text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Longformer configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase logger = logging.get_logger(__name__) LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class LongformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LongformerModel`] or a [`TFLongformerModel`]. It is used to instantiate a Longformer model according to the specified arguments, defining the model architecture. This is the configuration class to store the configuration of a [`LongformerModel`]. It is used to instantiate an Longformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LongFormer [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) architecture with a sequence length 4,096. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Longformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. attention_window (`int` or `List[int]`, *optional*, defaults to 512): Size of an attention window around each token. If an `int`, use the same size for all layers. To specify a different window size for each layer, use a `List[int]` where `len(attention_window) == num_hidden_layers`. Example: ```python >>> from transformers import LongformerConfig, LongformerModel >>> # Initializing a Longformer configuration >>> configuration = LongformerConfig() >>> # Initializing a model from the configuration >>> model = LongformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "longformer" def __init__( self, attention_window: Union[List[int], int] = 512, sep_token_id: int = 2, pad_token_id: int = 1, bos_token_id: int = 0, eos_token_id: int = 2, vocab_size: int = 30522, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 512, type_vocab_size: int = 2, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, onnx_export: bool = False, **kwargs, ): """Constructs LongformerConfig.""" super().__init__(pad_token_id=pad_token_id, **kwargs) self.attention_window = attention_window self.sep_token_id = sep_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.onnx_export = onnx_export class LongformerOnnxConfig(OnnxConfig): def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: "List[PatchingSpec]" = None): super().__init__(config, task, patching_specs) config.onnx_export = True @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: outputs = super().outputs if self.task == "default": outputs["pooler_output"] = {0: "batch"} return outputs @property def atol_for_validation(self) -> float: """ What absolute tolerance value to use during model conversion validation. Returns: Float absolute tolerance value. """ return 1e-4 @property def default_onnx_opset(self) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset, 14) def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizerBase", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: inputs = super().generate_dummy_inputs( preprocessor=tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly inputs["global_attention_mask"] = torch.zeros_like(inputs["input_ids"]) # make every second token global inputs["global_attention_mask"][:, ::2] = 1 return inputs
transformers/src/transformers/models/longformer/configuration_longformer.py/0
{ "file_path": "transformers/src/transformers/models/longformer/configuration_longformer.py", "repo_id": "transformers", "token_count": 3683 }
311
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_maskformer"] = ["MaskFormerFeatureExtractor"] _import_structure["image_processing_maskformer"] = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_maskformer"] = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] _import_structure["modeling_maskformer_swin"] = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/maskformer/__init__.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/__init__.py", "repo_id": "transformers", "token_count": 1073 }
312
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MobileNetV2 checkpoints from the tensorflow/models library.""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetV2Config, MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2ImageProcessor, load_tf_weights_in_mobilenet_v2, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_mobilenet_v2_config(model_name): config = MobileNetV2Config(layer_norm_eps=0.001) if "quant" in model_name: raise ValueError("Quantized models are not supported.") matches = re.match(r"^.*mobilenet_v2_([^_]*)_([^_]*)$", model_name) if matches: config.depth_multiplier = float(matches[1]) config.image_size = int(matches[2]) if model_name.startswith("deeplabv3_"): config.output_stride = 8 config.num_labels = 21 filename = "pascal-voc-id2label.json" else: # The TensorFlow version of MobileNetV2 predicts 1001 classes instead # of the usual 1000. The first class (index 0) is "background". config.num_labels = 1001 filename = "imagenet-1k-id2label.json" repo_id = "huggingface/label-files" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) if config.num_labels == 1001: id2label = {int(k) + 1: v for k, v in id2label.items()} id2label[0] = "background" else: id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our MobileNetV2 structure. """ config = get_mobilenet_v2_config(model_name) # Load 🤗 model if model_name.startswith("deeplabv3_"): model = MobileNetV2ForSemanticSegmentation(config).eval() else: model = MobileNetV2ForImageClassification(config).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_v2(model, config, checkpoint_path) # Check outputs on an image, prepared by MobileNetV2ImageProcessor image_processor = MobileNetV2ImageProcessor( crop_size={"width": config.image_size, "height": config.image_size}, size={"shortest_edge": config.image_size + 32}, ) encoding = image_processor(images=prepare_img(), return_tensors="pt") outputs = model(**encoding) logits = outputs.logits if model_name.startswith("deeplabv3_"): assert logits.shape == (1, 21, 65, 65) if model_name == "deeplabv3_mobilenet_v2_1.0_513": expected_logits = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] ) else: raise ValueError(f"Unknown model name: {model_name}") assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4) else: assert logits.shape == (1, 1001) if model_name == "mobilenet_v2_1.4_224": expected_logits = torch.tensor([0.0181, -1.0015, 0.4688]) elif model_name == "mobilenet_v2_1.0_224": expected_logits = torch.tensor([0.2445, -1.1993, 0.1905]) elif model_name == "mobilenet_v2_0.75_160": expected_logits = torch.tensor([0.2482, 0.4136, 0.6669]) elif model_name == "mobilenet_v2_0.35_96": expected_logits = torch.tensor([0.1451, -0.4624, 0.7192]) else: expected_logits = None if expected_logits is not None: assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") repo_id = "google/" + model_name image_processor.push_to_hub(repo_id) model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v2_1.0_224", type=str, help="Name of the MobileNetV2 model you'd like to convert. Should in the form 'mobilenet_v2_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
transformers/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 2730 }
313
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MPNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/config.json", } class MPNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MPNet [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30527): Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MPNetModel`] or [`TFMPNetModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. Examples: ```python >>> from transformers import MPNetModel, MPNetConfig >>> # Initializing a MPNet mpnet-base style configuration >>> configuration = MPNetConfig() >>> # Initializing a model from the mpnet-base style configuration >>> model = MPNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mpnet" def __init__( self, vocab_size=30527, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, relative_attention_num_buckets=32, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.relative_attention_num_buckets = relative_attention_num_buckets
transformers/src/transformers/models/mpnet/configuration_mpnet.py/0
{ "file_path": "transformers/src/transformers/models/mpnet/configuration_mpnet.py", "repo_id": "transformers", "token_count": 1977 }
314
# coding=utf-8 # Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tensorflow mT5 model.""" from ...utils import logging from ..t5.modeling_tf_t5 import TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model from .configuration_mt5 import MT5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" class TFMT5Model(TFT5Model): r""" This class overrides [`TFT5Model`]. Please check the superclass for the appropriate documentation alongside usage examples. Examples: ```python >>> from transformers import TFMT5Model, AutoTokenizer >>> model = TFMT5Model.from_pretrained("google/mt5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." >>> summary = "Weiter Verhandlung in Syrien." >>> inputs = tokenizer(article, return_tensors="tf") >>> labels = tokenizer(text_target=summary, return_tensors="tf") >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) >>> hidden_states = outputs.last_hidden_state ```""" model_type = "mt5" config_class = MT5Config class TFMT5ForConditionalGeneration(TFT5ForConditionalGeneration): r""" This class overrides [`TFT5ForConditionalGeneration`]. Please check the superclass for the appropriate documentation alongside usage examples. Examples: ```python >>> from transformers import TFMT5ForConditionalGeneration, AutoTokenizer >>> model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." >>> summary = "Weiter Verhandlung in Syrien." >>> inputs = tokenizer(article, text_target=summary, return_tensors="tf") >>> outputs = model(**inputs) >>> loss = outputs.loss ```""" model_type = "mt5" config_class = MT5Config class TFMT5EncoderModel(TFT5EncoderModel): r""" This class overrides [`TFT5EncoderModel`]. Please check the superclass for the appropriate documentation alongside usage examples. Examples: ```python >>> from transformers import TFMT5EncoderModel, AutoTokenizer >>> model = TFMT5EncoderModel.from_pretrained("google/mt5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." >>> input_ids = tokenizer(article, return_tensors="tf").input_ids >>> outputs = model(input_ids) >>> hidden_state = outputs.last_hidden_state ```""" model_type = "mt5" config_class = MT5Config
transformers/src/transformers/models/mt5/modeling_tf_mt5.py/0
{ "file_path": "transformers/src/transformers/models/mt5/modeling_tf_mt5.py", "repo_id": "transformers", "token_count": 1102 }
315
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Nezha model.""" import math import os import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_nezha import NezhaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "sijunhe/nezha-cn-base" _CONFIG_FOR_DOC = "NezhaConfig" NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "sijunhe/nezha-cn-base", "sijunhe/nezha-cn-large", "sijunhe/nezha-base-wwm", "sijunhe/nezha-large-wwm", # See all Nezha models at https://huggingface.co/models?filter=nezha ] def load_tf_weights_in_nezha(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NezhaRelativePositionsEncoding(nn.Module): """Implement the Functional Relative Position Encoding""" def __init__(self, length, depth, max_relative_position=127): super().__init__() vocab_size = max_relative_position * 2 + 1 range_vec = torch.arange(length) range_mat = range_vec.repeat(length).view(length, length) distance_mat = range_mat - torch.t(range_mat) distance_mat_clipped = torch.clamp(distance_mat, -max_relative_position, max_relative_position) final_mat = distance_mat_clipped + max_relative_position embeddings_table = torch.zeros(vocab_size, depth) position = torch.arange(0, vocab_size, dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp(torch.arange(0, depth, 2).float() * (-math.log(10000.0) / depth)) embeddings_table[:, 0::2] = torch.sin(position * div_term) embeddings_table[:, 1::2] = torch.cos(position * div_term) flat_relative_positions_matrix = final_mat.view(-1) one_hot_relative_positions_matrix = torch.nn.functional.one_hot( flat_relative_positions_matrix, num_classes=vocab_size ).float() positions_encoding = torch.matmul(one_hot_relative_positions_matrix, embeddings_table) my_shape = list(final_mat.size()) my_shape.append(depth) positions_encoding = positions_encoding.view(my_shape) self.register_buffer("positions_encoding", positions_encoding, persistent=False) def forward(self, length): return self.positions_encoding[:length, :length, :] class NezhaEmbeddings(nn.Module): """Construct the embeddings from word and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer( "token_type_ids", torch.zeros((1, config.max_position_embeddings), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class NezhaSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.relative_positions_encoding = NezhaRelativePositionsEncoding( length=config.max_position_embeddings, depth=self.attention_head_size, max_relative_position=config.max_relative_position, ) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) batch_size, num_attention_heads, from_seq_length, to_seq_length = attention_scores.size() relations_keys = self.relative_positions_encoding(to_seq_length) query_layer_t = query_layer.permute(2, 0, 1, 3) query_layer_r = query_layer_t.contiguous().view( from_seq_length, batch_size * num_attention_heads, self.attention_head_size ) key_position_scores = torch.matmul(query_layer_r, relations_keys.permute(0, 2, 1)) key_position_scores_r = key_position_scores.view( from_seq_length, batch_size, num_attention_heads, from_seq_length ) key_position_scores_r_t = key_position_scores_r.permute(1, 2, 0, 3) attention_scores = attention_scores + key_position_scores_r_t attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in NezhaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) relations_values = self.relative_positions_encoding(to_seq_length) attention_probs_t = attention_probs.permute(2, 0, 1, 3) attentions_probs_r = attention_probs_t.contiguous().view( from_seq_length, batch_size * num_attention_heads, to_seq_length ) value_position_scores = torch.matmul(attentions_probs_r, relations_values) value_position_scores_r = value_position_scores.view( from_seq_length, batch_size, num_attention_heads, self.attention_head_size ) value_position_scores_r_t = value_position_scores_r.permute(1, 2, 0, 3) context_layer = context_layer + value_position_scores_r_t context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Nezha class NezhaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class NezhaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = NezhaSelfAttention(config) self.output = NezhaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nezha class NezhaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nezha class NezhaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class NezhaLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = NezhaAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = NezhaAttention(config) self.intermediate = NezhaIntermediate(config) self.output = NezhaOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Nezha class NezhaEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([NezhaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Nezha class NezhaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nezha class NezhaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nezha class NezhaLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = NezhaPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nezha class NezhaOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = NezhaLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Nezha class NezhaOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Nezha class NezhaPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = NezhaLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class NezhaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NezhaConfig load_tf_weights = load_tf_weights_in_nezha base_model_prefix = "nezha" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class NezhaForPreTrainingOutput(ModelOutput): """ Output type of [`NezhaForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None NEZHA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`NezhaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ NEZHA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Nezha Model transformer outputting raw hidden-states without any specific head on top.", NEZHA_START_DOCSTRING, ) class NezhaModel(NezhaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = NezhaEmbeddings(config) self.encoder = NezhaEncoder(config) self.pooler = NezhaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Nezha Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, NEZHA_START_DOCSTRING, ) class NezhaForPreTraining(NezhaPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) self.nezha = NezhaModel(config) self.cls = NezhaPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NezhaForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], NezhaForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, NezhaForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base") >>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return NezhaForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""Nezha Model with a `language modeling` head on top.""", NEZHA_START_DOCSTRING) class NezhaForMaskedLM(NezhaPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `NezhaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.nezha = NezhaModel(config, add_pooling_layer=False) self.cls = NezhaOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Nezha Model with a `next sentence prediction (classification)` head on top.""", NEZHA_START_DOCSTRING, ) class NezhaForNextSentencePrediction(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.nezha = NezhaModel(config) self.cls = NezhaOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base") >>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nezha Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, NEZHA_START_DOCSTRING, ) class NezhaForSequenceClassification(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.nezha = NezhaModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nezha Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, NEZHA_START_DOCSTRING, ) class NezhaForMultipleChoice(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.nezha = NezhaModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] print(pooled_output.shape) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) print(logits.shape) print(num_choices) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nezha Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, NEZHA_START_DOCSTRING, ) class NezhaForTokenClassification(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.nezha = NezhaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nezha Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, NEZHA_START_DOCSTRING, ) class NezhaForQuestionAnswering(NezhaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.nezha = NezhaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nezha( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/nezha/modeling_nezha.py/0
{ "file_path": "transformers/src/transformers/models/nezha/modeling_nezha.py", "repo_id": "transformers", "token_count": 31975 }
316
# coding=utf-8 # Copyright 2022 UW-Madison The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Nystromformer model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_nystromformer import NystromformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "uw-madison/nystromformer-512" _CONFIG_FOR_DOC = "NystromformerConfig" NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uw-madison/nystromformer-512", # See all Nyströmformer models at https://huggingface.co/models?filter=nystromformer ] class NystromformerEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class NystromformerSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.num_landmarks = config.num_landmarks self.seq_len = config.segment_means_seq_len self.conv_kernel_size = config.conv_kernel_size if config.inv_coeff_init_option: self.init_option = config["inv_init_coeff_option"] else: self.init_option = "original" self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.conv_kernel_size is not None: self.conv = nn.Conv2d( in_channels=self.num_attention_heads, out_channels=self.num_attention_heads, kernel_size=(self.conv_kernel_size, 1), padding=(self.conv_kernel_size // 2, 0), bias=False, groups=self.num_attention_heads, ) # Function to approximate Moore-Penrose inverse via the iterative method def iterative_inv(self, mat, n_iter=6): identity = torch.eye(mat.size(-1), device=mat.device) key = mat # The entries of key are positive and ||key||_{\infty} = 1 due to softmax if self.init_option == "original": # This original implementation is more conservative to compute coefficient of Z_0. value = 1 / torch.max(torch.sum(key, dim=-2)) * key.transpose(-1, -2) else: # This is the exact coefficient computation, 1 / ||key||_1, of initialization of Z_0, leading to faster convergence. value = 1 / torch.max(torch.sum(key, dim=-2), dim=-1).values[:, :, None, None] * key.transpose(-1, -2) for _ in range(n_iter): key_value = torch.matmul(key, value) value = torch.matmul( 0.25 * value, 13 * identity - torch.matmul(key_value, 15 * identity - torch.matmul(key_value, 7 * identity - key_value)), ) return value def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) query_layer = query_layer / math.sqrt(math.sqrt(self.attention_head_size)) key_layer = key_layer / math.sqrt(math.sqrt(self.attention_head_size)) if self.num_landmarks == self.seq_len: attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function) attention_scores = attention_scores + attention_mask attention_probs = nn.functional.softmax(attention_scores, dim=-1) context_layer = torch.matmul(attention_probs, value_layer) else: q_landmarks = query_layer.reshape( -1, self.num_attention_heads, self.num_landmarks, self.seq_len // self.num_landmarks, self.attention_head_size, ).mean(dim=-2) k_landmarks = key_layer.reshape( -1, self.num_attention_heads, self.num_landmarks, self.seq_len // self.num_landmarks, self.attention_head_size, ).mean(dim=-2) kernel_1 = torch.nn.functional.softmax(torch.matmul(query_layer, k_landmarks.transpose(-1, -2)), dim=-1) kernel_2 = torch.nn.functional.softmax(torch.matmul(q_landmarks, k_landmarks.transpose(-1, -2)), dim=-1) attention_scores = torch.matmul(q_landmarks, key_layer.transpose(-1, -2)) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function) attention_scores = attention_scores + attention_mask kernel_3 = nn.functional.softmax(attention_scores, dim=-1) attention_probs = torch.matmul(kernel_1, self.iterative_inv(kernel_2)) new_value_layer = torch.matmul(kernel_3, value_layer) context_layer = torch.matmul(attention_probs, new_value_layer) if self.conv_kernel_size is not None: context_layer += self.conv(value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class NystromformerSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class NystromformerAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = NystromformerSelfAttention(config, position_embedding_type=position_embedding_type) self.output = NystromformerSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, output_attentions=False): self_outputs = self.self(hidden_states, attention_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nystromformer class NystromformerIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nystromformer class NystromformerOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class NystromformerLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = NystromformerAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = NystromformerIntermediate(config) self.output = NystromformerOutput(config) def forward(self, hidden_states, attention_mask=None, output_attentions=False): self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class NystromformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([NystromformerLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nystromformer class NystromformerPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nystromformer class NystromformerLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = NystromformerPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nystromformer class NystromformerOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = NystromformerLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class NystromformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = NystromformerConfig base_model_prefix = "nystromformer" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) NYSTROMFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`NystromformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ NYSTROMFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top.", NYSTROMFORMER_START_DOCSTRING, ) class NystromformerModel(NystromformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = NystromformerEmbeddings(config) self.encoder = NystromformerEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""Nyströmformer Model with a `language modeling` head on top.""", NYSTROMFORMER_START_DOCSTRING) class NystromformerForMaskedLM(NystromformerPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) self.nystromformer = NystromformerModel(config) self.cls = NystromformerOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nystromformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class NystromformerClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Nyströmformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, NYSTROMFORMER_START_DOCSTRING, ) class NystromformerForSequenceClassification(NystromformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.nystromformer = NystromformerModel(config) self.classifier = NystromformerClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nystromformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nyströmformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, NYSTROMFORMER_START_DOCSTRING, ) class NystromformerForMultipleChoice(NystromformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.nystromformer = NystromformerModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.nystromformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nyströmformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, NYSTROMFORMER_START_DOCSTRING, ) class NystromformerForTokenClassification(NystromformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.nystromformer = NystromformerModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nystromformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Nyströmformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, NYSTROMFORMER_START_DOCSTRING, ) class NystromformerForQuestionAnswering(NystromformerPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.nystromformer = NystromformerModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.nystromformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/nystromformer/modeling_nystromformer.py/0
{ "file_path": "transformers/src/transformers/models/nystromformer/modeling_nystromformer.py", "repo_id": "transformers", "token_count": 20582 }
317
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OPT checkpoint.""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def load_checkpoint(checkpoint_path): """Checkpoint path should end in model.pt""" sd = torch.load(checkpoint_path, map_location="cpu") if "model" in sd.keys(): sd = torch.load(checkpoint_path, map_location="cpu")["model"] # pop unnecessary weights keys_to_delete = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(key) keys_to_rename = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: sd[new_key] = sd.pop(old_key) keys = list(sd.keys()) for key in keys: if ".qkv_proj." in key: value = sd[key] # We split QKV in separate Q,K,V q_name = key.replace(".qkv_proj.", ".q_proj.") k_name = key.replace(".qkv_proj.", ".k_proj.") v_name = key.replace(".qkv_proj.", ".v_proj.") depth = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 k, v, q = torch.split(value, depth // 3, dim=0) sd[q_name] = q sd[k_name] = k sd[v_name] = v del sd[key] return sd @torch.no_grad() def convert_opt_checkpoint(checkpoint_path, pytorch_dump_folder_path, config=None): """ Copy/paste/tweak model's weights to our BERT structure. """ state_dict = load_checkpoint(checkpoint_path) if config is not None: config = OPTConfig.from_pretrained(config) else: config = OPTConfig() model = OPTModel(config).half().eval() model.load_state_dict(state_dict) # Check results Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") args = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1577 }
318
