Note:
The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the
outputs are calculated in log domain but in `inference`, those are calculated in linear domain.
"""
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__()
self.conv_layers = nn.ModuleList()
self.log_domain_offset = 1.0
for layer_idx in range(config.duration_predictor_layers):
num_chans = config.duration_predictor_channels
input_channels = config.hidden_size if layer_idx == 0 else num_chans
layer = FastSpeech2ConformerPredictorLayer(
input_channels,
num_chans,
config.duration_predictor_kernel_size,
config.duration_predictor_dropout_rate,
)
self.conv_layers.append(layer)
self.linear = nn.Linear(config.duration_predictor_channels, 1)
def forward(self, encoder_hidden_states):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`):
Batch of input sequences.
padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*):
Batch of masks indicating padded part.
Returns:
`torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`.
"""
# (batch_size, input_dim, max_text_length)
hidden_states = encoder_hidden_states.transpose(1, -1)
for layer in self.conv_layers:
hidden_states = layer(hidden_states)
# NOTE: calculate in log domain, (batch_size, max_text_length)
hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1)
if not self.training:
# NOTE: calculate in linear domain
hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long()
return hidden_states
# Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5BatchNormConvLayer
class FastSpeech2ConformerBatchNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
if layer_id == 0:
in_conv_dim = config.num_mel_bins
else:
in_conv_dim = config.speech_decoder_postnet_units
if layer_id == config.speech_decoder_postnet_layers - 1:
out_conv_dim = config.num_mel_bins
else:
out_conv_dim = config.speech_decoder_postnet_units
self.conv = nn.Conv1d(
in_conv_dim,
out_conv_dim,
kernel_size=config.speech_decoder_postnet_kernel,
stride=1,
padding=(config.speech_decoder_postnet_kernel - 1) // 2,
bias=False,
)
self.batch_norm = nn.BatchNorm1d(out_conv_dim)
if layer_id < config.speech_decoder_postnet_layers - 1:
self.activation = nn.Tanh()
else:
self.activation = None
self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.batch_norm(hidden_states)
if self.activation is not None:
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor)
self.layers = nn.ModuleList(
[FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)]
)
def forward(self, hidden_states: torch.Tensor):
outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins)
layer_output = outputs_before_postnet.transpose(1, 2)
for layer in self.layers:
layer_output = layer(layer_output)
outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2)
return outputs_before_postnet, outputs_after_postnet
class FastSpeech2ConformerPredictorLayer(nn.Module):
def __init__(self, input_channels, num_chans, kernel_size, dropout_rate):
super().__init__()
self.conv = nn.Conv1d(
input_channels,
num_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.activation = nn.ReLU()
self.layer_norm = nn.LayerNorm(num_chans)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
# Perform layer norm on dimension 1
hidden_states = hidden_states.transpose(1, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(1, -1)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FastSpeech2ConformerVariancePredictor(nn.Module):
def __init__(
self,
config: FastSpeech2ConformerConfig,
num_layers=2,
num_chans=384,
kernel_size=3,
dropout_rate=0.5,
):
"""
Initilize variance predictor module.
Args:
input_dim (`int`): Input dimension.
num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers.
num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers.
kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers.
dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate.
"""
super().__init__()
self.conv_layers = nn.ModuleList()
for idx in range(num_layers):
input_channels = config.hidden_size if idx == 0 else num_chans
layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate)
self.conv_layers.append(layer)
self.linear = nn.Linear(num_chans, 1)
def forward(self, encoder_hidden_states, padding_masks=None):
"""
Calculate forward propagation.
Args:
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`):
Batch of input sequences.
padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*):
Batch of masks indicating padded part.
Returns:
Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`.
"""
# (batch_size, input_dim, max_text_length)
hidden_states = encoder_hidden_states.transpose(1, -1)
for layer in self.conv_layers:
hidden_states = layer(hidden_states)
hidden_states = self.linear(hidden_states.transpose(1, 2))
if padding_masks is not None:
hidden_states = hidden_states.masked_fill(padding_masks, 0.0)
return hidden_states
class FastSpeech2ConformerVarianceEmbedding(nn.Module):
def __init__(
self,
in_channels=1,
out_channels=384,
kernel_size=1,
padding=0,
dropout_rate=0.0,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class FastSpeech2ConformerAttention(nn.Module):
"""
Multi-Head attention layer with relative position encoding. Details can be found in
https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860.
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""Construct an FastSpeech2ConformerAttention object."""
super().__init__()
# We assume d_v always equals dim_key
self.num_heads = module_config["num_attention_heads"]
self.hidden_size = config.hidden_size
self.dim_key = self.hidden_size // self.num_heads
self.head_dim = self.hidden_size // self.num_heads
self.linear_q = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_k = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_v = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_out = nn.Linear(self.hidden_size, self.hidden_size)
self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"])
# linear transformation for positional encoding
self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim))
def shift_relative_position_tensor(self, pos_tensor):
"""
Args:
pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor.
"""
zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype)
pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1)
pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2))
# only keep the positions from 0 to time2
pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1]
return pos_tensor
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
pos_emb: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states
attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor.
pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`.
"""
bsz, q_len, _ = hidden_states.size()
query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
bsz_pos = pos_emb.size(0)
pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim)
# (batch_size, head, time1, dim_key)
query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2)
# (batch_size, head, time1, dim_key)
query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch_size, head, time1, time2)
matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1))
# compute matrix b and matrix d
# (batch_size, head, time1, 2*time1-1)
matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1))
matrix_bd = self.shift_relative_position_tensor(matrix_bd)
# (batch_size, head, time1, time2)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key)
# Forward attention
if attention_mask is not None:
expected_size = (bsz, 1, q_len)
if attention_mask.size() != expected_size:
raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}")
attention_mask = attention_mask.unsqueeze(1).eq(0)
min_value = float(torch.finfo(scores.dtype).min)
scores = scores.masked_fill(attention_mask, min_value)
attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0)
else:
attn_weights = torch.softmax(scores, dim=-1)
attn_weights = self.dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2))
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
attn_output = self.linear_out(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class FastSpeech2ConformerConvolutionModule(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
super().__init__()
# kernel_size should be an odd number for 'SAME' padding
channels = config.hidden_size
kernel_size = module_config["kernel_size"]
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True)
self.depthwise_conv = nn.Conv1d(
channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True
)
self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, hidden_states):
"""
Compute convolution module.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time, channels)`.
"""
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism, (batch_size, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# (batch_size, channel, dim)
hidden_states = nn.functional.glu(hidden_states, dim=1)
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states * torch.sigmoid(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
return hidden_states.transpose(1, 2)
class FastSpeech2ConformerEncoderLayer(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
super().__init__()
# self-attention module definition
self.self_attn = FastSpeech2ConformerAttention(config, module_config)
# feed-forward module definition
self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config)
self.macaron_style = config.use_macaron_style_in_conformer
if self.macaron_style:
self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config)
self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
# convolution module definition
self.use_cnn_module = config.use_cnn_in_conformer
if self.use_cnn_module:
self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config)
self.conv_layer_norm = nn.LayerNorm(config.hidden_size)
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
self.ff_layer_norm = nn.LayerNorm(config.hidden_size)
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(module_config["dropout_rate"])
self.size = config.hidden_size
self.normalize_before = module_config["normalize_before"]
self.concat_after = module_config["concat_after"]
if self.concat_after:
self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
pos_emb: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = False,
):
"""
Compute encoded features.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor.
pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor.
attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time, size)`.
"""
# whether to use macaron style
if self.macaron_style:
residual = hidden_states
if self.normalize_before:
hidden_states = self.ff_macaron_layer_norm(hidden_states)
hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states))
if not self.normalize_before:
hidden_states = self.ff_macaron_layer_norm(hidden_states)
# multi-headed self-attention module
residual = hidden_states
if self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
attention_output, attention_scores = self.self_attn(
hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions
)
if self.concat_after:
x_concat = torch.cat((hidden_states, attention_output), dim=-1)
hidden_states = self.concat_linear(x_concat)
hidden_states = residual + hidden_states
else:
hidden_states = self.dropout(attention_output)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# convolution module
if self.use_cnn_module:
residual = hidden_states
if self.normalize_before:
hidden_states = self.conv_layer_norm(hidden_states)
hidden_states = self.conv_module(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.conv_layer_norm(hidden_states)
# feed forward module
residual = hidden_states
if self.normalize_before:
hidden_states = self.ff_layer_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + self.ff_scale * hidden_states
if not self.normalize_before:
hidden_states = self.ff_layer_norm(hidden_states)
if self.conv_module is not None:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_scores,)
return outputs
class FastSpeech2ConformerMultiLayeredConv1d(nn.Module):
"""
Multi-layered conv1d for Transformer block.
This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer
block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech'
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""
Initialize FastSpeech2ConformerMultiLayeredConv1d module.
Args:
input_channels (`int`): Number of input channels.
hidden_channels (`int`): Number of hidden channels.
kernel_size (`int`): Kernel size of conv1d.
dropout_rate (`float`): Dropout rate.
"""
super().__init__()
input_channels = config.hidden_size
hidden_channels = module_config["linear_units"]
kernel_size = config.positionwise_conv_kernel_size
self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2)
self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2)
self.dropout = nn.Dropout(module_config["dropout_rate"])
def forward(self, hidden_states):
"""
Calculate forward propagation.
Args:
hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels).
Returns:
torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels).
"""
hidden_states = hidden_states.transpose(-1, 1)
hidden_states = self.conv1(hidden_states)
hidden_states = torch.relu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = hidden_states.transpose(-1, 1)
return hidden_states
class FastSpeech2ConformerRelPositionalEncoding(nn.Module):
"""
Args:
Relative positional encoding module (new implementation). Details can be found in
https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860
config (`FastSpeech2ConformerConfig`):
FastSpeech2ConformerConfig instance.
module_config (`dict`):
Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`.
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""
Construct an PositionalEncoding object.
"""
super().__init__()
self.embed_dim = config.hidden_size
self.input_scale = math.sqrt(self.embed_dim)
self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"])
self.pos_enc = None
self.max_len = 5000
self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len))
def extend_pos_enc(self, x):
"""Reset the positional encodings."""
if self.pos_enc is not None:
# self.pos_enc contains both positive and negative parts
# the length of self.pos_enc is 2 * input_len - 1
if self.pos_enc.size(1) >= x.size(1) * 2 - 1:
if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device:
self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vector and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pos_enc_positive = torch.zeros(x.size(1), self.embed_dim)
pos_enc_negative = torch.zeros(x.size(1), self.embed_dim)
position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embed_dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.embed_dim)
)
pos_enc_positive[:, 0::2] = torch.sin(position * div_term)
pos_enc_positive[:, 1::2] = torch.cos(position * div_term)
pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0)
pos_enc_negative = pos_enc_negative[1:].unsqueeze(0)
pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1)
self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype)
def forward(self, feature_representation):
"""
Args:
feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)):
Input tensor.
Returns:
`torch.Tensor`: Encoded tensor (batch_size, time, `*`).
"""
self.extend_pos_enc(feature_representation)
hidden_states = feature_representation * self.input_scale
center_idx = self.pos_enc.size(1) // 2
pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)]
return self.dropout(hidden_states), self.dropout(pos_emb)
class FastSpeech2ConformerEncoder(nn.Module):
"""
FastSpeech2ConformerEncoder encoder module.
Args:
config (`FastSpeech2ConformerConfig`):
FastSpeech2ConformerConfig instance.
module_config (`dict`):
Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`.
use_encoder_input_layer (`bool`, *optional*, defaults to `False`):
Input layer type.
"""
def __init__(
self,
config: FastSpeech2ConformerConfig,
module_config,
use_encoder_input_layer=False,
):
super().__init__()
self.embed = None
if use_encoder_input_layer:
self.embed = nn.Embedding(
num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0
)
self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config)
self.conformer_layers = nn.ModuleList(
[FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])]
)
def forward(
self,
input_tensor: torch.LongTensor,
attention_mask: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = False,
return_dict: Optional[bool] = None,
):
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`torch.Tensor`:
Output tensor of shape `(batch, time, attention_dim)`.
"""
feature_representation = input_tensor
if self.embed is not None:
feature_representation = self.embed(feature_representation)
hidden_states, pos_emb = self.pos_enc(feature_representation)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for conformer_layer in self.conformer_layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
class FastSpeech2ConformerLoss(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__()
use_masking = config.use_masking
use_weighted_masking = config.use_weighted_masking
if use_masking and use_weighted_masking:
raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.")
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = nn.L1Loss(reduction=reduction)
self.mse_criterion = nn.MSELoss(reduction=reduction)
self.duration_criterion = nn.MSELoss(reduction=reduction)
self.log_domain_offset = 1.0
def forward(
self,
outputs_after_postnet,
outputs_before_postnet,
duration_outputs,
pitch_outputs,
energy_outputs,
spectrogram_labels,
duration_labels,
pitch_labels,
energy_labels,
duration_mask,
spectrogram_mask,
):
"""
Args:
outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of outputs after postnet.
outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of outputs before postnet.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`):
Batch of outputs of duration predictor.
pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of outputs of pitch predictor.
energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of outputs of energy predictor.
spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations.
pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of target token-averaged pitch.
energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of target token-averaged energy.
duration_mask (`torch.LongTensor`):
Mask used to discern which values the duration loss should be calculated for.
spectrogram_mask (`torch.LongTensor`):
Mask used to discern which values the spectrogam loss should be calculated for.
Returns:
`tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor
loss value, pitch predictor loss value, and energy predictor loss value.
"""
pitch_and_energy_masks = duration_mask.unsqueeze(-1)
# apply mask to remove padded part
if self.use_masking:
outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask)
if outputs_after_postnet is not None:
outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask)
spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask)
duration_outputs = duration_outputs.masked_select(duration_mask)
duration_labels = duration_labels.masked_select(duration_mask)
pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks)
energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks)
pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks)
energy_labels = energy_labels.masked_select(pitch_and_energy_masks)
# calculate loss
l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels)
if outputs_after_postnet is not None:
l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels)
duration_labels = torch.log(duration_labels.float() + self.log_domain_offset)
duration_loss = self.duration_criterion(duration_outputs, duration_labels)
pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels)
energy_loss = self.mse_criterion(energy_outputs, energy_labels)
# make weighted mask and apply it
if self.use_weighted_masking:
spectrogram_mask = nn.functional.pad(
spectrogram_mask.transpose(1, 2),
[0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0],
value=False,
).transpose(1, 2)
out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float()
out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2)
duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float()
duration_weights /= duration_labels.size(0)
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum()
duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum()
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum()
energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum()
return l1_loss + duration_loss + pitch_loss + energy_loss
class FastSpeech2ConformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FastSpeech2ConformerConfig
base_model_prefix = "fastspeech2_conformer"
main_input_name = "input_ids"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.LayerNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-key, b=key)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_()
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, FastSpeech2ConformerAttention):
nn.init.xavier_uniform_(module.pos_bias_u)
nn.init.xavier_uniform_(module.pos_bias_v)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, FastSpeech2ConformerEncoder):
module.gradient_checkpointing = value
@add_start_docstrings(
"""FastSpeech2Conformer Model.""",
FASTSPEECH2_CONFORMER_START_DOCSTRING,
)
class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel):
"""
FastSpeech 2 module.
This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech'
https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in
FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular
Transformers.
"""
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__(config)
self.config = config
# store hyperparameters
self.vocab_size = config.vocab_size
self.num_mel_bins = config.num_mel_bins
self.hidden_size = config.hidden_size
self.reduction_factor = config.reduction_factor
self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor
self.multilingual_model = config.num_languages is not None and config.num_languages > 1
if self.multilingual_model:
self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size)
self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1
if self.multispeaker_model:
self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size)
self.speaker_embed_dim = config.speaker_embed_dim
if self.speaker_embed_dim:
self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size)
self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True)
self.duration_predictor = FastSpeech2ConformerDurationPredictor(config)
self.pitch_predictor = FastSpeech2ConformerVariancePredictor(
config,
num_layers=config.pitch_predictor_layers,
num_chans=config.pitch_predictor_channels,
kernel_size=config.pitch_predictor_kernel_size,
dropout_rate=config.pitch_predictor_dropout,
)
# continuous pitch + FastPitch style avg
self.pitch_embed = FastSpeech2ConformerVarianceEmbedding(
out_channels=self.hidden_size,
kernel_size=config.pitch_embed_kernel_size,
padding=(config.pitch_embed_kernel_size - 1) // 2,
dropout_rate=config.pitch_embed_dropout,
)
self.energy_predictor = FastSpeech2ConformerVariancePredictor(
config,
num_layers=config.energy_predictor_layers,
num_chans=config.energy_predictor_channels,
kernel_size=config.energy_predictor_kernel_size,
dropout_rate=config.energy_predictor_dropout,
)
# continuous energy + FastPitch style avg
self.energy_embed = FastSpeech2ConformerVarianceEmbedding(
out_channels=self.hidden_size,
kernel_size=config.energy_embed_kernel_size,
padding=(config.energy_embed_kernel_size - 1) // 2,
dropout_rate=config.energy_embed_dropout,
)
# The decoder is an encoder
self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False)
self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config)
self.criterion = FastSpeech2ConformerLoss(config)
self.post_init()
@replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
spectrogram_labels: Optional[torch.FloatTensor] = None,
duration_labels: Optional[torch.LongTensor] = None,
pitch_labels: Optional[torch.FloatTensor] = None,
energy_labels: Optional[torch.FloatTensor] = None,
speaker_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
speaker_embedding: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, FastSpeech2ConformerModelOutput]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input sequence of text vectors.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**.
spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`):
Batch of padded target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`):
Batch of padded durations.
pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged pitch.
energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged energy.
speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Speaker ids used to condition features of speech output by the model.
lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Language ids used to condition features of speech output by the model.
speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`):
Embedding containing conditioning signals for the features of the speech.
return_dict (`bool`, *optional*, defaults to `None`):
Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*, defaults to `None`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*, defaults to `None`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerTokenizer,
... FastSpeech2ConformerModel,
... FastSpeech2ConformerHifiGan,
... )
>>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
>>> inputs = tokenizer("some text to convert to speech", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer")
>>> output_dict = model(input_ids, return_dict=True)
>>> spectrogram = output_dict["spectrogram"]
>>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan")
>>> waveform = vocoder(spectrogram)
>>> print(waveform.shape)
torch.Size([1, 49664])
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if attention_mask is None:
attention_mask = torch.ones(input_ids.shape)
has_missing_labels = (
spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None
)
if self.training and has_missing_labels:
raise ValueError("All labels must be provided to run in training mode.")
# forward encoder
text_masks = attention_mask.unsqueeze(-2)
encoder_outputs = self.encoder(
input_ids,
text_masks,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
# Integrate with language id, speaker id, and speaker embedding
if self.multispeaker_model and speaker_ids is not None:
speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1))
hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1)
if self.multilingual_model and lang_ids is not None:
language_id_embbedings = self.language_id_embedding(lang_ids.view(-1))
hidden_states = hidden_states + language_id_embbedings.unsqueeze(1)
if self.speaker_embed_dim is not None and speaker_embedding is not None:
embeddings_expanded = (
nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1)
)
hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1))
# forward duration predictor and variance predictors
duration_mask = ~attention_mask.bool()
if self.stop_gradient_from_pitch_predictor:
pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1))
else:
pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1))
else:
energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1))
duration_predictions = self.duration_predictor(hidden_states)
duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0)
if not self.training:
# use prediction in inference
embedded_pitch_curve = self.pitch_embed(pitch_predictions)
embedded_energy_curve = self.energy_embed(energy_predictions)
hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve
hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed)
else:
# use groundtruth in training
embedded_pitch_curve = self.pitch_embed(pitch_labels)
embedded_energy_curve = self.energy_embed(energy_labels)
hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve
hidden_states = length_regulator(hidden_states, duration_labels)
# forward decoder
if not self.training:
hidden_mask = None
else:
spectrogram_mask = (spectrogram_labels != -100).any(dim=-1)
spectrogram_mask = spectrogram_mask.int()
if self.reduction_factor > 1:
length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor
spectrogram_mask = spectrogram_mask[:, :, :length_dim]
hidden_mask = spectrogram_mask.unsqueeze(-2)
decoder_outputs = self.decoder(
hidden_states,
hidden_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0])
loss = None
if self.training:
# calculate loss
loss_duration_mask = ~duration_mask
loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool()
loss = self.criterion(
outputs_after_postnet=outputs_after_postnet,
outputs_before_postnet=outputs_before_postnet,
duration_outputs=duration_predictions,
pitch_outputs=pitch_predictions,
energy_outputs=energy_predictions,
spectrogram_labels=spectrogram_labels,
duration_labels=duration_labels,
pitch_labels=pitch_labels,
energy_labels=energy_labels,
duration_mask=loss_duration_mask,
spectrogram_mask=loss_spectrogram_mask,
)
if not return_dict:
postnet_outputs = (outputs_after_postnet,)
audio_feature_predictions = (
duration_predictions,
pitch_predictions,
energy_predictions,
)
outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions
return ((loss,) + outputs) if loss is not None else outputs
return FastSpeech2ConformerModelOutput(
loss=loss,
spectrogram=outputs_after_postnet,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
duration_outputs=duration_predictions,
pitch_outputs=pitch_predictions,
energy_outputs=energy_predictions,
)
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
for layer in self.convs1:
nn.utils.weight_norm(layer)
for layer in self.convs2:
nn.utils.weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
@add_start_docstrings(
"""HiFi-GAN vocoder.""",
HIFIGAN_START_DOCSTRING,
)
# Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5HifiGan with SpeechT5->FastSpeech2Conformer
class FastSpeech2ConformerHifiGan(PreTrainedModel):
config_class = FastSpeech2ConformerHifiGanConfig
main_input_name = "spectrogram"
def __init__(self, config: FastSpeech2ConformerHifiGanConfig):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
self.register_buffer("mean", torch.zeros(config.model_in_dim))
self.register_buffer("scale", torch.ones(config.model_in_dim))
# Initialize weights and apply final processing
self.post_init()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
def apply_weight_norm(self):
nn.utils.weight_norm(self.conv_pre)
for layer in self.upsampler:
nn.utils.weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
nn.utils.weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
if self.config.normalize_before:
spectrogram = (spectrogram - self.mean) / self.scale
is_batched = spectrogram.dim() == 3
if not is_batched:
spectrogram = spectrogram.unsqueeze(0)
hidden_states = spectrogram.transpose(2, 1)
hidden_states = self.conv_pre(hidden_states)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
if not is_batched:
# remove batch dim and collapse tensor to 1-d audio waveform
waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1)
else:
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
@add_start_docstrings(
"The FastSpeech2ConformerModel with a FastSpeech2ConformerHifiGan vocoder head that performs text-to-speech (waveform).",
FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING,
)
class FastSpeech2ConformerWithHifiGan(PreTrainedModel):
config_class = FastSpeech2ConformerWithHifiGanConfig
def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig):
super().__init__(config)
self.model = FastSpeech2ConformerModel(config.model_config)
self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config)
self.config = config
@replace_return_docstrings(
output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
spectrogram_labels: Optional[torch.FloatTensor] = None,
duration_labels: Optional[torch.LongTensor] = None,
pitch_labels: Optional[torch.FloatTensor] = None,
energy_labels: Optional[torch.FloatTensor] = None,
speaker_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
speaker_embedding: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, FastSpeech2ConformerModelOutput]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input sequence of text vectors.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**.
spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`):
Batch of padded target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`):
Batch of padded durations.
pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged pitch.
energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged energy.
speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Speaker ids used to condition features of speech output by the model.
lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Language ids used to condition features of speech output by the model.
speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`):
Embedding containing conditioning signals for the features of the speech.
return_dict (`bool`, *optional*, defaults to `None`):
Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*, defaults to `None`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*, defaults to `None`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerTokenizer,
... FastSpeech2ConformerWithHifiGan,
... )
>>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
>>> inputs = tokenizer("some text to convert to speech", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan")
>>> output_dict = model(input_ids, return_dict=True)
>>> waveform = output_dict["waveform"]
>>> print(waveform.shape)
torch.Size([1, 49664])
```
"""
return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict
output_attentions = (
output_attentions if output_attentions is not None else self.config.model_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states
)
model_outputs = self.model(
input_ids,
attention_mask,
spectrogram_labels=spectrogram_labels,
duration_labels=duration_labels,
pitch_labels=pitch_labels,
energy_labels=energy_labels,
speaker_ids=speaker_ids,
lang_ids=lang_ids,
speaker_embedding=speaker_embedding,
return_dict=return_dict,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if not return_dict:
has_missing_labels = (
spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None
)
if has_missing_labels:
spectrogram = model_outputs[0]
else:
spectrogram = model_outputs[1]
else:
spectrogram = model_outputs["spectrogram"]
waveform = self.vocoder(spectrogram)
if not return_dict:
return model_outputs + (waveform,)
return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
| transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py/0 | {
"file_path": "transformers/src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py",
"repo_id": "transformers",
"token_count": 33073
} | 334 |
# coding=utf-8
# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FNet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
FNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json",
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class FNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the FNet
[google/fnet-base](https://huggingface.co/google/fnet-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 4):
The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`):
Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms.
Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used.
tpu_short_seq_length (`int`, *optional*, defaults to 512):
The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT
matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or
equal to 4096 tokens.
Example:
```python
>>> from transformers import FNetConfig, FNetModel
>>> # Initializing a FNet fnet-base style configuration
>>> configuration = FNetConfig()
>>> # Initializing a model (with random weights) from the fnet-base style configuration
>>> model = FNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fnet"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
num_hidden_layers=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=4,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_tpu_fourier_optimizations=False,
tpu_short_seq_length=512,
pad_token_id=3,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations
self.tpu_short_seq_length = tpu_short_seq_length
| transformers/src/transformers/models/fnet/configuration_fnet.py/0 | {
"file_path": "transformers/src/transformers/models/fnet/configuration_fnet.py",
"repo_id": "transformers",
"token_count": 2166
} | 335 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Funnel checkpoint."""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model):
# Initialise PyTorch model
config = FunnelConfig.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
model = FunnelBaseModel(config) if base_model else FunnelModel(config)
# Load weights from tf checkpoint
load_tf_weights_in_funnel(model, config, tf_checkpoint_path)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| transformers/src/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 797
} | 336 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gpt_bigcode"] = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/gpt_bigcode/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_bigcode/__init__.py",
"repo_id": "transformers",
"token_count": 792
} | 337 |
# coding=utf-8
# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Graphormer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
# pcqm4mv1 now deprecated
"graphormer-base": "https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2/resolve/main/config.json",
# See all Graphormer models at https://huggingface.co/models?filter=graphormer
}
class GraphormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Graphormer
[graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_classes (`int`, *optional*, defaults to 1):
Number of target classes or labels, set to n for binary classification of n tasks.
num_atoms (`int`, *optional*, defaults to 512*9):
Number of node types in the graphs.
num_edges (`int`, *optional*, defaults to 512*3):
Number of edges types in the graph.
num_in_degree (`int`, *optional*, defaults to 512):
Number of in degrees types in the input graphs.
num_out_degree (`int`, *optional*, defaults to 512):
Number of out degrees types in the input graphs.
num_edge_dis (`int`, *optional*, defaults to 128):
Number of edge dis in the input graphs.
multi_hop_max_dist (`int`, *optional*, defaults to 20):
Maximum distance of multi hop edges between two nodes.
spatial_pos_max (`int`, *optional*, defaults to 1024):
Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
collation.
edge_type (`str`, *optional*, defaults to multihop):
Type of edge relation chosen.
max_nodes (`int`, *optional*, defaults to 512):
Maximum number of nodes which can be parsed for the input graphs.
share_input_output_embed (`bool`, *optional*, defaults to `False`):
Shares the embedding layer between encoder and decoder - careful, True is not implemented.
num_layers (`int`, *optional*, defaults to 12):
Number of layers.
embedding_dim (`int`, *optional*, defaults to 768):
Dimension of the embedding layer in encoder.
ffn_embedding_dim (`int`, *optional*, defaults to 768):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads in the encoder.
self_attention (`bool`, *optional*, defaults to `True`):
Model is self attentive (False not implemented).
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention weights.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the activation of the linear transformer layer.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
bias (`bool`, *optional*, defaults to `True`):
Uses bias in the attention module - unsupported at the moment.
embed_scale(`float`, *optional*, defaults to None):
Scaling factor for the node embeddings.
num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
Number of transformer layers to freeze.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Normalize features before encoding the graph.
pre_layernorm (`bool`, *optional*, defaults to `False`):
Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
used.
apply_graphormer_init (`bool`, *optional*, defaults to `False`):
Apply a custom graphormer initialisation to the model before training.
freeze_embeddings (`bool`, *optional*, defaults to `False`):
Freeze the embedding layer, or train it along the model.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Apply the layer norm before each encoder block.
q_noise (`float`, *optional*, defaults to 0.0):
Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
more detail, see fairseq's documentation on quant_noise).
qn_block_size (`int`, *optional*, defaults to 8):
Size of the blocks for subsequent quantization with iPQ (see q_noise).
kdim (`int`, *optional*, defaults to None):
Dimension of the key in the attention, if different from the other values.
vdim (`int`, *optional*, defaults to None):
Dimension of the value in the attention, if different from the other values.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
traceable (`bool`, *optional*, defaults to `False`):
Changes return value of the encoder's inner_state to stacked tensors.
Example:
```python
>>> from transformers import GraphormerForGraphClassification, GraphormerConfig
>>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
>>> configuration = GraphormerConfig()
>>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
>>> model = GraphormerForGraphClassification(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "graphormer"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
num_classes: int = 1,
num_atoms: int = 512 * 9,
num_edges: int = 512 * 3,
num_in_degree: int = 512,
num_out_degree: int = 512,
num_spatial: int = 512,
num_edge_dis: int = 128,
multi_hop_max_dist: int = 5, # sometimes is 20
spatial_pos_max: int = 1024,
edge_type: str = "multi_hop",
max_nodes: int = 512,
share_input_output_embed: bool = False,
num_hidden_layers: int = 12,
embedding_dim: int = 768,
ffn_embedding_dim: int = 768,
num_attention_heads: int = 32,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
layerdrop: float = 0.0,
encoder_normalize_before: bool = False,
pre_layernorm: bool = False,
apply_graphormer_init: bool = False,
activation_fn: str = "gelu",
embed_scale: float = None,
freeze_embeddings: bool = False,
num_trans_layers_to_freeze: int = 0,
traceable: bool = False,
q_noise: float = 0.0,
qn_block_size: int = 8,
kdim: int = None,
vdim: int = None,
bias: bool = True,
self_attention: bool = True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.num_classes = num_classes
self.num_atoms = num_atoms
self.num_in_degree = num_in_degree
self.num_out_degree = num_out_degree
self.num_edges = num_edges
self.num_spatial = num_spatial
self.num_edge_dis = num_edge_dis
self.edge_type = edge_type
self.multi_hop_max_dist = multi_hop_max_dist
self.spatial_pos_max = spatial_pos_max
self.max_nodes = max_nodes
self.num_hidden_layers = num_hidden_layers
self.embedding_dim = embedding_dim
self.hidden_size = embedding_dim
self.ffn_embedding_dim = ffn_embedding_dim
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.encoder_normalize_before = encoder_normalize_before
self.pre_layernorm = pre_layernorm
self.apply_graphormer_init = apply_graphormer_init
self.activation_fn = activation_fn
self.embed_scale = embed_scale
self.freeze_embeddings = freeze_embeddings
self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
self.share_input_output_embed = share_input_output_embed
self.traceable = traceable
self.q_noise = q_noise
self.qn_block_size = qn_block_size
# These parameters are here for future extensions
# atm, the model only supports self attention
self.kdim = kdim
self.vdim = vdim
self.self_attention = self_attention
self.bias = bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
| transformers/src/transformers/models/graphormer/configuration_graphormer.py/0 | {
"file_path": "transformers/src/transformers/models/graphormer/configuration_graphormer.py",
"repo_id": "transformers",
"token_count": 4211
} | 338 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow Hubert model."""
from __future__ import annotations
import warnings
from typing import Any, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput
from ...modeling_tf_utils import (
TFPreTrainedModel,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_hubert import HubertConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "HubertConfig"
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/hubert-base-ls960",
# See all Hubert models at https://huggingface.co/models?filter=hubert
]
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._sample_without_replacement
def _sample_without_replacement(distribution, num_samples):
"""
Categorical sampling without replacement is currently not implemented. The gumbel-max trick will do for now - see
https://github.com/tensorflow/tensorflow/issues/9260 for more info
"""
z = -tf.math.log(tf.random.uniform(shape_list(distribution), 0, 1))
_, indices = tf.nn.top_k(distribution + z, num_samples)
return indices
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._scatter_values_on_batch_indices
def _scatter_values_on_batch_indices(values, batch_indices, output_shape):
"""
Scatter function as in PyTorch with indices in format (batch_dim, indixes)
"""
indices_shape = shape_list(batch_indices)
# broadcast batch dim to indices_shape
broad_casted_batch_dims = tf.reshape(
tf.broadcast_to(tf.expand_dims(tf.range(indices_shape[0]), axis=-1), indices_shape), [1, -1]
)
# transform batch_indices to pair_indices
pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0))
# scatter values to pair indices
return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), output_shape)
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
min_masks: int = 0,
) -> tf.Tensor:
"""
Computes random mask spans for a given shape
Args:
shape: the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
attention_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob:
probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_length: size of the mask
min_masks: minimum number of masked spans
Adapted from [fairseq's
data_utils.py](https://github.com/pytorch/fairseq/blob/e0788f7007a8473a76db573985031f3c94201e79/fairseq/data/data_utils.py#L376).
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
tf.debugging.assert_less(
mask_length,
sequence_length,
message=(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and"
f" `sequence_length`: {sequence_length}`"
),
)
# compute number of masked spans in batch
num_masked_spans = mask_prob * tf.cast(sequence_length, tf.float32) / mask_length + tf.random.uniform((1,))
num_masked_spans = tf.maximum(num_masked_spans, min_masks)
num_masked_spans = tf.cast(num_masked_spans, tf.int32)
# make sure num masked indices <= sequence_length
num_masked_spans = tf.math.minimum(sequence_length // mask_length, num_masked_spans)
num_masked_spans = tf.squeeze(num_masked_spans)
# SpecAugment mask to fill
spec_aug_mask = tf.zeros((batch_size, sequence_length), dtype=tf.int32)
# uniform distribution to sample from, make sure that offset samples are < sequence_length
uniform_dist = tf.ones((batch_size, sequence_length - (mask_length - 1)))
# get random indices to mask
spec_aug_mask_idxs = _sample_without_replacement(uniform_dist, num_masked_spans)
# expand masked indices to masked spans
spec_aug_mask_idxs = tf.expand_dims(spec_aug_mask_idxs, -1)
spec_aug_mask_idxs = tf.tile(spec_aug_mask_idxs, (1, 1, mask_length))
spec_aug_mask_idxs = tf.reshape(spec_aug_mask_idxs, (batch_size, num_masked_spans * mask_length))
offsets = tf.range(mask_length)[tf.newaxis, tf.newaxis, :]
offsets = tf.tile(offsets, (batch_size, num_masked_spans, 1))
offsets = tf.reshape(offsets, (batch_size, num_masked_spans * mask_length))
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# scatter indices to mask
spec_aug_mask = _scatter_values_on_batch_indices(
tf.ones_like(spec_aug_mask_idxs), spec_aug_mask_idxs, tf.shape(spec_aug_mask)
)
return spec_aug_mask
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2GroupNorm with Wav2Vec2->Hubert
class TFHubertGroupNorm(keras.layers.Layer):
"""
From tensorflow-addons https://www.tensorflow.org/addons/api_docs/python/tfa/layers/GroupNormalization
"""
def __init__(
self,
groups: int = 32,
axis: int = -1,
epsilon: float = 1e-3,
center: bool = True,
scale: bool = True,
beta_initializer: keras.initializers.Initializer = "zeros",
gamma_initializer: keras.initializers.Initializer = "ones",
beta_regularizer: keras.regularizers.Regularizer = None,
gamma_regularizer: keras.regularizers.Regularizer = None,
beta_constraint: keras.constraints.Constraint = None,
gamma_constraint: keras.constraints.Constraint = None,
**kwargs,
):
super().__init__(**kwargs)
self.supports_masking = True
self.groups = groups
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
self._check_axis()
def build(self, input_shape):
self._check_if_input_shape_is_none(input_shape)
self._set_number_of_groups_for_instance_norm(input_shape)
self._check_size_of_dimensions(input_shape)
self._create_input_spec(input_shape)
self._add_gamma_weight(input_shape)
self._add_beta_weight(input_shape)
self.built = True
super().build(input_shape)
def call(self, inputs):
input_shape = keras.backend.int_shape(inputs)
tensor_input_shape = tf.shape(inputs)
reshaped_inputs, group_shape = self._reshape_into_groups(inputs, input_shape, tensor_input_shape)
normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape)
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
outputs = tf.reshape(normalized_inputs, tensor_input_shape)
else:
outputs = normalized_inputs
return outputs
def get_config(self):
config = {
"groups": self.groups,
"axis": self.axis,
"epsilon": self.epsilon,
"center": self.center,
"scale": self.scale,
"beta_initializer": keras.initializers.serialize(self.beta_initializer),
"gamma_initializer": keras.initializers.serialize(self.gamma_initializer),
"beta_regularizer": keras.regularizers.serialize(self.beta_regularizer),
"gamma_regularizer": keras.regularizers.serialize(self.gamma_regularizer),
"beta_constraint": keras.constraints.serialize(self.beta_constraint),
"gamma_constraint": keras.constraints.serialize(self.gamma_constraint),
}
base_config = super().get_config()
return {**base_config, **config}
def compute_output_shape(self, input_shape):
return input_shape
def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape):
group_shape = [tensor_input_shape[i] for i in range(len(input_shape))]
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
group_shape[self.axis] = input_shape[self.axis] // self.groups
group_shape.insert(self.axis, self.groups)
group_shape = tf.stack(group_shape)
reshaped_inputs = tf.reshape(inputs, group_shape)
return reshaped_inputs, group_shape
else:
return inputs, group_shape
def _apply_normalization(self, reshaped_inputs, input_shape):
group_shape = keras.backend.int_shape(reshaped_inputs)
group_reduction_axes = list(range(1, len(group_shape)))
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
axis = -2 if self.axis == -1 else self.axis - 1
else:
axis = -1 if self.axis == -1 else self.axis - 1
group_reduction_axes.pop(axis)
mean, variance = tf.nn.moments(reshaped_inputs, group_reduction_axes, keepdims=True)
gamma, beta = self._get_reshaped_weights(input_shape)
normalized_inputs = tf.nn.batch_normalization(
reshaped_inputs,
mean=mean,
variance=variance,
scale=gamma,
offset=beta,
variance_epsilon=self.epsilon,
)
return normalized_inputs
def _get_reshaped_weights(self, input_shape):
broadcast_shape = self._create_broadcast_shape(input_shape)
gamma = None
beta = None
if self.scale:
gamma = tf.reshape(self.gamma, broadcast_shape)
if self.center:
beta = tf.reshape(self.beta, broadcast_shape)
return gamma, beta
def _check_if_input_shape_is_none(self, input_shape):
dim = input_shape[self.axis]
if dim is None:
raise ValueError(
"Axis "
+ str(self.axis)
+ " of input tensor should have a defined dimension but the layer received an input with shape "
+ str(input_shape)
+ "."
)
def _set_number_of_groups_for_instance_norm(self, input_shape):
dim = input_shape[self.axis]
if self.groups == -1:
self.groups = dim
def _check_size_of_dimensions(self, input_shape):
dim = input_shape[self.axis]
if dim < self.groups:
raise ValueError(
"Number of groups ("
+ str(self.groups)
+ ") cannot be more than the number of channels ("
+ str(dim)
+ ")."
)
if dim % self.groups != 0:
raise ValueError(
"Number of groups ("
+ str(self.groups)
+ ") must be a multiple of the number of channels ("
+ str(dim)
+ ")."
)
def _check_axis(self):
if self.axis == 0:
raise ValueError(
"You are trying to normalize your batch axis. Do you want to use tf.layer.batch_normalization instead"
)
def _create_input_spec(self, input_shape):
dim = input_shape[self.axis]
self.input_spec = keras.layers.InputSpec(ndim=len(input_shape), axes={self.axis: dim})
def _add_gamma_weight(self, input_shape):
dim = input_shape[self.axis]
shape = (dim,)
if self.scale:
self.gamma = self.add_weight(
shape=shape,
name="gamma",
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
)
else:
self.gamma = None
def _add_beta_weight(self, input_shape):
dim = input_shape[self.axis]
shape = (dim,)
if self.center:
self.beta = self.add_weight(
shape=shape,
name="beta",
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
)
else:
self.beta = None
def _create_broadcast_shape(self, input_shape):
broadcast_shape = [1] * len(input_shape)
is_instance_norm = (input_shape[self.axis] // self.groups) == 1
if not is_instance_norm:
broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
broadcast_shape.insert(self.axis, self.groups)
else:
broadcast_shape[self.axis] = self.groups
return broadcast_shape
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2WeightNormConv1D with Wav2Vec2->Hubert
class TFHubertWeightNormConv1D(keras.layers.Conv1D):
"""Adapted from https://www.tensorflow.org/probability/api_docs/python/tfp/layers/weight_norm/WeightNorm"""
def __init__(self, filters, kernel_size, groups, explicit_padding, **kwargs):
super().__init__(
filters=filters,
kernel_size=kernel_size,
groups=groups,
padding="valid",
use_bias=True,
bias_initializer="he_normal",
**kwargs,
)
self.explicit_padding = explicit_padding
self.filter_axis = 2
self.kernel_norm_axes = tf.constant([0, 1])
def _init_norm(self):
"""Set the norm of the weight vector."""
kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.weight_v), axis=self.kernel_norm_axes))
self.weight_g.assign(kernel_norm[:, tf.newaxis, tf.newaxis])
def _normalize_kernel(self):
"""Generate normalized weights."""
kernel = tf.nn.l2_normalize(self.weight_v, axis=self.kernel_norm_axes) * tf.transpose(self.weight_g)
self.kernel = tf.transpose(kernel)
def build(self, input_shape):
if not self.built:
super().build(input_shape)
self.kernel = tf.Variable(tf.transpose(self.kernel), name="weight_v", trainable=True)
self.weight_v = self.kernel
self.weight_g = self.add_weight(
name="weight_g",
shape=(int(self.weight_v.shape[self.filter_axis]), 1, 1),
initializer="ones",
dtype=self.weight_v.dtype,
trainable=True,
)
self._init_norm()
self.bias = self.add_weight(name="bias", shape=(self.filters,), initializer="zeros", trainable=True)
def call(self, inputs):
# TODO Matt: Assigning to attributes in call() is deeply sinful in TensorFlow, as it should be idempotent.
# This whole layer should be replaced by a layer that doesn't inherit from Conv1D, but instead calls
# a functional 1d convolution with normalized weights that it generates (but does not store!)
self._normalize_kernel()
padded_inputs = tf.pad(inputs, ((0, 0), (self.explicit_padding, self.explicit_padding), (0, 0)))
output = super().call(padded_inputs)
return output
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2NoLayerNormConvLayer with Wav2Vec2->Hubert
class TFHubertNoLayerNormConvLayer(keras.layers.Layer):
def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = keras.layers.Conv1D(
filters=self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
strides=config.conv_stride[layer_id],
use_bias=config.conv_bias,
name="conv",
)
self.activation = get_tf_activation(config.feat_extract_activation)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.in_conv_dim])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2LayerNormConvLayer with Wav2Vec2->Hubert
class TFHubertLayerNormConvLayer(keras.layers.Layer):
def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = keras.layers.Conv1D(
filters=self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
strides=config.conv_stride[layer_id],
use_bias=config.conv_bias,
name="conv",
)
self.layer_norm = keras.layers.LayerNormalization(name="layer_norm", epsilon=config.layer_norm_eps)
self.activation = get_tf_activation(config.feat_extract_activation)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.in_conv_dim])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.out_conv_dim])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2GroupNormConvLayer with Wav2Vec2->Hubert
class TFHubertGroupNormConvLayer(keras.layers.Layer):
def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = keras.layers.Conv1D(
filters=self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
strides=config.conv_stride[layer_id],
use_bias=config.conv_bias,
name="conv",
)
self.activation = get_tf_activation(config.feat_extract_activation)
self.layer_norm = TFHubertGroupNorm(groups=self.out_conv_dim, epsilon=config.layer_norm_eps, name="layer_norm")
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.in_conv_dim])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.out_conv_dim])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2PositionalConvEmbedding with Wav2Vec2->Hubert
class TFHubertPositionalConvEmbedding(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.conv = TFHubertWeightNormConv1D(
filters=config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
groups=config.num_conv_pos_embedding_groups,
explicit_padding=config.num_conv_pos_embeddings // 2,
name="conv",
)
self.padding = TFHubertSamePadLayer(config.num_conv_pos_embeddings)
self.activation = get_tf_activation(config.feat_extract_activation)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv", None) is not None:
with tf.name_scope(self.conv.name):
self.conv.build([None, None, self.config.hidden_size])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2SamePadLayer with Wav2Vec2->Hubert
class TFHubertSamePadLayer(keras.layers.Layer):
def __init__(self, num_conv_pos_embeddings, **kwargs):
super().__init__(**kwargs)
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def call(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, : -self.num_pad_remove, :]
return hidden_states
class TFHubertFeatureEncoder(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs: Any) -> None:
super().__init__(**kwargs)
if config.feat_extract_norm == "group":
conv_layers = [TFHubertGroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [
TFHubertNoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}")
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
TFHubertLayerNormConvLayer(config, layer_id=i, name=f"conv_layers.{i}")
for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = conv_layers
def call(self, input_values):
hidden_states = tf.expand_dims(input_values, -1)
for conv_layer in self.conv_layers:
hidden_states = conv_layer(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
for conv_layer in self.conv_layers:
with tf.name_scope(conv_layer.name):
conv_layer.build(None)
class TFHubertFeatureExtractor(TFHubertFeatureEncoder):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
class TFHubertFeatureProjection(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.projection = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="projection",
)
self.dropout = keras.layers.Dropout(rate=config.feat_proj_dropout)
self.config = config
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.conv_dim[-1]])
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, self.config.conv_dim[-1]])
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with TFBart->TFHubert
class TFHubertAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2FeedForward with Wav2Vec2->Hubert
class TFHubertFeedForward(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.intermediate_dropout = keras.layers.Dropout(config.activation_dropout)
self.intermediate_dense = keras.layers.Dense(
units=config.intermediate_size,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="intermediate_dense",
)
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
self.output_dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="output_dense",
)
self.output_dropout = keras.layers.Dropout(config.hidden_dropout)
self.config = config
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states, training=training)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "intermediate_dense", None) is not None:
with tf.name_scope(self.intermediate_dense.name):
self.intermediate_dense.build([None, None, self.config.hidden_size])
if getattr(self, "output_dense", None) is not None:
with tf.name_scope(self.output_dense.name):
self.output_dense.build([None, None, self.config.intermediate_size])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderLayer with Wav2Vec2->Hubert
class TFHubertEncoderLayer(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFHubertAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
name="attention",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.feed_forward = TFHubertFeedForward(config, name="feed_forward")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, training=training
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "feed_forward", None) is not None:
with tf.name_scope(self.feed_forward.name):
self.feed_forward.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->Hubert
class TFHubertEncoderLayerStableLayerNorm(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFHubertAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
name="attention",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.feed_forward = TFHubertFeedForward(config, name="feed_forward")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, training=training
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "feed_forward", None) is not None:
with tf.name_scope(self.feed_forward.name):
self.feed_forward.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2Encoder with Wav2Vec2->Hubert
class TFHubertEncoder(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.pos_conv_embed = TFHubertPositionalConvEmbedding(config, name="pos_conv_embed")
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.layer = [TFHubertEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
hidden_states = hidden_states * tf.expand_dims(attention_mask, -1)
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
if training and (dropout_probability < self.config.layerdrop): # skip the layer
continue
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pos_conv_embed", None) is not None:
with tf.name_scope(self.pos_conv_embed.name):
self.pos_conv_embed.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderStableLayerNorm with Wav2Vec2->Hubert
class TFHubertEncoderStableLayerNorm(keras.layers.Layer):
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.pos_conv_embed = TFHubertPositionalConvEmbedding(config, name="pos_conv_embed")
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.layer = [
TFHubertEncoderLayerStableLayerNorm(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)
]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
hidden_states = hidden_states * tf.expand_dims(attention_mask, -1)
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states, training=training)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
if training and (dropout_probability < self.config.layerdrop): # skip the layer
continue
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pos_conv_embed", None) is not None:
with tf.name_scope(self.pos_conv_embed.name):
self.pos_conv_embed.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFHubertMainLayer(keras.layers.Layer):
config_class = HubertConfig
def __init__(self, config: HubertConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.feature_extractor = TFHubertFeatureEncoder(config, name="feature_extractor")
self.feature_projection = TFHubertFeatureProjection(config, name="feature_projection")
if config.do_stable_layer_norm:
self.encoder = TFHubertEncoderStableLayerNorm(config, name="encoder")
else:
self.encoder = TFHubertEncoder(config, name="encoder")
def build(self, input_shape=None):
self.masked_spec_embed = self.add_weight(
shape=(self.config.hidden_size,), initializer="uniform", trainable=True, name="masked_spec_embed"
)
if self.built:
return
self.built = True
if getattr(self, "feature_extractor", None) is not None:
with tf.name_scope(self.feature_extractor.name):
self.feature_extractor.build(None)
if getattr(self, "feature_projection", None) is not None:
with tf.name_scope(self.feature_projection.name):
self.feature_projection.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _mask_hidden_states(self, hidden_states: tf.Tensor, mask_time_indices: tf.Tensor | None = None):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
batch_size, sequence_length, hidden_size = shape_list(hidden_states)
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states = tf.where(
tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool),
self.masked_spec_embed[tf.newaxis, tf.newaxis, :],
hidden_states,
)
elif self.config.mask_time_prob > 0:
# generate indices & apply SpecAugment along time axis
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
min_masks=2,
)
hidden_states = tf.where(
tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool),
self.masked_spec_embed[tf.newaxis, tf.newaxis, :],
hidden_states,
)
# apply SpecAugment along feature axis
if self.config.mask_feature_prob > 0:
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
)
hidden_states = tf.where(mask_feature_indices[:, tf.newaxis, :], hidden_states, 0)
return hidden_states
@unpack_inputs
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: tf.Tensor | None = None,
output_hidden_states: tf.Tensor | None = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs: Any,
):
hidden_states = self.feature_extractor(tf.cast(input_values, tf.float32), training=training)
if attention_mask is not None:
# compute real output lengths according to convolution formula
output_lengths = self._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, -1))
attention_mask = tf.sequence_mask(
output_lengths, maxlen=shape_list(hidden_states)[1], dtype=hidden_states.dtype
)
hidden_states = self.feature_projection(hidden_states, training=training)
mask_time_indices = kwargs.get("mask_time_indices", None)
if training:
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return TFBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TFHubertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = HubertConfig
base_model_prefix = "hubert"
main_input_name = "input_values"
@property
def input_signature(self):
return {
"input_values": tf.TensorSpec((None, 16000), tf.float32, name="input_values"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
"token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
}
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
logger.warning(
f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish "
"to train/fine-tune this model, you need a GPU or a TPU"
)
HUBERT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_values` only and nothing else: `model(input_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_values, attention_mask])` or `model([input_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_values": input_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`HubertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
HUBERT_INPUTS_DOCSTRING = r"""
Args:
input_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_values` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_values` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare TFHubert Model transformer outputing raw hidden-states without any specific head on top.",
HUBERT_START_DOCSTRING,
)
class TFHubertModel(TFHubertPreTrainedModel):
def __init__(self, config: HubertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.config = config
self.hubert = TFHubertMainLayer(config, name="hubert")
@add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, TFHubertModel
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
>>> model = TFHubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
```"""
output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states
output_attentions = output_attentions if output_attentions else self.config.output_attentions
return_dict = return_dict if return_dict else self.config.return_dict
outputs = self.hubert(
input_values=input_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "hubert", None) is not None:
with tf.name_scope(self.hubert.name):
self.hubert.build(None)
@add_start_docstrings(
"""TFHubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
HUBERT_START_DOCSTRING,
)
class TFHubertForCTC(TFHubertPreTrainedModel):
def __init__(self, config: HubertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.hubert = TFHubertMainLayer(config, name="hubert")
self.dropout = keras.layers.Dropout(config.final_dropout)
self.lm_head = keras.layers.Dense(config.vocab_size, name="lm_head")
self.output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.hubert.feature_extractor.trainable = False
@add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
labels: tf.Tensor | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_values` docstring) Tokens with indices set to `-100` are ignored (masked),
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import AutoProcessor, TFHubertForCTC
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
>>> model = TFHubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
>>> logits = model(input_values).logits
>>> predicted_ids = tf.argmax(logits, axis=-1)
>>> transcription = processor.decode(predicted_ids[0])
>>> # compute loss
>>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST"
>>> # Pass the transcription as text to encode labels
>>> labels = processor(text=transcription, return_tensors="tf").input_values
>>> loss = model(input_values, labels=labels).loss
```"""
outputs = self.hubert(
input_values=input_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, training=training)
logits = self.lm_head(hidden_states)
if labels is not None:
if tf.reduce_max(labels) >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
attention_mask = (
attention_mask if attention_mask is not None else tf.ones_like(input_values, dtype=tf.float32)
)
input_lengths = self.hubert._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, axis=-1))
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = tf.cast(labels >= 0, tf.int32)
target_lengths = tf.reduce_sum(labels_mask, axis=-1)
loss = tf.nn.ctc_loss(
logits=logits,
labels=labels,
logit_length=input_lengths,
label_length=target_lengths,
blank_index=self.config.pad_token_id,
logits_time_major=False,
)
if self.config.ctc_loss_reduction == "sum":
loss = tf.reduce_sum(loss)
loss = tf.reshape(loss, (1,))
if self.config.ctc_loss_reduction == "mean":
loss = tf.reduce_mean(loss)
loss = tf.reshape(loss, (1,))
else:
loss = None
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "hubert", None) is not None:
with tf.name_scope(self.hubert.name):
self.hubert.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build([None, None, self.output_hidden_size])
| transformers/src/transformers/models/hubert/modeling_tf_hubert.py/0 | {
"file_path": "transformers/src/transformers/models/hubert/modeling_tf_hubert.py",
"repo_id": "transformers",
"token_count": 31265
} | 339 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for ImageGPT."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def squared_euclidean_distance(a, b):
b = b.T
a2 = np.sum(np.square(a), axis=1)
b2 = np.sum(np.square(b), axis=0)
ab = np.matmul(a, b)
d = a2[:, None] - 2 * ab + b2[None, :]
return d
def color_quantize(x, clusters):
x = x.reshape(-1, 3)
d = squared_euclidean_distance(x, clusters)
return np.argmin(d, axis=1)
class ImageGPTImageProcessor(BaseImageProcessor):
r"""
Constructs a ImageGPT image processor. This image processor can be used to resize images to a smaller resolution
(such as 32x32 or 64x64), normalize them and finally color quantize them to obtain sequences of "pixel values"
(color clusters).
Args:
clusters (`np.ndarray` or `List[List[int]]`, *optional*):
The color clusters to use, of shape `(n_clusters, 3)` when color quantizing. Can be overriden by `clusters`
in `preprocess`.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's dimensions to `(size["height"], size["width"])`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the image after resizing. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image pixel value to between [-1, 1]. Can be overridden by `do_normalize` in
`preprocess`.
do_color_quantize (`bool`, *optional*, defaults to `True`):
Whether to color quantize the image. Can be overridden by `do_color_quantize` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
# clusters is a first argument to maintain backwards compatibility with the old ImageGPTImageProcessor
clusters: Optional[Union[List[List[int]], np.ndarray]] = None,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_normalize: bool = True,
do_color_quantize: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
self.clusters = np.array(clusters) if clusters is not None else None
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_normalize = do_normalize
self.do_color_quantize = do_color_quantize
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def normalize(
self,
image: np.ndarray,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Normalizes an images' pixel values to between [-1, 1].
Args:
image (`np.ndarray`):
Image to normalize.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
image = rescale(image=image, scale=1 / 127.5, data_format=data_format, input_data_format=input_data_format)
image = image - 1
return image
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_normalize: bool = None,
do_color_quantize: Optional[bool] = None,
clusters: Optional[Union[List[List[int]], np.ndarray]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image
do_color_quantize (`bool`, *optional*, defaults to `self.do_color_quantize`):
Whether to color quantize the image.
clusters (`np.ndarray` or `List[List[int]]`, *optional*, defaults to `self.clusters`):
Clusters used to quantize the image of shape `(n_clusters, 3)`. Only has an effect if
`do_color_quantize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Only has an effect if `do_color_quantize` is set to `False`.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_color_quantize = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
clusters = clusters if clusters is not None else self.clusters
clusters = np.array(clusters)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_color_quantize and clusters is None:
raise ValueError("Clusters must be specified if do_color_quantize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_normalize:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If you wish to do this, "
"make sure to set `do_normalize` to `False` and that pixel values are between [-1, 1].",
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
if do_color_quantize:
images = [to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
images = np.array(images)
images = color_quantize(images, clusters).reshape(images.shape[:-1])
# flatten to (batch_size, height*width)
batch_size = images.shape[0]
images = images.reshape(batch_size, -1)
# We need to convert back to a list of images to keep consistent behaviour across processors.
images = list(images)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"input_ids": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/imagegpt/image_processing_imagegpt.py/0 | {
"file_path": "transformers/src/transformers/models/imagegpt/image_processing_imagegpt.py",
"repo_id": "transformers",
"token_count": 5907
} | 340 |
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" KOSMOS-2 model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/kosmos-2-patch14-224": (
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/config.json"
),
# See all KOSMOS-2 models at https://huggingface.co/models?filter=kosmos-2
}
class Kosmos2TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a
KOSMOS-2 text decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65037):
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Kosmos2Model`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the layers and the pooler layer.
layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
ffn_dim (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(embed_dim).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
```"""
model_type = "kosmos_2_text_model"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "attention_heads",
"hidden_size": "embed_dim",
"num_hidden_layers": "layers",
}
def __init__(
self,
vocab_size=65037,
max_position_embeddings=2048,
embed_dim=2048,
layers=24,
ffn_dim=8192,
attention_heads=32,
activation_function="gelu",
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
layerdrop=0.0,
layer_norm_eps=1e-5,
init_std=0.02,
scale_embedding=True,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.embed_dim = embed_dim
self.layers = layers
self.ffn_dim = ffn_dim
self.attention_heads = attention_heads
self.activation_function = activation_function
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.init_std = init_std
self.scale_embedding = scale_embedding
self.use_cache = use_cache
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from Kosmos2Config
if config_dict.get("model_type") == "kosmos-2":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class Kosmos2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
```"""
model_type = "kosmos_2_vision_model"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from Kosmos2Config
if config_dict.get("model_type") == "kosmos-2":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class Kosmos2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a
KOSMOS-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`].
latent_query_num (`int`, *optional*, defaults to 64):
The number of latent query tokens that represent the image features used in the text decoder component.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import Kosmos2Config, Kosmos2Model
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration
>>> configuration = Kosmos2Config()
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration
>>> model = Kosmos2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "kosmos-2"
is_composition = True
def __init__(
self,
text_config=None,
vision_config=None,
latent_query_num=64,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.")
self.text_config = Kosmos2TextConfig(**text_config)
self.vision_config = Kosmos2VisionConfig(**vision_config)
self.latent_query_num = latent_query_num
| transformers/src/transformers/models/kosmos2/configuration_kosmos2.py/0 | {
"file_path": "transformers/src/transformers/models/kosmos2/configuration_kosmos2.py",
"repo_id": "transformers",
"token_count": 5219
} | 341 |
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for LayoutLMv2."""
import collections
import os
import sys
import unicodedata
from typing import Dict, List, Optional, Tuple, Union
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...tokenization_utils_base import (
BatchEncoding,
EncodedInput,
PreTokenizedInput,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/layoutlmv2-base-uncased": (
"https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/vocab.txt"
),
"microsoft/layoutlmv2-large-uncased": (
"https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/vocab.txt"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/layoutlmv2-base-uncased": 512,
"microsoft/layoutlmv2-large-uncased": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"microsoft/layoutlmv2-base-uncased": {"do_lower_case": True},
"microsoft/layoutlmv2-large-uncased": {"do_lower_case": True},
}
LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING = r"""
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to encode the sequences with the special tokens relative to their model.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
stride (`int`, *optional*, defaults to 0):
If set to a number along with `max_length`, the overflowing tokens returned when
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
return_token_type_ids (`bool`, *optional*):
Whether to return token type IDs. If left to the default, will return the token type IDs according to
the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are token type IDs?](../glossary#token-type-ids)
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
of returning overflowing tokens.
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
Whether or not to return special tokens mask information.
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
Whether or not to return `(char_start, char_end)` for each token.
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
Python's tokenizer, this method will raise `NotImplementedError`.
return_length (`bool`, *optional*, defaults to `False`):
Whether or not to return the lengths of the encoded inputs.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
**kwargs: passed to the `self.tokenize()` method
Return:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
[What are input IDs?](../glossary#input-ids)
- **bbox** -- List of bounding boxes to be fed to a model.
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
if *"token_type_ids"* is in `self.model_input_names`).
[What are token type IDs?](../glossary#token-type-ids)
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
[What are attention masks?](../glossary#attention-mask)
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
`return_overflowing_tokens=True`).
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
`return_overflowing_tokens=True`).
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
- **length** -- The length of the inputs (when `return_length=True`).
"""
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
table = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith("P"))
def subfinder(mylist, pattern):
matches = []
indices = []
for idx, i in enumerate(range(len(mylist))):
if mylist[i] == pattern[0] and mylist[i : i + len(pattern)] == pattern:
matches.append(pattern)
indices.append(idx)
if matches:
return matches[0], indices[0]
else:
return None, 0
class LayoutLMv2Tokenizer(PreTrainedTokenizer):
r"""
Construct a LayoutLMv2 tokenizer. Based on WordPiece. [`LayoutLMv2Tokenizer`] can be used to turn words, word-level
bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and
optional `labels` (for token classification).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
[`LayoutLMv2Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the
word-level bounding boxes into token-level bounding boxes.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
tokenize_chinese_chars=True,
strip_accents=None,
model_max_length: int = 512,
additional_special_tokens: Optional[List[str]] = None,
**kwargs,
):
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
mask_token = AddedToken(mask_token, special=True) if isinstance(mask_token, str) else mask_token
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
model_max_length=model_max_length,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
batch_outputs = self._batch_prepare_for_model(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_text_or_text_pairs,
is_pair: bool = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens.
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
"""
batch_outputs = {}
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
batch_text_or_text_pair, boxes_example = example
outputs = self.prepare_for_model(
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
batch_text_or_text_pair[1] if is_pair else None,
boxes_example,
word_labels=word_labels[idx] if word_labels is not None else None,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING)
def encode(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> List[int]:
encoded_inputs = self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
return encoded_inputs["input_ids"]
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
boxes=boxes,
text_pair=text_pair,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
return self.prepare_for_model(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def prepare_for_model(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
combination of arguments will raise an error.
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
labeled with -100, such that they will be ignored by the loss function.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
tokens = []
pair_tokens = []
token_boxes = []
pair_token_boxes = []
labels = []
if text_pair is None:
if word_labels is None:
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
for word, box in zip(text, boxes):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
else:
# CASE 2: token classification (training)
for word, box, label in zip(text, boxes, word_labels):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
if self.only_label_first_subword:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
else:
labels.extend([label] * len(word_tokens))
else:
# CASE 3: document visual question answering (inference)
# text = question
# text_pair = words
tokens = self.tokenize(text)
token_boxes = [self.pad_token_box for _ in range(len(tokens))]
for word, box in zip(text_pair, boxes):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
pair_tokens.extend(word_tokens)
pair_token_boxes.extend([box] * len(word_tokens))
# Create ids + pair_ids
ids = self.convert_tokens_to_ids(tokens)
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
if (
return_overflowing_tokens
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
and pair_ids is not None
):
raise ValueError(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
# Compute the total size of the returned encodings
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
# Truncation: Handle max sequence length
overflowing_tokens = []
overflowing_token_boxes = []
overflowing_labels = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
(
ids,
token_boxes,
pair_ids,
pair_token_boxes,
labels,
overflowing_tokens,
overflowing_token_boxes,
overflowing_labels,
) = self.truncate_sequences(
ids,
token_boxes,
pair_ids=pair_ids,
pair_token_boxes=pair_token_boxes,
labels=labels,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
encoded_inputs["overflowing_labels"] = overflowing_labels
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
if pair_token_boxes:
pair_token_boxes = pair_token_boxes + [self.sep_token_box]
if labels:
labels = [self.pad_token_label] + labels + [self.pad_token_label]
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
# Build output dictionary
encoded_inputs["input_ids"] = sequence
encoded_inputs["bbox"] = token_boxes + pair_token_boxes
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
if labels:
encoded_inputs["labels"] = labels
# Check lengths
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
def truncate_sequences(
self,
ids: List[int],
token_boxes: List[List[int]],
pair_ids: Optional[List[int]] = None,
pair_token_boxes: Optional[List[List[int]]] = None,
labels: Optional[List[int]] = None,
num_tokens_to_remove: int = 0,
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
stride: int = 0,
) -> Tuple[List[int], List[int], List[int]]:
"""
Truncates a sequence pair in-place following the strategy.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
token_boxes (`List[List[int]]`):
Bounding boxes of the first sequence.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
pair_token_boxes (`List[List[int]]`, *optional*):
Bounding boxes of the second sequence.
labels (`List[int]`, *optional*):
Labels of the first sequence (for token classification tasks).
num_tokens_to_remove (`int`, *optional*, defaults to 0):
Number of tokens to remove using the truncation strategy.
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
The strategy to follow for truncation. Can be:
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).
stride (`int`, *optional*, defaults to 0):
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.
Returns:
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
of sequences (or a batch of pairs) is provided.
"""
if num_tokens_to_remove <= 0:
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
if not isinstance(truncation_strategy, TruncationStrategy):
truncation_strategy = TruncationStrategy(truncation_strategy)
overflowing_tokens = []
overflowing_token_boxes = []
overflowing_labels = []
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
):
if len(ids) > num_tokens_to_remove:
window_len = min(len(ids), stride + num_tokens_to_remove)
overflowing_tokens = ids[-window_len:]
overflowing_token_boxes = token_boxes[-window_len:]
overflowing_labels = labels[-window_len:]
ids = ids[:-num_tokens_to_remove]
token_boxes = token_boxes[:-num_tokens_to_remove]
labels = labels[:-num_tokens_to_remove]
else:
error_msg = (
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the first sequence has a length {len(ids)}. "
)
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
error_msg = (
error_msg + "Please select another truncation strategy than "
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
)
logger.error(error_msg)
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
logger.warning(
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
"truncation strategy. So the returned list will always be empty even if some "
"tokens have been removed."
)
for _ in range(num_tokens_to_remove):
if pair_ids is None or len(ids) > len(pair_ids):
ids = ids[:-1]
token_boxes = token_boxes[:-1]
labels = labels[:-1]
else:
pair_ids = pair_ids[:-1]
pair_token_boxes = pair_token_boxes[:-1]
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
if len(pair_ids) > num_tokens_to_remove:
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
overflowing_tokens = pair_ids[-window_len:]
overflowing_token_boxes = pair_token_boxes[-window_len:]
pair_ids = pair_ids[:-num_tokens_to_remove]
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the second sequence has a length {len(pair_ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
"for instance 'longest_first' or 'only_first'."
)
return (
ids,
token_boxes,
pair_ids,
pair_token_boxes,
labels,
overflowing_tokens,
overflowing_token_boxes,
overflowing_labels,
)
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
| transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py/0 | {
"file_path": "transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py",
"repo_id": "transformers",
"token_count": 33477
} | 342 |
# coding=utf-8
# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LED model configuration"""
from typing import List, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
LED_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/config.json",
# See all LED models at https://huggingface.co/models?filter=led
}
class LEDConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LEDModel`]. It is used to instantiate an LED
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LED
[allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LEDModel`] or [`TFLEDModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_encoder_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that the encoder might ever be used with.
max_decoder_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that the decoder might ever be used with.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
Example:
```python
>>> from transformers import LEDModel, LEDConfig
>>> # Initializing a LED allenai/led-base-16384 style configuration
>>> configuration = LEDConfig()
>>> # Initializing a model from the allenai/led-base-16384 style configuration
>>> model = LEDModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "led"
attribute_map = {
"num_attention_heads": "encoder_attention_heads",
"hidden_size": "d_model",
"attention_probs_dropout_prob": "attention_dropout",
"initializer_range": "init_std",
}
def __init__(
self,
vocab_size=50265,
max_encoder_position_embeddings=16384,
max_decoder_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
classifier_dropout=0.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
attention_window: Union[List[int], int] = 512,
**kwargs,
):
self.vocab_size = vocab_size
self.max_encoder_position_embeddings = max_encoder_position_embeddings
self.max_decoder_position_embeddings = max_decoder_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.attention_window = attention_window
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
| transformers/src/transformers/models/led/configuration_led.py/0 | {
"file_path": "transformers/src/transformers/models/led/configuration_led.py",
"repo_id": "transformers",
"token_count": 2973
} | 343 |
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
LlamaTokenizerFast = None
"""
Sample usage:
```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import LlamaForCausalLM, LlamaTokenizer
model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
NUM_SHARDS = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"34B": 4,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True):
# for backward compatibility, before you needed the repo to be called `my_repo/model_size`
if not os.path.isfile(os.path.join(input_base_path, "params.json")):
input_base_path = os.path.join(input_base_path, model_size)
os.makedirs(model_path, exist_ok=True)
tmp_model_path = os.path.join(model_path, "tmp")
os.makedirs(tmp_model_path, exist_ok=True)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size]
params = params.get("model", params)
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
base = params.get("rope_theta", 10000.0)
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
if base > 10000.0:
max_position_embeddings = 16384
else:
max_position_embeddings = 2048
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
if tokenizer_path is not None:
tokenizer = tokenizer_class(tokenizer_path)
tokenizer.save_pretrained(model_path)
vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000
if params.get("n_kv_heads", None) is not None:
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
num_local_key_value_heads = n_heads_per_shard // num_key_value_heads
key_value_dim = dim // num_key_value_heads
else: # compatibility with other checkpoints
num_key_value_heads = n_heads
num_local_key_value_heads = n_heads_per_shard
key_value_dim = dim
# permute for sliced rotary
def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# Load weights
if num_shards == 1:
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
# Sharded
loaded = [
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
for i in range(num_shards)
]
param_count = 0
index_dict = {"weight_map": {}}
for layer_i in range(n_layers):
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
state_dict = {
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
loaded[f"layers.{layer_i}.attention.wq.weight"]
),
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
loaded[f"layers.{layer_i}.attention.wk.weight"]
),
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
state_dict = {
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
f"layers.{layer_i}.attention_norm.weight"
].clone(),
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
f"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
)
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
num_local_key_value_heads, dims_per_head, dim
)
for i in range(num_shards)
],
dim=0,
).reshape(key_value_dim, dim),
num_key_value_heads,
key_value_dim,
dim,
)
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
num_local_key_value_heads, dims_per_head, dim
)
for i in range(num_shards)
],
dim=0,
).reshape(key_value_dim, dim)
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
)
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
)
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
state_dict = {
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
"model.norm.weight": loaded["norm.weight"],
"lm_head.weight": loaded["output.weight"],
}
else:
state_dict = {
"model.norm.weight": loaded[0]["norm.weight"],
"model.embed_tokens.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
),
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
}
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
config = LlamaConfig(
hidden_size=dim,
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
num_attention_heads=params["n_heads"],
num_hidden_layers=params["n_layers"],
rms_norm_eps=params["norm_eps"],
num_key_value_heads=num_key_value_heads,
vocab_size=vocab_size,
rope_theta=base,
max_position_embeddings=max_position_embeddings,
)
config.save_pretrained(tmp_model_path)
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("Loading the checkpoint in a Llama model.")
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
# Avoid saving this as part of the config.
del model.config._name_or_path
model.config.torch_dtype = torch.float16
print("Saving in the Transformers format.")
model.save_pretrained(model_path, safe_serialization=safe_serialization)
shutil.rmtree(tmp_model_path)
def write_tokenizer(tokenizer_path, input_tokenizer_path):
# Initialize the tokenizer based on the `spm` model
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
tokenizer = tokenizer_class(input_tokenizer_path)
tokenizer.save_pretrained(tokenizer_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
choices=["7B", "7Bf", "13B", "13Bf", "30B", "34B", "65B", "70B", "70Bf", "tokenizer_only"],
help="'f' models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama",
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
args = parser.parse_args()
spm_path = os.path.join(args.input_dir, "tokenizer.model")
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir,
input_base_path=args.input_dir,
model_size=args.model_size,
safe_serialization=args.safe_serialization,
tokenizer_path=spm_path,
)
else:
write_tokenizer(args.output_dir, spm_path)
if __name__ == "__main__":
main()
| transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 6089
} | 344 |
# coding=utf-8
# Copyright 2021, The Microsoft Research Asia MarkupLM Team authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MarkupLM model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class MarkupLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a
MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the MarkupLM
[microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture.