# coding=utf-8 # Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PEGASUS-X model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/pegasus-x-base": "https://huggingface.co/google/pegasus-x-base/resolve/main/config.json", "google/pegasus-x-large": "https://huggingface.co/google/pegasus-x-large/resolve/main/config.json", # See all PEGASUS-X models at https://huggingface.co/models?filter=pegasus-x } class PegasusXConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PegasusXModel`]. It is used to instantiate a PEGASUS-X model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PEGASUS-X [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 96103): Vocabulary size of the PEGASUS-X model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PegasusXModel`]. d_model (`int`, *optional*, defaults to 1024): Dimension of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 16): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 16): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 16384): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 1): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. num_global_tokens (`int`, *optional*, defaults to 128): Number of global tokens to use for the encoder block_size (`int`, *optional*, defaults to 512): Block size for encoder local attention. Sequence length should be an exact multiple of block size. block_size must be a multiple of 2 if stagger_local_block is True stagger_local_block (`bool`, *optional*, defaults to `True`): Whether to stagger every other local attention by half a block Example: ```python >>> from transformers import PegasusXConfig, PegasusXModel >>> # Initializing a PEGASUS google/pegasus-x-large style configuration >>> configuration = PegasusXConfig() >>> # Initializing a model (with random weights) from the google/pegasus-x-large style configuration >>> model = PegasusXModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "pegasus_x" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=96103, max_position_embeddings=16384, encoder_layers=16, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=16, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=0, scale_embedding=True, pad_token_id=0, eos_token_id=1, forced_eos_token_id=1, num_global_tokens=32, block_size=512, stagger_local_blocks=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.num_global_tokens = num_global_tokens self.block_size = block_size self.stagger_local_blocks = stagger_local_blocks super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, **kwargs, ) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model
transformers/src/transformers/models/pegasus_x/configuration_pegasus_x.py/0
{ "file_path": "transformers/src/transformers/models/pegasus_x/configuration_pegasus_x.py", "repo_id": "transformers", "token_count": 3272 }
319
# coding=utf-8 # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Phi model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_phi import PhiConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/phi-1" _CONFIG_FOR_DOC = "PhiConfig" PHI_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/phi-1", "microsoft/phi-1_5", "microsoft/phi-2", # See all Phi models at https://huggingface.co/models?filter=phi ] # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi class PhiRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding): """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding): """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi class PhiMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class PhiAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.partial_rotary_factor = config.partial_rotary_factor self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = nn.LayerNorm( config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True ) self.k_layernorm = nn.LayerNorm( config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True ) self._init_rope() def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = PhiRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = PhiLinearScalingRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim :], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow attn_weights = torch.matmul( query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3) ) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.dense(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class PhiFlashAttention2(PhiAttention): """ Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # PhiFlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim :], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_dropout = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. if query_states.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, softmax_scale=None ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.dense(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) PHI_ATTENTION_CLASSES = { "eager": PhiAttention, "flash_attention_2": PhiFlashAttention2, } class PhiDecoderLayer(nn.Module): def __init__(self, config: PhiConfig, layer_idx: int): super().__init__() self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.mlp = PhiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.resid_dropout = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[torch.Tensor]] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) attn_outputs = self.resid_dropout(attn_outputs) feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) hidden_states = attn_outputs + feed_forward_hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs PHI_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PhiConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Phi Model outputting raw hidden-states without any specific head on top.", PHI_START_DOCSTRING, ) class PhiPreTrainedModel(PreTrainedModel): config_class = PhiConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["PhiDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() PHI_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Phi Model outputting raw hidden-states without any specific head on top.", PHI_START_DOCSTRING, ) class PhiModel(PhiPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`] Args: config: PhiConfig """ def __init__(self, config: PhiConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.embed_dropout = nn.Dropout(config.embd_pdrop) self.layers = nn.ModuleList( [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = 0 if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = self.embed_dropout(inputs_embeds) # Attention mask. if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class PhiForCausalLM(PhiPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True def __init__(self, config): super().__init__(config) self.model = PhiModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, PhiForCausalLM >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") >>> prompt = "This is an example script ." >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The PhiModel with a sequence classification head on top (linear layer). [`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, PHI_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi with self.transformer->self.model, transformer_outputs->model_outputs class PhiForSequenceClassification(PhiPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = PhiModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = model_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + model_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=model_outputs.past_key_values, hidden_states=model_outputs.hidden_states, attentions=model_outputs.attentions, ) @add_start_docstrings( """ PhiModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, PHI_START_DOCSTRING, ) # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi,self.transformer->self.model,transformer_outputs->model_outputs class PhiForTokenClassification(PhiPreTrainedModel): def __init__(self, config: PhiConfig): super().__init__(config) self.num_labels = config.num_labels self.model = PhiModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_outputs = self.model( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = model_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + model_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=model_outputs.hidden_states, attentions=model_outputs.attentions, )
transformers/src/transformers/models/phi/modeling_phi.py/0
{ "file_path": "transformers/src/transformers/models/phi/modeling_phi.py", "repo_id": "transformers", "token_count": 27235 }
320
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert PoolFormer checkpoints from the original repository. URL: https://github.com/sail-sg/poolformer""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def replace_key_with_offset(key, offset, original_name, new_name): """ Replaces the key by subtracting the offset from the original layer number """ to_find = original_name.split(".")[0] key_list = key.split(".") orig_block_num = int(key_list[key_list.index(to_find) - 2]) layer_num = int(key_list[key_list.index(to_find) - 1]) new_block_num = orig_block_num - offset key = key.replace(f"{orig_block_num}.{layer_num}.{original_name}", f"block.{new_block_num}.{layer_num}.{new_name}") return key def rename_keys(state_dict): new_state_dict = OrderedDict() total_embed_found, patch_emb_offset = 0, 0 for key, value in state_dict.items(): if key.startswith("network"): key = key.replace("network", "poolformer.encoder") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias") and "patch_embed" not in key: patch_emb_offset += 1 to_replace = key[: key.find("proj")] key = key.replace(to_replace, f"patch_embeddings.{total_embed_found}.") key = key.replace("proj", "projection") if key.endswith("bias"): total_embed_found += 1 if "patch_embeddings" in key: key = "poolformer.encoder." + key if "mlp.fc1" in key: key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc1", "output.conv1") if "mlp.fc2" in key: key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc2", "output.conv2") if "norm1" in key: key = replace_key_with_offset(key, patch_emb_offset, "norm1", "before_norm") if "norm2" in key: key = replace_key_with_offset(key, patch_emb_offset, "norm2", "after_norm") if "layer_scale_1" in key: key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_1", "layer_scale_1") if "layer_scale_2" in key: key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_2", "layer_scale_2") if "head" in key: key = key.replace("head", "classifier") new_state_dict[key] = value return new_state_dict # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def convert_poolformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our PoolFormer structure. """ # load default PoolFormer configuration config = PoolFormerConfig() # set attributes based on model_name repo_id = "huggingface/label-files" size = model_name[-3:] config.num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) # set config attributes id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if size == "s12": config.depths = [2, 2, 6, 2] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 crop_pct = 0.9 elif size == "s24": config.depths = [4, 4, 12, 4] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 crop_pct = 0.9 elif size == "s36": config.depths = [6, 6, 18, 6] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.9 elif size == "m36": config.depths = [6, 6, 18, 6] config.hidden_sizes = [96, 192, 384, 768] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.95 elif size == "m48": config.depths = [8, 8, 24, 8] config.hidden_sizes = [96, 192, 384, 768] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.95 else: raise ValueError(f"Size {size} not supported") # load image processor image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) # Prepare image image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values logger.info(f"Converting model {model_name}...") # load original state dict state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) # rename keys state_dict = rename_keys(state_dict) # create HuggingFace model and load state dict model = PoolFormerForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Define image processor image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values # forward pass outputs = model(pixel_values) logits = outputs.logits # define expected logit slices for different models if size == "s12": expected_slice = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": expected_slice = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": expected_slice = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": expected_slice = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": expected_slice = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(f"Size {size} not supported") # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], expected_slice, atol=1e-2) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py", "repo_id": "transformers", "token_count": 3259 }
321
# coding=utf-8 # Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, # Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available, ) _import_structure = { "configuration_pvt": ["PVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "PvtConfig", "PvtOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_pvt"] = ["PvtImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_pvt"] = [ "PVT_PRETRAINED_MODEL_ARCHIVE_LIST", "PvtForImageClassification", "PvtModel", "PvtPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pvt import PVT_PRETRAINED_CONFIG_ARCHIVE_MAP, PvtConfig, PvtOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pvt import PvtImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pvt import ( PVT_PRETRAINED_MODEL_ARCHIVE_LIST, PvtForImageClassification, PvtModel, PvtPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/pvt/__init__.py/0
{ "file_path": "transformers/src/transformers/models/pvt/__init__.py", "repo_id": "transformers", "token_count": 907 }
322
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFRAG model implementation.""" from __future__ import annotations import copy from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...generation import TFLogitsProcessorList from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs, ) from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class TFRetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None question_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFRetrievAugLMOutput(ModelOutput): """ Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None question_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None class TFRagPreTrainedModel(TFPreTrainedModel): r""" RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" _keys_to_ignore_on_load_missing = [r"position_ids"] @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. Params: question_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the question encoder. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `bert-base-uncased`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `question_encoder_from_pt` should be set to `True`. generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `t5-small`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `facebook/bart-base`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `generator_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. retriever ([`RagRetriever`], *optional*): The retriever to use. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the question_encoder configuration, use the prefix *question_encoder_* for each configuration parameter. - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import RagRetriever, TFRagModel >>> # initialize a RAG from two pretrained models. >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", "t5-small" ... ) >>> # alternatively, initialize from pytorch pretrained models can also be done >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", ... "facebook/bart-base", ... generator_from_pt=True, ... question_encoder_from_pt=True, ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load retriever >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # load fine-tuned model with retriever >>> model = TFRagModel.from_pretrained("./rag", retriever=retriever) ```""" kwargs_question_encoder = { argument[len("question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert question_encoder_pretrained_model_name_or_path is not None, ( "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" " be defined" ) from ..auto.modeling_tf_auto import TFAutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path) kwargs_question_encoder["config"] = question_encoder_config question_encoder = TFAutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, name="question_encoder", load_weight_prefix=cls.load_weight_prefix, *model_args, **kwargs_question_encoder, ) generator = kwargs_generator.pop("generator", None) if generator is None: assert generator_pretrained_model_name_or_path is not None, ( "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" " to be defined" ) from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path) kwargs_generator["config"] = generator_config generator = TFAutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, name="generator", load_weight_prefix=cls.load_weight_prefix, **kwargs_generator, ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be any *seq2seq* model, preferably [`TFBartForConditionalGeneration`]. The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`] as the `generator`. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Tensorflow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in SavedModel format. Args: config ([`RagConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. question_encoder ([`TFPreTrainedModel`]): An encoder model compatible with the faiss index encapsulated by the `retriever`. generator ([`TFPreTrainedModel`]): A seq2seq model used as the generator in the RAG architecture. retriever ([`RagRetriever`]): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*) Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the ([`TFRagModel`]) model during decoding. decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(tf.Tensor))`): Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used in the ([`RagTokenForGeneration`]) model during decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` has to be provided to the forward pass. `doc_scores` can be computed via `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_retrieved(`bool`, *optional*): Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask`. See returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple. n_docs (`int`, *optional*, defaults to `config.n_docs``) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class TFRagModel(TFRagPreTrainedModel): load_weight_prefix = "tf_rag_model_1" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, load_weight_prefix: Optional[str] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config, **kwargs) if question_encoder is None: from ..auto.modeling_tf_auto import TFAutoModel question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder") if generator is None: from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix generator = TFAutoModelForSeq2SeqLM.from_config( config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator" ) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator def set_retriever(self, retriever: RagRetriever): self.retriever = retriever @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, output_retrieved: bool | None = None, n_docs: int | None = None, return_dict: bool | None = None, training: bool = False, **kwargs, ) -> TFRetrievAugLMOutput: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py # aliasing to minimize code changing n_docs = n_docs if n_docs is not None else self.config.n_docs # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True, training=training ) # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91 question_encoder_last_hidden_state = question_enc_outputs[ 0 ] # hidden states of question encoder => pooler_output retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul( tf.expand_dims(question_encoder_last_hidden_state, axis=1), retrieved_doc_embeds, transpose_b=True, ), axis=1, ) else: assert context_input_ids is not None, ( "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" " set a retriever using the `set_retriever(...)` function." ) assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert (doc_scores.shape[1] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0) if decoder_attention_mask is not None: decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0) gen_outputs = self.generator( context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, return_dict=True, training=training, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return TFRetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True with tf.name_scope(self.generator.name): self.generator.build(None) with tf.name_scope(self.question_encoder.name): self.question_encoder.build(None) @add_start_docstrings_to_model_forward( """ A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_token_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever # Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs, ): if past_key_values is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _gather_beams(nested, beam_indices, batch_axis=0): """ RAG-specific `_gather_beams`: gathers the beam slices indexed by beam_indices into new beam array. If the nested tensor has a shape mismatch with the beam indices, then it means it is the cache. In that case, isolates and takes care of the extra dimension for ndocs. """ def gather_fn(tensor): is_rag_cache = tensor.shape[0] != beam_indices.shape[0] if is_rag_cache: n_docs = tensor.shape[0] // beam_indices.shape[0] batch_size = beam_indices.shape[0] # reshapes into (batch size, num beams, n_docs, ...), the cache format expected by RAG tensor = tf.reshape(tensor, (batch_size, -1, n_docs, *tensor.shape[2:])) gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) if is_rag_cache: # reshapes back into the shape expected by beam search gathered_tensor = tf.reshape(gathered_tensor, (batch_size * n_docs, -1, *gathered_tensor.shape[3:])) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]]) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice log_prob_sum = seq_logprobs + doc_logprobs return tf.reduce_logsumexp(log_prob_sum, axis=1) @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, output_retrieved: bool | None = None, n_docs: int | None = None, do_marginalize: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: bool | None = None, return_dict: bool | None = None, training: bool = False, **kwargs, # needs kwargs for generation ) -> TFRetrievAugLMMarginOutput: r""" do_marginalize (`bool`, *optional*): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Token model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, RagRetriever, TFRagTokenForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return TFRetrievAugLMMarginOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, doc_scores=outputs.doc_scores, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, n_docs=None, generation_config=None, logits_processor=TFLogitsProcessorList(), **kwargs, ): """ Implements TFRAG token decoding. Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`TFLogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and a model's config. If a logit processor is passed that is already created with the arguments or a model's config an error is thrown. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ # Handle `generation_config` and kwargs that might update it if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.numpy().astype(np.float32), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.matmul( tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True ) doc_scores = tf.squeeze(doc_scores, axis=1) assert (context_input_ids.shape[0] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder( input_ids=context_input_ids, attention_mask=context_attention_mask, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, return_dict=True, ) decoder_input_ids = tf.fill( (batch_size * generation_config.num_beams, 1), tf.cast(generation_config.decoder_start_token_id, tf.int32), ) last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): """ Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs , d) Output: tensor of shape (batch_size*num_beams*n_docs , d) """ # expand batch_size & num_beam dimensions d_shape_list = tensor.shape[1:] # split n_docs dimensions new_shape = (batch_size, 1, n_docs) + d_shape_list tensor = tf.reshape(tensor, new_shape) # repeat same last hidden states over `num_beams` dimension new_shape = (batch_size, num_beams, n_docs) + d_shape_list tensor = tf.broadcast_to(tensor, new_shape) # merge `batch_size`, `num_beams`, `num_docs` dims again new_shape = (batch_size * num_beams * n_docs,) + d_shape_list return tf.reshape(tensor, new_shape) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output( last_hidden_state, num_beams=generation_config.num_beams ) doc_scores = tf.repeat(doc_scores, generation_config.num_beams, axis=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=tf.shape(decoder_input_ids)[-1], logits_processor=logits_processor, ) if generation_config.num_beams == 1: return self.greedy_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif generation_config.num_beams > 1: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) def unflatten_beam_dim(tensor): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape(tensor, [-1, generation_config.num_beams] + shape[1:]) decoder_input_ids = unflatten_beam_dim(decoder_input_ids) model_kwargs["attention_mask"] = unflatten_beam_dim(model_kwargs["attention_mask"]) model_kwargs["encoder_outputs"]["last_hidden_state"] = unflatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) return self.beam_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) else: raise ValueError( f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" ) def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() # Adapted from tf_t5's & tf_bart's _shift_right def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.generator.config.decoder_start_token_id assert start_token_id is not None, ( "self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as" " generator, see Bart docs for more information" ) pad_token_id = self.generator.config.pad_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype)) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # nll stands for 'negative log likelihood' def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left (from original Pytorch's version) target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss) return loss # Adopted modeling_tf_bart + add smooth_loss to match with pytorch version def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False): """CrossEntropyLoss that ignores pad tokens""" # Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things # and I don't feel comfortable converting it. loss_fn = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.SUM, ) if from_logits is False: # convert to logits eps = 1e-9 y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps) y_pred = tf.math.log(y_pred) logits = y_pred melted_labels = tf.reshape(labels, (-1,)) active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss) labels = tf.boolean_mask(melted_labels, active_loss) nll_loss = loss_fn(labels, reduced_logits) smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1) smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch eps_i = smooth_epsilon / reduced_logits.shape[-1] loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss return loss def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rag", None) is not None: with tf.name_scope(self.rag.name): self.rag.build(None) @add_start_docstrings_to_model_forward( """ A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_sequence_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, exclude_bos_score: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, # needs kwargs for generation ) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]: r""" exclude_bos_score (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing the loss. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagSequenceForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagSequenceForGeneration.from_pretrained( ... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True ... ) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) return TFRetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id n_docs = n_docs if n_docs is not None else self.config.n_docs equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id)) use_bos = bos_token_id is not None and equal_bos_token_id_all def _mask_pads(ll, smooth_obj): pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype)) if tf.reduce_any(pad_mask): ll = tf.where(pad_mask, 0.0, ll) smooth_obj = tf.where(pad_mask, 0.0, smooth_obj) return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1) # seq_logits.shape = (batch*n_docs, tgt_len , vocabs) seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape( seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]) ) # (batch_size, n_docs, tgt_len, vocabs) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2) # calculate loss target = tf.expand_dims(target, axis=1) # n_docs dimension target = tf.expand_dims(target, axis=-1) # logits dimension target = tf.repeat(target, n_docs, axis=1) assert len(target.shape) == len(rag_logprobs.shape) # last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering def torch_gather(param, id_tensor): # 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather def gather2d(target, id_tensor): idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1) result = tf.gather_nd(target, idx) return tf.expand_dims(result, axis=-1) target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D target_shape = id_tensor.shape id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index result = gather2d(target, id_tensor) return tf.reshape(result, target_shape) ll = torch_gather(rag_logprobs, id_tensor=target) smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring if exclude_bos_score and use_bos: ll = tf.reduce_sum(ll[:, :, 1:], axis=2) else: ll = tf.reduce_sum(ll, axis=2) smooth_obj = tf.reduce_sum(smooth_obj, axis=2) ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = tf.reduce_sum(nll_loss) smooth_loss = tf.reduce_sum(smooth_loss) eps_i = epsilon / rag_logprobs.shape[-1] loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, do_deduplication=None, # defaults to True num_return_sequences=None, # defaults to 1 num_beams=None, # defaults to 1 n_docs=None, **model_kwargs, ): """ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation for more information on how to set other generate input parameters Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`]. do_deduplication (`bool`, *optional*): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, where we set `num_return_sequences` to `num_beams`. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs (`Dict[str, Any]`, *optional*): Additional kwargs will be passed to [`~generation.GenerationMixin.generate`] Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", )["context_input_ids"] hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication -- for TF, work on Eager mode only! output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1)) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) individual_input_ids = tf.tile( generator_input_ids, (num_candidates, 1) ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1)) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs] outputs = self( input_ids=None, context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1] # add hypothesis hypos.append(tf.gather(output_sequences, top_cand_inds)) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) @staticmethod def _cat_and_pad(tensors, pad_token_id): # used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch # Initialize padded tensor with shape ( all_candidates , max_candidate_length ), # where all_candidates counted from all inputs new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors]) output = tf.fill(new_shape, pad_token_id) # Normal tensor doesn't support slice assignment, so we need tf.Variable output = tf.Variable(output) # Assign, and then convert back to tensor ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]].assign(t) ind += t.shape[0] output = tf.convert_to_tensor(output) return tf.cast(output, tensors[0][0][0].dtype) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rag", None) is not None: with tf.name_scope(self.rag.name): self.rag.build(None)
transformers/src/transformers/models/rag/modeling_tf_rag.py/0
{ "file_path": "transformers/src/transformers/models/rag/modeling_tf_rag.py", "repo_id": "transformers", "token_count": 38065 }
323
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RegNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/regnet-y-040": "https://huggingface.co/facebook/regnet-y-040/blob/main/config.json", } class RegNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RegNet [facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. embedding_size (`int`, *optional*, defaults to 64): Dimensionality (hidden size) for the embedding layer. hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): Depth (number of layers) for each stage. layer_type (`str`, *optional*, defaults to `"y"`): The layer to use, it can be either `"x" or `"y"`. An `x` layer is a ResNet's BottleNeck layer with `reduction` fixed to `1`. While a `y` layer is a `x` but with squeeze and excitation. Please refer to the paper for a detailed explanation of how these layers were constructed. hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. downsample_in_first_stage (`bool`, *optional*, defaults to `False`): If `True`, the first stage will downsample the inputs using a `stride` of 2. Example: ```python >>> from transformers import RegNetConfig, RegNetModel >>> # Initializing a RegNet regnet-y-40 style configuration >>> configuration = RegNetConfig() >>> # Initializing a model from the regnet-y-40 style configuration >>> model = RegNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "regnet" layer_types = ["x", "y"] def __init__( self, num_channels=3, embedding_size=32, hidden_sizes=[128, 192, 512, 1088], depths=[2, 6, 12, 2], groups_width=64, layer_type="y", hidden_act="relu", **kwargs, ): super().__init__(**kwargs) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") self.num_channels = num_channels self.embedding_size = embedding_size self.hidden_sizes = hidden_sizes self.depths = depths self.groups_width = groups_width self.layer_type = layer_type self.hidden_act = hidden_act # always downsample in the first stage self.downsample_in_first_stage = True
transformers/src/transformers/models/regnet/configuration_regnet.py/0
{ "file_path": "transformers/src/transformers/models/regnet/configuration_regnet.py", "repo_id": "transformers", "token_count": 1486 }
324
# coding=utf-8 # Copyright 2023 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithNoAttention, FlaxBaseModelOutputWithPoolingAndNoAttention, FlaxImageClassifierOutputWithNoAttention, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward from .configuration_resnet import ResNetConfig RESNET_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ RESNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`jax.numpy.float32` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class Identity(nn.Module): """Identity function.""" @nn.compact def __call__(self, x, **kwargs): return x class FlaxResNetConvLayer(nn.Module): out_channels: int kernel_size: int = 3 stride: int = 1 activation: Optional[str] = "relu" dtype: jnp.dtype = jnp.float32 def setup(self): self.convolution = nn.Conv( self.out_channels, kernel_size=(self.kernel_size, self.kernel_size), strides=self.stride, padding=self.kernel_size // 2, dtype=self.dtype, use_bias=False, kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="normal", dtype=self.dtype), ) self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype) self.activation_func = ACT2FN[self.activation] if self.activation is not None else Identity() def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = self.convolution(x) hidden_state = self.normalization(hidden_state, use_running_average=deterministic) hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxResNetEmbeddings(nn.Module): """ ResNet Embeddings (stem) composed of a single aggressive convolution. """ config: ResNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embedder = FlaxResNetConvLayer( self.config.embedding_size, kernel_size=7, stride=2, activation=self.config.hidden_act, dtype=self.dtype, ) self.max_pool = partial(nn.max_pool, window_shape=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1))) def __call__(self, pixel_values: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: num_channels = pixel_values.shape[-1] if num_channels != self.config.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embedding = self.embedder(pixel_values, deterministic=deterministic) embedding = self.max_pool(embedding) return embedding class FlaxResNetShortCut(nn.Module): """ ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ out_channels: int stride: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): self.convolution = nn.Conv( self.out_channels, kernel_size=(1, 1), strides=self.stride, use_bias=False, kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, ) self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype) def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = self.convolution(x) hidden_state = self.normalization(hidden_state, use_running_average=deterministic) return hidden_state class FlaxResNetBasicLayerCollection(nn.Module): out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): self.layer = [ FlaxResNetConvLayer(self.out_channels, stride=self.stride, dtype=self.dtype), FlaxResNetConvLayer(self.out_channels, activation=None, dtype=self.dtype), ] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: for layer in self.layer: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state class FlaxResNetBasicLayer(nn.Module): """ A classic ResNet's residual layer composed by two `3x3` convolutions. """ in_channels: int out_channels: int stride: int = 1 activation: Optional[str] = "relu" dtype: jnp.dtype = jnp.float32 def setup(self): should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1 self.shortcut = ( FlaxResNetShortCut(self.out_channels, stride=self.stride, dtype=self.dtype) if should_apply_shortcut else None ) self.layer = FlaxResNetBasicLayerCollection( out_channels=self.out_channels, stride=self.stride, dtype=self.dtype, ) self.activation_func = ACT2FN[self.activation] def __call__(self, hidden_state, deterministic: bool = True): residual = hidden_state hidden_state = self.layer(hidden_state, deterministic=deterministic) if self.shortcut is not None: residual = self.shortcut(residual, deterministic=deterministic) hidden_state += residual hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxResNetBottleNeckLayerCollection(nn.Module): out_channels: int stride: int = 1 activation: Optional[str] = "relu" reduction: int = 4 dtype: jnp.dtype = jnp.float32 def setup(self): reduces_channels = self.out_channels // self.reduction self.layer = [ FlaxResNetConvLayer(reduces_channels, kernel_size=1, dtype=self.dtype, name="0"), FlaxResNetConvLayer(reduces_channels, stride=self.stride, dtype=self.dtype, name="1"), FlaxResNetConvLayer(self.out_channels, kernel_size=1, activation=None, dtype=self.dtype, name="2"), ] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: for layer in self.layer: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state class FlaxResNetBottleNeckLayer(nn.Module): """ A classic ResNet's bottleneck layer composed by three `3x3` convolutions. The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3` convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. """ in_channels: int out_channels: int stride: int = 1 activation: Optional[str] = "relu" reduction: int = 4 dtype: jnp.dtype = jnp.float32 def setup(self): should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1 self.shortcut = ( FlaxResNetShortCut(self.out_channels, stride=self.stride, dtype=self.dtype) if should_apply_shortcut else None ) self.layer = FlaxResNetBottleNeckLayerCollection( self.out_channels, stride=self.stride, activation=self.activation, reduction=self.reduction, dtype=self.dtype, ) self.activation_func = ACT2FN[self.activation] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: residual = hidden_state if self.shortcut is not None: residual = self.shortcut(residual, deterministic=deterministic) hidden_state = self.layer(hidden_state, deterministic) hidden_state += residual hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxResNetStageLayersCollection(nn.Module): """ A ResNet stage composed by stacked layers. """ config: ResNetConfig in_channels: int out_channels: int stride: int = 2 depth: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): layer = FlaxResNetBottleNeckLayer if self.config.layer_type == "bottleneck" else FlaxResNetBasicLayer layers = [ # downsampling is done in the first layer with stride of 2 layer( self.in_channels, self.out_channels, stride=self.stride, activation=self.config.hidden_act, dtype=self.dtype, name="0", ), ] for i in range(self.depth - 1): layers.append( layer( self.out_channels, self.out_channels, activation=self.config.hidden_act, dtype=self.dtype, name=str(i + 1), ) ) self.layers = layers def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = x for layer in self.layers: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state class FlaxResNetStage(nn.Module): """ A ResNet stage composed by stacked layers. """ config: ResNetConfig in_channels: int out_channels: int stride: int = 2 depth: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = FlaxResNetStageLayersCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, depth=self.depth, dtype=self.dtype, ) def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: return self.layers(x, deterministic=deterministic) class FlaxResNetStageCollection(nn.Module): config: ResNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): in_out_channels = zip(self.config.hidden_sizes, self.config.hidden_sizes[1:]) stages = [ FlaxResNetStage( self.config, self.config.embedding_size, self.config.hidden_sizes[0], stride=2 if self.config.downsample_in_first_stage else 1, depth=self.config.depths[0], dtype=self.dtype, name="0", ) ] for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, self.config.depths[1:])): stages.append( FlaxResNetStage(self.config, in_channels, out_channels, depth=depth, dtype=self.dtype, name=str(i + 1)) ) self.stages = stages def __call__( self, hidden_state: jnp.ndarray, output_hidden_states: bool = False, deterministic: bool = True, ) -> FlaxBaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),) hidden_state = stage_module(hidden_state, deterministic=deterministic) return hidden_state, hidden_states class FlaxResNetEncoder(nn.Module): config: ResNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.stages = FlaxResNetStageCollection(self.config, dtype=self.dtype) def __call__( self, hidden_state: jnp.ndarray, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> FlaxBaseModelOutputWithNoAttention: hidden_state, hidden_states = self.stages( hidden_state, output_hidden_states=output_hidden_states, deterministic=deterministic ) if output_hidden_states: hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return FlaxBaseModelOutputWithNoAttention( last_hidden_state=hidden_state, hidden_states=hidden_states, ) class FlaxResNetPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ResNetConfig base_model_prefix = "resnet" main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: ResNetConfig, input_shape=(1, 224, 224, 3), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, config.num_channels) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) rngs = {"params": rng} random_params = self.module.init(rngs, pixel_values, return_dict=False) if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING) def __call__( self, pixel_values, params: dict = None, train: bool = False, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} return self.module.apply( { "params": params["params"] if params is not None else self.params["params"], "batch_stats": params["batch_stats"] if params is not None else self.params["batch_stats"], }, jnp.array(pixel_values, dtype=jnp.float32), not train, output_hidden_states, return_dict, rngs=rngs, mutable=["batch_stats"] if train else False, # Returing tuple with batch_stats only when train is True ) class FlaxResNetModule(nn.Module): config: ResNetConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embedder = FlaxResNetEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxResNetEncoder(self.config, dtype=self.dtype) # Adaptive average pooling used in resnet self.pooler = partial( nn.avg_pool, padding=((0, 0), (0, 0)), ) def __call__( self, pixel_values, deterministic: bool = True, output_hidden_states: bool = False, return_dict: bool = True, ) -> FlaxBaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values, deterministic=deterministic) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler( last_hidden_state, window_shape=(last_hidden_state.shape[1], last_hidden_state.shape[2]), strides=(last_hidden_state.shape[1], last_hidden_state.shape[2]), ).transpose(0, 3, 1, 2) last_hidden_state = last_hidden_state.transpose(0, 3, 1, 2) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top.", RESNET_START_DOCSTRING, ) class FlaxResNetModel(FlaxResNetPreTrainedModel): module_class = FlaxResNetModule FLAX_VISION_MODEL_DOCSTRING = """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, FlaxResNetModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") >>> model = FlaxResNetModel.from_pretrained("microsoft/resnet-50") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxResNetModel, FLAX_VISION_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxResNetModel, output_type=FlaxBaseModelOutputWithPoolingAndNoAttention, config_class=ResNetConfig ) class FlaxResNetClassifierCollection(nn.Module): config: ResNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype, name="1") def __call__(self, x: jnp.ndarray) -> jnp.ndarray: return self.classifier(x) class FlaxResNetForImageClassificationModule(nn.Module): config: ResNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.resnet = FlaxResNetModule(config=self.config, dtype=self.dtype) if self.config.num_labels > 0: self.classifier = FlaxResNetClassifierCollection(self.config, dtype=self.dtype) else: self.classifier = Identity() def __call__( self, pixel_values=None, deterministic: bool = True, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.resnet( pixel_values, deterministic=deterministic, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output[:, :, 0, 0]) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxImageClassifierOutputWithNoAttention(logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, RESNET_START_DOCSTRING, ) class FlaxResNetForImageClassification(FlaxResNetPreTrainedModel): module_class = FlaxResNetForImageClassificationModule FLAX_VISION_CLASSIF_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxResNetForImageClassification >>> from PIL import Image >>> import jax >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") >>> model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1) >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()]) ``` """ overwrite_call_docstring(FlaxResNetForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING) append_replace_return_docstrings( FlaxResNetForImageClassification, output_type=FlaxImageClassifierOutputWithNoAttention, config_class=ResNetConfig )
transformers/src/transformers/models/resnet/modeling_flax_resnet.py/0
{ "file_path": "transformers/src/transformers/models/resnet/modeling_flax_resnet.py", "repo_id": "transformers", "token_count": 10373 }
325
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert a RWKV checkpoint from BlinkDL to the Hugging Face format.""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint NUM_HIDDEN_LAYERS_MAPPING = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } HIDEN_SIZE_MAPPING = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def convert_state_dict(state_dict): state_dict_keys = list(state_dict.keys()) for name in state_dict_keys: weight = state_dict.pop(name) # emb -> embedding if name.startswith("emb."): name = name.replace("emb.", "embeddings.") # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0"): name = name.replace("blocks.0.ln0", "blocks.0.pre_ln") # att -> attention name = re.sub(r"blocks\.(\d+)\.att", r"blocks.\1.attention", name) # ffn -> feed_forward name = re.sub(r"blocks\.(\d+)\.ffn", r"blocks.\1.feed_forward", name) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k"): name = name.replace(".time_mix_k", ".time_mix_key") # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v"): name = name.replace(".time_mix_v", ".time_mix_value") # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r"): name = name.replace(".time_mix_r", ".time_mix_receptance") if name != "head.weight": name = "rwkv." + name state_dict[name] = weight return state_dict def convert_rmkv_checkpoint_to_hf_format( repo_id, checkpoint_file, output_dir, size=None, tokenizer_file=None, push_to_hub=False, model_name=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer.") vocab_size = 50277 tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") else: tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_file) vocab_size = len(tokenizer) tokenizer.save_pretrained(output_dir) # 2. Build the config possible_sizes = list(NUM_HIDDEN_LAYERS_MAPPING.keys()) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: size = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument.") if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}.") config = RwkvConfig( vocab_size=vocab_size, num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size], hidden_size=HIDEN_SIZE_MAPPING[size], ) config.save_pretrained(output_dir) # 3. Download model file then convert state_dict model_file = hf_hub_download(repo_id, checkpoint_file) state_dict = torch.load(model_file, map_location="cpu") state_dict = convert_state_dict(state_dict) # 4. Split in shards and save shards, index = shard_checkpoint(state_dict) for shard_file, shard in shards.items(): torch.save(shard, os.path.join(output_dir, shard_file)) if index is not None: save_index_file = os.path.join(output_dir, WEIGHTS_INDEX_NAME) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) shard_files = list(shards.keys()) del state_dict del shards gc.collect() for shard_file in shard_files: state_dict = torch.load(os.path.join(output_dir, shard_file)) torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(output_dir, shard_file)) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub.") model = AutoModelForCausalLM.from_pretrained(output_dir) model.push_to_hub(model_name, max_shard_size="2GB") tokenizer.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) args = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
transformers/src/transformers/models/rwkv/convert_rwkv_checkpoint_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/rwkv/convert_rwkv_checkpoint_to_hf.py", "repo_id": "transformers", "token_count": 2938 }
326
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization class for SeamlessM4T.""" import os from shutil import copyfile from typing import List, Optional, Tuple, Union from tokenizers import processors from ...tokenization_utils import ( BatchEncoding, PreTokenizedInput, TextInput, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_seamless_m4t import SeamlessM4TTokenizer else: SeamlessM4TTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/vocab.txt", }, "tokenizer_file": { "facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/hf-seamless-m4t-medium": 2048, } class SeamlessM4TTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" SeamlessM4T tokenizer (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import SeamlessM4TTokenizerFast >>> tokenizer = SeamlessM4TTokenizerFast.from_pretrained( ... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra" ... ) >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") ``` Args: vocab_file (`str`, *optional*): Path to the vocabulary file. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. src_lang (`str`, *optional*, defaults to `"eng"`): The language to use as source language for translation. tgt_lang (`str`, *optional*, defaults to `"fra"`): The language to use as target language for translation. additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional special tokens. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = SeamlessM4TTokenizer model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", src_lang="eng", tgt_lang="fra", additional_special_tokens=None, **kwargs, ): super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang self.set_src_lang_special_tokens(self._src_lang) self.set_tgt_lang_special_tokens(self._tgt_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: if "__" not in new_src_lang: self._src_lang = f"__{new_src_lang}__" else: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) @property def tgt_lang(self) -> str: return self._tgt_lang @tgt_lang.setter def tgt_lang(self, new_tgt_lang: str) -> None: if "__" not in new_tgt_lang: self._tgt_lang = f"__{new_tgt_lang}__" else: self._tgt_lang = new_tgt_lang self.set_tgt_lang_special_tokens(self._tgt_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An SeamlessM4T sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `decoder_input_ids`: (for decoder) `[eos, tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) if "__" not in tgt_lang: tgt_lang = f"__{tgt_lang}__" tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.prepare_seq2seq_batch with "fra_Latn"->"fra", "eng_Latn"->"eng" def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "eng", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "fra", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_input_mode def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_target_mode def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. Prefix=[src_lang_code], suffix = [eos] """ self.cur_lang_code = self.convert_tokens_to_ids(src_lang) if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`tgt_lang={src_lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.init_kwargs["src_lang"] = src_lang self.prefix_tokens = [self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target lang setting. Prefix=[eos, tgt_lang_code] and suffix=[eos]. """ self.cur_lang_code = self.convert_tokens_to_ids(lang) if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`tgt_lang={lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.init_kwargs["tgt_lang"] = lang self.prefix_tokens = [self.eos_token_id, self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) @classmethod def _from_pretrained( cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=None, cache_dir=None, local_files_only=False, _commit_hash=None, _is_local=False, **kwargs, ): tokenizer = super()._from_pretrained( resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=_commit_hash, _is_local=_is_local, **kwargs, ) # ensure also set after from pretrained tokenizer.set_src_lang_special_tokens(tokenizer._src_lang) tokenizer.set_tgt_lang_special_tokens(tokenizer._tgt_lang) return tokenizer def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, padding: Union[bool, str, PaddingStrategy] = True, pad_to_multiple_of: Optional[int] = 2, src_lang: Optional[str] = None, tgt_lang: Optional[str] = None, **kwargs, ): """ Args: text (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). src_lang (`str`, *optional*): A string representing the source language. If not specified, the last `src_lang` specified (either during initialization or when calling this tokenizer) will be used. tgt_lang (`str`, *optional*): A string representing the target language. If not specified, the last `tgt_lang` specified (either during initialization or when calling this tokenizer) will be used. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizerFast.__call__`]. """ if src_lang is not None: self.src_lang = src_lang if tgt_lang is not None: self.tgt_lang = tgt_lang output = super().__call__( text=text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, padding=padding, pad_to_multiple_of=pad_to_multiple_of, **kwargs, ) return output
transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t_fast.py", "repo_id": "transformers", "token_count": 8728 }
327