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
documentation from [`BertConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the
*inputs_ids* passed to the forward method of [`MarkupLMModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the tree id unit embedding might ever use. Typically set this to something large
just in case (e.g., 1024).
max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256):
The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large
just in case (e.g., 256).
max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something
large just in case (e.g., 1024).
tag_pad_id (`int`, *optional*, defaults to 216):
The id of the padding token in the xpath tags.
subs_pad_id (`int`, *optional*, defaults to 1001):
The id of the padding token in the xpath subscripts.
xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32):
The hidden size of each tree id unit. One complete tree index will have
(50*xpath_tag_unit_hidden_size)-dim.
max_depth (`int`, *optional*, defaults to 50):
The maximum depth in xpath.
Examples:
```python
>>> from transformers import MarkupLMModel, MarkupLMConfig
>>> # Initializing a MarkupLM microsoft/markuplm-base style configuration
>>> configuration = MarkupLMConfig()
>>> # Initializing a model from the microsoft/markuplm-base style configuration
>>> model = MarkupLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "markuplm"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=0,
eos_token_id=2,
max_xpath_tag_unit_embeddings=256,
max_xpath_subs_unit_embeddings=1024,
tag_pad_id=216,
subs_pad_id=1001,
xpath_unit_hidden_size=32,
max_depth=50,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
# additional properties
self.max_depth = max_depth
self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings
self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings
self.tag_pad_id = tag_pad_id
self.subs_pad_id = subs_pad_id
self.xpath_unit_hidden_size = xpath_unit_hidden_size
| transformers/src/transformers/models/markuplm/configuration_markuplm.py/0 | {
"file_path": "transformers/src/transformers/models/markuplm/configuration_markuplm.py",
"repo_id": "transformers",
"token_count": 2942
} | 345 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MaskFormer checkpoints with Swin backbone from the original repository. URL:
https://github.com/facebookresearch/MaskFormer"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_maskformer_config(model_name: str):
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"]
)
config = MaskFormerConfig(backbone_config=backbone_config)
repo_id = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
config.num_labels = 847
filename = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
config.num_labels = 150
filename = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
config.num_labels = 171
filename = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
config.num_labels = 133
filename = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
config.num_labels = 19
filename = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
config.num_labels = 65
filename = "mapillary-vistas-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
return config
def create_rename_keys(config):
rename_keys = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias"))
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight"))
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias"))
# stages
for i in range(len(config.backbone_config.depths)):
for j in range(config.backbone_config.depths[i]):
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias"))
if i < 3:
rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight"))
rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight"))
rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias"))
rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight"))
rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias"))
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight"))
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight"))
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias"))
for source_index, target_index in zip(range(3, 0, -1), range(0, 3)):
rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight"))
rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight"))
rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias"))
rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight"))
rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight"))
rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias"))
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight"))
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias"))
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers):
# self-attention out projection
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias"))
# cross-attention out projection
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias"))
# MLP 1
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias"))
# MLP 2
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias"))
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias"))
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias"))
# layernorm 3 (final layernorm)
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias"))
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight"))
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias"))
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight"))
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight"))
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias"))
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight"))
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias"))
for i in range(3):
rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight"))
rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias"))
# fmt: on
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_swin_q_k_v(state_dict, backbone_config):
num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))]
for i in range(len(backbone_config.depths)):
dim = num_features[i]
for j in range(backbone_config.depths[i]):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[
dim : dim * 2, :
]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[
dim : dim * 2
]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[
-dim :, :
]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :]
# fmt: on
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_decoder_q_k_v(state_dict, config):
# fmt: off
hidden_size = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :]
# fmt: on
# We will verify our results on an image of cute cats
def prepare_img() -> torch.Tensor:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_maskformer_checkpoint(
model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False
):
"""
Copy/paste/tweak model's weights to our MaskFormer structure.
"""
config = get_maskformer_config(model_name)
# load original state_dict
with open(checkpoint_path, "rb") as f:
data = pickle.load(f)
state_dict = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
rename_keys = create_rename_keys(config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_swin_q_k_v(state_dict, config.backbone_config)
read_in_decoder_q_k_v(state_dict, config)
# update to torch tensors
for key, value in state_dict.items():
state_dict[key] = torch.from_numpy(value)
# load 🤗 model
model = MaskFormerForInstanceSegmentation(config)
model.eval()
for name, param in model.named_parameters():
print(name, param.shape)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(unexpected_keys) == 0, f"Unexpected keys: {unexpected_keys}"
# verify results
image = prepare_img()
if "vistas" in model_name:
ignore_index = 65
elif "cityscapes" in model_name:
ignore_index = 65535
else:
ignore_index = 255
reduce_labels = True if "ade" in model_name else False
image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels)
inputs = image_processor(image, return_tensors="pt")
outputs = model(**inputs)
print("Logits:", outputs.class_queries_logits[0, :3, :3])
if model_name == "maskformer-swin-tiny-ade":
expected_logits = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]]
)
assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and image processor to {pytorch_dump_folder_path}")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
image_processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print("Pushing model and image processor to the hub...")
model.push_to_hub(f"nielsr/{model_name}")
image_processor.push_to_hub(f"nielsr/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="maskformer-swin-tiny-ade",
type=str,
help=("Name of the MaskFormer model you'd like to convert",),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl",
type=str,
help="Path to the original state dict (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py",
"repo_id": "transformers",
"token_count": 8473
} | 346 |
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_import_structure = {
"configuration_mistral": ["MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MistralConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_mistral"] = [
"MistralForCausalLM",
"MistralModel",
"MistralPreTrainedModel",
"MistralForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_mistral"] = [
"FlaxMistralForCausalLM",
"FlaxMistralModel",
"FlaxMistralPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mistral import (
MistralForCausalLM,
MistralForSequenceClassification,
MistralModel,
MistralPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mistral import (
FlaxMistralForCausalLM,
FlaxMistralModel,
FlaxMistralPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/mistral/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/mistral/__init__.py",
"repo_id": "transformers",
"token_count": 935
} | 347 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 MobileBERT model."""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPooling,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFNextSentencePredictorOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFNextSentencePredictionLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mobilebert import MobileBertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/mobilebert-uncased"
_CONFIG_FOR_DOC = "MobileBertConfig"
# TokenClassification docstring
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner"
_TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']"
_TOKEN_CLASS_EXPECTED_LOSS = 0.03
# QuestionAnswering docstring
_CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2"
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
_QA_EXPECTED_LOSS = 3.98
_QA_TARGET_START_INDEX = 12
_QA_TARGET_END_INDEX = 13
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert"
_SEQ_CLASS_EXPECTED_OUTPUT = "'others'"
_SEQ_CLASS_EXPECTED_LOSS = "4.72"
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/mobilebert-uncased",
# See all MobileBERT models at https://huggingface.co/models?filter=mobilebert
]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss
class TFMobileBertPreTrainingLoss:
"""
Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining
NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss
computation.
"""
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
# make sure only labels that are not equal to -100
# are taken into account for the loss computation
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1])
ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype)
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask)
return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,))
class TFMobileBertIntermediate(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.intermediate_size, name="dense")
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.true_hidden_size])
class TFLayerNorm(keras.layers.LayerNormalization):
def __init__(self, feat_size, *args, **kwargs):
self.feat_size = feat_size
super().__init__(*args, **kwargs)
def build(self, input_shape=None):
super().build([None, None, self.feat_size])
class TFNoNorm(keras.layers.Layer):
def __init__(self, feat_size, epsilon=None, **kwargs):
super().__init__(**kwargs)
self.feat_size = feat_size
def build(self, input_shape):
self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros")
self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones")
super().build(input_shape)
def call(self, inputs: tf.Tensor):
return inputs * self.weight + self.bias
NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm}
class TFMobileBertEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.trigram_input = config.trigram_input
self.embedding_size = config.embedding_size
self.config = config
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.embedding_transformation = keras.layers.Dense(config.hidden_size, name="embedding_transformation")
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = NORM2FN[config.normalization_type](
config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.embedding_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "embedding_transformation", None) is not None:
with tf.name_scope(self.embedding_transformation.name):
self.embedding_transformation.build([None, None, self.embedded_input_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if self.trigram_input:
# From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
# Devices (https://arxiv.org/abs/2004.02984)
#
# The embedding table in BERT models accounts for a substantial proportion of model size. To compress
# the embedding layer, we reduce the embedding dimension to 128 in MobileBERT.
# Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512
# dimensional output.
inputs_embeds = tf.concat(
[
tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))),
inputs_embeds,
tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))),
],
axis=2,
)
if self.trigram_input or self.embedding_size != self.hidden_size:
inputs_embeds = self.embedding_transformation(inputs_embeds)
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFMobileBertSelfAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
self.output_attentions = config.output_attentions
assert config.hidden_size % config.num_attention_heads == 0
self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x, batch_size):
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(
self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False
):
batch_size = shape_list(attention_mask)[0]
mixed_query_layer = self.query(query_tensor)
mixed_key_layer = self.key(key_tensor)
mixed_value_layer = self.value(value_tensor)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(
query_layer, key_layer, transpose_b=True
) # (batch size, num_heads, seq_len_q, seq_len_k)
dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores
attention_scores = attention_scores / tf.math.sqrt(dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function)
attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
context_layer = tf.reshape(
context_layer, (batch_size, -1, self.all_head_size)
) # (batch_size, seq_len_q, all_head_size)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.true_hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.true_hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build(
[
None,
None,
self.config.true_hidden_size
if self.config.use_bottleneck_attention
else self.config.hidden_size,
]
)
class TFMobileBertSelfOutput(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.use_bottleneck = config.use_bottleneck
self.dense = keras.layers.Dense(
config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = NORM2FN[config.normalization_type](
config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
)
if not self.use_bottleneck:
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states, residual_tensor, training=False):
hidden_states = self.dense(hidden_states)
if not self.use_bottleneck:
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + residual_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.true_hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
class TFMobileBertAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.self = TFMobileBertSelfAttention(config, name="self")
self.mobilebert_output = TFMobileBertSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
query_tensor,
key_tensor,
value_tensor,
layer_input,
attention_mask,
head_mask,
output_attentions,
training=False,
):
self_outputs = self.self(
query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training
)
attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "mobilebert_output", None) is not None:
with tf.name_scope(self.mobilebert_output.name):
self.mobilebert_output.build(None)
class TFOutputBottleneck(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
self.LayerNorm = NORM2FN[config.normalization_type](
config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states, residual_tensor, training=False):
layer_outputs = self.dense(hidden_states)
layer_outputs = self.dropout(layer_outputs, training=training)
layer_outputs = self.LayerNorm(layer_outputs + residual_tensor)
return layer_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.true_hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
class TFMobileBertOutput(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.use_bottleneck = config.use_bottleneck
self.dense = keras.layers.Dense(
config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = NORM2FN[config.normalization_type](
config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
)
if not self.use_bottleneck:
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
else:
self.bottleneck = TFOutputBottleneck(config, name="bottleneck")
self.config = config
def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False):
hidden_states = self.dense(hidden_states)
if not self.use_bottleneck:
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + residual_tensor_1)
else:
hidden_states = self.LayerNorm(hidden_states + residual_tensor_1)
hidden_states = self.bottleneck(hidden_states, residual_tensor_2)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
if getattr(self, "bottleneck", None) is not None:
with tf.name_scope(self.bottleneck.name):
self.bottleneck.build(None)
class TFBottleneckLayer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.intra_bottleneck_size, name="dense")
self.LayerNorm = NORM2FN[config.normalization_type](
config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm"
)
self.config = config
def call(self, inputs):
hidden_states = self.dense(inputs)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
class TFBottleneck(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.key_query_shared_bottleneck = config.key_query_shared_bottleneck
self.use_bottleneck_attention = config.use_bottleneck_attention
self.bottleneck_input = TFBottleneckLayer(config, name="input")
if self.key_query_shared_bottleneck:
self.attention = TFBottleneckLayer(config, name="attention")
def call(self, hidden_states):
# This method can return three different tuples of values. These different values make use of bottlenecks,
# which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory
# usage. These linear layer have weights that are learned during training.
#
# If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the
# key, query, value, and "layer input" to be used by the attention layer.
# This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor
# in the attention self output, after the attention scores have been computed.
#
# If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return
# four values, three of which have been passed through a bottleneck: the query and key, passed through the same
# bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck.
#
# Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck,
# and the residual layer will be this value passed through a bottleneck.
bottlenecked_hidden_states = self.bottleneck_input(hidden_states)
if self.use_bottleneck_attention:
return (bottlenecked_hidden_states,) * 4
elif self.key_query_shared_bottleneck:
shared_attention_input = self.attention(hidden_states)
return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states)
else:
return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bottleneck_input", None) is not None:
with tf.name_scope(self.bottleneck_input.name):
self.bottleneck_input.build(None)
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
class TFFFNOutput(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.true_hidden_size, name="dense")
self.LayerNorm = NORM2FN[config.normalization_type](
config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm"
)
self.config = config
def call(self, hidden_states, residual_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states + residual_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
class TFFFNLayer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.intermediate = TFMobileBertIntermediate(config, name="intermediate")
self.mobilebert_output = TFFFNOutput(config, name="output")
def call(self, hidden_states):
intermediate_output = self.intermediate(hidden_states)
layer_outputs = self.mobilebert_output(intermediate_output, hidden_states)
return layer_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "mobilebert_output", None) is not None:
with tf.name_scope(self.mobilebert_output.name):
self.mobilebert_output.build(None)
class TFMobileBertLayer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.use_bottleneck = config.use_bottleneck
self.num_feedforward_networks = config.num_feedforward_networks
self.attention = TFMobileBertAttention(config, name="attention")
self.intermediate = TFMobileBertIntermediate(config, name="intermediate")
self.mobilebert_output = TFMobileBertOutput(config, name="output")
if self.use_bottleneck:
self.bottleneck = TFBottleneck(config, name="bottleneck")
if config.num_feedforward_networks > 1:
self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)]
def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False):
if self.use_bottleneck:
query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states)
else:
query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4
attention_outputs = self.attention(
query_tensor,
key_tensor,
value_tensor,
layer_input,
attention_mask,
head_mask,
output_attentions,
training=training,
)
attention_output = attention_outputs[0]
s = (attention_output,)
if self.num_feedforward_networks != 1:
for i, ffn_module in enumerate(self.ffn):
attention_output = ffn_module(attention_output)
s += (attention_output,)
intermediate_output = self.intermediate(attention_output)
layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training)
outputs = (
(layer_output,)
+ attention_outputs[1:]
+ (
tf.constant(0),
query_tensor,
key_tensor,
value_tensor,
layer_input,
attention_output,
intermediate_output,
)
+ s
) # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "mobilebert_output", None) is not None:
with tf.name_scope(self.mobilebert_output.name):
self.mobilebert_output.build(None)
if getattr(self, "bottleneck", None) is not None:
with tf.name_scope(self.bottleneck.name):
self.bottleneck.build(None)
if getattr(self, "ffn", None) is not None:
for layer in self.ffn:
with tf.name_scope(layer.name):
layer.build(None)
class TFMobileBertEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states,
attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states, attention_mask, head_mask[i], output_attentions, training=training
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
class TFMobileBertPooler(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.do_activate = config.classifier_activation
if self.do_activate:
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
if not self.do_activate:
return first_token_tensor
else:
pooled_output = self.dense(first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFMobileBertPredictionHeadTransform(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build(None)
class TFMobileBertLMPredictionHead(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.transform = TFMobileBertPredictionHeadTransform(config, name="transform")
self.config = config
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
self.dense = self.add_weight(
shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size),
initializer="zeros",
trainable=True,
name="dense/weight",
)
self.decoder = self.add_weight(
shape=(self.config.vocab_size, self.config.embedding_size),
initializer="zeros",
trainable=True,
name="decoder/weight",
)
if self.built:
return
self.built = True
if getattr(self, "transform", None) is not None:
with tf.name_scope(self.transform.name):
self.transform.build(None)
def get_output_embeddings(self):
return self
def set_output_embeddings(self, value):
self.decoder = value
self.config.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0))
hidden_states = hidden_states + self.bias
return hidden_states
class TFMobileBertMLMHead(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.predictions = TFMobileBertLMPredictionHead(config, name="predictions")
def call(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
@keras_serializable
class TFMobileBertMainLayer(keras.layers.Layer):
config_class = MobileBertConfig
def __init__(self, config, add_pooling_layer=True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFMobileBertEmbeddings(config, name="embeddings")
self.encoder = TFMobileBertEncoder(config, name="encoder")
self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
encoder_outputs = self.encoder(
embedding_output,
extended_attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
class TFMobileBertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileBertConfig
base_model_prefix = "mobilebert"
@dataclass
class TFMobileBertForPreTrainingOutput(ModelOutput):
"""
Output type of [`TFMobileBertForPreTraining`].
Args:
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
prediction_logits: tf.Tensor = None
seq_relationship_logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
MOBILEBERT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOBILEBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertModel(TFMobileBertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutputWithPooling]:
outputs = self.mobilebert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
@add_start_docstrings(
"""
MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
`next sentence prediction (classification)` head.
""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
self.predictions = TFMobileBertMLMHead(config, name="predictions___cls")
self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls")
def get_lm_head(self):
return self.predictions.predictions
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
next_sentence_label: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFMobileBertForPreTrainingOutput]:
r"""
Return:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFMobileBertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2]
```"""
outputs = self.mobilebert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
d_labels = {"labels": labels}
d_labels["next_sentence_label"] = next_sentence_label
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score))
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return TFMobileBertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
if getattr(self, "seq_relationship", None) is not None:
with tf.name_scope(self.seq_relationship.name):
self.seq_relationship.build(None)
def tf_to_pt_weight_rename(self, tf_weight):
if tf_weight == "cls.predictions.decoder.weight":
return tf_weight, "mobilebert.embeddings.word_embeddings.weight"
else:
return (tf_weight,)
@add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING)
class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"seq_relationship___cls",
r"cls.seq_relationship",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert")
self.predictions = TFMobileBertMLMHead(config, name="predictions___cls")
def get_lm_head(self):
return self.predictions.predictions
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'paris'",
expected_loss=0.57,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFMaskedLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels
"""
outputs = self.mobilebert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.predictions(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
def tf_to_pt_weight_rename(self, tf_weight):
if tf_weight == "cls.predictions.decoder.weight":
return tf_weight, "mobilebert.embeddings.word_embeddings.weight"
else:
return (tf_weight,)
class TFMobileBertOnlyNSPHead(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.seq_relationship = keras.layers.Dense(2, name="seq_relationship")
self.config = config
def call(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "seq_relationship", None) is not None:
with tf.name_scope(self.seq_relationship.name):
self.seq_relationship.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""MobileBert Model with a `next sentence prediction (classification)` head on top.""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls")
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
next_sentence_label: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFNextSentencePredictorOutput]:
r"""
Return:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction
>>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")
>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
```"""
outputs = self.mobilebert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = (
None
if next_sentence_label is None
else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores)
)
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return TFNextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "cls", None) is not None:
with tf.name_scope(self.cls.name):
self.cls.build(None)
@add_start_docstrings(
"""
MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"predictions___cls",
r"seq_relationship___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.mobilebert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"predictions___cls",
r"seq_relationship___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_QA,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=_QA_TARGET_START_INDEX,
qa_target_end_index=_QA_TARGET_END_INDEX,
expected_output=_QA_EXPECTED_OUTPUT,
expected_loss=_QA_EXPECTED_LOSS,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFQuestionAnsweringModelOutput]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.mobilebert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions, "end_position": end_positions}
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"predictions___cls",
r"seq_relationship___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(
MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFMultipleChoiceModelOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.mobilebert(
flat_input_ids,
flat_attention_mask,
flat_token_type_ids,
flat_position_ids,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
MOBILEBERT_START_DOCSTRING,
)
class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"predictions___cls",
r"seq_relationship___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFTokenClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.mobilebert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mobilebert", None) is not None:
with tf.name_scope(self.mobilebert.name):
self.mobilebert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
| transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py/0 | {
"file_path": "transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py",
"repo_id": "transformers",
"token_count": 35828
} | 348 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MobileViT model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"apple/mobilevit-small": "https://huggingface.co/apple/mobilevit-small/resolve/main/config.json",
"apple/mobilevit-x-small": "https://huggingface.co/apple/mobilevit-x-small/resolve/main/config.json",
"apple/mobilevit-xx-small": "https://huggingface.co/apple/mobilevit-xx-small/resolve/main/config.json",
"apple/deeplabv3-mobilevit-small": (
"https://huggingface.co/apple/deeplabv3-mobilevit-small/resolve/main/config.json"
),
"apple/deeplabv3-mobilevit-x-small": (
"https://huggingface.co/apple/deeplabv3-mobilevit-x-small/resolve/main/config.json"
),
"apple/deeplabv3-mobilevit-xx-small": (
"https://huggingface.co/apple/deeplabv3-mobilevit-xx-small/resolve/main/config.json"
),
# See all MobileViT models at https://huggingface.co/models?filter=mobilevit
}
class MobileViTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a
MobileViT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileViT
[apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 256):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 2):
The size (resolution) of each patch.
hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`):
Dimensionality (hidden size) of the Transformer encoders at each stage.
neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`):
The number of channels for the feature maps of the backbone.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`float`, *optional*, defaults to 2.0):
The ratio of the number of channels in the output of the MLP to the number of channels in the input.
expand_ratio (`float`, *optional*, defaults to 4.0):
Expansion factor for the MobileNetv2 layers.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
conv_kernel_size (`int`, *optional*, defaults to 3):
The size of the convolutional kernel in the MobileViT layer.
output_stride (`int`, *optional*, defaults to 32):
The ratio of the spatial resolution of the output to the resolution of the input image.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the Transformer encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
aspp_out_channels (`int`, *optional*, defaults to 256):
Number of output channels used in the ASPP layer for semantic segmentation.
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the ASPP layer for semantic segmentation.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
Example:
```python
>>> from transformers import MobileViTConfig, MobileViTModel
>>> # Initializing a mobilevit-small style configuration
>>> configuration = MobileViTConfig()
>>> # Initializing a model from the mobilevit-small style configuration
>>> model = MobileViTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilevit"
def __init__(
self,
num_channels=3,
image_size=256,
patch_size=2,
hidden_sizes=[144, 192, 240],
neck_hidden_sizes=[16, 32, 64, 96, 128, 160, 640],
num_attention_heads=4,
mlp_ratio=2.0,
expand_ratio=4.0,
hidden_act="silu",
conv_kernel_size=3,
output_stride=32,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.0,
classifier_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
qkv_bias=True,
aspp_out_channels=256,
atrous_rates=[6, 12, 18],
aspp_dropout_prob=0.1,
semantic_loss_ignore_index=255,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_sizes = hidden_sizes
self.neck_hidden_sizes = neck_hidden_sizes
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.expand_ratio = expand_ratio
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
# decode head attributes for semantic segmentation
self.aspp_out_channels = aspp_out_channels
self.atrous_rates = atrous_rates
self.aspp_dropout_prob = aspp_dropout_prob
self.semantic_loss_ignore_index = semantic_loss_ignore_index
class MobileViTOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4
| transformers/src/transformers/models/mobilevit/configuration_mobilevit.py/0 | {
"file_path": "transformers/src/transformers/models/mobilevit/configuration_mobilevit.py",
"repo_id": "transformers",
"token_count": 3268
} | 349 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Text/audio processor class for MusicGen
"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class MusicgenProcessor(ProcessorMixin):
r"""
Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor
class.
[`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See
[`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information.
Args:
feature_extractor (`EncodecFeatureExtractor`):
An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`T5Tokenizer`):
An instance of [`T5Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "EncodecFeatureExtractor"
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
def __call__(self, *args, **kwargs):
"""
Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text`
argument to [`~T5Tokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if text is not None:
inputs = self.tokenizer(text, **kwargs)
if audio is not None:
audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
inputs["input_values"] = audio_inputs["input_values"]
if "padding_mask" in audio_inputs:
inputs["padding_mask"] = audio_inputs["padding_mask"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids
from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
"""
audio_values = kwargs.pop("audio", None)
padding_mask = kwargs.pop("padding_mask", None)
if len(args) > 0:
audio_values = args[0]
args = args[1:]
if audio_values is not None:
return self._decode_audio(audio_values, padding_mask=padding_mask)
else:
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]:
"""
This method strips any padding from the audio values to return a list of numpy audio arrays.
"""
audio_values = to_numpy(audio_values)
bsz, channels, seq_len = audio_values.shape
if padding_mask is None:
return list(audio_values)
padding_mask = to_numpy(padding_mask)
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
difference = seq_len - padding_mask.shape[-1]
padding_value = 1 - self.feature_extractor.padding_value
padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value)
audio_values = audio_values.tolist()
for i in range(bsz):
sliced_audio = np.asarray(audio_values[i])[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
audio_values[i] = sliced_audio.reshape(channels, -1)
return audio_values
| transformers/src/transformers/models/musicgen/processing_musicgen.py/0 | {
"file_path": "transformers/src/transformers/models/musicgen/processing_musicgen.py",
"repo_id": "transformers",
"token_count": 2176
} | 350 |
# coding=utf-8
# Copyright 2023, HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" NLLB-MoE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json",
}
class NllbMoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an
NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the NLLB-MoE
[facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`NllbMoeModel`] or
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
second_expert_policy ( `str`, *optional*, default to `"all"`):
The policy used for the sampling the probability of being sampled to a second expert for each token.
normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the router probabilities before applying a mask based on the experts capacity
(capacity dropping).
batch_prioritized_routing (`bool`, *optional*, defaults to `True`):
Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that
the tokens that have the highest probabilities will be routed before other tokens that might be further in
the sequence.
moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0):
Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be
in range: (0.0, 1.0].
num_experts (`int`, *optional*, defaults to 128):
Number of experts for each NllbMoeSparseMlp layer.
expert_capacity (`int`, *optional*, defaults to 64):
Number of tokens that can be stored in each expert.
encoder_sparse_step (`int`, *optional*, defaults to 4):
Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse.
decoder_sparse_step (`int`, *optional*, defaults to 4):
Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse.
router_dtype (`str`, *optional*, default to `"float32"`):
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any
experts.
router_bias (`bool`, *optional*, defaults to `False`):
Whether or not the classifier of the router should have a bias.
moe_token_dropout (`float`, *optional*, defualt ot 0.2):
Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert
outputs.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import NllbMoeModel, NllbMoeConfig
>>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration
>>> configuration = NllbMoeConfig()
>>> # Initializing a model from the facebook/nllb-moe-54b style configuration
>>> model = NllbMoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nllb-moe"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=128112,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
use_cache=True,
is_encoder_decoder=True,
activation_function="relu",
d_model=1024,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
scale_embedding=True,
router_bias=False,
router_dtype="float32",
router_ignore_padding_tokens=False,
num_experts=128,
expert_capacity=64,
encoder_sparse_step=4,
decoder_sparse_step=4,
router_z_loss_coef=0.001,
router_aux_loss_coef=0.001,
second_expert_policy="all",
normalize_router_prob_before_dropping=False,
batch_prioritized_routing=False,
moe_eval_capacity_token_fraction=1.0,
moe_token_dropout=0.2,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
output_router_logits=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.router_z_loss_coef = router_z_loss_coef
self.router_aux_loss_coef = router_aux_loss_coef
self.decoder_sparse_step = decoder_sparse_step
self.encoder_sparse_step = encoder_sparse_step
self.num_experts = num_experts
self.expert_capacity = expert_capacity
self.router_bias = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
self.router_dtype = router_dtype
self.router_ignore_padding_tokens = router_ignore_padding_tokens
self.batch_prioritized_routing = batch_prioritized_routing
self.second_expert_policy = second_expert_policy
self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
self.moe_token_dropout = moe_token_dropout
self.output_router_logits = output_router_logits
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
| transformers/src/transformers/models/nllb_moe/configuration_nllb_moe.py/0 | {
"file_path": "transformers/src/transformers/models/nllb_moe/configuration_nllb_moe.py",
"repo_id": "transformers",
"token_count": 4486
} | 351 |
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OneFormer model."""
import copy
import math
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import Tensor, nn
from torch.cuda.amp import autocast
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_scipy_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import load_backbone
from .configuration_oneformer import OneFormerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "OneFormerConfig"
_CHECKPOINT_FOR_DOC = "shi-labs/oneformer_ade20k_swin_tiny"
ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"shi-labs/oneformer_ade20k_swin_tiny",
# See all OneFormer models at https://huggingface.co/models?filter=oneformer
]
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention
def multi_scale_deformable_attention(
value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# Copied from transformers.models.maskformer.modeling_maskformer.dice_loss
def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor:
r"""
Compute the DICE loss, similar to generalized IOU for masks as follows:
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$
In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
num_masks (`int`):
The number of masks present in the current batch, used for normalization.
Returns:
`torch.Tensor`: The computed loss.
"""
probs = inputs.sigmoid().flatten(1)
numerator = 2 * (probs * labels).sum(-1)
denominator = probs.sum(-1) + labels.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
loss = loss.sum() / num_masks
return loss
# Copied from transformers.models.mask2former.modeling_mask2former.sigmoid_cross_entropy_loss
def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor:
r"""
Args:
inputs (`torch.Tensor`):
A float tensor of arbitrary shape.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss.
"""
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss = criterion(inputs, labels)
loss = cross_entropy_loss.mean(1).sum() / num_masks
return loss
# Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss
def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor:
"""
A pair wise version of the dice loss, see `dice_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
`torch.Tensor`: The computed loss between each pairs.
"""
inputs = inputs.sigmoid().flatten(1)
numerator = 2 * torch.matmul(inputs, labels.T)
# using broadcasting to get a [num_queries, NUM_CLASSES] matrix
denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :]
loss = 1 - (numerator + 1) / (denominator + 1)
return loss
# Copied from transformers.models.mask2former.modeling_mask2former.pair_wise_sigmoid_cross_entropy_loss
def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
r"""
A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss between each pairs.
"""
height_and_width = inputs.shape[1]
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs))
cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs))
loss_pos = torch.matmul(cross_entropy_loss_pos, labels.T)
loss_neg = torch.matmul(cross_entropy_loss_neg, (1 - labels).T)
loss = loss_pos + loss_neg
loss = loss / height_and_width
return loss
# Copied from transformers.models.mask2former.modeling_mask2former.sample_point
def sample_point(
input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs
) -> torch.Tensor:
"""
A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors.
Args:
input_features (`torch.Tensor` of shape (batch_size, channels, height, width)):
A tensor that contains features map on a height * width grid
point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,:
2)):
A tensor that contains [0, 1] * [0, 1] normalized point coordinates
add_dim (`bool`):
boolean value to keep track of added dimension
Returns:
point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels,
height_grid, width_grid):
A tensor that contains features for points in `point_coordinates`.
"""
if point_coordinates.dim() == 3:
add_dim = True
point_coordinates = point_coordinates.unsqueeze(2)
# use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation
point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs)
if add_dim:
point_features = point_features.squeeze(3)
return point_features
# Refactored from https://github.com/SHI-Labs/OneFormer/blob/33ebb56ed34f970a30ae103e786c0cb64c653d9a/oneformer/modeling/matcher.py#L93
class OneFormerHungarianMatcher(nn.Module):
def __init__(
self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544
):
"""This class computes an assignment between the labels and the predictions of the network.
For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more
predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Params:
cost_class (float, *optional*, defaults to 1.0):
This is the relative weight of the classification error in the matching cost.
cost_mask (float, *optional*, defaults to 1.0):
This is the relative weight of the sigmoid ce loss of the binary mask in the matching cost.
cost_dice (float, *optional*, defaults to 1.0):
This is the relative weight of the dice loss of the binary mask in the matching cost
num_points (int, *optional*, defaults to 12544):
Number of points to be sampled for dice and mask loss matching cost.
"""
super().__init__()
if cost_class == 0 and cost_mask == 0 and cost_dice == 0:
raise ValueError("All costs cant be 0")
self.cost_class = cost_class
self.cost_mask = cost_mask
self.cost_dice = cost_dice
self.num_points = num_points
@torch.no_grad()
def forward(self, masks_queries_logits, class_queries_logits, mask_labels, class_labels) -> List[Tuple[Tensor]]:
"""Performs the matching
Params:
masks_queries_logits (`torch.Tensor`):
A tensor` of dim `batch_size, num_queries, num_labels` with the
classification logits.
class_queries_logits (`torch.Tensor`):
A tensor` of dim `batch_size, num_queries, height, width` with the
predicted masks.
class_labels (`torch.Tensor`):
A tensor` of dim `num_target_boxes` (where num_target_boxes is the number
of ground-truth objects in the target) containing the class labels.
mask_labels (`torch.Tensor`):
A tensor` of dim `num_target_boxes, height, width` containing the target
masks.
Returns:
`List[Tuple[Tensor]]`: A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected labels (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_targets).
"""
indices: List[Tuple[np.array]] = []
num_queries = class_queries_logits.shape[1]
preds_masks = masks_queries_logits
preds_probs = class_queries_logits
# iterate through batch size
for pred_probs, pred_mask, target_mask, labels in zip(preds_probs, preds_masks, mask_labels, class_labels):
pred_probs = pred_probs.softmax(-1)
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
cost_class = -pred_probs[:, labels]
pred_mask = pred_mask[:, None]
target_mask = target_mask[:, None].to(pred_mask.device)
# all masks share the same set of points for efficient matching!
point_coords = torch.rand(1, self.num_points, 2, device=pred_mask.device)
# get ground truth labels
target_mask = sample_point(
target_mask,
point_coords.repeat(target_mask.shape[0], 1, 1),
align_corners=False,
).squeeze(1)
pred_mask = sample_point(
pred_mask,
point_coords.repeat(pred_mask.shape[0], 1, 1),
align_corners=False,
).squeeze(1)
with autocast(enabled=False):
pred_mask = pred_mask.float()
target_mask = target_mask.float()
# compute the sigmoid ce loss
cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
# Compute the dice loss
cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
# final cost matrix
cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
cost_matrix = cost_matrix.reshape(num_queries, -1).cpu()
# do the assigmented using the hungarian algorithm in scipy
assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu())
indices.append(assigned_indices)
# It could be stacked in one tensor
matched_indices = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
]
return matched_indices
class OneFormerLoss(nn.Module):
def __init__(
self,
num_classes: int,
matcher: OneFormerHungarianMatcher,
weight_dict: Dict[str, float],
eos_coef: float,
num_points: int,
oversample_ratio: float,
importance_sample_ratio: float,
contrastive_temperature: float = None,
):
"""
This class computes the losses using the class predictions, mask predictions and the contrastive queries.
Oneformer calculates the classification CE loss on the class predictions. Mask predictions are used for
calculating the binary CE loss and dice loss. The contrastive queries are used for calculating the contrastive
loss.
Args:
num_labels (`int`):
The number of classes.
matcher (`OneFormerHungarianMatcher`):
A torch module that computes the assigments between the predictions and labels.
weight_dict (`Dict[str, float]`):
A dictionary of weights to be applied to the different losses.
eos_coef (`float`):
Weight to apply to the null class.
num_points (`int`):
Number of points to be sampled for dice and mask loss calculations.
oversample_ratio (`float`):
Required for pointwise loss calculation.
importance_sample_ratio (`float`):
Required for pointwise loss calculation.
contrastive_temperature (`float`):
Temperature for scaling the contrastive logits.
"""
requires_backends(self, ["scipy"])
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.contrastive_temperature = contrastive_temperature
if self.contrastive_temperature is not None:
self.logit_scale = nn.Parameter(torch.tensor(np.log(1 / contrastive_temperature)))
def _max_by_axis(self, the_list: List[List[int]]) -> List[int]:
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]:
# get the maximum size in the batch
max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors])
batch_size = len(tensors)
# compute finel size
batch_shape = [batch_size] + max_size
b, _, h, w = batch_shape
# get metadata
dtype = tensors[0].dtype
device = tensors[0].device
padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device)
padding_masks = torch.ones((b, h, w), dtype=torch.bool, device=device)
# pad the tensors to the size of the biggest one
for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks):
padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor)
padding_mask[: tensor.shape[1], : tensor.shape[2]] = False
return padded_tensors, padding_masks
def loss_contrastive(self, contrastive_queries_logits: Tensor, text_queries: Tensor):
"""Compute the query-text contrastive loss.
Args:
contrastive_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
text_queries (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
- **loss_contrastive** -- The query-text contrastive loss computed using task-guided queries
and text queries derived from input text list.
"""
image_queries = contrastive_queries_logits.float()
# [batch_size, hidden_dim]
image_queries = nn.functional.normalize(image_queries.flatten(1), dim=-1)
text_queries = nn.functional.normalize(text_queries.flatten(1), dim=-1)
logit_scale = torch.clamp(self.logit_scale.exp(), max=100)
logits_per_text = torch.matmul(text_queries, image_queries.t()) * logit_scale
logits_per_img = logits_per_text.t()
loss_img = nn.functional.cross_entropy(
logits_per_img, torch.arange(len(logits_per_img), device=logits_per_text.device)
)
loss_text = nn.functional.cross_entropy(
logits_per_text, torch.arange(len(logits_per_text), device=logits_per_text.device)
)
loss_contrastive = loss_img + loss_text
losses = {"loss_contrastive": loss_contrastive}
return losses
def loss_labels(
self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
) -> Dict[str, Tensor]:
"""Compute the losses related to the labels using cross entropy.
Args:
class_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, num_labels`
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
"""
pred_logits = class_queries_logits
batch_size, num_queries, _ = pred_logits.shape
criterion = nn.CrossEntropyLoss(weight=self.empty_weight)
idx = self._get_predictions_permutation_indices(indices)
# shape = (batch_size, num_queries)
target_classes_o = torch.cat([target[j] for target, (_, j) in zip(class_labels, indices)])
# shape = (batch_size, num_queries)
target_classes = torch.full(
(batch_size, num_queries), fill_value=self.num_classes, dtype=torch.int64, device=pred_logits.device
)
target_classes[idx] = target_classes_o
# permute pred_logits (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries)
pred_logits_transposed = pred_logits.transpose(1, 2)
loss_ce = criterion(pred_logits_transposed, target_classes)
losses = {"loss_cross_entropy": loss_ce}
return losses
def loss_masks(
self, masks_queries_logits: Tensor, mask_labels: List[Tensor], indices: Tuple[np.array], num_masks: int
) -> Dict[str, Tensor]:
"""Compute the losses related to the masks using focal and dice loss.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, height, width`
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
num_masks (`int)`:
The number of masks, used for normalization.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys:
- **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
masks.
"""
src_idx = self._get_predictions_permutation_indices(indices)
tgt_idx = self._get_targets_permutation_indices(indices)
# shape (batch_size * num_queries, height, width)
pred_masks = masks_queries_logits[src_idx]
# shape (batch_size, num_queries, height, width)
# pad all and stack the targets to the num_labels dimension
# upsample predictions to the target size, we have to add one dim to use interpolate
target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
target_masks = target_masks[tgt_idx]
pred_masks = pred_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = self.sample_points_using_uncertainty(
pred_masks,
self.calculate_uncertainty,
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
# get ground-truth labels
point_labels = sample_point(target_masks, point_coords, align_corners=False).squeeze(1)
point_logits = sample_point(pred_masks, point_coords, align_corners=False).squeeze(1)
losses = {
"loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
"loss_dice": dice_loss(point_logits, point_labels, num_masks),
}
del pred_masks
del target_masks
return losses
# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.calculate_uncertainty
def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor:
"""
In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits'
for the foreground class in `classes`.
Args:
logits (`torch.Tensor`):
A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is:
the number of foreground classes. The values are logits.
Returns:
scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most
uncertain locations having the highest uncertainty score.
"""
uncertainty_scores = -(torch.abs(logits))
return uncertainty_scores
# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.sample_points_using_uncertainty
def sample_points_using_uncertainty(
self,
logits: torch.Tensor,
uncertainty_function,
num_points: int,
oversample_ratio: int,
importance_sample_ratio: float,
) -> torch.Tensor:
"""
This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The
uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit
prediction as input.
Args:
logits (`float`):
Logit predictions for P points.
uncertainty_function:
A function that takes logit predictions for P points and returns their uncertainties.
num_points (`int`):
The number of points P to sample.
oversample_ratio (`int`):
Oversampling parameter.
importance_sample_ratio (`float`):
Ratio of points that are sampled via importance sampling.
Returns:
point_coordinates (`torch.Tensor`):
Coordinates for P sampled points.
"""
num_boxes = logits.shape[0]
num_points_sampled = int(num_points * oversample_ratio)
# Get random point coordinates
point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
# Get sampled prediction value for the point coordinates
point_logits = sample_point(logits, point_coordinates, align_corners=False)
# Calculate the uncertainties based on the sampled prediction values of the points
point_uncertainties = uncertainty_function(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
idx += shift[:, None]
point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
if num_random_points > 0:
point_coordinates = torch.cat(
[point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
dim=1,
)
return point_coordinates
def _get_predictions_permutation_indices(self, indices):
# permute predictions following indices
batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
predictions_indices = torch.cat([src for (src, _) in indices])
return batch_indices, predictions_indices
def _get_targets_permutation_indices(self, indices):
# permute labels following indices
batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
target_indices = torch.cat([tgt for (_, tgt) in indices])
return batch_indices, target_indices
def forward(
self,
masks_queries_logits: Tensor,
class_queries_logits: Tensor,
contrastive_queries_logits: Tensor,
mask_labels: List[Tensor],
class_labels: List[Tensor],
text_queries: Tensor,
auxiliary_predictions: Optional[Dict[str, Tensor]] = None,
calculate_contrastive_loss: bool = True,
) -> Dict[str, Tensor]:
"""
This performs the loss computation.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, height, width`
class_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, num_labels`
contrastive_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
text_queries (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*):
if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], then it contains the logits from the
inner layers of the Detr's Decoder.
calculate_contrastive_loss (`bool`, *optional*, defaults to `True`):
Whether or not to calculate the contrastive loss.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
- **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
masks.
- **loss_contrastive** -- The query-text contrstive loss computed using object and text queries.
if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], the dictionary contains addional losses
for each auxiliary predictions.
"""
# retrieve the matching between the outputs of the last layer and the labels
indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
# compute the average number of target masks for normalization purposes
num_masks = self.get_num_masks(class_labels, device=class_labels[0].device)
# get all the losses
losses: Dict[str, Tensor] = {
**self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks),
**self.loss_labels(class_queries_logits, class_labels, indices),
}
if calculate_contrastive_loss:
losses = {**losses, **self.loss_contrastive(contrastive_queries_logits, text_queries)}
# in case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if auxiliary_predictions is not None:
for idx, aux_outputs in enumerate(auxiliary_predictions):
masks_queries_logits = aux_outputs["masks_queries_logits"]
class_queries_logits = aux_outputs["class_queries_logits"]
loss_dict = self.forward(
masks_queries_logits,
class_queries_logits,
None,
mask_labels,
class_labels,
None,
calculate_contrastive_loss=False,
)
loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()}
losses.update(loss_dict)
return losses
def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor:
"""
Computes the average number of target masks across the batch, for normalization purposes.
"""
num_masks = sum([len(classes) for classes in class_labels])
num_masks_pt = torch.as_tensor([num_masks], dtype=torch.float, device=device)
return num_masks_pt
@dataclass
class OneFormerTransformerDecoderOutput(BaseModelOutput):
"""
Base class for outputs of the Transformer decoder. This class adds attributes for class predictions, mask
predictions and contrastive logits to BaseModelOutputWithCrossAttentions.
Args:
object_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`):
Queries representation for the region proposals.
contrastive_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`):
Queries representation for the contrastive loss.
prediction_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`):
Mask predictions from last layer of the transformer decoder.
prediction_class (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
Class predictions from last layer of the transformer decoder.
auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*):
Tuple of class and mask predictions from each layer of the transformer decoder.
"""
object_queries: torch.FloatTensor = None
contrastive_logits: Optional[torch.FloatTensor] = None
prediction_masks: torch.FloatTensor = None
prediction_class: torch.FloatTensor = None
auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None
@dataclass
# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoderOutput with Mask2->One
class OneFormerPixelDecoderOutput(ModelOutput):
"""
OneFormer's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns
the mask features and the multiscale features.
Args:
multi_scale_features (`tuple(torch.FloatTensor)`):
Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height,
width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder.
mask_features (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder
Layer.
attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed
or when `config.output_attentions=True`
"""
multi_scale_features: Tuple[torch.FloatTensor] = None
mask_features: torch.FloatTensor = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class OneFormerPixelLevelModuleOutput(ModelOutput):
"""
OneFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the
`encoder` and `decoder`. By default, the `encoder` is a Swin/Dinat Backbone and the `decoder` is a Multi-Scale
Deformable Attention based decoder.
Args:
encoder_features (List of `(torch.FloatTensor)`):
List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
called feature maps) of the model at the output of each stage.
decoder_features (List of `(torch.FloatTensor)`):
List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
called feature maps) of the model at the output of each stage.
decoder_last_feature (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)):
1/4 scale features from the last Pixel Decoder Layer.
"""
encoder_features: List[torch.FloatTensor] = None
decoder_features: List[torch.FloatTensor] = None
decoder_last_feature: torch.FloatTensor = None
@dataclass
class OneFormerModelOutput(ModelOutput):
"""
Class for outputs of [`OneFormerModel`]. This class returns all the needed hidden states to compute the logits.
Args:
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage.
transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Output object queries from the last layer in the transformer decoder.
transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Contrastive queries from the transformer decoder.
transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`)
Mask Predictions from the last layer in the transformer decoder.
transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
Class Predictions from the last layer in the transformer decoder.
transformer_decoder_auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*):
Tuple of class and mask predictions from each layer of the transformer decoder.
text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`)
Text queries derived from the input text list used for calculating contrastive loss during training.
task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`)
1D task token to condition the queries.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self and Cross Attentions weights from transformer decoder.
"""
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
transformer_decoder_object_queries: torch.FloatTensor = None
transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None
transformer_decoder_mask_predictions: torch.FloatTensor = None
transformer_decoder_class_predictions: torch.FloatTensor = None
transformer_decoder_auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None
text_queries: Optional[torch.FloatTensor] = None
task_token: torch.FloatTensor = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class OneFormerForUniversalSegmentationOutput(ModelOutput):
"""
Class for outputs of [`OneFormerForUniversalSegmentationOutput`].
This output can be directly passed to [`~OneFormerImageProcessor.post_process_semantic_segmentation`] or
[`~OneFormerImageProcessor.post_process_instance_segmentation`] or
[`~OneFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see
[`~OneFormerImageProcessor] for details regarding usage.
Args:
loss (`torch.Tensor`, *optional*):
The computed loss, returned when labels are present.
class_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each
query. Note the `+ 1` is needed because we incorporate the null class.
masks_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each
query.
auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*):
List of class and mask predictions from each layer of the transformer decoder.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage.
transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Output object queries from the last layer in the transformer decoder.
transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Contrastive queries from the transformer decoder.
transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`)
Mask Predictions from the last layer in the transformer decoder.
transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
Class Predictions from the last layer in the transformer decoder.
transformer_decoder_auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*):
List of class and mask predictions from each layer of the transformer decoder.
text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`)
Text queries derived from the input text list used for calculating contrastive loss during training.
task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`)
1D task token to condition the queries.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self and Cross Attentions weights from transformer decoder.
"""
loss: Optional[torch.FloatTensor] = None
class_queries_logits: torch.FloatTensor = None
masks_queries_logits: torch.FloatTensor = None
auxiliary_predictions: List[Dict[str, torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[List[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
transformer_decoder_object_queries: torch.FloatTensor = None
transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None
transformer_decoder_mask_predictions: torch.FloatTensor = None
transformer_decoder_class_predictions: torch.FloatTensor = None
transformer_decoder_auxiliary_predictions: Optional[List[Dict[str, torch.FloatTensor]]] = None
text_queries: Optional[torch.FloatTensor] = None
task_token: torch.FloatTensor = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
# Modified from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrFrozenBatchNorm2d with DeformableDetr->OneFormerPixelDecoder
class OneFormerPixelDecoderFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
# Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->OneFormerPixelDecoderEncoder
class OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int):
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}"
)
dim_per_head = embed_dim // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 128
self.d_model = embed_dim
self.n_levels = n_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2)
self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = nn.functional.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
if reference_points.shape[-1] == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
# PyTorch implementation
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output, attention_weights
class OneFormerPixelDecoderEncoderLayer(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.embed_dim = config.conv_dim
self.self_attn = OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
n_levels=3,
n_points=4,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.dropout = config.dropout
self.activation_fn = nn.functional.relu
self.activation_dropout = config.dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim)
self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.is_training = config.is_training
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes of the backbone feature maps.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.is_training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.is_training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->OneFormerPixelDecoderEncoderOnly
class OneFormerPixelDecoderEncoderOnly(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
[`OneFormerPixelDecoderEncoderLayer`].
The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
Args:
config: OneFormerConfig
"""
def __init__(self, config: OneFormerConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layers = nn.ModuleList([OneFormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)])
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""
Get reference points for each feature map. Used in decoder.
Args:
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Valid ratios of each feature map.
device (`torch.device`):
Device on which to create the tensors.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
"""
reference_points_list = []
for lvl, (height, width) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
inputs_embeds=None,
attention_mask=None,
position_embeddings=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoder with Mask2->One
class OneFormerPixelDecoder(nn.Module):
def __init__(self, config: OneFormerConfig, feature_channels):
super().__init__()
self.config = config
# positional encoding
self.position_embedding = OneFormerSinePositionEmbedding(num_pos_feats=config.conv_dim // 2, normalize=True)
self.num_feature_levels = 3
transformer_in_channels = feature_channels[-self.num_feature_levels :]
self.transformer_feature_strides = config.strides[-self.num_feature_levels :]
self.feature_channels = feature_channels
self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, config.conv_dim))
# Create input projection layers
if self.num_feature_levels > 1:
input_projections_list = []
for in_channels in transformer_in_channels[::-1]:
input_projections_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.conv_dim, kernel_size=1),
nn.GroupNorm(32, config.conv_dim),
)
)
self.input_projections = nn.ModuleList(input_projections_list)
else:
self.input_projections = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(transformer_in_channels[-1], config.conv_dim, kernel_size=1),
nn.GroupNorm(32, config.conv_dim),
)
]
)
self.encoder = OneFormerPixelDecoderEncoderOnly(config)
self.mask_projection = nn.Conv2d(
config.conv_dim,
config.mask_dim,
kernel_size=1,
stride=1,
padding=0,
)
self.common_stride = config.common_stride
# extra fpn levels
stride = min(self.transformer_feature_strides)
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
lateral_convs = []
output_convs = []
for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]):
lateral_conv = nn.Sequential(
nn.Conv2d(
in_channels,
config.conv_dim,
kernel_size=1,
bias=False,
),
nn.GroupNorm(32, config.conv_dim),
)
output_conv = nn.Sequential(
nn.Conv2d(
config.conv_dim,
config.conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=False,
),
nn.GroupNorm(32, config.conv_dim),
nn.ReLU(),
)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1]
self.output_convs = output_convs[::-1]
def get_valid_ratio(self, mask, dtype=torch.float32):
"""Get the valid ratio of all feature maps."""
_, height, width = mask.shape
valid_height = torch.sum(~mask[:, :, 0], 1)
valid_width = torch.sum(~mask[:, 0, :], 1)
valid_ratio_heigth = valid_height.to(dtype) / height
valid_ratio_width = valid_width.to(dtype) / width
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
return valid_ratio
def forward(
self,
features,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
sources = []
position_embeddings_list = []
for level, source in enumerate(features[::-1][: self.num_feature_levels]):
sources.append(self.input_projections[level](source))
position_embeddings_list.append(self.position_embedding(source))
masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in sources]
# Prepare encoder inputs (by flattening)
source_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)):
batch_size, num_channels, height, width = source.shape
spatial_shape = (height, width)
spatial_shapes.append(spatial_shape)
source = source.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
source_flatten.append(source)
mask_flatten.append(mask)
source_flatten = torch.cat(source_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
# Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
# Also provide spatial_shapes, level_start_index and valid_ratios
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=source_flatten,
attention_mask=mask_flatten,
position_embeddings=lvl_pos_embed_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
y = encoder_outputs.last_hidden_state
bs = y.shape[0]
split_size_or_sections = [None] * self.num_feature_levels
for i in range(self.num_feature_levels):
if i < self.num_feature_levels - 1:
split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i]
else:
split_size_or_sections[i] = y.shape[1] - level_start_index[i]
y = torch.split(y, split_size_or_sections, dim=1)
out = []
multi_scale_features = []
num_cur_levels = 0
for i, z in enumerate(y):
out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1]))
# append `out` with extra FPN levels
# Reverse feature maps into top-down order (from low to high resolution)
for idx, feats in enumerate(features[: self.num_fpn_levels][::-1]):
lateral_conv = self.lateral_convs[idx]
output_conv = self.output_convs[idx]
cur_fpn = lateral_conv(feats)
# Following FPN implementation, we use nearest upsampling here
y = cur_fpn + nn.functional.interpolate(
out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False
)
y = output_conv(y)
out.append(y)
for o in out:
if num_cur_levels < self.num_feature_levels:
multi_scale_features.append(o)
num_cur_levels += 1
return OneFormerPixelDecoderOutput(
mask_features=self.mask_projection(out[-1]),
multi_scale_features=multi_scale_features,
attentions=encoder_outputs.attentions,
)
# Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelLevelModule with Mask2->One
class OneFormerPixelLevelModule(nn.Module):
def __init__(self, config: OneFormerConfig):
"""
Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image
Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel
decoder, generating multi-scale feature maps and pixel embeddings.
Args:
config ([`OneFormerConfig`]):
The configuration used to instantiate this model.
"""
super().__init__()
self.encoder = load_backbone(config)
self.decoder = OneFormerPixelDecoder(config, feature_channels=self.encoder.channels)
def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> OneFormerPixelLevelModuleOutput:
features: List[Tensor] = self.encoder(pixel_values).feature_maps
decoder_output: OneFormerPixelDecoderOutput = self.decoder(features, output_hidden_states=output_hidden_states)
return OneFormerPixelLevelModuleOutput(
encoder_features=tuple(features),
decoder_features=decoder_output.multi_scale_features,
decoder_last_feature=decoder_output.mask_features,
)
# Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->OneFormer
class OneFormerAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and
keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
key_value_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None
position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None
key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None
key_value_position_embeddings = (
key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
# add key-value position embeddings to the key value states
if key_value_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights += attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output).permute(1, 0, 2)
return attn_output, attn_weights_reshaped
class OneFormerTransformerDecoderSelfAttentionLayer(nn.Module):
def __init__(
self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05
):
super().__init__()
self.self_attn = OneFormerAttention(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, is_decoder=True)
self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
output,
output_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2, attention_weights = self.self_attn(
hidden_states=output, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True
)
output = output + self.dropout(output2)
output = self.norm(output)
return output, attention_weights
def forward_pre(
self,
output,
output_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2 = self.norm(output)
output2, attention_weights = self.self_attn(
hidden_states=output2, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True
)
output = output + self.dropout(output2)
return output, attention_weights
def forward(
self,
output,
output_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(output, output_mask, output_key_padding_mask, query_pos)
return self.forward_post(output, output_mask, output_key_padding_mask, query_pos)
class OneFormerTransformerDecoderCrossAttentionLayer(nn.Module):
def __init__(
self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05
):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
output,
memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2, attention_weights = self.multihead_attn(
query=self.with_pos_embed(output, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output = output + self.dropout(output2)
output = self.norm(output)
return output, attention_weights
def forward_pre(
self,
output,
memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2 = self.norm(output)
output2, attention_weights = self.multihead_attn(
query=self.with_pos_embed(output2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output = output + self.dropout(output2)
return output, attention_weights
def forward(
self,
output,
memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos)
return self.forward_post(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos)
class OneFormerTransformerDecoderFFNLayer(nn.Module):
def __init__(
self,
d_model,
dim_feedforward=2048,
dropout=0.0,
activation="relu",
normalize_before=False,
layer_norm_eps=1e-05,
):
super().__init__()
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, output):
output2 = self.linear2(self.dropout(self.activation(self.linear1(output))))
output = output + self.dropout(output2)
output = self.norm(output)
return output
def forward_pre(self, output):
output2 = self.norm(output)
output2 = self.linear2(self.dropout(self.activation(self.linear1(output2))))
output = output + self.dropout(output2)
return output
def forward(self, output):
if self.normalize_before:
return self.forward_pre(output)
return self.forward_post(output)
class OneFormerMLPPredictionHead(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3):
"""
A classic Multi Layer Perceptron (MLP).
Args:
input_dim (`int`):
The input dimensions.
hidden_dim (`int`):
The hidden dimensions.
output_dim (`int`):
The output dimensions.
num_layers (int, *optional*, defaults to 3):
The number of layers.
"""
super().__init__()
in_dims = [input_dim] + [hidden_dim] * (num_layers - 1)
out_dims = [hidden_dim] * (num_layers - 1) + [output_dim]
layers = []
for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)):
layers.append(
PredictionBlock(in_dim, out_dim, activation=nn.ReLU() if i < num_layers - 1 else nn.Identity())
)
self.layers = nn.Sequential(*layers)
def forward(self, input: Tensor) -> Tensor:
return self.layers(input)
# refactored from original implementation
class OneFormerTransformerDecoderLayer(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.embed_dim = config.hidden_dim
self.num_feature_levels = 3
self.cross_attn = OneFormerTransformerDecoderCrossAttentionLayer(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=0.0,
normalize_before=config.pre_norm,
layer_norm_eps=config.layer_norm_eps,
)
self.self_attn = OneFormerTransformerDecoderSelfAttentionLayer(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=0.0,
normalize_before=config.pre_norm,
layer_norm_eps=config.layer_norm_eps,
)
self.ffn = OneFormerTransformerDecoderFFNLayer(
d_model=self.embed_dim,
dim_feedforward=config.dim_feedforward,
dropout=0.0,
normalize_before=config.pre_norm,
layer_norm_eps=config.layer_norm_eps,
)
def forward(
self,
index: int,
output: torch.Tensor,
multi_stage_features: List[torch.Tensor],
multi_stage_positional_embeddings: List[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
query_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
index (`int`): index of the layer in the Transformer decoder.
output (`torch.FloatTensor`): the object queries of shape `(N, batch, hidden_dim)`
multi_stage_features (`List[torch.Tensor]`): the multi-scale features from the pixel decoder.
multi_stage_positional_embeddings (`List[torch.Tensor]`):
positional embeddings for the multi_stage_features
attention_mask (`torch.FloatTensor`): attention mask for the masked cross attention layer
query_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys in the self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
level_index = index % self.num_feature_levels
attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False
# Masked Cross Attention
output, cross_attn_weights = self.cross_attn(
output,
multi_stage_features[level_index],
memory_mask=attention_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=multi_stage_positional_embeddings[level_index],
query_pos=query_embeddings,
)
# Self Attention
output, self_attn_weights = self.self_attn(
output,
output_mask=None,
output_key_padding_mask=None,
query_pos=query_embeddings,
)
# Fully Connected
output = self.ffn(output)
outputs = (output,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class OneFormerTransformerDecoderQueryTransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
intermediate = []
for layer in self.layers:
output = layer(
output,
memory,
output_mask=output_mask,
memory_mask=memory_mask,
output_key_padding_mask=output_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos,
query_pos=query_pos,
)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output.unsqueeze(0)
class OneFormerTransformerDecoderQueryTransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
layer_norm_eps=1e-05,
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
q = k = self.with_pos_embed(output, query_pos)
output2 = self.self_attn(q, k, value=output, attn_mask=output_mask, key_padding_mask=output_key_padding_mask)
output2 = output2[0]
output = output + self.dropout1(output2)
output = self.norm1(output)
output2 = self.multihead_attn(
query=self.with_pos_embed(output, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output2 = output2[0]
output = output + self.dropout2(output2)
output = self.norm2(output)
output2 = self.linear2(self.dropout(self.activation(self.linear1(output))))
output = output + self.dropout3(output2)
output = self.norm3(output)
return output
def forward_pre(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2 = self.norm1(output)
q = k = self.with_pos_embed(output2, query_pos)
output2 = self.self_attn(q, k, value=output2, attn_mask=output_mask, key_padding_mask=output_key_padding_mask)
output2 = output2[0]
output = output + self.dropout1(output2)
output2 = self.norm2(output)
output2 = self.multihead_attn(
query=self.with_pos_embed(output2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output2 = output2[0]
output = output + self.dropout2(output2)
output2 = self.norm3(output)
output2 = self.linear2(self.dropout(self.activation(self.linear1(output2))))
output = output + self.dropout3(output2)
return output
def forward(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(
output,
memory,
output_mask,
memory_mask,
output_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,
)
return self.forward_post(
output,
memory,
output_mask,
memory_mask,
output_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,
)
class OneFormerTransformerDecoderQueryTransformer(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
return_intermediate_dec=False,
layer_norm_eps=1e-05,
):
super().__init__()
decoder_layer = OneFormerTransformerDecoderQueryTransformerDecoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before, layer_norm_eps
)
decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.decoder = OneFormerTransformerDecoderQueryTransformerDecoder(
decoder_layer,
num_decoder_layers,
decoder_norm,
return_intermediate=return_intermediate_dec,
)
self.d_model = d_model
self.nhead = nhead
def forward(self, src, mask, query_embed, pos_embed, task_token=None):
batch_size = src.shape[0]
src = src.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(1, batch_size, 1)
if mask is not None:
mask = mask.flatten(1)
if task_token is None:
queries = torch.zeros_like(query_embed)
else:
queries = task_token.repeat(query_embed.shape[0], 1, 1)
queries = self.decoder(queries, src, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
return queries.transpose(1, 2)
class OneFormerTransformerDecoder(nn.Module):
"""
Transformer decoder
"""
def __init__(self, in_channels: int, config: OneFormerConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.num_heads = config.num_attention_heads
self.is_training = config.is_training
self.use_task_norm = config.use_task_norm
self.use_auxiliary_loss = config.use_auxiliary_loss
self.query_transformer = OneFormerTransformerDecoderQueryTransformer(
d_model=config.hidden_dim,
dropout=config.dropout,
nhead=config.num_attention_heads,
dim_feedforward=config.dim_feedforward,
num_decoder_layers=config.query_dec_layers,
normalize_before=config.pre_norm,
return_intermediate_dec=False,
layer_norm_eps=config.layer_norm_eps,
)
self.decoder_norm = nn.LayerNorm(config.hidden_dim, eps=config.layer_norm_eps)
self.num_feature_levels = 3
self.layers = nn.ModuleList(
[OneFormerTransformerDecoderLayer(config) for _ in range(config.decoder_layers - 1)]
)
self.query_input_projection = nn.Conv2d(in_channels, config.hidden_dim, kernel_size=1)
self.class_embed = nn.Linear(config.hidden_dim, config.num_labels + 1)
self.mask_embed = OneFormerMLPPredictionHead(
config.hidden_dim,
config.hidden_dim,
config.mask_dim,
3,
)
def forward(
self,
task_token=None,
multi_stage_features=None,
multi_stage_positional_embeddings=None,
mask_features=None,
query_features=None,
query_embeddings=None,
query_embedder=None,
size_list=None,
output_attentions=None,
):
if self.use_task_norm:
task_token = self.decoder_norm(task_token)
object_queries = self.query_transformer(
query_features,
None,
query_embedder.weight[:-1],
self.query_input_projection(mask_features),
task_token if self.use_task_norm else None,
)
object_queries = object_queries[0].permute(1, 0, 2)
queries = torch.cat([object_queries, task_token], dim=0)
output = queries.clone()
intermediate_class_predictions = []
intermediate_mask_predictions = []
# prediction heads on learnable query features
outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads(
output, mask_features, attention_mask_target_size=size_list[0]
)
intermediate_class_predictions.append(outputs_class)
intermediate_mask_predictions.append(outputs_mask)
attentions = ()
for index, layer in enumerate(self.layers):
layer_outputs = layer(
index=index,
output=output,
multi_stage_features=multi_stage_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
attention_mask=attention_mask,
query_embeddings=query_embeddings,
output_attentions=output_attentions,
)
output = layer_outputs[0]
attentions += (layer_outputs[1:],)
outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads(
output, mask_features, attention_mask_target_size=size_list[(index + 1) % self.num_feature_levels]
)
intermediate_class_predictions.append(outputs_class)
intermediate_mask_predictions.append(outputs_mask)
if not len(intermediate_mask_predictions) == len(self.layers) + 1:
raise ValueError(
"Intermediate predictions in the transformer decoder must have the same number of elements as number"
" of layers"
)
object_queries = layer_outputs[0].permute(1, 0, 2)
contrastive_logits = queries.permute(1, 0, 2)
return OneFormerTransformerDecoderOutput(
object_queries=object_queries,
contrastive_logits=contrastive_logits,
prediction_masks=intermediate_mask_predictions[-1],
prediction_class=intermediate_class_predictions[-1],
auxiliary_predictions=self._get_aux_predictions(
intermediate_class_predictions, intermediate_mask_predictions
)
if self.use_auxiliary_loss
else None,
attentions=attentions,
)
def forward_prediction_heads(self, output, mask_features, attention_mask_target_size):
decoder_output = self.decoder_norm(output)
decoder_output = decoder_output.transpose(0, 1)
outputs_class = self.class_embed(decoder_output)
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
attention_mask = nn.functional.interpolate(
outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False
)
# must use bool type
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
attention_mask = (
attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5
).bool()
attention_mask = attention_mask.detach()
return outputs_class, outputs_mask, attention_mask
@torch.jit.unused
def _get_aux_predictions(self, outputs_class, outputs_seg_masks):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
aux_list = [
{"class_queries_logits": a, "masks_queries_logits": b}
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
]
return tuple(aux_list)
class OneFormerTransformerModule(nn.Module):
"""
The OneFormer's transformer module.
"""
def __init__(self, in_features: int, config: OneFormerConfig):
super().__init__()
hidden_dim = config.hidden_dim
self.num_feature_levels = 3
self.position_embedder = OneFormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True)
self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim)
self.input_projections = []
for _ in range(self.num_feature_levels):
if in_features != hidden_dim or config.enforce_input_proj:
self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1))
else:
self.input_projections.append(nn.Sequential())
self.decoder = OneFormerTransformerDecoder(in_channels=in_features, config=config)
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
def forward(
self,
multi_scale_features: List[Tensor],
mask_features: Tensor,
task_token: Tensor,
output_attentions: bool = False,
) -> OneFormerTransformerDecoderOutput:
if not len(multi_scale_features) == self.num_feature_levels:
raise ValueError(
f"Number of elements in multi_scale_features ({len(multi_scale_features)}) and num_feature_levels"
f" ({self.num_feature_levels}) do not match!"
)
multi_stage_features = []
multi_stage_positional_embeddings = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(multi_scale_features[i].shape[-2:])
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
multi_stage_features.append(
self.input_projections[i](multi_scale_features[i]).flatten(2)
+ self.level_embed.weight[i][None, :, None]
)
# flatten NxCxHxW to HWxNxC
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
_, batch_size, _ = multi_stage_features[0].shape
# QxNxC
query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
task_token = task_token.unsqueeze(0)
query_features = self.position_embedder(mask_features, None)
return self.decoder(
task_token=task_token,
multi_stage_features=multi_stage_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
mask_features=mask_features,
query_features=query_features,
query_embeddings=query_embeddings,
query_embedder=self.queries_embedder,
size_list=size_list,
output_attentions=output_attentions,
)
# Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with Mask->One
class OneFormerSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(
self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None
):
super().__init__()
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
self.scale = 2 * math.pi if scale is None else scale
def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
not_mask = (~mask).to(x.dtype)
y_embed = not_mask.cumsum(1)
x_embed = not_mask.cumsum(2)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
# Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock
class PredictionBlock(nn.Module):
def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None:
super().__init__()
self.layers = [nn.Linear(in_dim, out_dim), activation]
# Maintain submodule indexing as if part of a Sequential block
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class OneFormerTextMapperAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, k, v):
batch_size, q_sequence_length, num_channels = q.shape
if not k.shape == v.shape:
raise ValueError(f"keys ({list(k.shape)}) and values ({list(v.shape)}) have different shapes!")
batch_size, k_sequence_length, num_channels = k.shape
q = self.q_proj(q).reshape(batch_size, q_sequence_length, self.num_heads, num_channels // self.num_heads)
k = self.k_proj(k).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads)
v = self.v_proj(v).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads)
attn = torch.einsum("bnkc,bmkc->bknm", q, k) * self.scale
attn = attn.softmax(dim=-1)
output = torch.einsum("bknm,bmkc->bnkc", attn, v).reshape(batch_size, q_sequence_length, num_channels)
output = self.proj(output)
output = self.proj_drop(output)
return output
class OneFormerTextTransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dropout=0.1,
layer_norm_eps=1e-05,
):
super().__init__()
self.self_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout)
self.cross_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.mlp = nn.Sequential(
nn.Linear(d_model, d_model * 4), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_model * 4, d_model)
)
def forward(self, hidden_state, mem):
q = k = v = self.norm1(hidden_state)
hidden_state = hidden_state + self.self_attn(q, k, v)
q = self.norm2(hidden_state)
hidden_state = hidden_state + self.cross_attn(q, mem, mem)
hidden_state = hidden_state + self.dropout(self.mlp(self.norm3(hidden_state)))
return hidden_state
class OneFormerTextContextDecoder(nn.Module):
def __init__(
self,
transformer_width=256,
transformer_heads=4,
transformer_layers=6,
visual_dim=1024,
dropout=0.1,
layer_norm_eps=1e-05,
**kwargs,
):
super().__init__()
self.memory_proj = nn.Sequential(
nn.LayerNorm(visual_dim, eps=layer_norm_eps),
nn.Linear(visual_dim, transformer_width),
nn.LayerNorm(transformer_width, eps=layer_norm_eps),
)
self.text_proj = nn.Sequential(
nn.LayerNorm(visual_dim, eps=layer_norm_eps),
nn.Linear(visual_dim, transformer_width),
)
self.decoder = nn.ModuleList(
[
OneFormerTextTransformerDecoderLayer(transformer_width, transformer_heads, dropout, layer_norm_eps)
for _ in range(transformer_layers)
]
)
self.out_proj = nn.Sequential(
nn.LayerNorm(transformer_width, eps=layer_norm_eps), nn.Linear(transformer_width, visual_dim)
)
def forward(self, text, visual):
visual = self.memory_proj(visual)
hidden_state = self.text_proj(text)
for layer in self.decoder:
hidden_state = layer(hidden_state, visual)
return self.out_proj(hidden_state)
class OneFormerTextMLP(nn.Module):
def __init__(
self,
hidden_size: Optional[int] = None,
intermediate_size: Optional[int] = None,
output_size: Optional[int] = None,
):
super().__init__()
self.activation_fn = ACT2FN["quick_gelu"]
hidden_size = hidden_size
intermediate_size = intermediate_size
output_size = output_size
self.fc1 = nn.Linear(hidden_size, intermediate_size)
self.fc2 = nn.Linear(intermediate_size, output_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class OneFormerTextTransformerLayer(nn.Module):
def __init__(self, width: int, heads: int, attn_mask: torch.Tensor, layer_norm_eps=1e-05):
super().__init__()
self.self_attn = nn.MultiheadAttention(width, heads)
self.layer_norm1 = nn.LayerNorm(width, eps=layer_norm_eps)
self.mlp = OneFormerTextMLP(width, width * 4, width)
self.layer_norm2 = nn.LayerNorm(width, eps=layer_norm_eps)
self.attn_mask = attn_mask
def forward(
self,
hidden_states: torch.Tensor,
key_padding_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states,
hidden_states,
hidden_states,
need_weights=False,
key_padding_mask=key_padding_mask,
)[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class OneFormerTextTransformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
attn_mask: torch.Tensor = None,
use_checkpoint=False,
layer_norm_eps=1e-05,
):
super().__init__()
self.width = width
self.num_layers = layers
self.layers = nn.Sequential(
*[OneFormerTextTransformerLayer(width, heads, attn_mask, layer_norm_eps) for _ in range(layers)]
)
self.use_checkpoint = use_checkpoint
def forward(self, hidden_states: torch.Tensor):
for layer in self.layers:
if self.use_checkpoint:
hidden_states = self._gradient_checkpointing_func(layer, hidden_states)
else:
hidden_states = layer(hidden_states)
return hidden_states
class OneFormerTextEncoder(nn.Module):
def __init__(
self,
context_length: int,
width: int,
layers: int,
vocab_size,
use_checkpoint=False,
layer_norm_eps=1e-05,
):
super().__init__()
heads = width // 64
self.context_length = context_length
self.width = width
self.transformer = OneFormerTextTransformer(
width=width,
layers=layers,
heads=heads,
attn_mask=self.build_attention_mask(),
use_checkpoint=use_checkpoint,
layer_norm_eps=layer_norm_eps,
)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
self.ln_final = nn.LayerNorm(width, eps=layer_norm_eps)
self.token_embedding = nn.Embedding(vocab_size, width)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text):
hidden_state = self.token_embedding(text)
hidden_state = hidden_state + self.positional_embedding
hidden_state = hidden_state.permute(1, 0, 2)
hidden_state = self.transformer(hidden_state)
hidden_state = hidden_state.permute(1, 0, 2)
hidden_state = self.ln_final(hidden_state)
hidden_state = hidden_state[torch.arange(hidden_state.shape[0]), text.argmax(dim=-1)]
return hidden_state
class OneFormerTextMapper(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.text_encoder = OneFormerTextEncoder(
context_length=config.text_encoder_context_length,
width=config.text_encoder_width,
layers=config.text_encoder_num_layers,
vocab_size=config.text_encoder_vocab_size,
layer_norm_eps=config.layer_norm_eps,
)
self.text_projector = OneFormerMLPPredictionHead(
config.text_encoder_width,
config.hidden_dim,
config.hidden_dim,
config.text_encoder_proj_layers,
)
if config.text_encoder_n_ctx > 0:
self.prompt_ctx = nn.Embedding(
config.text_encoder_n_ctx,
config.text_encoder_width,
)
else:
self.prompt_ctx = None
def forward(
self,
inputs: Tensor,
) -> Tensor:
text_queries = self.encode_text(inputs)
return text_queries
def encode_text(self, text):
if text.ndim is None:
raise ValueError("text must not be NoneType")
if text.ndim not in [2, 3]:
raise ValueError("Number of dimensions in text must be 2 or 3")
squeeze_dim = False
num_text = 1
if text.ndim == 3:
num_text = text.shape[1]
batch_size, num_text, hidden_dim = text.shape
text = text.reshape(batch_size * num_text, hidden_dim)
squeeze_dim = True
# [batch_size, num_channels]
encoded_text = self.text_encoder(text)
text_queries = self.text_projector(encoded_text)
if squeeze_dim:
_, hidden_dim = text_queries.shape
text_queries = text_queries.reshape(batch_size, num_text, hidden_dim)
if self.prompt_ctx is not None:
text_queries_ctx = self.prompt_ctx.weight.unsqueeze(0).repeat(text_queries.shape[0], 1, 1)
text_queries = torch.cat([text_queries, text_queries_ctx], dim=1)
return text_queries
class OneFormerTaskModel(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.task_mlp = OneFormerMLPPredictionHead(
config.task_seq_len,
config.hidden_dim,
config.hidden_dim,
2,
)
def forward(self, inputs: Tensor) -> Tensor:
task_tokens = self.task_mlp(inputs)
return task_tokens
ONEFORMER_START_DOCSTRING = r"""
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Parameters:
config ([`OneFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ONEFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`OneFormerProcessor`]. See
[`OneFormerProcessor.__call__`] for details.
task_inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Task inputs. Task inputs can be obtained using [`AutoImageProcessor`]. See [`OneFormerProcessor.__call__`]
for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of Detr's decoder attention layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~OneFormerModelOutput`] instead of a plain tuple.