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support Speech-Encoder-Text-Decoder architectures""" from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...configuration_utils import PretrainedConfig from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SpeechEncoderDecoderConfig" SPEECH_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a speech-sequence-to-text-sequence model with any pretrained speech autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) it is shown how leveraging large pretrained speech models for speech translation yields a significant performance improvement. After such an Speech-Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, feature_dim)`, *optional*): Float values of input raw speech waveform or speech features. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or [`Speech2TextProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into *input_values*, the [`Wav2Vec2Processor`] should be used for padding and conversion into a tensor of type *torch.FloatTensor*. See [`Wav2Vec2Processor.__call__`] for details. input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`, *optional*): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`Speech2TextFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ # Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids @add_start_docstrings(SPEECH_ENCODER_DECODER_START_DOCSTRING) class SpeechEncoderDecoderModel(PreTrainedModel): r""" [`SpeechEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = SpeechEncoderDecoderConfig base_model_prefix = "speech_encoder_decoder" main_input_name = "inputs" supports_gradient_checkpointing = True def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[PreTrainedModel] = None, decoder: Optional[PreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config # make sure input & output embeddings is not tied config.tie_word_embeddings = False super().__init__(config) if encoder is None: encoder = AutoModel.from_config(config.encoder) if decoder is None: decoder = AutoModelForCausalLM.from_config(config.decoder) self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # get encoder output hidden size self.encoder_output_dim = getattr(config.encoder, "output_hidden_size", config.encoder.hidden_size) if ( self.encoder_output_dim != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): # encoder outputs might need to be projected to different dimension for decoder self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder of the speech encoder so that its parameters will not be updated during training. """ self.encoder.freeze_feature_encoder() @classmethod def from_pretrained(cls, *args, **kwargs): # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for SpeechEncoderDecoderModel. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(*args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import SpeechEncoderDecoderModel >>> # initialize a wav2vec2bert from a pretrained Wav2Vec2 and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-base-960h", "bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./wav2vec2bert") >>> # load fine-tuned model >>> model = SpeechEncoderDecoderModel.from_pretrained("./wav2vec2bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # make sure input & output embeddings is not tied config.tie_word_embeddings = False return cls(encoder=encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, input_values: Optional[torch.FloatTensor] = None, input_features: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import SpeechEncoderDecoderModel, AutoProcessor >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # Inference: Translate English speech to German >>> generated = model.generate(input_values) >>> decoded = processor.batch_decode(generated, skip_special_tokens=True)[0] >>> decoded 'Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können.' >>> # Training: Train model on English transcription >>> labels = processor(text=ds[0]["text"], return_tensors="pt").input_ids >>> loss = model(input_values, labels=labels).loss >>> loss.backward() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: if inputs is None: if input_values is not None and input_features is not None: raise ValueError("You cannot specify both input_values and input_features at the same time") elif input_values is not None: inputs = input_values elif input_features is not None: inputs = input_features else: raise ValueError("You have to specify either input_values or input_features") encoder_outputs = self.encoder( inputs, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder_output_dim != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # compute correct encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( encoder_hidden_states.shape[1], attention_mask ) else: encoder_attention_mask = None if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_hidden_states, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None input_dict = { "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], "encoder_outputs": encoder_outputs, "past_key_values": decoder_inputs["past_key_values"], "use_cache": use_cache, } return input_dict def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the SpeechEncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past_key_values, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past_key_values, beam_idx)
transformers/src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py", "repo_id": "transformers", "token_count": 13121 }
328
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert SpeechT5 HiFi-GAN checkpoint.""" import argparse import numpy as np import torch from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig, logging logging.set_verbosity_info() logger = logging.get_logger("transformers.models.speecht5") def load_weights(checkpoint, hf_model, config): hf_model.apply_weight_norm() hf_model.conv_pre.weight_g.data = checkpoint["input_conv.weight_g"] hf_model.conv_pre.weight_v.data = checkpoint["input_conv.weight_v"] hf_model.conv_pre.bias.data = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates)): hf_model.upsampler[i].weight_g.data = checkpoint[f"upsamples.{i}.1.weight_g"] hf_model.upsampler[i].weight_v.data = checkpoint[f"upsamples.{i}.1.weight_v"] hf_model.upsampler[i].bias.data = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates) * len(config.resblock_kernel_sizes)): for j in range(len(config.resblock_dilation_sizes)): hf_model.resblocks[i].convs1[j].weight_g.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] hf_model.resblocks[i].convs1[j].weight_v.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] hf_model.resblocks[i].convs1[j].bias.data = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] hf_model.resblocks[i].convs2[j].weight_g.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] hf_model.resblocks[i].convs2[j].weight_v.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] hf_model.resblocks[i].convs2[j].bias.data = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] hf_model.conv_post.weight_g.data = checkpoint["output_conv.1.weight_g"] hf_model.conv_post.weight_v.data = checkpoint["output_conv.1.weight_v"] hf_model.conv_post.bias.data = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def convert_hifigan_checkpoint( checkpoint_path, stats_path, pytorch_dump_folder_path, config_path=None, repo_id=None, ): if config_path is not None: config = SpeechT5HifiGanConfig.from_pretrained(config_path) else: config = SpeechT5HifiGanConfig() model = SpeechT5HifiGan(config) orig_checkpoint = torch.load(checkpoint_path) load_weights(orig_checkpoint["model"]["generator"], model, config) stats = np.load(stats_path) mean = stats[0].reshape(-1) scale = stats[1].reshape(-1) model.mean = torch.from_numpy(mean).float() model.scale = torch.from_numpy(scale).float() model.save_pretrained(pytorch_dump_folder_path) if repo_id: print("Pushing to the hub...") model.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) args = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
transformers/src/transformers/models/speecht5/convert_hifigan.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/convert_hifigan.py", "repo_id": "transformers", "token_count": 1706 }
329
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for TVLT.""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging logger = logging.get_logger(__name__) class TvltFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model. This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048): The time length of each audio spectrogram. num_channels (`int` *optional*, defaults to 1): Number of audio channels. patch_size (`List[int]` *optional*, defaults to `[16, 16]`): The patch size of audio patch embedding. feature_size (`int`, *optional*, defaults to 128): The frequency length of audio spectrogram. sampling_rate (`int`, *optional*, defaults to 44100): The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz). hop_length_to_sampling_rate (`int`, *optional*, defaults to 86): Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86 n_fft (`int`, *optional*, defaults to 2048): Size of the Fourier transform. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. """ model_input_names = ["audio_values", "audio_mask"] def __init__( self, spectrogram_length=2048, num_channels=1, patch_size=[16, 16], feature_size=128, sampling_rate=44100, hop_length_to_sampling_rate=86, n_fft=2048, padding_value=0.0, **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs, ) self.spectrogram_length = spectrogram_length self.num_channels = num_channels self.patch_size = patch_size self.freq_len = feature_size // self.patch_size[1] self.n_fft = n_fft self.hop_length = sampling_rate // hop_length_to_sampling_rate self.sampling_rate = sampling_rate self.padding_value = padding_value self.mel_filters = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=feature_size, min_frequency=0.0, max_frequency=22050.0, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ).T def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: """ Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch implementation with 1e-5 tolerance. """ log_spec = spectrogram( waveform, window_function(self.n_fft, "hann"), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) log_spec = log_spec[:, :-1] log_spec = log_spec - 20.0 log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0 return log_spec def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = True, sampling_rate: Optional[int] = None, resample: bool = False, mask_audio: bool = False, **kwargs, ) -> BatchFeature: """ Main method to prepare one or several audio(s) for the model. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*, default to `True`): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid subtle bugs. </Tip> sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. Current model supports sampling rate 16000 and 44100. resample (`bool`, *optional*, defaults to `False`): If the sampling rate is not matched, resample the input audio to match. mask_audio (`bool`, *optional*, defaults to `False`): Whether or not to mask input audio for MAE task. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height, width). - **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches). """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis audio_features = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], List): audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features] # Create audio attention mask max_patch_len = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: audio_mask = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] audio_mask = np.array(audio_mask).astype(np.float32) # convert into correct format for padding max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32) padded_audio_features = padded_audio_features * self.padding_value for i in range(len(audio_features)): feature = audio_features[i] padded_audio_features[i, :, : feature.shape[0], :] = feature # return as BatchFeature if return_attention_mask: data = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: data = {"audio_values": padded_audio_features} encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) return encoded_inputs
transformers/src/transformers/models/tvlt/feature_extraction_tvlt.py/0
{ "file_path": "transformers/src/transformers/models/tvlt/feature_extraction_tvlt.py", "repo_id": "transformers", "token_count": 4436 }
330
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch UniSpeech model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_unispeech import UniSpeechConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "UniSpeechConfig" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" _CTC_EXPECTED_LOSS = 17.17 UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/unispeech-large-1500h-cv", "microsoft/unispeech-large-multi-lingual-1500h-cv", # See all UniSpeech models at https://huggingface.co/models?filter=unispeech ] @dataclass class UniSpeechForPreTrainingOutput(ModelOutput): """ Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech class UniSpeechPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech class UniSpeechSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech class UniSpeechFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [ UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech class UniSpeechFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech class UniSpeechAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[UniSpeechConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech class UniSpeechFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech class UniSpeechEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech class UniSpeechAttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = UniSpeechAttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech class UniSpeechEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class UniSpeechGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" f" {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class UniSpeechPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniSpeechConfig base_model_prefix = "unispeech" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, UniSpeechGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, UniSpeechPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, UniSpeechFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask UNISPEECH_START_DOCSTRING = r""" UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UNISPEECH_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.", UNISPEECH_START_DOCSTRING, ) class UniSpeechModel(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.config = config self.feature_extractor = UniSpeechFeatureEncoder(config) self.feature_projection = UniSpeechFeatureProjection(config) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = UniSpeechEncoderStableLayerNorm(config) else: self.encoder = UniSpeechEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING ) class UniSpeechForPreTraining(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = UniSpeechGumbelVectorQuantizer(config) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) self.dropout = nn.Dropout(config.final_dropout) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) logits = logits.type_as(target_features) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> # TODO: Add full pretraining example ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) transformer_features = outputs[0] # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) quantized_features, codevector_perplexity = self.quantizer(extract_features) # project quantized features twice quantized_features = self.project_q(quantized_features) quantized_features = self.project_hid(quantized_features) prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( self.config.replace_prob ) prob_replace_matrix = prob_replace_matrix.transpose(0, 1) sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( quantized_features.masked_fill(~sampled_replace_matrix, 0.0) ) # project to ctc units logits = self.dropout(logits) logits = self.ctc_proj(logits) # TODO(PVP) - add negative sampling & loss computation loss = None if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return UniSpeechForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", UNISPEECH_START_DOCSTRING, """ target_lang (`str`, *optional*): Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng' by default. """, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH class UniSpeechForCTC(UniSpeechPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, UNISPEECH_START_DOCSTRING, ) class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)" ) self.unispeech = UniSpeechModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/unispeech/modeling_unispeech.py/0
{ "file_path": "transformers/src/transformers/models/unispeech/modeling_unispeech.py", "repo_id": "transformers", "token_count": 30778 }
331
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_videomae"] = [ "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST", "VideoMAEForPreTraining", "VideoMAEModel", "VideoMAEPreTrainedModel", "VideoMAEForVideoClassification", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"] _import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"] if TYPE_CHECKING: from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_videomae import ( VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, VideoMAEPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_videomae import VideoMAEFeatureExtractor from .image_processing_videomae import VideoMAEImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/videomae/__init__.py/0
{ "file_path": "transformers/src/transformers/models/videomae/__init__.py", "repo_id": "transformers", "token_count": 943 }
332
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT MAE checkpoints from the original repository: https://github.com/facebookresearch/mae""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def rename_key(name): if "cls_token" in name: name = name.replace("cls_token", "vit.embeddings.cls_token") if "mask_token" in name: name = name.replace("mask_token", "decoder.mask_token") if "decoder_pos_embed" in name: name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed") if "pos_embed" in name and "decoder" not in name: name = name.replace("pos_embed", "vit.embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "vit.embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "vit.embeddings.norm") if "decoder_blocks" in name: name = name.replace("decoder_blocks", "decoder.decoder_layers") if "blocks" in name: name = name.replace("blocks", "vit.encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "decoder_embed" in name: name = name.replace("decoder_embed", "decoder.decoder_embed") if "decoder_norm" in name: name = name.replace("decoder_norm", "decoder.decoder_norm") if "decoder_pred" in name: name = name.replace("decoder_pred", "decoder.decoder_pred") if "norm.weight" in name and "decoder" not in name: name = name.replace("norm.weight", "vit.layernorm.weight") if "norm.bias" in name and "decoder" not in name: name = name.replace("norm.bias", "vit.layernorm.bias") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[1]) if "decoder_blocks" in key: dim = config.decoder_hidden_size prefix = "decoder.decoder_layers." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] elif "bias" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.bias"] = val[:dim] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.bias"] = val[-dim:] else: dim = config.hidden_size prefix = "vit.encoder.layer." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] elif "bias" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.bias"] = val[:dim] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.bias"] = val[-dim:] else: orig_state_dict[rename_key(key)] = val return orig_state_dict def convert_vit_mae_checkpoint(checkpoint_url, pytorch_dump_folder_path): config = ViTMAEConfig() if "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 elif "huge" in checkpoint_url: config.patch_size = 14 config.hidden_size = 1280 config.intermediate_size = 5120 config.num_hidden_layers = 32 config.num_attention_heads = 16 model = ViTMAEForPreTraining(config) state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"] image_processor = ViTMAEImageProcessor(size=config.image_size) new_state_dict = convert_state_dict(state_dict, config) model.load_state_dict(new_state_dict) model.eval() url = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = ViTMAEImageProcessor(size=config.image_size) inputs = image_processor(images=image, return_tensors="pt") # forward pass torch.manual_seed(2) outputs = model(**inputs) logits = outputs.logits if "large" in checkpoint_url: expected_slice = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: expected_slice = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: expected_slice = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/vit_mae/convert_vit_mae_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit_mae/convert_vit_mae_to_pytorch.py", "repo_id": "transformers", "token_count": 3304 }
333
# coding=utf-8 # Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VITS model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) VITS_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/mms-tts-eng": "https://huggingface.co/facebook/mms-tts-eng/resolve/main/config.json", } class VitsConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VitsModel`]. It is used to instantiate a VITS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VITS [facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 38): Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed to the forward method of [`VitsModel`]. hidden_size (`int`, *optional*, defaults to 192): Dimensionality of the text encoder layers. num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer encoder. window_size (`int`, *optional*, defaults to 4): Window size for the relative positional embeddings in the attention layers of the Transformer encoder. use_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the key, query, value projection layers in the Transformer encoder. ffn_dim (`int`, *optional*, defaults to 768): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. ffn_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder. flow_size (`int`, *optional*, defaults to 192): Dimensionality of the flow layers. spectrogram_bins (`int`, *optional*, defaults to 513): Number of frequency bins in the target spectrogram. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings and encoder. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`): Whether to use the stochastic duration prediction module or the regular duration predictor. num_speakers (`int`, *optional*, defaults to 1): Number of speakers if this is a multi-speaker model. speaker_embedding_size (`int`, *optional*, defaults to 0): Number of channels used by the speaker embeddings. Is zero for single-speaker models. upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the HiFi-GAN upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network. The length of `upsample_rates` defines the number of convolutional layers and has to match the length of `upsample_kernel_sizes`. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match the length of `upsample_rates`. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the HiFi-GAN multi-receptive field fusion (MRF) module. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. depth_separable_channels (`int`, *optional*, defaults to 2): Number of channels to use in each depth-separable block. depth_separable_num_layers (`int`, *optional*, defaults to 3): Number of convolutional layers to use in each depth-separable block. duration_predictor_flow_bins (`int`, *optional*, defaults to 10): Number of channels to map using the unonstrained rational spline in the duration predictor model. duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0): Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor model. duration_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the 1D convolution layers used in the duration predictor model. duration_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout ratio for the duration predictor model. duration_predictor_num_flows (`int`, *optional*, defaults to 4): Number of flow stages used by the duration predictor model. duration_predictor_filter_channels (`int`, *optional*, defaults to 256): Number of channels for the convolution layers used in the duration predictor model. prior_encoder_num_flows (`int`, *optional*, defaults to 4): Number of flow stages used by the prior encoder flow model. prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4): Number of WaveNet layers used by the prior encoder flow model. posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16): Number of WaveNet layers used by the posterior encoder model. wavenet_kernel_size (`int`, *optional*, defaults to 5): Kernel size of the 1D convolution layers used in the WaveNet model. wavenet_dilation_rate (`int`, *optional*, defaults to 1): Dilation rates of the dilated 1D convolutional layers used in the WaveNet model. wavenet_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the WaveNet layers. speaking_rate (`float`, *optional*, defaults to 1.0): Speaking rate. Larger values give faster synthesised speech. noise_scale (`float`, *optional*, defaults to 0.667): How random the speech prediction is. Larger values create more variation in the predicted speech. noise_scale_duration (`float`, *optional*, defaults to 0.8): How random the duration prediction is. Larger values create more variation in the predicted durations. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz). Example: ```python >>> from transformers import VitsModel, VitsConfig >>> # Initializing a "facebook/mms-tts-eng" style configuration >>> configuration = VitsConfig() >>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration >>> model = VitsModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vits" def __init__( self, vocab_size=38, hidden_size=192, num_hidden_layers=6, num_attention_heads=2, window_size=4, use_bias=True, ffn_dim=768, layerdrop=0.1, ffn_kernel_size=3, flow_size=192, spectrogram_bins=513, hidden_act="relu", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-5, use_stochastic_duration_prediction=True, num_speakers=1, speaker_embedding_size=0, upsample_initial_channel=512, upsample_rates=[8, 8, 2, 2], upsample_kernel_sizes=[16, 16, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], leaky_relu_slope=0.1, depth_separable_channels=2, depth_separable_num_layers=3, duration_predictor_flow_bins=10, duration_predictor_tail_bound=5.0, duration_predictor_kernel_size=3, duration_predictor_dropout=0.5, duration_predictor_num_flows=4, duration_predictor_filter_channels=256, prior_encoder_num_flows=4, prior_encoder_num_wavenet_layers=4, posterior_encoder_num_wavenet_layers=16, wavenet_kernel_size=5, wavenet_dilation_rate=1, wavenet_dropout=0.0, speaking_rate=1.0, noise_scale=0.667, noise_scale_duration=0.8, sampling_rate=16_000, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.window_size = window_size self.use_bias = use_bias self.ffn_dim = ffn_dim self.layerdrop = layerdrop self.ffn_kernel_size = ffn_kernel_size self.flow_size = flow_size self.spectrogram_bins = spectrogram_bins self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_stochastic_duration_prediction = use_stochastic_duration_prediction self.num_speakers = num_speakers self.speaker_embedding_size = speaker_embedding_size self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.leaky_relu_slope = leaky_relu_slope self.depth_separable_channels = depth_separable_channels self.depth_separable_num_layers = depth_separable_num_layers self.duration_predictor_flow_bins = duration_predictor_flow_bins self.duration_predictor_tail_bound = duration_predictor_tail_bound self.duration_predictor_kernel_size = duration_predictor_kernel_size self.duration_predictor_dropout = duration_predictor_dropout self.duration_predictor_num_flows = duration_predictor_num_flows self.duration_predictor_filter_channels = duration_predictor_filter_channels self.prior_encoder_num_flows = prior_encoder_num_flows self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers self.wavenet_kernel_size = wavenet_kernel_size self.wavenet_dilation_rate = wavenet_dilation_rate self.wavenet_dropout = wavenet_dropout self.speaking_rate = speaking_rate self.noise_scale = noise_scale self.noise_scale_duration = noise_scale_duration self.sampling_rate = sampling_rate if len(upsample_kernel_sizes) != len(upsample_rates): raise ValueError( f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of " f"`upsample_rates` ({len(upsample_rates)})" ) super().__init__(**kwargs)
transformers/src/transformers/models/vits/configuration_vits.py/0
{ "file_path": "transformers/src/transformers/models/vits/configuration_vits.py", "repo_id": "transformers", "token_count": 5431 }
334
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2 model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_file, is_peft_available, is_safetensors_available, logging, replace_return_docstrings, ) from .configuration_wav2vec2 import Wav2Vec2Config WAV2VEC2_ADAPTER_PT_FILE = "adapter.{}.bin" WAV2VEC2_ADAPTER_SAFE_FILE = "adapter.{}.safetensors" if is_safetensors_available(): from safetensors.torch import load_file as safe_load_file logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 53.48 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "superb/wav2vec2-base-superb-ks" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 6.54 # Frame class docstring _FRAME_CLASS_CHECKPOINT = "anton-l/wav2vec2-base-superb-sd" _FRAME_EXPECTED_OUTPUT = [0, 0] # Speaker Verification docstring _XVECTOR_CHECKPOINT = "anton-l/wav2vec2-base-superb-sv" _XVECTOR_EXPECTED_OUTPUT = 0.98 WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 ] @dataclass class Wav2Vec2ForPreTrainingOutput(ModelOutput): """ Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions. Args: loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None contrastive_loss: Optional[torch.FloatTensor] = None diversity_loss: Optional[torch.FloatTensor] = None def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices class Wav2Vec2NoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2LayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2GroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class Wav2Vec2PositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2SamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states class Wav2Vec2FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [ Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ Wav2Vec2LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class Wav2Vec2FeatureExtractor(Wav2Vec2FeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class Wav2Vec2FeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2 class Wav2Vec2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Wav2Vec2Config] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class Wav2Vec2FeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2EncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = Wav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Wav2Vec2FeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Wav2Vec2EncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = Wav2Vec2Attention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Wav2Vec2FeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = Wav2Vec2AttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Wav2Vec2Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2EncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2GumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible " f"by `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = mask.flatten()[:, None, None].expand(probs.shape) probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) marginal_probs = probs.sum(dim=0) / mask.sum() else: marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states, mask_time_indices=None): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class Wav2Vec2Adapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2AdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2AdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Wav2Vec2AttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class Wav2Vec2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2Config base_model_prefix = "wav2vec2" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. if isinstance(module, Wav2Vec2ForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True # gumbel softmax requires special init elif isinstance(module, Wav2Vec2GumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, Wav2Vec2PositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, Wav2Vec2FeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _get_adapters(self): if self.config.adapter_attn_dim is None: raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.") adapter_weights = {} for name, module in self.named_modules(): if isinstance(module, Wav2Vec2AttnAdapterLayer): for param_name, param in module.named_parameters(): adapter_weights[".".join([name, param_name])] = param if isinstance(self, Wav2Vec2ForCTC): for name, param in self.lm_head.named_parameters(): adapter_weights[".".join(["lm_head", name])] = param return adapter_weights def init_adapter_layers(self): """ (Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning """ # init attention adapters for module in self.modules(): if isinstance(module, Wav2Vec2AttnAdapterLayer): self._init_weights(module) # init lm head if isinstance(self, Wav2Vec2ForCTC): self._init_weights(self.lm_head) def load_adapter(self, target_lang: str, force_load=True, **kwargs): r""" Load a language adapter model from a pre-trained adapter model. Parameters: target_lang (`str`): Has to be a language id of an existing adapter weight. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin force_load (`bool`, defaults to `True`): Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". </Tip> mirror (`str`, *optional*): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. <Tip> Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to use this method in a firewalled environment. </Tip> Examples: ```python >>> from transformers import Wav2Vec2ForCTC, AutoProcessor >>> ckpt = "facebook/mms-1b-all" >>> processor = AutoProcessor.from_pretrained(ckpt) >>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng") >>> # set specific language >>> processor.tokenizer.set_target_lang("spa") >>> model.load_adapter("spa") ``` """ if self.config.adapter_attn_dim is None: raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.") if target_lang == self.target_lang and not force_load: logger.warning(f"Adapter weights are already set to {target_lang}.") return cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) token = kwargs.pop("token", None) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token model_path_or_id = self.config._name_or_path state_dict = None # 1. Let's first try loading a safetensors adapter weight if use_safetensors is not False: filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang) try: weight_path = cached_file( model_path_or_id, filename=filepath, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, cache_dir=cache_dir, ) state_dict = safe_load_file(weight_path) except EnvironmentError: if use_safetensors: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. if use_safetensors: raise EnvironmentError( f"Can't load the model for '{model_path_or_id}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a" f" directory containing a file named {filepath}." ) # 2. If this didn't work let's try loading a PyTorch adapter weight if state_dict is None: filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang) try: weight_path = cached_file( model_path_or_id, filename=filepath, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, cache_dir=cache_dir, ) weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} state_dict = torch.load( weight_path, map_location="cpu", **weights_only_kwarg, ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load the model for '{model_path_or_id}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a" f" directory containing a file named {filepath}." ) adapter_weights = self._get_adapters() unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys()) missing_keys = set(adapter_weights.keys()) - set(state_dict.keys()) if len(unexpected_keys) > 0: raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.") elif len(missing_keys) > 0: raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.") # make sure now vocab size is correct target_vocab_size = state_dict["lm_head.weight"].shape[0] if target_vocab_size != self.config.vocab_size: self.lm_head = nn.Linear( self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype ) self.config.vocab_size = target_vocab_size # make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()} self.load_state_dict(state_dict, strict=False) # set target language corectly self.target_lang = target_lang WAV_2_VEC_2_START_DOCSTRING = r""" Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV_2_VEC_2_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.", WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2Model(Wav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config): super().__init__(config) self.config = config self.feature_extractor = Wav2Vec2FeatureEncoder(config) self.feature_projection = Wav2Vec2FeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = Wav2Vec2EncoderStableLayerNorm(config) else: self.encoder = Wav2Vec2Encoder(config) self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel): def __init__(self, config: Wav2Vec2Config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = Wav2Vec2GumbelVectorQuantizer(config) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 0.1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( target_features ) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.BoolTensor] = None, sampled_negative_indices: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, Wav2Vec2ForPreTraining >>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") >>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() >>> mask_time_indices = _compute_mask_indices( ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 ... ) >>> sampled_negative_indices = _sample_negative_indices( ... features_shape=(batch_size, sequence_length), ... num_negatives=model.config.num_negatives, ... mask_time_indices=mask_time_indices, ... ) >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) >>> sampled_negative_indices = torch.tensor( ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long ... ) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) >>> # show that cosine similarity is much higher than random >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 tensor(True) >>> # for contrastive loss training model should be put into train mode >>> model = model.train() >>> loss = model( ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices ... ).loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if mask_time_indices is not None: mask_time_indices = mask_time_indices.to(torch.bool) outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, return_dict=return_dict, ) # 1. project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # 2. quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) if attention_mask is not None: # compute reduced attention_mask correponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices=mask_time_indices ) quantized_features = self.project_q(quantized_features) loss = contrastive_loss = diversity_loss = None if sampled_negative_indices is not None: batch_size, sequence_length, hidden_size = quantized_features.shape # for training, we sample negatives # 3. sample K negatives (distractors) quantized states for contrastive loss # if attention_mask is passed, make sure that padded feature vectors cannot be sampled # sample negative quantized vectors BTC => (BxT)C negative_quantized_features = quantized_features.view(-1, hidden_size)[ sampled_negative_indices.long().view(-1) ] negative_quantized_features = negative_quantized_features.view( batch_size, sequence_length, -1, hidden_size ).permute(2, 0, 1, 3) # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf logits = self.compute_contrastive_logits( quantized_features[None, :], negative_quantized_features, transformer_features, self.config.contrastive_logits_temperature, ) # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), # its cosine similarity will be masked neg_is_pos = (quantized_features == negative_quantized_features).all(-1) if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") # 7. compute diversity loss: \mathbf{L}_d num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return Wav2Vec2ForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, contrastive_loss=contrastive_loss, diversity_loss=diversity_loss, ) @add_start_docstrings("""Wav2Vec2 Model with a `language modeling` head on top.""", WAV_2_VEC_2_START_DOCSTRING) class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) warnings.warn( "The class `Wav2Vec2ForMaskedLM` is deprecated. Please use `Wav2Vec2ForCTC` instead.", FutureWarning ) self.wav2vec2 = Wav2Vec2Model(config) self.dropout = nn.Dropout(config.final_dropout) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, MaskedLMOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) if not return_dict: output = (logits,) + outputs[2:] return output return MaskedLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV_2_VEC_2_START_DOCSTRING, """ target_lang (`str`, *optional*): Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin. Only relevant when using an instance of [`Wav2Vec2ForCTC`] with adapters. Uses 'eng' by default. """, ) class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2 Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)" ) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2 Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)" ) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_FRAME_CLASS_CHECKPOINT, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_FRAME_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2 Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV_2_VEC_2_START_DOCSTRING, ) class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_XVECTOR_CHECKPOINT, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_XVECTOR_EXPECTED_OUTPUT, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2/modeling_wav2vec2.py", "repo_id": "transformers", "token_count": 46050 }
335
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Whisper.""" import json import os import re import warnings from functools import lru_cache from typing import List, Optional, Tuple import numpy as np from tokenizers import AddedToken, pre_tokenizers, processors from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .english_normalizer import BasicTextNormalizer, EnglishTextNormalizer from .tokenization_whisper import LANGUAGES, TASK_IDS, TO_LANGUAGE_CODE, WhisperTokenizer, _decode_asr logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json", "merges_file": "merges.txt", "normalizer_file": "normalizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/vocab.json", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/vocab.json", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/vocab.json", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/vocab.json", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/vocab.json", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/vocab.json", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/vocab.json", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/vocab.json", }, "merges_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/merges.txt", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges.txt", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/merges.txt", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/merges.txt", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/merges.txt", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/merges.txt", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/merges.txt", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/merges.txt", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/merges.txt", }, "tokenizer_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/tokenizer.json", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/tokenizer.json", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/tokenizer.json", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/tokenizer.json", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/tokenizer.json", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/tokenizer.json", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/tokenizer.json", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/tokenizer.json", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai/whisper-tiny": 1500, "openai/whisper-base": 1500, "openai/whisper-small": 1500, "openai/whisper-medium": 1500, "openai/whisper-large": 1500, "openai/whisper-tiny.en": 1500, "openai/whisper-base.en": 1500, "openai/whisper-small.en": 1500, "openai/whisper-medium.en": 1500, } class WhisperTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. normalizer_file (`str`, *optional*): Path to the normalizer_file file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Whisper tokenizer detect beginning of words by the preceding space). language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = WhisperTokenizer def __init__( self, vocab_file=None, merges_file=None, normalizer_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None self.add_prefix_space = add_prefix_space self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>") self.language = language self.task = task self.predict_timestamps = predict_timestamps # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps def _decode_with_timestamps(self, token_ids, skip_special_tokens=False, time_precision=0.02) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] cur_max_timestamp = 0.0 prev_segments_len = 0.0 for token in token_ids: if token >= timestamp_begin: timestamp = float((token - timestamp_begin) * time_precision) if timestamp < cur_max_timestamp: # next segment has started prev_segments_len += cur_max_timestamp cur_max_timestamp = timestamp outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>") outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets def _compute_offsets(self, token_ids, time_precision=0.02): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ offsets = [] # ensure torch tensor of token ids is placed on cpu if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)): token_ids = token_ids.cpu() token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin # strip timestamp tokens from the text output sliced_tokens = self._preprocess_token_ids(sliced_tokens) text = self._decode(sliced_tokens) text = self._filter_timestamp_ids(text) offsets.append( { "text": text, "timestamp": ( start_timestamp_position * time_precision, end_timestamp_position * time_precision, ), } ) last_slice = current_slice return offsets @lru_cache # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.timestamp_ids def timestamp_ids(self, time_precision=0.02): """ Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache. Args: time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._preprocess_token_ids def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False): """ Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be removed. """ if skip_special_tokens: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id) return token_ids # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._filter_timestamp_ids def _filter_timestamp_ids(self, token_ids): return re.sub(self.timestamp_pat, "", token_ids) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision: float = 0.02, decode_with_timestamps: bool = False, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the English text normalizer to the decoded text. Only applicable when the target text is in English. Otherwise, the basic text normalizer should be applied. basic_normalize (`bool`, *optional*, defaults to `False`): Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual target text. remove_diacritics (`bool`, *optional*, defaults to `False`): Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may destroy information in the decoded text, hence it should be used with caution. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ filtered_ids = self._preprocess_token_ids( token_ids, skip_special_tokens=skip_special_tokens, ) text = super().decode( filtered_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, normalize=normalize, basic_normalize=basic_normalize, remove_diacritics=remove_diacritics, **kwargs, ) if decode_with_timestamps: # legacy method to decode timestamps when not included in the tokenizer vocabulary text = self._decode_with_timestamps( filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) else: text = self._filter_timestamp_ids(text) # retrieve offsets if output_offsets: offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode( self, *args, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs ) -> str: text = super()._decode(*args, **kwargs) if normalize: clean_text = self._normalize(text) return clean_text elif basic_normalize: clean_text = self._basic_normalize(text, remove_diacritics=remove_diacritics) return clean_text else: return text # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize def _normalize(self, text): warnings.warn( "The private method `_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper English normalizer using the `normalize` method." ) return self.normalize(text) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._basic_normalize def _basic_normalize(self, text, remove_diacritics=False): warnings.warn( "The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers." "You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method." ) return self.basic_normalize(text, remove_diacritics=remove_diacritics) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.normalize def normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.basic_normalize def basic_normalize(text, remove_diacritics=False): """ Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on multilingual text. """ normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics) return normalizer(text) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return tuple(files) + (normalizer_file,) def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps prefix_token_ids = self.prefix_tokens prefixes = self.convert_ids_to_tokens(prefix_token_ids) eos = self.eos_token eos_token_id = self.eos_token_id prefix_template = " ".join([f"{token}:0" for token in prefixes]) self.backend_tokenizer.post_processor = processors.TemplateProcessing( single=f"{prefix_template} $A:0 {eos}:0", pair=f"{prefix_template} $A:0 $B:1 {eos}:1", special_tokens=[ (eos, eos_token_id), *zip(prefixes, prefix_token_ids), ], ) @property # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens def prefix_tokens(self) -> List[int]: bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") translate_token_id = self.convert_tokens_to_ids("<|translate|>") transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>") notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>") langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template def default_chat_template(self): """ A simple chat template that ignores role information and just concatenates messages with EOS tokens. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}" # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt def _strip_prompt(token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): has_prompt = isinstance(token_ids, list) and token_ids and token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids
transformers/src/transformers/models/whisper/tokenization_whisper_fast.py/0
{ "file_path": "transformers/src/transformers/models/whisper/tokenization_whisper_fast.py", "repo_id": "transformers", "token_count": 13837 }
336
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI GPT checkpoint.""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path): # Load checkpoint chkpt = torch.load(xlm_checkpoint_path, map_location="cpu") state_dict = chkpt["model"] # We have the base model one level deeper than the original XLM repository two_levels_state_dict = {} for k, v in state_dict.items(): if "pred_layer" in k: two_levels_state_dict[k] = v else: two_levels_state_dict["transformer." + k] = v config = chkpt["params"] config = {n: v for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))} vocab = chkpt["dico_word2id"] vocab = {s + "</w>" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""): i for s, i in vocab.items()} # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"Save PyTorch model to {pytorch_weights_dump_path}") torch.save(two_levels_state_dict, pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(json.dumps(config, indent=2) + "\n") print(f"Save vocab file to {pytorch_config_dump_path}") with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f: f.write(json.dumps(vocab, indent=2) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1106 }
337
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLM_ROBERTa_XL configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class XLMRobertaXLConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`]. It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250880): Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLMRobertaXLModel`]. hidden_size (`int`, *optional*, defaults to 2560): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 10240): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 514): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or [`TFXLMRobertaXLModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel >>> # Initializing a XLM_ROBERTA_XL bert-base-uncased style configuration >>> configuration = XLMRobertaXLConfig() >>> # Initializing a model (with random weights) from the bert-base-uncased style configuration >>> model = XLMRobertaXLModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlm-roberta-xl" def __init__( self, vocab_size=250880, hidden_size=2560, num_hidden_layers=36, num_attention_heads=32, intermediate_size=10240, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-05, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRobertaXL class XLMRobertaXLOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers/src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py/0
{ "file_path": "transformers/src/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py", "repo_id": "transformers", "token_count": 2935 }
338
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert YOLOS checkpoints from the original repository. URL: https://github.com/hustvl/YOLOS""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_yolos_config(yolos_name: str) -> YolosConfig: config = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: config.hidden_size = 192 config.intermediate_size = 768 config.num_hidden_layers = 12 config.num_attention_heads = 3 config.image_size = [800, 1333] config.use_mid_position_embeddings = False elif yolos_name == "yolos_s_dWr": config.hidden_size = 330 config.num_hidden_layers = 14 config.num_attention_heads = 6 config.intermediate_size = 1320 elif "yolos_s" in yolos_name: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 elif "yolos_b" in yolos_name: config.image_size = [800, 1344] config.num_labels = 91 repo_id = "huggingface/label-files" filename = "coco-detection-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict: dict, config: YolosConfig, base_model: bool = False): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :] state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def rename_key(name: str) -> str: if "backbone" in name: name = name.replace("backbone", "vit") if "cls_token" in name: name = name.replace("cls_token", "embeddings.cls_token") if "det_token" in name: name = name.replace("det_token", "embeddings.detection_tokens") if "mid_pos_embed" in name: name = name.replace("mid_pos_embed", "encoder.mid_position_embeddings") if "pos_embed" in name: name = name.replace("pos_embed", "embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "blocks" in name: name = name.replace("blocks", "encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "class_embed" in name: name = name.replace("class_embed", "class_labels_classifier") if "bbox_embed" in name: name = name.replace("bbox_embed", "bbox_predictor") if "vit.norm" in name: name = name.replace("vit.norm", "vit.layernorm") return name def convert_state_dict(orig_state_dict: dict, model: YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[2]) dim = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.weight"] = val[-dim:, :] else: orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.bias"] = val[:dim] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.bias"] = val[-dim:] else: orig_state_dict[rename_key(key)] = val return orig_state_dict # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_yolos_checkpoint( yolos_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our YOLOS structure. """ config = get_yolos_config(yolos_name) # load original state_dict state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] # load 🤗 model model = YolosForObjectDetection(config) model.eval() new_state_dict = convert_state_dict(state_dict, model) model.load_state_dict(new_state_dict) # Check outputs on an image, prepared by YolosImageProcessor size = 800 if yolos_name != "yolos_ti" else 512 image_processor = YolosImageProcessor(format="coco_detection", size=size) encoding = image_processor(images=prepare_img(), return_tensors="pt") outputs = model(**encoding) logits, pred_boxes = outputs.logits, outputs.pred_boxes expected_slice_logits, expected_slice_boxes = None, None if yolos_name == "yolos_ti": expected_slice_logits = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) expected_slice_boxes = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": expected_slice_logits = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) expected_slice_boxes = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": expected_slice_logits = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) expected_slice_boxes = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": expected_slice_logits = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) expected_slice_boxes = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": expected_slice_logits = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) expected_slice_boxes = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}") assert torch.allclose(logits[0, :3, :3], expected_slice_logits, atol=1e-4) assert torch.allclose(pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model_mapping = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub...") model_name = model_mapping[yolos_name] image_processor.push_to_hub(model_name, organization="hustvl") model.push_to_hub(model_name, organization="hustvl") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/yolos/convert_yolos_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/yolos/convert_yolos_to_pytorch.py", "repo_id": "transformers", "token_count": 5081 }