"""
class OneFormerPreTrainedModel(PreTrainedModel):
config_class = OneFormerConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
def _init_weights(self, module: nn.Module):
xavier_std = self.config.init_xavier_std
std = self.config.init_std
if isinstance(module, OneFormerTransformerModule):
if module.input_projections is not None:
for input_projection in module.input_projections:
if not isinstance(input_projection, nn.Sequential):
nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std)
nn.init.constant_(input_projection.bias, 0)
elif isinstance(module, OneFormerTransformerDecoder):
nn.init.xavier_uniform_(module.query_input_projection.weight, gain=xavier_std)
nn.init.constant_(module.query_input_projection.bias, 0)
module.query_input_projection._is_hf_initialized = True
elif isinstance(module, OneFormerPixelDecoderEncoderMultiscaleDeformableAttention):
nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(module.n_heads, 1, 1, 2)
.repeat(1, module.n_levels, module.n_points, 1)
)
for i in range(module.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(module.attention_weights.weight.data, 0.0)
nn.init.constant_(module.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(module.value_proj.weight.data)
nn.init.constant_(module.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
elif isinstance(module, OneFormerPixelDecoderEncoderOnly):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
elif isinstance(module, OneFormerPixelDecoder):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
nn.init.normal_(module.level_embed, std=0)
elif isinstance(module, OneFormerTransformerDecoderSelfAttentionLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerTransformerDecoderCrossAttentionLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerTransformerDecoderFFNLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerTransformerDecoderQueryTransformer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerPixelLevelModule):
for submodule in module.modules():
if isinstance(submodule, (nn.Conv2d, nn.Linear)):
submodule.weight.data.normal_(mean=0.0, std=std)
if submodule.bias is not None:
submodule.bias.data.zero_()
elif isinstance(module, OneFormerTextContextDecoder):
for submodule in module.modules():
if isinstance(submodule, nn.Linear):
nn.init.trunc_normal_(submodule.weight, std=0.02)
if isinstance(submodule, nn.Linear) and submodule.bias is not None:
nn.init.constant_(submodule.bias, 0)
elif isinstance(submodule, nn.LayerNorm):
nn.init.constant_(submodule.bias, 0)
nn.init.constant_(submodule.weight, 1.0)
elif isinstance(module, OneFormerTextTransformer):
proj_std = (module.width**-0.5) * ((2 * module.num_layers) ** -0.5)
attn_std = module.width**-0.5
fc_std = (2 * module.width) ** -0.5
for layer in module.layers:
nn.init.normal_(layer.self_attn.in_proj_weight, std=attn_std)
nn.init.normal_(layer.self_attn.out_proj.weight, std=proj_std)
nn.init.normal_(layer.mlp.fc1.weight, std=fc_std)
nn.init.normal_(layer.mlp.fc2.weight, std=proj_std)
elif isinstance(module, OneFormerTextEncoder):
nn.init.normal_(module.token_embedding.weight, std=0.02)
nn.init.normal_(module.positional_embedding, std=0.01)
if hasattr(module, "reference_points"):
nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
nn.init.constant_(module.reference_points.bias.data, 0.0)
elif isinstance(module, OneFormerTaskModel):
for submodule in module.modules():
if isinstance(module, OneFormerMLPPredictionHead):
for submodule in module.modules():
if isinstance(submodule, nn.Linear):
nn.init.xavier_uniform_(submodule.weight, gain=xavier_std)
nn.init.constant_(submodule.bias, 0)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.MultiheadAttention):
module.in_proj_weight.data.normal_(mean=0.0, std=std)
module.in_proj_bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@add_start_docstrings(
"The bare OneFormer Model outputting raw hidden-states without any specific head on top.",
ONEFORMER_START_DOCSTRING,
)
class OneFormerModel(OneFormerPreTrainedModel):
main_input_name = ["pixel_values", "task_inputs"]
def __init__(self, config: OneFormerConfig):
super().__init__(config)
self.pixel_level_module = OneFormerPixelLevelModule(config)
self.transformer_module = OneFormerTransformerModule(in_features=config.conv_dim, config=config)
self.task_encoder = OneFormerTaskModel(config)
self.is_training = config.is_training
if self.is_training:
self.text_mapper = OneFormerTextMapper(config)
else:
self.text_mapper = None
self.post_init()
@add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OneFormerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
task_inputs: Tensor,
text_inputs: Optional[Tensor] = None,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> OneFormerModelOutput:
r"""
Returns:
`OneFormerModelOutput`
Example:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import OneFormerProcessor, OneFormerModel
>>> # download texting image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # load processor for preprocessing the inputs
>>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> model = OneFormerModel.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> inputs = processor(image, ["semantic"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> mask_predictions = outputs.transformer_decoder_mask_predictions
>>> class_predictions = outputs.transformer_decoder_class_predictions
>>> f"👉 Mask Predictions Shape: {list(mask_predictions.shape)}, Class Predictions Shape: {list(class_predictions.shape)}"
'👉 Mask Predictions Shape: [1, 150, 128, 171], Class Predictions Shape: [1, 150, 151]'
```"""
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, _, height, width = pixel_values.shape
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
pixel_level_module_output = self.pixel_level_module(pixel_values, output_hidden_states)
multi_scale_features = pixel_level_module_output.decoder_features
mask_features = pixel_level_module_output.decoder_last_feature
task_token = self.task_encoder(task_inputs.to(self.dtype))
if self.is_training:
text_queries = self.text_mapper(text_inputs)
else:
text_queries = None
transformer_module_output = self.transformer_module(
multi_scale_features=multi_scale_features,
mask_features=mask_features,
task_token=task_token,
output_attentions=output_attentions,
)
queries = transformer_module_output.object_queries
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
if output_hidden_states:
encoder_hidden_states = pixel_level_module_output.encoder_features
pixel_decoder_hidden_states = (pixel_level_module_output.decoder_last_feature,)
for f in pixel_level_module_output.decoder_features:
pixel_decoder_hidden_states += (f,)
transformer_decoder_hidden_states = transformer_module_output.auxiliary_predictions
output = OneFormerModelOutput(
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
transformer_decoder_object_queries=queries,
transformer_decoder_contrastive_queries=transformer_module_output.contrastive_logits,
transformer_decoder_mask_predictions=transformer_module_output.prediction_masks,
transformer_decoder_class_predictions=transformer_module_output.prediction_class,
transformer_decoder_auxiliary_predictions=transformer_module_output.auxiliary_predictions,
text_queries=text_queries,
task_token=task_token,
attentions=transformer_module_output.attentions,
)
if not return_dict:
output = tuple(v for v in output.values())
return output
@add_start_docstrings(
"OneFormer Model for instance, semantic and panoptic image segmentation.",
ONEFORMER_START_DOCSTRING,
)
class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel):
main_input_name = ["pixel_values", "task_inputs"]
def __init__(self, config: OneFormerConfig):
super().__init__(config)
self.model = OneFormerModel(config)
self.matcher = OneFormerHungarianMatcher(
cost_class=config.class_weight,
cost_dice=config.dice_weight,
cost_mask=config.mask_weight,
num_points=config.train_num_points,
)
self.weight_dict: Dict[str, float] = {
"loss_cross_entropy": config.class_weight,
"loss_mask": config.mask_weight,
"loss_dice": config.dice_weight,
"loss_contrastive": config.contrastive_weight,
}
self.criterion = OneFormerLoss(
num_classes=config.num_labels,
matcher=self.matcher,
weight_dict=self.weight_dict,
eos_coef=config.no_object_weight,
num_points=config.train_num_points,
oversample_ratio=config.oversample_ratio,
importance_sample_ratio=config.importance_sample_ratio,
contrastive_temperature=config.contrastive_temperature,
)
self.post_init()
def get_loss_dict(
self,
masks_queries_logits: Tensor,
class_queries_logits: Tensor,
contrastive_queries_logits: Tensor,
mask_labels: Tensor,
class_labels: Tensor,
text_queries: Tensor,
auxiliary_predictions: Dict[str, Tensor],
calculate_contrastive_loss: bool,
) -> Dict[str, Tensor]:
loss_dict: Dict[str, Tensor] = self.criterion(
masks_queries_logits=masks_queries_logits,
class_queries_logits=class_queries_logits,
contrastive_queries_logits=contrastive_queries_logits,
mask_labels=mask_labels,
class_labels=class_labels,
text_queries=text_queries,
auxiliary_predictions=auxiliary_predictions,
calculate_contrastive_loss=calculate_contrastive_loss,
)
# weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses
for key, weight in self.weight_dict.items():
for loss_key, loss in loss_dict.items():
if key in loss_key:
loss *= weight
return loss_dict
def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor:
return sum(loss_dict.values())
@add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OneFormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
task_inputs: Tensor,
text_inputs: Optional[Tensor] = None,
mask_labels: Optional[List[Tensor]] = None,
class_labels: Optional[List[Tensor]] = None,
pixel_mask: Optional[Tensor] = None,
output_auxiliary_logits: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> OneFormerForUniversalSegmentationOutput:
r"""
text_inputs (`List[torch.Tensor]`, *optional*):
Tensor fof shape `(num_queries, sequence_length)` to be fed to a model
mask_labels (`List[torch.Tensor]`, *optional*):
List of mask labels of shape `(num_labels, height, width)` to be fed to a model
class_labels (`List[torch.LongTensor]`, *optional*):
list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the
labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`.
Returns:
`OneFormerUniversalSegmentationOutput`
Example:
Universal segmentation example:
```python
>>> from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # load OneFormer fine-tuned on ADE20k for universal segmentation
>>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> url = (
... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
... )
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # Semantic Segmentation
>>> inputs = processor(image, ["semantic"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to processor for semantic postprocessing
>>> predicted_semantic_map = processor.post_process_semantic_segmentation(
... outputs, target_sizes=[image.size[::-1]]
... )[0]
>>> f"👉 Semantic Predictions Shape: {list(predicted_semantic_map.shape)}"
'👉 Semantic Predictions Shape: [512, 683]'
>>> # Instance Segmentation
>>> inputs = processor(image, ["instance"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to processor for instance postprocessing
>>> predicted_instance_map = processor.post_process_instance_segmentation(
... outputs, target_sizes=[image.size[::-1]]
... )[0]["segmentation"]
>>> f"👉 Instance Predictions Shape: {list(predicted_instance_map.shape)}"
'👉 Instance Predictions Shape: [512, 683]'
>>> # Panoptic Segmentation
>>> inputs = processor(image, ["panoptic"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to processor for panoptic postprocessing
>>> predicted_panoptic_map = processor.post_process_panoptic_segmentation(
... outputs, target_sizes=[image.size[::-1]]
... )[0]["segmentation"]
>>> f"👉 Panoptic Predictions Shape: {list(predicted_panoptic_map.shape)}"
'👉 Panoptic Predictions Shape: [512, 683]'
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
pixel_values=pixel_values,
task_inputs=task_inputs,
text_inputs=text_inputs,
pixel_mask=pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
output_attentions=output_attentions,
return_dict=True,
)
loss, loss_dict, auxiliary_predictions = None, None, None
class_queries_logits = outputs.transformer_decoder_class_predictions
masks_queries_logits = outputs.transformer_decoder_mask_predictions
contrastive_queries_logits = outputs.transformer_decoder_contrastive_queries
auxiliary_predictions = outputs.transformer_decoder_auxiliary_predictions
text_queries = outputs.text_queries
if mask_labels is not None and class_labels is not None:
loss_dict: Dict[str, Tensor] = self.get_loss_dict(
masks_queries_logits=masks_queries_logits,
class_queries_logits=class_queries_logits,
contrastive_queries_logits=contrastive_queries_logits,
mask_labels=mask_labels,
class_labels=class_labels,
text_queries=text_queries,
auxiliary_predictions=auxiliary_predictions,
calculate_contrastive_loss=self.config.contrastive_temperature is not None,
)
loss = self.get_loss(loss_dict)
output_auxiliary_logits = (
self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
)
if not output_auxiliary_logits:
auxiliary_predictions = None
output = OneFormerForUniversalSegmentationOutput(
class_queries_logits=class_queries_logits,
masks_queries_logits=masks_queries_logits,
auxiliary_predictions=auxiliary_predictions,
loss=loss,
**outputs,
)
if not return_dict:
output = tuple(v for v in output.values())
if loss is not None:
output = (loss) + output
return output
| transformers/src/transformers/models/oneformer/modeling_oneformer.py/0 | {
"file_path": "transformers/src/transformers/models/oneformer/modeling_oneformer.py",
"repo_id": "transformers",
"token_count": 62740
} | 352 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OWLv2 model configuration"""
import os
from typing import TYPE_CHECKING, Dict, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/owlv2-base-patch16": "https://huggingface.co/google/owlv2-base-patch16/resolve/main/config.json",
}
# Copied from transformers.models.owlvit.configuration_owlvit.OwlViTTextConfig with OwlViT->Owlv2, owlvit-base-patch32->owlv2-base-patch16, owlvit->owlv2, OWL-ViT->OWLv2
class Owlv2TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`Owlv2TextModel`]. It is used to instantiate an
Owlv2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Owlv2
[google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the OWLv2 text model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`Owlv2TextModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 16):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token in the input sequences.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the input sequences.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the input sequences.
Example:
```python
>>> from transformers import Owlv2TextConfig, Owlv2TextModel
>>> # Initializing a Owlv2TextModel with google/owlv2-base-patch16 style configuration
>>> configuration = Owlv2TextConfig()
>>> # Initializing a Owlv2TextConfig from the google/owlv2-base-patch16 style configuration
>>> model = Owlv2TextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "owlv2_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=0,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from Owlv2Config
if config_dict.get("model_type") == "owlv2":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
# Copied from transformers.models.owlvit.configuration_owlvit.OwlViTVisionConfig with OwlViT->Owlv2, owlvit-base-patch32->owlv2-base-patch16, owlvit->owlv2, OWL-ViT->OWLv2, 32->16
class Owlv2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`Owlv2VisionModel`]. It is used to instantiate
an OWLv2 image encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the OWLv2
[google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 768):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import Owlv2VisionConfig, Owlv2VisionModel
>>> # Initializing a Owlv2VisionModel with google/owlv2-base-patch16 style configuration
>>> configuration = Owlv2VisionConfig()
>>> # Initializing a Owlv2VisionModel model from the google/owlv2-base-patch16 style configuration
>>> model = Owlv2VisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "owlv2_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=768,
patch_size=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from Owlv2Config
if config_dict.get("model_type") == "owlv2":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
# Copied from transformers.models.owlvit.configuration_owlvit.OwlViTConfig with OwlViT->Owlv2, owlvit-base-patch32->owlv2-base-patch16, owlvit->owlv2, OWL-ViT->OWLv2
class Owlv2Config(PretrainedConfig):
r"""
[`Owlv2Config`] is the configuration class to store the configuration of an [`Owlv2Model`]. It is used to
instantiate an OWLv2 model according to the specified arguments, defining the text model and vision model
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWLv2
[google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Owlv2TextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Owlv2VisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* parameter. Default is used as per the original OWLv2
implementation.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not the model should return a dictionary. If `False`, returns a tuple.
kwargs (*optional*):
Dictionary of keyword arguments.
"""
model_type = "owlv2"
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
return_dict=True,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the Owlv2TextConfig with default values.")
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. initializing the Owlv2VisionConfig with default values.")
self.text_config = Owlv2TextConfig(**text_config)
self.vision_config = Owlv2VisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.return_dict = return_dict
self.initializer_factor = 1.0
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
@classmethod
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs):
r"""
Instantiate a [`Owlv2Config`] (or a derived class) from owlv2 text model configuration and owlv2 vision
model configuration.
Returns:
[`Owlv2Config`]: An instance of a configuration object
"""
config_dict = {}
config_dict["text_config"] = text_config
config_dict["vision_config"] = vision_config
return cls.from_dict(config_dict, **kwargs)
| transformers/src/transformers/models/owlv2/configuration_owlv2.py/0 | {
"file_path": "transformers/src/transformers/models/owlv2/configuration_owlv2.py",
"repo_id": "transformers",
"token_count": 5978
} | 353 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PatchTST model configuration"""
from typing import List, Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"ibm/patchtst-base": "https://huggingface.co/ibm/patchtst-base/resolve/main/config.json",
# See all PatchTST models at https://huggingface.co/ibm/models?filter=patchtst
}
class PatchTSTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`PatchTSTModel`]. It is used to instantiate an
PatchTST model according to the specified arguments, defining the model architecture.
[ibm/patchtst](https://huggingface.co/ibm/patchtst) architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_input_channels (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
context_length (`int`, *optional*, defaults to 32):
The context length of the input sequence.
distribution_output (`str`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
"negative_binomial".
loss (`str`, *optional*, defaults to `"mse"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
error "mse".
patch_length (`int`, *optional*, defaults to 1):
Define the patch length of the patchification process.
patch_stride (`int`, *optional*, defaults to 1):
Define the stride of the patchification process.
num_hidden_layers (`int`, *optional*, defaults to 3):
Number of hidden layers.
d_model (`int`, *optional*, defaults to 128):
Dimensionality of the transformer layers.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
share_embedding (`bool`, *optional*, defaults to `True`):
Sharing the input embedding across all channels.
channel_attention (`bool`, *optional*, defaults to `False`):
Activate channel attention block in the Transformer to allow channels to attend each other.
ffn_dim (`int`, *optional*, defaults to 512):
Dimension of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
norm_type (`str` , *optional*, defaults to `"batchnorm"`):
Normalization at each Transformer layer. Can be `"batchnorm"` or `"layernorm"`.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the Transformer.
positional_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability in the positional embedding layer.
path_dropout (`float`, *optional*, defaults to 0.0):
The dropout path in the residual block.
ff_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability used between the two layers of the feed-forward networks.
bias (`bool`, *optional*, defaults to `True`):
Whether to add bias in the feed-forward networks.
activation_function (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (string) in the Transformer.`"gelu"` and `"relu"` are supported.
pre_norm (`bool`, *optional*, defaults to `True`):
Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is
applied after residual block.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. Options `"random"` and `"sincos"` are supported.
use_cls_token (`bool`, *optional*, defaults to `False`):
Whether cls token is used.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
share_projection (`bool`, *optional*, defaults to `True`):
Sharing the projection layer across different channels in the forecast head.
scaling (`Union`, *optional*, defaults to `"std"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
do_mask_input (`bool`, *optional*):
Apply masking during the pretraining.
mask_type (`str`, *optional*, defaults to `"random"`):
Masking type. Only `"random"` and `"forecast"` are currently supported.
random_mask_ratio (`float`, *optional*, defaults to 0.5):
Masking ratio applied to mask the input data during random pretraining.
num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`):
Number of patches to be masked at the end of each batch sample. If it is an integer,
all the samples in the batch will have the same number of masked patches. If it is a list,
samples in the batch will be randomly masked by numbers defined in the list. This argument is only used
for forecast pretraining.
channel_consistent_masking (`bool`, *optional*, defaults to `False`):
If channel consistent masking is True, all the channels will have the same masking pattern.
unmasked_channel_indices (`list`, *optional*):
Indices of channels that are not masked during pretraining. Values in the list are number between 1 and
`num_input_channels`
mask_value (`int`, *optional*, defaults to 0):
Values in the masked patches will be filled by `mask_value`.
pooling_type (`str`, *optional*, defaults to `"mean"`):
Pooling of the embedding. `"mean"`, `"max"` and `None` are supported.
head_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for head.
prediction_length (`int`, *optional*, defaults to 24):
The prediction horizon that the model will output.
num_targets (`int`, *optional*, defaults to 1):
Number of targets for regression and classification tasks. For classification, it is the number of
classes.
output_range (`list`, *optional*):
Output range for regression task. The range of output values can be set to enforce the model to produce
values within a range.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples is generated in parallel for probabilistic prediction.
```python
>>> from transformers import PatchTSTConfig, PatchTSTModel
>>> # Initializing an PatchTST configuration with 12 time steps for prediction
>>> configuration = PatchTSTConfig(prediction_length=12)
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "patchtst"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "num_attention_heads",
"num_hidden_layers": "num_hidden_layers",
}
def __init__(
self,
# time series specific configuration
num_input_channels: int = 1,
context_length: int = 32,
distribution_output: str = "student_t",
loss: str = "mse",
# PatchTST arguments
patch_length: int = 1,
patch_stride: int = 1,
# Transformer architecture configuration
num_hidden_layers: int = 3,
d_model: int = 128,
num_attention_heads: int = 4,
share_embedding: bool = True,
channel_attention: bool = False,
ffn_dim: int = 512,
norm_type: str = "batchnorm",
norm_eps: float = 1e-05,
attention_dropout: float = 0.0,
dropout: float = 0.0,
positional_dropout: float = 0.0,
path_dropout: float = 0.0,
ff_dropout: float = 0.0,
bias: bool = True,
activation_function: str = "gelu",
pre_norm: bool = True,
positional_encoding_type: str = "sincos",
use_cls_token: bool = False,
init_std: float = 0.02,
share_projection: bool = True,
scaling: Optional[Union[str, bool]] = "std",
# mask pretraining
do_mask_input: Optional[bool] = None,
mask_type: str = "random",
random_mask_ratio: float = 0.5,
num_forecast_mask_patches: Optional[Union[List[int], int]] = [2],
channel_consistent_masking: Optional[bool] = False,
unmasked_channel_indices: Optional[List[int]] = None,
mask_value: int = 0,
# head
pooling_type: str = "mean",
head_dropout: float = 0.0,
prediction_length: int = 24,
num_targets: int = 1,
output_range: Optional[List] = None,
# distribution head
num_parallel_samples: int = 100,
**kwargs,
):
# time series specific configuration
self.context_length = context_length
self.num_input_channels = num_input_channels # n_vars
self.loss = loss
self.distribution_output = distribution_output
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.d_model = d_model
self.num_attention_heads = num_attention_heads
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.share_embedding = share_embedding
self.channel_attention = channel_attention
self.norm_type = norm_type
self.norm_eps = norm_eps
self.positional_dropout = positional_dropout
self.path_dropout = path_dropout
self.ff_dropout = ff_dropout
self.bias = bias
self.activation_function = activation_function
self.pre_norm = pre_norm
self.positional_encoding_type = positional_encoding_type
self.use_cls_token = use_cls_token
self.init_std = init_std
self.scaling = scaling
# PatchTST parameters
self.patch_length = patch_length
self.patch_stride = patch_stride
# Mask pretraining
self.do_mask_input = do_mask_input
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio # for random masking
self.num_forecast_mask_patches = num_forecast_mask_patches # for forecast masking
self.channel_consistent_masking = channel_consistent_masking
self.unmasked_channel_indices = unmasked_channel_indices
self.mask_value = mask_value
# general head params
self.pooling_type = pooling_type
self.head_dropout = head_dropout
# For prediction head
self.share_projection = share_projection
self.prediction_length = prediction_length
# For prediction and regression head
self.num_parallel_samples = num_parallel_samples
# Regression
self.num_targets = num_targets
self.output_range = output_range
super().__init__(**kwargs)
| transformers/src/transformers/models/patchtst/configuration_patchtst.py/0 | {
"file_path": "transformers/src/transformers/models/patchtst/configuration_patchtst.py",
"repo_id": "transformers",
"token_count": 4842
} | 354 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from t5x import checkpoints
from transformers import (
AutoTokenizer,
Pix2StructConfig,
Pix2StructForConditionalGeneration,
Pix2StructImageProcessor,
Pix2StructProcessor,
Pix2StructTextConfig,
Pix2StructVisionConfig,
)
def get_flax_param(t5x_checkpoint_path):
flax_params = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
flax_params = flatten_dict(flax_params)
return flax_params
def rename_and_convert_flax_params(flax_dict):
converted_dict = {}
CONVERSION_MAPPING = {
"token_embedder": "embeddings",
"encoder_norm": "layernorm",
"kernel": "weight",
".out": ".output",
"scale": "weight",
"embedders_0.pos_embedding": "row_embedder.weight",
"embedders_1.pos_embedding": "column_embedder.weight",
}
DECODER_CONVERSION_MAPPING = {
"query": "attention.query",
"key": "attention.key",
"value": "attention.value",
"output.dense": "output",
"encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
"pre_self_attention_layer_norm": "self_attention.layer_norm",
"pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
"mlp.": "mlp.DenseReluDense.",
"pre_mlp_layer_norm": "mlp.layer_norm",
"self_attention.o": "self_attention.attention.o",
"decoder.embeddings.embedding": "decoder.embed_tokens.weight",
"decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
"decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
"decoder.logits_dense.weight": "decoder.lm_head.weight",
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
new_key = ".".join(key[1:])
# rename the key
for old, new in CONVERSION_MAPPING.items():
new_key = new_key.replace(old, new)
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
new_key = new_key.replace(old, new)
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
new_key = new_key.replace("encoder", "encoder.encoder")
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
converted_dict[new_key] = flax_dict[key]
converted_torch_dict = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
converted_torch_dict[key] = torch.from_numpy(converted_dict[key].T)
else:
converted_torch_dict[key] = torch.from_numpy(converted_dict[key])
return converted_torch_dict
def convert_pix2struct_original_pytorch_checkpoint_to_hf(
t5x_checkpoint_path, pytorch_dump_folder_path, use_large=False, is_vqa=False
):
flax_params = get_flax_param(t5x_checkpoint_path)
if not use_large:
encoder_config = Pix2StructVisionConfig()
decoder_config = Pix2StructTextConfig()
else:
encoder_config = Pix2StructVisionConfig(
hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18
)
decoder_config = Pix2StructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18)
config = Pix2StructConfig(
vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=is_vqa
)
model = Pix2StructForConditionalGeneration(config)
torch_params = rename_and_convert_flax_params(flax_params)
model.load_state_dict(torch_params)
tok = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer")
image_processor = Pix2StructImageProcessor()
processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tok)
if use_large:
processor.image_processor.max_patches = 4096
processor.image_processor.is_vqa = True
# mkdir if needed
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
print("Model saved in {}".format(pytorch_dump_folder_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--use_large", action="store_true", help="Use large model.")
parser.add_argument("--is_vqa", action="store_true", help="Use large model.")
args = parser.parse_args()
convert_pix2struct_original_pytorch_checkpoint_to_hf(
args.t5x_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| transformers/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py",
"repo_id": "transformers",
"token_count": 2437
} | 355 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Pop2Piano model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"sweetcocoa/pop2piano": "https://huggingface.co/sweetcocoa/pop2piano/blob/main/config.json"
}
class Pop2PianoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used
to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 2400):
Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens
that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`].
composer_vocab_size (`int`, *optional*, defaults to 21):
Denotes the number of composers.
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
be defined as `num_heads * d_kv`.
d_ff (`int`, *optional*, defaults to 2048):
Size of the intermediate feed forward layer in each `Pop2PianoBlock`.
num_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
"""
model_type = "pop2piano"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2400,
composer_vocab_size=21,
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_decoder_layers=None,
num_heads=8,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu", # noqa
is_encoder_decoder=True,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
dense_act_fn="relu",
**kwargs,
):
self.vocab_size = vocab_size
self.composer_vocab_size = composer_vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
self.dense_act_fn = dense_act_fn
self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated"
self.hidden_size = self.d_model
self.num_attention_heads = num_heads
self.num_hidden_layers = num_layers
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
| transformers/src/transformers/models/pop2piano/configuration_pop2piano.py/0 | {
"file_path": "transformers/src/transformers/models/pop2piano/configuration_pop2piano.py",
"repo_id": "transformers",
"token_count": 2409
} | 356 |
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch REALM model."""
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
MaskedLMOutput,
ModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_realm import RealmConfig
logger = logging.get_logger(__name__)
_EMBEDDER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-embedder"
_ENCODER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-encoder"
_SCORER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-scorer"
_CONFIG_FOR_DOC = "RealmConfig"
REALM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/realm-cc-news-pretrained-embedder",
"google/realm-cc-news-pretrained-encoder",
"google/realm-cc-news-pretrained-scorer",
"google/realm-cc-news-pretrained-openqa",
"google/realm-orqa-nq-openqa",
"google/realm-orqa-nq-reader",
"google/realm-orqa-wq-openqa",
"google/realm-orqa-wq-reader",
# See all REALM models at https://huggingface.co/models?filter=realm
]
def load_tf_weights_in_realm(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
if isinstance(model, RealmReader) and "reader" not in name:
logger.info(f"Skipping {name} as it is not {model.__class__.__name__}'s parameter")
continue
# For pretrained openqa reader
if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmForOpenQA):
name = name.replace("bert/", "reader/realm/")
name = name.replace("cls/", "reader/cls/")
# For pretrained encoder
if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmKnowledgeAugEncoder):
name = name.replace("bert/", "realm/")
# For finetuned reader
if name.startswith("reader"):
reader_prefix = "" if isinstance(model, RealmReader) else "reader/"
name = name.replace("reader/module/bert/", f"{reader_prefix}realm/")
name = name.replace("reader/module/cls/", f"{reader_prefix}cls/")
name = name.replace("reader/dense/", f"{reader_prefix}qa_outputs/dense_intermediate/")
name = name.replace("reader/dense_1/", f"{reader_prefix}qa_outputs/dense_output/")
name = name.replace("reader/layer_normalization", f"{reader_prefix}qa_outputs/layer_normalization")
# For embedder and scorer
if name.startswith("module/module/module/"): # finetuned
embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
name = name.replace("module/module/module/module/bert/", f"{embedder_prefix}realm/")
name = name.replace("module/module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
name = name.replace("module/module/module/dense/", f"{embedder_prefix}cls/dense/")
name = name.replace("module/module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
name = name.replace("module/module/module/bert/", f"{embedder_prefix}realm/")
name = name.replace("module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
elif name.startswith("module/module/"): # pretrained
embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
name = name.replace("module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
name = name.replace("module/module/dense/", f"{embedder_prefix}cls/dense/")
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->Realm
class RealmEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Realm
class RealmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RealmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Realm
class RealmSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Realm
class RealmAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = RealmSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = RealmSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Realm
class RealmIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Realm
class RealmOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Realm
class RealmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = RealmAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = RealmAttention(config, position_embedding_type="absolute")
self.intermediate = RealmIntermediate(config)
self.output = RealmOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Realm
class RealmEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([RealmLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Realm
class RealmPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@dataclass
class RealmEmbedderOutput(ModelOutput):
"""
Outputs of [`RealmEmbedder`] models.
Args:
projected_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`):
Projected score.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
projected_score: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class RealmScorerOutput(ModelOutput):
"""
Outputs of [`RealmScorer`] models.
Args:
relevance_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates)`):
The relevance score of document candidates (before softmax).
query_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`):
Query score derived from the query embedder.
candidate_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates, config.retriever_proj_size)`):
Candidate score derived from the embedder.
"""
relevance_score: torch.FloatTensor = None
query_score: torch.FloatTensor = None
candidate_score: torch.FloatTensor = None
@dataclass
class RealmReaderOutput(ModelOutput):
"""
Outputs of [`RealmReader`] models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
Total loss.
retriever_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
Retriever loss.
reader_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
Reader loss.
retriever_correct (`torch.BoolTensor` of shape `(config.searcher_beam_size,)`, *optional*):
Whether or not an evidence block contains answer.
reader_correct (`torch.BoolTensor` of shape `(config.reader_beam_size, num_candidates)`, *optional*):
Whether or not a span candidate contains answer.
block_idx (`torch.LongTensor` of shape `()`):
The index of the retrieved evidence block in which the predicted answer is most likely.
candidate (`torch.LongTensor` of shape `()`):
The index of the retrieved span candidates in which the predicted answer is most likely.
start_pos (`torch.IntTensor` of shape `()`):
Predicted answer starting position in *RealmReader*'s inputs.
end_pos (`torch.IntTensor` of shape `()`):
Predicted answer ending position in *RealmReader*'s inputs.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: torch.FloatTensor = None
retriever_loss: torch.FloatTensor = None
reader_loss: torch.FloatTensor = None
retriever_correct: torch.BoolTensor = None
reader_correct: torch.BoolTensor = None
block_idx: torch.LongTensor = None
candidate: torch.LongTensor = None
start_pos: torch.int32 = None
end_pos: torch.int32 = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class RealmForOpenQAOutput(ModelOutput):
"""
Outputs of [`RealmForOpenQA`] models.
Args:
reader_output (`dict`):
Reader output.
predicted_answer_ids (`torch.LongTensor` of shape `(answer_sequence_length)`):
Predicted answer ids.
"""
reader_output: dict = None
predicted_answer_ids: torch.LongTensor = None
class RealmPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class RealmLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = RealmPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class RealmOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = RealmLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class RealmScorerProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = RealmLMPredictionHead(config)
self.dense = nn.Linear(config.hidden_size, config.retriever_proj_size)
self.LayerNorm = nn.LayerNorm(config.retriever_proj_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class RealmReaderProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dense_intermediate = nn.Linear(config.hidden_size, config.span_hidden_size * 2)
self.dense_output = nn.Linear(config.span_hidden_size, 1)
self.layer_normalization = nn.LayerNorm(config.span_hidden_size, eps=config.reader_layer_norm_eps)
self.relu = nn.ReLU()
def forward(self, hidden_states, block_mask):
def span_candidates(masks):
"""
Generate span candidates.
Args:
masks: <bool> [num_retrievals, max_sequence_len]
Returns:
starts: <int32> [num_spans] ends: <int32> [num_spans] span_masks: <int32> [num_retrievals, num_spans]
whether spans locate in evidence block.
"""
_, max_sequence_len = masks.shape
def _spans_given_width(width):
current_starts = torch.arange(max_sequence_len - width + 1, device=masks.device)
current_ends = torch.arange(width - 1, max_sequence_len, device=masks.device)
return current_starts, current_ends
starts, ends = zip(*(_spans_given_width(w + 1) for w in range(self.config.max_span_width)))
# [num_spans]
starts = torch.cat(starts, 0)
ends = torch.cat(ends, 0)
# [num_retrievals, num_spans]
start_masks = torch.index_select(masks, dim=-1, index=starts)
end_masks = torch.index_select(masks, dim=-1, index=ends)
span_masks = start_masks * end_masks
return starts, ends, span_masks
def mask_to_score(mask, dtype=torch.float32):
return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min
# [reader_beam_size, max_sequence_len, span_hidden_size * 2]
hidden_states = self.dense_intermediate(hidden_states)
# [reader_beam_size, max_sequence_len, span_hidden_size]
start_projection, end_projection = hidden_states.chunk(2, dim=-1)
candidate_starts, candidate_ends, candidate_mask = span_candidates(block_mask)
candidate_start_projections = torch.index_select(start_projection, dim=1, index=candidate_starts)
candidate_end_projections = torch.index_select(end_projection, dim=1, index=candidate_ends)
candidate_hidden = candidate_start_projections + candidate_end_projections
# [reader_beam_size, num_candidates, span_hidden_size]
candidate_hidden = self.relu(candidate_hidden)
# [reader_beam_size, num_candidates, span_hidden_size]
candidate_hidden = self.layer_normalization(candidate_hidden)
# [reader_beam_size, num_candidates]
reader_logits = self.dense_output(candidate_hidden).squeeze(-1)
# [reader_beam_size, num_candidates]
reader_logits += mask_to_score(candidate_mask, dtype=reader_logits.dtype)
return reader_logits, candidate_starts, candidate_ends
REALM_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RealmConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
REALM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class RealmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RealmConfig
load_tf_weights = load_tf_weights_in_realm
base_model_prefix = "realm"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _flatten_inputs(self, *inputs):
"""Flatten inputs' shape to (-1, input_shape[-1])"""
flattened_inputs = []
for tensor in inputs:
if tensor is None:
flattened_inputs.append(None)
else:
input_shape = tensor.shape
if len(input_shape) > 2:
tensor = tensor.view((-1, input_shape[-1]))
flattened_inputs.append(tensor)
return flattened_inputs
class RealmBertModel(RealmPreTrainedModel):
"""
Same as the original BertModel but remove docstrings.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = RealmEmbeddings(config)
self.encoder = RealmEncoder(config)
self.pooler = RealmPooler(config) if add_pooling_layer else None
# Weights initialization is mostly managed by other Realm models,
# but we also have them initialized here to keep a consistency.
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"The embedder of REALM outputting projected score that will be used to calculate relevance score.",
REALM_START_DOCSTRING,
)
class RealmEmbedder(RealmPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.realm = RealmBertModel(self.config)
self.cls = RealmScorerProjection(self.config)
self.post_init()
def get_input_embeddings(self):
return self.realm.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.realm.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmEmbedderOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RealmEmbedder
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-embedder")
>>> model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> projected_score = outputs.projected_score
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
realm_outputs = self.realm(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size, hidden_size]
pooler_output = realm_outputs[1]
# [batch_size, retriever_proj_size]
projected_score = self.cls(pooler_output)
if not return_dict:
return (projected_score,) + realm_outputs[2:4]
else:
return RealmEmbedderOutput(
projected_score=projected_score,
hidden_states=realm_outputs.hidden_states,
attentions=realm_outputs.attentions,
)
@add_start_docstrings(
"The scorer of REALM outputting relevance scores representing the score of document candidates (before softmax).",
REALM_START_DOCSTRING,
)
class RealmScorer(RealmPreTrainedModel):
r"""
Args:
query_embedder ([`RealmEmbedder`]):
Embedder for input sequences. If not specified, it will use the same embedder as candidate sequences.
"""
def __init__(self, config, query_embedder=None):
super().__init__(config)
self.embedder = RealmEmbedder(self.config)
self.query_embedder = query_embedder if query_embedder is not None else self.embedder
self.post_init()
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
candidate_input_ids: Optional[torch.LongTensor] = None,
candidate_attention_mask: Optional[torch.FloatTensor] = None,
candidate_token_type_ids: Optional[torch.LongTensor] = None,
candidate_inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmScorerOutput]:
r"""
candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`):
Indices of candidate input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
candidate_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
candidate_token_type_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
candidate_inputs_embeds (`torch.FloatTensor` of shape `(batch_size * num_candidates, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `candidate_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert *candidate_input_ids* indices
into associated vectors than the model's internal embedding lookup matrix.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, RealmScorer
>>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-scorer")
>>> model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=2)
>>> # batch_size = 2, num_candidates = 2
>>> input_texts = ["How are you?", "What is the item in the picture?"]
>>> candidates_texts = [["Hello world!", "Nice to meet you!"], ["A cute cat.", "An adorable dog."]]
>>> inputs = tokenizer(input_texts, return_tensors="pt")
>>> candidates_inputs = tokenizer.batch_encode_candidates(candidates_texts, max_length=10, return_tensors="pt")
>>> outputs = model(
... **inputs,
... candidate_input_ids=candidates_inputs.input_ids,
... candidate_attention_mask=candidates_inputs.attention_mask,
... candidate_token_type_ids=candidates_inputs.token_type_ids,
... )
>>> relevance_score = outputs.relevance_score
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or input_embeds.")
if candidate_input_ids is None and candidate_inputs_embeds is None:
raise ValueError("You have to specify either candidate_input_ids or candidate_inputs_embeds.")
query_outputs = self.query_embedder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size * num_candidates, candidate_seq_len]
(flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs(
candidate_input_ids, candidate_attention_mask, candidate_token_type_ids
)
candidate_outputs = self.embedder(
flattened_input_ids,
attention_mask=flattened_attention_mask,
token_type_ids=flattened_token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=candidate_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size, retriever_proj_size]
query_score = query_outputs[0]
# [batch_size * num_candidates, retriever_proj_size]
candidate_score = candidate_outputs[0]
# [batch_size, num_candidates, retriever_proj_size]
candidate_score = candidate_score.view(-1, self.config.num_candidates, self.config.retriever_proj_size)
# [batch_size, num_candidates]
relevance_score = torch.einsum("bd,bnd->bn", query_score, candidate_score)
if not return_dict:
return relevance_score, query_score, candidate_score
return RealmScorerOutput(
relevance_score=relevance_score, query_score=query_score, candidate_score=candidate_score
)
@add_start_docstrings(
"The knowledge-augmented encoder of REALM outputting masked language model logits and marginal log-likelihood"
" loss.",
REALM_START_DOCSTRING,
)
class RealmKnowledgeAugEncoder(RealmPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder"]
def __init__(self, config):
super().__init__(config)
self.realm = RealmBertModel(self.config)
self.cls = RealmOnlyMLMHead(self.config)
self.post_init()
def get_input_embeddings(self):
return self.realm.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.realm.embeddings.word_embeddings = value
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(
REALM_INPUTS_DOCSTRING.format("batch_size, num_candidates, sequence_length")
)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
relevance_score: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
mlm_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*):
Relevance score derived from RealmScorer, must be specified if you want to compute the masked language
modeling loss.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
mlm_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid calculating joint loss on certain positions. If not specified, the loss will not be masked.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, RealmKnowledgeAugEncoder
>>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder")
>>> model = RealmKnowledgeAugEncoder.from_pretrained(
... "google/realm-cc-news-pretrained-encoder", num_candidates=2
... )
>>> # batch_size = 2, num_candidates = 2
>>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
>>> inputs = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
(flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs(
input_ids, attention_mask, token_type_ids
)
joint_outputs = self.realm(
flattened_input_ids,
attention_mask=flattened_attention_mask,
token_type_ids=flattened_token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size * num_candidates, joint_seq_len, hidden_size]
joint_output = joint_outputs[0]
# [batch_size * num_candidates, joint_seq_len, vocab_size]
prediction_scores = self.cls(joint_output)
# [batch_size, num_candidates]
candidate_score = relevance_score
masked_lm_loss = None
if labels is not None:
if candidate_score is None:
raise ValueError(
"You have to specify `relevance_score` when `labels` is specified in order to compute loss."
)
batch_size, seq_length = labels.size()
if mlm_mask is None:
mlm_mask = torch.ones_like(labels, dtype=torch.float32)
else:
mlm_mask = mlm_mask.type(torch.float32)
# Compute marginal log-likelihood
loss_fct = CrossEntropyLoss(reduction="none") # -100 index = padding token
# [batch_size * num_candidates * joint_seq_len, vocab_size]
mlm_logits = prediction_scores.view(-1, self.config.vocab_size)
# [batch_size * num_candidates * joint_seq_len]
mlm_targets = labels.tile(1, self.config.num_candidates).view(-1)
# [batch_size, num_candidates, joint_seq_len]
masked_lm_log_prob = -loss_fct(mlm_logits, mlm_targets).view(
batch_size, self.config.num_candidates, seq_length
)
# [batch_size, num_candidates, 1]
candidate_log_prob = candidate_score.log_softmax(-1).unsqueeze(-1)
# [batch_size, num_candidates, joint_seq_len]
joint_gold_log_prob = candidate_log_prob + masked_lm_log_prob
# [batch_size, joint_seq_len]
marginal_gold_log_probs = joint_gold_log_prob.logsumexp(1)
# []
masked_lm_loss = -torch.nansum(torch.sum(marginal_gold_log_probs * mlm_mask) / torch.sum(mlm_mask))
if not return_dict:
output = (prediction_scores,) + joint_outputs[2:4]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=joint_outputs.hidden_states,
attentions=joint_outputs.attentions,
)
@add_start_docstrings("The reader of REALM.", REALM_START_DOCSTRING)
class RealmReader(RealmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.realm = RealmBertModel(config)
self.cls = RealmOnlyMLMHead(config)
self.qa_outputs = RealmReaderProjection(config)
self.post_init()
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("reader_beam_size, sequence_length"))
@replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
relevance_score: Optional[torch.FloatTensor] = None,
block_mask: Optional[torch.BoolTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
has_answers: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmReaderOutput]:
r"""
relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*):
Relevance score, which must be specified if you want to compute the logits and marginal log loss.
block_mask (`torch.BoolTensor` of shape `(searcher_beam_size, sequence_length)`, *optional*):
The mask of the evidence block, which must be specified if you want to compute the logits and marginal log
loss.
start_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
has_answers (`torch.BoolTensor` of shape `(searcher_beam_size,)`, *optional*):
Whether or not the evidence block has answer(s).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if relevance_score is None:
raise ValueError("You have to specify `relevance_score` to calculate logits and loss.")
if block_mask is None:
raise ValueError("You have to specify `block_mask` to separate question block and evidence block.")
if token_type_ids.size(1) < self.config.max_span_width:
raise ValueError("The input sequence length must be greater than or equal to config.max_span_width.")
outputs = self.realm(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [reader_beam_size, joint_seq_len, hidden_size]
sequence_output = outputs[0]
# [reader_beam_size, num_candidates], [num_candidates], [num_candidates]
reader_logits, candidate_starts, candidate_ends = self.qa_outputs(
sequence_output, block_mask[0 : self.config.reader_beam_size]
)
# [searcher_beam_size, 1]
retriever_logits = torch.unsqueeze(relevance_score[0 : self.config.reader_beam_size], -1)
# [reader_beam_size, num_candidates]
reader_logits += retriever_logits
# []
predicted_block_index = torch.argmax(torch.max(reader_logits, dim=1).values)
# []
predicted_candidate = torch.argmax(torch.max(reader_logits, dim=0).values)
# [1]
predicted_start = torch.index_select(candidate_starts, dim=0, index=predicted_candidate)
# [1]
predicted_end = torch.index_select(candidate_ends, dim=0, index=predicted_candidate)
total_loss = None
retriever_loss = None
reader_loss = None
retriever_correct = None
reader_correct = None
if start_positions is not None and end_positions is not None and has_answers is not None:
def compute_correct_candidates(candidate_starts, candidate_ends, gold_starts, gold_ends):
"""Compute correct span."""
# [reader_beam_size, num_answers, num_candidates]
is_gold_start = torch.eq(
torch.unsqueeze(torch.unsqueeze(candidate_starts, 0), 0), torch.unsqueeze(gold_starts, -1)
)
is_gold_end = torch.eq(
torch.unsqueeze(torch.unsqueeze(candidate_ends, 0), 0), torch.unsqueeze(gold_ends, -1)
)
# [reader_beam_size, num_candidates]
return torch.any(torch.logical_and(is_gold_start, is_gold_end), 1)
def marginal_log_loss(logits, is_correct):
"""Loss based on the negative marginal log-likelihood."""
def mask_to_score(mask, dtype=torch.float32):
return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min
# []
log_numerator = torch.logsumexp(logits + mask_to_score(is_correct, dtype=logits.dtype), dim=-1)
log_denominator = torch.logsumexp(logits, dim=-1)
return log_denominator - log_numerator
# sometimes the start/end positions are outside our model inputs, we ignore these terms
# `-1` is reserved for no answer.
ignored_index = sequence_output.size(1)
start_positions = start_positions.clamp(-1, ignored_index)
end_positions = end_positions.clamp(-1, ignored_index)
retriever_correct = has_answers
any_retriever_correct = torch.any(retriever_correct)
reader_correct = compute_correct_candidates(
candidate_starts=candidate_starts,
candidate_ends=candidate_ends,
gold_starts=start_positions[0 : self.config.reader_beam_size],
gold_ends=end_positions[0 : self.config.reader_beam_size],
)
any_reader_correct = torch.any(reader_correct)
retriever_loss = marginal_log_loss(relevance_score, retriever_correct)
reader_loss = marginal_log_loss(reader_logits.view(-1), reader_correct.view(-1))
retriever_loss *= any_retriever_correct.type(torch.float32)
reader_loss *= any_reader_correct.type(torch.float32)
total_loss = (retriever_loss + reader_loss).mean()
if not return_dict:
output = (predicted_block_index, predicted_candidate, predicted_start, predicted_end) + outputs[2:]
return (
((total_loss, retriever_loss, reader_loss, retriever_correct, reader_correct) + output)
if total_loss is not None
else output
)
return RealmReaderOutput(
loss=total_loss,
retriever_loss=retriever_loss,
reader_loss=reader_loss,
retriever_correct=retriever_correct,
reader_correct=reader_correct,
block_idx=predicted_block_index,
candidate=predicted_candidate,
start_pos=predicted_start,
end_pos=predicted_end,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
REALM_FOR_OPEN_QA_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token (should not be used in this model by design).
[What are token type IDs?](../glossary#token-type-ids)
answer_ids (`list` of shape `(num_answers, answer_length)`, *optional*):
Answer ids for computing the marginal log-likelihood loss. Indices should be in `[-1, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-1` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"`RealmForOpenQA` for end-to-end open domain question answering.",
REALM_START_DOCSTRING,
)
class RealmForOpenQA(RealmPreTrainedModel):
def __init__(self, config, retriever=None):
super().__init__(config)
self.embedder = RealmEmbedder(config)
self.reader = RealmReader(config)
self.register_buffer(
"block_emb",
torch.zeros(()).new_empty(
size=(config.num_block_records, config.retriever_proj_size),
dtype=torch.float32,
device=torch.device("cpu"),
),
)
self.retriever = retriever
self.post_init()
@property
def searcher_beam_size(self):
if self.training:
return self.config.searcher_beam_size
return self.config.reader_beam_size
def block_embedding_to(self, device):
"""Send `self.block_emb` to a specific device.
Args:
device (`str` or `torch.device`):
The device to which `self.block_emb` will be sent.
"""
self.block_emb = self.block_emb.to(device)
@add_start_docstrings_to_model_forward(REALM_FOR_OPEN_QA_DOCSTRING.format("1, sequence_length"))
@replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor],
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
answer_ids: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, RealmForOpenQAOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import RealmForOpenQA, RealmRetriever, AutoTokenizer
>>> retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa")
>>> tokenizer = AutoTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
>>> model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa", retriever=retriever)
>>> question = "Who is the pioneer in modern computer science?"
>>> question_ids = tokenizer([question], return_tensors="pt")
>>> answer_ids = tokenizer(
... ["alan mathison turing"],
... add_special_tokens=False,
... return_token_type_ids=False,
... return_attention_mask=False,
... ).input_ids
>>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False)
>>> predicted_answer = tokenizer.decode(predicted_answer_ids)
>>> loss = reader_output.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and input_ids.shape[0] != 1:
raise ValueError("The batch_size of the inputs must be 1.")
question_outputs = self.embedder(
input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, return_dict=True
)
# [1, projection_size]
question_projection = question_outputs[0]
# CPU computation starts.
# [1, block_emb_size]
batch_scores = torch.einsum("BD,QD->QB", self.block_emb, question_projection.to(self.block_emb.device))
# [1, searcher_beam_size]
_, retrieved_block_ids = torch.topk(batch_scores, k=self.searcher_beam_size, dim=-1)
# [searcher_beam_size]
retrieved_block_ids = retrieved_block_ids.squeeze()
# [searcher_beam_size, projection_size]
retrieved_block_emb = torch.index_select(self.block_emb, dim=0, index=retrieved_block_ids)
# CPU computation ends.
# Retrieve possible answers
has_answers, start_pos, end_pos, concat_inputs = self.retriever(
retrieved_block_ids.cpu(), input_ids, answer_ids, max_length=self.config.reader_seq_len
)
concat_inputs = concat_inputs.to(self.reader.device)
block_mask = concat_inputs.special_tokens_mask.type(torch.bool).to(device=self.reader.device)
block_mask.logical_not_().logical_and_(concat_inputs.token_type_ids.type(torch.bool))
if has_answers is not None:
has_answers = torch.tensor(has_answers, dtype=torch.bool, device=self.reader.device)
start_pos = torch.tensor(start_pos, dtype=torch.long, device=self.reader.device)
end_pos = torch.tensor(end_pos, dtype=torch.long, device=self.reader.device)
# [searcher_beam_size]
retrieved_logits = torch.einsum(
"D,BD->B", question_projection.squeeze(), retrieved_block_emb.to(self.reader.device)
)
reader_output = self.reader(
input_ids=concat_inputs.input_ids[0 : self.config.reader_beam_size],
attention_mask=concat_inputs.attention_mask[0 : self.config.reader_beam_size],
token_type_ids=concat_inputs.token_type_ids[0 : self.config.reader_beam_size],
relevance_score=retrieved_logits,
block_mask=block_mask,
has_answers=has_answers,
start_positions=start_pos,
end_positions=end_pos,
return_dict=True,
)
predicted_block = concat_inputs.input_ids[reader_output.block_idx]
predicted_answer_ids = predicted_block[reader_output.start_pos : reader_output.end_pos + 1]
if not return_dict:
return reader_output, predicted_answer_ids
return RealmForOpenQAOutput(
reader_output=reader_output,
predicted_answer_ids=predicted_answer_ids,
)
| transformers/src/transformers/models/realm/modeling_realm.py/0 | {
"file_path": "transformers/src/transformers/models/realm/modeling_realm.py",
"repo_id": "transformers",
"token_count": 36138
} | 357 |
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow RegNet model."""
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import (
TFPreTrainedModel,
TFSequenceClassificationLoss,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "RegNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/regnet-y-040"
_EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class TFRegNetConvLayer(keras.layers.Layer):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
groups: int = 1,
activation: Optional[str] = "relu",
**kwargs,
):
super().__init__(**kwargs)
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
self.padding = keras.layers.ZeroPadding2D(padding=kernel_size // 2)
self.convolution = keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
padding="VALID",
groups=groups,
use_bias=False,
name="convolution",
)
self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.activation = ACT2FN[activation] if activation is not None else tf.identity
self.in_channels = in_channels
self.out_channels = out_channels
def call(self, hidden_state):
hidden_state = self.convolution(self.padding(hidden_state))
hidden_state = self.normalization(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.in_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.out_channels])
class TFRegNetEmbeddings(keras.layers.Layer):
"""
RegNet Embeddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: RegNetConfig, **kwargs):
super().__init__(**kwargs)
self.num_channels = config.num_channels
self.embedder = TFRegNetConvLayer(
in_channels=config.num_channels,
out_channels=config.embedding_size,
kernel_size=3,
stride=2,
activation=config.hidden_act,
name="embedder",
)
def call(self, pixel_values):
num_channels = shape_list(pixel_values)[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
hidden_state = self.embedder(pixel_values)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedder", None) is not None:
with tf.name_scope(self.embedder.name):
self.embedder.build(None)
class TFRegNetShortCut(keras.layers.Layer):
"""
RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 2, **kwargs):
super().__init__(**kwargs)
self.convolution = keras.layers.Conv2D(
filters=out_channels, kernel_size=1, strides=stride, use_bias=False, name="convolution"
)
self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization")
self.in_channels = in_channels
self.out_channels = out_channels
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
return self.normalization(self.convolution(inputs), training=training)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convolution", None) is not None:
with tf.name_scope(self.convolution.name):
self.convolution.build([None, None, None, self.in_channels])
if getattr(self, "normalization", None) is not None:
with tf.name_scope(self.normalization.name):
self.normalization.build([None, None, None, self.out_channels])
class TFRegNetSELayer(keras.layers.Layer):
"""
Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507).
"""
def __init__(self, in_channels: int, reduced_channels: int, **kwargs):
super().__init__(**kwargs)
self.pooler = keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler")
self.attention = [
keras.layers.Conv2D(filters=reduced_channels, kernel_size=1, activation="relu", name="attention.0"),
keras.layers.Conv2D(filters=in_channels, kernel_size=1, activation="sigmoid", name="attention.2"),
]
self.in_channels = in_channels
self.reduced_channels = reduced_channels
def call(self, hidden_state):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
pooled = self.pooler(hidden_state)
for layer_module in self.attention:
pooled = layer_module(pooled)
hidden_state = hidden_state * pooled
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build((None, None, None, None))
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention[0].name):
self.attention[0].build([None, None, None, self.in_channels])
with tf.name_scope(self.attention[1].name):
self.attention[1].build([None, None, None, self.reduced_channels])
class TFRegNetXLayer(keras.layers.Layer):
"""
RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs):
super().__init__(**kwargs)
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
TFRegNetShortCut(in_channels, out_channels, stride=stride, name="shortcut")
if should_apply_shortcut
else keras.layers.Activation("linear", name="shortcut")
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
self.layers = [
TFRegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"),
TFRegNetConvLayer(
out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1"
),
TFRegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None, name="layer.2"),
]
self.activation = ACT2FN[config.hidden_act]
def call(self, hidden_state):
residual = hidden_state
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shortcut", None) is not None:
with tf.name_scope(self.shortcut.name):
self.shortcut.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetYLayer(keras.layers.Layer):
"""
RegNet's Y layer: an X layer with Squeeze and Excitation.
"""
def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs):
super().__init__(**kwargs)
should_apply_shortcut = in_channels != out_channels or stride != 1
groups = max(1, out_channels // config.groups_width)
self.shortcut = (
TFRegNetShortCut(in_channels, out_channels, stride=stride, name="shortcut")
if should_apply_shortcut
else keras.layers.Activation("linear", name="shortcut")
)
self.layers = [
TFRegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"),
TFRegNetConvLayer(
out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1"
),
TFRegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4)), name="layer.2"),
TFRegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None, name="layer.3"),
]
self.activation = ACT2FN[config.hidden_act]
def call(self, hidden_state):
residual = hidden_state
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "shortcut", None) is not None:
with tf.name_scope(self.shortcut.name):
self.shortcut.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetStage(keras.layers.Layer):
"""
A RegNet stage composed by stacked layers.
"""
def __init__(
self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, **kwargs
):
super().__init__(**kwargs)
layer = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer
self.layers = [
# downsampling is done in the first layer with stride of 2
layer(config, in_channels, out_channels, stride=stride, name="layers.0"),
*[layer(config, out_channels, out_channels, name=f"layers.{i+1}") for i in range(depth - 1)],
]
def call(self, hidden_state):
for layer_module in self.layers:
hidden_state = layer_module(hidden_state)
return hidden_state
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFRegNetEncoder(keras.layers.Layer):
def __init__(self, config: RegNetConfig, **kwargs):
super().__init__(**kwargs)
self.stages = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
config,
config.embedding_size,
config.hidden_sizes[0],
stride=2 if config.downsample_in_first_stage else 1,
depth=config.depths[0],
name="stages.0",
)
)
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, config.depths[1:])):
self.stages.append(TFRegNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i+1}"))
def call(
self, hidden_state: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> TFBaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
for stage in self.stages:
with tf.name_scope(stage.name):
stage.build(None)
@keras_serializable
class TFRegNetMainLayer(keras.layers.Layer):
config_class = RegNetConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedder = TFRegNetEmbeddings(config, name="embedder")
self.encoder = TFRegNetEncoder(config, name="encoder")
self.pooler = keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler")
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> TFBaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Change to NCHW output format have uniformity in the modules
pooled_output = tf.transpose(pooled_output, perm=(0, 3, 1, 2))
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedder", None) is not None:
with tf.name_scope(self.embedder.name):
self.embedder.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build((None, None, None, None))
class TFRegNetPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RegNetConfig
base_model_prefix = "regnet"
main_input_name = "pixel_values"
@property
def input_signature(self):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)}
REGNET_START_DOCSTRING = r"""
This model is a Tensorflow
[keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
REGNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.",
REGNET_START_DOCSTRING,
)
class TFRegNetModel(TFRegNetPreTrainedModel):
def __init__(self, config: RegNetConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.regnet = TFRegNetMainLayer(config, name="regnet")
@unpack_inputs
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: tf.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regnet", None) is not None:
with tf.name_scope(self.regnet.name):
self.regnet.build(None)
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
REGNET_START_DOCSTRING,
)
class TFRegNetForImageClassification(TFRegNetPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: RegNetConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.regnet = TFRegNetMainLayer(config, name="regnet")
# classification head
self.classifier = [
keras.layers.Flatten(),
keras.layers.Dense(config.num_labels, name="classifier.1") if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
labels: Optional[tf.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.regnet(
pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
flattened_output = self.classifier[0](pooled_output)
logits = self.classifier[1](flattened_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regnet", None) is not None:
with tf.name_scope(self.regnet.name):
self.regnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier[1].name):
self.classifier[1].build([None, None, None, self.config.hidden_sizes[-1]])
| transformers/src/transformers/models/regnet/modeling_tf_regnet.py/0 | {
"file_path": "transformers/src/transformers/models/regnet/modeling_tf_regnet.py",
"repo_id": "transformers",
"token_count": 10486
} | 358 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert RoBERTa checkpoint."""
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import RobertaConfig, RobertaForMaskedLM, RobertaForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("0.9.0"):
raise Exception("requires fairseq >= 0.9.0")
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
SAMPLE_TEXT = "Hello world! cécé herlolip"
def convert_roberta_checkpoint_to_pytorch(
roberta_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool
):
"""
Copy/paste/tweak roberta's weights to our BERT structure.
"""
roberta = FairseqRobertaModel.from_pretrained(roberta_checkpoint_path)
roberta.eval() # disable dropout
roberta_sent_encoder = roberta.model.encoder.sentence_encoder
config = RobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings,
hidden_size=roberta.args.encoder_embed_dim,
num_hidden_layers=roberta.args.encoder_layers,
num_attention_heads=roberta.args.encoder_attention_heads,
intermediate_size=roberta.args.encoder_ffn_embed_dim,
max_position_embeddings=514,
type_vocab_size=1,
layer_norm_eps=1e-5, # PyTorch default used in fairseq
)
if classification_head:
config.num_labels = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our BERT config:", config)
model = RobertaForSequenceClassification(config) if classification_head else RobertaForMaskedLM(config)
model.eval()
# Now let's copy all the weights.
# Embeddings
model.roberta.embeddings.word_embeddings.weight = roberta_sent_encoder.embed_tokens.weight
model.roberta.embeddings.position_embeddings.weight = roberta_sent_encoder.embed_positions.weight
model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight
) # just zero them out b/c RoBERTa doesn't use them.
model.roberta.embeddings.LayerNorm.weight = roberta_sent_encoder.emb_layer_norm.weight
model.roberta.embeddings.LayerNorm.bias = roberta_sent_encoder.emb_layer_norm.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
layer: BertLayer = model.roberta.encoder.layer[i]
roberta_layer: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
# self attention
self_attn: BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size))
)
self_attn.query.weight.data = roberta_layer.self_attn.q_proj.weight
self_attn.query.bias.data = roberta_layer.self_attn.q_proj.bias
self_attn.key.weight.data = roberta_layer.self_attn.k_proj.weight
self_attn.key.bias.data = roberta_layer.self_attn.k_proj.bias
self_attn.value.weight.data = roberta_layer.self_attn.v_proj.weight
self_attn.value.bias.data = roberta_layer.self_attn.v_proj.bias
# self-attention output
self_output: BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
self_output.dense.weight = roberta_layer.self_attn.out_proj.weight
self_output.dense.bias = roberta_layer.self_attn.out_proj.bias
self_output.LayerNorm.weight = roberta_layer.self_attn_layer_norm.weight
self_output.LayerNorm.bias = roberta_layer.self_attn_layer_norm.bias
# intermediate
intermediate: BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fc1.weight.shape
intermediate.dense.weight = roberta_layer.fc1.weight
intermediate.dense.bias = roberta_layer.fc1.bias
# output
bert_output: BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fc2.weight.shape
bert_output.dense.weight = roberta_layer.fc2.weight
bert_output.dense.bias = roberta_layer.fc2.bias
bert_output.LayerNorm.weight = roberta_layer.final_layer_norm.weight
bert_output.LayerNorm.bias = roberta_layer.final_layer_norm.bias
# end of layer
if classification_head:
model.classifier.dense.weight = roberta.model.classification_heads["mnli"].dense.weight
model.classifier.dense.bias = roberta.model.classification_heads["mnli"].dense.bias
model.classifier.out_proj.weight = roberta.model.classification_heads["mnli"].out_proj.weight
model.classifier.out_proj.bias = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
model.lm_head.dense.weight = roberta.model.encoder.lm_head.dense.weight
model.lm_head.dense.bias = roberta.model.encoder.lm_head.dense.bias
model.lm_head.layer_norm.weight = roberta.model.encoder.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = roberta.model.encoder.lm_head.layer_norm.bias
model.lm_head.decoder.weight = roberta.model.encoder.lm_head.weight
model.lm_head.decoder.bias = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
input_ids: torch.Tensor = roberta.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1
our_output = model(input_ids)[0]
if classification_head:
their_output = roberta.model.classification_heads["mnli"](roberta.extract_features(input_ids))
else:
their_output = roberta.model(input_ids)[0]
print(our_output.shape, their_output.shape)
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
success = torch.allclose(our_output, their_output, atol=1e-3)
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
args = parser.parse_args()
convert_roberta_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| transformers/src/transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/roberta/convert_roberta_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3215
} | 359 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"],
"tokenization_roformer": ["RoFormerTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_roformer_fast"] = ["RoFormerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_roformer"] = [
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoFormerForCausalLM",
"RoFormerForMaskedLM",
"RoFormerForMultipleChoice",
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_roformer"] = [
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRoFormerForCausalLM",
"TFRoFormerForMaskedLM",
"TFRoFormerForMultipleChoice",
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_roformer"] = [
"FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/roformer/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/roformer/__init__.py",
"repo_id": "transformers",
"token_count": 2239
} | 360 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for SAM."""
import math
from copy import deepcopy
from itertools import product
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import (
TensorType,
is_tf_available,
is_torch_available,
is_torchvision_available,
logging,
requires_backends,
)
if is_torch_available():
import torch
import torch.nn.functional as F
if is_torchvision_available():
from torchvision.ops.boxes import batched_nms
if is_tf_available():
import tensorflow as tf
from tensorflow.experimental import numpy as tnp
from ...tf_utils import flatten, shape_list
logger = logging.get_logger(__name__)
class SamImageProcessor(BaseImageProcessor):
r"""
Constructs a SAM image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`):
Size of the output image after resizing. Resizes the longest edge of the image to match
`size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `size` parameter in the
`preprocess` method.
mask_size (`dict`, *optional*, defaults to `{"longest_edge": 256}`):
Size of the output segmentation map after resizing. Resizes the longest edge of the image to match
`size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `mask_size` parameter
in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
overridden by the `rescale_factor` parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the
`preprocess` method.
pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`):
Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess`
method.
mask_pad_size (`dict`, *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the output segmentation map after padding. Can be overridden by the `mask_pad_size` parameter in
the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
mask_size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: bool = True,
pad_size: int = None,
mask_pad_size: int = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"longest_edge": 1024}
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size
pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024}
pad_size = get_size_dict(pad_size, default_to_square=True)
mask_size = mask_size if mask_size is not None else {"longest_edge": 256}
mask_size = (
get_size_dict(max_size=mask_size, default_to_square=False)
if not isinstance(mask_size, dict)
else mask_size
)
mask_pad_size = mask_pad_size if mask_pad_size is not None else {"height": 256, "width": 256}
mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True)
self.do_resize = do_resize
self.size = size
self.mask_size = mask_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
self.pad_size = pad_size
self.mask_pad_size = mask_pad_size
self.do_convert_rgb = do_convert_rgb
def pad_image(
self,
image: np.ndarray,
pad_size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Pad an image to `(pad_size["height"], pad_size["width"])` with zeros to the right and bottom.
Args:
image (`np.ndarray`):
Image to pad.
pad_size (`Dict[str, int]`):
Size of the output image after padding.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the
`data_format` of the `image` will be used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = pad_size["height"], pad_size["width"]
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
pad_width = output_width - input_width
pad_height = output_height - input_height
padded_image = pad(
image,
((0, pad_height), (0, pad_width)),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return padded_image
def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int):
"""
Compute the output size given input size and target long side length.
"""
oldh, oldw = old_shape
scale = longest_edge * 1.0 / max(oldh, oldw)
newh, neww = oldh * scale, oldw * scale
newh = int(newh + 0.5)
neww = int(neww + 0.5)
return (newh, neww)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"longest_edge": int}` specifying the size of the output image. The longest
edge of the image will be resized to the specified size, while the other edge will be resized to
maintain the aspect ratio.
resample:
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "longest_edge" not in size:
raise ValueError(f"The `size` dictionary must contain the key `longest_edge`. Got {size.keys()}")
input_size = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"])
return resize(
image,
size=(output_height, output_width),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess(
self,
image: ImageInput,
do_resize: bool,
do_rescale: bool,
do_normalize: bool,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
rescale_factor: Optional[float] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
pad_size: Optional[Dict[str, int]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
reshaped_input_size = get_image_size(image, channel_dim=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
if do_pad:
image = self.pad_image(image=image, pad_size=pad_size, input_data_format=input_data_format)
return image, reshaped_input_size
def _preprocess_image(
self,
image: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
pad_size: Optional[Dict[str, int]] = None,
do_convert_rgb: Optional[bool] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]:
image = to_numpy_array(image)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
image = convert_to_rgb(image)
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
original_size = get_image_size(image, channel_dim=input_data_format)
image, reshaped_input_size = self._preprocess(
image=image,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
pad_size=pad_size,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image, original_size, reshaped_input_size
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_resize: Optional[bool] = None,
mask_size: Dict[str, int] = None,
do_pad: Optional[bool] = None,
mask_pad_size: Optional[Dict[str, int]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
input_data_format = ChannelDimension.FIRST
else:
added_channel_dim = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
original_size = get_image_size(segmentation_map, channel_dim=input_data_format)
segmentation_map, _ = self._preprocess(
image=segmentation_map,
do_resize=do_resize,
size=mask_size,
resample=PILImageResampling.NEAREST,
do_rescale=False,
do_normalize=False,
do_pad=do_pad,
pad_size=mask_pad_size,
input_data_format=input_data_format,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map, original_size
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
mask_size: Optional[Dict[str, int]] = None,
resample: Optional["PILImageResampling"] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
pad_size: Optional[Dict[str, int]] = None,
mask_pad_size: Optional[Dict[str, int]] = None,
do_convert_rgb: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
segmentation_maps (`ImageInput`, *optional*):
Segmentation map to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Controls the size of the image after `resize`. The longest edge of the image is resized to
`size["longest_edge"]` whilst preserving the aspect ratio.
mask_size (`Dict[str, int]`, *optional*, defaults to `self.mask_size`):
Controls the size of the segmentation map after `resize`. The longest edge of the image is resized to
`size["longest_edge"]` whilst preserving the aspect ratio.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image pixel values by rescaling factor.
rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to apply to the image pixel values.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to normalize the image by if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image.
pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`):
Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and
`pad_size["width"]` if `do_pad` is set to `True`.
mask_pad_size (`Dict[str, int]`, *optional*, defaults to `self.mask_pad_size`):
Controls the size of the padding applied to the segmentation map. The image is padded to
`mask_pad_size["height"]` and `mask_pad_size["width"]` if `do_pad` is set to `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size
mask_size = mask_size if mask_size is not None else self.mask_size
mask_size = (
get_size_dict(max_size=mask_size, default_to_square=False)
if not isinstance(mask_size, dict)
else mask_size
)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_pad = do_pad if do_pad is not None else self.do_pad
pad_size = pad_size if pad_size is not None else self.pad_size
pad_size = get_size_dict(pad_size, default_to_square=True)
mask_pad_size = mask_pad_size if mask_pad_size is not None else self.mask_pad_size
mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True)
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and (size is None or resample is None):
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
if do_pad and pad_size is None:
raise ValueError("Pad size must be specified if do_pad is True.")
images, original_sizes, reshaped_input_sizes = zip(
*(
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
pad_size=pad_size,
do_convert_rgb=do_convert_rgb,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
)
)
data = {
"pixel_values": images,
"original_sizes": original_sizes,
"reshaped_input_sizes": reshaped_input_sizes,
}
if segmentation_maps is not None:
segmentation_maps, original_mask_sizes = zip(
*(
self._preprocess_mask(
segmentation_map=mask,
do_resize=do_resize,
mask_size=mask_size,
do_pad=do_pad,
mask_pad_size=mask_pad_size,
input_data_format=input_data_format,
)
for mask in segmentation_maps
)
)
# masks should start out the same size as input images
assert all(
original_im_size == original_mask_size
for original_im_size, original_mask_size in zip(original_sizes, original_mask_sizes)
), "Segmentation maps should be the same size as input images."
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_masks(
self,
masks,
original_sizes,
reshaped_input_sizes,
mask_threshold=0.0,
binarize=True,
pad_size=None,
return_tensors="pt",
):
"""
Remove padding and upscale masks to the original image size.
Args:
masks (`Union[List[torch.Tensor], List[np.ndarray], List[tf.Tensor]]`):
Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
original_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`):
The original sizes of each image before it was resized to the model's expected input shape, in (height,
width) format.
reshaped_input_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`):
The size of each image as it is fed to the model, in (height, width) format. Used to remove padding.
mask_threshold (`float`, *optional*, defaults to 0.0):
The threshold to use for binarizing the masks.
binarize (`bool`, *optional*, defaults to `True`):
Whether to binarize the masks.
pad_size (`int`, *optional*, defaults to `self.pad_size`):
The target size the images were padded to before being passed to the model. If None, the target size is
assumed to be the processor's `pad_size`.
return_tensors (`str`, *optional*, defaults to `"pt"`):
If `"pt"`, return PyTorch tensors. If `"tf"`, return TensorFlow tensors.
Returns:
(`Union[torch.Tensor, tf.Tensor]`): Batched masks in batch_size, num_channels, height, width) format, where
(height, width) is given by original_size.
"""
if return_tensors == "pt":
return self._post_process_masks_pt(
masks=masks,
original_sizes=original_sizes,
reshaped_input_sizes=reshaped_input_sizes,
mask_threshold=mask_threshold,
binarize=binarize,
pad_size=pad_size,
)
elif return_tensors == "tf":
return self._post_process_masks_tf(
masks=masks,
original_sizes=original_sizes,
reshaped_input_sizes=reshaped_input_sizes,
mask_threshold=mask_threshold,
binarize=binarize,
pad_size=pad_size,
)
else:
raise ValueError("return_tensors must be either 'pt' or 'tf'")
def _post_process_masks_pt(
self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None
):
"""
Remove padding and upscale masks to the original image size.
Args:
masks (`Union[List[torch.Tensor], List[np.ndarray]]`):
Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
original_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`):
The original sizes of each image before it was resized to the model's expected input shape, in (height,
width) format.
reshaped_input_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`):
The size of each image as it is fed to the model, in (height, width) format. Used to remove padding.
mask_threshold (`float`, *optional*, defaults to 0.0):
The threshold to use for binarizing the masks.
binarize (`bool`, *optional*, defaults to `True`):
Whether to binarize the masks.
pad_size (`int`, *optional*, defaults to `self.pad_size`):
The target size the images were padded to before being passed to the model. If None, the target size is
assumed to be the processor's `pad_size`.
Returns:
(`torch.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width)
is given by original_size.
"""
requires_backends(self, ["torch"])
pad_size = self.pad_size if pad_size is None else pad_size
target_image_size = (pad_size["height"], pad_size["width"])
if isinstance(original_sizes, (torch.Tensor, np.ndarray)):
original_sizes = original_sizes.tolist()
if isinstance(reshaped_input_sizes, (torch.Tensor, np.ndarray)):
reshaped_input_sizes = reshaped_input_sizes.tolist()
output_masks = []
for i, original_size in enumerate(original_sizes):
if isinstance(masks[i], np.ndarray):
masks[i] = torch.from_numpy(masks[i])
elif not isinstance(masks[i], torch.Tensor):
raise ValueError("Input masks should be a list of `torch.tensors` or a list of `np.ndarray`")
interpolated_mask = F.interpolate(masks[i], target_image_size, mode="bilinear", align_corners=False)
interpolated_mask = interpolated_mask[..., : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1]]
interpolated_mask = F.interpolate(interpolated_mask, original_size, mode="bilinear", align_corners=False)
if binarize:
interpolated_mask = interpolated_mask > mask_threshold
output_masks.append(interpolated_mask)
return output_masks
def _post_process_masks_tf(
self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None
):
"""
Remove padding and upscale masks to the original image size.
Args:
masks (`tf.Tensor`):
Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
original_sizes (`tf.Tensor`):
The original size of the images before resizing for input to the model, in (height, width) format.
reshaped_input_sizes (`tf.Tensor`):
The size of the image input to the model, in (height, width) format. Used to remove padding.
mask_threshold (`float`, *optional*, defaults to 0.0):
The threshold to use for binarizing the masks.
binarize (`bool`, *optional*, defaults to `True`):
Whether to binarize the masks.
pad_size (`int`, *optional*, defaults to `self.pad_size`):
The target size the images were padded to before being passed to the model. If None, the target size is
assumed to be the processor's `pad_size`.
Returns:
(`tf.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is
given by original_size.
"""
requires_backends(self, ["tf"])
pad_size = self.pad_size if pad_size is None else pad_size
target_image_size = (pad_size["height"], pad_size["width"])
output_masks = []
for i, original_size in enumerate(original_sizes):
# tf.image expects NHWC, we transpose the NCHW inputs for it
mask = tf.transpose(masks[i], perm=[0, 2, 3, 1])
interpolated_mask = tf.image.resize(mask, target_image_size, method="bilinear")
interpolated_mask = interpolated_mask[:, : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1], :]
interpolated_mask = tf.image.resize(interpolated_mask, original_size, method="bilinear")
if binarize:
interpolated_mask = interpolated_mask > mask_threshold
# And then we transpose them back at the end
output_masks.append(tf.transpose(interpolated_mask, perm=[0, 3, 1, 2]))
return output_masks
def post_process_for_mask_generation(
self, all_masks, all_scores, all_boxes, crops_nms_thresh, return_tensors="pt"
):
"""
Post processes mask that are generated by calling the Non Maximum Suppression algorithm on the predicted masks.
Args:
all_masks (`Union[List[torch.Tensor], List[tf.Tensor]]`):
List of all predicted segmentation masks
all_scores (`Union[List[torch.Tensor], List[tf.Tensor]]`):
List of all predicted iou scores
all_boxes (`Union[List[torch.Tensor], List[tf.Tensor]]`):
List of all bounding boxes of the predicted masks
crops_nms_thresh (`float`):
Threshold for NMS (Non Maximum Suppression) algorithm.
return_tensors (`str`, *optional*, defaults to `pt`):
If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
"""
if return_tensors == "pt":
return _postprocess_for_mg(all_masks, all_scores, all_boxes, crops_nms_thresh)
elif return_tensors == "tf":
return _postprocess_for_mg_tf(all_masks, all_scores, all_boxes, crops_nms_thresh)
def generate_crop_boxes(
self,
image,
target_size,
crop_n_layers: int = 0,
overlap_ratio: float = 512 / 1500,
points_per_crop: Optional[int] = 32,
crop_n_points_downscale_factor: Optional[List[int]] = 1,
device: Optional["torch.device"] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
return_tensors: str = "pt",
):
"""
Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.
Args:
image (`np.array`):
Input original image
target_size (`int`):
Target size of the resized image
crop_n_layers (`int`, *optional*, defaults to 0):
If >0, mask prediction will be run again on crops of the image. Sets the number of layers to run, where
each layer has 2**i_layer number of image crops.
overlap_ratio (`float`, *optional*, defaults to 512/1500):
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
points_per_crop (`int`, *optional*, defaults to 32):
Number of points to sample from each crop.
crop_n_points_downscale_factor (`List[int]`, *optional*, defaults to 1):
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
device (`torch.device`, *optional*, defaults to None):
Device to use for the computation. If None, cpu will be used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
return_tensors (`str`, *optional*, defaults to `pt`):
If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
"""
crop_boxes, points_per_crop, cropped_images, input_labels = _generate_crop_boxes(
image,
target_size,
crop_n_layers,
overlap_ratio,
points_per_crop,
crop_n_points_downscale_factor,
input_data_format,
)
if return_tensors == "pt":
if device is None:
device = torch.device("cpu")
crop_boxes = torch.tensor(crop_boxes, device=device)
points_per_crop = torch.tensor(points_per_crop, device=device)
# cropped_images stays as np
input_labels = torch.tensor(input_labels, device=device)
elif return_tensors == "tf":
if device is not None:
raise ValueError("device is not a supported argument when return_tensors is tf!")
crop_boxes = tf.convert_to_tensor(crop_boxes)
points_per_crop = tf.convert_to_tensor(points_per_crop)
# cropped_images stays as np
input_labels = tf.convert_to_tensor(input_labels)
else:
raise ValueError("return_tensors must be either 'pt' or 'tf'.")
return crop_boxes, points_per_crop, cropped_images, input_labels
def filter_masks(
self,
masks,
iou_scores,
original_size,
cropped_box_image,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
mask_threshold=0,
stability_score_offset=1,
return_tensors="pt",
):
"""
Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
bounding boxes and pad the predicted masks if necessary.
Args:
masks (`Union[torch.Tensor, tf.Tensor]`):
Input masks.
iou_scores (`Union[torch.Tensor, tf.Tensor]`):
List of IoU scores.
original_size (`Tuple[int,int]`):
Size of the orginal image.
cropped_box_image (`np.array`):
The cropped image.
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
The threshold for the iou scores.
stability_score_thresh (`float`, *optional*, defaults to 0.95):
The threshold for the stability score.
mask_threshold (`float`, *optional*, defaults to 0):
The threshold for the predicted masks.
stability_score_offset (`float`, *optional*, defaults to 1):
The offset for the stability score used in the `_compute_stability_score` method.
return_tensors (`str`, *optional*, defaults to `pt`):
If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
"""
if return_tensors == "pt":
return self._filter_masks_pt(
masks=masks,
iou_scores=iou_scores,
original_size=original_size,
cropped_box_image=cropped_box_image,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
mask_threshold=mask_threshold,
stability_score_offset=stability_score_offset,
)
elif return_tensors == "tf":
return self._filter_masks_tf(
masks=masks,
iou_scores=iou_scores,
original_size=original_size,
cropped_box_image=cropped_box_image,
pred_iou_thresh=pred_iou_thresh,
stability_score_thresh=stability_score_thresh,
mask_threshold=mask_threshold,
stability_score_offset=stability_score_offset,
)
def _filter_masks_pt(
self,
masks,
iou_scores,
original_size,
cropped_box_image,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
mask_threshold=0,
stability_score_offset=1,
):
"""
Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
bounding boxes and pad the predicted masks if necessary.
Args:
masks (`torch.Tensor`):
Input masks.
iou_scores (`torch.Tensor`):
List of IoU scores.
original_size (`Tuple[int,int]`):
Size of the orginal image.
cropped_box_image (`np.array`):
The cropped image.
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
The threshold for the iou scores.
stability_score_thresh (`float`, *optional*, defaults to 0.95):
The threshold for the stability score.
mask_threshold (`float`, *optional*, defaults to 0):
The threshold for the predicted masks.
stability_score_offset (`float`, *optional*, defaults to 1):
The offset for the stability score used in the `_compute_stability_score` method.
"""
requires_backends(self, ["torch"])
original_height, original_width = original_size
iou_scores = iou_scores.flatten(0, 1)
masks = masks.flatten(0, 1)
if masks.shape[0] != iou_scores.shape[0]:
raise ValueError("masks and iou_scores must have the same batch size.")
if masks.device != iou_scores.device:
iou_scores = iou_scores.to(masks.device)
batch_size = masks.shape[0]
keep_mask = torch.ones(batch_size, dtype=torch.bool, device=masks.device)
if pred_iou_thresh > 0.0:
keep_mask = keep_mask & (iou_scores > pred_iou_thresh)
# compute stability score
if stability_score_thresh > 0.0:
stability_scores = _compute_stability_score_pt(masks, mask_threshold, stability_score_offset)
keep_mask = keep_mask & (stability_scores > stability_score_thresh)
scores = iou_scores[keep_mask]
masks = masks[keep_mask]
# binarize masks
masks = masks > mask_threshold
converted_boxes = _batched_mask_to_box(masks)
keep_mask = ~_is_box_near_crop_edge(
converted_boxes, cropped_box_image, [0, 0, original_width, original_height]
)
scores = scores[keep_mask]
masks = masks[keep_mask]
converted_boxes = converted_boxes[keep_mask]
masks = _pad_masks(masks, cropped_box_image, original_height, original_width)
# conversion to rle is necessary to run non-maximum suppresion
masks = _mask_to_rle_pytorch(masks)
return masks, scores, converted_boxes
def _filter_masks_tf(
self,
masks,
iou_scores,
original_size,
cropped_box_image,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
mask_threshold=0,
stability_score_offset=1,
):
"""
Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
bounding boxes and pad the predicted masks if necessary.
Args:
masks (`tf.Tensor`):
Input masks.
iou_scores (`tf.Tensor`):
List of IoU scores.
original_size (`Tuple[int,int]`):
Size of the orginal image.
cropped_box_image (`np.array`):
The cropped image.
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
The threshold for the iou scores.
stability_score_thresh (`float`, *optional*, defaults to 0.95):
The threshold for the stability score.
mask_threshold (`float`, *optional*, defaults to 0):
The threshold for the predicted masks.
stability_score_offset (`float`, *optional*, defaults to 1):
The offset for the stability score used in the `_compute_stability_score` method.
"""
requires_backends(self, ["tf"])
original_height, original_width = original_size
iou_scores = tf.reshape(iou_scores, [iou_scores.shape[0] * iou_scores.shape[1], iou_scores.shape[2:]])
masks = tf.reshape(masks, [masks.shape[0] * masks.shape[1], masks.shape[2:]])
if masks.shape[0] != iou_scores.shape[0]:
raise ValueError("masks and iou_scores must have the same batch size.")
batch_size = masks.shape[0]
keep_mask = tf.ones(batch_size, dtype=tf.bool)
if pred_iou_thresh > 0.0:
keep_mask = keep_mask & (iou_scores > pred_iou_thresh)
# compute stability score
if stability_score_thresh > 0.0:
stability_scores = _compute_stability_score_tf(masks, mask_threshold, stability_score_offset)
keep_mask = keep_mask & (stability_scores > stability_score_thresh)
scores = iou_scores[keep_mask]
masks = masks[keep_mask]
# binarize masks
masks = masks > mask_threshold
converted_boxes = _batched_mask_to_box_tf(masks)
keep_mask = ~_is_box_near_crop_edge_tf(
converted_boxes, cropped_box_image, [0, 0, original_width, original_height]
)
scores = scores[keep_mask]
masks = masks[keep_mask]
converted_boxes = converted_boxes[keep_mask]
masks = _pad_masks_tf(masks, cropped_box_image, original_height, original_width)
# conversion to rle is necessary to run non-maximum suppresion
masks = _mask_to_rle_tf(masks)
return masks, scores, converted_boxes
def _compute_stability_score_pt(masks: "torch.Tensor", mask_threshold: float, stability_score_offset: int):
# One mask is always contained inside the other.
# Save memory by preventing unnecesary cast to torch.int64
intersections = (
(masks > (mask_threshold + stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
)
unions = (masks > (mask_threshold - stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
stability_scores = intersections / unions
return stability_scores
def _compute_stability_score_tf(masks: "tf.Tensor", mask_threshold: float, stability_score_offset: int):
# Torch does Py3-style division but TF does floor division with ints. We cast to float32 in TF to make sure
# we get the right division results.
intersections = tf.count_nonzero(
masks > (mask_threshold + stability_score_offset), axis=[-1, -2], dtype=tf.float32
)
unions = tf.count_nonzero(masks > (mask_threshold - stability_score_offset), axis=[-1, -2], dtype=tf.float32)
stability_scores = intersections / unions
return stability_scores
def _build_point_grid(n_per_side: int) -> np.ndarray:
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
offset = 1 / (2 * n_per_side)
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
return points
def _normalize_coordinates(
target_size: int, coords: np.ndarray, original_size: Tuple[int, int], is_bounding_box=False
) -> np.ndarray:
"""
Expects a numpy array of length 2 in the final dimension. Requires the original image size in (height, width)
format.
"""
old_height, old_width = original_size
scale = target_size * 1.0 / max(old_height, old_width)
new_height, new_width = old_height * scale, old_width * scale
new_width = int(new_width + 0.5)
new_height = int(new_height + 0.5)
coords = deepcopy(coords).astype(float)
if is_bounding_box:
coords = coords.reshape(-1, 2, 2)
coords[..., 0] = coords[..., 0] * (new_width / old_width)
coords[..., 1] = coords[..., 1] * (new_height / old_height)
if is_bounding_box:
coords = coords.reshape(-1, 4)
return coords
def _generate_crop_boxes(
image,
target_size: int, # Is it tuple here?
crop_n_layers: int = 0,
overlap_ratio: float = 512 / 1500,
points_per_crop: Optional[int] = 32,
crop_n_points_downscale_factor: Optional[List[int]] = 1,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[List[List[int]], List[int]]:
"""
Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.
Args:
image (Union[`numpy.ndarray`, `PIL.Image`, `torch.Tensor`]):
Image to generate crops for.
target_size (`int`):
Size of the smallest crop.
crop_n_layers (`int`, *optional*):
If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers
to run, where each layer has 2**i_layer number of image crops.
overlap_ratio (`int`, *optional*):
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the
image length. Later layers with more crops scale down this overlap.
points_per_crop (`int`, *optional*):
Number of points to sample per crop.
crop_n_points_downscale_factor (`int`, *optional*):
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if isinstance(image, list):
raise ValueError("Only one image is allowed for crop generation.")
image = to_numpy_array(image)
original_size = get_image_size(image, input_data_format)
points_grid = []
for i in range(crop_n_layers + 1):
n_points = int(points_per_crop / (crop_n_points_downscale_factor**i))
points_grid.append(_build_point_grid(n_points))
crop_boxes, layer_idxs = _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size)
cropped_images, point_grid_per_crop = _generate_crop_images(
crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format
)
crop_boxes = np.array(crop_boxes)
crop_boxes = crop_boxes.astype(np.float32)
points_per_crop = np.array([point_grid_per_crop])
points_per_crop = np.transpose(points_per_crop, axes=(0, 2, 1, 3))
input_labels = np.ones_like(points_per_crop[:, :, :, 0], dtype=np.int64)
return crop_boxes, points_per_crop, cropped_images, input_labels
def _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size):
"""
Generates 2 ** (layers idx + 1) crops for each crop_n_layers. Crops are in the XYWH format : The XYWH format
consists of the following required indices:
- X: X coordinate of the top left of the bounding box
- Y: Y coordinate of the top left of the bounding box
- W: width of the bounding box
- H: height of the bounding box
"""
crop_boxes, layer_idxs = [], []
im_height, im_width = original_size
short_side = min(im_height, im_width)
# Original image
crop_boxes.append([0, 0, im_width, im_height])
layer_idxs.append(0)
for i_layer in range(crop_n_layers):
n_crops_per_side = 2 ** (i_layer + 1)
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
crop_width = int(math.ceil((overlap * (n_crops_per_side - 1) + im_width) / n_crops_per_side))
crop_height = int(math.ceil((overlap * (n_crops_per_side - 1) + im_height) / n_crops_per_side))
crop_box_x0 = [int((crop_width - overlap) * i) for i in range(n_crops_per_side)]
crop_box_y0 = [int((crop_height - overlap) * i) for i in range(n_crops_per_side)]
for left, top in product(crop_box_x0, crop_box_y0):
box = [left, top, min(left + crop_width, im_width), min(top + crop_height, im_height)]
crop_boxes.append(box)
layer_idxs.append(i_layer + 1)
return crop_boxes, layer_idxs
def _generate_crop_images(
crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format=None
):
"""
Takes as an input bounding boxes that are used to crop the image. Based in the crops, the corresponding points are
also passed.
"""
cropped_images = []
total_points_per_crop = []
for i, crop_box in enumerate(crop_boxes):
left, top, right, bottom = crop_box
channel_dim = infer_channel_dimension_format(image, input_data_format)
if channel_dim == ChannelDimension.LAST:
cropped_im = image[top:bottom, left:right, :]
else:
cropped_im = image[:, top:bottom, left:right]
cropped_images.append(cropped_im)
cropped_im_size = get_image_size(cropped_im, channel_dim)
points_scale = np.array(cropped_im_size)[None, ::-1]
points = points_grid[layer_idxs[i]] * points_scale
normalized_points = _normalize_coordinates(target_size, points, original_size)
total_points_per_crop.append(normalized_points)
return cropped_images, total_points_per_crop
def _pad_masks(masks, crop_box: List[int], orig_height: int, orig_width: int):
left, top, right, bottom = crop_box
if left == 0 and top == 0 and right == orig_width and bottom == orig_height:
return masks
# Coordinate transform masks
pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top)
pad = (left, pad_x - left, top, pad_y - top)
return torch.nn.functional.pad(masks, pad, value=0)
def _pad_masks_tf(masks, crop_box: List[int], orig_height: int, orig_width: int):
left, top, right, bottom = crop_box
if left == 0 and top == 0 and right == orig_width and bottom == orig_height:
return masks
# Coordinate transform masks
pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top)
pad = (left, pad_x - left, top, pad_y - top)
return tf.pad(masks, pad, constant_values=0)
def _is_box_near_crop_edge(boxes, crop_box, orig_box, atol=20.0):
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
left, top, _, _ = crop_box
offset = torch.tensor([[left, top, left, top]], device=boxes.device)
# Check if boxes has a channel dimension
if len(boxes.shape) == 3:
offset = offset.unsqueeze(1)
boxes = (boxes + offset).float()
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
return torch.any(near_crop_edge, dim=1)
def _is_box_near_crop_edge_tf(boxes, crop_box, orig_box, atol=20.0):
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
crop_box_tf = tf.convert_to_tensor(crop_box, dtype=tf.float32)
orig_box_tf = tf.convert_to_tensor(orig_box, dtype=tf.float32)
left, top, _, _ = crop_box
offset = tf.convert_to_tensor([[left, top, left, top]])
# Check if boxes has a channel dimension
if len(boxes.shape) == 3:
offset = tf.expand_dims(offset, 1)
boxes = tf.cast(boxes + offset, tf.float32)
near_crop_edge = tnp.isclose(boxes, crop_box_tf[None, :], atol=atol, rtol=0)
near_image_edge = tnp.isclose(boxes, orig_box_tf[None, :], atol=atol, rtol=0)
near_crop_edge = tf.math.logical_and(near_crop_edge, ~near_image_edge)
return tf.reduce_any(near_crop_edge, axis=1)
def _batched_mask_to_box(masks: "torch.Tensor"):
"""
Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
corresponds the following required indices:
- LEFT: left hand side of the bounding box
- TOP: top of the bounding box
- RIGHT: right of the bounding box
- BOTTOM: bottom of the bounding box
Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
is channel_1 x channel_2 x ... x 4.
Args:
- masks (`torch.Tensor` of shape `(batch, nb_mask, height, width)`)
"""
# torch.max below raises an error on empty inputs, just skip in this case
if torch.numel(masks) == 0:
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
# Normalize shape to Cxheightxwidth
shape = masks.shape
height, width = shape[-2:]
# Get top and bottom edges
in_height, _ = torch.max(masks, dim=-1)
in_height_coords = in_height * torch.arange(height, device=in_height.device)[None, :]
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
in_height_coords = in_height_coords + height * (~in_height)
top_edges, _ = torch.min(in_height_coords, dim=-1)
# Get left and right edges
in_width, _ = torch.max(masks, dim=-2)
in_width_coords = in_width * torch.arange(width, device=in_width.device)[None, :]
right_edges, _ = torch.max(in_width_coords, dim=-1)
in_width_coords = in_width_coords + width * (~in_width)
left_edges, _ = torch.min(in_width_coords, dim=-1)
# If the mask is empty the right edge will be to the left of the left edge.
# Replace these boxes with [0, 0, 0, 0]
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
out = out * (~empty_filter).unsqueeze(-1)
# Return to original shape
out = out.reshape(*shape[:-2], 4)
return out
def _batched_mask_to_box_tf(masks: "tf.Tensor"):
"""
Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
corresponds the following required indices:
- LEFT: left hand side of the bounding box
- TOP: top of the bounding box
- RIGHT: right of the bounding box
- BOTTOM: bottom of the bounding box
Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
is channel_1 x channel_2 x ... x 4.
Args:
- masks (`tf.Tensor` of shape `(batch, nb_mask, height, width)`)
"""
if tf.size(masks) == 0:
return tf.zeros([*masks.shape[:-2], 4])
# Normalize shape to Cxheightxwidth
shape = shape_list(masks)
height, width = shape[-2:]
# Get top and bottom edges
in_height = tf.reduce_max(masks, axis=-1)
in_height_coords = in_height * tf.range(height)[None, :]
bottom_edges = tf.reduce_max(in_height_coords, axis=-1)
in_height_coords = in_height_coords + height * (~in_height)
top_edges = tf.reduce_min(in_height_coords, axis=-1)
# Get left and right edges
in_width, _ = tf.reduce_max(masks, axis=-2)
in_width_coords = in_width * tf.range(width)[None, :]
right_edges, _ = tf.reduce_max(in_width_coords, axis=-1)
in_width_coords = in_width_coords + width * (~in_width)
left_edges, _ = tf.reduce_min(in_width_coords, axis=-1)
# If the mask is empty the right edge will be to the left of the left edge.
# Replace these boxes with [0, 0, 0, 0]
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = tf.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1)
out = out * tf.expand_dims(~empty_filter, -1)
# Return to original shape
out = tf.reshape(out, *shape[:-2], 4)
return out
def _mask_to_rle_pytorch(input_mask: "torch.Tensor"):
"""
Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools.
"""
# Put in fortran order and flatten height and width
batch_size, height, width = input_mask.shape
input_mask = input_mask.permute(0, 2, 1).flatten(1)
# Compute change indices
diff = input_mask[:, 1:] ^ input_mask[:, :-1]
change_indices = diff.nonzero()
# Encode run length
out = []
for i in range(batch_size):
cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
counts = [] if input_mask[i, 0] == 0 else [0]
counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]]
out.append({"size": [height, width], "counts": counts})
return out
def _mask_to_rle_tf(input_mask: "tf.Tensor"):
"""
Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools.
"""
# Put in fortran order and flatten height and width
batch_size, height, width = input_mask.shape
input_mask = flatten(tf.transpose(input_mask, perm=(0, 2, 1)), 1)
# Compute change indices
diff = input_mask[:, 1:] ^ input_mask[:, :-1]
change_indices = tf.where(diff)
# Encode run length
out = []
for i in range(batch_size):
cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
counts = [] if input_mask[i, 0] == 0 else [0]
counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]]
out.append({"size": [height, width], "counts": counts})
return out
def _rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
"""Compute a binary mask from an uncompressed RLE."""
height, width = rle["size"]
mask = np.empty(height * width, dtype=bool)
idx = 0
parity = False
for count in rle["counts"]:
mask[idx : idx + count] = parity
idx += count
parity = not parity
mask = mask.reshape(width, height)
return mask.transpose() # Reshape to original shape
def _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
"""
Perform NMS (Non Maximum Suppression) on the outputs.
Args:
rle_masks (`torch.Tensor`):
binary masks in the RLE format
iou_scores (`torch.Tensor` of shape (nb_masks, 1)):
iou_scores predicted by the model
mask_boxes (`torch.Tensor`):
The bounding boxes corresponding to segmentation masks
amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7):
NMS threshold.
"""
keep_by_nms = batched_nms(
boxes=mask_boxes.float(),
scores=iou_scores,
idxs=torch.zeros(mask_boxes.shape[0]),
iou_threshold=amg_crops_nms_thresh,
)
iou_scores = iou_scores[keep_by_nms]
rle_masks = [rle_masks[i] for i in keep_by_nms]
mask_boxes = mask_boxes[keep_by_nms]
masks = [_rle_to_mask(rle) for rle in rle_masks]
return masks, iou_scores, rle_masks, mask_boxes
def _postprocess_for_mg_tf(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
"""
Perform NMS (Non Maximum Suppression) on the outputs.
Args:
rle_masks (`tf.Tensor`):
binary masks in the RLE format
iou_scores (`tf.Tensor` of shape (nb_masks, 1)):
iou_scores predicted by the model
mask_boxes (`tf.Tensor`):
The bounding boxes corresponding to segmentation masks
amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7):
NMS threshold.
"""
keep_by_nms = tf.image.combined_non_max_suppression(
boxes=mask_boxes.float(),
scores=iou_scores,
idxs=torch.zeros(mask_boxes.shape[0]),
iou_threshold=amg_crops_nms_thresh,
)
iou_scores = iou_scores[keep_by_nms]
rle_masks = [rle_masks[i] for i in keep_by_nms]
mask_boxes = mask_boxes[keep_by_nms]
masks = [_rle_to_mask(rle) for rle in rle_masks]
return masks, iou_scores, rle_masks, mask_boxes
| transformers/src/transformers/models/sam/image_processing_sam.py/0 | {
"file_path": "transformers/src/transformers/models/sam/image_processing_sam.py",
"repo_id": "transformers",
"token_count": 29198
} | 361 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Siglip model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
}
class SiglipTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`SiglipModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 64):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
pad_token_id (`int`, *optional*, defaults to 1):
The id of the padding token in the vocabulary.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the vocabulary.
Example:
```python
>>> from transformers import SiglipTextConfig, SiglipTextModel
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipTextConfig()
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_text_model"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=64,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
# This differs from `CLIPTokenizer`'s default and from openai/siglip
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from SiglipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class SiglipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipVisionConfig()
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from SiglipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class SiglipConfig(PretrainedConfig):
r"""
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import SiglipConfig, SiglipModel
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipConfig()
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
>>> # Initializing a SiglipText and SiglipVision configuration
>>> config_text = SiglipTextConfig()
>>> config_vision = SiglipVisionConfig()
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "siglip"
def __init__(self, text_config=None, vision_config=None, **kwargs):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
self.text_config = SiglipTextConfig(**text_config)
self.vision_config = SiglipVisionConfig(**vision_config)
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
r"""
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
model configuration.
Returns:
[`SiglipConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
| transformers/src/transformers/models/siglip/configuration_siglip.py/0 | {
"file_path": "transformers/src/transformers/models/siglip/configuration_siglip.py",
"repo_id": "transformers",
"token_count": 5034
} | 362 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Speech2Text model."""
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_speech_to_text import Speech2TextConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Speech2TextConfig"
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/s2t-small-librispeech-asr",
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class Conv1dSubsampler(nn.Module):
"""
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
via gated linear units (https://arxiv.org/abs/1911.08460)
"""
def __init__(self, config):
super(Conv1dSubsampler, self).__init__()
self.config = config
self.num_layers = config.num_conv_layers
self.in_channels = config.input_feat_per_channel * config.input_channels
self.mid_channels = config.conv_channels
self.out_channels = config.d_model
self.kernel_sizes = config.conv_kernel_sizes
self.conv_layers = nn.ModuleList(
nn.Conv1d(
self.in_channels if i == 0 else self.mid_channels // 2,
self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2,
kernel_size=k,
stride=2,
padding=k // 2,
)
for i, k in enumerate(self.kernel_sizes)
)
def forward(self, input_features):
hidden_states = input_features.transpose(1, 2).contiguous() # -> B x (C x D) x T
for conv in self.conv_layers:
hidden_states = conv(hidden_states)
hidden_states = nn.functional.glu(hidden_states, dim=1)
hidden_states = hidden_states.transpose(1, 2).contiguous() # -> T x B x (C x D)
return hidden_states
class Speech2TextSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
def create_position_ids_from_input_ids(
self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Speech2Text
class Speech2TextAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[Speech2TextConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
SPEECH_TO_TEXT_ATTENTION_CLASSES = {"eager": Speech2TextAttention}
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT
class Speech2TextEncoderLayer(nn.Module):
def __init__(self, config: Speech2TextConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT
class Speech2TextDecoderLayer(nn.Module):
def __init__(self, config: Speech2TextConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class Speech2TextPreTrainedModel(PreTrainedModel):
config_class = Speech2TextConfig
base_model_prefix = "model"
main_input_name = "input_features"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
for i in range(self.config.num_conv_layers):
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
# generate creates 3D attention mask, because of the shape of input_features
# convert it to 2D if thats the case
if len(attention_mask.shape) > 2:
attention_mask = attention_mask[:, :, -1]
subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
bsz = attention_mask.size()[0]
attention_mask = torch.zeros(
(bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
return attention_mask
SPEECH_TO_TEXT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Speech2TextConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SPEECH_TO_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`]
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
[`modeling_speech_to_text._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class Speech2TextEncoder(Speech2TextPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`Speech2TextEncoderLayer`].
Args:
config: Speech2TextConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: Speech2TextConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.conv = Conv1dSubsampler(config)
self.embed_positions = Speech2TextSinusoidalPositionalEmbedding(
self.max_source_positions,
embed_dim,
self.padding_idx,
)
self.layers = nn.ModuleList([Speech2TextEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
padding and conversion into a tensor of type `torch.FloatTensor`. See
[`~Speech2TextFeatureExtractor.__call__`]
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs_embeds = self.conv(input_features)
inputs_embeds = self.embed_scale * inputs_embeds
# subsample attention mask if necessary
if attention_mask is not None:
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)
padding_mask = attention_mask.ne(1).long()
else:
padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device)
embed_pos = self.embed_positions(padding_mask)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class Speech2TextDecoder(Speech2TextPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2TextDecoderLayer`]
Args:
config: Speech2TextConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: Speech2TextConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = Speech2TextSinusoidalPositionalEmbedding(
self.max_target_positions,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([Speech2TextDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Speech2Text Model outputting raw hidden-states without any specific head on top.",
SPEECH_TO_TEXT_START_DOCSTRING,
)
class Speech2TextModel(Speech2TextPreTrainedModel):
def __init__(self, config: Speech2TextConfig):
super().__init__(config)
self.encoder = Speech2TextEncoder(config)
self.decoder = Speech2TextDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import Speech2TextModel, AutoFeatureExtractor
>>> from datasets import load_dataset
>>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> input_features = inputs.input_features
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# downsample encoder attention mask
if attention_mask is not None:
encoder_attention_mask = self._get_feature_vector_attention_mask(
encoder_outputs[0].shape[1], attention_mask
)
else:
encoder_attention_mask = None
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The Speech2Text Model with a language modeling head. Can be used for summarization.",
SPEECH_TO_TEXT_START_DOCSTRING,
)
class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel):
base_model_prefix = "model"
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: Speech2TextConfig):
super().__init__(config)
self.model = Speech2TextModel(config)
self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
>>> from datasets import load_dataset
>>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
... )
>>> input_features = inputs.input_features
>>> generated_ids = model.generate(inputs=input_features)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_features,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py/0 | {
"file_path": "transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py",
"repo_id": "transformers",
"token_count": 28147
} | 363 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Speech processor class for SpeechT5."""
from ...processing_utils import ProcessorMixin
class SpeechT5Processor(ProcessorMixin):
r"""
Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor.
[`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See
the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information.
Args:
feature_extractor (`SpeechT5FeatureExtractor`):
An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input.
tokenizer (`SpeechT5Tokenizer`):
An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "SpeechT5FeatureExtractor"
tokenizer_class = "SpeechT5Tokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, *args, **kwargs):
"""
Processes audio and text input, as well as audio and text targets.
You can process audio by using the argument `audio`, or process audio targets by using the argument
`audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's
[`~SpeechT5FeatureExtractor.__call__`].
You can process text by using the argument `text`, or process text labels by using the argument `text_target`.
This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`].
Valid input combinations are:
- `text` only
- `audio` only
- `text_target` only
- `audio_target` only
- `text` and `audio_target`
- `audio` and `audio_target`
- `text` and `text_target`
- `audio` and `text_target`
Please refer to the docstring of the above two methods for more information.
"""
audio = kwargs.pop("audio", None)
text = kwargs.pop("text", None)
text_target = kwargs.pop("text_target", None)
audio_target = kwargs.pop("audio_target", None)
sampling_rate = kwargs.pop("sampling_rate", None)
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?"
)
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?"
)
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process."
)
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
elif text is not None:
inputs = self.tokenizer(text, **kwargs)
else:
inputs = None
if audio_target is not None:
targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs)
labels = targets["input_values"]
elif text_target is not None:
targets = self.tokenizer(text_target, **kwargs)
labels = targets["input_ids"]
else:
targets = None
if inputs is None:
return targets
if targets is not None:
inputs["labels"] = labels
decoder_attention_mask = targets.get("attention_mask")
if decoder_attention_mask is not None:
inputs["decoder_attention_mask"] = decoder_attention_mask
return inputs
def pad(self, *args, **kwargs):
"""
Collates the audio and text inputs, as well as their targets, into a padded batch.
Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded
by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`].
Valid input combinations are:
- `input_ids` only
- `input_values` only
- `labels` only, either log-mel spectrograms or text tokens
- `input_ids` and log-mel spectrogram `labels`
- `input_values` and text `labels`
Please refer to the docstring of the above two methods for more information.
"""
input_values = kwargs.pop("input_values", None)
input_ids = kwargs.pop("input_ids", None)
labels = kwargs.pop("labels", None)
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs.")
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded."
)
if input_values is not None:
inputs = self.feature_extractor.pad(input_values, *args, **kwargs)
elif input_ids is not None:
inputs = self.tokenizer.pad(input_ids, **kwargs)
else:
inputs = None
if labels is not None:
if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]):
targets = self.tokenizer.pad(labels, **kwargs)
labels = targets["input_ids"]
else:
feature_size_hack = self.feature_extractor.feature_size
self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins
targets = self.feature_extractor.pad(labels, *args, **kwargs)
self.feature_extractor.feature_size = feature_size_hack
labels = targets["input_values"]
else:
targets = None
if inputs is None:
return targets
if targets is not None:
inputs["labels"] = labels
decoder_attention_mask = targets.get("attention_mask")
if decoder_attention_mask is not None:
inputs["decoder_attention_mask"] = decoder_attention_mask
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
| transformers/src/transformers/models/speecht5/processing_speecht5.py/0 | {
"file_path": "transformers/src/transformers/models/speecht5/processing_speecht5.py",
"repo_id": "transformers",
"token_count": 3047
} | 364 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_swin"] = [
"SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwinForImageClassification",
"SwinForMaskedImageModeling",
"SwinModel",
"SwinPreTrainedModel",
"SwinBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_swin"] = [
"TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSwinForImageClassification",
"TFSwinForMaskedImageModeling",
"TFSwinModel",
"TFSwinPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/swin/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/swin/__init__.py",
"repo_id": "transformers",
"token_count": 1111
} | 365 |
# coding=utf-8
# Copyright 2022, Google and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Switch Transformers model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json",
}
class SwitchTransformersConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SwitchTransformersModel`]. It is used to
instantiate a SwitchTransformers model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
SwitchTransformers [google/switch-base-8](https://huggingface.co/google/switch-base-8) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 32128):
Vocabulary size of the SwitchTransformers model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`SwitchTransformersModel`].
d_model (`int`, *optional*, defaults to 768):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
num_heads`.
d_ff (`int`, *optional*, defaults to 2048):
Size of the intermediate feed forward layer in each `SwitchTransformersBlock`.
expert_capacity (`int`, *optional*, defaults to 64):
Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular
Transformer.
num_layers (`int`, *optional*, defaults to 12):
Number of dense hidden layers in the Transformer encoder layer.
num_sparse_encoder_layers (`int`, *optional*, defaults to 3):
Number of sparse (MoE) dense hidden layers in the Transformer encoder layer.
num_decoder_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_sparse_decoder_layers (`int`, *optional*, defaults to 3):
Number of sparse (MoE) dense hidden layers in the Transformer decoder layer.
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_experts (`int`, *optional*, defaults to 8):
Number of experts for each SwitchTransformer layer.
router_bias (`bool`, *optional*, defaults to `False`):
Whether to add a bias to the router.
router_jitter_noise (`float`, *optional*, defaults to 0.01):
Amount of noise to add to the router.
router_dtype (`str`, *optional*, default to `"float32"`):
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
Whether to ignore padding tokens when routing.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
router_z_loss_coef (`float`, *optional*, defaults to 0.001):
The z loss factor for the total loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. SwitchTransformersv1.1
uses the `"gated-gelu"` feed forward projection. Original SwitchTransformers uses `"relu"`.
add_router_probs (`bool`, *optional*, defaults to `False`):
Whether to output router probabilities to compute router auxiliary loss.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "switch_transformers"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=32128,
d_model=768,
d_kv=64,
d_ff=2048,
expert_capacity=64,
num_layers=12,
num_sparse_encoder_layers=3,
num_decoder_layers=12,
num_sparse_decoder_layers=3,
num_heads=12,
num_experts=8,
router_bias=False,
router_jitter_noise=0.01,
router_dtype="float32",
router_ignore_padding_tokens=False,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
router_z_loss_coef=0.001,
router_aux_loss_coef=0.001,
initializer_factor=1.0,
dense_act_fn="relu",
is_encoder_decoder=True,
add_router_probs=False,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_sparse_encoder_layers = num_sparse_encoder_layers
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_sparse_decoder_layers = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
self.encoder_sparse_step = self.num_layers // self.num_sparse_encoder_layers
else:
self.encoder_sparse_step = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
self.decoder_sparse_step = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
self.decoder_sparse_step = self.num_decoder_layers # HACK: this will create 0 sparse layers
self.num_heads = num_heads
self.num_experts = num_experts
self.expert_capacity = expert_capacity
self.router_bias = router_bias
self.router_jitter_noise = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
self.router_dtype = router_dtype
self.router_ignore_padding_tokens = router_ignore_padding_tokens
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.use_cache = use_cache
self.add_router_probs = add_router_probs
self.router_z_loss_coef = router_z_loss_coef
self.router_aux_loss_coef = router_aux_loss_coef
self.dense_act_fn = dense_act_fn
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
| transformers/src/transformers/models/switch_transformers/configuration_switch_transformers.py/0 | {
"file_path": "transformers/src/transformers/models/switch_transformers/configuration_switch_transformers.py",
"repo_id": "transformers",
"token_count": 3660
} | 366 |
# coding=utf-8
# Copyright The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Table Transformer model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class TableTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TableTransformerModel`]. It is used to
instantiate a Table Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Table Transformer
[microsoft/table-transformer-detection](https://huggingface.co/microsoft/table-transformer-detection) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_timm_backbone (`bool`, *optional*, defaults to `True`):
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
API.
backbone_config (`PretrainedConfig` or `dict`, *optional*):
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
case it will default to `ResNetConfig()`.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_queries (`int`, *optional*, defaults to 100):
Number of object queries, i.e. detection slots. This is the maximal number of objects
[`TableTransformerModel`] can detect in a single image. For COCO, we recommend 100 queries.
d_model (`int`, *optional*, defaults to 256):
Dimension of the layers.
encoder_layers (`int`, *optional*, defaults to 6):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
auxiliary_loss (`bool`, *optional*, defaults to `False`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, `True`):
Whether to use pretrained weights for the backbone.
dilation (`bool`, *optional*, defaults to `False`):
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
`use_timm_backbone` = `True`.
class_cost (`float`, *optional*, defaults to 1):
Relative weight of the classification error in the Hungarian matching cost.
bbox_cost (`float`, *optional*, defaults to 5):
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
giou_cost (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
mask_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the Focal loss in the panoptic segmentation loss.
dice_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
Relative weight of the L1 bounding box loss in the object detection loss.
giou_loss_coefficient (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss in the object detection loss.
eos_coefficient (`float`, *optional*, defaults to 0.1):
Relative classification weight of the 'no-object' class in the object detection loss.
Examples:
```python
>>> from transformers import TableTransformerModel, TableTransformerConfig
>>> # Initializing a Table Transformer microsoft/table-transformer-detection style configuration
>>> configuration = TableTransformerConfig()
>>> # Initializing a model from the microsoft/table-transformer-detection style configuration
>>> model = TableTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "table-transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
# Copied from transformers.models.detr.configuration_detr.DetrConfig.__init__
def __init__(
self,
use_timm_backbone=True,
backbone_config=None,
num_channels=3,
num_queries=100,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=8,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
is_encoder_decoder=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
init_xavier_std=1.0,
auxiliary_loss=False,
position_embedding_type="sine",
backbone="resnet50",
use_pretrained_backbone=True,
dilation=False,
class_cost=1,
bbox_cost=5,
giou_cost=2,
mask_loss_coefficient=1,
dice_loss_coefficient=1,
bbox_loss_coefficient=5,
giou_loss_coefficient=2,
eos_coefficient=0.1,
**kwargs,
):
if not use_timm_backbone and use_pretrained_backbone:
raise ValueError(
"Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
)
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
# set timm attributes to None
dilation, backbone, use_pretrained_backbone = None, None, None
self.use_timm_backbone = use_timm_backbone
self.backbone_config = backbone_config
self.num_channels = num_channels
self.num_queries = num_queries
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.num_hidden_layers = encoder_layers
self.auxiliary_loss = auxiliary_loss
self.position_embedding_type = position_embedding_type
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.dilation = dilation
# Hungarian matcher
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
# Loss coefficients
self.mask_loss_coefficient = mask_loss_coefficient
self.dice_loss_coefficient = dice_loss_coefficient
self.bbox_loss_coefficient = bbox_loss_coefficient
self.giou_loss_coefficient = giou_loss_coefficient
self.eos_coefficient = eos_coefficient
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
# Copied from transformers.models.detr.configuration_detr.DetrOnnxConfig
class TableTransformerOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-5
@property
def default_onnx_opset(self) -> int:
return 12
| transformers/src/transformers/models/table_transformer/configuration_table_transformer.py/0 | {
"file_path": "transformers/src/transformers/models/table_transformer/configuration_table_transformer.py",
"repo_id": "transformers",
"token_count": 4981
} | 367 |
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch TimeSformer model."""
import collections
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_timesformer import TimesformerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "TimesformerConfig"
_CHECKPOINT_FOR_DOC = "facebook/timesformer"
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/timesformer-base-finetuned-k400",
# See all TimeSformer models at https://huggingface.co/models?filter=timesformer
]
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L155
class TimesformerPatchEmbeddings(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, config):
super().__init__()
image_size = config.image_size
patch_size = config.patch_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width)
embeddings = self.projection(pixel_values)
patch_width = embeddings.size(-1)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, num_frames, patch_width
class TimesformerEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
num_frames = config.num_frames
drop_rate = config.hidden_dropout_prob
attention_type = config.attention_type
self.attention_type = attention_type
self.patch_embeddings = TimesformerPatchEmbeddings(config)
self.num_patches = self.patch_embeddings.num_patches
# Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if attention_type != "space_only":
self.time_embeddings = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
def forward(self, pixel_values):
batch_size = pixel_values.shape[0]
# create patch embeddings
embeddings, num_frames, patch_width = self.patch_embeddings(pixel_values)
cls_tokens = self.cls_token.expand(embeddings.size(0), -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# resizing the positional embeddings in case they don't match the input at inference
if embeddings.size(1) != self.position_embeddings.size(1):
position_embeddings = self.position_embeddings
cls_pos_embed = position_embeddings[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = position_embeddings[0, 1:, :].unsqueeze(0).transpose(1, 2)
patch_num = int(other_pos_embed.size(2) ** 0.5)
patch_height = embeddings.size(1) // patch_width
other_pos_embed = other_pos_embed.reshape(1, embeddings.size(2), patch_num, patch_num)
new_pos_embed = nn.functional.interpolate(
other_pos_embed, size=(patch_height, patch_width), mode="nearest"
)
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
embeddings = embeddings + new_pos_embed
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.pos_drop(embeddings)
# Time Embeddings
if self.attention_type != "space_only":
cls_tokens = embeddings[:batch_size, 0, :].unsqueeze(1)
embeddings = embeddings[:, 1:]
_, patch_height, patch_width = embeddings.shape
embeddings = (
embeddings.reshape(batch_size, num_frames, patch_height, patch_width)
.permute(0, 2, 1, 3)
.reshape(batch_size * patch_height, num_frames, patch_width)
)
# Resizing time embeddings in case they don't match
if num_frames != self.time_embeddings.size(1):
time_embeddings = self.time_embeddings.transpose(1, 2)
new_time_embeddings = nn.functional.interpolate(time_embeddings, size=(num_frames), mode="nearest")
new_time_embeddings = new_time_embeddings.transpose(1, 2)
embeddings = embeddings + new_time_embeddings
else:
embeddings = embeddings + self.time_embeddings
embeddings = self.time_drop(embeddings)
embeddings = embeddings.view(batch_size, patch_height, num_frames, patch_width).reshape(
batch_size, patch_height * num_frames, patch_width
)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
return embeddings
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->TimeSformer
class TimeSformerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L57
class TimesformerSelfAttention(nn.Module):
def __init__(self, config: TimesformerConfig):
super().__init__()
num_heads = config.num_attention_heads
qkv_bias = config.qkv_bias
attention_dropout_prob = config.attention_probs_dropout_prob
self.num_heads = num_heads
head_dim = config.hidden_size // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attention_dropout_prob)
def forward(self, hidden_states, output_attentions: bool = False):
batch_size, hidden_size, num_channels = hidden_states.shape
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, hidden_size, 3, self.num_heads, num_channels // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
query, key, value = qkv[0], qkv[1], qkv[2]
attention_probs = (query @ key.transpose(-2, -1)) * self.scale
attention_probs = attention_probs.softmax(dim=-1)
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, hidden_size, num_channels)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class TimesformerSelfOutput(nn.Module):
"""
The residual connection is defined in TimesformerLayer instead of here (as is the case with other models), due to
the layernorm applied before each block.
"""
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TimeSformerAttention(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.attention = TimesformerSelfAttention(config)
self.output = TimesformerSelfOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, output_attentions)
attention_output = self.output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L39
class TimesformerIntermediate(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TimesformerOutput(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L89
class TimesformerLayer(nn.Module):
def __init__(self, config: TimesformerConfig, layer_index: int) -> None:
super().__init__()
attention_type = config.attention_type
drop_path_rates = [
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
] # stochastic depth decay rule
drop_path_rate = drop_path_rates[layer_index]
self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.attention = TimeSformerAttention(config)
self.intermediate = TimesformerIntermediate(config)
self.output = TimesformerOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.config = config
self.attention_type = attention_type
if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]:
raise ValueError("Unknown attention type: {}".format(attention_type))
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.temporal_attention = TimeSformerAttention(config)
self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False):
num_frames = self.config.num_frames
num_patch_width = self.config.image_size // self.config.patch_size
batch_size = hidden_states.shape[0]
num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames
num_patch_height = num_spatial_tokens // num_patch_width
if self.attention_type in ["space_only", "joint_space_time"]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), output_attentions=output_attentions
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
hidden_states = hidden_states + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
elif self.attention_type == "divided_space_time":
# Temporal
temporal_embedding = hidden_states[:, 1:, :]
temporal_embedding = temporal_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2]
).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2])
temporal_attention_outputs = self.temporal_attention(
self.temporal_layernorm(temporal_embedding),
)
attention_output = temporal_attention_outputs[0]
residual_temporal = self.drop_path(attention_output)
residual_temporal = residual_temporal.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2]
).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2])
residual_temporal = self.temporal_dense(residual_temporal)
temporal_embedding = hidden_states[:, 1:, :] + residual_temporal
# Spatial
init_cls_token = hidden_states[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, num_frames, 1)
cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2])
spatial_embedding = temporal_embedding
spatial_embedding = (
spatial_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2]
)
.permute(0, 3, 1, 2, 4)
.reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2])
)
spatial_embedding = torch.cat((cls_token, spatial_embedding), 1)
spatial_attention_outputs = self.attention(
self.layernorm_before(spatial_embedding), output_attentions=output_attentions
)
attention_output = spatial_attention_outputs[0]
outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights
residual_spatial = self.drop_path(attention_output)
# Taking care of CLS token
cls_token = residual_spatial[:, 0, :]
cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1])
cls_token = torch.mean(cls_token, 1, True) # averaging for every frame
residual_spatial = residual_spatial[:, 1:, :]
residual_spatial = (
residual_spatial.reshape(
batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2]
)
.permute(0, 2, 3, 1, 4)
.reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2])
)
residual = residual_spatial
hidden_states = temporal_embedding
# Mlp
hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual), 1)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
class TimesformerEncoder(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([TimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class TimesformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TimesformerConfig
base_model_prefix = "timesformer"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Conv2d)):
nn.init.trunc_normal_(module.weight, std=self.config.initializer_range)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, 0)
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, TimesformerEmbeddings):
nn.init.trunc_normal_(module.cls_token, std=self.config.initializer_range)
nn.init.trunc_normal_(module.position_embeddings, std=self.config.initializer_range)
module.patch_embeddings.apply(self._init_weights)
TIMESFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TimesformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TIMESFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`VideoMAEImageProcessor.preprocess`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare TimeSformer Model transformer outputting raw hidden-states without any specific head on top.",
TIMESFORMER_START_DOCSTRING,
)
class TimesformerModel(TimesformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = TimesformerEmbeddings(config)
self.encoder = TimesformerEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> import av
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
>>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1569, 768]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if self.layernorm is not None:
sequence_output = self.layernorm(sequence_output)
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""TimeSformer Model transformer with a video classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.""",
TIMESFORMER_START_DOCSTRING,
)
class TimesformerForVideoClassification(TimesformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.timesformer = TimesformerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... logits = outputs.logits
>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
eating spaghetti
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.timesformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0][:, 0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/timesformer/modeling_timesformer.py/0 | {
"file_path": "transformers/src/transformers/models/timesformer/modeling_timesformer.py",
"repo_id": "transformers",
"token_count": 15092
} | 368 |
# coding=utf-8
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License=, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing=, software
# distributed under the License is distributed on an "AS IS" BASIS=,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TVP model configuration"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
TVP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"Intel/tvp-base": "https://huggingface.co/Intel/tvp-base/resolve/main/config.json",
}
class TvpConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TvpModel`]. It is used to instantiate an Tvp
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Tvp
[Intel/tvp-base](https://huggingface.co/Intel/tvp-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig` or `dict`, *optional*):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
distance_loss_weight (`float`, *optional*, defaults to 1.0):
The weight of distance loss.
duration_loss_weight (`float`, *optional*, defaults to 0.1):
The weight of duration loss.
visual_prompter_type (`str`, *optional*, defaults to `"framepad"`):
Visual prompt type. The type of padding. Framepad means padding on each frame. Should be one of "framepad"
or "framedownpad"
visual_prompter_apply (`str`, *optional*, defaults to `"replace"`):
The way of applying visual prompt. Replace means use the value of prompt to change the original value in
visual inputs. Should be one of "replace", or "add", or "remove".
visual_prompt_size (`int`, *optional*, defaults to 96):
The size of visual prompt.
max_img_size (`int`, *optional*, defaults to 448):
The maximum size of frame.
num_frames (`int`, *optional*, defaults to 48):
The number of frames extracted from a video.
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the Tvp text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`TvpModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
max_grid_col_position_embeddings (`int`, *optional*, defaults to 100):
The largest number of horizontal patches from a video frame.
max_grid_row_position_embeddings (`int`, *optional*, defaults to 100):
The largest number of vertical patches from a video frame.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability of hidden layers.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability of attention layers.
"""
model_type = "tvp"
def __init__(
self,
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
distance_loss_weight=1.0,
duration_loss_weight=0.1,
visual_prompter_type="framepad",
visual_prompter_apply="replace",
visual_prompt_size=96,
max_img_size=448,
num_frames=48,
vocab_size=30522,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=512,
max_grid_col_position_embeddings=100,
max_grid_row_position_embeddings=100,
hidden_dropout_prob=0.1,
hidden_act="gelu",
layer_norm_eps=1e-12,
initializer_range=0.02,
attention_probs_dropout_prob=0.1,
**kwargs,
):
super().__init__(**kwargs)
if use_pretrained_backbone:
raise ValueError("Pretrained backbones are not supported yet.")
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.distance_loss_weight = distance_loss_weight
self.duration_loss_weight = duration_loss_weight
self.visual_prompter_type = visual_prompter_type
self.visual_prompter_apply = visual_prompter_apply
self.visual_prompt_size = visual_prompt_size
self.max_img_size = max_img_size
self.num_frames = num_frames
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.max_grid_col_position_embeddings = max_grid_col_position_embeddings
self.max_grid_row_position_embeddings = max_grid_row_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_dropout_prob = hidden_dropout_prob
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.attention_probs_dropout_prob = attention_probs_dropout_prob
@classmethod
def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs):
"""Instantiate a [`TvpConfig`] (or a derived class) from a pre-trained backbone model configuration.
Args:
backbone_config ([`PretrainedConfig`]):
The backbone configuration.
Returns:
[`TvpConfig`]: An instance of a configuration object
"""
return cls(backbone_config=backbone_config, **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
output["backbone_config"] = self.backbone_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
| transformers/src/transformers/models/tvp/configuration_tvp.py/0 | {
"file_path": "transformers/src/transformers/models/tvp/configuration_tvp.py",
"repo_id": "transformers",
"token_count": 3686
} | 369 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch UniSpeechSat model."""
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
Wav2Vec2BaseModelOutput,
XVectorOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_peft_available,
logging,
replace_return_docstrings,
)
from .configuration_unispeech_sat import UniSpeechSatConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CONFIG_FOR_DOC = "UniSpeechSatConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/unispeech-sat-base-100h-libri-ft"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'MISTER QUILDER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
_CTC_EXPECTED_LOSS = 39.88
# Frame class docstring
_FRAME_CLASS_CHECKPOINT = "microsoft/unispeech-sat-base-plus-sd"
_FRAME_EXPECTED_OUTPUT = [0, 0]
# Speaker Verification docstring
_XVECTOR_CHECKPOINT = "microsoft/unispeech-sat-base-plus-sv"
_XVECTOR_EXPECTED_OUTPUT = 0.97
UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = [
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
]
@dataclass
class UniSpeechSatForPreTrainingOutput(ModelOutput):
"""
Output type of [`UniSpeechSatForPreTrainingOutput`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
projected_states: torch.FloatTensor = None
projected_quantized_states: torch.FloatTensor = None
codevector_perplexity: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeechSat
class UniSpeechSatNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeechSat
class UniSpeechSatLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeechSat
class UniSpeechSatGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeechSat
class UniSpeechSatPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = UniSpeechSatSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeechSat
class UniSpeechSatSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeechSat
class UniSpeechSatFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [UniSpeechSatGroupNormConvLayer(config, layer_id=0)] + [
UniSpeechSatNoLayerNormConvLayer(config, layer_id=i + 1)
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
UniSpeechSatLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class UniSpeechSatFeatureExtractor(UniSpeechSatFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeechSat
class UniSpeechSatFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeechSat
class UniSpeechSatAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[UniSpeechSatConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeechSat
class UniSpeechSatFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeechSat
class UniSpeechSatEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UniSpeechSatAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechSatFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeechSat
class UniSpeechSatAttnAdapterLayer(nn.Module):
def __init__(self, config):
"""
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
"""
super().__init__()
self.input_dim = config.adapter_attn_dim
self.hidden_dim = config.hidden_size
self.norm = nn.LayerNorm(self.hidden_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
self.act_fn = nn.ReLU()
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
def forward(self, hidden_states: torch.FloatTensor):
hidden_states = self.norm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeechSat
class UniSpeechSatEncoderLayerStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UniSpeechSatAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechSatFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if getattr(config, "adapter_attn_dim", None) is not None:
self.adapter_layer = UniSpeechSatAttnAdapterLayer(config)
else:
self.adapter_layer = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
if self.adapter_layer is not None:
hidden_states = hidden_states + self.adapter_layer(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeechSat
class UniSpeechSatEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([UniSpeechSatEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeechSat
class UniSpeechSatEncoderStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList(
[UniSpeechSatEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class UniSpeechSatGumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`"
f" {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(config.hidden_size, self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs, mask=None):
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
return codevectors, perplexity
class UniSpeechSatPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UniSpeechSatConfig
base_model_prefix = "unispeech_sat"
main_input_name = "input_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
# gumbel softmax requires special init
if isinstance(module, UniSpeechSatGumbelVectorQuantizer):
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
module.weight_proj.bias.data.zero_()
nn.init.uniform_(module.codevectors)
elif isinstance(module, UniSpeechSatPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, UniSpeechSatFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
UNISPEECH_SAT_START_DOCSTRING = r"""
UniSpeechSat was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
Auli.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`UniSpeechSatConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UNISPEECH_SAT_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
<Tip warning={true}>
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, such as
[microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft),
`attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For
such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware
that these models also yield slightly different results depending on whether `input_values` is padded or
not.
</Tip>
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare UniSpeechSat Model transformer outputting raw hidden-states without any specific head on top.",
UNISPEECH_SAT_START_DOCSTRING,
)
class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
def __init__(self, config: UniSpeechSatConfig):
super().__init__(config)
self.config = config
self.feature_extractor = UniSpeechSatFeatureEncoder(config)
self.feature_projection = UniSpeechSatFeatureProjection(config)
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = UniSpeechSatEncoderStableLayerNorm(config)
else:
self.encoder = UniSpeechSatEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""UniSpeechSat Model with a quantizer and `VQ` head on top.""", UNISPEECH_SAT_START_DOCSTRING)
class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
def __init__(self, config: UniSpeechSatConfig):
super().__init__(config)
self.unispeech_sat = UniSpeechSatModel(config)
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
self.quantizer = UniSpeechSatGumbelVectorQuantizer(config)
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
self.dropout = nn.Dropout(config.final_dropout)
self.speaker_proj = nn.Linear(config.hidden_size, config.codevector_dim)
self.label_embeddings_concat = nn.Parameter(torch.FloatTensor(config.num_clusters, config.codevector_dim))
self.label_embeddings_concat.data.zero_()
self.layer_norm_for_extract = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if self.config.do_stable_layer_norm:
self.layer_norm_for_extract.requires_grad = False
# Initialize weights and apply final processing
self.post_init()
def set_gumbel_temperature(self, temperature: int):
"""
Set the Gumbel softmax temperature to a given value. Only necessary for training
"""
self.quantizer.temperature = temperature
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
@staticmethod
def compute_contrastive_logits(
target_features: torch.FloatTensor,
negative_features: torch.FloatTensor,
predicted_features: torch.FloatTensor,
temperature: int = 1,
):
"""
Compute logits for contrastive loss based using cosine similarity as the distance measure between
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
"""
target_features = torch.cat([target_features, negative_features], dim=0)
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1)
logits = logits.type_as(target_features)
# apply temperature
logits = logits / temperature
return logits
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, UniSpeechSatForPreTrainingOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, UniSpeechSatForPreTraining
>>> from transformers.models.unispeech_sat.modeling_unispeech_sat import _compute_mask_indices
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-sat-base")
>>> model = UniSpeechSatForPreTraining.from_pretrained("microsoft/unispeech-sat-base")
>>> # TODO: Add full pretraining example
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
transformer_features = outputs[0]
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1])
# TODO(PVP) - add pretraining logic and add to tests
logits = extract_features
loss = quantized_features = codevector_perplexity = None
# layer normalization (has no effect when `config.do_stable_layer_norm == False`)
# extract_features = self.layer_norm_for_extract(extract_features)
# quantized_features, codevector_perplexity = self.quantizer(extract_features)
#
# project quantized features twice
# quantized_features = self.project_q(quantized_features)
# quantized_features = self.project_hid(quantized_features)
#
# loss = None
# logits = quantized_features
if not return_dict:
if loss is not None:
return (loss, logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return (logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return UniSpeechSatForPreTrainingOutput(
loss=loss,
logits=logits,
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""UniSpeechSat Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
UNISPEECH_SAT_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechSatForCTC`] with adapters. Uses
'eng' by default.
""",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.unispeech_sat = UniSpeechSatModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `UniSpeechSatForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for UniSpeechSat so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, UniSpeechSat never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
UniSpeechSat Model with a sequence classification head on top (a linear layer over the pooled output) for tasks
like SUPERB Keyword Spotting.
""",
UNISPEECH_SAT_START_DOCSTRING,
)
class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)"
)
self.unispeech_sat = UniSpeechSatModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech_sat
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech_sat
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
hidden_states[~padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
UniSpeech-SAT Model with a frame classification head on top for tasks like Speaker Diarization.
""",
UNISPEECH_SAT_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Audio frame classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)"
)
self.unispeech_sat = UniSpeechSatModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.num_labels = config.num_labels
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_FRAME_CLASS_CHECKPOINT,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_FRAME_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__()
self.scale = scale
self.margin = margin
self.num_labels = num_labels
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
self.loss = nn.CrossEntropyLoss()
def forward(self, hidden_states, labels):
labels = labels.flatten()
weight = nn.functional.normalize(self.weight, dim=0)
hidden_states = nn.functional.normalize(hidden_states, dim=1)
cos_theta = torch.mm(hidden_states, weight)
psi = cos_theta - self.margin
onehot = nn.functional.one_hot(labels, self.num_labels)
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
loss = self.loss(logits, labels)
return loss
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
class TDNNLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
self.out_conv_dim = config.tdnn_dim[layer_id]
self.kernel_size = config.tdnn_kernel[layer_id]
self.dilation = config.tdnn_dilation[layer_id]
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
self.activation = nn.ReLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if is_peft_available():
from peft.tuners.lora import LoraLayer
if isinstance(self.kernel, LoraLayer):
warnings.warn(
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
"You should exclude TDNNLayer from LoRA's target modules.",
)
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
hidden_states = hidden_states.transpose(1, 2)
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.activation(hidden_states)
return hidden_states
@add_start_docstrings(
"""
UniSpeech-SAT Model with an XVector feature extraction head on top for tasks like Speaker Verification.
""",
UNISPEECH_SAT_START_DOCSTRING,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.unispeech_sat = UniSpeechSatModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
self.tdnn = nn.ModuleList(tdnn_layers)
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the TDNN layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size in self.config.tdnn_kernel:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
return input_lengths
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_XVECTOR_CHECKPOINT,
output_type=XVectorOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_XVECTOR_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, XVectorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
for tdnn_layer in self.tdnn:
hidden_states = tdnn_layer(hidden_states)
# Statistic Pooling
if attention_mask is None:
mean_features = hidden_states.mean(dim=1)
std_features = hidden_states.std(dim=1)
else:
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
mean_features = []
std_features = []
for i, length in enumerate(tdnn_output_lengths):
mean_features.append(hidden_states[i, :length].mean(dim=0))
std_features.append(hidden_states[i, :length].std(dim=0))
mean_features = torch.stack(mean_features)
std_features = torch.stack(std_features)
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
output_embeddings = self.feature_extractor(statistic_pooling)
logits = self.classifier(output_embeddings)
loss = None
if labels is not None:
loss = self.objective(logits, labels)
if not return_dict:
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return XVectorOutput(
loss=loss,
logits=logits,
embeddings=output_embeddings,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py/0 | {
"file_path": "transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py",
"repo_id": "transformers",
"token_count": 36855
} | 370 |
# coding=utf-8
# Copyright 2022 Multimedia Computing Group, Nanjing University and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch VideoMAE (masked autoencoder) model."""
import collections.abc
import math
from copy import deepcopy
from dataclasses import dataclass
from typing import Optional, Set, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .configuration_videomae import VideoMAEConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VideoMAEConfig"
_CHECKPOINT_FOR_DOC = "MCG-NJU/videomae-base"
VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"MCG-NJU/videomae-base",
# See all VideoMAE models at https://huggingface.co/models?filter=videomae
]
@dataclass
class VideoMAEDecoderOutput(ModelOutput):
"""
Class for VideoMAEDecoder's outputs, with potential hidden states and attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class VideoMAEForPreTrainingOutput(ModelOutput):
"""
Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions.
Args:
loss (`torch.FloatTensor` of shape `(1,)`):
Pixel reconstruction loss.
logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid):
"""Sinusoid position encoding table"""
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
class VideoMAEEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
self.patch_embeddings = VideoMAEPatchEmbeddings(config)
self.num_patches = self.patch_embeddings.num_patches
# fixed sin-cos embedding
self.position_embeddings = get_sinusoid_encoding_table(self.num_patches, config.hidden_size)
self.config = config
def forward(self, pixel_values, bool_masked_pos):
# create patch embeddings
embeddings = self.patch_embeddings(pixel_values)
# add position embeddings
embeddings = embeddings + self.position_embeddings.type_as(embeddings).to(embeddings.device).clone().detach()
# only keep visible patches
# ~bool_masked_pos means visible
if bool_masked_pos is not None:
batch_size, _, num_channels = embeddings.shape
embeddings = embeddings[~bool_masked_pos]
embeddings = embeddings.reshape(batch_size, -1, num_channels)
return embeddings
class VideoMAEPatchEmbeddings(nn.Module):
"""
Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels,
height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder.
The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width //
patch_size).
"""
def __init__(self, config):
super().__init__()
image_size = config.image_size
patch_size = config.patch_size
num_channels = config.num_channels
hidden_size = config.hidden_size
num_frames = config.num_frames
tubelet_size = config.tubelet_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
self.image_size = image_size
self.patch_size = patch_size
self.tubelet_size = int(tubelet_size)
num_patches = (
(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
)
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv3d(
in_channels=num_channels,
out_channels=hidden_size,
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
stride=(self.tubelet_size, patch_size[0], patch_size[1]),
)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
# permute to (batch_size, num_channels, num_frames, height, width)
pixel_values = pixel_values.permute(0, 2, 1, 3, 4)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
class VideoMAESelfAttention(nn.Module):
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
if config.qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(self.all_head_size))
self.v_bias = nn.Parameter(torch.zeros(self.all_head_size))
else:
self.q_bias = None
self.v_bias = None
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None
keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias)
values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias)
queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias)
key_layer = self.transpose_for_scores(keys)
value_layer = self.transpose_for_scores(values)
query_layer = self.transpose_for_scores(queries)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->VideoMAE
class VideoMAESelfOutput(nn.Module):
"""
The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->VideoMAE
class VideoMAEAttention(nn.Module):
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
self.attention = VideoMAESelfAttention(config)
self.output = VideoMAESelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->VideoMAE
class VideoMAEIntermediate(nn.Module):
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->VideoMAE
class VideoMAEOutput(nn.Module):
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->VideoMAE
class VideoMAELayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = VideoMAEAttention(config)
self.intermediate = VideoMAEIntermediate(config)
self.output = VideoMAEOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in VideoMAE, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in VideoMAE, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->VideoMAE
class VideoMAEEncoder(nn.Module):
def __init__(self, config: VideoMAEConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([VideoMAELayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class VideoMAEPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VideoMAEConfig
base_model_prefix = "videomae"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv3d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
VIDEOMAE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`VideoMAEConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIDEOMAE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`VideoMAEImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare VideoMAE Model transformer outputting raw hidden-states without any specific head on top.",
VIDEOMAE_START_DOCSTRING,
)
class VideoMAEModel(VideoMAEPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = VideoMAEEmbeddings(config)
self.encoder = VideoMAEEncoder(config)
if config.use_mean_pooling:
self.layernorm = None
else:
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence
length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`.