339
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import json import os import warnings from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from huggingface_hub import model_info from numpy import isin from ..configuration_utils import PretrainedConfig from ..dynamic_module_utils import get_class_from_dynamic_module from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..models.auto.configuration_auto import AutoConfig from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( CONFIG_NAME, HUGGINGFACE_CO_RESOLVE_ENDPOINT, cached_file, extract_commit_hash, find_adapter_config_file, is_kenlm_available, is_offline_mode, is_peft_available, is_pyctcdecode_available, is_tf_available, is_torch_available, logging, ) from .audio_classification import AudioClassificationPipeline from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline from .base import ( ArgumentHandler, CsvPipelineDataFormat, JsonPipelineDataFormat, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, PipelineException, PipelineRegistry, get_default_model_and_revision, infer_framework_load_model, ) from .conversational import Conversation, ConversationalPipeline from .depth_estimation import DepthEstimationPipeline from .document_question_answering import DocumentQuestionAnsweringPipeline from .feature_extraction import FeatureExtractionPipeline from .fill_mask import FillMaskPipeline from .image_classification import ImageClassificationPipeline from .image_segmentation import ImageSegmentationPipeline from .image_to_image import ImageToImagePipeline from .image_to_text import ImageToTextPipeline from .mask_generation import MaskGenerationPipeline from .object_detection import ObjectDetectionPipeline from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline from .text_classification import TextClassificationPipeline from .text_generation import TextGenerationPipeline from .text_to_audio import TextToAudioPipeline from .token_classification import ( AggregationStrategy, NerPipeline, TokenClassificationArgumentHandler, TokenClassificationPipeline, ) from .video_classification import VideoClassificationPipeline from .visual_question_answering import VisualQuestionAnsweringPipeline from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline from .zero_shot_image_classification import ZeroShotImageClassificationPipeline from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForImageClassification, TFAutoModelForMaskedLM, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelForVision2Seq, TFAutoModelForZeroShotImageClassification, ) if is_torch_available(): import torch from ..models.auto.modeling_auto import ( AutoModel, AutoModelForAudioClassification, AutoModelForCausalLM, AutoModelForCTC, AutoModelForDocumentQuestionAnswering, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForMaskedLM, AutoModelForMaskGeneration, AutoModelForObjectDetection, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTableQuestionAnswering, AutoModelForTextToSpectrogram, AutoModelForTextToWaveform, AutoModelForTokenClassification, AutoModelForVideoClassification, AutoModelForVision2Seq, AutoModelForVisualQuestionAnswering, AutoModelForZeroShotImageClassification, AutoModelForZeroShotObjectDetection, ) if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel from ..tokenization_utils_fast import PreTrainedTokenizerFast logger = logging.get_logger(__name__) # Register all the supported tasks here TASK_ALIASES = { "sentiment-analysis": "text-classification", "ner": "token-classification", "vqa": "visual-question-answering", "text-to-speech": "text-to-audio", } SUPPORTED_TASKS = { "audio-classification": { "impl": AudioClassificationPipeline, "tf": (), "pt": (AutoModelForAudioClassification,) if is_torch_available() else (), "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}}, "type": "audio", }, "automatic-speech-recognition": { "impl": AutomaticSpeechRecognitionPipeline, "tf": (), "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}}, "type": "multimodal", }, "text-to-audio": { "impl": TextToAudioPipeline, "tf": (), "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (), "default": {"model": {"pt": ("suno/bark-small", "645cfba")}}, "type": "text", }, "feature-extraction": { "impl": FeatureExtractionPipeline, "tf": (TFAutoModel,) if is_tf_available() else (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-cased", "935ac13"), "tf": ("distilbert/distilbert-base-cased", "935ac13"), } }, "type": "multimodal", }, "text-classification": { "impl": TextClassificationPipeline, "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"), "tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"), }, }, "type": "text", }, "token-classification": { "impl": TokenClassificationPipeline, "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (), "pt": (AutoModelForTokenClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"), "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"), }, }, "type": "text", }, "question-answering": { "impl": QuestionAnsweringPipeline, "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (), "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"), "tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"), }, }, "type": "text", }, "table-question-answering": { "impl": TableQuestionAnsweringPipeline, "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (), "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (), "default": { "model": { "pt": ("google/tapas-base-finetuned-wtq", "69ceee2"), "tf": ("google/tapas-base-finetuned-wtq", "69ceee2"), }, }, "type": "text", }, "visual-question-answering": { "impl": VisualQuestionAnsweringPipeline, "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (), "tf": (), "default": { "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")}, }, "type": "multimodal", }, "document-question-answering": { "impl": DocumentQuestionAnsweringPipeline, "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (), "tf": (), "default": { "model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")}, }, "type": "multimodal", }, "fill-mask": { "impl": FillMaskPipeline, "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (), "pt": (AutoModelForMaskedLM,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilroberta-base", "ec58a5b"), "tf": ("distilbert/distilroberta-base", "ec58a5b"), } }, "type": "text", }, "summarization": { "impl": SummarizationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": { "model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")} }, "type": "text", }, # This task is a special case as it's parametrized by SRC, TGT languages. "translation": { "impl": TranslationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": { ("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, ("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, ("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, }, "type": "text", }, "text2text-generation": { "impl": Text2TextGenerationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}}, "type": "text", }, "text-generation": { "impl": TextGenerationPipeline, "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (), "pt": (AutoModelForCausalLM,) if is_torch_available() else (), "default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}}, "type": "text", }, "zero-shot-classification": { "impl": ZeroShotClassificationPipeline, "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("FacebookAI/roberta-large-mnli", "130fb28"), }, "config": { "pt": ("facebook/bart-large-mnli", "c626438"), "tf": ("FacebookAI/roberta-large-mnli", "130fb28"), }, }, "type": "text", }, "zero-shot-image-classification": { "impl": ZeroShotImageClassificationPipeline, "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (), "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("openai/clip-vit-base-patch32", "f4881ba"), "tf": ("openai/clip-vit-base-patch32", "f4881ba"), } }, "type": "multimodal", }, "zero-shot-audio-classification": { "impl": ZeroShotAudioClassificationPipeline, "tf": (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("laion/clap-htsat-fused", "973b6e5"), } }, "type": "multimodal", }, "conversational": { "impl": ConversationalPipeline, "tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (), "default": { "model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")} }, "type": "text", }, "image-classification": { "impl": ImageClassificationPipeline, "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (), "pt": (AutoModelForImageClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("google/vit-base-patch16-224", "5dca96d"), "tf": ("google/vit-base-patch16-224", "5dca96d"), } }, "type": "image", }, "image-segmentation": { "impl": ImageSegmentationPipeline, "tf": (), "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}}, "type": "multimodal", }, "image-to-text": { "impl": ImageToTextPipeline, "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (), "pt": (AutoModelForVision2Seq,) if is_torch_available() else (), "default": { "model": { "pt": ("ydshieh/vit-gpt2-coco-en", "65636df"), "tf": ("ydshieh/vit-gpt2-coco-en", "65636df"), } }, "type": "multimodal", }, "object-detection": { "impl": ObjectDetectionPipeline, "tf": (), "pt": (AutoModelForObjectDetection,) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}}, "type": "multimodal", }, "zero-shot-object-detection": { "impl": ZeroShotObjectDetectionPipeline, "tf": (), "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (), "default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}}, "type": "multimodal", }, "depth-estimation": { "impl": DepthEstimationPipeline, "tf": (), "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (), "default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}}, "type": "image", }, "video-classification": { "impl": VideoClassificationPipeline, "tf": (), "pt": (AutoModelForVideoClassification,) if is_torch_available() else (), "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}}, "type": "video", }, "mask-generation": { "impl": MaskGenerationPipeline, "tf": (), "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}}, "type": "multimodal", }, "image-to-image": { "impl": ImageToImagePipeline, "tf": (), "pt": (AutoModelForImageToImage,) if is_torch_available() else (), "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}}, "type": "image", }, } NO_FEATURE_EXTRACTOR_TASKS = set() NO_IMAGE_PROCESSOR_TASKS = set() NO_TOKENIZER_TASKS = set() # Those model configs are special, they are generic over their task, meaning # any tokenizer/feature_extractor might be use for a given model so we cannot # use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to # see if the model defines such objects or not. MULTI_MODEL_CONFIGS = {"SpeechEncoderDecoderConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"} for task, values in SUPPORTED_TASKS.items(): if values["type"] == "text": NO_FEATURE_EXTRACTOR_TASKS.add(task) NO_IMAGE_PROCESSOR_TASKS.add(task) elif values["type"] in {"image", "video"}: NO_TOKENIZER_TASKS.add(task) elif values["type"] in {"audio"}: NO_TOKENIZER_TASKS.add(task) NO_IMAGE_PROCESSOR_TASKS.add(task) elif values["type"] != "multimodal": raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}") PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES) def get_supported_tasks() -> List[str]: """ Returns a list of supported task strings. """ return PIPELINE_REGISTRY.get_supported_tasks() def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str: use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if is_offline_mode(): raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode") try: info = model_info(model, token=token) except Exception as e: raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}") if not info.pipeline_tag: raise RuntimeError( f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically" ) if getattr(info, "library_name", "transformers") != "transformers": raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers") task = info.pipeline_tag return task def check_task(task: str) -> Tuple[str, Dict, Any]: """ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and default models if they exist. Args: task (`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - `"audio-classification"` - `"automatic-speech-recognition"` - `"conversational"` - `"depth-estimation"` - `"document-question-answering"` - `"feature-extraction"` - `"fill-mask"` - `"image-classification"` - `"image-segmentation"` - `"image-to-text"` - `"image-to-image"` - `"object-detection"` - `"question-answering"` - `"summarization"` - `"table-question-answering"` - `"text2text-generation"` - `"text-classification"` (alias `"sentiment-analysis"` available) - `"text-generation"` - `"text-to-audio"` (alias `"text-to-speech"` available) - `"token-classification"` (alias `"ner"` available) - `"translation"` - `"translation_xx_to_yy"` - `"video-classification"` - `"visual-question-answering"` - `"zero-shot-classification"` - `"zero-shot-image-classification"` - `"zero-shot-object-detection"` Returns: (normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name (removed alias and options). The actual dictionary required to initialize the pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY" """ return PIPELINE_REGISTRY.check_task(task) def clean_custom_task(task_info): import transformers if "impl" not in task_info: raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.") pt_class_names = task_info.get("pt", ()) if isinstance(pt_class_names, str): pt_class_names = [pt_class_names] task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names) tf_class_names = task_info.get("tf", ()) if isinstance(tf_class_names, str): tf_class_names = [tf_class_names] task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names) return task_info, None def pipeline( task: str = None, model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None, config: Optional[Union[str, PretrainedConfig]] = None, tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None, feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None, image_processor: Optional[Union[str, BaseImageProcessor]] = None, framework: Optional[str] = None, revision: Optional[str] = None, use_fast: bool = True, token: Optional[Union[str, bool]] = None, device: Optional[Union[int, str, "torch.device"]] = None, device_map=None, torch_dtype=None, trust_remote_code: Optional[bool] = None, model_kwargs: Dict[str, Any] = None, pipeline_class: Optional[Any] = None, **kwargs, ) -> Pipeline: """ Utility factory method to build a [`Pipeline`]. Pipelines are made of: - A [tokenizer](tokenizer) in charge of mapping raw textual input to token. - A [model](model) to make predictions from the inputs. - Some (optional) post processing for enhancing model's output. Args: task (`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - `"audio-classification"`: will return a [`AudioClassificationPipeline`]. - `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`]. - `"conversational"`: will return a [`ConversationalPipeline`]. - `"depth-estimation"`: will return a [`DepthEstimationPipeline`]. - `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`]. - `"feature-extraction"`: will return a [`FeatureExtractionPipeline`]. - `"fill-mask"`: will return a [`FillMaskPipeline`]:. - `"image-classification"`: will return a [`ImageClassificationPipeline`]. - `"image-segmentation"`: will return a [`ImageSegmentationPipeline`]. - `"image-to-image"`: will return a [`ImageToImagePipeline`]. - `"image-to-text"`: will return a [`ImageToTextPipeline`]. - `"mask-generation"`: will return a [`MaskGenerationPipeline`]. - `"object-detection"`: will return a [`ObjectDetectionPipeline`]. - `"question-answering"`: will return a [`QuestionAnsweringPipeline`]. - `"summarization"`: will return a [`SummarizationPipeline`]. - `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`]. - `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`]. - `"text-classification"` (alias `"sentiment-analysis"` available): will return a [`TextClassificationPipeline`]. - `"text-generation"`: will return a [`TextGenerationPipeline`]:. - `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:. - `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`]. - `"translation"`: will return a [`TranslationPipeline`]. - `"translation_xx_to_yy"`: will return a [`TranslationPipeline`]. - `"video-classification"`: will return a [`VideoClassificationPipeline`]. - `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`]. - `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`]. - `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`]. - `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`]. - `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`]. model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*): The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or [`TFPreTrainedModel`] (for TensorFlow). If not provided, the default for the `task` will be loaded. config (`str` or [`PretrainedConfig`], *optional*): The configuration that will be used by the pipeline to instantiate the model. This can be a model identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`]. If not provided, the default configuration file for the requested model will be used. That means that if `model` is given, its default configuration will be used. However, if `model` is not supplied, this `task`'s default model's config is used instead. tokenizer (`str` or [`PreTrainedTokenizer`], *optional*): The tokenizer that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`]. If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string). However, if `config` is also not given or not a string, then the default tokenizer for the given `task` will be loaded. feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*): The feature extractor that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`]. Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal models. Multi-modal models will also require a tokenizer to be passed. If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it is a string). However, if `config` is also not given or not a string, then the default feature extractor for the given `task` will be loaded. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. revision (`str`, *optional*, defaults to `"main"`): When passing a task name or a string model identifier: The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. use_fast (`bool`, *optional*, defaults to `True`): Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]). use_auth_token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). device (`int` or `str` or `torch.device`): Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this pipeline will be allocated. device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set `device_map="auto"` to compute the most optimized `device_map` automatically (see [here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload) for more information). <Tip warning={true}> Do not use `device_map` AND `device` at the same time as they will conflict </Tip> torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`). trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom code defined on the Hub in their own modeling, configuration, tokenization or even pipeline files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. model_kwargs (`Dict[str, Any]`, *optional*): Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the specific pipeline init (see the documentation for the corresponding pipeline class for possible values). Returns: [`Pipeline`]: A suitable pipeline for the task. Examples: ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> # Sentiment analysis pipeline >>> analyzer = pipeline("sentiment-analysis") >>> # Question answering pipeline, specifying the checkpoint identifier >>> oracle = pipeline( ... "question-answering", model="distilbert/distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased" ... ) >>> # Named entity recognition pipeline, passing in a specific model and tokenizer >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") >>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer) ```""" if model_kwargs is None: model_kwargs = {} # Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs, # this is to keep BC). use_auth_token = model_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token code_revision = kwargs.pop("code_revision", None) commit_hash = kwargs.pop("_commit_hash", None) hub_kwargs = { "revision": revision, "token": token, "trust_remote_code": trust_remote_code, "_commit_hash": commit_hash, } if task is None and model is None: raise RuntimeError( "Impossible to instantiate a pipeline without either a task or a model " "being specified. " "Please provide a task class or a model" ) if model is None and tokenizer is not None: raise RuntimeError( "Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer" " may not be compatible with the default model. Please provide a PreTrainedModel class or a" " path/identifier to a pretrained model when providing tokenizer." ) if model is None and feature_extractor is not None: raise RuntimeError( "Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided" " feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class" " or a path/identifier to a pretrained model when providing feature_extractor." ) if isinstance(model, Path): model = str(model) if commit_hash is None: pretrained_model_name_or_path = None if isinstance(config, str): pretrained_model_name_or_path = config elif config is None and isinstance(model, str): pretrained_model_name_or_path = model if not isinstance(config, PretrainedConfig) and pretrained_model_name_or_path is not None: # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible resolved_config_file = cached_file( pretrained_model_name_or_path, CONFIG_NAME, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, **hub_kwargs, ) hub_kwargs["_commit_hash"] = extract_commit_hash(resolved_config_file, commit_hash) else: hub_kwargs["_commit_hash"] = getattr(config, "_commit_hash", None) # Config is the primordial information item. # Instantiate config if needed if isinstance(config, str): config = AutoConfig.from_pretrained( config, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs ) hub_kwargs["_commit_hash"] = config._commit_hash elif config is None and isinstance(model, str): # Check for an adapter file in the model path if PEFT is available if is_peft_available(): # `find_adapter_config_file` doesn't accept `trust_remote_code` _hub_kwargs = {k: v for k, v in hub_kwargs.items() if k != "trust_remote_code"} maybe_adapter_path = find_adapter_config_file( model, token=hub_kwargs["token"], revision=hub_kwargs["revision"], _commit_hash=hub_kwargs["_commit_hash"], ) if maybe_adapter_path is not None: with open(maybe_adapter_path, "r", encoding="utf-8") as f: adapter_config = json.load(f) model = adapter_config["base_model_name_or_path"] config = AutoConfig.from_pretrained( model, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs ) hub_kwargs["_commit_hash"] = config._commit_hash custom_tasks = {} if config is not None and len(getattr(config, "custom_pipelines", {})) > 0: custom_tasks = config.custom_pipelines if task is None and trust_remote_code is not False: if len(custom_tasks) == 1: task = list(custom_tasks.keys())[0] else: raise RuntimeError( "We can't infer the task automatically for this model as there are multiple tasks available. Pick " f"one in {', '.join(custom_tasks.keys())}" ) if task is None and model is not None: if not isinstance(model, str): raise RuntimeError( "Inferring the task automatically requires to check the hub with a model_id defined as a `str`. " f"{model} is not a valid model_id." ) task = get_task(model, token) # Retrieve the task if task in custom_tasks: normalized_task = task targeted_task, task_options = clean_custom_task(custom_tasks[task]) if pipeline_class is None: if not trust_remote_code: raise ValueError( "Loading this pipeline requires you to execute the code in the pipeline file in that" " repo on your local machine. Make sure you have read the code there to avoid malicious use, then" " set the option `trust_remote_code=True` to remove this error." ) class_ref = targeted_task["impl"] pipeline_class = get_class_from_dynamic_module( class_ref, model, code_revision=code_revision, **hub_kwargs, ) else: normalized_task, targeted_task, task_options = check_task(task) if pipeline_class is None: pipeline_class = targeted_task["impl"] # Use default model/config/tokenizer for the task if no model is provided if model is None: # At that point framework might still be undetermined model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options) revision = revision if revision is not None else default_revision logger.warning( f"No model was supplied, defaulted to {model} and revision" f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n" "Using a pipeline without specifying a model name and revision in production is not recommended." ) if config is None and isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs) hub_kwargs["_commit_hash"] = config._commit_hash if device_map is not None: if "device_map" in model_kwargs: raise ValueError( 'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those' " arguments might conflict, use only one.)" ) if device is not None: logger.warning( "Both `device` and `device_map` are specified. `device` will override `device_map`. You" " will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`." ) model_kwargs["device_map"] = device_map if torch_dtype is not None: if "torch_dtype" in model_kwargs: raise ValueError( 'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those' " arguments might conflict, use only one.)" ) model_kwargs["torch_dtype"] = torch_dtype model_name = model if isinstance(model, str) else None # Load the correct model if possible # Infer the framework from the model if not already defined if isinstance(model, str) or framework is None: model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]} framework, model = infer_framework_load_model( model, model_classes=model_classes, config=config, framework=framework, task=task, **hub_kwargs, **model_kwargs, ) model_config = model.config hub_kwargs["_commit_hash"] = model.config._commit_hash load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None # If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while # `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some # vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`. # TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue. # This block is only temporarily to make CI green. if load_image_processor and load_feature_extractor: load_feature_extractor = False if ( tokenizer is None and not load_tokenizer and normalized_task not in NO_TOKENIZER_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_tokenizer = True if ( image_processor is None and not load_image_processor and normalized_task not in NO_IMAGE_PROCESSOR_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS and normalized_task != "automatic-speech-recognition" ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_image_processor = True if ( feature_extractor is None and not load_feature_extractor and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_CONFIGS ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_feature_extractor = True if task in NO_TOKENIZER_TASKS: # These will never require a tokenizer. # the model on the other hand might have a tokenizer, but # the files could be missing from the hub, instead of failing # on such repos, we just force to not load it. load_tokenizer = False if task in NO_FEATURE_EXTRACTOR_TASKS: load_feature_extractor = False if task in NO_IMAGE_PROCESSOR_TASKS: load_image_processor = False if load_tokenizer: # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model_name, str): tokenizer = model_name elif isinstance(config, str): tokenizer = config else: # Impossible to guess what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) use_fast = tokenizer[1].pop("use_fast", use_fast) tokenizer_identifier = tokenizer[0] tokenizer_kwargs = tokenizer[1] else: tokenizer_identifier = tokenizer tokenizer_kwargs = model_kwargs.copy() tokenizer_kwargs.pop("torch_dtype", None) tokenizer = AutoTokenizer.from_pretrained( tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs ) if load_image_processor: # Try to infer image processor from model or config name (if provided as str) if image_processor is None: if isinstance(model_name, str): image_processor = model_name elif isinstance(config, str): image_processor = config # Backward compatibility, as `feature_extractor` used to be the name # for `ImageProcessor`. elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor): image_processor = feature_extractor else: # Impossible to guess what is the right image_processor here raise Exception( "Impossible to guess which image processor to use. " "Please provide a PreTrainedImageProcessor class or a path/identifier " "to a pretrained image processor." ) # Instantiate image_processor if needed if isinstance(image_processor, (str, tuple)): image_processor = AutoImageProcessor.from_pretrained( image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs ) if load_feature_extractor: # Try to infer feature extractor from model or config name (if provided as str) if feature_extractor is None: if isinstance(model_name, str): feature_extractor = model_name elif isinstance(config, str): feature_extractor = config else: # Impossible to guess what is the right feature_extractor here raise Exception( "Impossible to guess which feature extractor to use. " "Please provide a PreTrainedFeatureExtractor class or a path/identifier " "to a pretrained feature extractor." ) # Instantiate feature_extractor if needed if isinstance(feature_extractor, (str, tuple)): feature_extractor = AutoFeatureExtractor.from_pretrained( feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs ) if ( feature_extractor._processor_class and feature_extractor._processor_class.endswith("WithLM") and isinstance(model_name, str) ): try: import kenlm # to trigger `ImportError` if not installed from pyctcdecode import BeamSearchDecoderCTC if os.path.isdir(model_name) or os.path.isfile(model_name): decoder = BeamSearchDecoderCTC.load_from_dir(model_name) else: language_model_glob = os.path.join( BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*" ) alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME allow_patterns = [language_model_glob, alphabet_filename] decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns) kwargs["decoder"] = decoder except ImportError as e: logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}") if not is_kenlm_available(): logger.warning("Try to install `kenlm`: `pip install kenlm") if not is_pyctcdecode_available(): logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode") if task == "translation" and model.config.task_specific_params: for key in model.config.task_specific_params: if key.startswith("translation"): task = key warnings.warn( f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"', UserWarning, ) break if tokenizer is not None: kwargs["tokenizer"] = tokenizer if feature_extractor is not None: kwargs["feature_extractor"] = feature_extractor if torch_dtype is not None: kwargs["torch_dtype"] = torch_dtype if image_processor is not None: kwargs["image_processor"] = image_processor if device is not None: kwargs["device"] = device return pipeline_class(model=model, framework=framework, task=task, **kwargs)