Returns:
Examples:
```python
>>> import av
>>> import numpy as np
>>> from transformers import AutoImageProcessor, VideoMAEModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 16 frames
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
>>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1568, 768]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if self.layernorm is not None:
sequence_output = self.layernorm(sequence_output)
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class VideoMAEDecoder(nn.Module):
def __init__(self, config, num_patches):
super().__init__()
decoder_num_labels = config.num_channels * config.tubelet_size * config.patch_size**2
decoder_config = deepcopy(config)
decoder_config.hidden_size = config.decoder_hidden_size
decoder_config.num_hidden_layers = config.decoder_num_hidden_layers
decoder_config.num_attention_heads = config.decoder_num_attention_heads
decoder_config.intermediate_size = config.decoder_intermediate_size
self.decoder_layers = nn.ModuleList(
[VideoMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.decoder_hidden_size)
self.head = (
nn.Linear(config.decoder_hidden_size, decoder_num_labels) if decoder_num_labels > 0 else nn.Identity()
)
self.gradient_checkpointing = False
self.config = config
def forward(
self,
hidden_states,
return_token_num,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
# apply Transformer layers (blocks)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.decoder_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
None,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if return_token_num > 0:
hidden_states = hidden_states[:, -return_token_num:]
# predictor projection
hidden_states = self.norm(hidden_states)
logits = self.head(hidden_states)
if not return_dict:
return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None)
return VideoMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
@add_start_docstrings(
"The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.",
VIDEOMAE_START_DOCSTRING,
)
class VideoMAEForPreTraining(VideoMAEPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.videomae = VideoMAEModel(config)
self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=False)
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
self.position_embeddings = get_sinusoid_encoding_table(
self.videomae.embeddings.num_patches, config.decoder_hidden_size
)
self.decoder = VideoMAEDecoder(config, num_patches=self.videomae.embeddings.num_patches)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
bool_masked_pos: torch.BoolTensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, VideoMAEForPreTrainingOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) *
(image_size // patch_size) ** 2`.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, VideoMAEForPreTraining
>>> import numpy as np
>>> import torch
>>> num_frames = 16
>>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224)))
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
>>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base")
>>> pixel_values = image_processor(video, return_tensors="pt").pixel_values
>>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2
>>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame
>>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.videomae(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.encoder_to_decoder(
sequence_output
) # [batch_size, num_visible_patches, decoder_hidden_size]
batch_size, seq_len, num_channels = sequence_output.shape
# we don't unshuffle the correct visible token order, but shuffle the position embeddings accordingly.
if bool_masked_pos is None:
raise ValueError("One must provided a boolean mask ")
expanded_position_embeddings = self.position_embeddings.expand(batch_size, -1, -1).type_as(pixel_values)
expanded_position_embeddings = expanded_position_embeddings.to(pixel_values.device).clone().detach()
pos_emb_visible = expanded_position_embeddings[~bool_masked_pos].reshape(batch_size, -1, num_channels)
pos_emb_mask = expanded_position_embeddings[bool_masked_pos].reshape(batch_size, -1, num_channels)
# [batch_size, num_patches, decoder_hidden_size]
x_full = torch.cat([sequence_output + pos_emb_visible, self.mask_token + pos_emb_mask], dim=1)
# [batch_size, num_masked_patches, num_channels * patch_size * patch_size]
decoder_outputs = self.decoder(x_full, pos_emb_mask.shape[1])
logits = decoder_outputs.logits
loss = None
with torch.no_grad():
# calculate the labels to be predicted
if self.config.num_channels != 3:
# Can't unnormalize with default means/stds
frames = pixel_values
else:
# first, unnormalize the frames
device = pixel_values.device
dtype = pixel_values.dtype
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device=device, dtype=dtype)[None, None, :, None, None]
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device=device, dtype=dtype)[None, None, :, None, None]
frames = pixel_values * std + mean # in [0, 1]
batch_size, time, num_channels, height, width = frames.shape
tubelet_size, patch_size = self.config.tubelet_size, self.config.patch_size
if self.config.norm_pix_loss:
# step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size)
frames = frames.view(
batch_size,
time // tubelet_size,
tubelet_size,
num_channels,
height // patch_size,
patch_size,
width // patch_size,
patch_size,
)
# step 2: move dimensions to concatenate:
frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
# step 3: concatenate:
frames = frames.view(
batch_size,
time // tubelet_size * height // patch_size * width // patch_size,
tubelet_size * patch_size * patch_size,
num_channels,
)
# step 4: normalize. The authors find that the mean is about 0.48 and standard deviation is about 0.08.
frames_norm = (frames - frames.mean(dim=-2, keepdim=True)) / (
frames.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6
)
# step 5: reshape to (batch_size, T//ts * H//ps * W//ps, ts * ps * ps * C)
videos_patch = frames_norm.view(
batch_size,
time // tubelet_size * height // patch_size * width // patch_size,
tubelet_size * patch_size * patch_size * num_channels,
)
else:
if self.config.num_channels != 3:
raise ValueError(
"Can't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False."
)
# step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size)
frames = frames.view(
batch_size,
time // tubelet_size,
tubelet_size,
num_channels,
height // patch_size,
patch_size,
width // patch_size,
patch_size,
)
# step 2: move dimensions to concatenate: (batch_size, T//ts, H//ps, W//ps, ts, ps, ps, C)
frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
# step 3: concatenate
videos_patch = frames.view(
batch_size,
time // tubelet_size * height // patch_size * width // patch_size,
tubelet_size * patch_size * patch_size * num_channels,
)
batch_size, _, num_channels = videos_patch.shape
labels = videos_patch[bool_masked_pos].reshape(batch_size, -1, num_channels)
loss_fct = MSELoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return VideoMAEForPreTrainingOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden
states of all tokens) e.g. for ImageNet.""",
VIDEOMAE_START_DOCSTRING,
)
class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.videomae = VideoMAEModel(config)
# Classifier head
self.fc_norm = nn.LayerNorm(config.hidden_size) if config.use_mean_pooling else None
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 16 frames
>>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... logits = outputs.logits
>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
eating spaghetti
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.videomae(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.fc_norm is not None:
sequence_output = self.fc_norm(sequence_output.mean(1))
else:
sequence_output = sequence_output[:, 0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/videomae/modeling_videomae.py/0 | {
"file_path": "transformers/src/transformers/models/videomae/modeling_videomae.py",
"repo_id": "transformers",
"token_count": 20402
} | 371 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Classes to support Vision-Encoder-Text-Decoder architectures"""
import gc
import os
import tempfile
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...configuration_utils import PretrainedConfig
from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VisionEncoderDecoderConfig"
VISION_ENCODER_DECODER_START_DOCSTRING = r"""
This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model
as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
generative task, like image captioning.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
Zhou, Wei Li, Peter J. Liu.
Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical
character recognition (OCR) yields a significant performance improvement.
After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any
other models (see the examples for more information).
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using an image processor (e.g. if you use ViT as the encoder,
you should use [`AutoImageProcessor`]). See [`ViTImageProcessor.__call__`] for details.
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""
@add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING)
class VisionEncoderDecoderModel(PreTrainedModel):
r"""
[`VisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with
one of the base vision model classes of the library as encoder and another one as decoder when created with the
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
"""
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
):
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
" `config.encoder.hidden_size`."
)
# initialize with config
# make sure input & output embeddings is not tied
config.tie_word_embeddings = False
super().__init__(config)
if encoder is None:
encoder = AutoModel.from_config(config.encoder)
if decoder is None:
decoder = AutoModelForCausalLM.from_config(config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
# encoder outputs might need to be projected to different dimension for decoder
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
if self.encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Example:
```python
>>> from transformers import VisionEncoderDecoderModel, AutoImageProcessor, AutoTokenizer
>>> from PIL import Image
>>> import requests
>>> image_processor = AutoImageProcessor.from_pretrained("ydshieh/vit-gpt2-coco-en")
>>> decoder_tokenizer = AutoTokenizer.from_pretrained("ydshieh/vit-gpt2-coco-en")
>>> model = VisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> img = Image.open(requests.get(url, stream=True).raw)
>>> pixel_values = image_processor(images=img, return_tensors="pt").pixel_values # Batch size 1
>>> output_ids = model.generate(
... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True
... ).sequences
>>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
>>> preds = [pred.strip() for pred in preds]
>>> assert preds == ["a cat laying on top of a couch next to another cat"]
```"""
from_tf = kwargs.pop("from_tf", False)
if from_tf:
from transformers import TFVisionEncoderDecoderModel
# a workaround to load from tensorflow checkpoint
# Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get
# extended before saving those components. For example, The name of `_tf_model.encoder.vit` is
# `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The
# [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`,
# which should not occur when we want to save the components alone.
# There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
# https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
# (the change in `src/transformers/modeling_tf_utils.py`)
_tf_model = TFVisionEncoderDecoderModel.from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
config = _tf_model.config
# Using `tf_model` instead
encoder = _tf_model.encoder.__class__(_tf_model.config.encoder)
decoder = _tf_model.decoder.__class__(_tf_model.config.decoder)
# Make sure models are built
encoder(encoder.dummy_inputs)
decoder(decoder.dummy_inputs)
# Get the variable correspondence between `_tf_model` and `encoder` and `decoder`
encoder_variables = {}
for v in encoder.trainable_variables + encoder.non_trainable_variables:
encoder_variables["/".join(v.name.split("/")[1:])] = v
decoder_variables = {}
for v in decoder.trainable_variables + decoder.non_trainable_variables:
decoder_variables["/".join(v.name.split("/")[1:])] = v
_encoder_variables = {}
for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables:
_encoder_variables["/".join(v.name.split("/")[2:])] = v
_decoder_variables = {}
for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables:
_decoder_variables["/".join(v.name.split("/")[2:])] = v
# assign weight values to `encoder` and `decoder` from `_tf_model`
for name, v in encoder_variables.items():
v.assign(_encoder_variables[name])
for name, v in decoder_variables.items():
v.assign(_decoder_variables[name])
tf_model = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
# Deal with `enc_to_dec_proj`
if hasattr(_tf_model, "enc_to_dec_proj"):
tf_model(tf_model.dummy_inputs)
tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel)
tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias)
with tempfile.TemporaryDirectory() as tmpdirname:
encoder_dir = os.path.join(tmpdirname, "encoder")
decoder_dir = os.path.join(tmpdirname, "decoder")
tf_model.encoder.save_pretrained(encoder_dir)
tf_model.decoder.save_pretrained(decoder_dir)
if hasattr(tf_model, "enc_to_dec_proj"):
enc_to_dec_proj_weight = torch.transpose(
torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0
)
enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy())
del _tf_model
del tf_model
gc.collect()
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True
)
# This is only for copying some specific attributes of this particular model.
model.config = config
if hasattr(model, "enc_to_dec_proj"):
model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous()
model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous()
return model
# At the moment fast initialization is not supported for composite models
if kwargs.get("_fast_init", False):
logger.warning(
"Fast initialization is currently not supported for VisionEncoderDecoderModel. "
"Falling back to slow initialization..."
)
kwargs["_fast_init"] = False
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the image encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
example is `google/vit-base-patch16-224-in21k`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the text decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import VisionEncoderDecoderModel
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
... "google/vit-base-patch16-224-in21k", "bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
# make sure input & output embeddings is not tied
config.tie_word_embeddings = False
return cls(encoder=encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(VISION_ENCODER_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, VisionEncoderDecoderModel
>>> import requests
>>> from PIL import Image
>>> import torch
>>> processor = AutoProcessor.from_pretrained("microsoft/trocr-base-handwritten")
>>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
>>> # load image from the IAM dataset
>>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> # training
>>> model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
>>> model.config.pad_token_id = processor.tokenizer.pad_token_id
>>> model.config.vocab_size = model.config.decoder.vocab_size
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> text = "hello world"
>>> labels = processor.tokenizer(text, return_tensors="pt").input_ids
>>> outputs = model(pixel_values=pixel_values, labels=labels)
>>> loss = outputs.loss
>>> # inference (generation)
>>> generated_ids = model.generate(pixel_values)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
# else:
encoder_attention_mask = None
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
):
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
input_dict = {
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_input_ids": decoder_inputs["input_ids"],
"encoder_outputs": encoder_outputs,
"past_key_values": decoder_inputs["past_key_values"],
"use_cache": use_cache,
}
return input_dict
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
" respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
)
def _reorder_cache(self, past_key_values, beam_idx):
# apply decoder cache reordering here
return self.decoder._reorder_cache(past_key_values, beam_idx)
| transformers/src/transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py/0 | {
"file_path": "transformers/src/transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py",
"repo_id": "transformers",
"token_count": 14444
} | 372 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for ViT."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class ViTImageProcessor(BaseImageProcessor):
r"""
Constructs a ViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/vit/image_processing_vit.py/0 | {
"file_path": "transformers/src/transformers/models/vit/image_processing_vit.py",
"repo_id": "transformers",
"token_count": 5684
} | 373 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ViT MSN checkpoints from the original repository: https://github.com/facebookresearch/msn"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, base_model=False):
rename_keys = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append(
(f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")
)
rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
]
)
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
]
)
# if just the base model, we should remove "vit" from all keys that start with "vit"
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, base_model=False):
for i in range(config.num_hidden_layers):
if base_model:
prefix = ""
else:
prefix = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: config.hidden_size, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def remove_classification_head_(state_dict):
ignore_keys = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(k, None)
def remove_projection_head(state_dict):
# projection head is used in the self-supervised pre-training in MSN,
# for downstream task it's not needed.
ignore_keys = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(k, None)
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
def convert_vit_msn_checkpoint(checkpoint_url, pytorch_dump_folder_path):
config = ViTMSNConfig()
config.num_labels = 1000
repo_id = "datasets/huggingface/label-files"
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if "s16" in checkpoint_url:
config.hidden_size = 384
config.intermediate_size = 1536
config.num_attention_heads = 6
elif "l16" in checkpoint_url:
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
config.hidden_dropout_prob = 0.1
elif "b4" in checkpoint_url:
config.patch_size = 4
elif "l7" in checkpoint_url:
config.patch_size = 7
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
config.hidden_dropout_prob = 0.1
model = ViTMSNModel(config)
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["target_encoder"]
image_processor = ViTImageProcessor(size=config.image_size)
remove_projection_head(state_dict)
rename_keys = create_rename_keys(config, base_model=True)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, base_model=True)
model.load_state_dict(state_dict)
model.eval()
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = ViTImageProcessor(
size=config.image_size, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD
)
inputs = image_processor(images=image, return_tensors="pt")
# forward pass
torch.manual_seed(2)
outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
expected_slice = torch.tensor([[-1.0915, -1.4876, -1.1809]])
elif "b16" in checkpoint_url:
expected_slice = torch.tensor([[14.2889, -18.9045, 11.7281]])
elif "l16" in checkpoint_url:
expected_slice = torch.tensor([[41.5028, -22.8681, 45.6475]])
elif "b4" in checkpoint_url:
expected_slice = torch.tensor([[-4.3868, 5.2932, -0.4137]])
else:
expected_slice = torch.tensor([[-0.1792, -0.6465, 2.4263]])
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3], expected_slice, atol=1e-4)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/vit_msn/convert_msn_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/vit_msn/convert_msn_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4263
} | 374 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ViViT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/vivit-b-16x2-kinetics400": (
"https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json"
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class VivitConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VivitModel`]. It is used to instantiate a ViViT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ViViT
[google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
num_frames (`int`, *optional*, defaults to 32):
The number of frames in each video.
tubelet_size (`List[int]`, *optional*, defaults to `[2, 16, 16]`):
The size (resolution) of each tubelet.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_fast"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"`, `"gelu_fast"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
Example:
```python
>>> from transformers import VivitConfig, VivitModel
>>> # Initializing a ViViT google/vivit-b-16x2-kinetics400 style configuration
>>> configuration = VivitConfig()
>>> # Initializing a model (with random weights) from the google/vivit-b-16x2-kinetics400 style configuration
>>> model = VivitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vivit"
def __init__(
self,
image_size=224,
num_frames=32,
tubelet_size=[2, 16, 16],
num_channels=3,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu_fast",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-06,
qkv_bias=True,
**kwargs,
):
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.num_frames = num_frames
self.tubelet_size = tubelet_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
super().__init__(**kwargs)
| transformers/src/transformers/models/vivit/configuration_vivit.py/0 | {
"file_path": "transformers/src/transformers/models/vivit/configuration_vivit.py",
"repo_id": "transformers",
"token_count": 2040
} | 375 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Wav2Vec2Bert BERT checkpoint."""
import argparse
import torch
import torchaudio
from fairseq2.data import Collater
from fairseq2.data.audio import WaveformToFbankConverter
from fairseq2.nn.padding import get_seqs_and_padding_mask
from seamless_communication.models.conformer_shaw import load_conformer_shaw_model
from transformers import (
SeamlessM4TFeatureExtractor,
Wav2Vec2BertConfig,
Wav2Vec2BertModel,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
wav2vec_convert_list = [
("encoder_frontend.model_dim_proj", "feature_projection.projection"),
("encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
("encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
("encoder.inner.layers", "encoder.layers"),
("encoder.inner_layer_norm", "encoder.layer_norm"),
("encoder.adaptor_layers", "adapter.layers"),
("inner_proj", "intermediate_dense"),
("self_attn.output_proj", "self_attn.linear_out"),
("output_proj", "output_dense"),
("self_attn.k_proj", "self_attn.linear_k"),
("self_attn.v_proj", "self_attn.linear_v"),
("self_attn.q_proj", "self_attn.linear_q"),
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"),
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
("conv.depthwise_conv", "conv_module.depthwise_conv"),
("conv.layer_norm", "conv_module.depthwise_layer_norm"),
("conv_layer_norm", "conv_module.layer_norm"),
("encoder.proj1", "intermediate_ffn.intermediate_dense"),
("encoder.proj2", "intermediate_ffn.output_dense"),
("encoder.layer_norm", "inner_layer_norm"),
("masker.temporal_mask_embed", "masked_spec_embed"),
]
keys_to_remove = {
"quantizer.entry_proj",
"final_proj",
"final_target_proj",
"quantizer.entries",
"quantizer.num_updates",
}
def param_count(model):
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
def _convert_model(
original_model,
hf_model,
convert_list,
):
state_dict = original_model.state_dict()
for k, v in list(state_dict.items()):
new_key = k
for old_layer_name, new_layer_name in convert_list:
if old_layer_name in new_key:
new_key = new_key.replace(old_layer_name, new_layer_name)
# must do it by hand
if ".layer_norm" in new_key and new_key.split(".layer_norm")[0][-1].isnumeric():
new_key = new_key.replace("layer_norm", "final_layer_norm")
add_key = True
for key in keys_to_remove:
if key in new_key:
state_dict.pop(k)
add_key = False
break
if add_key:
state_dict[new_key] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
extra_keys = set({k for k in extra_keys if "num_updates" not in k}) # filter unecessary param
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
hf_model.load_state_dict(state_dict, strict=True)
n_params = param_count(hf_model)
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
hf_model.eval()
del state_dict
return hf_model
@torch.no_grad()
def convert_wav2vec2_bert_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
config_path=None,
repo_id=None,
):
"""
Copy/paste/tweak model's weights to transformers design.
"""
if config_path is not None:
config = Wav2Vec2BertConfig.from_pretrained(config_path, hidden_act="swish")
else:
config = Wav2Vec2BertConfig(apply_spec_augment=False)
hf_wav2vec = Wav2Vec2BertModel(config)
model = load_conformer_shaw_model(checkpoint_path, dtype=torch.float32)
model.eval()
hf_wav2vec = _convert_model(model, hf_wav2vec, wav2vec_convert_list)
hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
if repo_id:
hf_wav2vec.push_to_hub(repo_id, create_pr=True)
# save feature extractor
fe = SeamlessM4TFeatureExtractor(padding_value=1)
fe._set_processor_class("Wav2Vec2BertProcessor")
fe.save_pretrained(pytorch_dump_folder_path)
if repo_id:
fe.push_to_hub(repo_id, create_pr=True)
if args.audio_path:
waveform, sample_rate = torchaudio.load(args.audio_path)
waveform = torchaudio.functional.resample(waveform, sample_rate, fe.sampling_rate)
fbank_converter = WaveformToFbankConverter(
num_mel_bins=80,
waveform_scale=2**15,
channel_last=True,
standardize=True,
dtype=torch.float32,
)
collater = Collater(pad_value=1)
decoded_audio = {"waveform": waveform.T, "sample_rate": fe.sampling_rate, "format": -1}
src = collater(fbank_converter(decoded_audio))["fbank"]
seqs, padding_mask = get_seqs_and_padding_mask(src)
with torch.inference_mode():
seqs, padding_mask = model.encoder_frontend(seqs, padding_mask)
original_output, padding_mask = model.encoder(seqs, padding_mask)
hf_wav2vec.eval()
inputs = fe(waveform, return_tensors="pt", padding=True)
with torch.no_grad():
outputs = hf_wav2vec(**inputs)
torch.testing.assert_close(original_output, outputs.last_hidden_state, atol=5e-3, rtol=5e-3)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the output PyTorch model.",
)
parser.add_argument(
"--checkpoint_path", default="conformer_shaw", type=str, help="Path to seamless communication checkpoint"
)
parser.add_argument(
"--config_path",
default=None,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--repo_id", default=None, type=str, help="Push to this repo id if precised.")
parser.add_argument(
"--audio_path",
default=None,
type=str,
help="If specified, check that the original model and the converted model produce the same outputs.",
)
args = parser.parse_args()
convert_wav2vec2_bert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.repo_id
)
| transformers/src/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py",
"repo_id": "transformers",
"token_count": 3156
} | 376 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_whisper_fast"] = ["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_whisper"] = [
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForCausalLM",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_whisper"] = [
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_whisper"] = [
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForCausalLM,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/whisper/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/__init__.py",
"repo_id": "transformers",
"token_count": 1768
} | 377 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for XCLIP
"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class XCLIPProcessor(ProcessorMixin):
r"""
Constructs an X-CLIP processor which wraps a VideoMAE image processor and a CLIP tokenizer into a single processor.
[`XCLIPProcessor`] offers all the functionalities of [`VideoMAEImageProcessor`] and [`CLIPTokenizerFast`]. See the
[`~XCLIPProcessor.__call__`] and [`~XCLIPProcessor.decode`] for more information.
Args:
image_processor ([`VideoMAEImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`CLIPTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "VideoMAEImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(self, text=None, videos=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to
VideoMAEImageProcessor's [`~VideoMAEImageProcessor.__call__`] if `videos` is not `None`. Please refer to the
doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarrray]]`,:
`List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list
of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors,
each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of
channels.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`.
"""
if text is None and videos is None:
raise ValueError("You have to specify either text or videos. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if videos is not None:
image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs)
if text is not None and videos is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["input_ids", "attention_mask", "position_ids", "pixel_values"]
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
| transformers/src/transformers/models/x_clip/processing_x_clip.py/0 | {
"file_path": "transformers/src/transformers/models/x_clip/processing_x_clip.py",
"repo_id": "transformers",
"token_count": 2662
} | 378 |
# coding=utf-8
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM-ProphetNet model configuration"""
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json"
),
}
class XLMProphetNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XLMProphetNetModel`]. It is used to instantiate a
XLMProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the XLMProphetNet
[microsoft/xprophetnet-large-wiki100-cased](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`XLMProphetNetModel`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
num_encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
num_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
num_decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
num_decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
add_cross_attention (`bool`, *optional*, defaults to `True`):
Whether cross-attention layers should be added to the model.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether this is an encoder/decoder model.
pad_token_id (`int`, *optional*, defaults to 1)
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0)
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
ngram (`int`, *optional*, defaults to 2)
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
token.
num_buckets (`int`, *optional*, defaults to 32)
The number of buckets to use for each attention layer. This is for relative position calculation. See the
[T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
relative_max_distance (`int`, *optional*, defaults to 128)
Relative distances greater than this number will be put into the last same bucket. This is for relative
position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
disable_ngram_loss (`bool`, *optional*, defaults to `False`):
Whether be trained predicting only the next first token.
eps (`float`, *optional*, defaults to 0.0):
Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
smoothing is performed.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "xlm-prophetnet"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "num_encoder_attention_heads",
}
def __init__(
self,
activation_dropout: Optional[float] = 0.1,
activation_function: Optional[Union[str, Callable]] = "gelu",
vocab_size: Optional[int] = 30522,
hidden_size: Optional[int] = 1024,
encoder_ffn_dim: Optional[int] = 4096,
num_encoder_layers: Optional[int] = 12,
num_encoder_attention_heads: Optional[int] = 16,
decoder_ffn_dim: Optional[int] = 4096,
num_decoder_layers: Optional[int] = 12,
num_decoder_attention_heads: Optional[int] = 16,
attention_dropout: Optional[float] = 0.1,
dropout: Optional[float] = 0.1,
max_position_embeddings: Optional[int] = 512,
init_std: Optional[float] = 0.02,
is_encoder_decoder: Optional[bool] = True,
add_cross_attention: Optional[bool] = True,
decoder_start_token_id: Optional[int] = 0,
ngram: Optional[int] = 2,
num_buckets: Optional[int] = 32,
relative_max_distance: Optional[int] = 128,
disable_ngram_loss: Optional[bool] = False,
eps: Optional[float] = 0.0,
use_cache: Optional[bool] = True,
pad_token_id: Optional[int] = 0,
bos_token_id: Optional[int] = 1,
eos_token_id: Optional[int] = 2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_ffn_dim = encoder_ffn_dim
self.num_encoder_layers = num_encoder_layers
self.num_encoder_attention_heads = num_encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.num_decoder_layers = num_decoder_layers
self.num_decoder_attention_heads = num_decoder_attention_heads
self.max_position_embeddings = max_position_embeddings
self.init_std = init_std # Normal(0, this parameter)
self.activation_function = activation_function
# parameters for xlmprophetnet
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.disable_ngram_loss = disable_ngram_loss
self.eps = eps
# 3 Types of Dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.dropout = dropout
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
add_cross_attention=add_cross_attention,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
@property
def num_hidden_layers(self) -> int:
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def num_hidden_layers(self, value):
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`."
)
| transformers/src/transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py/0 | {
"file_path": "transformers/src/transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py",
"repo_id": "transformers",
"token_count": 3551
} | 379 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BERT checkpoint."""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
GLUE_TASKS_NUM_LABELS = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def convert_xlnet_checkpoint_to_pytorch(
tf_checkpoint_path, bert_config_file, pytorch_dump_folder_path, finetuning_task=None
):
# Initialise PyTorch model
config = XLNetConfig.from_json_file(bert_config_file)
finetuning_task = finetuning_task.lower() if finetuning_task is not None else ""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}")
config.finetuning_task = finetuning_task
config.num_labels = GLUE_TASKS_NUM_LABELS[finetuning_task]
model = XLNetForSequenceClassification(config)
elif "squad" in finetuning_task:
config.finetuning_task = finetuning_task
model = XLNetForQuestionAnswering(config)
else:
model = XLNetLMHeadModel(config)
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(model, config, tf_checkpoint_path)
# Save pytorch-model
pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME)
print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}")
torch.save(model.state_dict(), pytorch_weights_dump_path)
print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
args = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| transformers/src/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1468
} | 380 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" YOSO model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"uw-madison/yoso-4096": "https://huggingface.co/uw-madison/yoso-4096/resolve/main/config.json",
# See all YOSO models at https://huggingface.co/models?filter=yoso
}
class YosoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the YOSO
[uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`YosoModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
use_expectation (`bool`, *optional*, defaults to `True`):
Whether or not to use YOSO Expectation. Overrides any effect of num_hash.
hash_code_len (`int`, *optional*, defaults to 9):
The length of hashes generated by the hash functions.
num_hash (`int`, *optional*, defaults to 64):
Number of hash functions used in [`YosoSelfAttention`].
conv_window (`int`, *optional*):
Kernel size of depth-wise convolution.
use_fast_hash (`bool`, *optional*, defaults to `False`):
Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform.
lsh_backward (`bool`, *optional*, defaults to `True`):
Whether or not to perform backpropagation using Locality Sensitive Hashing.
Example:
```python
>>> from transformers import YosoConfig, YosoModel
>>> # Initializing a YOSO uw-madison/yoso-4096 style configuration
>>> configuration = YosoConfig()
>>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration
>>> model = YosoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "yoso"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=4096,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-12,
position_embedding_type="absolute",
use_expectation=True,
hash_code_len=9,
num_hash=64,
conv_window=None,
use_fast_hash=True,
lsh_backward=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_expectation = use_expectation
self.hash_code_len = hash_code_len
self.num_hash = num_hash
self.conv_window = conv_window
self.use_fast_hash = use_fast_hash
self.lsh_backward = lsh_backward
| transformers/src/transformers/models/yoso/configuration_yoso.py/0 | {
"file_path": "transformers/src/transformers/models/yoso/configuration_yoso.py",
"repo_id": "transformers",
"token_count": 2641
} | 381 |
import uuid
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import Pipeline, build_pipeline_init_args
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class Conversation:
"""
Utility class containing a conversation and its history. This class is meant to be used as an input to the
[`ConversationalPipeline`]. The conversation contains several utility functions to manage the addition of new user
inputs and generated model responses.
Arguments:
messages (Union[str, List[Dict[str, str]]], *optional*):
The initial messages to start the conversation, either a string, or a list of dicts containing "role" and
"content" keys. If a string is passed, it is interpreted as a single message with the "user" role.
conversation_id (`uuid.UUID`, *optional*):
Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the
conversation.
Usage:
```python
conversation = Conversation("Going to the movies tonight - any suggestions?")
conversation.add_message({"role": "assistant", "content": "The Big lebowski."})
conversation.add_message({"role": "user", "content": "Is it good?"})
```"""
def __init__(
self, messages: Union[str, List[Dict[str, str]]] = None, conversation_id: uuid.UUID = None, **deprecated_kwargs
):
if not conversation_id:
conversation_id = uuid.uuid4()
if messages is None:
text = deprecated_kwargs.pop("text", None)
if text is not None:
messages = [{"role": "user", "content": text}]
else:
messages = []
elif isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
# This block deals with the legacy args - new code should just totally
# avoid past_user_inputs and generated_responses
self._num_processed_user_inputs = 0
generated_responses = deprecated_kwargs.pop("generated_responses", None)
past_user_inputs = deprecated_kwargs.pop("past_user_inputs", None)
if generated_responses is not None and past_user_inputs is None:
raise ValueError("generated_responses cannot be passed without past_user_inputs!")
if past_user_inputs is not None:
legacy_messages = []
if generated_responses is None:
generated_responses = []
# We structure it this way instead of using zip() because the lengths may differ by 1
for i in range(max([len(past_user_inputs), len(generated_responses)])):
if i < len(past_user_inputs):
legacy_messages.append({"role": "user", "content": past_user_inputs[i]})
if i < len(generated_responses):
legacy_messages.append({"role": "assistant", "content": generated_responses[i]})
messages = legacy_messages + messages
self.uuid = conversation_id
self.messages = messages
def __eq__(self, other):
if not isinstance(other, Conversation):
return False
return self.uuid == other.uuid or self.messages == other.messages
def add_message(self, message: Dict[str, str]):
if not set(message.keys()) == {"role", "content"}:
raise ValueError("Message should contain only 'role' and 'content' keys!")
if message["role"] not in ("user", "assistant", "system"):
raise ValueError("Only 'user', 'assistant' and 'system' roles are supported for now!")
self.messages.append(message)
def add_user_input(self, text: str, overwrite: bool = False):
"""
Add a user input to the conversation for the next round. This is a legacy method that assumes that inputs must
alternate user/assistant/user/assistant, and so will not add multiple user messages in succession. We recommend
just using `add_message` with role "user" instead.
"""
if len(self) > 0 and self[-1]["role"] == "user":
if overwrite:
logger.warning(
f'User input added while unprocessed input was existing: "{self[-1]["content"]}" was overwritten '
f'with: "{text}".'
)
self[-1]["content"] = text
else:
logger.warning(
f'User input added while unprocessed input was existing: "{self[-1]["content"]}" new input '
f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input'
)
else:
self.messages.append({"role": "user", "content": text})
def append_response(self, response: str):
"""
This is a legacy method. We recommend just using `add_message` with an appropriate role instead.
"""
self.messages.append({"role": "assistant", "content": response})
def mark_processed(self):
"""
This is a legacy method, as the Conversation no longer distinguishes between processed and unprocessed user
input. We set a counter here to keep behaviour mostly backward-compatible, but in general you should just read
the messages directly when writing new code.
"""
self._num_processed_user_inputs = len(self._user_messages)
def __iter__(self):
for message in self.messages:
yield message
def __getitem__(self, item):
return self.messages[item]
def __setitem__(self, key, value):
self.messages[key] = value
def __len__(self):
return len(self.messages)
def __repr__(self):
"""
Generates a string representation of the conversation.
Returns:
`str`:
Example:
Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user: Going to the movies tonight - any suggestions?
bot: The Big Lebowski
"""
output = f"Conversation id: {self.uuid}\n"
for message in self.messages:
output += f"{message['role']}: {message['content']}\n"
return output
def iter_texts(self):
# This is a legacy method for backwards compatibility. It is recommended to just directly access
# conversation.messages instead.
for message in self.messages:
yield message["role"] == "user", message["content"]
@property
def _user_messages(self):
# This is a legacy property for backwards compatibility. It is recommended to just directly access
# conversation.messages instead.
return [message["content"] for message in self.messages if message["role"] == "user"]
@property
def past_user_inputs(self):
# This is a legacy property for backwards compatibility. It is recommended to just directly access
# conversation.messages instead. The modern class does not care about which messages are "processed"
# or not.
if not self._user_messages:
return []
# In the past, the most recent user message had to be mark_processed() before being included
# in past_user_messages. The class essentially had a single-message buffer, representing messages that
# had not yet been replied to. This is no longer the case, but we mimic the behaviour in this property
# for backward compatibility.
if self.messages[-1]["role"] != "user" or self._num_processed_user_inputs == len(self._user_messages):
return self._user_messages
return self._user_messages[:-1]
@property
def generated_responses(self):
# This is a legacy property for backwards compatibility. It is recommended to just directly access
# conversation.messages instead.
return [message["content"] for message in self.messages if message["role"] == "assistant"]
@property
def new_user_input(self):
# This is a legacy property for backwards compatibility. It is recommended to just directly access
# conversation.messages instead.
return self._user_messages[-1]
@add_end_docstrings(
build_pipeline_init_args(has_tokenizer=True),
r"""
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.""",
)
class ConversationalPipeline(Pipeline):
"""
Multi-turn conversational pipeline.
Example:
```python
>>> from transformers import pipeline, Conversation
# Any model with a chat template can be used in a ConversationalPipeline.
>>> chatbot = pipeline(model="facebook/blenderbot-400M-distill")
>>> # Conversation objects initialized with a string will treat it as a user message
>>> conversation = Conversation("I'm looking for a movie - what's your favourite one?")
>>> conversation = chatbot(conversation)
>>> conversation.messages[-1]["content"]
"I don't really have a favorite movie, but I do like action movies. What about you?"
>>> conversation.add_message({"role": "user", "content": "That's interesting, why do you like action movies?"})
>>> conversation = chatbot(conversation)
>>> conversation.messages[-1]["content"]
" I think it's just because they're so fast-paced and action-fantastic."
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This conversational pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"conversational"`.
This pipeline can be used with any model that has a [chat
template](https://huggingface.co/docs/transformers/chat_templating) set.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def _sanitize_parameters(
self, min_length_for_response=None, minimum_tokens=None, clean_up_tokenization_spaces=None, **generate_kwargs
):
preprocess_params = {}
forward_params = {}
postprocess_params = {}
if min_length_for_response is not None:
preprocess_params["min_length_for_response"] = min_length_for_response
if minimum_tokens is not None:
forward_params["minimum_tokens"] = minimum_tokens
if "max_length" in generate_kwargs:
forward_params["max_length"] = generate_kwargs["max_length"]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(generate_kwargs)
return preprocess_params, forward_params, postprocess_params
def __call__(self, conversations: Union[List[Dict], Conversation, List[Conversation]], num_workers=0, **kwargs):
r"""
Generate responses for the conversation(s) given as inputs.
Args:
conversations (a [`Conversation`] or a list of [`Conversation`]):
Conversation to generate responses for. Inputs can also be passed as a list of dictionaries with `role`
and `content` keys - in this case, they will be converted to `Conversation` objects automatically.
Multiple conversations in either format may be passed as a list.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Returns:
[`Conversation`] or a list of [`Conversation`]: Conversation(s) with updated generated responses for those
containing a new user input.
"""
# XXX: num_workers==0 is required to be backward compatible
# Otherwise the threads will require a Conversation copy.
# This will definitely hinder performance on GPU, but has to be opted
# in because of this BC change.
if isinstance(conversations, list) and isinstance(conversations[0], dict):
conversations = Conversation(conversations)
elif isinstance(conversations, list) and isinstance(conversations[0], list):
conversations = [Conversation(conv) for conv in conversations]
outputs = super().__call__(conversations, num_workers=num_workers, **kwargs)
if isinstance(outputs, list) and len(outputs) == 1:
return outputs[0]
return outputs
def preprocess(self, conversation: Conversation, min_length_for_response=32) -> Dict[str, Any]:
input_ids = self.tokenizer.apply_chat_template(conversation, add_generation_prompt=True)
if self.framework == "pt":
input_ids = torch.LongTensor([input_ids])
elif self.framework == "tf":
input_ids = tf.constant([input_ids])
return {"input_ids": input_ids, "conversation": conversation}
def _forward(self, model_inputs, minimum_tokens=10, **generate_kwargs):
n = model_inputs["input_ids"].shape[1]
conversation = model_inputs.pop("conversation")
if "max_length" not in generate_kwargs and "max_new_tokens" not in generate_kwargs:
generate_kwargs["max_new_tokens"] = 256
output_ids = self.model.generate(**model_inputs, **generate_kwargs)
if self.model.config.is_encoder_decoder:
start_position = 1
else:
start_position = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def postprocess(self, model_outputs, clean_up_tokenization_spaces=True):
output_ids = model_outputs["output_ids"]
answer = self.tokenizer.decode(
output_ids[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
conversation = model_outputs["conversation"]
conversation.add_message({"role": "assistant", "content": answer})
return conversation
| transformers/src/transformers/pipelines/conversational.py/0 | {
"file_path": "transformers/src/transformers/pipelines/conversational.py",
"repo_id": "transformers",
"token_count": 5596
} | 382 |
import enum
import warnings
from ..utils import add_end_docstrings, is_tf_available, is_torch_available
from .base import Pipeline, build_pipeline_init_args
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
class ReturnType(enum.Enum):
TENSORS = 0
NEW_TEXT = 1
FULL_TEXT = 2
@add_end_docstrings(build_pipeline_init_args(has_tokenizer=True))
class TextGenerationPipeline(Pipeline):
"""
Language generation pipeline using any `ModelWithLMHead`. This pipeline predicts the words that will follow a
specified text prompt.
Example:
```python
>>> from transformers import pipeline
>>> generator = pipeline(model="gpt2")
>>> generator("I can't believe you did such a ", do_sample=False)
[{'generated_text': "I can't believe you did such a icky thing to me. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I"}]
>>> # These parameters will return suggestions, and only the newly created text making it easier for prompting suggestions.
>>> outputs = generator("My tart needs some", num_return_sequences=4, return_full_text=False)
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text
generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about
text generation parameters in [Text generation strategies](../generation_strategies) and [Text
generation](text_generation).
This language generation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"text-generation"`.
The models that this pipeline can use are models that have been trained with an autoregressive language modeling
objective, which includes the uni-directional models in the library (e.g. gpt2). See the list of available models
on [huggingface.co/models](https://huggingface.co/models?filter=text-generation).
"""
# Prefix text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
XL_PREFIX = """
In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The
voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western
Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision
and denounces one of the men as a horse thief. Although his father initially slaps him for making such an
accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,
begging for his blessing. <eod> </s> <eos>
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
)
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
prefix = None
if self.model.config.prefix is not None:
prefix = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
prefix = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
preprocess_params, forward_params, _ = self._sanitize_parameters(prefix=prefix, **self._forward_params)
self._preprocess_params = {**self._preprocess_params, **preprocess_params}
self._forward_params = {**self._forward_params, **forward_params}
def _sanitize_parameters(
self,
return_full_text=None,
return_tensors=None,
return_text=None,
return_type=None,
clean_up_tokenization_spaces=None,
prefix=None,
handle_long_generation=None,
stop_sequence=None,
add_special_tokens=False,
truncation=None,
padding=False,
max_length=None,
**generate_kwargs,
):
preprocess_params = {
"add_special_tokens": add_special_tokens,
"truncation": truncation,
"padding": padding,
"max_length": max_length,
}
if max_length is not None:
generate_kwargs["max_length"] = max_length
if prefix is not None:
preprocess_params["prefix"] = prefix
if prefix:
prefix_inputs = self.tokenizer(
prefix, padding=False, add_special_tokens=add_special_tokens, return_tensors=self.framework
)
generate_kwargs["prefix_length"] = prefix_inputs["input_ids"].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
" [None, 'hole']"
)
preprocess_params["handle_long_generation"] = handle_long_generation
preprocess_params.update(generate_kwargs)
forward_params = generate_kwargs
postprocess_params = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError("`return_text` is mutually exclusive with `return_full_text`")
if return_tensors is not None:
raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`")
return_type = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError("`return_text` is mutually exclusive with `return_tensors`")
return_type = ReturnType.TENSORS
if return_type is not None:
postprocess_params["return_type"] = return_type
if clean_up_tokenization_spaces is not None:
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces
if stop_sequence is not None:
stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False)
if len(stop_sequence_ids) > 1:
warnings.warn(
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of"
" the stop sequence will be used as the stop sequence string in the interim."
)
generate_kwargs["eos_token_id"] = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
# overriding _parse_and_tokenize to allow for unusual language-modeling tokenizer arguments
def _parse_and_tokenize(self, *args, **kwargs):
"""
Parse arguments and tokenize
"""
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({"add_space_before_punct_symbol": True})
return super()._parse_and_tokenize(*args, **kwargs)
def __call__(self, text_inputs, **kwargs):
"""
Complete the prompt(s) given as inputs.
Args:
args (`str` or `List[str]`):
One or several prompts (or one list of prompts) to complete.
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to return the tensors of predictions (as token indices) in the outputs. If set to
`True`, the decoded text is not returned.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to return the decoded texts in the outputs.
return_full_text (`bool`, *optional*, defaults to `True`):
If set to `False` only added text is returned, otherwise the full text is returned. Only meaningful if
*return_text* is set to True.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
prefix (`str`, *optional*):
Prefix added to prompt.
handle_long_generation (`str`, *optional*):
By default, this pipelines does not handle long generation (ones that exceed in one form or the other
the model maximum length). There is no perfect way to adress this (more info
:https://github.com/huggingface/transformers/issues/14033#issuecomment-948385227). This provides common
strategies to work around that problem depending on your use case.
- `None` : default strategy where nothing in particular happens
- `"hole"`: Truncates left of input, and leaves a gap wide enough to let generation happen (might
truncate a lot of the prompt and not suitable when generation exceed the model capacity)
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Returns one of the following dictionaries (cannot return a combination
of both `generated_text` and `generated_token_ids`):
- **generated_text** (`str`, present when `return_text=True`) -- The generated text.
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
return super().__call__(text_inputs, **kwargs)
def preprocess(
self,
prompt_text,
prefix="",
handle_long_generation=None,
add_special_tokens=False,
truncation=None,
padding=False,
max_length=None,
**generate_kwargs,
):
inputs = self.tokenizer(
prefix + prompt_text,
return_tensors=self.framework,
truncation=truncation,
padding=padding,
max_length=max_length,
add_special_tokens=add_special_tokens,
)
inputs["prompt_text"] = prompt_text
if handle_long_generation == "hole":
cur_len = inputs["input_ids"].shape[-1]
if "max_new_tokens" in generate_kwargs:
new_tokens = generate_kwargs["max_new_tokens"]
else:
new_tokens = generate_kwargs.get("max_length", self.model.config.max_length) - cur_len
if new_tokens < 0:
raise ValueError("We cannot infer how many new tokens are expected")
if cur_len + new_tokens > self.tokenizer.model_max_length:
keep_length = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
"We cannot use `hole` to handle this generation the number of desired tokens exceeds the"
" models max length"
)
inputs["input_ids"] = inputs["input_ids"][:, -keep_length:]
if "attention_mask" in inputs:
inputs["attention_mask"] = inputs["attention_mask"][:, -keep_length:]
return inputs
def _forward(self, model_inputs, **generate_kwargs):
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs.get("attention_mask", None)
# Allow empty prompts
if input_ids.shape[1] == 0:
input_ids = None
attention_mask = None
in_b = 1
else:
in_b = input_ids.shape[0]
prompt_text = model_inputs.pop("prompt_text")
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
prefix_length = generate_kwargs.pop("prefix_length", 0)
if prefix_length > 0:
has_max_new_tokens = "max_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].max_new_tokens is not None
)
if not has_max_new_tokens:
generate_kwargs["max_length"] = generate_kwargs.get("max_length") or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
has_min_new_tokens = "min_new_tokens" in generate_kwargs or (
"generation_config" in generate_kwargs
and generate_kwargs["generation_config"].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
out_b = generated_sequence.shape[0]
if self.framework == "pt":
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
elif self.framework == "tf":
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:]))
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def postprocess(self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True):
generated_sequence = model_outputs["generated_sequence"][0]
input_ids = model_outputs["input_ids"]
prompt_text = model_outputs["prompt_text"]
generated_sequence = generated_sequence.numpy().tolist()
records = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
record = {"generated_token_ids": sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
text = self.tokenizer.decode(
sequence,
skip_special_tokens=True,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
prompt_length = 0
else:
prompt_length = len(
self.tokenizer.decode(
input_ids[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
)
all_text = text[prompt_length:]
if return_type == ReturnType.FULL_TEXT:
all_text = prompt_text + all_text
record = {"generated_text": all_text}
records.append(record)
return records
| transformers/src/transformers/pipelines/text_generation.py/0 | {
"file_path": "transformers/src/transformers/pipelines/text_generation.py",
"repo_id": "transformers",
"token_count": 6925
} | 383 |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import TYPE_CHECKING, Any, Dict, List, Union
from packaging import version
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging
from .quantizers_utils import get_module_from_name
if is_torch_available():
import torch
from ..pytorch_utils import Conv1D
logger = logging.get_logger(__name__)
class Bnb8BitHfQuantizer(HfQuantizer):
"""
8-bit quantization from bitsandbytes quantization method:
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call
saving:
from state dict, as usual; saves weights and 'SCB' component
loading:
need to locate SCB component and pass to the Linear8bitLt object
"""
use_keep_in_fp32_modules = True
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["bitsandbytes", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
def validate_environment(self, *args, **kwargs):
if not (is_accelerate_available() and is_bitsandbytes_available()):
raise ImportError(
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` "
"and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`"
)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_lm_head = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the
quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules
in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to
`from_pretrained`. Check
https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
for more details.
"""
)
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"):
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 8bit inference and training"
" make sure you have the latest version of `bitsandbytes` installed"
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype
def update_device_map(self, device_map):
if device_map is None:
device_map = {"": torch.cuda.current_device()}
logger.info(
"The device_map was not initialized. "
"Setting device_map to {'':torch.cuda.current_device()}. "
"If you want to use the model for inference, please set device_map ='auto' "
)
return device_map
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization")
return torch.int8
def check_quantized_param(
self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any]
):
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
if self.pre_quantized:
if param_name.replace("weight", "SCB") not in state_dict.keys():
raise ValueError("Missing quantization component `SCB`")
if param_value.dtype != torch.int8:
raise ValueError(
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`."
)
return True
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: List[str],
):
"""
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
needs aux items from state dicts, if found - removes them from unexpected_keys
"""
import bitsandbytes as bnb
fp16_statistics_key = param_name.replace("weight", "SCB")
fp16_statistics = state_dict.get(fp16_statistics_key, None)
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
new_value = param_value.to("cpu")
if self.pre_quantized and not self.is_serializable:
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, Conv1D):
if fp16_statistics is None:
new_value = new_value.T
kwargs = old_value.__dict__
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value
if fp16_statistics is not None:
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
unexpected_keys.remove(fp16_statistics_key)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model._is_quantized_training_enabled = self.is_trainable
model.is_loaded_in_8bit = True
model.is_8bit_serializable = self.is_serializable
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.llm_int8_skip_modules is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
model.config.quantization_config = self.quantization_config
@property
def is_serializable(self):
_bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
"0.37.2"
)
if not _bnb_supports_8bit_serialization:
logger.warning(
"You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
"If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or"
" unexpected behaviours."
)
return False
return True
@property
def is_trainable(self) -> bool:
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0")
| transformers/src/transformers/quantizers/quantizer_bnb_8bit.py/0 | {
"file_path": "transformers/src/transformers/quantizers/quantizer_bnb_8bit.py",
"repo_id": "transformers",
"token_count": 5225
} | 384 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import importlib
import inspect
import io
import json
import os
import tempfile
from typing import Any, Dict, List, Optional, Union
from huggingface_hub import create_repo, hf_hub_download, metadata_update, upload_folder
from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session
from ..dynamic_module_utils import custom_object_save, get_class_from_dynamic_module, get_imports
from ..image_utils import is_pil_image
from ..models.auto import AutoProcessor
from ..utils import (
CONFIG_NAME,
cached_file,
is_accelerate_available,
is_torch_available,
is_vision_available,
logging,
)
from .agent_types import handle_agent_inputs, handle_agent_outputs
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
if is_accelerate_available():
from accelerate import PartialState
from accelerate.utils import send_to_device
TOOL_CONFIG_FILE = "tool_config.json"
def get_repo_type(repo_id, repo_type=None, **hub_kwargs):
if repo_type is not None:
return repo_type
try:
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs)
return "space"
except RepositoryNotFoundError:
try:
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs)
return "model"
except RepositoryNotFoundError:
raise EnvironmentError(f"`{repo_id}` does not seem to be a valid repo identifier on the Hub.")
except Exception:
return "model"
except Exception:
return "space"
# docstyle-ignore
APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo
from {module_name} import {class_name}
launch_gradio_demo({class_name})
"""
class Tool:
"""
A base class for the functions used by the agent. Subclass this and implement the `__call__` method as well as the
following class attributes:
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
returns the text contained in the file'.
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
`"text-classifier"` or `"image_generator"`.
- **inputs** (`List[str]`) -- The list of modalities expected for the inputs (in the same order as in the call).
Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo` or to make a
nice space from your tool.
- **outputs** (`List[str]`) -- The list of modalities returned but the tool (in the same order as the return of the
call method). Modalitiies should be `"text"`, `"image"` or `"audio"`. This is only used by `launch_gradio_demo`
or to make a nice space from your tool.
You can also override the method [`~Tool.setup`] if your tool as an expensive operation to perform before being
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
instantiation.
"""
description: str = "This is a tool that ..."
name: str = ""
inputs: List[str]
outputs: List[str]
def __init__(self, *args, **kwargs):
self.is_initialized = False
def __call__(self, *args, **kwargs):
return NotImplemented("Write this method in your subclass of `Tool`.")
def setup(self):
"""
Overwrite this method here for any operation that is expensive and needs to be executed before you start using
your tool. Such as loading a big model.
"""
self.is_initialized = True
def save(self, output_dir):
"""
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
tool in `output_dir` as well as autogenerate:
- a config file named `tool_config.json`
- an `app.py` file so that your tool can be converted to a space
- a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its
code)
You should only use this method to save tools that are defined in a separate module (not `__main__`).
Args:
output_dir (`str`): The folder in which you want to save your tool.
"""
os.makedirs(output_dir, exist_ok=True)
# Save module file
if self.__module__ == "__main__":
raise ValueError(
f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You "
"have to put this code in a separate module so we can include it in the saved folder."
)
module_files = custom_object_save(self, output_dir)
module_name = self.__class__.__module__
last_module = module_name.split(".")[-1]
full_name = f"{last_module}.{self.__class__.__name__}"
# Save config file
config_file = os.path.join(output_dir, "tool_config.json")
if os.path.isfile(config_file):
with open(config_file, "r", encoding="utf-8") as f:
tool_config = json.load(f)
else:
tool_config = {}
tool_config = {"tool_class": full_name, "description": self.description, "name": self.name}
with open(config_file, "w", encoding="utf-8") as f:
f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n")
# Save app file
app_file = os.path.join(output_dir, "app.py")
with open(app_file, "w", encoding="utf-8") as f:
f.write(APP_FILE_TEMPLATE.format(module_name=last_module, class_name=self.__class__.__name__))
# Save requirements file
requirements_file = os.path.join(output_dir, "requirements.txt")
imports = []
for module in module_files:
imports.extend(get_imports(module))
imports = list(set(imports))
with open(requirements_file, "w", encoding="utf-8") as f:
f.write("\n".join(imports) + "\n")
@classmethod
def from_hub(
cls,
repo_id: str,
model_repo_id: Optional[str] = None,
token: Optional[str] = None,
remote: bool = False,
**kwargs,
):
"""
Loads a tool defined on the Hub.
Args:
repo_id (`str`):
The name of the repo on the Hub where your tool is defined.
model_repo_id (`str`, *optional*):
If your tool uses a model and you want to use a different model than the default, you can pass a second
repo ID or an endpoint url to this argument.
token (`str`, *optional*):
The token to identify you on hf.co. If unset, will use the token generated when running
`huggingface-cli login` (stored in `~/.huggingface`).
remote (`bool`, *optional*, defaults to `False`):
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint.
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
others will be passed along to its init.
"""
if remote and model_repo_id is None:
endpoints = get_default_endpoints()
if repo_id not in endpoints:
raise ValueError(
f"Could not infer a default endpoint for {repo_id}, you need to pass one using the "
"`model_repo_id` argument."
)
model_repo_id = endpoints[repo_id]
hub_kwargs_names = [
"cache_dir",
"force_download",
"resume_download",
"proxies",
"revision",
"repo_type",
"subfolder",
"local_files_only",
]
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names}
# Try to get the tool config first.
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs)
resolved_config_file = cached_file(
repo_id,
TOOL_CONFIG_FILE,
token=token,
**hub_kwargs,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
is_tool_config = resolved_config_file is not None
if resolved_config_file is None:
resolved_config_file = cached_file(
repo_id,
CONFIG_NAME,
token=token,
**hub_kwargs,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if resolved_config_file is None:
raise EnvironmentError(
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`."
)
with open(resolved_config_file, encoding="utf-8") as reader:
config = json.load(reader)
if not is_tool_config:
if "custom_tool" not in config:
raise EnvironmentError(
f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`."
)
custom_tool = config["custom_tool"]
else:
custom_tool = config
tool_class = custom_tool["tool_class"]
tool_class = get_class_from_dynamic_module(tool_class, repo_id, token=token, **hub_kwargs)
if len(tool_class.name) == 0:
tool_class.name = custom_tool["name"]
if tool_class.name != custom_tool["name"]:
logger.warning(
f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool "
"configuration name."
)
tool_class.name = custom_tool["name"]
if len(tool_class.description) == 0:
tool_class.description = custom_tool["description"]
if tool_class.description != custom_tool["description"]:
logger.warning(
f"{tool_class.__name__} implements a different description in its configuration and class. Using the "
"tool configuration description."
)
tool_class.description = custom_tool["description"]
if remote:
return RemoteTool(model_repo_id, token=token, tool_class=tool_class)
return tool_class(model_repo_id, token=token, **kwargs)
def push_to_hub(
self,
repo_id: str,
commit_message: str = "Upload tool",
private: Optional[bool] = None,
token: Optional[Union[bool, str]] = None,
create_pr: bool = False,
) -> str:
"""
Upload the tool to the Hub.
Parameters:
repo_id (`str`):
The name of the repository you want to push your tool to. It should contain your organization name when
pushing to a given organization.
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
Message to commit while pushing.
private (`bool`, *optional*):
Whether or not the repository created should be private.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
"""
repo_url = create_repo(
repo_id=repo_id, token=token, private=private, exist_ok=True, repo_type="space", space_sdk="gradio"
)
repo_id = repo_url.repo_id
metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space")
with tempfile.TemporaryDirectory() as work_dir:
# Save all files.
self.save(work_dir)
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}")
return upload_folder(
repo_id=repo_id,
commit_message=commit_message,
folder_path=work_dir,
token=token,
create_pr=create_pr,
repo_type="space",
)
@staticmethod
def from_gradio(gradio_tool):
"""
Creates a [`Tool`] from a gradio tool.
"""
class GradioToolWrapper(Tool):
def __init__(self, _gradio_tool):
super().__init__()
self.name = _gradio_tool.name
self.description = _gradio_tool.description
GradioToolWrapper.__call__ = gradio_tool.run
return GradioToolWrapper(gradio_tool)
class RemoteTool(Tool):
"""
A [`Tool`] that will make requests to an inference endpoint.
Args:
endpoint_url (`str`, *optional*):
The url of the endpoint to use.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
running `huggingface-cli login` (stored in `~/.huggingface`).
tool_class (`type`, *optional*):
The corresponding `tool_class` if this is a remote version of an existing tool. Will help determine when
the output should be converted to another type (like images).
"""
def __init__(self, endpoint_url=None, token=None, tool_class=None):
self.endpoint_url = endpoint_url
self.client = EndpointClient(endpoint_url, token=token)
self.tool_class = tool_class
def prepare_inputs(self, *args, **kwargs):
"""
Prepare the inputs received for the HTTP client sending data to the endpoint. Positional arguments will be
matched with the signature of the `tool_class` if it was provided at instantation. Images will be encoded into
bytes.
You can override this method in your custom class of [`RemoteTool`].
"""
inputs = kwargs.copy()
if len(args) > 0:
if self.tool_class is not None:
# Match args with the signature
if issubclass(self.tool_class, PipelineTool):
call_method = self.tool_class.encode
else:
call_method = self.tool_class.__call__
signature = inspect.signature(call_method).parameters
parameters = [
k
for k, p in signature.items()
if p.kind not in [inspect._ParameterKind.VAR_POSITIONAL, inspect._ParameterKind.VAR_KEYWORD]
]
if parameters[0] == "self":
parameters = parameters[1:]
if len(args) > len(parameters):
raise ValueError(
f"{self.tool_class} only accepts {len(parameters)} arguments but {len(args)} were given."
)
for arg, name in zip(args, parameters):
inputs[name] = arg
elif len(args) > 1:
raise ValueError("A `RemoteTool` can only accept one positional input.")
elif len(args) == 1:
if is_pil_image(args[0]):
return {"inputs": self.client.encode_image(args[0])}
return {"inputs": args[0]}
for key, value in inputs.items():
if is_pil_image(value):
inputs[key] = self.client.encode_image(value)
return {"inputs": inputs}
def extract_outputs(self, outputs):
"""
You can override this method in your custom class of [`RemoteTool`] to apply some custom post-processing of the
outputs of the endpoint.
"""
return outputs
def __call__(self, *args, **kwargs):
args, kwargs = handle_agent_inputs(*args, **kwargs)
output_image = self.tool_class is not None and self.tool_class.outputs == ["image"]
inputs = self.prepare_inputs(*args, **kwargs)
if isinstance(inputs, dict):
outputs = self.client(**inputs, output_image=output_image)
else:
outputs = self.client(inputs, output_image=output_image)
if isinstance(outputs, list) and len(outputs) == 1 and isinstance(outputs[0], list):
outputs = outputs[0]
outputs = handle_agent_outputs(outputs, self.tool_class.outputs if self.tool_class is not None else None)
return self.extract_outputs(outputs)
class PipelineTool(Tool):
"""
A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will
need to specify:
- **model_class** (`type`) -- The class to use to load the model in this tool.
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one.
- **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
pre-processor
- **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
post-processor (when different from the pre-processor).
Args:
model (`str` or [`PreTrainedModel`], *optional*):
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the
value of the class attribute `default_checkpoint`.
pre_processor (`str` or `Any`, *optional*):
The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a
tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if
unset.
post_processor (`str` or `Any`, *optional*):
The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a
tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if
unset.
device (`int`, `str` or `torch.device`, *optional*):
The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the
CPU otherwise.
device_map (`str` or `dict`, *optional*):
If passed along, will be used to instantiate the model.
model_kwargs (`dict`, *optional*):
Any keyword argument to send to the model instantiation.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
running `huggingface-cli login` (stored in `~/.huggingface`).
hub_kwargs (additional keyword arguments, *optional*):
Any additional keyword argument to send to the methods that will load the data from the Hub.
"""
pre_processor_class = AutoProcessor
model_class = None
post_processor_class = AutoProcessor
default_checkpoint = None
def __init__(
self,
model=None,
pre_processor=None,
post_processor=None,
device=None,
device_map=None,
model_kwargs=None,
token=None,
**hub_kwargs,
):
if not is_torch_available():
raise ImportError("Please install torch in order to use this tool.")
if not is_accelerate_available():
raise ImportError("Please install accelerate in order to use this tool.")
if model is None:
if self.default_checkpoint is None:
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.")
model = self.default_checkpoint
if pre_processor is None:
pre_processor = model
self.model = model
self.pre_processor = pre_processor
self.post_processor = post_processor
self.device = device
self.device_map = device_map
self.model_kwargs = {} if model_kwargs is None else model_kwargs
if device_map is not None:
self.model_kwargs["device_map"] = device_map
self.hub_kwargs = hub_kwargs
self.hub_kwargs["token"] = token
super().__init__()
def setup(self):
"""
Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
"""
if isinstance(self.pre_processor, str):
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
if isinstance(self.model, str):
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs)
if self.post_processor is None:
self.post_processor = self.pre_processor
elif isinstance(self.post_processor, str):
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
if self.device is None:
if self.device_map is not None:
self.device = list(self.model.hf_device_map.values())[0]
else:
self.device = PartialState().default_device
if self.device_map is None:
self.model.to(self.device)
super().setup()
def encode(self, raw_inputs):
"""
Uses the `pre_processor` to prepare the inputs for the `model`.
"""
return self.pre_processor(raw_inputs)
def forward(self, inputs):
"""
Sends the inputs through the `model`.
"""
with torch.no_grad():
return self.model(**inputs)
def decode(self, outputs):
"""
Uses the `post_processor` to decode the model output.
"""
return self.post_processor(outputs)
def __call__(self, *args, **kwargs):
args, kwargs = handle_agent_inputs(*args, **kwargs)
if not self.is_initialized:
self.setup()
encoded_inputs = self.encode(*args, **kwargs)
encoded_inputs = send_to_device(encoded_inputs, self.device)
outputs = self.forward(encoded_inputs)
outputs = send_to_device(outputs, "cpu")
decoded_outputs = self.decode(outputs)
return handle_agent_outputs(decoded_outputs, self.outputs)
def launch_gradio_demo(tool_class: Tool):
"""
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes
`inputs` and `outputs`.
Args:
tool_class (`type`): The class of the tool for which to launch the demo.
"""
try:
import gradio as gr
except ImportError:
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
tool = tool_class()
def fn(*args, **kwargs):
return tool(*args, **kwargs)
gr.Interface(
fn=fn,
inputs=tool_class.inputs,
outputs=tool_class.outputs,
title=tool_class.__name__,
article=tool.description,
).launch()
TASK_MAPPING = {
"document-question-answering": "DocumentQuestionAnsweringTool",
"image-captioning": "ImageCaptioningTool",
"image-question-answering": "ImageQuestionAnsweringTool",
"image-segmentation": "ImageSegmentationTool",
"speech-to-text": "SpeechToTextTool",
"summarization": "TextSummarizationTool",
"text-classification": "TextClassificationTool",
"text-question-answering": "TextQuestionAnsweringTool",
"text-to-speech": "TextToSpeechTool",
"translation": "TranslationTool",
}
def get_default_endpoints():
endpoints_file = cached_file("huggingface-tools/default-endpoints", "default_endpoints.json", repo_type="dataset")
with open(endpoints_file, "r", encoding="utf-8") as f:
endpoints = json.load(f)
return endpoints
def supports_remote(task_or_repo_id):
endpoints = get_default_endpoints()
return task_or_repo_id in endpoints
def load_tool(task_or_repo_id, model_repo_id=None, remote=False, token=None, **kwargs):
"""
Main function to quickly load a tool, be it on the Hub or in the Transformers library.
Args:
task_or_repo_id (`str`):
The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers
are:
- `"document-question-answering"`
- `"image-captioning"`
- `"image-question-answering"`
- `"image-segmentation"`
- `"speech-to-text"`
- `"summarization"`
- `"text-classification"`
- `"text-question-answering"`
- `"text-to-speech"`
- `"translation"`
model_repo_id (`str`, *optional*):
Use this argument to use a different model than the default one for the tool you selected.
remote (`bool`, *optional*, defaults to `False`):
Whether to use your tool by downloading the model or (if it is available) with an inference endpoint.
token (`str`, *optional*):
The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli
login` (stored in `~/.huggingface`).
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others
will be passed along to its init.
"""
if task_or_repo_id in TASK_MAPPING:
tool_class_name = TASK_MAPPING[task_or_repo_id]
main_module = importlib.import_module("transformers")
tools_module = main_module.tools
tool_class = getattr(tools_module, tool_class_name)
if remote:
if model_repo_id is None:
endpoints = get_default_endpoints()
if task_or_repo_id not in endpoints:
raise ValueError(
f"Could not infer a default endpoint for {task_or_repo_id}, you need to pass one using the "
"`model_repo_id` argument."
)
model_repo_id = endpoints[task_or_repo_id]
return RemoteTool(model_repo_id, token=token, tool_class=tool_class)
else:
return tool_class(model_repo_id, token=token, **kwargs)
else:
return Tool.from_hub(task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote, **kwargs)
def add_description(description):
"""
A decorator that adds a description to a function.
"""
def inner(func):
func.description = description
func.name = func.__name__
return func
return inner
## Will move to the Hub
class EndpointClient:
def __init__(self, endpoint_url: str, token: Optional[str] = None):
self.headers = {**build_hf_headers(token=token), "Content-Type": "application/json"}
self.endpoint_url = endpoint_url
@staticmethod
def encode_image(image):
_bytes = io.BytesIO()
image.save(_bytes, format="PNG")
b64 = base64.b64encode(_bytes.getvalue())
return b64.decode("utf-8")
@staticmethod
def decode_image(raw_image):
if not is_vision_available():
raise ImportError(
"This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)."
)
from PIL import Image
b64 = base64.b64decode(raw_image)
_bytes = io.BytesIO(b64)
return Image.open(_bytes)
def __call__(
self,
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
params: Optional[Dict] = None,
data: Optional[bytes] = None,
output_image: bool = False,
) -> Any:
# Build payload
payload = {}
if inputs:
payload["inputs"] = inputs
if params:
payload["parameters"] = params
# Make API call
response = get_session().post(self.endpoint_url, headers=self.headers, json=payload, data=data)
# By default, parse the response for the user.
if output_image:
return self.decode_image(response.content)
else:
return response.json()
| transformers/src/transformers/tools/base.py/0 | {
"file_path": "transformers/src/transformers/tools/base.py",
"repo_id": "transformers",
"token_count": 12529
} | 385 |
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Torch utilities for the Trainer class.
"""
import datetime
import json
import math
import os
import sys
import warnings
from collections.abc import Mapping
from contextlib import contextmanager
from dataclasses import dataclass
from logging import StreamHandler
from typing import Any, Dict, Iterator, List, Optional, Union
import numpy as np
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import Dataset, IterableDataset, RandomSampler, Sampler
from torch.utils.data.distributed import DistributedSampler
from .integrations.deepspeed import is_deepspeed_zero3_enabled
from .tokenization_utils_base import BatchEncoding
from .utils import is_sagemaker_mp_enabled, is_torch_tpu_available, is_training_run_on_sagemaker, logging
if is_training_run_on_sagemaker():
logging.add_handler(StreamHandler(sys.stdout))
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
# this is used to suppress an undesired warning emitted by pytorch versions 1.4.2-1.7.0
try:
from torch.optim.lr_scheduler import SAVE_STATE_WARNING
except ImportError:
SAVE_STATE_WARNING = ""
logger = logging.get_logger(__name__)
def get_dataloader_sampler(dataloader):
if hasattr(dataloader, "batch_sampler") and dataloader.batch_sampler is not None:
return get_dataloader_sampler(dataloader.batch_sampler)
elif hasattr(dataloader, "sampler"):
return dataloader.sampler
def atleast_1d(tensor_or_array: Union[torch.Tensor, np.ndarray]):
if isinstance(tensor_or_array, torch.Tensor):
if hasattr(torch, "atleast_1d"):
tensor_or_array = torch.atleast_1d(tensor_or_array)
elif tensor_or_array.ndim < 1:
tensor_or_array = tensor_or_array[None]
else:
tensor_or_array = np.atleast_1d(tensor_or_array)
return tensor_or_array
def torch_pad_and_concatenate(tensor1, tensor2, padding_index=-100):
"""Concatenates `tensor1` and `tensor2` on first axis, applying padding on the second if necessary."""
tensor1 = atleast_1d(tensor1)
tensor2 = atleast_1d(tensor2)
if len(tensor1.shape) == 1 or tensor1.shape[1] == tensor2.shape[1]:
return torch.cat((tensor1, tensor2), dim=0)
# Let's figure out the new shape
new_shape = (tensor1.shape[0] + tensor2.shape[0], max(tensor1.shape[1], tensor2.shape[1])) + tensor1.shape[2:]
# Now let's fill the result tensor
result = tensor1.new_full(new_shape, padding_index)
result[: tensor1.shape[0], : tensor1.shape[1]] = tensor1
result[tensor1.shape[0] :, : tensor2.shape[1]] = tensor2
return result
def numpy_pad_and_concatenate(array1, array2, padding_index=-100):
"""Concatenates `array1` and `array2` on first axis, applying padding on the second if necessary."""
array1 = atleast_1d(array1)
array2 = atleast_1d(array2)
if len(array1.shape) == 1 or array1.shape[1] == array2.shape[1]:
return np.concatenate((array1, array2), axis=0)
# Let's figure out the new shape
new_shape = (array1.shape[0] + array2.shape[0], max(array1.shape[1], array2.shape[1])) + array1.shape[2:]
# Now let's fill the result tensor
result = np.full_like(array1, padding_index, shape=new_shape)
result[: array1.shape[0], : array1.shape[1]] = array1
result[array1.shape[0] :, : array2.shape[1]] = array2
return result
def nested_concat(tensors, new_tensors, padding_index=-100):
"""
Concat the `new_tensors` to `tensors` on the first dim and pad them on the second if needed. Works for tensors or
nested list/tuples/dict of tensors.
"""
assert type(tensors) == type(
new_tensors
), f"Expected `tensors` and `new_tensors` to have the same type but found {type(tensors)} and {type(new_tensors)}."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_concat(t, n, padding_index=padding_index) for t, n in zip(tensors, new_tensors))
elif isinstance(tensors, torch.Tensor):
return torch_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index)
elif isinstance(tensors, Mapping):
return type(tensors)(
{k: nested_concat(t, new_tensors[k], padding_index=padding_index) for k, t in tensors.items()}
)
elif isinstance(tensors, np.ndarray):
return numpy_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index)
else:
raise TypeError(f"Unsupported type for concatenation: got {type(tensors)}")
def find_batch_size(tensors):
"""
Find the first dimension of a tensor in a nested list/tuple/dict of tensors.
"""
if isinstance(tensors, (list, tuple)):
for t in tensors:
result = find_batch_size(t)
if result is not None:
return result
elif isinstance(tensors, Mapping):
for key, value in tensors.items():
result = find_batch_size(value)
if result is not None:
return result
elif isinstance(tensors, torch.Tensor):
return tensors.shape[0] if len(tensors.shape) >= 1 else None
elif isinstance(tensors, np.ndarray):
return tensors.shape[0] if len(tensors.shape) >= 1 else None
def nested_numpify(tensors):
"Numpify `tensors` (even if it's a nested list/tuple/dict of tensors)."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_numpify(t) for t in tensors)
if isinstance(tensors, Mapping):
return type(tensors)({k: nested_numpify(t) for k, t in tensors.items()})
t = tensors.cpu()
if t.dtype == torch.bfloat16:
# As of Numpy 1.21.4, NumPy does not support bfloat16 (see
# https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
# Until Numpy adds bfloat16, we must convert float32.
t = t.to(torch.float32)
return t.numpy()
def nested_detach(tensors):
"Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_detach(t) for t in tensors)
elif isinstance(tensors, Mapping):
return type(tensors)({k: nested_detach(t) for k, t in tensors.items()})
return tensors.detach()
def nested_xla_mesh_reduce(tensors, name):
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_xla_mesh_reduce(t, f"{name}_{i}") for i, t in enumerate(tensors))
if isinstance(tensors, Mapping):
return type(tensors)(
{k: nested_xla_mesh_reduce(t, f"{name}_{i}") for i, (k, t) in enumerate(tensors.items())}
)
tensors = atleast_1d(tensors)
return xm.mesh_reduce(name, tensors, torch.cat)
else:
raise ImportError("Torch xla must be installed to use `nested_xla_mesh_reduce`")
def distributed_concat(tensor: Any, num_total_examples: Optional[int] = None) -> Any:
try:
if isinstance(tensor, (tuple, list)):
return type(tensor)(distributed_concat(t, num_total_examples) for t in tensor)
if isinstance(tensor, Mapping):
return type(tensor)({k: distributed_concat(t, num_total_examples) for k, t in tensor.items()})
tensor = atleast_1d(tensor).contiguous()
output_tensors = [tensor.clone() for _ in range(dist.get_world_size())]
dist.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
if num_total_examples is not None:
concat = concat[:num_total_examples]
return concat
except AssertionError:
raise AssertionError("Not currently using distributed training")
def distributed_broadcast_scalars(
scalars: List[Union[int, float]],
num_total_examples: Optional[int] = None,
device: Optional[torch.device] = torch.device("cuda"),
) -> torch.Tensor:
try:
tensorized_scalar = torch.tensor(scalars).to(device)
output_tensors = [tensorized_scalar.clone() for _ in range(dist.get_world_size())]
dist.all_gather(output_tensors, tensorized_scalar)
concat = torch.cat(output_tensors, dim=0)
# truncate the dummy elements added by SequentialDistributedSampler
if num_total_examples is not None:
concat = concat[:num_total_examples]
return concat
except AssertionError:
raise AssertionError("Not currently using distributed training")
def reissue_pt_warnings(caught_warnings):
# Reissue warnings that are not the SAVE_STATE_WARNING
if len(caught_warnings) > 1:
for w in caught_warnings:
if w.category != UserWarning or w.message != SAVE_STATE_WARNING:
warnings.warn(w.message, w.category)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
Args:
local_rank (`int`): The rank of the local process.
"""
if local_rank not in [-1, 0]:
dist.barrier()
yield
if local_rank == 0:
dist.barrier()
class DistributedSamplerWithLoop(DistributedSampler):
"""
Like a torch.utils.data.distributed.DistributedSampler` but loops at the end back to the beginning of the shuffled
samples to make each process have a round multiple of batch_size samples.
Args:
dataset (`torch.utils.data.Dataset`):
Dataset used for sampling.
batch_size (`int`):
The batch size used with this sampler
kwargs (`Dict[str, Any]`, *optional*):
All other keyword arguments passed to `DistributedSampler`.
"""
def __init__(self, dataset, batch_size, **kwargs):
super().__init__(dataset, **kwargs)
self.batch_size = batch_size
def __iter__(self):
indices = list(super().__iter__())
remainder = 0 if len(indices) % self.batch_size == 0 else self.batch_size - len(indices) % self.batch_size
# DistributedSampler already added samples from the beginning to make the number of samples a round multiple
# of the world size, so we skip those.
start_remainder = 1 if self.rank < len(self.dataset) % self.num_replicas else 0
indices += indices[start_remainder : start_remainder + remainder]
return iter(indices)
class SequentialDistributedSampler(Sampler):
"""
Distributed Sampler that subsamples indices sequentially, making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training), which means that the model params won't
have to be synced (i.e. will not hang for synchronization even if varied number of forward passes), we still add
extra samples to the sampler to make it evenly divisible (like in `DistributedSampler`) to make it easy to `gather`
or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, num_replicas=None, rank=None, batch_size=None):
warnings.warn(
"SequentialDistributedSampler is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
num_samples = len(self.dataset)
# Add extra samples to make num_samples a multiple of batch_size if passed
if batch_size is not None:
self.num_samples = int(math.ceil(num_samples / (batch_size * num_replicas))) * batch_size
else:
self.num_samples = int(math.ceil(num_samples / num_replicas))
self.total_size = self.num_samples * self.num_replicas
self.batch_size = batch_size
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert (
len(indices) == self.total_size
), f"Indices length {len(indices)} and total size {self.total_size} mismatched"
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
assert (
len(indices) == self.num_samples
), f"Indices length {len(indices)} and sample number {self.num_samples} mismatched"
return iter(indices)
def __len__(self):
return self.num_samples
def get_tpu_sampler(dataset: torch.utils.data.Dataset, batch_size: int):
if xm.xrt_world_size() <= 1:
return RandomSampler(dataset)
return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
def nested_new_like(arrays, num_samples, padding_index=-100):
"""Create the same nested structure as `arrays` with a first dimension always at `num_samples`."""
if isinstance(arrays, (list, tuple)):
return type(arrays)(nested_new_like(x, num_samples) for x in arrays)
return np.full_like(arrays, padding_index, shape=(num_samples, *arrays.shape[1:]))
def expand_like(arrays, new_seq_length, padding_index=-100):
"""Expand the `arrays` so that the second dimension grows to `new_seq_length`. Uses `padding_index` for padding."""
result = np.full_like(arrays, padding_index, shape=(arrays.shape[0], new_seq_length) + arrays.shape[2:])
result[:, : arrays.shape[1]] = arrays
return result
def nested_truncate(tensors, limit):
"Truncate `tensors` at `limit` (even if it's a nested list/tuple/dict of tensors)."
if isinstance(tensors, (list, tuple)):
return type(tensors)(nested_truncate(t, limit) for t in tensors)
if isinstance(tensors, Mapping):
return type(tensors)({k: nested_truncate(t, limit) for k, t in tensors.items()})
return tensors[:limit]
class DistributedTensorGatherer:
"""
A class responsible for properly gathering tensors (or nested list/tuple of tensors) on the CPU by chunks.
If our dataset has 16 samples with a batch size of 2 on 3 processes and we gather then transfer on CPU at every
step, our sampler will generate the following indices:
`[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1]`
to get something of size a multiple of 3 (so that each process gets the same dataset length). Then process 0, 1 and
2 will be responsible of making predictions for the following samples:
- P0: `[0, 1, 2, 3, 4, 5]`
- P1: `[6, 7, 8, 9, 10, 11]`
- P2: `[12, 13, 14, 15, 0, 1]`
The first batch treated on each process will be
- P0: `[0, 1]`
- P1: `[6, 7]`
- P2: `[12, 13]`
So if we gather at the end of the first batch, we will get a tensor (nested list/tuple of tensor) corresponding to
the following indices:
`[0, 1, 6, 7, 12, 13]`
If we directly concatenate our results without taking any precautions, the user will then get the predictions for
the indices in this order at the end of the prediction loop:
`[0, 1, 6, 7, 12, 13, 2, 3, 8, 9, 14, 15, 4, 5, 10, 11, 0, 1]`
For some reason, that's not going to roll their boat. This class is there to solve that problem.
Args:
world_size (`int`):
The number of processes used in the distributed training.
num_samples (`int`):
The number of samples in our dataset.
make_multiple_of (`int`, *optional*):
If passed, the class assumes the datasets passed to each process are made to be a multiple of this argument
(by adding samples).
padding_index (`int`, *optional*, defaults to -100):
The padding index to use if the arrays don't all have the same sequence length.
"""
def __init__(self, world_size, num_samples, make_multiple_of=None, padding_index=-100):
warnings.warn(
"DistributedTensorGatherer is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.world_size = world_size
self.num_samples = num_samples
total_size = world_size if make_multiple_of is None else world_size * make_multiple_of
self.total_samples = int(np.ceil(num_samples / total_size)) * total_size
self.process_length = self.total_samples // world_size
self._storage = None
self._offsets = None
self.padding_index = padding_index
def add_arrays(self, arrays):
"""
Add `arrays` to the internal storage, Will initialize the storage to the full size at the first arrays passed
so that if we're bound to get an OOM, it happens at the beginning.
"""
if arrays is None:
return
if self._storage is None:
self._storage = nested_new_like(arrays, self.total_samples, padding_index=self.padding_index)
self._offsets = list(range(0, self.total_samples, self.process_length))
slice_len, self._storage = self._nested_set_tensors(self._storage, arrays)
for i in range(self.world_size):
self._offsets[i] += slice_len
def _nested_set_tensors(self, storage, arrays):
if isinstance(arrays, (list, tuple)):
result = [self._nested_set_tensors(x, y) for x, y in zip(storage, arrays)]
return result[0][0], type(arrays)(r[1] for r in result)
assert (
arrays.shape[0] % self.world_size == 0
), f"Arrays passed should all have a first dimension multiple of {self.world_size}, found {arrays.shape[0]}."
slice_len = arrays.shape[0] // self.world_size
for i in range(self.world_size):
if len(arrays.shape) == 1:
storage[self._offsets[i] : self._offsets[i] + slice_len] = arrays[i * slice_len : (i + 1) * slice_len]
else:
# Expand the array on the fly if needed.
if len(storage.shape) > 1 and storage.shape[1] < arrays.shape[1]:
storage = expand_like(storage, arrays.shape[1], padding_index=self.padding_index)
storage[self._offsets[i] : self._offsets[i] + slice_len, : arrays.shape[1]] = arrays[
i * slice_len : (i + 1) * slice_len
]
return slice_len, storage
def finalize(self):
"""
Return the properly gathered arrays and truncate to the number of samples (since the sampler added some extras
to get each process a dataset of the same length).
"""
if self._storage is None:
return
if self._offsets[0] != self.process_length:
logger.warning("Not all data has been set. Are you sure you passed all values?")
return nested_truncate(self._storage, self.num_samples)
@dataclass
class LabelSmoother:
"""
Adds label-smoothing on a pre-computed output from a Transformers model.
Args:
epsilon (`float`, *optional*, defaults to 0.1):
The label smoothing factor.
ignore_index (`int`, *optional*, defaults to -100):
The index in the labels to ignore when computing the loss.
"""
epsilon: float = 0.1
ignore_index: int = -100
def __call__(self, model_output, labels, shift_labels=False):
logits = model_output["logits"] if isinstance(model_output, dict) else model_output[0]
if shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
log_probs = -nn.functional.log_softmax(logits, dim=-1)
if labels.dim() == log_probs.dim() - 1:
labels = labels.unsqueeze(-1)
padding_mask = labels.eq(self.ignore_index)
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
# will ignore them in any case.
labels = torch.clamp(labels, min=0)
nll_loss = log_probs.gather(dim=-1, index=labels)
# works for fp16 input tensor too, by internally upcasting it to fp32
smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32)
nll_loss.masked_fill_(padding_mask, 0.0)
smoothed_loss.masked_fill_(padding_mask, 0.0)
# Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
nll_loss = nll_loss.sum() / num_active_elements
smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1])
return (1 - self.epsilon) * nll_loss + self.epsilon * smoothed_loss
def get_length_grouped_indices(lengths, batch_size, mega_batch_mult=None, generator=None):
"""
Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar
lengths. To do this, the indices are:
- randomly permuted
- grouped in mega-batches of size `mega_batch_mult * batch_size`
- sorted by length in each mega-batch
The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
maximum length placed first, so that an OOM happens sooner rather than later.
"""
# Default for mega_batch_mult: 50 or the number to get 4 megabatches, whichever is smaller.
if mega_batch_mult is None:
mega_batch_mult = min(len(lengths) // (batch_size * 4), 50)
# Just in case, for tiny datasets
if mega_batch_mult == 0:
mega_batch_mult = 1
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
indices = torch.randperm(len(lengths), generator=generator)
megabatch_size = mega_batch_mult * batch_size
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
# The rest is to get the biggest batch first.
# Since each megabatch is sorted by descending length, the longest element is the first
megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches]
max_idx = torch.argmax(torch.tensor(megabatch_maximums)).item()
# Switch to put the longest element in first position
megabatches[0][0], megabatches[max_idx][0] = megabatches[max_idx][0], megabatches[0][0]
return [i for megabatch in megabatches for i in megabatch]
class LengthGroupedSampler(Sampler):
r"""
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
keeping a bit of randomness.
"""
def __init__(
self,
batch_size: int,
dataset: Optional[Dataset] = None,
lengths: Optional[List[int]] = None,
model_input_name: Optional[str] = None,
generator=None,
):
if dataset is None and lengths is None:
raise ValueError("One of dataset and lengths must be provided.")
self.batch_size = batch_size
if lengths is None:
model_input_name = model_input_name if model_input_name is not None else "input_ids"
if (
not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding))
or model_input_name not in dataset[0]
):
raise ValueError(
"Can only automatically infer lengths for datasets whose items are dictionaries with an "
f"'{model_input_name}' key."
)
lengths = [len(feature[model_input_name]) for feature in dataset]
elif isinstance(lengths, torch.Tensor):
logger.info(
"If lengths is a torch.Tensor, LengthGroupedSampler will be slow. Converting lengths to List[int]..."
)
lengths = lengths.tolist()
self.lengths = lengths
self.generator = generator
def __len__(self):
return len(self.lengths)
def __iter__(self):
indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=self.generator)
return iter(indices)
class DistributedLengthGroupedSampler(DistributedSampler):
r"""
Distributed Sampler that samples indices in a way that groups together features of the dataset of roughly the same
length while keeping a bit of randomness.
"""
# Copied and adapted from PyTorch DistributedSampler.
def __init__(
self,
batch_size: int,
dataset: Optional[Dataset] = None,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
seed: int = 0,
drop_last: bool = False,
lengths: Optional[List[int]] = None,
model_input_name: Optional[str] = None,
):
if dataset is None and lengths is None:
raise ValueError("One of dataset and lengths must be provided.")
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.batch_size = batch_size
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
if lengths is None:
model_input_name = model_input_name if model_input_name is not None else "input_ids"
if (
not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding))
or model_input_name not in dataset[0]
):
raise ValueError(
"Can only automatically infer lengths for datasets whose items are dictionaries with an "
f"'{model_input_name}' key."
)
lengths = [len(feature[model_input_name]) for feature in dataset]
elif isinstance(lengths, torch.Tensor):
logger.info(
"If lengths is a torch.Tensor, DistributedLengthGroupedSampler will be slow. Converting lengths to"
" List[int]..."
)
lengths = lengths.tolist()
self.lengths = lengths
# If the dataset length is evenly divisible by # of replicas, then there
# is no need to drop any data, since the dataset will be split equally.
if self.drop_last and len(self.lengths) % self.num_replicas != 0:
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil((len(self.lengths) - self.num_replicas) / self.num_replicas)
else:
self.num_samples = math.ceil(len(self.lengths) / self.num_replicas)
self.total_size = self.num_samples * self.num_replicas
self.seed = seed
def __iter__(self) -> Iterator:
# Deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=g)
if not self.drop_last:
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
else:
# remove tail of data to make it evenly divisible.
indices = indices[: self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
class ShardSampler(Sampler):
"""
Sampler that shards batches between several processes. Dispatches indices batch by batch: on 2 processes with batch
size 4, the first two batches are `[0, 1, 2, 3, 4, 5, 6, 7]` and `[8, 9, 10, 11, 12, 13, 14, 15]`, which shard into
`[0, 1, 2, 3]` and `[8, 9, 10, 11]` for GPU-0 and `[4, 5, 6, 7]` and `[12, 13, 14, 15]` for GPU-1.
The sampler thus yields `[0, 1, 2, 3, 8, 9, 10, 11]` on GPU-0 and `[4, 5, 6, 7, 12, 13, 14, 15]` on GPU-1.
"""
def __init__(
self,
dataset: Dataset,
batch_size: int = 1,
drop_last: bool = False,
num_processes: int = 1,
process_index: int = 0,
):
self.dataset = dataset
self.batch_size = batch_size
self.drop_last = drop_last
self.num_processes = num_processes
self.process_index = process_index
self.total_batch_size = total_batch_size = batch_size * num_processes
num_batches = len(dataset) // total_batch_size if drop_last else math.ceil(len(dataset) / total_batch_size)
self.total_num_samples = num_batches * total_batch_size
def __iter__(self):
indices = list(range(len(self.dataset)))
# Add extra samples to make it evenly divisible. While loop is there in the edge case we have a tiny dataset
# and it needs to be done several times.
while len(indices) < self.total_num_samples:
indices += indices[: (self.total_num_samples - len(indices))]
result = []
for batch_start in range(self.batch_size * self.process_index, self.total_num_samples, self.total_batch_size):
result += indices[batch_start : batch_start + self.batch_size]
return iter(result)
def __len__(self):
# Each shard only sees a fraction of total_num_samples.
return self.total_num_samples // self.num_processes
class IterableDatasetShard(IterableDataset):
"""
Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will
always yield a number of samples that is a round multiple of the actual batch size (which is `batch_size x
num_processes`). Depending on the value of the `drop_last` attribute, it will either stop the iteration at the
first batch that would be too small or loop with indices from the beginning.
On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]` with a batch size of
2:
- the shard on process 0 will yield `[0, 1, 4, 5, 8, 9]` so will see batches `[0, 1]`, `[4, 5]`, `[8, 9]`
- the shard on process 1 will yield `[2, 3, 6, 7, 10, 11]` so will see batches `[2, 3]`, `[6, 7]`, `[10, 11]`
<Tip warning={true}>
If your IterableDataset implements some randomization that needs to be applied the same way on all processes
(for instance, a shuffling), you should use a `torch.Generator` in a `generator` attribute of the `dataset` to
generate your random numbers and call the [`~trainer_pt_utils.IterableDatasetShard.set_epoch`] method of this
object. It will set the seed of this `generator` to `seed + epoch` on all processes before starting the
iteration. Alternatively, you can also implement a `set_epoch()` method in your iterable dataset to deal with
this.
</Tip>
Args:
dataset (`torch.utils.data.IterableDataset`):
The batch sampler to split in several shards.
batch_size (`int`, *optional*, defaults to 1):
The size of the batches per shard.
drop_last (`bool`, *optional*, defaults to `False`):
Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the
beginning.
num_processes (`int`, *optional*, defaults to 1):
The number of processes running concurrently.
process_index (`int`, *optional*, defaults to 0):
The index of the current process.
seed (`int`, *optional*, defaults to 0):
A random seed that will be used for the random number generation in
[`~trainer_pt_utils.IterableDatasetShard.set_epoch`].
"""
def __init__(
self,
dataset: IterableDataset,
batch_size: int = 1,
drop_last: bool = False,
num_processes: int = 1,
process_index: int = 0,
seed: int = 0,
):
self.dataset = dataset
self.batch_size = batch_size
self.drop_last = drop_last
self.num_processes = num_processes
self.process_index = process_index
self.seed = seed
self.epoch = 0
self.num_examples = 0
def set_epoch(self, epoch):
self.epoch = epoch
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(epoch)
def __iter__(self):
self.num_examples = 0
if (
not hasattr(self.dataset, "set_epoch")
and hasattr(self.dataset, "generator")
and isinstance(self.dataset.generator, torch.Generator)
):
self.dataset.generator.manual_seed(self.seed + self.epoch)
real_batch_size = self.batch_size * self.num_processes
process_slice = range(self.process_index * self.batch_size, (self.process_index + 1) * self.batch_size)
first_batch = None
current_batch = []
for element in self.dataset:
self.num_examples += 1
current_batch.append(element)
# Wait to have a full batch before yielding elements.
if len(current_batch) == real_batch_size:
for i in process_slice:
yield current_batch[i]
if first_batch is None:
first_batch = current_batch.copy()
current_batch = []
# Finished if drop_last is True, otherwise complete the last batch with elements from the beginning.
if not self.drop_last and len(current_batch) > 0:
if first_batch is None:
first_batch = current_batch.copy()
while len(current_batch) < real_batch_size:
current_batch += first_batch
for i in process_slice:
yield current_batch[i]
def __len__(self):
# Will raise an error if the underlying dataset is not sized.
if self.drop_last:
return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size
else:
return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
# In order to keep `trainer.py` compact and easy to understand, place any secondary PT Trainer
# helper methods here
def _get_learning_rate(self):
if self.is_deepspeed_enabled:
# with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
# not run for the first few dozen steps while loss scale is too large, and thus during
# that time `get_last_lr` will fail if called during that warm up stage, so work around it:
try:
last_lr = self.lr_scheduler.get_last_lr()[0]
except AssertionError as e:
if "need to call step" in str(e):
logger.warning("tried to get lr value before scheduler/optimizer started stepping, returning lr=0")
last_lr = 0
else:
raise
else:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
last_lr = self.optimizer.param_groups[0]["lr"]
else:
last_lr = self.lr_scheduler.get_last_lr()[0]
if torch.is_tensor(last_lr):
last_lr = last_lr.item()
return last_lr
def _secs2timedelta(secs):
"""
convert seconds to hh:mm:ss.msec, msecs rounded to 2 decimals
"""
msec = int(abs(secs - int(secs)) * 100)
return f"{datetime.timedelta(seconds=int(secs))}.{msec:02d}"
def metrics_format(self, metrics: Dict[str, float]) -> Dict[str, float]:
"""
Reformat Trainer metrics values to a human-readable format
Args:
metrics (`Dict[str, float]`):
The metrics returned from train/evaluate/predict
Returns:
metrics (`Dict[str, float]`): The reformatted metrics
"""
metrics_copy = metrics.copy()
for k, v in metrics_copy.items():
if "_mem_" in k:
metrics_copy[k] = f"{ v >> 20 }MB"
elif "_runtime" in k:
metrics_copy[k] = _secs2timedelta(v)
elif k == "total_flos":
metrics_copy[k] = f"{ int(v) >> 30 }GF"
elif isinstance(metrics_copy[k], float):
metrics_copy[k] = round(v, 4)
return metrics_copy
def log_metrics(self, split, metrics):
"""
Log metrics in a specially formatted way
Under distributed environment this is done only for a process with rank 0.
Args:
split (`str`):
Mode/split name: one of `train`, `eval`, `test`
metrics (`Dict[str, float]`):
The metrics returned from train/evaluate/predictmetrics: metrics dict
Notes on memory reports:
In order to get memory usage report you need to install `psutil`. You can do that with `pip install psutil`.
Now when this method is run, you will see a report that will include: :
```
init_mem_cpu_alloc_delta = 1301MB
init_mem_cpu_peaked_delta = 154MB
init_mem_gpu_alloc_delta = 230MB
init_mem_gpu_peaked_delta = 0MB
train_mem_cpu_alloc_delta = 1345MB
train_mem_cpu_peaked_delta = 0MB
train_mem_gpu_alloc_delta = 693MB
train_mem_gpu_peaked_delta = 7MB
```
**Understanding the reports:**
- the first segment, e.g., `train__`, tells you which stage the metrics are for. Reports starting with `init_`
will be added to the first stage that gets run. So that if only evaluation is run, the memory usage for the
`__init__` will be reported along with the `eval_` metrics.
- the third segment, is either `cpu` or `gpu`, tells you whether it's the general RAM or the gpu0 memory
metric.
- `*_alloc_delta` - is the difference in the used/allocated memory counter between the end and the start of the
stage - it can be negative if a function released more memory than it allocated.
- `*_peaked_delta` - is any extra memory that was consumed and then freed - relative to the current allocated
memory counter - it is never negative. When you look at the metrics of any stage you add up `alloc_delta` +
`peaked_delta` and you know how much memory was needed to complete that stage.
The reporting happens only for process of rank 0 and gpu 0 (if there is a gpu). Typically this is enough since the
main process does the bulk of work, but it could be not quite so if model parallel is used and then other GPUs may
use a different amount of gpu memory. This is also not the same under DataParallel where gpu0 may require much more
memory than the rest since it stores the gradient and optimizer states for all participating GPUS. Perhaps in the
future these reports will evolve to measure those too.
The CPU RAM metric measures RSS (Resident Set Size) includes both the memory which is unique to the process and the
memory shared with other processes. It is important to note that it does not include swapped out memory, so the
reports could be imprecise.
The CPU peak memory is measured using a sampling thread. Due to python's GIL it may miss some of the peak memory if
that thread didn't get a chance to run when the highest memory was used. Therefore this report can be less than
reality. Using `tracemalloc` would have reported the exact peak memory, but it doesn't report memory allocations
outside of python. So if some C++ CUDA extension allocated its own memory it won't be reported. And therefore it
was dropped in favor of the memory sampling approach, which reads the current process memory usage.
The GPU allocated and peak memory reporting is done with `torch.cuda.memory_allocated()` and
`torch.cuda.max_memory_allocated()`. This metric reports only "deltas" for pytorch-specific allocations, as
`torch.cuda` memory management system doesn't track any memory allocated outside of pytorch. For example, the very
first cuda call typically loads CUDA kernels, which may take from 0.5 to 2GB of GPU memory.
Note that this tracker doesn't account for memory allocations outside of [`Trainer`]'s `__init__`, `train`,
`evaluate` and `predict` calls.
Because `evaluation` calls may happen during `train`, we can't handle nested invocations because
`torch.cuda.max_memory_allocated` is a single counter, so if it gets reset by a nested eval call, `train`'s tracker
will report incorrect info. If this [pytorch issue](https://github.com/pytorch/pytorch/issues/16266) gets resolved
it will be possible to change this class to be re-entrant. Until then we will only track the outer level of
`train`, `evaluate` and `predict` methods. Which means that if `eval` is called during `train`, it's the latter
that will account for its memory usage and that of the former.
This also means that if any other tool that is used along the [`Trainer`] calls
`torch.cuda.reset_peak_memory_stats`, the gpu peak memory stats could be invalid. And the [`Trainer`] will disrupt
the normal behavior of any such tools that rely on calling `torch.cuda.reset_peak_memory_stats` themselves.
For best performance you may want to consider turning the memory profiling off for production runs.
"""
if not self.is_world_process_zero():
return
print(f"***** {split} metrics *****")
metrics_formatted = self.metrics_format(metrics)
k_width = max(len(str(x)) for x in metrics_formatted.keys())
v_width = max(len(str(x)) for x in metrics_formatted.values())
for key in sorted(metrics_formatted.keys()):
print(f" {key: <{k_width}} = {metrics_formatted[key]:>{v_width}}")
def save_metrics(self, split, metrics, combined=True):
"""
Save metrics into a json file for that split, e.g. `train_results.json`.
Under distributed environment this is done only for a process with rank 0.
Args:
split (`str`):
Mode/split name: one of `train`, `eval`, `test`, `all`
metrics (`Dict[str, float]`):
The metrics returned from train/evaluate/predict
combined (`bool`, *optional*, defaults to `True`):
Creates combined metrics by updating `all_results.json` with metrics of this call
To understand the metrics please read the docstring of [`~Trainer.log_metrics`]. The only difference is that raw
unformatted numbers are saved in the current method.
"""
if not self.is_world_process_zero():
return
path = os.path.join(self.args.output_dir, f"{split}_results.json")
with open(path, "w") as f:
json.dump(metrics, f, indent=4, sort_keys=True)
if combined:
path = os.path.join(self.args.output_dir, "all_results.json")
if os.path.exists(path):
with open(path, "r") as f:
all_metrics = json.load(f)
else:
all_metrics = {}
all_metrics.update(metrics)
with open(path, "w") as f:
json.dump(all_metrics, f, indent=4, sort_keys=True)
def save_state(self):
"""
Saves the Trainer state, since Trainer.save_model saves only the tokenizer with the model
Under distributed environment this is done only for a process with rank 0.
"""
if not self.is_world_process_zero():
return
path = os.path.join(self.args.output_dir, "trainer_state.json")
self.state.save_to_json(path)
def get_model_param_count(model, trainable_only=False):
"""
Calculate model's total param count. If trainable_only is True then count only those requiring grads
"""
if is_deepspeed_zero3_enabled():
def numel(p):
return p.ds_numel if hasattr(p, "ds_numel") else p.numel()
else:
def numel(p):
return p.numel()
return sum(numel(p) for p in model.parameters() if not trainable_only or p.requires_grad)
def get_parameter_names(model, forbidden_layer_types):
"""
Returns the names of the model parameters that are not inside a forbidden layer.
"""
result = []
for name, child in model.named_children():
result += [
f"{name}.{n}"
for n in get_parameter_names(child, forbidden_layer_types)
if not isinstance(child, tuple(forbidden_layer_types))
]
# Add model specific parameters (defined with nn.Parameter) since they are not in any child.
result += list(model._parameters.keys())
return result
def get_module_class_from_name(module, name):
"""
Gets a class from a module by its name.
Args:
module (`torch.nn.Module`): The module to get the class from.
name (`str`): The name of the class.
"""
modules_children = list(module.children())
if module.__class__.__name__ == name:
return module.__class__
elif len(modules_children) == 0:
return
else:
for child_module in modules_children:
module_class = get_module_class_from_name(child_module, name)
if module_class is not None:
return module_class
def remove_dummy_checkpoint(is_main_process, output_dir, filenames):
if is_main_process:
for filename in filenames:
file = os.path.join(output_dir, filename)
if os.path.isfile(file):
os.remove(file)
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
@smp.step()
def smp_forward_backward(model, inputs, gradient_accumulation_steps=1):
outputs = model(**inputs)
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
loss /= gradient_accumulation_steps
model.backward(loss)
return loss
@smp.step()
def smp_forward_only(model, inputs):
return model(**inputs)
def smp_gather(tensor):
if isinstance(tensor, (list, tuple)):
return type(tensor)(smp_gather(t) for t in tensor)
elif isinstance(tensor, dict):
return type(tensor)({k: smp_gather(v) for k, v in tensor.items()})
elif not isinstance(tensor, torch.Tensor):
raise TypeError(
f"Can't gather the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
)
all_tensors = smp.allgather(tensor, smp.CommGroup.DP_GROUP)
all_tensors = [atleast_1d(t) for t in all_tensors]
return torch.cat([t.cpu() for t in all_tensors], dim=0)
def smp_nested_concat(tensor):
if isinstance(tensor, (list, tuple)):
return type(tensor)(smp_nested_concat(t) for t in tensor)
elif isinstance(tensor, dict):
return type(tensor)({k: smp_nested_concat(v) for k, v in tensor.items()})
# It doesn't seem possible to check here if `tensor` is a StepOutput because StepOutput lives in `smp.step`
# which is also the name of the decorator so Python is confused.
return tensor.concat().detach().cpu()
| transformers/src/transformers/trainer_pt_utils.py/0 | {
"file_path": "transformers/src/transformers/trainer_pt_utils.py",
"repo_id": "transformers",
"token_count": 19364
} | 386 |
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
class PyTorchBenchmark(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PyTorchBenchmarkArguments(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Cache(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DynamicCache(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SinkCache(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GlueDataset(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GlueDataTrainingArguments(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LineByLineTextDataset(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LineByLineWithRefDataset(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LineByLineWithSOPTextDataset(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SquadDataset(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SquadDataTrainingArguments(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TextDataset(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TextDatasetForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlternatingCodebooksLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeamScorer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeamSearchScorer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClassifierFreeGuidanceLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConstrainedBeamSearchScorer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Constraint(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConstraintListState(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DisjunctiveConstraint(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EncoderNoRepeatNGramLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EncoderRepetitionPenaltyLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EpsilonLogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EtaLogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ExponentialDecayLengthPenalty(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ForcedBOSTokenLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ForcedEOSTokenLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ForceTokensLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GenerationMixin(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class HammingDiversityLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class InfNanRemoveLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LogitNormalization(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LogitsProcessorList(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MaxLengthCriteria(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MaxTimeCriteria(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MinLengthLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MinNewTokensLengthLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NoBadWordsLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NoRepeatNGramLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PhrasalConstraint(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PrefixConstrainedLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RepetitionPenaltyLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SequenceBiasLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class StoppingCriteria(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class StoppingCriteriaList(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SuppressTokensLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TemperatureLogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TopKLogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TopPLogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TypicalLogitsWarper(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UnbatchedClassifierFreeGuidanceLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperTimeStampLogitsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def top_k_top_p_filtering(*args, **kwargs):
requires_backends(top_k_top_p_filtering, ["torch"])
class PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AlbertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlbertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_albert(*args, **kwargs):
requires_backends(load_tf_weights_in_albert, ["torch"])
ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AlignModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlignPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlignTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AlignVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AltCLIPModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AltCLIPPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AltCLIPTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AltCLIPVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ASTForAudioClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ASTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ASTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING = None
MODEL_FOR_AUDIO_XVECTOR_MAPPING = None
MODEL_FOR_BACKBONE_MAPPING = None
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING = None
MODEL_FOR_CAUSAL_LM_MAPPING = None
MODEL_FOR_CTC_MAPPING = None
MODEL_FOR_DEPTH_ESTIMATION_MAPPING = None
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = None
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING = None
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING = None
MODEL_FOR_MASK_GENERATION_MAPPING = None
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None
MODEL_FOR_MASKED_LM_MAPPING = None
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None
MODEL_FOR_OBJECT_DETECTION_MAPPING = None
MODEL_FOR_PRETRAINING_MAPPING = None
MODEL_FOR_QUESTION_ANSWERING_MAPPING = None
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = None
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None
MODEL_FOR_TEXT_ENCODING_MAPPING = None
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING = None
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING = None
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING = None
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING = None
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING = None
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING = None
MODEL_FOR_VISION_2_SEQ_MAPPING = None
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING = None
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = None
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING = None
MODEL_MAPPING = None
MODEL_WITH_LM_HEAD_MAPPING = None
class AutoBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForAudioClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForAudioXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForDepthEstimation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForDocumentQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForImageSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForImageToImage(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForInstanceSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForMaskGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForSeq2SeqLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForSpeechSeq2Seq(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForTableQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForTextEncoding(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForTextToSpectrogram(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForTextToWaveform(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForUniversalSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForVideoClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForVision2Seq(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForVisualQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForZeroShotImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelForZeroShotObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoModelWithLMHead(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AutoformerForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AutoformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BARK_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BarkCausalModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BarkCoarseModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BarkFineModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BarkModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BarkPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BarkSemanticModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BART_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BartForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BartForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BartForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BartForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BartModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BartPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BartPretrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PretrainedBartModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BeitBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeitForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeitForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeitForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeitModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BeitPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_bert(*args, **kwargs):
requires_backends(load_tf_weights_in_bert, ["torch"])
class BertGenerationDecoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertGenerationEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BertGenerationPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_bert_generation(*args, **kwargs):
requires_backends(load_tf_weights_in_bert_generation, ["torch"])
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BigBirdForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_big_bird(*args, **kwargs):
requires_backends(load_tf_weights_in_big_bird, ["torch"])
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BigBirdPegasusForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdPegasusForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdPegasusForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdPegasusForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdPegasusModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BigBirdPegasusPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BioGptForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BioGptForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BioGptForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BioGptModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BioGptPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BitBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BitForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BitModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BitPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BlenderbotForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlenderbotForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlenderbotModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlenderbotPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BlenderbotSmallForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlenderbotSmallForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlenderbotSmallModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlenderbotSmallPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BlipForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlipForImageTextRetrieval(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlipForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlipModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlipPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlipTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BlipVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Blip2ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Blip2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Blip2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Blip2QFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Blip2VisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BloomForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BloomForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BloomForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BloomForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BloomModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BloomPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BridgeTowerForContrastiveLearning(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BridgeTowerForImageAndTextRetrieval(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BridgeTowerForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BridgeTowerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BridgeTowerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
BROS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BrosForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BrosModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BrosPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BrosProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BrosSpadeEEForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class BrosSpadeELForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CamembertForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CamembertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CanineForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CanineForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CanineForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CanineForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CanineLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CanineModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CaninePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_canine(*args, **kwargs):
requires_backends(load_tf_weights_in_canine, ["torch"])
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ChineseCLIPModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ChineseCLIPPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ChineseCLIPTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ChineseCLIPVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ClapAudioModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClapAudioModelWithProjection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClapFeatureExtractor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClapModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClapPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClapTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClapTextModelWithProjection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CLIPModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPTextModelWithProjection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPVisionModelWithProjection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CLIPSegForImageSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPSegModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPSegPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPSegTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPSegVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CLVP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ClvpDecoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClvpEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClvpForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClvpModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClvpModelForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ClvpPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CodeGenForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CodeGenModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CodeGenPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ConditionalDetrForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConditionalDetrForSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConditionalDetrModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConditionalDetrPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ConvBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_convbert(*args, **kwargs):
requires_backends(load_tf_weights_in_convbert, ["torch"])
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ConvNextBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvNextForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvNextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvNextPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ConvNextV2Backbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvNextV2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvNextV2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ConvNextV2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CpmAntForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CpmAntModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CpmAntPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CTRLForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CTRLLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CTRLModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CTRLPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
CVT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CvtForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CvtModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CvtPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = None
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Data2VecAudioForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecAudioForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecAudioForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecAudioForXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecAudioModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecAudioPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecTextPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecVisionForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecVisionForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Data2VecVisionPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DebertaForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DebertaV2ForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2ForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DebertaV2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DecisionTransformerGPT2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DecisionTransformerGPT2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DecisionTransformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DecisionTransformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DeformableDetrForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DeformableDetrModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DeformableDetrPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DeiTForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DeiTForImageClassificationWithTeacher(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DeiTForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DeiTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DeiTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MCTCTForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MCTCTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MCTCTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MMBTForClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MMBTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ModalEmbeddings(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenLlamaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenLlamaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenLlamaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenLlamaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RetriBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RetriBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TrajectoryTransformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TrajectoryTransformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AdaptiveEmbedding(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TransfoXLForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TransfoXLLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TransfoXLModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TransfoXLPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_transfo_xl(*args, **kwargs):
requires_backends(load_tf_weights_in_transfo_xl, ["torch"])
VAN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VanForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VanModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VanPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DepthAnythingForDepthEstimation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DepthAnythingPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DETA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DetaForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DetaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DetaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DetrForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DetrForSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DetrModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DetrPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DINAT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DinatBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DinatForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DinatModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DinatPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Dinov2Backbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Dinov2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Dinov2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Dinov2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DistilBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DistilBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DistilBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DistilBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DistilBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DistilBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DistilBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DonutSwinModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DonutSwinPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DPRContextEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPRPretrainedContextEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPRPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPRPretrainedQuestionEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPRPretrainedReader(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPRQuestionEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPRReader(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DPTForDepthEstimation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPTForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class DPTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class EfficientFormerForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EfficientFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EfficientFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class EfficientNetForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EfficientNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EfficientNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ElectraForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ElectraPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_electra(*args, **kwargs):
requires_backends(load_tf_weights_in_electra, ["torch"])
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST = None
class EncodecModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EncodecPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EncoderDecoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ErnieForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErniePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ErnieMForInformationExtraction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieMForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieMForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieMForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieMForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ErnieMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class EsmFoldPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EsmForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EsmForProteinFolding(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EsmForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EsmForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EsmModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class EsmPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FalconForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FalconForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FalconForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FalconForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FalconModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FalconPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FastSpeech2ConformerHifiGan(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FastSpeech2ConformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FastSpeech2ConformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FastSpeech2ConformerWithHifiGan(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FlaubertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertForQuestionAnsweringSimple(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlaubertWithLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FlavaForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaImageCodebook(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaImageModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaMultimodalModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FlavaTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FNetForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FocalNetBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FocalNetForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FocalNetForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FocalNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FocalNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FSMTForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FSMTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PretrainedFSMTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FunnelBaseModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FunnelPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_funnel(*args, **kwargs):
requires_backends(load_tf_weights_in_funnel, ["torch"])
class FuyuForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FuyuPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GitForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GitModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GitPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GitVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GLPNForDepthEstimation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GLPNModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GLPNPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPT2DoubleHeadsModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2LMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPT2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_gpt2(*args, **kwargs):
requires_backends(load_tf_weights_in_gpt2, ["torch"])
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPTBigCodeForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTBigCodeForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTBigCodeForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTBigCodeModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTBigCodePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPTNeoForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_gpt_neo(*args, **kwargs):
requires_backends(load_tf_weights_in_gpt_neo, ["torch"])
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPTNeoXForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPTNeoXJapaneseForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXJapaneseLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXJapaneseModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTNeoXJapanesePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPTJForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTJForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTJForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTJModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTJPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPTSanJapaneseForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTSanJapaneseModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GPTSanJapanesePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GraphormerForGraphClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GraphormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GraphormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GroupViTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GroupViTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GroupViTTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class GroupViTVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class HubertForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class HubertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class HubertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class HubertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class IBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class IdeficsForVisionText2Text(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IdeficsModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IdeficsPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class IdeficsProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ImageGPTForCausalImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ImageGPTForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ImageGPTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ImageGPTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_imagegpt(*args, **kwargs):
requires_backends(load_tf_weights_in_imagegpt, ["torch"])
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class InformerForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class InformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class InformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class InstructBlipForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class InstructBlipPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class InstructBlipQFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class InstructBlipVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST = None
class JukeboxModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class JukeboxPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class JukeboxPrior(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class JukeboxVQVAE(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Kosmos2ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Kosmos2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Kosmos2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LayoutLMForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LayoutLMv2ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv2ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv2ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LayoutLMv3ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv3ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv3ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv3Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LayoutLMv3PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LEDForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LEDForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LEDForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LEDModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LEDPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LevitForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LevitForImageClassificationWithTeacher(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LevitModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LevitPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LILT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LiltForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LiltForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LiltForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LiltModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LiltPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlamaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlamaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlamaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlamaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LlavaForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlavaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlavaProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LongformerForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerSelfAttention(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LongT5EncoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongT5Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongT5PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LukeForEntityClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForEntityPairClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForEntitySpanClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukeModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LukePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertVisualFeatureEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LxmertXLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None
class M2M100ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class M2M100Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class M2M100PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarianForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarianModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarianMTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MarkupLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MarkupLMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Mask2FormerForUniversalSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Mask2FormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Mask2FormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MaskFormerForInstanceSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MaskFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MaskFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MaskFormerSwinBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MBartForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MBartForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MBartForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MBartForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MBartModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MBartPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MegaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MegatronBertForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MgpstrForSceneTextRecognition(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MgpstrModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MgpstrPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MistralForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MistralForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MistralModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MistralPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MixtralForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MixtralForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MixtralModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MixtralPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_mobilebert(*args, **kwargs):
requires_backends(load_tf_weights_in_mobilebert, ["torch"])
MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileNetV1ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileNetV1Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileNetV1PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_mobilenet_v1(*args, **kwargs):
requires_backends(load_tf_weights_in_mobilenet_v1, ["torch"])
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileNetV2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileNetV2ForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileNetV2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileNetV2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_mobilenet_v2(*args, **kwargs):
requires_backends(load_tf_weights_in_mobilenet_v2, ["torch"])
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileViTForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileViTV2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTV2ForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTV2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTV2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MPNetForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MPNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MptForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MptForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MptForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MptForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MptModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MptPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MraForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MraForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MraForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MraForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MraForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MraModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MraPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5EncoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MT5PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MusicgenForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MusicgenForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MusicgenModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MusicgenPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MusicgenProcessor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MVP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MvpForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MvpForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MvpForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MvpForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MvpModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MvpPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
NAT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class NatBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NatForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NatModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NatPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class NezhaForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NezhaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class NllbMoeForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NllbMoeModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NllbMoePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NllbMoeSparseMLP(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NllbMoeTop2Router(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class NystromformerForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class NystromformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class OneFormerForUniversalSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OneFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OneFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class OpenAIGPTDoubleHeadsModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenAIGPTForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenAIGPTLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenAIGPTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OpenAIGPTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_openai_gpt(*args, **kwargs):
requires_backends(load_tf_weights_in_openai_gpt, ["torch"])
OPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class OPTForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OPTForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OPTForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OPTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OPTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Owlv2ForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Owlv2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Owlv2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Owlv2TextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Owlv2VisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class OwlViTForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PatchTSMixerForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerForPretraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerForRegression(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerForTimeSeriesClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSMixerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PatchTSTForClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTForPretraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTForRegression(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PegasusXForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusXModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusXPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PerceiverForImageClassificationConvProcessing(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverForImageClassificationFourier(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverForImageClassificationLearned(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverForMultimodalAutoencoding(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverForOpticalFlow(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PerceiverPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PersimmonForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PersimmonForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PersimmonModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PersimmonPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PHI_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PhiForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PhiForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PhiForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PhiModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PhiPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Pix2StructForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Pix2StructPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Pix2StructTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Pix2StructVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PLBartForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PLBartForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PLBartForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PLBartModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PLBartPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PoolFormerForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PoolFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PoolFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Pop2PianoForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Pop2PianoPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ProphetNetDecoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ProphetNetEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ProphetNetForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ProphetNetForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ProphetNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ProphetNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
PVT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PvtForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PvtModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PvtPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class QDQBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class QDQBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_qdqbert(*args, **kwargs):
requires_backends(load_tf_weights_in_qdqbert, ["torch"])
class Qwen2ForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Qwen2ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Qwen2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Qwen2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RagModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RagPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RagSequenceForGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RagTokenForGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
REALM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RealmEmbedder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmForOpenQA(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmKnowledgeAugEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmReader(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmRetriever(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmScorer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_realm(*args, **kwargs):
requires_backends(load_tf_weights_in_realm, ["torch"])
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ReformerAttention(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerModelWithLMHead(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ReformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RegNetForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RegNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RegNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RemBertForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RemBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_rembert(*args, **kwargs):
requires_backends(load_tf_weights_in_rembert, ["torch"])
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ResNetBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ResNetForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ResNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ResNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RobertaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RobertaPreLayerNormForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RobertaPreLayerNormPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RoCBertForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoCBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_roc_bert(*args, **kwargs):
requires_backends(load_tf_weights_in_roc_bert, ["torch"])
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RoFormerForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RoFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_roformer(*args, **kwargs):
requires_backends(load_tf_weights_in_roformer, ["torch"])
RWKV_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RwkvForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RwkvModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RwkvPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SAM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SamModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SamPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SeamlessM4TCodeHifiGan(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TForSpeechToSpeech(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TForSpeechToText(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TForTextToSpeech(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TForTextToText(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4THifiGan(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TTextToUnitForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4TTextToUnitModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SeamlessM4Tv2ForSpeechToSpeech(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4Tv2ForSpeechToText(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4Tv2ForTextToSpeech(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4Tv2ForTextToText(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4Tv2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SeamlessM4Tv2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SegformerDecodeHead(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SegformerForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SegformerForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SegformerLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SegformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SegformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SEW_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SEWForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SEWForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SEWModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SEWPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SEWDForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SEWDForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SEWDModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SEWDPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SiglipModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SiglipPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SiglipTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SiglipVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SpeechEncoderDecoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Speech2TextForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Speech2TextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Speech2TextPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Speech2Text2ForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Speech2Text2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SpeechT5ForSpeechToSpeech(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SpeechT5ForSpeechToText(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SpeechT5ForTextToSpeech(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SpeechT5HifiGan(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SpeechT5Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SpeechT5PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SplinterForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SplinterForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SplinterLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SplinterModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SplinterPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SqueezeBertForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertModule(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SqueezeBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SwiftFormerForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwiftFormerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwiftFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SwinBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwinForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwinForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwinModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwinPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Swin2SRForImageSuperResolution(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Swin2SRModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Swin2SRPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Swinv2Backbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Swinv2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Swinv2ForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Swinv2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Swinv2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SwitchTransformersEncoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwitchTransformersForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwitchTransformersModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwitchTransformersPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwitchTransformersSparseMLP(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SwitchTransformersTop1Router(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None
class T5EncoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class T5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class T5ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class T5ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class T5ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class T5Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class T5PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_t5(*args, **kwargs):
requires_backends(load_tf_weights_in_t5, ["torch"])
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TableTransformerForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TableTransformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TableTransformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TapasForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TapasForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TapasForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TapasModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TapasPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_tapas(*args, **kwargs):
requires_backends(load_tf_weights_in_tapas, ["torch"])
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TimeSeriesTransformerForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TimeSeriesTransformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TimeSeriesTransformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TimesformerForVideoClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TimesformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TimesformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TimmBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TrOCRForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TrOCRPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TVLT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TvltForAudioVisualClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TvltForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TvltModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TvltPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TVP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TvpForVideoGrounding(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TvpModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TvpPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5EncoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5ForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5ForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UMT5PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = None
class UniSpeechForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class UniSpeechSatForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechSatForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechSatForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechSatForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechSatForXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechSatModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UniSpeechSatPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class UnivNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UperNetForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class UperNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VideoMAEForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoMAEForVideoClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoMAEModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VideoMAEPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VILT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ViltForImageAndTextRetrieval(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltForImagesAndTextClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViltPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VipLlavaForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VipLlavaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisionEncoderDecoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisionTextDualEncoderModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VisualBertForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertForRegionToPhraseAlignment(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertForVisualReasoning(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VisualBertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ViTForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTForMaskedImageModeling(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ViTHybridForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTHybridModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTHybridPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ViTMAEForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTMAELayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTMAEModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTMAEPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ViTMSNForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTMSNModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ViTMSNPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VitDetBackbone(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VitDetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VitDetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VitMatteForImageMatting(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VitMattePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VITS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VitsModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VitsPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class VivitForVideoClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VivitModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class VivitPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Wav2Vec2ForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ForXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Wav2Vec2BertForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2BertForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2BertForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2BertForXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2BertModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2BertPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Wav2Vec2ConformerForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ConformerForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ConformerForPreTraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ConformerForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ConformerForXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ConformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Wav2Vec2ConformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class WavLMForAudioFrameClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WavLMForCTC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WavLMForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WavLMForXVector(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WavLMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WavLMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class WhisperForAudioClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XCLIPModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XCLIPPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XCLIPTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XCLIPVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XGLMForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XGLMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XGLMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLMForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMForQuestionAnsweringSimple(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMWithLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLMProphetNetDecoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMProphetNetEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMProphetNetForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMProphetNetForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMProphetNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMProphetNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLMRobertaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLMRobertaXLForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLMRobertaXLPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLNetForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetForQuestionAnsweringSimple(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetLMHeadModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XLNetPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_xlnet(*args, **kwargs):
requires_backends(load_tf_weights_in_xlnet, ["torch"])
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XmodForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class XmodPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = None
class YolosForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YolosModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YolosPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = None
class YosoForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForMultipleChoice(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForQuestionAnswering(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoForTokenClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoLayer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class YosoPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Adafactor(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class AdamW(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def get_constant_schedule(*args, **kwargs):
requires_backends(get_constant_schedule, ["torch"])
def get_constant_schedule_with_warmup(*args, **kwargs):
requires_backends(get_constant_schedule_with_warmup, ["torch"])
def get_cosine_schedule_with_warmup(*args, **kwargs):
requires_backends(get_cosine_schedule_with_warmup, ["torch"])
def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])
def get_inverse_sqrt_schedule(*args, **kwargs):
requires_backends(get_inverse_sqrt_schedule, ["torch"])
def get_linear_schedule_with_warmup(*args, **kwargs):
requires_backends(get_linear_schedule_with_warmup, ["torch"])
def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])
def get_scheduler(*args, **kwargs):
requires_backends(get_scheduler, ["torch"])
class Conv1D(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def apply_chunking_to_forward(*args, **kwargs):
requires_backends(apply_chunking_to_forward, ["torch"])
def prune_layer(*args, **kwargs):
requires_backends(prune_layer, ["torch"])
class Trainer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def torch_distributed_zero_first(*args, **kwargs):
requires_backends(torch_distributed_zero_first, ["torch"])
class Seq2SeqTrainer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
| transformers/src/transformers/utils/dummy_pt_objects.py/0 | {
"file_path": "transformers/src/transformers/utils/dummy_pt_objects.py",
"repo_id": "transformers",
"token_count": 91504
} | 387 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
from typing import Dict, Optional, Union
from packaging import version
from .hub import cached_file
from .import_utils import is_peft_available
ADAPTER_CONFIG_NAME = "adapter_config.json"
ADAPTER_WEIGHTS_NAME = "adapter_model.bin"
ADAPTER_SAFE_WEIGHTS_NAME = "adapter_model.safetensors"
def find_adapter_config_file(
model_id: str,
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
subfolder: str = "",
_commit_hash: Optional[str] = None,
) -> Optional[str]:
r"""
Simply checks if the model stored on the Hub or locally is an adapter model or not, return the path of the adapter
config file if it is, None otherwise.
Args:
model_id (`str`):
The identifier of the model to look for, can be either a local path or an id to the repository on the Hub.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
"""
adapter_cached_filename = None
if model_id is None:
return None
elif os.path.isdir(model_id):
list_remote_files = os.listdir(model_id)
if ADAPTER_CONFIG_NAME in list_remote_files:
adapter_cached_filename = os.path.join(model_id, ADAPTER_CONFIG_NAME)
else:
adapter_cached_filename = cached_file(
model_id,
ADAPTER_CONFIG_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
subfolder=subfolder,
_commit_hash=_commit_hash,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
return adapter_cached_filename
def check_peft_version(min_version: str) -> None:
r"""
Checks if the version of PEFT is compatible.
Args:
version (`str`):
The version of PEFT to check against.
"""
if not is_peft_available():
raise ValueError("PEFT is not installed. Please install it with `pip install peft`")
is_peft_version_compatible = version.parse(importlib.metadata.version("peft")) >= version.parse(min_version)
if not is_peft_version_compatible:
raise ValueError(
f"The version of PEFT you are using is not compatible, please use a version that is greater"
f" than {min_version}"
)
| transformers/src/transformers/utils/peft_utils.py/0 | {
"file_path": "transformers/src/transformers/utils/peft_utils.py",
"repo_id": "transformers",
"token_count": 1972
} | 388 |
# coding=utf-8
# Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax {{cookiecutter.modelname}} model. """
{% if cookiecutter.is_encoder_decoder_model == "False" %}
from typing import Callable, Optional, Tuple
import numpy as np
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze, freeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.traverse_util import flatten_dict, unflatten_dict
from flax.linen.attention import dot_product_attention_weights
from jax import lax
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxBaseModelOutputWithPoolingAndCrossAttentions,
FlaxCausalLMOutput,
FlaxCausalLMOutputWithCrossAttentions,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
overwrite_call_docstring,
)
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}"
_CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config"
_TOKENIZER_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Tokenizer"
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading, saving and converting weights from
PyTorch models)
This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module
and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`~{{cookiecutter.uppercase_modelname}}Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the
model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on
GPUs) and `jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see
[`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`].
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`~{{cookiecutter.uppercase_modelname}}ConfiTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
remat = nn_partitioning.remat
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}SelfAttention(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`\
: {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}SelfOutput(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Attention(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = Flax{{cookiecutter.camelcase_modelname}}SelfAttention(self.config, dtype=self.dtype)
self.output = Flax{{cookiecutter.camelcase_modelname}}SelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Intermediate(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Output(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Layer(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = Flax{{cookiecutter.camelcase_modelname}}Attention(self.config, dtype=self.dtype)
self.intermediate = Flax{{cookiecutter.camelcase_modelname}}Intermediate(self.config, dtype=self.dtype)
self.output = Flax{{cookiecutter.camelcase_modelname}}Output(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = Flax{{cookiecutter.camelcase_modelname}}Attention(self.config, causal=False, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}LayerCollection(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
Flax{{cookiecutter.camelcase_modelname}}CheckpointLayer = remat(Flax{{cookiecutter.camelcase_modelname}}Layer, static_argnums=(5, 6, 7))
self.layers = [
Flax{{cookiecutter.camelcase_modelname}}CheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
Flax{{cookiecutter.camelcase_modelname}}Layer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for \
{head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Encoder(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = Flax{{cookiecutter.camelcase_modelname}}LayerCollection(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Pooler(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(self, hidden_states):
cls_hidden_state = hidden_states[:, 0]
cls_hidden_state = self.dense(cls_hidden_state)
return nn.tanh(cls_hidden_state)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}PredictionHeadTransform(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.activation = ACT2FN[self.config.hidden_act]
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return self.LayerNorm(hidden_states)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}LMPredictionHead(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.transform = Flax{{cookiecutter.camelcase_modelname}}PredictionHeadTransform(self.config, dtype=self.dtype)
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.transform(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
hidden_states += self.bias
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}OnlyMLMHead(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = Flax{{cookiecutter.camelcase_modelname}}LMPredictionHead(self.config, dtype=self.dtype)
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyNSPHead with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}OnlyNSPHead(nn.Module):
dtype: jnp.dtype = jnp.float32
def setup(self):
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
def __call__(self, pooled_output):
return self.seq_relationship(pooled_output)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainingHeads with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}PreTrainingHeads(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = Flax{{cookiecutter.camelcase_modelname}}LMPredictionHead(self.config, dtype=self.dtype)
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
def __call__(self, hidden_states, pooled_output, shared_embedding=None):
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = {{cookiecutter.camelcase_modelname}}Config
base_model_prefix = "{{cookiecutter.lowercase_modelname}}"
module_class: nn.Module = None
def __init__(
self,
config: {{cookiecutter.camelcase_modelname}}Config,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights with Bert->{{cookiecutter.camelcase_modelname}}
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_cache with Bert->{{cookiecutter.camelcase_modelname}}
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.__call__ with Bert->{{cookiecutter.camelcase_modelname}}
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxBertAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->{{cookiecutter.camelcase_modelname}}
class Flax{{cookiecutter.camelcase_modelname}}Module(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = Flax{{cookiecutter.camelcase_modelname}}Embeddings(self.config, dtype=self.dtype)
self.encoder = Flax{{cookiecutter.camelcase_modelname}}Encoder(self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.pooler = Flax{{cookiecutter.camelcase_modelname}}Pooler(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# make sure `token_type_ids` is correctly initialized when not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
# make sure `position_ids` is correctly initialized when not passed
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
hidden_states = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
outputs = self.encoder(
hidden_states,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
add_start_docstrings(
"The bare {{cookiecutter.camelcase_modelname}} Model transformer outputting raw hidden-states without any specific head on top.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}Model(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}Module
class Flax{{cookiecutter.camelcase_modelname}}ForMaskedLMModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.cls = Flax{{cookiecutter.camelcase_modelname}}OnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.{{cookiecutter.lowercase_modelname}}.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""{{cookiecutter.camelcase_modelname}} Model with a `language modeling` head on top for MLM training. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING)
class Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForMaskedLMModule
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC
)
class Flax{{cookiecutter.camelcase_modelname}}ForCausalLMModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.cls = Flax{{cookiecutter.camelcase_modelname}}OnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.{{cookiecutter.lowercase_modelname}}.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""{{cookiecutter.camelcase_modelname}} Model with a `language modeling` head on top for CLM training. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING)
class Flax{{cookiecutter.camelcase_modelname}}ForCausalLM(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForCausalLMModule
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForCausalLM, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC
)
class Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassificationModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassificationModule
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoiceModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoiceModule
overwrite_call_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice, {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC
)
class Flax{{cookiecutter.camelcase_modelname}}ForTokenClassificationModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForTokenClassificationModule
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC
)
class Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnsweringModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnsweringModule
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class Flax{{cookiecutter.camelcase_modelname}}ForCausalLMModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.{{cookiecutter.lowercase_modelname}} = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing)
self.cls = Flax{{cookiecutter.camelcase_modelname}}OnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
token_type_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.{{cookiecutter.lowercase_modelname}}(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.{{cookiecutter.lowercase_modelname}}.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
autoregressive tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForCausalLM(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForCausalLM,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
{# encoder_decoder #}
{% else %}
import math
import random
from functools import partial
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze, freeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...utils import add_start_docstrings, replace_return_docstrings
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
FlaxSeq2SeqQuestionAnsweringModelOutput,
FlaxSeq2SeqSequenceClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}"
_CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config"
_TOKENIZER_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Tokenizer"
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax
Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`~{{cookiecutter.camelcase_modelname}}Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the
model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on
GPUs) and `jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see
[`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`].
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to
the right for denoising pre-training following the paper.
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
{{cookiecutter.uppercase_modelname}}_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
{{cookiecutter.uppercase_modelname}}_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to
the right for denoising pre-training following the paper.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`,
*optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.roll(input_ids, 1, axis=-1)
shifted_input_ids = shifted_input_ids.at[(..., 0)].set(decoder_start_token_id)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
class Flax{{cookiecutter.camelcase_modelname}}Attention(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
assert (
self.head_dim * self.num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Flax{{cookiecutter.camelcase_modelname}}EncoderLayer(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = Flax{{cookiecutter.camelcase_modelname}}Attention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Flax{{cookiecutter.camelcase_modelname}}EncoderLayerCollection(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
Flax{{cookiecutter.camelcase_modelname}}EncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class Flax{{cookiecutter.camelcase_modelname}}DecoderLayer(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = Flax{{cookiecutter.camelcase_modelname}}Attention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
self.encoder_attn = Flax{{cookiecutter.camelcase_modelname}}Attention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class Flax{{cookiecutter.camelcase_modelname}}DecoderLayerCollection(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
Flax{{cookiecutter.camelcase_modelname}}DecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class Flax{{cookiecutter.camelcase_modelname}}ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
config: {{cookiecutter.camelcase_modelname}}Config
inner_dim: int
num_classes: int
pooler_dropout: float
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(
self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.dropout = nn.Dropout(rate=self.pooler_dropout)
self.out_proj = nn.Dense(
self.num_classes,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(self, hidden_states: jnp.ndarray, deterministic: bool):
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.dense(hidden_states)
hidden_states = jnp.tanh(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class Flax{{cookiecutter.camelcase_modelname}}Encoder(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
embed_tokens: Optional[nn.Embed] = None
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
if self.embed_tokens is None:
self.embed_tokens = nn.Embed(
self.config.vocab_size,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
# {{cookiecutter.camelcase_modelname}} is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.embed_positions = nn.Embed(
self.config.max_position_embeddings + self.offset,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = Flax{{cookiecutter.camelcase_modelname}}EncoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(position_ids + self.offset)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs
return FlaxBaseModelOutput(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class Flax{{cookiecutter.camelcase_modelname}}Decoder(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
embed_tokens: Optional[nn.Embed] = None
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
if self.embed_tokens is None:
self.embed_tokens = nn.Embed(
self.config.vocab_size,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
# {{cookiecutter.camelcase_modelname}} is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.embed_positions = nn.Embed(
self.config.max_position_embeddings + self.offset,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = Flax{{cookiecutter.camelcase_modelname}}DecoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = self.embed_positions(position_ids + self.offset)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
class Flax{{cookiecutter.camelcase_modelname}}Module(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.encoder = Flax{{cookiecutter.camelcase_modelname}}Encoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = Flax{{cookiecutter.camelcase_modelname}}Decoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedModel):
config_class = {{cookiecutter.camelcase_modelname}}Config
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: {{cookiecutter.camelcase_modelname}}Config,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
# make sure initialization pass will work for Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassificationModule
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`,
*optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the
encoder. Used in the cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings({{cookiecutter.uppercase_modelname}}_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class={{cookiecutter.camelcase_modelname}}Config)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='np')
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings({{cookiecutter.uppercase_modelname}}_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class={{cookiecutter.camelcase_modelname}}Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='np')
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by Flax{{cookiecutter.camelcase_modelname}}Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
@add_start_docstrings(
"The bare {{cookiecutter.camelcase_modelname}} Model transformer outputting raw hidden-states without any specific head on top.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}Model(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = Flax{{cookiecutter.camelcase_modelname}}Module
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}Model, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC
)
class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGenerationModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += self.final_logits_bias.astype(self.dtype)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"The {{cookiecutter.uppercase_modelname}} Model with a language modeling head. Can be used for summarization.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING
)
class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
@add_start_docstrings({{cookiecutter.uppercase_modelname}}_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class={{cookiecutter.camelcase_modelname}}Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
deterministic: bool = True,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='np')
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by Flax{{cookiecutter.camelcase_modelname}}Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias.astype(self.dtype)
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
FLAX_{{cookiecutter.uppercase_modelname}}_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids']).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example:
```python
>>> import jax
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors='np')['input_ids']
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs, k=1)
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING + FLAX_{{cookiecutter.uppercase_modelname}}_CONDITIONAL_GENERATION_DOCSTRING
)
append_replace_return_docstrings(
Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
class Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassificationModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
num_labels: Optional[int] = None
def setup(self):
self.model = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype)
self.classification_head = Flax{{cookiecutter.camelcase_modelname}}ClassificationHead(
config=self.config,
inner_dim=self.config.d_model,
num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels,
pooler_dropout=self.config.classifier_dropout,
)
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0] # last hidden state
eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0)
# The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation
if type(eos_mask) != jax.interpreters.partial_eval.DynamicJaxprTracer:
if len(jnp.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
if any(eos_mask.sum(1) == 0):
raise ValueError("There are missing <eos> tokens in input_ids")
# Ensure to keep 1 only for the last <eos> token for each example
eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6
eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0)
sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1)
logits = self.classification_head(sentence_representation, deterministic=deterministic)
if not return_dict:
output = (logits,) + outputs[1:]
return output
return FlaxSeq2SeqSequenceClassifierOutput(
logits=logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassificationModule
dtype = jnp.float32
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxSeq2SeqSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnsweringModule(nn.Module):
config: {{cookiecutter.camelcase_modelname}}Config
dtype: jnp.dtype = jnp.float32
num_labels = 2
def setup(self):
self.model = Flax{{cookiecutter.camelcase_modelname}}Module(config=self.config, dtype=self.dtype)
self.qa_outputs = nn.Dense(
self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return output
return FlaxSeq2SeqQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.uppercase_modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel):
module_class = Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnsweringModule
dtype = jnp.float32
append_call_sample_docstring(
Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxSeq2SeqQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
{% endif -%}
| transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_flax_{{cookiecutter.lowercase_modelname}}.py/0 | {
"file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_flax_{{cookiecutter.lowercase_modelname}}.py",
"repo_id": "transformers",
"token_count": 60288
} | 389 |
{
"modelname": "TemplatePT",
"uppercase_modelname": "TEMPLATE_PT",
"lowercase_modelname": "template_pt",
"camelcase_modelname": "TemplatePt",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT",
"generate_tensorflow_pytorch_and_flax": "PyTorch",
"is_encoder_decoder_model": "False"
}
| transformers/templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json/0 | {
"file_path": "transformers/templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json",
"repo_id": "transformers",
"token_count": 148
} | 390 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import re
import sys
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
backend_device_count,
execute_subprocess_async,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_accelerator,
require_torch_non_multi_accelerator,
slow,
torch_device,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
bindir = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"):
from run_translation import main # noqa
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
MBART_TINY = "sshleifer/tiny-mbart"
@require_torch
class TestTrainerExt(TestCasePlus):
def run_seq2seq_quick(
self,
distributed=False,
extra_args_str=None,
predict_with_generate=True,
do_train=True,
do_eval=True,
do_predict=True,
):
output_dir = self.run_trainer(
eval_steps=1,
max_len=12,
model_name=MBART_TINY,
num_train_epochs=1,
distributed=distributed,
extra_args_str=extra_args_str,
predict_with_generate=predict_with_generate,
do_train=do_train,
do_eval=do_eval,
do_predict=do_predict,
)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
if not do_eval:
return
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
last_step_stats = eval_metrics[-1]
assert isinstance(last_step_stats["eval_bleu"], float)
assert not math.isnan(float(last_step_stats["eval_loss"])), "eval_loss must not be `nan`"
@require_torch_non_multi_accelerator
def test_run_seq2seq_no_dist(self):
self.run_seq2seq_quick()
# verify that the trainer can handle non-distributed with n_gpu > 1
@require_torch_multi_accelerator
def test_run_seq2seq_dp(self):
self.run_seq2seq_quick(distributed=False)
# verify that the trainer can handle distributed with n_gpu > 1
@require_torch_multi_accelerator
def test_run_seq2seq_ddp(self):
self.run_seq2seq_quick(distributed=True)
@require_apex
@require_torch_gpu
def test_run_seq2seq_apex(self):
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex")
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex")
@parameterized.expand(["base", "low", "high", "mixed"])
@require_torch_multi_accelerator
def test_trainer_log_level_replica(self, experiment_id):
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
experiments = {
# test with the default log_level - should be info and thus log info once
"base": {"extra_args_str": "", "n_matches": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0},
}
data = experiments[experiment_id]
kwargs = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False}
log_info_string = "Running training"
with CaptureStderr() as cl:
self.run_seq2seq_quick(**kwargs, extra_args_str=data["extra_args_str"])
n_matches = len(re.findall(log_info_string, cl.err))
self.assertEqual(n_matches, data["n_matches"])
@slow
def test_run_seq2seq(self):
output_dir = self.run_trainer(
eval_steps=2,
max_len=128,
model_name=MARIAN_MODEL,
learning_rate=3e-4,
num_train_epochs=10,
distributed=False,
)
# Check metrics
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
last_step_stats = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["eval_bleu"], float)
# test if do_predict saves generations and metrics
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def test_run_seq2seq_bnb(self):
from transformers.training_args import OptimizerNames
def train_and_return_metrics(optim: str) -> Tuple[int, float]:
extra_args = "--skip_memory_metrics 0"
output_dir = self.run_trainer(
max_len=128,
model_name=MARIAN_MODEL,
learning_rate=3e-4,
num_train_epochs=1,
optim=optim,
distributed=True, # force run in a new process
extra_args_str=extra_args,
do_eval=False,
do_predict=False,
n_gpus_to_use=1, # to allow deterministic fixed memory usage
)
# Check metrics
logs = TrainerState.load_from_json(Path(output_dir, "trainer_state.json")).log_history
gpu_peak_mem_mb = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20)
gpu_alloc_mem_mb = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20)
loss = logs[0]["train_loss"]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
gpu_peak_mem_orig, gpu_alloc_mem_orig, loss_orig = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value)
gpu_peak_mem_bnb, gpu_alloc_mem_bnb, loss_bnb = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value)
gpu_alloc_mem_diff = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
gpu_total_mem_orig = gpu_peak_mem_orig + gpu_alloc_mem_orig
gpu_total_mem_bnb = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
gpu_total_mem_diff = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
expected_savings = 120
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
gpu_alloc_mem_diff,
expected_savings,
"should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"
f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and"
f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB",
)
self.assertGreater(
gpu_total_mem_diff,
expected_savings,
"should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"
f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and"
f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB",
)
self.assertEqual(
loss_orig, loss_bnb, f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}"
)
def run_trainer(
self,
max_len: int,
model_name: str,
num_train_epochs: int,
learning_rate: float = 3e-3,
optim: str = "adafactor",
distributed: bool = False,
extra_args_str: str = None,
eval_steps: int = 0,
predict_with_generate: bool = True,
do_train: bool = True,
do_eval: bool = True,
do_predict: bool = True,
n_gpus_to_use: int = None,
):
data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
output_dir = self.get_auto_remove_tmp_dir()
args_train = f"""
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(eval_steps)}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
""".split()
args_eval = f"""
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(eval_steps)}
""".split()
args_predict = """
--do_predict
""".split()
args = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f"--optim {optim}".split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
n_gpus_to_use = backend_device_count(torch_device)
master_port = get_torch_dist_unique_port()
distributed_args = f"""
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
""".split()
cmd = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
else:
testargs = ["run_translation.py"] + args
with patch.object(sys, "argv", testargs):
main()
return output_dir
| transformers/tests/extended/test_trainer_ext.py/0 | {
"file_path": "transformers/tests/extended/test_trainer_ext.py",
"repo_id": "transformers",
"token_count": 6361
} | 391 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
if is_torch_available():
import torch
def ids_tensor(shape, vocab_size, rng=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
output = np.array(values, dtype=jnp.int32).reshape(shape)
return output
def random_attention_mask(shape, rng=None):
attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
# make sure that at least one token is attended to for each batch
attn_mask[:, -1] = 1
return attn_mask
@require_flax
class FlaxGenerationTesterMixin:
model_tester = None
all_generative_model_classes = ()
def _get_input_ids_and_config(self):
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
max_batch_size = 2
sequence_length = inputs["input_ids"].shape[-1] // 2
input_ids = inputs["input_ids"][:max_batch_size, :sequence_length]
attention_mask = jnp.ones_like(input_ids)
attention_mask = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
max_length = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
config.pad_token_id = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def test_greedy_generate_pt_fx(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.do_sample = False
config.max_length = max_length
config.decoder_start_token_id = 0
for model_class in self.all_generative_model_classes:
flax_model = model_class(config)
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, flax_model.params)
flax_generation_outputs = flax_model.generate(input_ids).sequences
pt_generation_outputs = pt_model.generate(torch.tensor(input_ids, dtype=torch.long))
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
flax_generation_outputs = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist())
def test_greedy_generate(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.do_sample = False
config.max_length = max_length
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_sample_generate(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.do_sample = True
config.max_length = max_length
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_beam_search_generate(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.do_sample = False
config.max_length = max_length
config.num_beams = 2
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_beam_search_generate_num_return_sequences(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.do_sample = False
config.max_length = max_length
config.num_beams = 2
config.num_return_sequences = 2
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences)
def test_sample_generate_logits_warper(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.do_sample = True
config.max_length = max_length
config.temperature = 0.8
config.top_k = 10
config.top_p = 0.3
config.min_length = 1
config.forced_bos_token_id = 8
config.forced_eos_token_id = 9
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_greedy_generate_logits_warper(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.max_length = max_length
config.min_length = 1
config.forced_bos_token_id = 8
config.forced_eos_token_id = 9
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_beam_search_generate_logits_warper(self):
config, input_ids, _, max_length = self._get_input_ids_and_config()
config.max_length = max_length
config.num_beams = 2
config.min_length = 1
config.forced_bos_token_id = 8
config.forced_eos_token_id = 9
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_greedy_generate_attn_mask(self):
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
# pad attention mask on the left
attention_mask = attention_mask.at[(0, 0)].set(0)
config.do_sample = False
config.max_length = max_length
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids, attention_mask=attention_mask).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids, attention_mask=attention_mask).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_sample_generate_attn_mask(self):
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
# pad attention mask on the left
attention_mask = attention_mask.at[(0, 0)].set(0)
config.do_sample = True
config.max_length = max_length
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids, attention_mask=attention_mask).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids, attention_mask=attention_mask).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
def test_beam_search_generate_attn_mask(self):
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
# pad attention mask on the left
attention_mask = attention_mask.at[(0, 0)].set(0)
config.num_beams = 2
config.max_length = max_length
for model_class in self.all_generative_model_classes:
model = model_class(config)
generation_outputs = model.generate(input_ids, attention_mask=attention_mask).sequences
self.assertEqual(generation_outputs.shape[-1], max_length)
jit_generate = jit(model.generate)
jit_generation_outputs = jit_generate(input_ids, attention_mask=attention_mask).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist())
@require_flax
class FlaxGenerationIntegrationTests(unittest.TestCase):
def test_validate_generation_inputs(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert")
model = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
encoder_input_str = "Hello world"
input_ids = tokenizer(encoder_input_str, return_tensors="np").input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(ValueError, "do_samples"):
model.generate(input_ids, do_samples=True)
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(ValueError, "foo"):
fake_model_kwargs = {"foo": "bar"}
model.generate(input_ids, **fake_model_kwargs)
| transformers/tests/generation/test_flax_utils.py/0 | {
"file_path": "transformers/tests/generation/test_flax_utils.py",
"repo_id": "transformers",
"token_count": 5082
} | 392 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class AlignProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
image_processor_map = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
}
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
json.dump(image_processor_map, fp)
def get_tokenizer(self, **kwargs):
return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_image_processor(self, **kwargs):
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
image_processor = self.get_image_processor()
processor_slow = AlignProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = AlignProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = AlignProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, BertTokenizer)
self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast)
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor, EfficientNetImageProcessor)
self.assertIsInstance(processor_fast.image_processor, EfficientNetImageProcessor)
def test_save_load_pretrained_additional_features(self):
processor = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = AlignProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, BertTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, EfficientNetImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_image_proc = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str, padding="max_length", max_length=64)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = AlignProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), processor.model_input_names)
| transformers/tests/models/align/test_processor_align.py/0 | {
"file_path": "transformers/tests/models/align/test_processor_align.py",
"repo_id": "transformers",
"token_count": 3309
} | 393 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_BACKBONE_MAPPING,
MODEL_MAPPING,
BeitBackbone,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class BeitModelTester:
def __init__(
self,
parent,
vocab_size=100,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=4,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
out_indices=[1, 2, 3, 4],
out_features=["stage1", "stage2", "stage3", "stage4"],
):
self.parent = parent
self.vocab_size = vocab_size
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_indices = out_indices
self.out_features = out_features
self.num_labels = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return BeitConfig(
vocab_size=self.vocab_size,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
out_indices=self.out_indices,
out_features=self.out_features,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = BeitModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_backbone(self, config, pixel_values, labels, pixel_labels):
model = BeitBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
expected_height = expected_width = self.image_size // config.patch_size
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width]
)
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
# verify backbone works with out_features=None
config.out_features = None
model = BeitBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, expected_height, expected_width]
)
# verify channels
self.parent.assertEqual(len(model.channels), 1)
def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
model = BeitForMaskedImageModeling(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.type_sequence_label_size
model = BeitForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = BeitForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = BeitForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
BeitModel,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitBackbone,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = BeitModelTester(self)
self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="BEiT does not support feedforward chunking yet")
def test_feed_forward_chunking(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [
*get_values(MODEL_MAPPING),
*get_values(MODEL_FOR_BACKBONE_MAPPING),
BeitForMaskedImageModeling,
]:
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
config.use_cache = False
config.return_dict = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class
in [*get_values(MODEL_MAPPING), *get_values(MODEL_FOR_BACKBONE_MAPPING), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
model = model_class(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
def test_model_from_pretrained(self):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = BeitModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
@slow
def test_inference_masked_image_modeling_head(self):
model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# prepare bool_masked_pos
bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 196, 8192))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
).to(torch_device)
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))
@slow
def test_inference_image_classification_head_imagenet_1k(self):
model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
expected_class_idx = 281
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
@slow
def test_inference_image_classification_head_imagenet_22k(self):
model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21841))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
expected_class_idx = 2396
self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
@slow
def test_inference_semantic_segmentation(self):
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
model = model.to(torch_device)
image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(ds[0]["file"])
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 150, 160, 160))
self.assertEqual(logits.shape, expected_shape)
is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")
if is_pillow_less_than_9:
expected_slice = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
],
device=torch_device,
)
else:
expected_slice = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
@slow
def test_post_processing_semantic_segmentation(self):
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
model = model.to(torch_device)
image_processor = BeitImageProcessor(do_resize=True, size=640, do_center_crop=False)
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(ds[0]["file"])
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
expected_shape = torch.Size((500, 300))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((160, 160))
self.assertEqual(segmentation[0].shape, expected_shape)
@require_torch
class BeitBackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (BeitBackbone,) if is_torch_available() else ()
config_class = BeitConfig
def setUp(self):
self.model_tester = BeitModelTester(self)
| transformers/tests/models/beit/test_modeling_beit.py/0 | {
"file_path": "transformers/tests/models/beit/test_modeling_beit.py",
"repo_id": "transformers",
"token_count": 9540
} | 394 |
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BlenderbotSmall model. """
import tempfile
import unittest
from transformers import BlenderbotSmallConfig, is_torch_available
from transformers.testing_utils import (
require_torch,
require_torch_fp16,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallTokenizer
from transformers.models.blenderbot_small.modeling_blenderbot_small import (
BlenderbotSmallDecoder,
BlenderbotSmallEncoder,
BlenderbotSmallForCausalLM,
)
def prepare_blenderbot_small_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class BlenderbotSmallModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=50,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
# forcing a certain token to be generated, sets all other tokens to -inf
# if however the token to be generated is already at -inf then it can lead token
# `nan` values and thus break generation
self.forced_bos_token_id = None
self.forced_eos_token_id = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_blenderbot_small_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return BlenderbotSmallConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
forced_bos_token_id=self.forced_bos_token_id,
forced_eos_token_id=self.forced_eos_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = BlenderbotSmallModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = BlenderbotSmallModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = BlenderbotSmallEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = BlenderbotSmallDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class BlenderbotSmallModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (BlenderbotSmallModel, BlenderbotSmallForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (BlenderbotSmallForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": BlenderbotSmallForConditionalGeneration,
"feature-extraction": BlenderbotSmallModel,
"summarization": BlenderbotSmallForConditionalGeneration,
"text-generation": BlenderbotSmallForCausalLM,
"text2text-generation": BlenderbotSmallForConditionalGeneration,
"translation": BlenderbotSmallForConditionalGeneration,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
test_missing_keys = False
# TODO: Fix the failed tests when this model gets more usage
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return pipeline_test_casse_name in ("TextGenerationPipelineTests", "ConversationalPipelineTests")
def setUp(self):
self.model_tester = BlenderbotSmallModelTester(self)
self.config_tester = ConfigTester(self, config_class=BlenderbotSmallConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = BlenderbotSmallForConditionalGeneration(config).eval().to(torch_device)
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
@require_torch
class Blenderbot90MIntegrationTests(unittest.TestCase):
ckpt = "facebook/blenderbot-90M"
@cached_property
def model(self):
model = BlenderbotSmallForConditionalGeneration.from_pretrained(self.ckpt).to(torch_device)
if torch_device == "cuda":
model = model.half()
return model
@cached_property
def tokenizer(self):
return BlenderbotSmallTokenizer.from_pretrained(self.ckpt)
@slow
def test_90_generation_from_long_input(self):
src_text = [
"Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel"
" like i'm going to throw up.\nand why is that?"
]
model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
assert isinstance(self.tokenizer, BlenderbotSmallTokenizer)
generated_ids = self.model.generate(**model_inputs)[0]
reply = self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
assert reply in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
)
@slow
def test_90_generation_from_short_input(self):
model_inputs = self.tokenizer(["sam"], return_tensors="pt").to(torch_device)
generated_utterances = self.model.generate(**model_inputs)
clean_txt = self.tokenizer.decode(
generated_utterances[0], skip_special_tokens=True, clean_up_tokenization_spaces=True
)
assert clean_txt in (
"have you ever been to a sam club? it's a great club in the south.",
"have you ever heard of sam harris? he's an american singer, songwriter, and actor.",
)
class BlenderbotSmallStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = BlenderbotSmallConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = BlenderbotSmallDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = BlenderbotSmallDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class BlenderbotSmallStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (BlenderbotSmallDecoder, BlenderbotSmallForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (BlenderbotSmallForCausalLM,) if is_torch_available() else ()
test_pruning = False
is_encoder_decoder = False
def setUp(
self,
):
self.model_tester = BlenderbotSmallStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=BlenderbotSmallConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass
| transformers/tests/models/blenderbot_small/test_modeling_blenderbot_small.py/0 | {
"file_path": "transformers/tests/models/blenderbot_small/test_modeling_blenderbot_small.py",
"repo_id": "transformers",
"token_count": 10061
} | 395 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import BloomConfig, BloomTokenizerFast, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax.numpy as jnp
from transformers import FlaxBloomForCausalLM, FlaxBloomModel
def prepare_bloom_inputs_dict(config, input_ids, attention_mask=None):
if attention_mask is None:
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_flax
class FlaxBloomModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
n_layer=2,
n_head=4,
hidden_act="gelu",
hidden_dropout=0.1,
attention_probs_dropout_prob=0.1,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
initializer_range=0.02,
apply_residual_connection_post_layernorm=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = n_layer
self.num_attention_heads = n_head
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.initializer_range = initializer_range
self.is_encoder_decoder = False
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
config = BloomConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
hidden_dropout=self.hidden_dropout,
attention_dropout=self.attention_probs_dropout_prob,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
is_encoder_decoder=False,
use_cache=False,
)
inputs_dict = prepare_bloom_inputs_dict(config, input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
max_length = 20
model = model_class_name(config)
input_ids = inputs_dict["input_ids"]
attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4")
past_key_values = model.init_cache(input_ids.shape[0], max_length)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
)
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
max_length = 20
model = model_class_name(config)
input_ids, attention_mask = (
inputs_dict["input_ids"],
inputs_dict["attention_mask"],
)
attention_mask_cache = jnp.concatenate(
[
attention_mask,
jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_length)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
)
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class FlaxBloomModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
all_model_classes = (FlaxBloomModel, FlaxBloomForCausalLM) if is_flax_available() else ()
all_generative_model_classes = () if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxBloomModelTester(self)
def test_use_cache_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
def test_use_cache_forward_with_attn_mask(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("bigscience/bloom-560m")
input_ids = np.ones((1, 1)) * model.config.eos_token_id
outputs = model(input_ids)
self.assertIsNotNone(outputs)
@slow
@require_flax
class FlaxBloomGenerationTest(unittest.TestCase):
all_model_classes = (FlaxBloomForCausalLM,) if is_flax_available() else ()
all_generative_model_classes = () if is_flax_available() else ()
def setUp(self):
self.model_id = "bigscience/bloom-560m"
self.tokenizer = BloomTokenizerFast.from_pretrained(self.model_id, padding_side="left")
self.model_tester = FlaxBloomModelTester(self)
self.model = FlaxBloomForCausalLM.from_pretrained(self.model_id, from_pt=True, revision="gs555750")
def test_model_batched_gen(self):
# tests if the model outputs the same generation for the same batched input
input_sentences = [
"Hello there is this string is definitely longer I believe that",
"Hello there is this string is definitely longer I believe that",
]
inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True)
sequences_fx = self.model.generate(**inputs, max_length=20).sequences
self.assertEqual(sequences_fx[0].tolist(), sequences_fx[1].tolist())
def test_model_batched_padding_left(self):
# tests if the model outputs the same generation for an input that is part of a batch
# and a single input
input_sentences_batch = [
"Hello there is this string is definitely longer I believe that",
"Hi I want to order",
]
inputs = self.tokenizer(input_sentences_batch, return_tensors="np", padding=True, truncation=True)
sequences_fx_batch = self.model.generate(**inputs, max_length=20).sequences
input_sentence_simple = "Hi I want to order"
inputs_simple = self.tokenizer(input_sentence_simple, return_tensors="np")
sequences_fx_simple = self.model.generate(**inputs_simple, max_length=20).sequences
self.assertEqual(sequences_fx_batch[1][6:].tolist(), sequences_fx_simple[0][:-6].tolist())
def test_batch_generated_text(self):
input_sentences = [
"Hello what is",
"Running a quick test with the",
]
inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True)
generated_ids = self.model.generate(**inputs, max_length=20).sequences
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# these generations match those of the PyTorch model, ensuring correctness
EXPECTED_GENERATIONS = [
"Hello what is the best way to get the data from the server? I have tried",
"Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2",
]
self.assertListEqual(generated_text, EXPECTED_GENERATIONS)
| transformers/tests/models/bloom/test_modeling_flax_bloom.py/0 | {
"file_path": "transformers/tests/models/bloom/test_modeling_flax_bloom.py",
"repo_id": "transformers",
"token_count": 4307
} | 396 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CLIPSeg model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
import transformers
from transformers import MODEL_MAPPING, CLIPSegConfig, CLIPSegProcessor, CLIPSegTextConfig, CLIPSegVisionConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
is_flax_available,
is_pt_flax_cross_test,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegTextModel, CLIPSegVisionModel
from transformers.models.clipseg.modeling_clipseg import CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
if is_flax_available():
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
class CLIPSegVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return CLIPSegVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = CLIPSegVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class CLIPSegVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CLIPSeg does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (CLIPSegVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = CLIPSegVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=CLIPSegVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="CLIPSeg does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="CLIPSegVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="CLIPSegVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = CLIPSegVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class CLIPSegTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return CLIPSegTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = CLIPSegTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class CLIPSegTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (CLIPSegTextModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
model_split_percents = [0.5, 0.8, 0.9]
def setUp(self):
self.model_tester = CLIPSegTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=CLIPSegTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_training(self):
pass
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="CLIPSeg does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="CLIPSegTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="CLIPSegTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = CLIPSegTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class CLIPSegModelTester:
def __init__(
self,
parent,
text_kwargs=None,
vision_kwargs=None,
is_training=True,
# This should respect the `num_hidden_layers` in `CLIPSegVisionModelTester`
extract_layers=(1,),
):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = CLIPSegTextModelTester(parent, **text_kwargs)
self.vision_model_tester = CLIPSegVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
self.extract_layers = extract_layers
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return CLIPSegConfig.from_text_vision_configs(
self.text_model_tester.get_config(),
self.vision_model_tester.get_config(),
projection_dim=64,
reduce_dim=32,
extract_layers=self.extract_layers,
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = CLIPSegModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def create_and_check_model_for_image_segmentation(self, config, input_ids, attention_maks, pixel_values):
model = CLIPSegForImageSegmentation(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.vision_model_tester.batch_size,
self.vision_model_tester.image_size,
self.vision_model_tester.image_size,
),
)
self.parent.assertEqual(
result.conditional_embeddings.shape, (self.text_model_tester.batch_size, config.projection_dim)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
@require_torch
class CLIPSegModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (CLIPSegModel, CLIPSegForImageSegmentation) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": CLIPSegModel} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# CLIPSegForImageSegmentation requires special treatment
if return_labels:
if model_class.__name__ == "CLIPSegForImageSegmentation":
batch_size, _, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = torch.zeros(
[batch_size, height, width], device=torch_device, dtype=torch.float
)
return inputs_dict
def setUp(self):
self.model_tester = CLIPSegModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_for_image_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_for_image_segmentation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="CLIPSegModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# override as the some parameters require custom initialization
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if "logit_scale" in name:
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif "film" in name or "transposed_conv" in name or "reduce" in name:
# those parameters use PyTorch' default nn.Linear initialization scheme
pass
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # CLIPSeg needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save CLIPSegConfig and check if we can load CLIPSegVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = CLIPSegVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save CLIPSegConfig and check if we can load CLIPSegTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = CLIPSegTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
# overwrite from common since FlaxCLIPSegModel returns nested output
# which is not supported in the common test
@is_pt_flax_cross_test
def test_equivalence_pt_to_flax(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# load PyTorch class
pt_model = model_class(config).eval()
# Flax models don't use the `use_cache` option and cache is not returned as a default.
# So we disable `use_cache` here for PyTorch model.
pt_model.config.use_cache = False
fx_model_class_name = "Flax" + model_class.__name__
if not hasattr(transformers, fx_model_class_name):
return
fx_model_class = getattr(transformers, fx_model_class_name)
# load Flax class
fx_model = fx_model_class(config, dtype=jnp.float32)
# make sure only flax inputs are forward that actually exist in function args
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()
# prepare inputs
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
# remove function args that don't exist in Flax
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
fx_model.params = fx_state
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).to_tuple()
# convert inputs to Flax
fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
fx_outputs = fx_model(**fx_inputs).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)
fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
self.assertEqual(
len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
)
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]):
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)
# overwrite from common since FlaxCLIPSegModel returns nested output
# which is not supported in the common test
@is_pt_flax_cross_test
def test_equivalence_flax_to_pt(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# load corresponding PyTorch class
pt_model = model_class(config).eval()
# So we disable `use_cache` here for PyTorch model.
pt_model.config.use_cache = False
fx_model_class_name = "Flax" + model_class.__name__
if not hasattr(transformers, fx_model_class_name):
# no flax model exists for this class
return
fx_model_class = getattr(transformers, fx_model_class_name)
# load Flax class
fx_model = fx_model_class(config, dtype=jnp.float32)
# make sure only flax inputs are forward that actually exist in function args
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
# make sure weights are tied in PyTorch
pt_model.tie_weights()
# prepare inputs
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
# remove function args that don't exist in Flax
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).to_tuple()
fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
fx_outputs = fx_model(**fx_inputs).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(tmpdirname)
pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)
with torch.no_grad():
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()
self.assertEqual(
len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
)
for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]):
self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class in get_values(MODEL_MAPPING):
continue
print("Model class:", model_class)
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
for k, v in inputs.items():
print(k, v.shape)
loss = model(**inputs).loss
loss.backward()
@slow
def test_model_from_pretrained(self):
for model_name in CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = CLIPSegModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
class CLIPSegModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_segmentation(self):
model_name = "CIDAS/clipseg-rd64-refined"
processor = CLIPSegProcessor.from_pretrained(model_name)
model = CLIPSegForImageSegmentation.from_pretrained(model_name).to(torch_device)
image = prepare_img()
texts = ["a cat", "a remote", "a blanket"]
inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the predicted masks
self.assertEqual(
outputs.logits.shape,
torch.Size((3, 352, 352)),
)
expected_masks_slice = torch.tensor(
[[-7.4613, -7.4785, -7.3628], [-7.3268, -7.0899, -7.1333], [-6.9838, -6.7900, -6.8913]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_masks_slice, atol=1e-3))
# verify conditional and pooled output
expected_conditional = torch.tensor([0.5601, -0.0314, 0.1980]).to(torch_device)
expected_pooled_output = torch.tensor([0.5036, -0.2681, -0.2644]).to(torch_device)
self.assertTrue(torch.allclose(outputs.conditional_embeddings[0, :3], expected_conditional, atol=1e-3))
self.assertTrue(torch.allclose(outputs.pooled_output[0, :3], expected_pooled_output, atol=1e-3))
| transformers/tests/models/clipseg/test_modeling_clipseg.py/0 | {
"file_path": "transformers/tests/models/clipseg/test_modeling_clipseg.py",
"repo_id": "transformers",
"token_count": 14630
} | 397 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ConvBERT model. """
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_accelerator, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertModel,
)
from transformers.models.convbert.modeling_convbert import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class ConvBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return ConvBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = ConvBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ConvBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
ConvBertModel,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": ConvBertModel,
"fill-mask": ConvBertForMaskedLM,
"question-answering": ConvBertForQuestionAnswering,
"text-classification": ConvBertForSequenceClassification,
"token-classification": ConvBertForTokenClassification,
"zero-shot": ConvBertForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = ConvBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ConvBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Question Answering model returns start_logits and end_logits
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
@slow
@require_torch_accelerator
def test_torchscript_device_change(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# ConvBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == ConvBertForMultipleChoice:
return
config.torchscript = True
model = model_class(config=config)
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
traced_model = torch.jit.trace(
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
)
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt"))
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device)
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))
def test_model_for_input_embeds(self):
batch_size = 2
seq_length = 10
inputs_embeds = torch.rand([batch_size, seq_length, 768], device=torch_device)
config = self.model_tester.get_config()
model = ConvBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(inputs_embeds=inputs_embeds)
self.assertEqual(result.last_hidden_state.shape, (batch_size, seq_length, config.hidden_size))
def test_reducing_attention_heads(self):
config, *inputs_dict = self.model_tester.prepare_config_and_inputs()
config.head_ratio = 4
self.model_tester.create_and_check_for_masked_lm(config, *inputs_dict)
@require_torch
class ConvBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = ConvBertModel.from_pretrained("YituTech/conv-bert-base")
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/convbert/test_modeling_convbert.py/0 | {
"file_path": "transformers/tests/models/convbert/test_modeling_convbert.py",
"repo_id": "transformers",
"token_count": 9532
} | 398 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import CTRLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_utils import keras
from transformers.models.ctrl.modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
)
class TFCTRLModelTester(object):
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 2
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
self.pad_token_id = self.vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
dff=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFCTRLModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, None, input_mask] # None is the input for 'past'
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFCTRLLMHeadModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_ctrl_for_sequence_classification(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
config.num_labels = self.num_labels
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
inputs = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"labels": sequence_labels,
}
model = TFCTRLForSequenceClassification(config)
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFCTRLModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else ()
all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": TFCTRLModel,
"text-classification": TFCTRLForSequenceClassification,
"text-generation": TFCTRLLMHeadModel,
"zero-shot": TFCTRLForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def setUp(self):
self.model_tester = TFCTRLModelTester(self)
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_ctrl_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*config_and_inputs)
def test_ctrl_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)
def test_ctrl_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
list_lm_models = [TFCTRLLMHeadModel]
list_other_models_with_output_ebd = [TFCTRLForSequenceClassification]
for model_class in self.all_model_classes:
model = model_class(config)
model.build_in_name_scope() # may be needed for the get_bias() call below
assert isinstance(model.get_input_embeddings(), keras.layers.Layer)
if model_class in list_lm_models:
x = model.get_output_embeddings()
assert isinstance(x, keras.layers.Layer)
name = model.get_bias()
assert isinstance(name, dict)
for k, v in name.items():
assert isinstance(v, tf.Variable)
elif model_class in list_other_models_with_output_ebd:
x = model.get_output_embeddings()
assert isinstance(x, keras.layers.Layer)
name = model.get_bias()
assert name is None
else:
x = model.get_output_embeddings()
assert x is None
name = model.get_bias()
assert name is None
@slow
def test_model_from_pretrained(self):
for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFCTRLModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_tf
class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_ctrl(self):
model = TFCTRLLMHeadModel.from_pretrained("Salesforce/ctrl")
input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32) # Legal the president is
expected_output_ids = [
11859,
0,
1611,
8,
5,
150,
26449,
2,
19,
348,
469,
3,
2595,
48,
20740,
246533,
246533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
output_ids = model.generate(input_ids, do_sample=False)
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
| transformers/tests/models/ctrl/test_modeling_tf_ctrl.py/0 | {
"file_path": "transformers/tests/models/ctrl/test_modeling_tf_ctrl.py",
"repo_id": "transformers",
"token_count": 4926
} | 399 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import DebertaV2Config, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaV2ForMaskedLM,
TFDebertaV2ForMultipleChoice,
TFDebertaV2ForQuestionAnswering,
TFDebertaV2ForSequenceClassification,
TFDebertaV2ForTokenClassification,
TFDebertaV2Model,
)
class TFDebertaV2ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
relative_attention=False,
position_biased_input=True,
pos_att_type="None",
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.relative_attention = relative_attention
self.position_biased_input = position_biased_input
self.pos_att_type = pos_att_type
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = DebertaV2Config(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
relative_attention=self.relative_attention,
position_biased_input=self.position_biased_input,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDebertaV2Model(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDebertaV2ForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFDebertaV2ForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFDebertaV2ForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDebertaV2ForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFDebertaV2ForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFDebertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFDebertaV2Model,
TFDebertaV2ForMaskedLM,
TFDebertaV2ForQuestionAnswering,
TFDebertaV2ForMultipleChoice,
TFDebertaV2ForSequenceClassification,
TFDebertaV2ForTokenClassification,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFDebertaV2Model,
"fill-mask": TFDebertaV2ForMaskedLM,
"question-answering": TFDebertaV2ForQuestionAnswering,
"text-classification": TFDebertaV2ForSequenceClassification,
"token-classification": TFDebertaV2ForTokenClassification,
"zero-shot": TFDebertaV2ForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFDebertaV2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=DebertaV2Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TFDebertaV2Model.from_pretrained("kamalkraj/deberta-v2-xlarge")
self.assertIsNotNone(model)
@require_tf
class TFDeBERTaV2ModelIntegrationTest(unittest.TestCase):
@unittest.skip(reason="Model not available yet")
def test_inference_masked_lm(self):
pass
@slow
def test_inference_no_head(self):
model = TFDebertaV2Model.from_pretrained("kamalkraj/deberta-v2-xlarge")
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
attention_mask = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
output = model(input_ids, attention_mask=attention_mask)[0]
expected_slice = tf.constant(
[[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]]
)
tf.debugging.assert_near(output[:, 1:4, 1:4], expected_slice, atol=1e-4)
| transformers/tests/models/deberta_v2/test_modeling_tf_deberta_v2.py/0 | {
"file_path": "transformers/tests/models/deberta_v2/test_modeling_tf_deberta_v2.py",
"repo_id": "transformers",
"token_count": 5454
} | 400 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Donut Swin model. """
import collections
import unittest
from transformers import DonutSwinConfig
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import is_torch_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import DonutSwinModel
from transformers.models.donut.modeling_donut_swin import DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST
class DonutSwinModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
embed_dim=16,
depths=[1, 2, 1],
num_heads=[2, 2, 4],
window_size=2,
mlp_ratio=2.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
patch_norm=True,
initializer_range=0.02,
layer_norm_eps=1e-5,
is_training=True,
scope=None,
use_labels=True,
type_sequence_label_size=10,
encoder_stride=8,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.patch_norm = patch_norm
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.is_training = is_training
self.scope = scope
self.use_labels = use_labels
self.type_sequence_label_size = type_sequence_label_size
self.encoder_stride = encoder_stride
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DonutSwinConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
embed_dim=self.embed_dim,
depths=self.depths,
num_heads=self.num_heads,
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
drop_path_rate=self.drop_path_rate,
hidden_act=self.hidden_act,
use_absolute_embeddings=self.use_absolute_embeddings,
path_norm=self.patch_norm,
layer_norm_eps=self.layer_norm_eps,
initializer_range=self.initializer_range,
encoder_stride=self.encoder_stride,
)
def create_and_check_model(self, config, pixel_values, labels):
model = DonutSwinModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DonutSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DonutSwinModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": DonutSwinModel} if is_torch_available() else {}
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DonutSwinModelTester(self)
self.config_tester = ConfigTester(self, config_class=DonutSwinConfig, embed_dim=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_inputs_embeds(self):
# DonutSwin does not use inputs_embeds
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
expected_num_attentions = len(self.model_tester.depths)
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
window_size_squared = config.window_size**2
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_heads[0], window_size_squared, window_size_squared],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
added_hidden_states = 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_heads[0], window_size_squared, window_size_squared],
)
def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# DonutSwin has a different seq_length
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
reshaped_hidden_states = outputs.reshaped_hidden_states
self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
reshaped_hidden_states = (
reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
def test_hidden_states_output_with_padding(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.patch_size = 3
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
@slow
def test_model_from_pretrained(self):
for model_name in DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DonutSwinModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
| transformers/tests/models/donut/test_modeling_donut_swin.py/0 | {
"file_path": "transformers/tests/models/donut/test_modeling_donut_swin.py",
"repo_id": "transformers",
"token_count": 6320
} | 401 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_torchvision, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_torchvision_available():
import torchvision.transforms as transforms
if is_vision_available():
from PIL import Image
from transformers import IdeficsImageProcessor
class IdeficsImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
size=None,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
):
size = size if size is not None else {"shortest_edge": 30}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
# self.size = size
self.image_mean = image_mean
self.image_std = image_std
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"image_size": self.image_size,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to IdeficsImageProcessor,
assuming do_resize is set to True with a scalar size and size_divisor.
"""
if not batched:
size = self.image_size
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
scale = size / min(w, h)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
max_size = int((1333 / 800) * size)
if max(newh, neww) > max_size:
scale = max_size / max(newh, neww)
newh = newh * scale
neww = neww * scale
newh, neww = int(newh + 0.5), int(neww + 0.5)
expected_height, expected_width = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
return (self.num_channels, height, width)
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class IdeficsImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = IdeficsImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = IdeficsImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "image_size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertNotEqual(image_processor.image_size, 30)
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, image_size=42)
self.assertEqual(image_processor.image_size, 42)
@require_torchvision
def test_torchvision_numpy_transforms_equivalency(self):
# as we had to reimplement the torchvision transforms using transformers utils we must check
# they both do the same
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
image_processor = self.image_processing_class(**self.image_processor_dict)
print(image_inputs)
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
image_size = image_processor.image_size
image_mean = image_processor.image_mean
image_std = image_processor.image_std
transform = transforms.Compose(
[
convert_to_rgb,
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=image_mean, std=image_std),
]
)
pixel_values_transform_implied = image_processor(image_inputs, transform=None)
pixel_values_transform_supplied = image_processor(image_inputs, transform=transform)
torch.testing.assert_close(pixel_values_transform_implied, pixel_values_transform_supplied, rtol=0.0, atol=0.0)
@unittest.skip("not supported")
def test_call_numpy(self):
pass
@unittest.skip("not supported")
def test_call_numpy_4_channels(self):
pass
@unittest.skip("not supported")
def test_call_pil(self):
pass
@unittest.skip("not supported")
def test_call_pytorch(self):
pass
| transformers/tests/models/idefics/test_image_processing_idefics.py/0 | {
"file_path": "transformers/tests/models/idefics/test_image_processing_idefics.py",
"repo_id": "transformers",
"token_count": 3182
} | 402 |
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
import requests
from transformers.testing_utils import (
get_tests_dir,
require_sentencepiece,
require_tokenizers,
require_torch,
require_vision,
)
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
CLIPImageProcessor,
Kosmos2Processor,
PreTrainedTokenizerFast,
XLMRobertaTokenizer,
XLMRobertaTokenizerFast,
)
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
@require_vision
class Kosmos2ProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = CLIPImageProcessor()
# We have a SentencePiece fixture for testing
slow_tokenizer = XLMRobertaTokenizer(SAMPLE_VOCAB)
fast_tokenizer = XLMRobertaTokenizerFast(__slow_tokenizer=slow_tokenizer)
processor = Kosmos2Processor(image_processor, fast_tokenizer)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_additional_features(self):
processor = Kosmos2Processor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = Kosmos2Processor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, CLIPImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_image_processor = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_image_processor.keys():
self.assertAlmostEqual(input_image_processor[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "This is a test"
encoded_processor = processor(text=input_str, add_eos_token=True)
encoded_tok = tokenizer(input_str, return_token_type_ids=False)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "This is a test"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(
list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask", "image_embeds_position_mask"]
)
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = Kosmos2Processor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "This is a test"
image_input = self.prepare_image_inputs()
# both image and text
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(
list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask", "image_embeds_position_mask"]
)
# only text
inputs = processor(text=input_str)
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
# only image
inputs = processor(images=image_input)
self.assertListEqual(list(inputs.keys()), ["pixel_values"])
@require_torch
def test_full_processor(self):
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/two_dogs.jpg"
processor = Kosmos2Processor.from_pretrained("microsoft/kosmos-2-patch14-224")
# test with different input formats.
# fmt: off
texts = [
# no phrase
"<grounding> Two puppies sit in a field of grass.",
# 1 phrase
"<grounding> <phrase> Two puppies </phrase> sit in a field of grass.",
# 2 phrases
"<grounding> <phrase> Two puppies </phrase> sit in a field of <phrase> grass </phrase>.",
# 2 phrases: bboxes already specified for the 1st phrase
"<grounding> <phrase> Two puppies </phrase> <object> <patch_index_0079> <patch_index_1016> </delimiter_of_multi_objects/> <patch_index_0135> <patch_index_1008> </object> sit in a field of <phrase> grass </phrase>.",
]
# fmt: on
image = Image.open(requests.get(url, stream=True).raw)
# To match the official (microsoft) Kosmos-2 demo from which the expected values here are grabbed
image_path = os.path.join(self.tmpdirname, "image.jpg")
image.save(image_path)
image = Image.open(image_path)
# fmt: off
bboxes = [
[None, []],
[[None], [[]], [(79, 1016)], [[(79, 1016)]], [[(79, 1016), (135, 1008)]]],
[[[(79, 1016), (135, 1008)], None], [[(79, 1016), (135, 1008)], []], [[(79, 1016), (135, 1008)], (480, 1023)], [[(79, 1016), (135, 1008)], [(480, 1023)]]],
[[None, [(480, 1023)]]],
]
# fmt: on
batch_image = [image] * 4
batch_text = [texts[0], texts[1], texts[1], texts[2]]
batch_bboxes = [
None, # no phrase
[[]], # 1 phrase: no bbox
[(79, 1016)], # 1 phrase: 1 bbox
[[(79, 1016), (135, 1008)], (480, 1023)], # 2 phrase: 2 bboxes + 1 bbox
]
# fmt: off
expected_input_ids = [
[0, 64012, 1264, 17772, 1357, 12, 10, 770, 9, 4464, 4, 2],
[0, 64012, 64007, 1264, 17772, 64008, 1357, 12, 10, 770, 9, 4464, 4, 2],
[0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64010, 1357, 12, 10, 770, 9, 4464, 4, 2],
[0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64011, 64148, 65021, 64010, 1357, 12, 10, 770, 9, 4464, 4, 2],
[0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64011, 64148, 65021, 64010, 1357, 12, 10, 770, 9, 64007, 4464, 64008, 106, 4, 2],
[0, 64012, 64007, 1264, 17772, 64008, 64009, 64092, 65029, 64011, 64148, 65021, 64010, 1357, 12, 10, 770, 9, 64007, 4464, 64008, 64009, 64493, 65036, 64010, 106, 4, 2],
]
# fmt: on
EXPECTED_PIXEL_VALUES_1 = np.array(
[
[
[-0.6535852551460266, -0.6389868259429932, -0.6243883967399597],
[-0.6535852551460266, -0.6389868259429932, -0.6243883967399597],
[-0.6243883967399597, -0.6243883967399597, -0.5951915383338928],
],
[
[-0.20629698038101196, -0.19128920137882233, -0.19128920137882233],
[-0.20629698038101196, -0.19128920137882233, -0.17628143727779388],
[-0.2213047444820404, -0.20629698038101196, -0.16127367317676544],
],
[
[-0.5843556523323059, -0.5701355338096619, -0.5701355338096619],
[-0.5843556523323059, -0.5701355338096619, -0.5559154152870178],
[-0.5843556523323059, -0.5559154152870178, -0.5416953563690186],
],
]
)
EXPECTED_PIXEL_VALUES_2 = np.array(
[
[
[-0.4346088469028473, -0.47840413451194763, -0.7849710583686829],
[-0.5221993923187256, -0.5076009631156921, -0.755774199962616],
[-0.5221993923187256, -0.5076009631156921, -0.7411757707595825],
],
[
[-0.2813358008861542, -0.2963435649871826, -0.431413471698761],
[-0.26632803678512573, -0.2963435649871826, -0.4764367938041687],
[-0.2213047444820404, -0.2813358008861542, -0.49144455790519714],
],
[
[-0.5701355338096619, -0.641235888004303, -0.7549964189529419],
[-0.5843556523323059, -0.641235888004303, -0.7834365367889404],
[-0.5559154152870178, -0.641235888004303, -0.7834365367889404],
],
]
)
def check(texts, bboxes, expected_input_ids):
outputs = processor(images=None, text=texts, bboxes=bboxes, add_eos_token=True)
self.assertListEqual(outputs.input_ids, expected_input_ids)
# no phrase
check(texts[0], bboxes[0][0], expected_input_ids[0])
# no phrase
check(texts[0], bboxes[0][1], expected_input_ids[0])
# 1 phrase: no bbox
check(texts[1], bboxes[1][0], expected_input_ids[1])
# 1 phrase: no bbox
check(texts[1], bboxes[1][1], expected_input_ids[1])
# 1 phrase: 1 bbox
check(texts[1], bboxes[1][2], expected_input_ids[2])
# 1 phrase: 1 bbox
check(texts[1], bboxes[1][3], expected_input_ids[2])
# 1 phrase: 2 bboxes
check(texts[1], bboxes[1][4], expected_input_ids[3])
# could not contain `[None]`
with pytest.raises(ValueError):
_ = processor.preprocess_examples(images=None, texts=texts[1], bboxes=[[None]])
# 2 phrase: 2 bboxes + no bbox
check(texts[2], bboxes[2][0], expected_input_ids[4])
# 2 phrase: 2 bboxes + no bbox
check(texts[2], bboxes[2][1], expected_input_ids[4])
# 2 phrase: 2 bboxes + 1 bbox
check(texts[2], bboxes[2][2], expected_input_ids[5])
# 2 phrase: 2 bboxes + 1 bbox
check(texts[2], bboxes[2][3], expected_input_ids[5])
# 2 phrase: no box (as already specified in the text) + 1 bbox
check(texts[3], bboxes[3][0], expected_input_ids[5])
# could not contain `[None]`
with pytest.raises(ValueError):
_ = processor.preprocess_examples(images=None, texts=texts[2], bboxes=[[(79, 1016), (135, 1008)], [None]])
# test batch
outputs = processor(
images=None,
text=batch_text,
bboxes=batch_bboxes,
add_eos_token=True,
)
self.assertListEqual(
outputs.input_ids,
[expected_input_ids[0], expected_input_ids[1], expected_input_ids[2], expected_input_ids[5]],
)
# test batch with padding (without `return_tensors`)
outputs = processor(
images=None,
text=batch_text,
bboxes=batch_bboxes,
padding=True,
add_eos_token=True,
)
# padding on the right
self.assertListEqual(
outputs.input_ids[0],
expected_input_ids[0] + [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])),
)
self.assertListEqual(
outputs.attention_mask[0],
[1] * len(expected_input_ids[0]) + [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])),
)
# no padding for the longest sequence
self.assertListEqual(outputs.input_ids[-1], expected_input_ids[5])
self.assertListEqual(outputs.attention_mask[-1], [1] * len(expected_input_ids[5]))
# test batch with padding (with `return_tensors`)
outputs = processor(
images=None,
text=batch_text,
bboxes=batch_bboxes,
return_tensors="pt",
padding=True,
add_eos_token=True,
)
# padding on the right
self.assertListEqual(
outputs.input_ids.numpy().tolist()[0],
expected_input_ids[0] + [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])),
)
self.assertListEqual(
outputs.attention_mask.numpy().tolist()[0],
[1] * len(expected_input_ids[0]) + [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])),
)
# no padding for the longest sequence
self.assertListEqual(outputs.input_ids.numpy().tolist()[-1], expected_input_ids[5])
self.assertListEqual(outputs.attention_mask.numpy().tolist()[-1], [1] * len(expected_input_ids[5]))
# test with image
num_image_tokens = 64
outputs = processor(images=image, text=texts[0], bboxes=None, add_eos_token=True)
self.assertTupleEqual(outputs.pixel_values[0].shape, (3, 224, 224))
self.assertListEqual(
outputs.input_ids,
[0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[0][1:],
)
self.assertListEqual(
outputs.image_embeds_position_mask,
[0] * 2 + [1] * num_image_tokens + [0] + [0] * (len(expected_input_ids[0]) - 1),
)
np.testing.assert_allclose(outputs.pixel_values[0][:3, :3, :3], EXPECTED_PIXEL_VALUES_1, atol=1e-9)
np.testing.assert_allclose(outputs.pixel_values[0][:3, -3:, -3:], EXPECTED_PIXEL_VALUES_2, atol=1e-9)
# test with image in batch (right padding)
outputs = processor(
images=batch_image,
text=batch_text,
bboxes=batch_bboxes,
return_tensors="pt",
padding=True,
add_eos_token=True,
)
self.assertTupleEqual(outputs.pixel_values.shape, (4, 3, 224, 224))
np.testing.assert_allclose(
outputs.pixel_values[:, :3, :3, :3].numpy(), [EXPECTED_PIXEL_VALUES_1] * len(batch_image), atol=1e-9
)
np.testing.assert_allclose(
outputs.pixel_values[:, :3, -3:, -3:].numpy(), [EXPECTED_PIXEL_VALUES_2] * len(batch_image), atol=1e-9
)
# padding on the right: the `[1:]` below is because the part for `BOS` is already added in the beginning of each (dynamically computed) expected value # noqa
# fmt: off
EXPECTED_IDS_BATCH_RIGHT_PADDING = [
[0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[0][1:] + [1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])),
[0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[5][1:],
]
EXPECTED_MASK_BATCH_RIGHT_PADDING = [
[1, 1] + [1] * num_image_tokens + [1] + [1] * len(expected_input_ids[0][1:]) + [0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])),
[1] * (2 + num_image_tokens + len(expected_input_ids[5])),
]
# fmt: on
self.assertListEqual(outputs.input_ids.numpy().tolist()[0], EXPECTED_IDS_BATCH_RIGHT_PADDING[0])
self.assertListEqual(outputs.attention_mask.numpy().tolist()[0], EXPECTED_MASK_BATCH_RIGHT_PADDING[0])
self.assertListEqual(outputs.input_ids.numpy().tolist()[-1], EXPECTED_IDS_BATCH_RIGHT_PADDING[-1])
self.assertListEqual(outputs.attention_mask.numpy().tolist()[-1], EXPECTED_MASK_BATCH_RIGHT_PADDING[-1])
self.assertListEqual(
outputs.image_embeds_position_mask.numpy().tolist(),
[[0, 0] + [1] * num_image_tokens + [0] + [0] * (len(expected_input_ids[5]) - 1)] * len(batch_image),
)
processor = Kosmos2Processor.from_pretrained("microsoft/kosmos-2-patch14-224", padding_side="left")
# test with image in batch (left padding)
outputs = processor(
images=batch_image,
text=batch_text,
bboxes=batch_bboxes,
return_tensors="pt",
padding=True,
add_eos_token=True,
)
# padding on the left: the `[1:]` below is because the part for `BOS` is already added in the beginning of each (dynamically computed) expected value # noqa
# fmt: off
EXPECTED_IDS_BATCH = [
[1] * (len(expected_input_ids[5]) - len(expected_input_ids[0])) + [0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[0][1:],
[0, 64003] + list(range(4, 4 + num_image_tokens)) + [64004] + expected_input_ids[5][1:],
]
EXPECTED_MASK_BATCH =[
[0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])) + [1, 1] + [1] * num_image_tokens + [1] + [1] * len(expected_input_ids[0][1:]),
[1] * (2 + num_image_tokens + len(expected_input_ids[5])),
]
EXPECTED_IMG_POS_MASK_BATCH = [
[0] * (len(expected_input_ids[5]) - len(expected_input_ids[0])) + [0, 0] + [1] * num_image_tokens + [0] + [0] * len(expected_input_ids[0][1:]),
[0, 0] + [1] * num_image_tokens + [0] + [0] * (len(expected_input_ids[5]) - 1),
]
# fmt: on
self.assertListEqual(outputs.input_ids.numpy().tolist()[0], EXPECTED_IDS_BATCH[0])
self.assertListEqual(outputs.attention_mask.numpy().tolist()[0], EXPECTED_MASK_BATCH[0])
self.assertListEqual(outputs.image_embeds_position_mask.numpy().tolist()[0], EXPECTED_IMG_POS_MASK_BATCH[0])
# no padding for the longest sequence
self.assertListEqual(outputs.input_ids.numpy().tolist()[-1], EXPECTED_IDS_BATCH[-1])
self.assertListEqual(outputs.attention_mask.numpy().tolist()[-1], EXPECTED_MASK_BATCH[-1])
self.assertListEqual(outputs.image_embeds_position_mask.numpy().tolist()[-1], EXPECTED_IMG_POS_MASK_BATCH[-1])
| transformers/tests/models/kosmos2/test_processor_kosmos2.py/0 | {
"file_path": "transformers/tests/models/kosmos2/test_processor_kosmos2.py",
"repo_id": "transformers",
"token_count": 9619
} | 403 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
import torch
from transformers import GPT2LMHeadModel
@require_torch
@require_sentencepiece
@require_tokenizers
class MegatronGPT2IntegrationTest(unittest.TestCase):
@slow
@unittest.skip("Model is not available.")
def test_inference_no_head(self):
directory = "nvidia/megatron-gpt2-345m/"
if "MYDIR" in os.environ:
directory = os.path.join(os.environ["MYDIR"], directory)
model = GPT2LMHeadModel.from_pretrained(directory)
model.to(torch_device)
model.half()
input_ids = torch.tensor(
[[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]],
device=torch_device,
dtype=torch.long,
)
with torch.no_grad():
output = model(input_ids).logits
expected_shape = torch.Size((1, 9, 50257))
self.assertEqual(output.shape, expected_shape)
expected_diag = torch.tensor(
[
4.9414,
-0.2920,
-1.2148,
-4.0273,
-0.5161,
-5.2109,
-1.2412,
-1.8301,
-1.7734,
-4.7148,
-0.2317,
-1.0811,
-2.1777,
0.4141,
-3.7969,
-4.0586,
-2.5332,
-3.3809,
4.3867,
],
device=torch_device,
dtype=torch.half,
)
for i in range(19):
r, c = 8 * i // 17, 2792 * i # along the diagonal
computed, expected = output[0, r, c], expected_diag[i]
msg = f"row={r} col={c} computed={computed} expected={expected}"
self.assertAlmostEqual(computed, expected, delta=1e-4, msg=msg)
| transformers/tests/models/megatron_gpt2/test_modeling_megatron_gpt2.py/0 | {
"file_path": "transformers/tests/models/megatron_gpt2/test_modeling_megatron_gpt2.py",
"repo_id": "transformers",
"token_count": 1284
} | 404 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class OpenAIGPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.pad_token_id = self.vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
pad_token_id=self.pad_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTLMHeadModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTDoubleHeadsModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_openai_gpt_for_sequence_classification(
self, config, input_ids, head_mask, token_type_ids, *args
):
config.num_labels = self.num_labels
model = OpenAIGPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class OpenAIGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
all_generative_model_classes = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
pipeline_model_mapping = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
# special case for DoubleHeads model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict["input_ids"] = inputs_dict["labels"]
inputs_dict["token_type_ids"] = inputs_dict["labels"]
inputs_dict["mc_token_ids"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices),
dtype=torch.long,
device=torch_device,
)
inputs_dict["mc_labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = OpenAIGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_openai_gpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)
def test_openai_gpt_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
def test_openai_gpt_double_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
def test_openai_gpt_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = OpenAIGPTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_openai_gpt(self):
model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
model.to(torch_device)
input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device) # the president is
expected_output_ids = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
output_ids = model.generate(input_ids, do_sample=False)
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
| transformers/tests/models/openai/test_modeling_openai.py/0 | {
"file_path": "transformers/tests/models/openai/test_modeling_openai.py",
"repo_id": "transformers",
"token_count": 5450
} | 405 |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Please note that Pop2PianoTokenizer is too far from our usual tokenizers and thus cannot use the TokenizerTesterMixin class.
"""
import os
import pickle
import shutil
import tempfile
import unittest
from transformers.feature_extraction_utils import BatchFeature
from transformers.testing_utils import (
is_pretty_midi_available,
is_torch_available,
require_pretty_midi,
require_torch,
)
from transformers.tokenization_utils import BatchEncoding
if is_torch_available():
import torch
requirements_available = is_torch_available() and is_pretty_midi_available()
if requirements_available:
import pretty_midi
from transformers import Pop2PianoTokenizer
@require_torch
@require_pretty_midi
class Pop2PianoTokenizerTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
def get_input_notes(self):
notes = [
[
pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
pretty_midi.Note(start=0.673379, end=0.905578, pitch=73, velocity=77),
pretty_midi.Note(start=0.905578, end=2.159456, pitch=73, velocity=77),
pretty_midi.Note(start=1.114558, end=2.159456, pitch=78, velocity=77),
pretty_midi.Note(start=1.323537, end=1.532517, pitch=80, velocity=77),
],
[
pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
],
]
return notes
def test_call(self):
notes = self.get_input_notes()
output = self.tokenizer(
notes,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=10,
return_attention_mask=True,
)
# check the output type
self.assertTrue(isinstance(output, BatchEncoding))
# check the values
expected_output_token_ids = torch.tensor(
[[134, 133, 74, 135, 77, 132, 77, 133, 77, 82], [134, 133, 74, 136, 132, 74, 134, 134, 134, 134]]
)
expected_output_attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]])
self.assertTrue(torch.allclose(output["token_ids"], expected_output_token_ids, atol=1e-4))
self.assertTrue(torch.allclose(output["attention_mask"], expected_output_attention_mask, atol=1e-4))
def test_batch_decode(self):
# test batch decode with model, feature-extractor outputs(beatsteps, extrapolated_beatstep)
# Please note that this test does not test the accuracy of the outputs, instead it is designed to make sure that
# the tokenizer's batch_decode can deal with attention_mask in feature-extractor outputs. For the accuracy check
# please see the `test_batch_decode_outputs` test.
model_output = torch.concatenate(
[
torch.randint(size=[120, 96], low=0, high=70, dtype=torch.long),
torch.zeros(size=[1, 96], dtype=torch.long),
torch.randint(size=[50, 96], low=0, high=40, dtype=torch.long),
torch.zeros(size=[1, 96], dtype=torch.long),
],
axis=0,
)
input_features = BatchFeature(
{
"beatsteps": torch.ones([2, 955]),
"extrapolated_beatstep": torch.ones([2, 1000]),
"attention_mask": torch.concatenate(
[
torch.ones([120, 96], dtype=torch.long),
torch.zeros([1, 96], dtype=torch.long),
torch.ones([50, 96], dtype=torch.long),
torch.zeros([1, 96], dtype=torch.long),
],
axis=0,
),
"attention_mask_beatsteps": torch.ones([2, 955]),
"attention_mask_extrapolated_beatstep": torch.ones([2, 1000]),
}
)
output = self.tokenizer.batch_decode(token_ids=model_output, feature_extractor_output=input_features)[
"pretty_midi_objects"
]
# check length
self.assertTrue(len(output) == 2)
# check object type
self.assertTrue(isinstance(output[0], pretty_midi.pretty_midi.PrettyMIDI))
self.assertTrue(isinstance(output[1], pretty_midi.pretty_midi.PrettyMIDI))
def test_batch_decode_outputs(self):
# test batch decode with model, feature-extractor outputs(beatsteps, extrapolated_beatstep)
# Please note that this test tests the accuracy of the outputs of the tokenizer's `batch_decode` method.
model_output = torch.tensor(
[
[134, 133, 74, 135, 77, 82, 84, 136, 132, 74, 77, 82, 84],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
]
)
input_features = BatchEncoding(
{
"beatsteps": torch.tensor([[0.0697, 0.1103, 0.1509, 0.1916]]),
"extrapolated_beatstep": torch.tensor([[0.0000, 0.0406, 0.0813, 0.1219]]),
}
)
output = self.tokenizer.batch_decode(token_ids=model_output, feature_extractor_output=input_features)
# check outputs
self.assertEqual(len(output["notes"]), 4)
predicted_start_timings, predicted_end_timings = [], []
for i in output["notes"]:
predicted_start_timings.append(i.start)
predicted_end_timings.append(i.end)
# Checking note start timings
expected_start_timings = torch.tensor(
[
0.069700,
0.110300,
0.110300,
0.110300,
]
)
predicted_start_timings = torch.tensor(predicted_start_timings)
self.assertTrue(torch.allclose(expected_start_timings, predicted_start_timings, atol=1e-4))
# Checking note end timings
expected_end_timings = torch.tensor(
[
0.191600,
0.191600,
0.191600,
0.191600,
]
)
predicted_end_timings = torch.tensor(predicted_end_timings)
self.assertTrue(torch.allclose(expected_end_timings, predicted_end_timings, atol=1e-4))
def test_get_vocab(self):
vocab_dict = self.tokenizer.get_vocab()
self.assertIsInstance(vocab_dict, dict)
self.assertGreaterEqual(len(self.tokenizer), len(vocab_dict))
vocab = [self.tokenizer.convert_ids_to_tokens(i) for i in range(len(self.tokenizer))]
self.assertEqual(len(vocab), len(self.tokenizer))
self.tokenizer.add_tokens(["asdfasdfasdfasdf"])
vocab = [self.tokenizer.convert_ids_to_tokens(i) for i in range(len(self.tokenizer))]
self.assertEqual(len(vocab), len(self.tokenizer))
def test_save_and_load_tokenizer(self):
tmpdirname = tempfile.mkdtemp()
sample_notes = self.get_input_notes()
self.tokenizer.add_tokens(["bim", "bambam"])
additional_special_tokens = self.tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token")
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
before_token_ids = self.tokenizer(sample_notes)["token_ids"]
before_vocab = self.tokenizer.get_vocab()
self.tokenizer.save_pretrained(tmpdirname)
after_tokenizer = self.tokenizer.__class__.from_pretrained(tmpdirname)
after_token_ids = after_tokenizer(sample_notes)["token_ids"]
after_vocab = after_tokenizer.get_vocab()
self.assertDictEqual(before_vocab, after_vocab)
self.assertListEqual(before_token_ids, after_token_ids)
self.assertIn("bim", after_vocab)
self.assertIn("bambam", after_vocab)
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
shutil.rmtree(tmpdirname)
def test_pickle_tokenizer(self):
tmpdirname = tempfile.mkdtemp()
notes = self.get_input_notes()
subwords = self.tokenizer(notes)["token_ids"]
filename = os.path.join(tmpdirname, "tokenizer.bin")
with open(filename, "wb") as handle:
pickle.dump(self.tokenizer, handle)
with open(filename, "rb") as handle:
tokenizer_new = pickle.load(handle)
subwords_loaded = tokenizer_new(notes)["token_ids"]
self.assertListEqual(subwords, subwords_loaded)
def test_padding_side_in_kwargs(self):
tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", padding_side="left")
self.assertEqual(tokenizer_p.padding_side, "left")
tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", padding_side="right")
self.assertEqual(tokenizer_p.padding_side, "right")
self.assertRaises(
ValueError,
Pop2PianoTokenizer.from_pretrained,
"sweetcocoa/pop2piano",
padding_side="unauthorized",
)
def test_truncation_side_in_kwargs(self):
tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", truncation_side="left")
self.assertEqual(tokenizer_p.truncation_side, "left")
tokenizer_p = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano", truncation_side="right")
self.assertEqual(tokenizer_p.truncation_side, "right")
self.assertRaises(
ValueError,
Pop2PianoTokenizer.from_pretrained,
"sweetcocoa/pop2piano",
truncation_side="unauthorized",
)
def test_right_and_left_padding(self):
tokenizer = self.tokenizer
notes = self.get_input_notes()
notes = notes[0]
max_length = 20
padding_idx = tokenizer.pad_token_id
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
padded_notes = tokenizer(notes, padding="max_length", max_length=max_length)["token_ids"]
padded_notes_length = len(padded_notes)
notes_without_padding = tokenizer(notes, padding="do_not_pad")["token_ids"]
padding_size = max_length - len(notes_without_padding)
self.assertEqual(padded_notes_length, max_length)
self.assertEqual(notes_without_padding + [padding_idx] * padding_size, padded_notes)
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "left"
padded_notes = tokenizer(notes, padding="max_length", max_length=max_length)["token_ids"]
padded_notes_length = len(padded_notes)
notes_without_padding = tokenizer(notes, padding="do_not_pad")["token_ids"]
padding_size = max_length - len(notes_without_padding)
self.assertEqual(padded_notes_length, max_length)
self.assertEqual([padding_idx] * padding_size + notes_without_padding, padded_notes)
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
notes_without_padding = tokenizer(notes)["token_ids"]
tokenizer.padding_side = "right"
padded_notes_right = tokenizer(notes, padding=False)["token_ids"]
self.assertEqual(len(padded_notes_right), len(notes_without_padding))
self.assertEqual(padded_notes_right, notes_without_padding)
tokenizer.padding_side = "left"
padded_notes_left = tokenizer(notes, padding="longest")["token_ids"]
self.assertEqual(len(padded_notes_left), len(notes_without_padding))
self.assertEqual(padded_notes_left, notes_without_padding)
tokenizer.padding_side = "right"
padded_notes_right = tokenizer(notes, padding="longest")["token_ids"]
self.assertEqual(len(padded_notes_right), len(notes_without_padding))
self.assertEqual(padded_notes_right, notes_without_padding)
tokenizer.padding_side = "left"
padded_notes_left = tokenizer(notes, padding=False)["token_ids"]
self.assertEqual(len(padded_notes_left), len(notes_without_padding))
self.assertEqual(padded_notes_left, notes_without_padding)
def test_right_and_left_truncation(self):
tokenizer = self.tokenizer
notes = self.get_input_notes()
notes = notes[0]
truncation_size = 3
# RIGHT TRUNCATION - Check that it correctly truncates when a maximum length is specified along with the truncation flag set to True
tokenizer.truncation_side = "right"
full_encoded_notes = tokenizer(notes)["token_ids"]
full_encoded_notes_length = len(full_encoded_notes)
truncated_notes = tokenizer(notes, max_length=full_encoded_notes_length - truncation_size, truncation=True)[
"token_ids"
]
self.assertEqual(full_encoded_notes_length, len(truncated_notes) + truncation_size)
self.assertEqual(full_encoded_notes[:-truncation_size], truncated_notes)
# LEFT TRUNCATION - Check that it correctly truncates when a maximum length is specified along with the truncation flag set to True
tokenizer.truncation_side = "left"
full_encoded_notes = tokenizer(notes)["token_ids"]
full_encoded_notes_length = len(full_encoded_notes)
truncated_notes = tokenizer(notes, max_length=full_encoded_notes_length - truncation_size, truncation=True)[
"token_ids"
]
self.assertEqual(full_encoded_notes_length, len(truncated_notes) + truncation_size)
self.assertEqual(full_encoded_notes[truncation_size:], truncated_notes)
# RIGHT & LEFT TRUNCATION - Check that nothing is done for 'longest' and 'no_truncation'
tokenizer.truncation_side = "right"
truncated_notes_right = tokenizer(notes, truncation=True)["token_ids"]
self.assertEqual(full_encoded_notes_length, len(truncated_notes_right))
self.assertEqual(full_encoded_notes, truncated_notes_right)
tokenizer.truncation_side = "left"
truncated_notes_left = tokenizer(notes, truncation="longest_first")["token_ids"]
self.assertEqual(len(truncated_notes_left), full_encoded_notes_length)
self.assertEqual(truncated_notes_left, full_encoded_notes)
tokenizer.truncation_side = "right"
truncated_notes_right = tokenizer(notes, truncation="longest_first")["token_ids"]
self.assertEqual(len(truncated_notes_right), full_encoded_notes_length)
self.assertEqual(truncated_notes_right, full_encoded_notes)
tokenizer.truncation_side = "left"
truncated_notes_left = tokenizer(notes, truncation=True)["token_ids"]
self.assertEqual(len(truncated_notes_left), full_encoded_notes_length)
self.assertEqual(truncated_notes_left, full_encoded_notes)
def test_padding_to_multiple_of(self):
notes = self.get_input_notes()
if self.tokenizer.pad_token is None:
self.skipTest("No padding token.")
else:
normal_tokens = self.tokenizer(notes[0], padding=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
normal_tokens = self.tokenizer(notes[0], pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# Should also work with truncation
normal_tokens = self.tokenizer(notes[0], padding=True, truncation=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# truncation to something which is not a multiple of pad_to_multiple_of raises an error
self.assertRaises(
ValueError,
self.tokenizer.__call__,
notes[0],
padding=True,
truncation=True,
max_length=12,
pad_to_multiple_of=8,
)
def test_padding_with_attention_mask(self):
if self.tokenizer.pad_token is None:
self.skipTest("No padding token.")
if "attention_mask" not in self.tokenizer.model_input_names:
self.skipTest("This model does not use attention mask.")
features = [
{"token_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]},
{"token_ids": [1, 2, 3], "attention_mask": [1, 1, 0]},
]
padded_features = self.tokenizer.pad(features)
if self.tokenizer.padding_side == "right":
self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]])
else:
self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]])
| transformers/tests/models/pop2piano/test_tokenization_pop2piano.py/0 | {
"file_path": "transformers/tests/models/pop2piano/test_tokenization_pop2piano.py",
"repo_id": "transformers",
"token_count": 7905
} | 406 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class RagTokenizerTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.retrieval_vector_size = 8
# DPR tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
os.makedirs(dpr_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
# BART tok
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
os.makedirs(bart_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))
def get_bart_tokenizer(self) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
@require_tokenizers
def test_save_load_pretrained_with_saved_config(self):
save_dir = os.path.join(self.tmpdirname, "rag_tokenizer")
rag_config = RagConfig(question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict())
rag_tokenizer = RagTokenizer(question_encoder=self.get_dpr_tokenizer(), generator=self.get_bart_tokenizer())
rag_config.save_pretrained(save_dir)
rag_tokenizer.save_pretrained(save_dir)
new_rag_tokenizer = RagTokenizer.from_pretrained(save_dir, config=rag_config)
self.assertIsInstance(new_rag_tokenizer.question_encoder, DPRQuestionEncoderTokenizerFast)
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(), rag_tokenizer.question_encoder.get_vocab())
self.assertIsInstance(new_rag_tokenizer.generator, BartTokenizerFast)
self.assertEqual(new_rag_tokenizer.generator.get_vocab(), rag_tokenizer.generator.get_vocab())
@slow
def test_pretrained_token_nq_tokenizer(self):
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
input_strings = [
"who got the first nobel prize in physics",
"when is the next deadpool movie being released",
"which mode is used for short wave broadcast service",
"who is the owner of reading football club",
"when is the next scandal episode coming out",
"when is the last time the philadelphia won the superbowl",
"what is the most current adobe flash player version",
"how many episodes are there in dragon ball z",
"what is the first step in the evolution of the eye",
"where is gall bladder situated in human body",
"what is the main mineral in lithium batteries",
"who is the president of usa right now",
"where do the greasers live in the outsiders",
"panda is a national animal of which country",
"what is the name of manchester united stadium",
]
input_dict = tokenizer(input_strings)
self.assertIsNotNone(input_dict)
@slow
def test_pretrained_sequence_nq_tokenizer(self):
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
input_strings = [
"who got the first nobel prize in physics",
"when is the next deadpool movie being released",
"which mode is used for short wave broadcast service",
"who is the owner of reading football club",
"when is the next scandal episode coming out",
"when is the last time the philadelphia won the superbowl",
"what is the most current adobe flash player version",
"how many episodes are there in dragon ball z",
"what is the first step in the evolution of the eye",
"where is gall bladder situated in human body",
"what is the main mineral in lithium batteries",
"who is the president of usa right now",
"where do the greasers live in the outsiders",
"panda is a national animal of which country",
"what is the name of manchester united stadium",
]
input_dict = tokenizer(input_strings)
self.assertIsNotNone(input_dict)
| transformers/tests/models/rag/test_tokenization_rag.py/0 | {
"file_path": "transformers/tests/models/rag/test_tokenization_rag.py",
"repo_id": "transformers",
"token_count": 3143
} | 407 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_bert import BertModelTester
from ..speech_to_text.test_modeling_speech_to_text import Speech2TextModelTester
from ..speech_to_text_2.test_modeling_speech_to_text_2 import Speech2Text2StandaloneDecoderModelTester
from ..wav2vec2.test_modeling_wav2vec2 import Wav2Vec2ModelTester
if is_torch_available():
import numpy as np
import torch
from transformers import (
BertLMHeadModel,
Speech2Text2ForCausalLM,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
Wav2Vec2Model,
)
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextEncoder
@require_torch
class EncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
pass
def prepare_config_and_inputs(self):
pass
def get_pretrained_model_and_inputs(self):
pass
def check_encoder_decoder_model_from_pretrained_configs(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
input_values=None,
input_features=None,
**kwargs,
):
encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = SpeechEncoderDecoderModel(encoder_decoder_config)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
self.assertFalse(enc_dec_model.config.tie_word_embeddings)
outputs_encoder_decoder = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
input_values=None,
input_features=None,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1])
outputs_encoder_decoder = enc_dec_model(
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model_with_inputs(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
input_values=None,
input_features=None,
**kwargs,
):
inputs = input_values if input_features is None else input_features
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
inputs,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
outputs_encoder_decoder_kwarg = enc_dec_model(
inputs=inputs,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
)
self.assertEqual(
outputs_encoder_decoder_kwarg["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model_from_pretrained(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
input_values=None,
input_features=None,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
return_dict=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_save_and_load(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
input_values=None,
input_features=None,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
enc_dec_model = SpeechEncoderDecoderModel.from_pretrained(tmpdirname)
enc_dec_model.to(torch_device)
after_outputs = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_save_and_load_encoder_decoder_model(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
input_values=None,
input_features=None,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
)
after_outputs = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_output_attentions(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels=None,
input_values=None,
input_features=None,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_values=input_values,
input_features=input_features,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
inputs = input_values if input_features is None else input_features
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
seq_len = enc_dec_model.encoder._get_feat_extract_output_lengths(inputs.shape[1])
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
)
def check_encoder_decoder_model_generate(
self, config, decoder_config, input_values=None, input_features=None, **kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
# make sure EOS token is set to None to prevent early stopping of generation
if hasattr(enc_dec_model.config, "eos_token_id"):
enc_dec_model.config.eos_token_id = None
if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"):
enc_dec_model.config.decoder.eos_token_id = None
inputs = input_values if input_features is None else input_features
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,))
def test_encoder_decoder_model(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model(**input_ids_dict)
def test_encoder_decoder_model_with_inputs(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_with_inputs(**input_ids_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
def test_encoder_decoder_model_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**input_ids_dict)
def test_save_and_load_from_encoder_decoder_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
def test_encoder_decoder_model_output_attentions(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**input_ids_dict)
def test_encoder_decoder_model_generate(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**input_ids_dict)
def test_training_gradient_checkpointing(self):
inputs_dict = self.prepare_config_and_inputs()
encoder_model, decoder_model = self.get_encoder_decoder_model(
inputs_dict["config"], inputs_dict["decoder_config"]
)
model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
model.to(torch_device)
model.train()
model.gradient_checkpointing_enable()
model.config.decoder_start_token_id = 0
model.config.pad_token_id = 0
model_inputs = {
"attention_mask": inputs_dict["attention_mask"],
"labels": inputs_dict["labels"],
"decoder_input_ids": inputs_dict["decoder_input_ids"],
}
inputs = inputs_dict["input_features"] if "input_features" in inputs_dict else inputs_dict["input_values"]
loss = model(inputs, **model_inputs).loss
loss.backward()
@slow
def test_real_model_save_load_from_pretrained(self):
model_2, inputs = self.get_pretrained_model_and_inputs()
model_2.to(torch_device)
with torch.no_grad():
outputs = model_2(**inputs)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = SpeechEncoderDecoderModel.from_pretrained(tmp_dirname)
model_1.to(torch_device)
after_outputs = model_1(**inputs)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_torch
class Wav2Vec2BertModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
"facebook/wav2vec2-base-960h", "bert-base-cased"
)
batch_size = 13
input_values = floats_tensor([batch_size, 512], scale=1.0)
attention_mask = random_attention_mask([batch_size, 512])
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
decoder_attention_mask = random_attention_mask([batch_size, 4])
inputs = {
"input_values": input_values,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return model, inputs
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = Wav2Vec2Model(config).eval()
decoder_model = BertLMHeadModel(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
bert_model_tester = BertModelTester(self)
wav2vec2_model_tester = Wav2Vec2ModelTester(self)
encoder_config_and_inputs = wav2vec2_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
(
config,
input_values,
input_mask,
) = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_attention_mask,
_,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"input_values": input_values,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"labels": decoder_token_labels,
}
@require_torch
class Speech2TextBertModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
"facebook/s2t-small-librispeech-asr", "bert-base-cased"
)
batch_size = 13
input_features = floats_tensor([batch_size, 7, 80], scale=1.0)
attention_mask = random_attention_mask([batch_size, 7])
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
decoder_attention_mask = random_attention_mask([batch_size, 4])
inputs = {
"input_features": input_features,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return model, inputs
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = Speech2TextEncoder(config).eval()
decoder_model = BertLMHeadModel(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
bert_model_tester = BertModelTester(self)
speech2text_model_tester = Speech2TextModelTester(self)
encoder_config_and_inputs = speech2text_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
config, inputs = encoder_config_and_inputs
input_features = inputs["input_features"]
input_mask = inputs["attention_mask"]
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_attention_mask,
_,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"input_features": input_features,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"labels": decoder_token_labels,
}
# can't save full model for now because Speech2TextModel != Speech2TextEncoder
def test_encoder_decoder_model_from_pretrained_configs(self):
pass
# can't save full model for now because Speech2TextModel != Speech2TextEncoder
def test_save_and_load_from_pretrained(self):
pass
# all published pretrained models are Speech2TextModel != Speech2TextEncoder
def test_real_model_save_load_from_pretrained(self):
pass
@require_torch
class Wav2Vec2Speech2Text2(EncoderDecoderMixin, unittest.TestCase):
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = Wav2Vec2Model(config).eval()
decoder_model = Speech2Text2ForCausalLM(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = Wav2Vec2ModelTester(self, batch_size=13)
model_tester_decoder = Speech2Text2StandaloneDecoderModelTester(
self, batch_size=13, d_model=32, max_position_embeddings=512
)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
(
config,
input_values,
input_mask,
) = encoder_config_and_inputs
(decoder_config, decoder_input_ids, decoder_attention_mask, _) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"input_values": input_values,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"labels": decoder_input_ids,
}
# there are no published pretrained Speech2Text2ForCausalLM for now
def test_real_model_save_load_from_pretrained(self):
pass
| transformers/tests/models/speech_encoder_decoder/test_modeling_speech_encoder_decoder.py/0 | {
"file_path": "transformers/tests/models/speech_encoder_decoder/test_modeling_speech_encoder_decoder.py",
"repo_id": "transformers",
"token_count": 11717
} | 408 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Splinter model. """
import copy
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel
from transformers.models.splinter.modeling_splinter import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST
class SplinterModelTester:
def __init__(
self,
parent,
batch_size=13,
num_questions=3,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
question_token_id=1,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_questions = num_questions
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.question_token_id = question_token_id
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids[:, 1] = self.question_token_id
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
start_positions = None
end_positions = None
question_positions = None
if self.use_labels:
start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size)
question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels)
config = SplinterConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
question_token_id=self.question_token_id,
)
return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions)
def create_and_check_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=start_positions[:, 0],
end_positions=end_positions[:, 0],
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
):
model = SplinterForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
start_positions,
end_positions,
question_positions,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class SplinterModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
SplinterModel,
SplinterForQuestionAnswering,
SplinterForPreTraining,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": SplinterModel, "question-answering": SplinterForQuestionAnswering}
if is_torch_available()
else {}
)
# TODO: Fix the failed tests when this model gets more usage
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
if pipeline_test_casse_name == "QAPipelineTests":
return True
elif pipeline_test_casse_name == "FeatureExtractionPipelineTests" and tokenizer_name.endswith("Fast"):
return True
return False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if issubclass(model_class, SplinterForPreTraining):
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
inputs_dict["question_positions"] = torch.zeros(
self.model_tester.batch_size,
self.model_tester.num_questions,
dtype=torch.long,
device=torch_device,
)
elif issubclass(model_class, SplinterForQuestionAnswering):
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = SplinterModelTester(self)
self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
if isinstance(model, SplinterForPreTraining):
with self.assertRaises(TypeError):
# question_positions must not be None.
model(**inputs)[0]
else:
model(**inputs)[0]
@slow
def test_model_from_pretrained(self):
for model_name in SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = SplinterModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# overwrite from common since `SplinterForPreTraining` could contain different number of question tokens in inputs.
# When the batch is distributed to multiple devices, each replica could get different values for the maximal number
# of question tokens (see `SplinterForPreTraining._prepare_question_positions()`), and the model returns different
# shape along dimension 1 (i.e. `num_questions`) that could not be combined into a single tensor as an output.
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
from torch import nn
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# some params shouldn't be scattered by nn.DataParallel
# so just remove them if they are present.
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
for k in blacklist_non_batched_params:
inputs_dict.pop(k, None)
# move input tensors to cuda:O
for k, v in inputs_dict.items():
if torch.is_tensor(v):
inputs_dict[k] = v.to(0)
for model_class in self.all_model_classes:
# Skip this case since it will fail sometimes, as described above.
if model_class == SplinterForPreTraining:
continue
model = model_class(config=config)
model.to(0)
model.eval()
# Wrap model in nn.DataParallel
model = nn.DataParallel(model)
with torch.no_grad():
_ = model(**self._prepare_for_class(inputs_dict, model_class))
@require_torch
class SplinterModelIntegrationTest(unittest.TestCase):
@slow
def test_splinter_question_answering(self):
model = SplinterForQuestionAnswering.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] Brad was born in [QUESTION] . He returned to the United Kingdom later . [SEP]"
# Output should be the span "the United Kingdom"
input_ids = torch.tensor(
[[101, 7796, 1108, 1255, 1107, 104, 119, 1124, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
output = model(input_ids)
expected_shape = torch.Size((1, 16))
self.assertEqual(output.start_logits.shape, expected_shape)
self.assertEqual(output.end_logits.shape, expected_shape)
self.assertEqual(torch.argmax(output.start_logits), 10)
self.assertEqual(torch.argmax(output.end_logits), 12)
@slow
def test_splinter_pretraining(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
question_positions = torch.tensor([[1, 5]], dtype=torch.long)
output = model(input_ids, question_positions=question_positions)
expected_shape = torch.Size((1, 2, 16))
self.assertEqual(output.start_logits.shape, expected_shape)
self.assertEqual(output.end_logits.shape, expected_shape)
self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7)
self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7)
self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10)
self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12)
@slow
def test_splinter_pretraining_loss_requires_question_positions(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]]
)
start_positions = torch.tensor([[7, 10]], dtype=torch.long)
end_positions = torch.tensor([7, 12], dtype=torch.long)
with self.assertRaises(TypeError):
model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
)
@slow
def test_splinter_pretraining_loss(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
]
)
start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long)
end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long)
question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long)
output = model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
self.assertAlmostEqual(output.loss.item(), 0.0024, 4)
@slow
def test_splinter_pretraining_loss_with_padding(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]"
# Output should be the spans "Brad" and "the United Kingdom"
input_ids = torch.tensor(
[
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102],
]
)
start_positions = torch.tensor([[7, 10]], dtype=torch.long)
end_positions = torch.tensor([7, 12], dtype=torch.long)
question_positions = torch.tensor([[1, 5]], dtype=torch.long)
start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long)
end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long)
question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long)
output = model(
input_ids,
start_positions=start_positions,
end_positions=end_positions,
question_positions=question_positions,
)
output_with_padding = model(
input_ids,
start_positions=start_positions_with_padding,
end_positions=end_positions_with_padding,
question_positions=question_positions_with_padding,
)
self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4)
# Note that the original code uses 0 to denote padded question tokens
# and their start and end positions. As the pad_token_id of the model's
# config is used for the losse's ignore_index in SplinterForPreTraining,
# we add this test to ensure anybody making changes to the default
# value of the config, will be aware of the implication.
self.assertEqual(model.config.pad_token_id, 0)
@slow
def test_splinter_pretraining_prepare_question_positions(self):
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass")
input_ids = torch.tensor(
[
[101, 104, 1, 2, 104, 3, 4, 102],
[101, 1, 104, 2, 104, 3, 104, 102],
[101, 1, 2, 104, 104, 3, 4, 102],
[101, 1, 2, 3, 4, 5, 104, 102],
]
)
question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long)
output_without_positions = model(input_ids)
output_with_positions = model(input_ids, question_positions=question_positions)
self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all())
self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all())
| transformers/tests/models/splinter/test_modeling_splinter.py/0 | {
"file_path": "transformers/tests/models/splinter/test_modeling_splinter.py",
"repo_id": "transformers",
"token_count": 9643
} | 409 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class TimmBackboneModelTester:
def __init__(
self,
parent,
out_indices=None,
out_features=None,
stage_names=None,
backbone="resnet18",
batch_size=3,
image_size=32,
num_channels=3,
is_training=True,
use_pretrained_backbone=True,
):
self.parent = parent
self.out_indices = out_indices if out_indices is not None else [4]
self.stage_names = stage_names
self.out_features = out_features
self.backbone = backbone
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.use_pretrained_backbone = use_pretrained_backbone
self.is_training = is_training
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return TimmBackboneConfig(
image_size=self.image_size,
num_channels=self.num_channels,
out_features=self.out_features,
out_indices=self.out_indices,
stage_names=self.stage_names,
use_pretrained_backbone=self.use_pretrained_backbone,
backbone=self.backbone,
)
def create_and_check_model(self, config, pixel_values):
model = TimmBackbone(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
self.parent.assertEqual(
result.feature_map[-1].shape,
(self.batch_size, model.channels[-1], 14, 14),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class TimmBackboneModelTest(ModelTesterMixin, BackboneTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TimmBackbone,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": TimmBackbone} if is_torch_available() else {}
test_resize_embeddings = False
test_head_masking = False
test_pruning = False
has_attentions = False
def setUp(self):
self.config_class = PretrainedConfig
self.model_tester = TimmBackboneModelTester(self)
self.config_tester = ConfigTester(self, config_class=self.config_class, has_text_modality=False)
def test_config(self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def test_timm_transformer_backbone_equivalence(self):
timm_checkpoint = "resnet18"
transformers_checkpoint = "microsoft/resnet-18"
timm_model = AutoBackbone.from_pretrained(timm_checkpoint, use_timm_backbone=True)
transformers_model = AutoBackbone.from_pretrained(transformers_checkpoint)
self.assertEqual(len(timm_model.out_features), len(transformers_model.out_features))
self.assertEqual(len(timm_model.stage_names), len(transformers_model.stage_names))
self.assertEqual(timm_model.channels, transformers_model.channels)
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices, (-1,))
self.assertEqual(transformers_model.out_indices, [len(timm_model.stage_names) - 1])
timm_model = AutoBackbone.from_pretrained(timm_checkpoint, use_timm_backbone=True, out_indices=[1, 2, 3])
transformers_model = AutoBackbone.from_pretrained(transformers_checkpoint, out_indices=[1, 2, 3])
self.assertEqual(timm_model.out_indices, transformers_model.out_indices)
self.assertEqual(len(timm_model.out_features), len(transformers_model.out_features))
self.assertEqual(timm_model.channels, transformers_model.channels)
@unittest.skip("TimmBackbone doesn't support feed forward chunking")
def test_feed_forward_chunking(self):
pass
@unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute")
def test_hidden_states_output(self):
pass
@unittest.skip("TimmBackbone initialization is managed on the timm side")
def test_initialization(self):
pass
@unittest.skip("TimmBackbone models doesn't have inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip("TimmBackbone models doesn't have inputs_embeds")
def test_model_common_attributes(self):
pass
@unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint")
def test_from_pretrained_no_checkpoint(self):
pass
@unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone")
def test_save_load(self):
pass
@unittest.skip("model weights aren't tied in TimmBackbone.")
def test_tie_model_weights(self):
pass
@unittest.skip("model weights aren't tied in TimmBackbone.")
def test_tied_model_weights_key_ignore(self):
pass
@unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone")
def test_load_save_without_tied_weights(self):
pass
@unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone")
def test_model_weights_reload_no_missing_tied_weights(self):
pass
@unittest.skip("TimmBackbone doesn't have hidden size info in its configuration.")
def test_channels(self):
pass
@unittest.skip("TimmBackbone doesn't support output_attentions.")
def test_torchscript_output_attentions(self):
pass
@unittest.skip("Safetensors is not supported by timm.")
def test_can_use_safetensors(self):
pass
@unittest.skip("Need to use a timm backbone and there is no tiny model available.")
def test_model_is_small(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0][-1]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
# TimmBackbone config doesn't have out_features attribute
def test_create_from_modified_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), len(config.out_indices))
self.assertEqual(len(model.channels), len(config.out_indices))
# Check output of last stage is taken if out_features=None, out_indices=None
modified_config = copy.deepcopy(config)
modified_config.out_indices = None
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), 1)
self.assertEqual(len(model.channels), 1)
# Check backbone can be initialized with fresh weights
modified_config = copy.deepcopy(config)
modified_config.use_pretrained_backbone = False
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
| transformers/tests/models/timm_backbone/test_modeling_timm_backbone.py/0 | {
"file_path": "transformers/tests/models/timm_backbone/test_modeling_timm_backbone.py",
"repo_id": "transformers",
"token_count": 4294
} | 410 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch UniSpeechSat model. """
import math
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from transformers import UniSpeechSatConfig, is_torch_available
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForCTC,
UniSpeechSatForPreTraining,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
UniSpeechSatModel,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
class UniSpeechSatModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
mask_time_prob=0.5,
mask_time_length=2,
vocab_size=32,
do_stable_layer_norm=False,
tdnn_dim=(32, 32),
tdnn_kernel=(3, 3),
tdnn_dilation=(1, 1),
xvector_output_dim=32,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.tdnn_dim = tdnn_dim
self.tdnn_kernel = tdnn_kernel
self.tdnn_dilation = tdnn_dilation
self.xvector_output_dim = xvector_output_dim
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
return config, input_values, attention_mask
def get_config(self):
return UniSpeechSatConfig(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
mask_time_prob=self.mask_time_prob,
mask_time_length=self.mask_time_length,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
tdnn_dim=self.tdnn_dim,
tdnn_kernel=self.tdnn_kernel,
tdnn_dilation=self.tdnn_dilation,
xvector_output_dim=self.xvector_output_dim,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = UniSpeechSatModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = UniSpeechSatModel(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = UniSpeechSatForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_seq_classifier_loss(self, config, input_values, *args):
model = UniSpeechSatForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_values, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_ctc_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = UniSpeechSatForCTC(config=config)
model.to(torch_device)
model.train()
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lengths are at least
# one shorter than logit lengths to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = UniSpeechSatForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_xvector_training(self, config, *args):
config.ctc_zero_infinity = True
model = UniSpeechSatForXVector(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
# use a longer sequence length to account for TDNN temporal downsampling
input_values = floats_tensor([self.batch_size, self.seq_length * 2], scale=1.0)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_values, *args):
model = UniSpeechSatForCTC(config)
model.to(torch_device)
model.train()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with pytest.raises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class UniSpeechSatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
UniSpeechSatForCTC,
UniSpeechSatForPreTraining,
UniSpeechSatModel,
UniSpeechSatForSequenceClassification,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForXVector,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"audio-classification": UniSpeechSatForSequenceClassification,
"automatic-speech-recognition": UniSpeechSatForCTC,
"feature-extraction": UniSpeechSatModel,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = UniSpeechSatModelTester(self)
self.config_tester = ConfigTester(self, config_class=UniSpeechSatConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_xvector_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_xvector_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# UniSpeechSat has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# UniSpeechSat cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# UniSpeechSat has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"label_embeddings_concat",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
def test_mask_feature_prob_ctc(self):
model = UniSpeechSatForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", mask_feature_prob=0.2, mask_feature_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_prob_ctc(self):
model = UniSpeechSatForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", mask_time_prob=0.2, mask_time_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-base-plus")
self.assertIsNotNone(model)
@require_torch
class UniSpeechSatRobustModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(UniSpeechSatForCTC, UniSpeechSatForPreTraining, UniSpeechSatModel, UniSpeechSatForSequenceClassification)
if is_torch_available()
else ()
)
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = UniSpeechSatModelTester(
self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
)
self.config_tester = ConfigTester(self, config_class=UniSpeechSatConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# UniSpeechSat has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# UniSpeechSat cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# UniSpeechSat has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"label_embeddings_concat",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
def test_mask_feature_prob_ctc(self):
model = UniSpeechSatForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", mask_feature_prob=0.2, mask_feature_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_prob_ctc(self):
model = UniSpeechSatForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", mask_time_prob=0.2, mask_time_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_feature_prob_ctc_single_batch(self):
model = UniSpeechSatForCTC.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat",
mask_time_prob=0.2,
mask_feature_prob=0.2,
mask_time_length=2,
mask_feature_length=2,
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-unispeech-sat", return_attention_mask=True
)
batch_duration_in_seconds = [6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (1, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-large")
self.assertIsNotNone(model)
@require_torch
@require_soundfile
@slow
class UniSpeechSatModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _load_superb(self, task, num_samples):
ds = load_dataset("anton-l/superb_dummy", task, split="test")
return ds[:num_samples]
def test_inference_encoder_base(self):
model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-base-plus")
model.to(torch_device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-base", return_attention_mask=True
)
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
with torch.no_grad():
outputs = model(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
)
# fmt: off
expected_hidden_states_slice = torch.tensor(
[[[-0.0743, 0.1384],
[-0.0845, 0.1704]],
[[-0.0954, 0.1936],
[-0.1123, 0.2095]]],
device=torch_device,
)
# fmt: on
self.assertTrue(torch.allclose(outputs.last_hidden_state[:, :2, -2:], expected_hidden_states_slice, atol=1e-3))
def test_inference_encoder_large(self):
model = UniSpeechSatModel.from_pretrained("microsoft/unispeech-sat-large")
model.to(torch_device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-large-xlsr-53")
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
with torch.no_grad():
outputs = model(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
)
# fmt: off
expected_hidden_states_slice = torch.tensor(
[[[-0.1172, -0.0797],
[-0.0012, 0.0213]],
[[-0.1225, -0.1277],
[-0.0668, -0.0585]]],
device=torch_device,
)
# fmt: on
self.assertTrue(torch.allclose(outputs.last_hidden_state[:, :2, -2:], expected_hidden_states_slice, atol=1e-3))
def test_inference_diarization(self):
model = UniSpeechSatForAudioFrameClassification.from_pretrained("microsoft/unispeech-sat-base-plus-sd").to(
torch_device
)
processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/unispeech-sat-base-plus-sd")
input_data = self._load_superb("sd", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
# labels is a one-hot array of shape (num_frames, num_speakers)
labels = (outputs.logits > 0).long()
# s3prl logits for the same batch
expected_logits = torch.tensor(
[
[[-5.6119, -5.5845], [-3.7772, -5.4824], [-3.6914, -5.1619], [-4.7560, -5.0496]],
[[-6.3785, -4.8365], [-5.5863, -5.4149], [-5.5639, -4.8469], [-6.1511, -4.0052]],
[[-6.0355, -3.7414], [-5.5968, -4.8061], [-5.4620, -4.7310], [-5.5864, -4.6078]],
[[-5.9493, -4.8963], [-4.4050, -5.4476], [-4.1755, -5.1395], [-4.0272, -4.3705]],
],
device=torch_device,
)
self.assertEqual(labels[0, :, 0].sum(), 270)
self.assertEqual(labels[0, :, 1].sum(), 647)
self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2))
def test_inference_speaker_verification(self):
model = UniSpeechSatForXVector.from_pretrained("microsoft/unispeech-sat-base-plus-sv").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/unispeech-sat-base-plus-sv")
input_data = self._load_superb("si", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
labels = torch.tensor([5, 1, 1, 3], device=torch_device).T
with torch.no_grad():
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
outputs = model(input_values, attention_mask=attention_mask, labels=labels)
embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1)
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
# id10002 vs id10002
self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).item(), 0.9671, 3)
# id10006 vs id10002
self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).item(), 0.4941, 3)
# id10002 vs id10004
self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).item(), 0.5616, 3)
self.assertAlmostEqual(outputs.loss.item(), 18.5925, 2)
| transformers/tests/models/unispeech_sat/test_modeling_unispeech_sat.py/0 | {
"file_path": "transformers/tests/models/unispeech_sat/test_modeling_unispeech_sat.py",
"repo_id": "transformers",
"token_count": 17114
} | 411 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow VisionEncoderDecoder model. """
from __future__ import annotations
import copy
import os
import tempfile
import unittest
import numpy as np
from transformers import is_tf_available, is_torch_available, is_vision_available
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils.generic import ModelOutput
from ...test_modeling_tf_common import floats_tensor, ids_tensor
from ..gpt2.test_modeling_tf_gpt2 import TFGPT2ModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoTokenizer,
TFAutoModel,
TFAutoModelForCausalLM,
TFGPT2LMHeadModel,
TFVisionEncoderDecoderModel,
TFViTModel,
VisionEncoderDecoderConfig,
)
from transformers.modeling_tf_outputs import TFBaseModelOutput
if is_torch_available():
import torch
from transformers import GPT2LMHeadModel, VisionEncoderDecoderModel, ViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
@require_tf
class TFVisionEncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
raise NotImplementedError
def prepare_config_and_inputs(self):
raise NotImplementedError
def get_pretrained_model(self):
raise NotImplementedError
def check_encoder_decoder_model_from_pretrained_configs(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_hidden_states)
outputs_encoder_decoder = enc_dec_model(
pixel_values=None,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_from_pretrained(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
return_dict=True,
kwargs=kwargs,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_save_and_load(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
kwargs=kwargs,
)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_labels(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels,
**kwargs,
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=labels,
kwargs=kwargs,
)
# Make sure `loss` exist
self.assertIn("loss", outputs_encoder_decoder)
batch_size, seq_len = decoder_input_ids.shape
expected_shape = (batch_size, seq_len, decoder_config.vocab_size)
self.assertEqual(outputs_encoder_decoder["logits"].shape, expected_shape)
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[0], pixel_values.shape[0])
self.assertEqual(outputs_encoder_decoder["encoder_last_hidden_state"].shape[-1], config.hidden_size)
def check_encoder_decoder_model_output_attentions(
self,
config,
pixel_values,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
kwargs=kwargs,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
self.assertEqual(encoder_attentions[0].shape[-3:-2], (config.num_attention_heads,))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
)
self.assertEqual(
cross_attentions[0].shape[-3:-1],
(decoder_config.num_attention_heads, cross_attention_input_seq_len),
)
def check_encoder_decoder_model_generate(self, pixel_values, config, decoder_config, **kwargs):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = TFVisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
# Generate until max length
if hasattr(enc_dec_model.config, "eos_token_id"):
enc_dec_model.config.eos_token_id = None
if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"):
enc_dec_model.config.decoder.eos_token_id = None
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
pixel_values, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(
tuple(generated_output.shape.as_list()), (pixel_values.shape[0],) + (decoder_config.max_length,)
)
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
Args:
model_class: The class of the model that is currently testing. For example, `TFBertModel`,
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
error messages.
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
being a named field in the output.
"""
self.assertEqual(type(name), str)
if attributes is not None:
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
if isinstance(tf_outputs, ModelOutput):
self.assertTrue(
isinstance(pt_outputs, ModelOutput),
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
)
tf_keys = [k for k, v in tf_outputs.items() if v is not None]
pt_keys = [k for k, v in pt_outputs.items() if v is not None]
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
# convert to the case of `tuple`
# appending each key to the current (string) `names`
attributes = tuple([f"{name}.{k}" for k in tf_keys])
self.check_pt_tf_outputs(
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
)
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
elif type(tf_outputs) in [tuple, list]:
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")
if attributes is not None:
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
self.assertEqual(
len(attributes),
len(tf_outputs),
f"{name}: The tuple `names` should have the same length as `tf_outputs`",
)
else:
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
elif isinstance(tf_outputs, tf.Tensor):
self.assertTrue(
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
)
tf_outputs = tf_outputs.numpy()
pt_outputs = pt_outputs.detach().to("cpu").numpy()
self.assertEqual(
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
)
# deal with NumPy's scalars to make replacing nan values by 0 work.
if np.isscalar(tf_outputs):
tf_outputs = np.array([tf_outputs])
pt_outputs = np.array([pt_outputs])
tf_nans = np.isnan(tf_outputs)
pt_nans = np.isnan(pt_outputs)
pt_outputs[tf_nans] = 0
tf_outputs[tf_nans] = 0
pt_outputs[pt_nans] = 0
tf_outputs[pt_nans] = 0
max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
else:
raise ValueError(
"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
f" {type(tf_outputs)} instead."
)
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict):
pt_inputs_dict = {}
for name, key in tf_inputs_dict.items():
if isinstance(key, bool):
pt_inputs_dict[name] = key
elif name == "input_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "pixel_values":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
elif name == "input_features":
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
# other general float inputs
elif tf_inputs_dict[name].dtype.is_floating:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
else:
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)
return pt_inputs_dict
def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict):
pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
# send pytorch inputs to the correct device
pt_inputs_dict = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
}
# send pytorch model to the correct device
pt_model.to(torch_device)
# Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
pt_model.eval()
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs_dict)
tf_outputs = tf_model(tf_inputs_dict)
# tf models returned loss is usually a tensor rather than a scalar.
# (see `hf_compute_loss`: it uses `keras.losses.Reduction.NONE`)
# Change it here to a scalar to match PyTorch models' loss
tf_loss = getattr(tf_outputs, "loss", None)
if tf_loss is not None:
tf_outputs.loss = tf.math.reduce_mean(tf_loss)
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model))
def check_pt_tf_equivalence(self, tf_model, pt_model, tf_inputs_dict):
"""Wrap `check_pt_tf_models` to further check PT -> TF again"""
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
# PT -> TF
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
tf_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)
def check_pt_to_tf_equivalence(self, config, decoder_config, tf_inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
# Output all for aggressive testing
encoder_decoder_config.output_hidden_states = True
# All models tested in this file have attentions
encoder_decoder_config.output_attentions = True
pt_model = VisionEncoderDecoderModel(encoder_decoder_config)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
tf_model = TFVisionEncoderDecoderModel.from_pretrained(tmpdirname)
self.check_pt_tf_equivalence(tf_model, pt_model, tf_inputs_dict)
def check_tf_to_pt_equivalence(self, config, decoder_config, tf_inputs_dict):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
# Output all for aggressive testing
encoder_decoder_config.output_hidden_states = True
# TODO: A generalizable way to determine this attribute
encoder_decoder_config.output_attentions = True
tf_model = TFVisionEncoderDecoderModel(encoder_decoder_config)
# Make sure model is built before saving
tf_model(**tf_inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
tf_model.save_pretrained(tmpdirname, safe_serialization=False)
pt_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname, from_tf=True)
self.check_pt_tf_equivalence(tf_model, pt_model, tf_inputs_dict)
def test_encoder_decoder_model(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**config_inputs_dict)
def test_encoder_decoder_model_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**config_inputs_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**config_inputs_dict)
def test_encoder_decoder_model_labels(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_labels(**config_inputs_dict)
def test_encoder_decoder_model_output_attentions(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**config_inputs_dict)
def test_encoder_decoder_model_generate(self):
config_inputs_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**config_inputs_dict)
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
diff = np.abs((a - b)).max()
self.assertLessEqual(diff, tol, f"Difference between torch and tf is {diff} (>= {tol}).")
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self):
config_inputs_dict = self.prepare_config_and_inputs()
labels = config_inputs_dict.pop("decoder_token_labels")
# Keep only common arguments
arg_names = [
"config",
"pixel_values",
"decoder_config",
"decoder_input_ids",
"decoder_attention_mask",
"encoder_hidden_states",
]
config_inputs_dict = {k: v for k, v in config_inputs_dict.items() if k in arg_names}
config = config_inputs_dict.pop("config")
decoder_config = config_inputs_dict.pop("decoder_config")
# Output all for aggressive testing
config.output_hidden_states = True
decoder_config.output_hidden_states = True
# All models tested in this file have attentions
config.output_attentions = True
decoder_config.output_attentions = True
tf_inputs_dict = config_inputs_dict
# `encoder_hidden_states` is not used in model call/forward
del tf_inputs_dict["encoder_hidden_states"]
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
for k in ["decoder_attention_mask"]:
attention_mask = tf_inputs_dict[k]
# Make sure no all 0s attention masks - to avoid failure at this moment.
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
# TODO: remove this line once a fix regarding large negative values for attention mask is done.
attention_mask = tf.concat(
[tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1
)
tf_inputs_dict[k] = attention_mask
tf_inputs_dict_with_labels = copy.copy(tf_inputs_dict)
tf_inputs_dict_with_labels["labels"] = labels
self.assertTrue(decoder_config.cross_attention_hidden_size is None)
# Original test: check without `labels` and without `enc_to_dec_proj` projection
self.assertTrue(config.hidden_size == decoder_config.hidden_size)
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict)
# check with `labels`
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict_with_labels)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict_with_labels)
# check `enc_to_dec_proj` work as expected
decoder_config.hidden_size = decoder_config.hidden_size * 2
self.assertTrue(config.hidden_size != decoder_config.hidden_size)
self.check_pt_to_tf_equivalence(config, decoder_config, tf_inputs_dict)
self.check_tf_to_pt_equivalence(config, decoder_config, tf_inputs_dict)
@slow
def test_real_model_save_load_from_pretrained(self):
model_2 = self.get_pretrained_model()
pixel_values = floats_tensor(
[
13,
model_2.config.encoder.num_channels,
model_2.config.encoder.image_size,
model_2.config.encoder.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], model_2.config.decoder.vocab_size)
outputs = model_2(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
)
out_2 = np.array(outputs[0])
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
after_outputs = model_1(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
out_1 = np.array(after_outputs[0])
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_tf
class TFViT2GPT2EncoderDecoderModelTest(TFVisionEncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model(self):
return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained("google/vit-base-patch16-224-in21k", "gpt2")
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = TFViTModel(config, name="encoder")
decoder_model = TFGPT2LMHeadModel(decoder_config, name="decoder")
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = TFViTModelTester(self, batch_size=13)
model_tester_decoder = TFGPT2ModelTester(self)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
(config, pixel_values, labels) = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_attention_mask,
decoder_head_mask,
decoder_token_type_ids,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"pixel_values": pixel_values,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"decoder_token_labels": decoder_token_labels,
"encoder_hidden_states": encoder_hidden_states, # This is not used in the tests.
"labels": decoder_token_labels,
}
@require_tf
class TFVisionEncoderDecoderModelTest(unittest.TestCase):
def get_from_encoderdecoder_pretrained_model(self):
return TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained("google/vit-base-patch16-224-in21k", "gpt2")
def get_decoder_config(self):
config = AutoConfig.from_pretrained("gpt2")
config.is_decoder = True
config.add_cross_attention = True
return config
def get_encoderdecoder_model(self):
return TFVisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en")
def get_encoder_decoder_models(self):
encoder_model = TFViTModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
decoder_model = TFGPT2LMHeadModel.from_pretrained("gpt2", config=self.get_decoder_config(), name="decoder")
return {"encoder": encoder_model, "decoder": decoder_model}
def _check_configuration_tie(self, model):
assert id(model.decoder.config) == id(model.config.decoder)
assert id(model.encoder.config) == id(model.config.encoder)
@slow
def test_configuration_tie(self):
model = self.get_from_encoderdecoder_pretrained_model()
self._check_configuration_tie(model)
model = TFVisionEncoderDecoderModel(**self.get_encoder_decoder_models())
self._check_configuration_tie(model)
model = self.get_encoderdecoder_model()
self._check_configuration_tie(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
class TFVisionEncoderDecoderModelSaveLoadTests(unittest.TestCase):
def get_encoder_decoder_config(self):
encoder_config = AutoConfig.from_pretrained("google/vit-base-patch16-224-in21k")
decoder_config = AutoConfig.from_pretrained("gpt2", is_decoder=True, add_cross_attention=True)
return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
def get_encoder_decoder_config_small(self):
encoder_config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-vit")
decoder_config = AutoConfig.from_pretrained(
"hf-internal-testing/tiny-random-gpt2", is_decoder=True, add_cross_attention=True
)
return VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
def test_encoder_decoder_save_load_from_encoder_decoder(self):
config = self.get_encoder_decoder_config_small()
# create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
encoder = TFViTModel(config.encoder)
encoder.build_in_name_scope()
decoder = TFGPT2LMHeadModel(config.decoder)
decoder.build_in_name_scope()
encoder_decoder_orig = TFVisionEncoderDecoderModel(encoder=encoder, decoder=decoder)
pixel_values = floats_tensor(
[
13,
encoder.config.num_channels,
encoder.config.image_size,
encoder.config.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], decoder.config.vocab_size)
logits_orig = encoder_decoder_orig(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_path = os.path.join(tmp_dirname, "encoder")
decoder_path = os.path.join(tmp_dirname, "decoder")
encoder.save_pretrained(encoder_path)
decoder.save_pretrained(decoder_path)
encoder_decoder = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_path, decoder_path)
logits_1 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
self.assertTrue(logits_orig.numpy().sum() - logits_1.numpy().sum() < 1e-3)
max_diff = np.max(np.abs(logits_1.numpy() - logits_orig.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=4)
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_decoder.save_pretrained(tmp_dirname)
encoder_decoder = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
logits_2 = encoder_decoder(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_2.numpy() - logits_orig.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=4)
@require_torch
@is_pt_tf_cross_test
def test_encoder_decoder_save_load_from_encoder_decoder_from_pt(self):
config = self.get_encoder_decoder_config_small()
# create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights)
encoder_pt = ViTModel(config.encoder).to(torch_device).eval()
decoder_pt = GPT2LMHeadModel(config.decoder).to(torch_device).eval()
encoder_decoder_pt = VisionEncoderDecoderModel(encoder=encoder_pt, decoder=decoder_pt).to(torch_device).eval()
pixel_values = floats_tensor(
[
13,
encoder_pt.config.num_channels,
encoder_pt.config.image_size,
encoder_pt.config.image_size,
]
)
decoder_input_ids = ids_tensor([13, 1], decoder_pt.config.vocab_size)
pt_pixel_values = torch.tensor(pixel_values.numpy(), device=torch_device, dtype=torch.float)
pt_decoder_input_ids = torch.tensor(decoder_input_ids.numpy(), device=torch_device, dtype=torch.long)
logits_pt = encoder_decoder_pt(pixel_values=pt_pixel_values, decoder_input_ids=pt_decoder_input_ids).logits
# PyTorch => TensorFlow
with tempfile.TemporaryDirectory() as tmp_dirname_1, tempfile.TemporaryDirectory() as tmp_dirname_2:
encoder_decoder_pt.encoder.save_pretrained(tmp_dirname_1)
encoder_decoder_pt.decoder.save_pretrained(tmp_dirname_2)
encoder_decoder_tf = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
tmp_dirname_1, tmp_dirname_2
)
logits_tf = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=3)
# Make sure `from_pretrained` following `save_pretrained` work and give the same result
# (See https://github.com/huggingface/transformers/pull/14016)
with tempfile.TemporaryDirectory() as tmp_dirname:
encoder_decoder_tf.save_pretrained(tmp_dirname, safe_serialization=False)
encoder_decoder_tf = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
logits_tf_2 = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits
max_diff = np.max(np.abs(logits_tf_2.numpy() - logits_tf.numpy()))
self.assertAlmostEqual(max_diff, 0.0, places=3)
@require_vision
@slow
def test_encoder_decoder_from_pretrained(self):
load_weight_prefix = TFVisionEncoderDecoderModel.load_weight_prefix
config = self.get_encoder_decoder_config()
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
decoder_tokenizer = AutoTokenizer.from_pretrained("gpt2")
img = prepare_img()
pixel_values = image_processor(images=img, return_tensors="tf").pixel_values
decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids
with tempfile.TemporaryDirectory() as tmp_dirname:
# Since most of HF's models don't have pretrained cross-attention layers, they are randomly
# initialized even if we create models using `from_pretrained` method.
# For the tests, the decoder need to be a model with pretrained cross-attention layers.
# So we create pretrained models (without `load_weight_prefix`), save them, and later,
# we load them using `from_pretrained`.
# (we don't need to do this for encoder, but let's make the code more similar between encoder/decoder)
encoder = TFAutoModel.from_pretrained("google/vit-base-patch16-224-in21k", name="encoder")
# It's necessary to specify `add_cross_attention=True` here.
decoder = TFAutoModelForCausalLM.from_pretrained(
"gpt2", is_decoder=True, add_cross_attention=True, name="decoder"
)
pretrained_encoder_dir = os.path.join(tmp_dirname, "pretrained_encoder")
pretrained_decoder_dir = os.path.join(tmp_dirname, "pretrained_decoder")
encoder.save_pretrained(pretrained_encoder_dir)
decoder.save_pretrained(pretrained_decoder_dir)
del encoder
del decoder
enc_dec_model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
pretrained_encoder_dir,
pretrained_decoder_dir,
)
enc_dec_model.build_in_name_scope()
# check that the from pretrained methods work
enc_dec_model.save_pretrained(tmp_dirname)
enc_dec_model = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname)
output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
loss_pretrained = output.loss
del enc_dec_model
# Create the model using `__init__` with loaded ``pretrained`` encoder / decoder
encoder = TFAutoModel.from_pretrained(
pretrained_encoder_dir, load_weight_prefix=load_weight_prefix, name="encoder"
)
decoder = TFAutoModelForCausalLM.from_pretrained(
pretrained_decoder_dir, load_weight_prefix=load_weight_prefix, name="decoder"
)
enc_dec_model = TFVisionEncoderDecoderModel(config=config, encoder=encoder, decoder=decoder)
output = enc_dec_model(pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids)
loss_init = output.loss
max_diff = np.max(np.abs(loss_pretrained - loss_init))
expected_diff = 0.0
self.assertAlmostEqual(max_diff, expected_diff, places=4)
@require_vision
@require_tf
class TFViT2GPT2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_coco_en(self):
loc = "ydshieh/vit-gpt2-coco-en"
image_processor = ViTImageProcessor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = TFVisionEncoderDecoderModel.from_pretrained(loc)
# We will verify our results on an image of cute cats
img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
pixel_values = image_processor(images=img, return_tensors="tf").pixel_values
decoder_input_ids = tf.constant([[model.config.decoder_start_token_id]])
logits = model(pixel_values, decoder_input_ids)[0].numpy()
# verify the logits
expected_shape = (1, 1, model.config.decoder.vocab_size)
self.assertEqual(logits.shape, expected_shape)
EXPECTED_LOGIT_SLICE = np.array(
[
-38.705807,
-30.639929,
-31.41903,
-39.012012,
-38.38696,
-34.887207,
-33.290855,
-35.68447,
-38.508484,
-36.124645,
]
)
max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
self.assertLessEqual(max_diff, 1e-4)
def generate_step(pixel_values):
outputs = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
output_ids = outputs.sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
preds = generate_step(pixel_values)
# should produce
# ["a cat laying on top of a couch next to another cat"]
self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])
| transformers/tests/models/vision_encoder_decoder/test_modeling_tf_vision_encoder_decoder.py/0 | {
"file_path": "transformers/tests/models/vision_encoder_decoder/test_modeling_tf_vision_encoder_decoder.py",
"repo_id": "transformers",
"token_count": 18370
} | 412 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
import datasets
import numpy as np
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DistilBertForSequenceClassification,
TextClassificationPipeline,
TFAutoModelForSequenceClassification,
pipeline,
)
from transformers.pipelines import PIPELINE_REGISTRY, get_task
from transformers.pipelines.base import Pipeline, _pad
from transformers.testing_utils import (
TOKEN,
USER,
CaptureLogger,
RequestCounter,
backend_empty_cache,
is_pipeline_test,
is_staging_test,
nested_simplify,
require_tensorflow_probability,
require_tf,
require_torch,
require_torch_accelerator,
require_torch_or_tf,
slow,
torch_device,
)
from transformers.utils import direct_transformers_import, is_tf_available, is_torch_available
from transformers.utils import logging as transformers_logging
sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))
from test_module.custom_pipeline import PairClassificationPipeline # noqa E402
logger = logging.getLogger(__name__)
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent.parent, "src/transformers")
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
class ANY:
def __init__(self, *_types):
self._types = _types
def __eq__(self, other):
return isinstance(other, self._types)
def __repr__(self):
return f"ANY({', '.join(_type.__name__ for _type in self._types)})"
@is_pipeline_test
class CommonPipelineTest(unittest.TestCase):
@require_torch
def test_pipeline_iteration(self):
from torch.utils.data import Dataset
class MyDataset(Dataset):
data = [
"This is a test",
"This restaurant is great",
"This restaurant is awful",
]
def __len__(self):
return 3
def __getitem__(self, i):
return self.data[i]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
dataset = MyDataset()
for output in text_classifier(dataset):
self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
@require_torch
def test_check_task_auto_inference(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
self.assertIsInstance(pipe, TextClassificationPipeline)
@require_torch
def test_pipeline_batch_size_global(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
self.assertEqual(pipe._batch_size, None)
self.assertEqual(pipe._num_workers, None)
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
self.assertEqual(pipe._batch_size, 2)
self.assertEqual(pipe._num_workers, 1)
@require_torch
def test_pipeline_pathlike(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
with tempfile.TemporaryDirectory() as d:
pipe.save_pretrained(d)
path = Path(d)
newpipe = pipeline(task="text-classification", model=path)
self.assertIsInstance(newpipe, TextClassificationPipeline)
@require_torch
def test_pipeline_override(self):
class MyPipeline(TextClassificationPipeline):
pass
text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
self.assertIsInstance(text_classifier, MyPipeline)
def test_check_task(self):
task = get_task("gpt2")
self.assertEqual(task, "text-generation")
with self.assertRaises(RuntimeError):
# Wrong framework
get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")
@require_torch
def test_iterator_data(self):
def data(n: int):
for _ in range(n):
yield "This is a test"
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
results = []
for out in pipe(data(10)):
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
results.append(out)
self.assertEqual(len(results), 10)
# When using multiple workers on streamable data it should still work
# This will force using `num_workers=1` with a warning for now.
results = []
for out in pipe(data(10), num_workers=2):
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
results.append(out)
self.assertEqual(len(results), 10)
@require_tf
def test_iterator_data_tf(self):
def data(n: int):
for _ in range(n):
yield "This is a test"
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
out = pipe("This is a test")
results = []
for out in pipe(data(10)):
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
results.append(out)
self.assertEqual(len(results), 10)
@require_torch
def test_unbatch_attentions_hidden_states(self):
model = DistilBertForSequenceClassification.from_pretrained(
"hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
# Used to throw an error because `hidden_states` are a tuple of tensors
# instead of the expected tensor.
outputs = text_classifier(["This is great !"] * 20, batch_size=32)
self.assertEqual(len(outputs), 20)
@is_pipeline_test
class PipelineScikitCompatTest(unittest.TestCase):
@require_torch
def test_pipeline_predict_pt(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.predict(data)
self.assertEqual(expected_output, actual_output)
@require_tf
def test_pipeline_predict_tf(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.predict(data)
self.assertEqual(expected_output, actual_output)
@require_torch
def test_pipeline_transform_pt(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.transform(data)
self.assertEqual(expected_output, actual_output)
@require_tf
def test_pipeline_transform_tf(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.transform(data)
self.assertEqual(expected_output, actual_output)
@is_pipeline_test
class PipelinePadTest(unittest.TestCase):
@require_torch
def test_pipeline_padding(self):
import torch
items = [
{
"label": "label1",
"input_ids": torch.LongTensor([[1, 23, 24, 2]]),
"attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
},
{
"label": "label2",
"input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
"attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
},
]
self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
self.assertTrue(
torch.allclose(
_pad(items, "input_ids", 10, "right"),
torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
)
)
self.assertTrue(
torch.allclose(
_pad(items, "input_ids", 10, "left"),
torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
)
)
self.assertTrue(
torch.allclose(
_pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
)
)
@require_torch
def test_pipeline_image_padding(self):
import torch
items = [
{
"label": "label1",
"pixel_values": torch.zeros((1, 3, 10, 10)),
},
{
"label": "label2",
"pixel_values": torch.zeros((1, 3, 10, 10)),
},
]
self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
self.assertTrue(
torch.allclose(
_pad(items, "pixel_values", 10, "right"),
torch.zeros((2, 3, 10, 10)),
)
)
@require_torch
def test_pipeline_offset_mapping(self):
import torch
items = [
{
"offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
},
{
"offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
},
]
self.assertTrue(
torch.allclose(
_pad(items, "offset_mappings", 0, "right"),
torch.zeros((2, 11, 2), dtype=torch.long),
),
)
@is_pipeline_test
class PipelineUtilsTest(unittest.TestCase):
@require_torch
def test_pipeline_dataset(self):
from transformers.pipelines.pt_utils import PipelineDataset
dummy_dataset = [0, 1, 2, 3]
def add(number, extra=0):
return number + extra
dataset = PipelineDataset(dummy_dataset, add, {"extra": 2})
self.assertEqual(len(dataset), 4)
outputs = [dataset[i] for i in range(4)]
self.assertEqual(outputs, [2, 3, 4, 5])
@require_torch
def test_pipeline_iterator(self):
from transformers.pipelines.pt_utils import PipelineIterator
dummy_dataset = [0, 1, 2, 3]
def add(number, extra=0):
return number + extra
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2})
self.assertEqual(len(dataset), 4)
outputs = list(dataset)
self.assertEqual(outputs, [2, 3, 4, 5])
@require_torch
def test_pipeline_iterator_no_len(self):
from transformers.pipelines.pt_utils import PipelineIterator
def dummy_dataset():
for i in range(4):
yield i
def add(number, extra=0):
return number + extra
dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2})
with self.assertRaises(TypeError):
len(dataset)
outputs = list(dataset)
self.assertEqual(outputs, [2, 3, 4, 5])
@require_torch
def test_pipeline_batch_unbatch_iterator(self):
from transformers.pipelines.pt_utils import PipelineIterator
dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}]
def add(number, extra=0):
return {"id": [i + extra for i in number["id"]]}
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}])
@require_torch
def test_pipeline_batch_unbatch_iterator_tensors(self):
import torch
from transformers.pipelines.pt_utils import PipelineIterator
dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}]
def add(number, extra=0):
return {"id": number["id"] + extra}
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(
nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}]
)
@require_torch
def test_pipeline_chunk_iterator(self):
from transformers.pipelines.pt_utils import PipelineChunkIterator
def preprocess_chunk(n: int):
for i in range(n):
yield i
dataset = [2, 3]
dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [0, 1, 0, 1, 2])
@require_torch
def test_pipeline_pack_iterator(self):
from transformers.pipelines.pt_utils import PipelinePackIterator
def pack(item):
return {"id": item["id"] + 1, "is_last": item["is_last"]}
dataset = [
{"id": 0, "is_last": False},
{"id": 1, "is_last": True},
{"id": 0, "is_last": False},
{"id": 1, "is_last": False},
{"id": 2, "is_last": True},
]
dataset = PipelinePackIterator(dataset, pack, {})
outputs = list(dataset)
self.assertEqual(
outputs,
[
[
{"id": 1},
{"id": 2},
],
[
{"id": 1},
{"id": 2},
{"id": 3},
],
],
)
@require_torch
def test_pipeline_pack_unbatch_iterator(self):
from transformers.pipelines.pt_utils import PipelinePackIterator
dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}]
def add(number, extra=0):
return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}
dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]])
# is_false Across batch
dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}]
def add(number, extra=0):
return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}
dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]])
def test_pipeline_negative_device(self):
# To avoid regressing, pipeline used to accept device=-1
classifier = pipeline("text-generation", "hf-internal-testing/tiny-random-bert", device=-1)
expected_output = [{"generated_text": ANY(str)}]
actual_output = classifier("Test input.")
self.assertEqual(expected_output, actual_output)
@slow
@require_torch
def test_load_default_pipelines_pt(self):
import torch
from transformers.pipelines import SUPPORTED_TASKS
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
for task in SUPPORTED_TASKS.keys():
if task == "table-question-answering":
# test table in seperate test due to more dependencies
continue
self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
backend_empty_cache(torch_device)
@slow
@require_tf
def test_load_default_pipelines_tf(self):
import tensorflow as tf
from transformers.pipelines import SUPPORTED_TASKS
set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731
for task in SUPPORTED_TASKS.keys():
if task == "table-question-answering":
# test table in seperate test due to more dependencies
continue
self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
@slow
@require_torch
def test_load_default_pipelines_pt_table_qa(self):
import torch
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
self.check_default_pipeline("table-question-answering", "pt", set_seed_fn, self.check_models_equal_pt)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
backend_empty_cache(torch_device)
@slow
@require_torch
@require_torch_accelerator
def test_pipeline_accelerator(self):
pipe = pipeline("text-generation", device=torch_device)
_ = pipe("Hello")
@slow
@require_torch
@require_torch_accelerator
def test_pipeline_accelerator_indexed(self):
pipe = pipeline("text-generation", device=torch_device)
_ = pipe("Hello")
@slow
@require_tf
@require_tensorflow_probability
def test_load_default_pipelines_tf_table_qa(self):
import tensorflow as tf
set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731
self.check_default_pipeline("table-question-answering", "tf", set_seed_fn, self.check_models_equal_tf)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
def check_default_pipeline(self, task, framework, set_seed_fn, check_models_equal_fn):
from transformers.pipelines import SUPPORTED_TASKS, pipeline
task_dict = SUPPORTED_TASKS[task]
# test to compare pipeline to manually loading the respective model
model = None
relevant_auto_classes = task_dict[framework]
if len(relevant_auto_classes) == 0:
# task has no default
logger.debug(f"{task} in {framework} has no default")
return
# by default use first class
auto_model_cls = relevant_auto_classes[0]
# retrieve correct model ids
if task == "translation":
# special case for translation pipeline which has multiple languages
model_ids = []
revisions = []
tasks = []
for translation_pair in task_dict["default"].keys():
model_id, revision = task_dict["default"][translation_pair]["model"][framework]
model_ids.append(model_id)
revisions.append(revision)
tasks.append(task + f"_{'_to_'.join(translation_pair)}")
else:
# normal case - non-translation pipeline
model_id, revision = task_dict["default"]["model"][framework]
model_ids = [model_id]
revisions = [revision]
tasks = [task]
# check for equality
for model_id, revision, task in zip(model_ids, revisions, tasks):
# load default model
try:
set_seed_fn()
model = auto_model_cls.from_pretrained(model_id, revision=revision)
except ValueError:
# first auto class is possible not compatible with model, go to next model class
auto_model_cls = relevant_auto_classes[1]
set_seed_fn()
model = auto_model_cls.from_pretrained(model_id, revision=revision)
# load default pipeline
set_seed_fn()
default_pipeline = pipeline(task, framework=framework)
# compare pipeline model with default model
models_are_equal = check_models_equal_fn(default_pipeline.model, model)
self.assertTrue(models_are_equal, f"{task} model doesn't match pipeline.")
logger.debug(f"{task} in {framework} succeeded with {model_id}.")
def check_models_equal_pt(self, model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
if model1_p.data.ne(model2_p.data).sum() > 0:
models_are_equal = False
return models_are_equal
def check_models_equal_tf(self, model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.weights, model2.weights):
if np.abs(model1_p.numpy() - model2_p.numpy()).sum() > 1e-5:
models_are_equal = False
return models_are_equal
class CustomPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, maybe_arg=2):
input_ids = self.tokenizer(text, return_tensors="pt")
return input_ids
def _forward(self, model_inputs):
outputs = self.model(**model_inputs)
return outputs
def postprocess(self, model_outputs):
return model_outputs["logits"].softmax(-1).numpy()
@is_pipeline_test
class CustomPipelineTest(unittest.TestCase):
def test_warning_logs(self):
transformers_logging.set_verbosity_debug()
logger_ = transformers_logging.get_logger("transformers.pipelines.base")
alias = "text-classification"
# Get the original task, so we can restore it at the end.
# (otherwise the subsequential tests in `TextClassificationPipelineTests` will fail)
_, original_task, _ = PIPELINE_REGISTRY.check_task(alias)
try:
with CaptureLogger(logger_) as cm:
PIPELINE_REGISTRY.register_pipeline(alias, PairClassificationPipeline)
self.assertIn(f"{alias} is already registered", cm.out)
finally:
# restore
PIPELINE_REGISTRY.supported_tasks[alias] = original_task
def test_register_pipeline(self):
PIPELINE_REGISTRY.register_pipeline(
"custom-text-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
default={"pt": "hf-internal-testing/tiny-random-distilbert"},
type="text",
)
assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks()
_, task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification")
self.assertEqual(task_def["pt"], (AutoModelForSequenceClassification,) if is_torch_available() else ())
self.assertEqual(task_def["tf"], (TFAutoModelForSequenceClassification,) if is_tf_available() else ())
self.assertEqual(task_def["type"], "text")
self.assertEqual(task_def["impl"], PairClassificationPipeline)
self.assertEqual(task_def["default"], {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}})
# Clean registry for next tests.
del PIPELINE_REGISTRY.supported_tasks["custom-text-classification"]
@require_torch_or_tf
def test_dynamic_pipeline(self):
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
)
classifier = pipeline("pair-classification", model="hf-internal-testing/tiny-random-bert")
# Clean registry as we won't need the pipeline to be in it for the rest to work.
del PIPELINE_REGISTRY.supported_tasks["pair-classification"]
with tempfile.TemporaryDirectory() as tmp_dir:
classifier.save_pretrained(tmp_dir)
# checks
self.assertDictEqual(
classifier.model.config.custom_pipelines,
{
"pair-classification": {
"impl": "custom_pipeline.PairClassificationPipeline",
"pt": ("AutoModelForSequenceClassification",) if is_torch_available() else (),
"tf": ("TFAutoModelForSequenceClassification",) if is_tf_available() else (),
}
},
)
# Fails if the user forget to pass along `trust_remote_code=True`
with self.assertRaises(ValueError):
_ = pipeline(model=tmp_dir)
new_classifier = pipeline(model=tmp_dir, trust_remote_code=True)
# Using trust_remote_code=False forces the traditional pipeline tag
old_classifier = pipeline("text-classification", model=tmp_dir, trust_remote_code=False)
# Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
# dynamic module
self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
self.assertEqual(new_classifier.task, "pair-classification")
results = new_classifier("I hate you", second_text="I love you")
self.assertDictEqual(
nested_simplify(results),
{"label": "LABEL_0", "score": 0.505, "logits": [-0.003, -0.024]},
)
self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
self.assertEqual(old_classifier.task, "text-classification")
results = old_classifier("I hate you", text_pair="I love you")
self.assertListEqual(
nested_simplify(results),
[{"label": "LABEL_0", "score": 0.505}],
)
@require_torch_or_tf
def test_cached_pipeline_has_minimum_calls_to_head(self):
# Make sure we have cached the pipeline.
_ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
with RequestCounter() as counter:
_ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
self.assertEqual(counter["GET"], 0)
self.assertEqual(counter["HEAD"], 1)
self.assertEqual(counter.total_calls, 1)
@require_torch
def test_chunk_pipeline_batching_single_file(self):
# Make sure we have cached the pipeline.
pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
# For some reason scoping doesn't work if not using `self.`
self.COUNT = 0
forward = pipe.model.forward
def new_forward(*args, **kwargs):
self.COUNT += 1
return forward(*args, **kwargs)
pipe.model.forward = new_forward
for out in pipe(audio, return_timestamps="char", chunk_length_s=3, stride_length_s=[1, 1], batch_size=1024):
pass
self.assertEqual(self.COUNT, 1)
@require_torch
@is_staging_test
class DynamicPipelineTester(unittest.TestCase):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "I", "love", "hate", "you"]
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-dynamic-pipeline")
except HTTPError:
pass
def test_push_to_hub_dynamic_pipeline(self):
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
)
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertForSequenceClassification(config).eval()
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f"{USER}/test-dynamic-pipeline", token=self._token)
repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-pipeline", token=self._token)
vocab_file = os.path.join(tmp_dir, "vocab.txt")
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
tokenizer = BertTokenizer(vocab_file)
classifier = pipeline("pair-classification", model=model, tokenizer=tokenizer)
# Clean registry as we won't need the pipeline to be in it for the rest to work.
del PIPELINE_REGISTRY.supported_tasks["pair-classification"]
classifier.save_pretrained(tmp_dir)
# checks
self.assertDictEqual(
classifier.model.config.custom_pipelines,
{
"pair-classification": {
"impl": "custom_pipeline.PairClassificationPipeline",
"pt": ("AutoModelForSequenceClassification",),
"tf": (),
}
},
)
repo.push_to_hub()
# Fails if the user forget to pass along `trust_remote_code=True`
with self.assertRaises(ValueError):
_ = pipeline(model=f"{USER}/test-dynamic-pipeline")
new_classifier = pipeline(model=f"{USER}/test-dynamic-pipeline", trust_remote_code=True)
# Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
# dynamic module
self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
results = classifier("I hate you", second_text="I love you")
new_results = new_classifier("I hate you", second_text="I love you")
self.assertDictEqual(nested_simplify(results), nested_simplify(new_results))
# Using trust_remote_code=False forces the traditional pipeline tag
old_classifier = pipeline(
"text-classification", model=f"{USER}/test-dynamic-pipeline", trust_remote_code=False
)
self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
self.assertEqual(old_classifier.task, "text-classification")
new_results = old_classifier("I hate you", text_pair="I love you")
self.assertListEqual(
nested_simplify([{"label": results["label"], "score": results["score"]}]), nested_simplify(new_results)
)
| transformers/tests/pipelines/test_pipelines_common.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_common.py",
"repo_id": "transformers",
"token_count": 14399
} | 413 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow, torch_device
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class TextClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
tf_model_mapping = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def test_small_model_pt(self):
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
outputs = text_classifier("This is great !", top_k=2)
self.assertEqual(
nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]
)
outputs = text_classifier(["This is great !", "This is bad"], top_k=2)
self.assertEqual(
nested_simplify(outputs),
[
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
],
)
outputs = text_classifier("This is great !", top_k=1)
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
# Legacy behavior
outputs = text_classifier("This is great !", return_all_scores=False)
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
outputs = text_classifier("This is great !", return_all_scores=True)
self.assertEqual(
nested_simplify(outputs), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]]
)
outputs = text_classifier(["This is great !", "Something else"], return_all_scores=True)
self.assertEqual(
nested_simplify(outputs),
[
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
],
)
outputs = text_classifier(["This is great !", "Something else"], return_all_scores=False)
self.assertEqual(
nested_simplify(outputs),
[
{"label": "LABEL_0", "score": 0.504},
{"label": "LABEL_0", "score": 0.504},
],
)
@require_torch
def test_accepts_torch_device(self):
text_classifier = pipeline(
task="text-classification",
model="hf-internal-testing/tiny-random-distilbert",
framework="pt",
device=torch_device,
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@require_tf
def test_small_model_tf(self):
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@slow
@require_torch
def test_pt_bert(self):
text_classifier = pipeline("text-classification")
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
outputs = text_classifier("This is bad !")
self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
outputs = text_classifier("Birds are a type of animal")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])
@slow
@require_tf
def test_tf_bert(self):
text_classifier = pipeline("text-classification", framework="tf")
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
outputs = text_classifier("This is bad !")
self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
outputs = text_classifier("Birds are a type of animal")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])
def get_test_pipeline(self, model, tokenizer, processor):
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
return text_classifier, ["HuggingFace is in", "This is another test"]
def run_pipeline_test(self, text_classifier, _):
model = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
valid_inputs = "HuggingFace is in"
outputs = text_classifier(valid_inputs)
self.assertEqual(nested_simplify(outputs), [{"label": ANY(str), "score": ANY(float)}])
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
valid_inputs = ["HuggingFace is in ", "Paris is in France"]
outputs = text_classifier(valid_inputs)
self.assertEqual(
nested_simplify(outputs),
[{"label": ANY(str), "score": ANY(float)}, {"label": ANY(str), "score": ANY(float)}],
)
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
self.assertTrue(outputs[1]["label"] in model.config.id2label.values())
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
outputs = text_classifier(valid_inputs, top_k=None)
N = len(model.config.id2label.values())
self.assertEqual(
nested_simplify(outputs),
[[{"label": ANY(str), "score": ANY(float)}] * N, [{"label": ANY(str), "score": ANY(float)}] * N],
)
valid_inputs = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
outputs = text_classifier(valid_inputs)
self.assertEqual(
nested_simplify(outputs),
{"label": ANY(str), "score": ANY(float)},
)
self.assertTrue(outputs["label"] in model.config.id2label.values())
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
invalid_input = [["HuggingFace is in ", "Paris is in France"]]
with self.assertRaises(ValueError):
text_classifier(invalid_input)
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
outputs = text_classifier([[["HuggingFace is in ", "Paris is in France"]]])
self.assertEqual(
nested_simplify(outputs),
[{"label": ANY(str), "score": ANY(float)}],
)
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
| transformers/tests/pipelines/test_pipelines_text_classification.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_text_classification.py",
"repo_id": "transformers",
"token_count": 3566
} | 414 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_accelerate_available,
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def get_some_linear_layer(model):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_4h_to_h
if is_accelerate_available():
from accelerate import PartialState
from accelerate.logging import get_logger
logger = get_logger(__name__)
_ = PartialState()
if is_torch_available():
import torch
import torch.nn as nn
class LoRALayer(nn.Module):
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""
def __init__(self, module: nn.Module, rank: int):
super().__init__()
self.module = module
self.adapter = nn.Sequential(
nn.Linear(module.in_features, rank, bias=False),
nn.Linear(rank, module.out_features, bias=False),
)
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=small_std)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def forward(self, input, *args, **kwargs):
return self.module(input, *args, **kwargs) + self.adapter(input)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class BaseMixedInt8Test(unittest.TestCase):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
model_name = "bigscience/bloom-1b7"
# Constant values
EXPECTED_RELATIVE_DIFFERENCE = (
1.540025 # This was obtained on a Quadro RTX 8000 so the number might slightly change
)
input_text = "Hello my name is"
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of the family.\n")
MAX_NEW_TOKENS = 10
def setUp(self):
# Models and tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
class MixedInt8Test(BaseMixedInt8Test):
def setUp(self):
super().setUp()
# Models and tokenizer
self.model_fp16 = AutoModelForCausalLM.from_pretrained(
self.model_name, torch_dtype=torch.float16, device_map="auto"
)
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
del self.model_fp16
del self.model_8bit
gc.collect()
torch.cuda.empty_cache()
def test_get_keys_to_not_convert_trust_remote_code(self):
r"""
Test the `get_keys_to_not_convert` function with `trust_remote_code` models.
"""
from accelerate import init_empty_weights
from transformers.integrations.bitsandbytes import get_keys_to_not_convert
model_id = "mosaicml/mpt-7b"
config = AutoConfig.from_pretrained(
model_id, trust_remote_code=True, revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7"
)
with init_empty_weights():
model = AutoModelForCausalLM.from_config(
config, trust_remote_code=True, code_revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7"
)
self.assertEqual(get_keys_to_not_convert(model), ["transformer.wte"])
def test_get_keys_to_not_convert(self):
r"""
Test the `get_keys_to_not_convert` function.
"""
from accelerate import init_empty_weights
from transformers import AutoModelForMaskedLM, Blip2ForConditionalGeneration, MptForCausalLM, OPTForCausalLM
from transformers.integrations.bitsandbytes import get_keys_to_not_convert
model_id = "mosaicml/mpt-7b"
config = AutoConfig.from_pretrained(model_id, revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7")
with init_empty_weights():
model = MptForCausalLM(config)
# The order of the keys does not matter, so we sort them before comparing, same for the other tests.
self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "transformer.wte"].sort())
model_id = "Salesforce/blip2-opt-2.7b"
config = AutoConfig.from_pretrained(model_id, revision="1ef7f63a8f0a144c13fdca8103eb7b4691c74cec")
with init_empty_weights():
model = Blip2ForConditionalGeneration(config)
self.assertEqual(
get_keys_to_not_convert(model).sort(),
["language_model.lm_head", "language_model.model.decoder.embed_tokens"].sort(),
)
model_id = "facebook/opt-350m"
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
with init_empty_weights():
model = OPTForCausalLM(config)
self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "model.decoder.embed_tokens"].sort())
model_id = "roberta-large"
config = AutoConfig.from_pretrained(model_id, revision="716877d372b884cad6d419d828bac6c85b3b18d9")
with init_empty_weights():
model = AutoModelForMaskedLM.from_config(config)
self.assertEqual(
get_keys_to_not_convert(model).sort(),
["'roberta.embeddings.word_embeddings', 'lm_head', 'lm_head.decoder"].sort(),
)
def test_quantization_config_json_serialization(self):
r"""
A simple test to check if the quantization config is correctly serialized and deserialized
"""
config = self.model_8bit.config
self.assertTrue(hasattr(config, "quantization_config"))
_ = config.to_dict()
_ = config.to_diff_dict()
_ = config.to_json_string()
def test_original_dtype(self):
r"""
A simple test to check if the model succesfully stores the original dtype
"""
self.assertTrue(hasattr(self.model_8bit.config, "_pre_quantization_dtype"))
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
self.assertTrue(self.model_8bit.config._pre_quantization_dtype == torch.float16)
def test_memory_footprint(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
from bitsandbytes.nn import Int8Params
mem_fp16 = self.model_fp16.get_memory_footprint()
mem_8bit = self.model_8bit.get_memory_footprint()
self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE)
self.assertTrue(get_some_linear_layer(self.model_8bit).weight.__class__ == Int8Params)
def test_linear_are_8bit(self):
r"""
A simple test to check if the model conversion has been done correctly by checking on the
memory footprint of the converted model and the class type of the linear layers of the converted models
"""
from transformers import T5PreTrainedModel
self.model_fp16.get_memory_footprint()
self.model_8bit.get_memory_footprint()
for name, module in self.model_8bit.named_modules():
if isinstance(module, torch.nn.Linear):
if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules:
self.assertTrue(module.weight.dtype == torch.int8)
def test_llm_skip(self):
r"""
A simple test to check if `llm_int8_skip_modules` works as expected
"""
import bitsandbytes as bnb
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["classifier"])
seq_classification_model = AutoModelForSequenceClassification.from_pretrained(
"roberta-large-mnli", quantization_config=quantization_config
)
self.assertTrue(seq_classification_model.roberta.encoder.layer[0].output.dense.weight.dtype == torch.int8)
self.assertTrue(
isinstance(seq_classification_model.roberta.encoder.layer[0].output.dense, bnb.nn.Linear8bitLt)
)
self.assertTrue(isinstance(seq_classification_model.classifier.dense, nn.Linear))
self.assertTrue(seq_classification_model.classifier.dense.weight.dtype != torch.int8)
self.assertTrue(isinstance(seq_classification_model.classifier.out_proj, nn.Linear))
self.assertTrue(seq_classification_model.classifier.out_proj != torch.int8)
def test_generate_quality(self):
r"""
Test the generation quality of the quantized model and see that we are matching the expected output.
Given that we are operating on small numbers + the testing model is relatively small, we might not get
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
"""
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_generate_quality_config(self):
r"""
Test that loading the model with the config is equivalent
"""
bnb_config = BitsAndBytesConfig()
bnb_config.load_in_8bit = True
model_8bit_from_config = AutoModelForCausalLM.from_pretrained(
self.model_name, quantization_config=bnb_config, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_8bit_from_config.generate(
input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10
)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_raise_if_config_and_load_in_8bit(self):
r"""
Test that loading the model with the config and `load_in_8bit` raises an error
"""
bnb_config = BitsAndBytesConfig()
with self.assertRaises(ValueError):
_ = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=bnb_config,
load_in_8bit=True,
device_map="auto",
llm_int8_enable_fp32_cpu_offload=True,
)
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
Checks also if other models are casted correctly.
"""
with self.assertRaises(ValueError):
# Tries with `str`
self.model_8bit.to("cpu")
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.model_8bit.to(torch.float16)
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.to(torch.device("cuda:0"))
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.float()
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.half()
# Test if we did not break anything
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
self.model_fp16 = self.model_fp16.to(torch.float32)
_ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Check this does not throw an error
_ = self.model_fp16.to("cpu")
# Check this does not throw an error
_ = self.model_fp16.half()
# Check this does not throw an error
_ = self.model_fp16.float()
def test_fp32_int8_conversion(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
"""
model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_8bit=True, device_map="auto")
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
def test_int8_serialization(self):
r"""
Test whether it is possible to serialize a model in 8-bit.
"""
from bitsandbytes.nn import Int8Params
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_8bit.save_pretrained(tmpdirname)
# check that the file `quantization_config` is present
config = AutoConfig.from_pretrained(tmpdirname)
self.assertTrue(hasattr(config, "quantization_config"))
model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")
linear = get_some_linear_layer(model_from_saved)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_int8_serialization_regression(self):
r"""
Test whether it is possible to serialize a model in 8-bit - using not safetensors
"""
from bitsandbytes.nn import Int8Params
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_8bit.save_pretrained(tmpdirname, safe_serialization=False)
# check that the file `quantization_config` is present
config = AutoConfig.from_pretrained(tmpdirname)
self.assertTrue(hasattr(config, "quantization_config"))
model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")
linear = get_some_linear_layer(model_from_saved)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_int8_serialization_sharded(self):
r"""
Test whether it is possible to serialize a model in 8-bit - sharded version.
"""
from bitsandbytes.nn import Int8Params
with tempfile.TemporaryDirectory() as tmpdirname:
self.model_8bit.save_pretrained(tmpdirname, max_shard_size="200MB")
# check that the file `quantization_config` is present
config = AutoConfig.from_pretrained(tmpdirname)
self.assertTrue(hasattr(config, "quantization_config"))
model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname)
linear = get_some_linear_layer(model_from_saved)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
def test_int8_from_pretrained(self):
r"""
Test whether loading a 8bit model from the Hub works as expected
"""
from bitsandbytes.nn import Int8Params
model_id = "ybelkada/bloom-1b7-8bit"
model = AutoModelForCausalLM.from_pretrained(model_id)
linear = get_some_linear_layer(model)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class MixedInt8T5Test(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_name = "t5-small"
cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
cls.input_text = "Translate in German: Hello, my dog is cute"
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
gc.collect()
torch.cuda.empty_cache()
def test_inference_without_keep_in_fp32(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
both cases.
"""
from transformers import T5ForConditionalGeneration
modules = T5ForConditionalGeneration._keep_in_fp32_modules
T5ForConditionalGeneration._keep_in_fp32_modules = None
# test with `t5-small`
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
# test with `flan-t5-small`
model = T5ForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_8bit=True, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
T5ForConditionalGeneration._keep_in_fp32_modules = modules
def test_inference_with_keep_in_fp32(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
both cases.
"""
import bitsandbytes as bnb
from transformers import T5ForConditionalGeneration
# test with `t5-small`
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
# test with `flan-t5-small`
model = T5ForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_8bit=True, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
def test_inference_with_keep_in_fp32_serialized(self):
r"""
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly on
a serialized model.
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test
both cases.
"""
import bitsandbytes as bnb
from transformers import T5ForConditionalGeneration
# test with `t5-small`
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
model = T5ForConditionalGeneration.from_pretrained(tmp_dir)
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
# test with `flan-t5-small`
model = T5ForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_8bit=True, device_map="auto"
)
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
_ = model.generate(**encoded_input)
class MixedInt8ModelClassesTest(BaseMixedInt8Test):
def setUp(self):
super().setUp()
# model_name
self.model_name = "bigscience/bloom-560m"
self.seq_to_seq_name = "t5-small"
# Different types of model
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
# Sequence classification model
self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
self.model_name, load_in_8bit=True, device_map="auto"
)
# CausalLM model
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
# Seq2seq model
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
self.seq_to_seq_name, load_in_8bit=True, device_map="auto"
)
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
del self.base_model
del self.sequence_model
del self.model_8bit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def test_correct_head_class(self):
r"""
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
are kept in their native class.
"""
from bitsandbytes.nn import Int8Params
# last param of a base model should be a linear8bit module
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params)
# Other heads should be nn.Parameter
self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class MixedInt8TestPipeline(BaseMixedInt8Test):
def setUp(self):
super().setUp()
def tearDown(self):
r"""
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def test_pipeline(self):
r"""
The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
on pipline.
"""
# self._clear_cuda_cache()
self.pipe = pipeline(
"text-generation",
model=self.model_name,
model_kwargs={"device_map": "auto", "load_in_8bit": True},
max_new_tokens=self.MAX_NEW_TOKENS,
)
# Real second forward pass
pipeline_output = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class MixedInt8TestMultiGpu(BaseMixedInt8Test):
def setUp(self):
super().setUp()
def test_multi_gpu_loading(self):
r"""
This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
"""
model_parallel = AutoModelForCausalLM.from_pretrained(
self.model_name, load_in_8bit=True, device_map="balanced"
)
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1})
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Second real batch
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class MixedInt8TestCpuGpu(BaseMixedInt8Test):
def setUp(self):
super().setUp()
def check_inference_correctness(self, model):
# Check that inference pass works on the model
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
# Check the exactness of the results
output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
# Get the generation
output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True)
self.assertIn(output_text, self.EXPECTED_OUTPUTS)
def test_cpu_gpu_loading_random_device_map(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`.
"""
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": 0,
"transformer.h.0": "cpu",
"transformer.h.1": "cpu",
"transformer.h.2": 0,
"transformer.h.3": 0,
"transformer.h.4": 0,
"transformer.h.5": 0,
"transformer.h.6": 0,
"transformer.h.7": 0,
"transformer.h.8": 0,
"transformer.h.9": 1,
"transformer.h.10": 0,
"transformer.h.11": 1,
"transformer.h.12": 0,
"transformer.h.13": 0,
"transformer.h.14": 1,
"transformer.h.15": 0,
"transformer.h.16": 0,
"transformer.h.17": 1,
"transformer.h.18": 1,
"transformer.h.19": 0,
"transformer.h.20": 1,
"transformer.h.21": 1,
"transformer.h.22": 0,
"transformer.h.23": 0,
"transformer.ln_f": 1,
}
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
quantization_config=bnb_config,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})
self.check_inference_correctness(model_8bit)
def test_cpu_gpu_loading_custom_device_map(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
This time the device map is more organized than the test above and uses the abstraction
`transformer.h` to encapsulate all the decoder layers.
"""
device_map = {
"transformer.word_embeddings": "cpu",
"transformer.word_embeddings_layernorm": "cpu",
"lm_head": "cpu",
"transformer.h": 0,
"transformer.ln_f": 1,
}
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
# Load model
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
quantization_config=bnb_config,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})
self.check_inference_correctness(model_8bit)
def test_cpu_gpu_disk_loading_custom_device_map(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
This time we also add `disk` on the device_map.
"""
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": "cpu",
"lm_head": 0,
"transformer.h": 1,
"transformer.ln_f": "disk",
}
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
with tempfile.TemporaryDirectory() as tmpdirname:
# Load model
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
quantization_config=bnb_config,
offload_folder=tmpdirname,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})
self.check_inference_correctness(model_8bit)
def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self):
r"""
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config
"""
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": "cpu",
"lm_head": 0,
"transformer.h": 1,
"transformer.ln_f": "disk",
}
with tempfile.TemporaryDirectory() as tmpdirname:
# Load model
model_8bit = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=device_map,
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
offload_folder=tmpdirname,
)
# Check that the model has been correctly set on device 0, 1, and `cpu`.
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})
self.check_inference_correctness(model_8bit)
class MixedInt8TestTraining(BaseMixedInt8Test):
def setUp(self):
self.model_name = "facebook/opt-350m"
super().setUp()
def test_training(self):
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"):
return
# Step 1: freeze all parameters
model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True)
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
for param in model.parameters():
param.requires_grad = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
param.data = param.data.to(torch.float32)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(module)):
module.q_proj = LoRALayer(module.q_proj, rank=16)
module.k_proj = LoRALayer(module.k_proj, rank=16)
module.v_proj = LoRALayer(module.v_proj, rank=16)
# Step 3: dummy batch
batch = self.tokenizer("Test batch ", return_tensors="pt").to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
out = model.forward(**batch)
out.logits.norm().backward()
for module in model.modules():
if isinstance(module, LoRALayer):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(module, nn.Embedding):
self.assertTrue(module.weight.grad is None)
class MixedInt8GPT2Test(MixedInt8Test):
model_name = "gpt2-xl"
EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a big fan of")
EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a fan of the")
def test_int8_from_pretrained(self):
r"""
Test whether loading a 8bit model from the Hub works as expected
"""
from bitsandbytes.nn import Int8Params
model_id = "ybelkada/gpt2-xl-8bit"
model = AutoModelForCausalLM.from_pretrained(model_id)
linear = get_some_linear_layer(model)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
| transformers/tests/quantization/bnb/test_mixed_int8.py/0 | {
"file_path": "transformers/tests/quantization/bnb/test_mixed_int8.py",
"repo_id": "transformers",
"token_count": 15531
} | 415 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.