transformers/src/transformers/pipelines/__init__.py/0
{ "file_path": "transformers/src/transformers/pipelines/__init__.py", "repo_id": "transformers", "token_count": 21117 }
340
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class PipelineDataset(Dataset): def __init__(self, dataset, process, params): self.dataset = dataset self.process = process self.params = params def __len__(self): return len(self.dataset) def __getitem__(self, i): item = self.dataset[i] processed = self.process(item, **self.params) return processed class PipelineIterator(IterableDataset): def __init__(self, loader, infer, params, loader_batch_size=None): """ Roughly equivalent to ``` for item in loader: yield infer(item, **params) ``` Arguments: loader (`torch.utils.data.DataLoader` or any iterator): The iterator that will be used to apply `infer` on. infer (any function): The function to apply of each element of `loader`. params (`dict`): The parameters passed to `infer` along with every item loader_batch_size (`int`, *optional*): If specified, the items of `loader` are supposed to come as batch, and are loader_batched here making it roughly behave as ``` for items in loader: for i in loader_batch_size: item = items[i] yield infer(item, **params) ```""" self.loader = loader self.infer = infer self.params = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether loader_batch_size = None self.loader_batch_size = loader_batch_size # Internal bookkeeping self._loader_batch_index = None self._loader_batch_data = None def __len__(self): return len(self.loader) def __iter__(self): self.iterator = iter(self.loader) return self def loader_batch_item(self): """ Return item located at `loader_batch_index` within the current `loader_batch_data`. """ if isinstance(self._loader_batch_data, torch.Tensor): # Batch data is simple tensor, just fetch the slice result = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) loader_batched = {} for k, element in self._loader_batch_data.items(): if isinstance(element, ModelOutput): # Convert ModelOutput to tuple first element = element.to_tuple() if isinstance(element[0], torch.Tensor): loader_batched[k] = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0], np.ndarray): loader_batched[k] = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(element, tuple): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor): loader_batched[k] = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0], np.ndarray): loader_batched[k] = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element) continue if element is None: # This can happen for optional data that get passed around loader_batched[k] = None elif isinstance(element[self._loader_batch_index], torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers loader_batched[k] = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index], np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers loader_batched[k] = np.expand_dims(element[self._loader_batch_index], 0) else: # This is typically a list, so no need to `unsqueeze`. loader_batched[k] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 result = self._loader_batch_data.__class__(loader_batched) self._loader_batch_index += 1 return result def __next__(self): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch item = next(self.iterator) processed = self.infer(item, **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(processed, torch.Tensor): first_tensor = processed else: key = list(processed.keys())[0] first_tensor = processed[key] if isinstance(first_tensor, list): observed_batch_size = len(first_tensor) else: observed_batch_size = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. self.loader_batch_size = observed_batch_size # Setting internal index to unwrap the batch self._loader_batch_data = processed self._loader_batch_index = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class PipelineChunkIterator(PipelineIterator): def __init__(self, loader, infer, params, loader_batch_size=None): """ Roughly equivalent to ``` for iterator in loader: for item in iterator: yield infer(item, **params) ``` Arguments: loader (`torch.utils.data.DataLoader` or any iterator): The iterator that will be used to apply `infer` on. infer (any function): The function to apply of each element of `loader`. params (`dict`): The parameters passed to `infer` along with every item """ super().__init__(loader, infer, params) def __iter__(self): self.iterator = iter(self.loader) self.subiterator = None return self def __next__(self): if self.subiterator is None: "Subiterator None means we haven't started a `preprocess` iterator. so start it" self.subiterator = self.infer(next(self.iterator), **self.params) try: # Try to return next item processed = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators self.subiterator = self.infer(next(self.iterator), **self.params) processed = next(self.subiterator) return processed class PipelinePackIterator(PipelineIterator): """ Roughly equivalent to ``` packed = [] for item in loader: packed.append(item) if item["is_last"]: yield packed packed = [] ``` but it also handles cases where `item` are batched (meaning it's a dict of Tensor with first dimension > 1. In that case it does ``` packed = [] for batch in loader: # item is batched for item in batch: packed.append(item) if item["is_last"]: yield packed packed = [] ``` Arguments: loader (`torch.utils.data.DataLoader` or any iterator): The iterator that will be used to apply `infer` on. infer (any function): The function to apply of each element of `loader`. params (`dict`): The parameters passed to `infer` along with every item loader_batch_size (`int`, *optional*): If specified, the items of `loader` are supposed to come as batch, and are loader_batched here making it roughly behave as ``` for items in loader: for i in loader_batch_size: item = items[i] yield infer(item, **params) ```""" def __iter__(self): self.iterator = iter(self.loader) return self def __next__(self): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. is_last = False accumulator = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: item = self.loader_batch_item() is_last = item.pop("is_last") accumulator.append(item) if is_last: return accumulator while not is_last: processed = self.infer(next(self.iterator), **self.params) if self.loader_batch_size is not None: if isinstance(processed, torch.Tensor): first_tensor = processed else: key = list(processed.keys())[0] first_tensor = processed[key] if isinstance(first_tensor, list): observed_batch_size = len(first_tensor) else: observed_batch_size = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. self.loader_batch_size = observed_batch_size self._loader_batch_data = processed self._loader_batch_index = 0 while self._loader_batch_index < self.loader_batch_size: item = self.loader_batch_item() is_last = item.pop("is_last") accumulator.append(item) if is_last: return accumulator else: item = processed is_last = item.pop("is_last") accumulator.append(item) return accumulator class KeyDataset(Dataset): def __init__(self, dataset: Dataset, key: str): self.dataset = dataset self.key = key def __len__(self): return len(self.dataset) def __getitem__(self, i): return self.dataset[i][self.key] class KeyPairDataset(Dataset): def __init__(self, dataset: Dataset, key1: str, key2: str): self.dataset = dataset self.key1 = key1 self.key2 = key2 def __len__(self): return len(self.dataset) def __getitem__(self, i): return {"text": self.dataset[i][self.key1], "text_pair": self.dataset[i][self.key2]}
transformers/src/transformers/pipelines/pt_utils.py/0
{ "file_path": "transformers/src/transformers/pipelines/pt_utils.py", "repo_id": "transformers", "token_count": 5884 }
341
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base classes common to both the slow and the fast tokenization classes: PreTrainedTokenizerBase (host all the user fronting encoding methods) Special token mixing (host the special tokens logic) and BatchEncoding (wrap the dictionary of output with special method for the Fast tokenizers) """ import copy import json import os import re import warnings from collections import UserDict from collections.abc import Mapping, Sized from contextlib import contextmanager from dataclasses import dataclass from functools import lru_cache from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union import numpy as np from packaging import version from . import __version__ from .dynamic_module_utils import custom_object_save from .utils import ( ExplicitEnum, PaddingStrategy, PushToHubMixin, TensorType, add_end_docstrings, add_model_info_to_auto_map, cached_file, copy_func, download_url, extract_commit_hash, is_flax_available, is_jax_tensor, is_numpy_array, is_offline_mode, is_remote_url, is_tf_available, is_tf_tensor, is_tokenizers_available, is_torch_available, is_torch_device, is_torch_tensor, logging, requires_backends, to_py_obj, ) if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp # noqa: F401 from .pipelines.conversational import Conversation if is_tokenizers_available(): from tokenizers import AddedToken from tokenizers import Encoding as EncodingFast else: @dataclass(frozen=False, eq=True) class AddedToken: """ AddedToken represents a token to be added to a Tokenizer An AddedToken can have special options defining the way it should behave. The `normalized` will default to `not special` if it is not specified, similarly to the definition in `tokenizers`. """ def __init__( self, content: str, single_word=False, lstrip=False, rstrip=False, special=False, normalized=None ): self.content = content self.single_word = single_word self.lstrip = lstrip self.rstrip = rstrip self.special = special self.normalized = normalized if normalized is not None else not special def __getstate__(self): return self.__dict__ def __str__(self): return self.content @dataclass class EncodingFast: """This is dummy class because without the `tokenizers` library we don't have these objects anyway""" pass logger = logging.get_logger(__name__) VERY_LARGE_INTEGER = int(1e30) # This is used to set the max input length for a model with infinite size input LARGE_INTEGER = int(1e20) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER # Define type aliases and NamedTuples TextInput = str PreTokenizedInput = List[str] EncodedInput = List[int] TextInputPair = Tuple[str, str] PreTokenizedInputPair = Tuple[List[str], List[str]] EncodedInputPair = Tuple[List[int], List[int]] # Slow tokenizers used to be saved in three separated files SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" ADDED_TOKENS_FILE = "added_tokens.json" TOKENIZER_CONFIG_FILE = "tokenizer_config.json" # Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file FULL_TOKENIZER_FILE = "tokenizer.json" _re_tokenizer_file = re.compile(r"tokenizer\.(.*)\.json") class TruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ ONLY_FIRST = "only_first" ONLY_SECOND = "only_second" LONGEST_FIRST = "longest_first" DO_NOT_TRUNCATE = "do_not_truncate" class CharSpan(NamedTuple): """ Character span in the original string. Args: start (`int`): Index of the first character in the original string. end (`int`): Index of the character following the last character in the original string. """ start: int end: int class TokenSpan(NamedTuple): """ Token span in an encoded string (list of tokens). Args: start (`int`): Index of the first token in the span. end (`int`): Index of the token following the last token in the span. """ start: int end: int class BatchEncoding(UserDict): """ Holds the output of the [`~tokenization_utils_base.PreTrainedTokenizerBase.__call__`], [`~tokenization_utils_base.PreTrainedTokenizerBase.encode_plus`] and [`~tokenization_utils_base.PreTrainedTokenizerBase.batch_encode_plus`] methods (tokens, attention_masks, etc). This class is derived from a python dictionary and can be used as a dictionary. In addition, this class exposes utility methods to map from word/character space to token space. Args: data (`dict`, *optional*): Dictionary of lists/arrays/tensors returned by the `__call__`/`encode_plus`/`batch_encode_plus` methods ('input_ids', 'attention_mask', etc.). encoding (`tokenizers.Encoding` or `Sequence[tokenizers.Encoding]`, *optional*): If the tokenizer is a fast tokenizer which outputs additional information like mapping from word/character space to token space the `tokenizers.Encoding` instance or list of instance (for batches) hold this information. tensor_type (`Union[None, str, TensorType]`, *optional*): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. prepend_batch_axis (`bool`, *optional*, defaults to `False`): Whether or not to add a batch axis when converting to tensors (see `tensor_type` above). n_sequences (`Optional[int]`, *optional*): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. """ def __init__( self, data: Optional[Dict[str, Any]] = None, encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None, tensor_type: Union[None, str, TensorType] = None, prepend_batch_axis: bool = False, n_sequences: Optional[int] = None, ): super().__init__(data) if isinstance(encoding, EncodingFast): encoding = [encoding] self._encodings = encoding if n_sequences is None and encoding is not None and len(encoding): n_sequences = encoding[0].n_sequences self._n_sequences = n_sequences self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) @property def n_sequences(self) -> Optional[int]: """ `Optional[int]`: The number of sequences used to generate each sample from the batch encoded in this [`BatchEncoding`]. Currently can be one of `None` (unknown), `1` (a single sentence) or `2` (a pair of sentences) """ return self._n_sequences @property def is_fast(self) -> bool: """ `bool`: Indicate whether this [`BatchEncoding`] was generated from the result of a [`PreTrainedTokenizerFast`] or not. """ return self._encodings is not None def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]: """ If the key is a string, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.). If the key is an integer, get the `tokenizers.Encoding` for batch item with index `key`. If the key is a slice, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.) with the constraint of slice. """ if isinstance(item, str): return self.data[item] elif self._encodings is not None: return self._encodings[item] elif isinstance(item, slice): return {key: self.data[key][item] for key in self.data.keys()} else: raise KeyError( "Invalid key. Only three types of key are available: " "(1) string, (2) integers for backend Encoding, and (3) slices for data subsetting." ) def __getattr__(self, item: str): try: return self.data[item] except KeyError: raise AttributeError def __getstate__(self): return {"data": self.data, "encodings": self._encodings} def __setstate__(self, state): if "data" in state: self.data = state["data"] if "encodings" in state: self._encodings = state["encodings"] def keys(self): return self.data.keys() def values(self): return self.data.values() def items(self): return self.data.items() # After this point: # Extended properties and methods only available for fast (Rust-based) tokenizers # provided by HuggingFace tokenizers library. @property def encodings(self) -> Optional[List[EncodingFast]]: """ `Optional[List[tokenizers.Encoding]]`: The list all encodings from the tokenization process. Returns `None` if the input was tokenized through Python (i.e., not a fast) tokenizer. """ return self._encodings def tokens(self, batch_index: int = 0) -> List[str]: """ Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion to integer indices) at a given batch index (only works for the output of a fast tokenizer). Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[str]`: The list of tokens at that index. """ if not self._encodings: raise ValueError( "tokens() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) return self._encodings[batch_index].tokens def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to the id of their original sentences: - `None` for special tokens added around or between sequences, - `0` for tokens corresponding to words in the first sequence, - `1` for tokens corresponding to words in the second sequence when a pair of sequences was jointly encoded. Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[Optional[int]]`: A list indicating the sequence id corresponding to each token. Special tokens added by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding sequence. """ if not self._encodings: raise ValueError( "sequence_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) return self._encodings[batch_index].sequence_ids def words(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word (several tokens will be mapped to the same word index if they are parts of that word). """ if not self._encodings: raise ValueError( "words() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) warnings.warn( "`BatchEncoding.words()` property is deprecated and should be replaced with the identical, " "but more self-explanatory `BatchEncoding.word_ids()` property.", FutureWarning, ) return self.word_ids(batch_index) def word_ids(self, batch_index: int = 0) -> List[Optional[int]]: """ Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer. Args: batch_index (`int`, *optional*, defaults to 0): The index to access in the batch. Returns: `List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word (several tokens will be mapped to the same word index if they are parts of that word). """ if not self._encodings: raise ValueError( "word_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`" " class)." ) return self._encodings[batch_index].word_ids def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: """ Get the index of the sequence represented by the given token. In the general use case, this method returns `0` for a single sequence or the first sequence of a pair, and `1` for the second sequence of a pair Can be called as: - `self.token_to_sequence(token_index)` if batch size is 1 - `self.token_to_sequence(batch_index, token_index)` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_token_index (`int`): Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of the token in the sequence. token_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the sequence. Returns: `int`: Index of the word in the input sequence. """ if not self._encodings: raise ValueError("token_to_sequence() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index if batch_index < 0: batch_index = self._batch_size + batch_index if token_index < 0: token_index = self._seq_len + token_index return self._encodings[batch_index].token_to_sequence(token_index) def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int: """ Get the index of the word corresponding (i.e. comprising) to an encoded token in a sequence of the batch. Can be called as: - `self.token_to_word(token_index)` if batch size is 1 - `self.token_to_word(batch_index, token_index)` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e., words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_token_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the token in the sequence. token_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the sequence. Returns: `int`: Index of the word in the input sequence. """ if not self._encodings: raise ValueError("token_to_word() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index if batch_index < 0: batch_index = self._batch_size + batch_index if token_index < 0: token_index = self._seq_len + token_index return self._encodings[batch_index].token_to_word(token_index) def word_to_tokens( self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0 ) -> Optional[TokenSpan]: """ Get the encoded token span corresponding to a word in a sequence of the batch. Token spans are returned as a [`~tokenization_utils_base.TokenSpan`] with: - **start** -- Index of the first token. - **end** -- Index of the token following the last token. Can be called as: - `self.word_to_tokens(word_index, sequence_index: int = 0)` if batch size is 1 - `self.word_to_tokens(batch_index, word_index, sequence_index: int = 0)` if batch size is greater or equal to 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_word_index (`int`): Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of the word in the sequence. word_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the sequence. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided word index belongs to. Returns: ([`~tokenization_utils_base.TokenSpan`], *optional*): Span of tokens in the encoded sequence. Returns `None` if no tokens correspond to the word. This can happen especially when the token is a special token that has been used to format the tokenization. For example when we add a class token at the very beginning of the tokenization. """ if not self._encodings: raise ValueError("word_to_tokens() is not available when using Python based tokenizers") if word_index is not None: batch_index = batch_or_word_index else: batch_index = 0 word_index = batch_or_word_index if batch_index < 0: batch_index = self._batch_size + batch_index if word_index < 0: word_index = self._seq_len + word_index span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index) return TokenSpan(*span) if span is not None else None def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan: """ Get the character span corresponding to an encoded token in a sequence of the batch. Character spans are returned as a [`~tokenization_utils_base.CharSpan`] with: - **start** -- Index of the first character in the original string associated to the token. - **end** -- Index of the character following the last character in the original string associated to the token. Can be called as: - `self.token_to_chars(token_index)` if batch size is 1 - `self.token_to_chars(batch_index, token_index)` if batch size is greater or equal to 1 Args: batch_or_token_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the token in the sequence. token_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the token or tokens in the sequence. Returns: [`~tokenization_utils_base.CharSpan`]: Span of characters in the original string, or None, if the token (e.g. <s>, </s>) doesn't correspond to any chars in the origin string. """ if not self._encodings: raise ValueError("token_to_chars() is not available when using Python based tokenizers") if token_index is not None: batch_index = batch_or_token_index else: batch_index = 0 token_index = batch_or_token_index span_indices = self._encodings[batch_index].token_to_chars(token_index) return CharSpan(*span_indices) if span_indices is not None else None def char_to_token( self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0 ) -> int: """ Get the index of the token in the encoded output comprising a character in the original string for a sequence of the batch. Can be called as: - `self.char_to_token(char_index)` if batch size is 1 - `self.char_to_token(batch_index, char_index)` if batch size is greater or equal to 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_char_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the word in the sequence char_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the sequence. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided character index belongs to. Returns: `int`: Index of the token. """ if not self._encodings: raise ValueError("char_to_token() is not available when using Python based tokenizers") if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return self._encodings[batch_index].char_to_token(char_index, sequence_index) def word_to_chars( self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0 ) -> CharSpan: """ Get the character span in the original string corresponding to given word in a sequence of the batch. Character spans are returned as a CharSpan NamedTuple with: - start: index of the first character in the original string - end: index of the character following the last character in the original string Can be called as: - `self.word_to_chars(word_index)` if batch size is 1 - `self.word_to_chars(batch_index, word_index)` if batch size is greater or equal to 1 Args: batch_or_word_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the word in the sequence word_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the sequence. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided word index belongs to. Returns: `CharSpan` or `List[CharSpan]`: Span(s) of the associated character or characters in the string. CharSpan are NamedTuple with: - start: index of the first character associated to the token in the original string - end: index of the character following the last character associated to the token in the original string """ if not self._encodings: raise ValueError("word_to_chars() is not available when using Python based tokenizers") if word_index is not None: batch_index = batch_or_word_index else: batch_index = 0 word_index = batch_or_word_index return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index))) def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int: """ Get the word in the original string corresponding to a character in the original string of a sequence of the batch. Can be called as: - `self.char_to_word(char_index)` if batch size is 1 - `self.char_to_word(batch_index, char_index)` if batch size is greater than 1 This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized words. Args: batch_or_char_index (`int`): Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of the character in the original string. char_index (`int`, *optional*): If a batch index is provided in *batch_or_token_index*, this can be the index of the character in the original string. sequence_index (`int`, *optional*, defaults to 0): If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0 or 1) the provided character index belongs to. Returns: `int` or `List[int]`: Index or indices of the associated encoded token(s). """ if not self._encodings: raise ValueError("char_to_word() is not available when using Python based tokenizers") if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return self._encodings[batch_index].char_to_word(char_index, sequence_index) def convert_to_tensors( self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False ): """ Convert the inner content to tensors. Args: tensor_type (`str` or [`~utils.TensorType`], *optional*): The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If `None`, no modification is done. prepend_batch_axis (`int`, *optional*, defaults to `False`): Whether or not to add the batch dimension during the conversion. """ if tensor_type is None: return self # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch is_tensor = torch.is_tensor def as_tensor(value, dtype=None): if isinstance(value, list) and isinstance(value[0], np.ndarray): return torch.tensor(np.array(value)) return torch.tensor(value) elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = is_jax_tensor else: def as_tensor(value, dtype=None): if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)): value_lens = [len(val) for val in value] if len(set(value_lens)) > 1 and dtype is None: # we have a ragged list so handle explicitly value = as_tensor([np.asarray(val) for val in value], dtype=object) return np.asarray(value, dtype=dtype) is_tensor = is_numpy_array # Do the tensor conversion in batch for key, value in self.items(): try: if prepend_batch_axis: value = [value] if not is_tensor(value): tensor = as_tensor(value) # Removing this for now in favor of controlling the shape with `prepend_batch_axis` # # at-least2d # if tensor.ndim > 2: # tensor = tensor.squeeze(0) # elif tensor.ndim < 2: # tensor = tensor[None, :] self[key] = tensor except Exception as e: if key == "overflowing_tokens": raise ValueError( "Unable to create tensor returning overflowing tokens of different lengths. " "Please see if a fast version of this tokenizer is available to have this feature available." ) from e raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding with" " 'padding=True' 'truncation=True' to have batched tensors with the same length. Perhaps your" f" features (`{key}` in this case) have excessive nesting (inputs type `list` where type `int` is" " expected)." ) from e return self def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding": """ Send all values to device by calling `v.to(device)` (PyTorch only). Args: device (`str` or `torch.device`): The device to put the tensors on. Returns: [`BatchEncoding`]: The same instance after modification. """ requires_backends(self, ["torch"]) # This check catches things like APEX blindly calling "to" on all inputs to a module # Otherwise it passes the casts down and casts the LongTensor containing the token idxs # into a HalfTensor if isinstance(device, str) or is_torch_device(device) or isinstance(device, int): self.data = {k: v.to(device=device) for k, v in self.data.items()} else: logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.") return self class SpecialTokensMixin: """ A mixin derived by [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] to handle specific behaviors related to special tokens. In particular, this class hold the attributes which can be used to directly access these special tokens in a model-independent manner and allow to set and update the special tokens. Args: bos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the beginning of a sentence. eos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the end of a sentence. unk_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing an out-of-vocabulary token. sep_token (`str` or `tokenizers.AddedToken`, *optional*): A special token separating two different sentences in the same input (used by BERT for instance). pad_token (`str` or `tokenizers.AddedToken`, *optional*): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. cls_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the class of the input (used by BERT for instance). mask_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be skipped when decoding if `skip_special_tokens` is set to `True`. """ SPECIAL_TOKENS_ATTRIBUTES = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", "additional_special_tokens", ] def __init__(self, verbose=False, **kwargs): self._bos_token = None self._eos_token = None self._unk_token = None self._sep_token = None self._pad_token = None self._cls_token = None self._mask_token = None self._pad_token_type_id = 0 self._additional_special_tokens = [] self.verbose = verbose # We directly set the hidden value to allow initialization with special tokens # which are not yet in the vocabulary. Necessary for serialization/de-serialization # TODO clean this up at some point (probably by switching to fast tokenizers) for key, value in kwargs.items(): if value is None: continue if key in self.SPECIAL_TOKENS_ATTRIBUTES: if key == "additional_special_tokens": assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple" assert all( isinstance(t, (str, AddedToken)) for t in value ), "One of the tokens is not a string or an AddedToken" setattr(self, key, value) elif isinstance(value, (str, AddedToken)): setattr(self, key, value) else: raise TypeError(f"Special token {key} has to be either str or AddedToken but got: {type(value)}") def sanitize_special_tokens(self) -> int: """ The `sanitize_special_tokens` is now deprecated kept for backward compatibility and will be removed in transformers v5. """ logger.warning_once("The `sanitize_special_tokens` will be removed in transformers v5.") return self.add_tokens(self.all_special_tokens_extended, special_tokens=True) def add_special_tokens( self, special_tokens_dict: Dict[str, Union[str, AddedToken]], replace_additional_special_tokens=True ) -> int: """ Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary). When adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer. In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method. Using `add_special_tokens` will ensure your special tokens can be used in several ways: - Special tokens can be skipped when decoding using `skip_special_tokens = True`. - Special tokens are carefully handled by the tokenizer (they are never split), similar to `AddedTokens`. - You can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts. When possible, special tokens are already registered for provided pretrained models (for instance [`BertTokenizer`] `cls_token` is already registered to be :obj*'[CLS]'* and XLM's one is also registered to be `'</s>'`). Args: special_tokens_dict (dictionary *str* to *str* or `tokenizers.AddedToken`): Keys should be in the list of predefined special attributes: [`bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`]. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the `unk_token` to them). replace_additional_special_tokens (`bool`, *optional*,, defaults to `True`): If `True`, the existing list of additional special tokens will be replaced by the list provided in `special_tokens_dict`. Otherwise, `self._additional_special_tokens` is just extended. In the former case, the tokens will NOT be removed from the tokenizer's full vocabulary - they are only being flagged as non-special tokens. Remember, this only affects which tokens are skipped during decoding, not the `added_tokens_encoder` and `added_tokens_decoder`. This means that the previous `additional_special_tokens` are still added tokens, and will not be split by the model. Returns: `int`: Number of tokens added to the vocabulary. Examples: ```python # Let's see how to add a new classification token to GPT-2 tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2Model.from_pretrained("gpt2") special_tokens_dict = {"cls_token": "<CLS>"} num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print("We have added", num_added_toks, "tokens") # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) assert tokenizer.cls_token == "<CLS>" ```""" if not special_tokens_dict: return 0 added_tokens = [] for key, value in special_tokens_dict.items(): assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token" if self.verbose: logger.info(f"Assigning {value} to the {key} key of the tokenizer") if key == "additional_special_tokens": assert isinstance(value, (list, tuple)) and all( isinstance(t, (str, AddedToken)) for t in value ), f"Tokens {value} for key {key} should all be str or AddedToken instances" to_add = [] for token in value: if isinstance(token, str): # for legacy purpose we default to stripping. `test_add_tokens_tokenizer` depends on this token = AddedToken(token, rstrip=False, lstrip=False, normalized=False, special=True) if not replace_additional_special_tokens and str(token) in self.additional_special_tokens: continue to_add.append(token) if replace_additional_special_tokens and len(to_add) > 0: setattr(self, key, list(to_add)) else: self._additional_special_tokens.extend(to_add) added_tokens += to_add else: if not isinstance(value, (str, AddedToken)): raise ValueError(f"Token {value} for key {key} should be a str or an AddedToken instance") if isinstance(value, (str)): # for legacy purpose we default to stripping. `False` depends on this value = AddedToken(value, rstrip=False, lstrip=False, normalized=False, special=True) if isinstance(value, AddedToken): setattr(self, key, value) if value not in added_tokens: added_tokens.append(value) # if we are adding tokens that were not part of the vocab, we ought to add them added_tokens = self.add_tokens(added_tokens, special_tokens=True) return added_tokens def add_tokens( self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False ) -> int: """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary and and will be isolated before the tokenization algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore not treated in the same way. Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix of the model so that its embedding matrix matches the tokenizer. In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method. Args: new_tokens (`str`, `tokenizers.AddedToken` or a list of *str* or `tokenizers.AddedToken`): Tokens are only added if they are not already in the vocabulary. `tokenizers.AddedToken` wraps a string token to let you personalize its behavior: whether this token should only match against a single word, whether this token should strip all potential whitespaces on the left side, whether this token should strip all potential whitespaces on the right side, etc. special_tokens (`bool`, *optional*, defaults to `False`): Can be used to specify if the token is a special token. This mostly change the normalization behavior (special tokens like CLS or [MASK] are usually not lower-cased for instance). See details for `tokenizers.AddedToken` in HuggingFace tokenizers library. Returns: `int`: Number of tokens added to the vocabulary. Examples: ```python # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") model = BertModel.from_pretrained("bert-base-uncased") num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) print("We have added", num_added_toks, "tokens") # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) ```""" if not new_tokens: return 0 if not isinstance(new_tokens, (list, tuple)): new_tokens = [new_tokens] return self._add_tokens(new_tokens, special_tokens=special_tokens) def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: raise NotImplementedError @property def bos_token(self) -> str: """ `str`: Beginning of sentence token. Log an error if used while not having been set. """ if self._bos_token is None: if self.verbose: logger.error("Using bos_token, but it is not set yet.") return None return str(self._bos_token) @property def eos_token(self) -> str: """ `str`: End of sentence token. Log an error if used while not having been set. """ if self._eos_token is None: if self.verbose: logger.error("Using eos_token, but it is not set yet.") return None return str(self._eos_token) @property def unk_token(self) -> str: """ `str`: Unknown token. Log an error if used while not having been set. """ if self._unk_token is None: if self.verbose: logger.error("Using unk_token, but it is not set yet.") return None return str(self._unk_token) @property def sep_token(self) -> str: """ `str`: Separation token, to separate context and query in an input sequence. Log an error if used while not having been set. """ if self._sep_token is None: if self.verbose: logger.error("Using sep_token, but it is not set yet.") return None return str(self._sep_token) @property def pad_token(self) -> str: """ `str`: Padding token. Log an error if used while not having been set. """ if self._pad_token is None: if self.verbose: logger.error("Using pad_token, but it is not set yet.") return None return str(self._pad_token) @property def cls_token(self) -> str: """ `str`: Classification token, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ if self._cls_token is None: if self.verbose: logger.error("Using cls_token, but it is not set yet.") return None return str(self._cls_token) @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @property def additional_special_tokens(self) -> List[str]: """ `List[str]`: All the additional special tokens you may want to use. Log an error if used while not having been set. """ if self._additional_special_tokens is None: if self.verbose: logger.error("Using additional_special_tokens, but it is not set yet.") return None return [str(tok) for tok in self._additional_special_tokens] @bos_token.setter def bos_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the BOS token") self._bos_token = value @eos_token.setter def eos_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the EOS token") self._eos_token = value @unk_token.setter def unk_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the UNK token") self._unk_token = value @sep_token.setter def sep_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the SEP token") self._sep_token = value @pad_token.setter def pad_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the PAD token") self._pad_token = value @cls_token.setter def cls_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the CLS token") self._cls_token = value @mask_token.setter def mask_token(self, value): if not isinstance(value, (str, AddedToken)) and value is not None: raise ValueError("Cannot set a non-string value as the MASK token") self._mask_token = value @additional_special_tokens.setter def additional_special_tokens(self, value): self._additional_special_tokens = value if value is not None else None @property def bos_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the beginning of sentence token in the vocabulary. Returns `None` if the token has not been set. """ if self._bos_token is None: return None return self.convert_tokens_to_ids(self.bos_token) @property def eos_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been set. """ if self._eos_token is None: return None return self.convert_tokens_to_ids(self.eos_token) @property def unk_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the unknown token in the vocabulary. Returns `None` if the token has not been set. """ if self._unk_token is None: return None return self.convert_tokens_to_ids(self.unk_token) @property def sep_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the separation token in the vocabulary, to separate context and query in an input sequence. Returns `None` if the token has not been set. """ if self._sep_token is None: return None return self.convert_tokens_to_ids(self.sep_token) @property def pad_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the padding token in the vocabulary. Returns `None` if the token has not been set. """ if self._pad_token is None: return None return self.convert_tokens_to_ids(self.pad_token) @property def pad_token_type_id(self) -> int: """ `int`: Id of the padding token type in the vocabulary. """ return self._pad_token_type_id @property def cls_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the classification token in the vocabulary, to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Returns `None` if the token has not been set. """ if self._cls_token is None: return None return self.convert_tokens_to_ids(self.cls_token) @property def mask_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the mask token in the vocabulary, used when training a model with masked-language modeling. Returns `None` if the token has not been set. """ if self._mask_token is None: return None return self.convert_tokens_to_ids(self.mask_token) @property def additional_special_tokens_ids(self) -> List[int]: """ `List[int]`: Ids of all the additional special tokens in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.additional_special_tokens) @bos_token_id.setter def bos_token_id(self, value): self._bos_token = self.convert_ids_to_tokens(value) if value is not None else None @eos_token_id.setter def eos_token_id(self, value): self._eos_token = self.convert_ids_to_tokens(value) if value is not None else None @unk_token_id.setter def unk_token_id(self, value): self._unk_token = self.convert_ids_to_tokens(value) if value is not None else None @sep_token_id.setter def sep_token_id(self, value): self._sep_token = self.convert_ids_to_tokens(value) if value is not None else None @pad_token_id.setter def pad_token_id(self, value): self._pad_token = self.convert_ids_to_tokens(value) if value is not None else None @cls_token_id.setter def cls_token_id(self, value): self._cls_token = self.convert_ids_to_tokens(value) if value is not None else None @mask_token_id.setter def mask_token_id(self, value): self._mask_token = self.convert_ids_to_tokens(value) if value is not None else None @additional_special_tokens_ids.setter def additional_special_tokens_ids(self, values): self._additional_special_tokens = [self.convert_ids_to_tokens(value) for value in values] @property def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]: """ `Dict[str, Union[str, List[str]]]`: A dictionary mapping special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.). Convert potential tokens of `tokenizers.AddedToken` type to string. """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, attr) if attr_value: set_attr[attr] = attr_value return set_attr @property def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]: """ `Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`: A dictionary mapping special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.). Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized. """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, "_" + attr) if attr_value: set_attr[attr] = attr_value return set_attr @property def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]: """ `List[Union[str, tokenizers.AddedToken]]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.), the order has nothing to do with the index of each tokens. If you want to know the correct indices, check `self.added_tokens_encoder`. We can't create an order anymore as the keys are `AddedTokens` and not `Strings`. Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how special tokens are tokenized. """ all_tokens = [] seen = set() for value in self.special_tokens_map_extended.values(): if isinstance(value, (list, tuple)): tokens_to_add = [token for token in value if str(token) not in seen] else: tokens_to_add = [value] if str(value) not in seen else [] seen.update(map(str, tokens_to_add)) all_tokens.extend(tokens_to_add) return all_tokens @property def all_special_tokens(self) -> List[str]: """ `List[str]`: A list of the unique special tokens (`'<unk>'`, `'<cls>'`, ..., etc.). Convert tokens of `tokenizers.AddedToken` type to string. """ all_toks = [str(s) for s in self.all_special_tokens_extended] return all_toks @property def all_special_ids(self) -> List[int]: """ `List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes. """ all_toks = self.all_special_tokens all_ids = self.convert_tokens_to_ids(all_toks) return all_ids ENCODE_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to add special tokens when encoding the sequences. This will use the underlying `PretrainedTokenizerBase.build_inputs_with_special_tokens` function, which defines which tokens are automatically added to the input ids. This is usefull if you want to add `bos` or `eos` tokens automatically. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`) """ INIT_TOKENIZER_DOCSTRING = r""" Class attributes (overridden by derived classes) - **vocab_files_names** (`Dict[str, str]`) -- A dictionary with, as keys, the `__init__` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string). - **pretrained_vocab_files_map** (`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the high-level keys being the `__init__` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` of the pretrained models with, as associated values, the `url` to the associated pretrained vocabulary file. - **max_model_input_sizes** (`Dict[str, Optional[int]]`) -- A dictionary with, as keys, the `short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or `None` if the model has no maximum input size. - **pretrained_init_configuration** (`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the `short-cut-names` of the pretrained models, and as associated values, a dictionary of specific arguments to pass to the `__init__` method of the tokenizer class for this pretrained model when loading the tokenizer with the [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`] method. - **model_input_names** (`List[str]`) -- A list of inputs expected in the forward pass of the model. - **padding_side** (`str`) -- The default value for the side on which the model should have padding applied. Should be `'right'` or `'left'`. - **truncation_side** (`str`) -- The default value for the side on which the model should have truncation applied. Should be `'right'` or `'left'`. Args: model_max_length (`int`, *optional*): The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is loaded with [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], this will be set to the value stored for the associated model in `max_model_input_sizes` (see above). If no value is provided, will default to VERY_LARGE_INTEGER (`int(1e30)`). padding_side (`str`, *optional*): The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. truncation_side (`str`, *optional*): The side on which the model should have truncation applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. chat_template (`str`, *optional*): A Jinja template string that will be used to format lists of chat messages. See https://huggingface.co/docs/transformers/chat_templating for a full description. model_input_names (`List[string]`, *optional*): The list of inputs accepted by the forward pass of the model (like `"token_type_ids"` or `"attention_mask"`). Default value is picked from the class attribute of the same name. bos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the beginning of a sentence. Will be associated to `self.bos_token` and `self.bos_token_id`. eos_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the end of a sentence. Will be associated to `self.eos_token` and `self.eos_token_id`. unk_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing an out-of-vocabulary token. Will be associated to `self.unk_token` and `self.unk_token_id`. sep_token (`str` or `tokenizers.AddedToken`, *optional*): A special token separating two different sentences in the same input (used by BERT for instance). Will be associated to `self.sep_token` and `self.sep_token_id`. pad_token (`str` or `tokenizers.AddedToken`, *optional*): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. Will be associated to `self.pad_token` and `self.pad_token_id`. cls_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing the class of the input (used by BERT for instance). Will be associated to `self.cls_token` and `self.cls_token_id`. mask_token (`str` or `tokenizers.AddedToken`, *optional*): A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). Will be associated to `self.mask_token` and `self.mask_token_id`. additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional special tokens. Add them here to ensure they are skipped when decoding with `skip_special_tokens` is set to True. If they are not part of the vocabulary, they will be added at the end of the vocabulary. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not the model should cleanup the spaces that were added when splitting the input text during the tokenization process. split_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the special tokens should be split during the tokenization process. The default behavior is to not split special tokens. This means that if `<s>` is the `bos_token`, then `tokenizer.tokenize("<s>") = ['<s>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<s>")` will be give `['<', 's', '>']`. This argument is only supported for `slow` tokenizers for the moment. """ @add_end_docstrings(INIT_TOKENIZER_DOCSTRING) class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin): """ Base class for [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`]. Handles shared (mostly boiler plate) methods for those two classes. """ vocab_files_names: Dict[str, str] = {} pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {} pretrained_init_configuration: Dict[str, Dict[str, Any]] = {} max_model_input_sizes: Dict[str, Optional[int]] = {} _auto_class: Optional[str] = None # first name has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"] padding_side: str = "right" truncation_side: str = "right" slow_tokenizer_class = None def __init__(self, **kwargs): # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) self.init_inputs = () self.init_kwargs = copy.deepcopy(kwargs) self.name_or_path = kwargs.pop("name_or_path", "") self._processor_class = kwargs.pop("processor_class", None) # For backward compatibility we fallback to set model_max_length from max_len if provided model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None)) self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER # Padding and truncation side are right by default and overridden in subclasses. If specified in the kwargs, it # is changed. self.padding_side = kwargs.pop("padding_side", self.padding_side) if self.padding_side not in ["right", "left"]: raise ValueError( f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}" ) self.truncation_side = kwargs.pop("truncation_side", self.truncation_side) if self.truncation_side not in ["right", "left"]: raise ValueError( f"Padding side should be selected between 'right' and 'left', current value: {self.truncation_side}" ) self.model_input_names = kwargs.pop("model_input_names", self.model_input_names) # By default, cleaning tokenization spaces for both fast and slow tokenizers self.clean_up_tokenization_spaces = kwargs.pop("clean_up_tokenization_spaces", True) # By default, do not split special tokens for both fast and slow tokenizers self.split_special_tokens = kwargs.pop("split_special_tokens", False) self.deprecation_warnings = {} # Use to store when we have already noticed a deprecation warning (avoid overlogging). self._in_target_context_manager = False # Stores a Jinja template that formats chat histories into tokenizable strings self.chat_template = kwargs.pop("chat_template", None) super().__init__(**kwargs) @property def max_len_single_sentence(self) -> int: """ `int`: The maximum length of a sentence that can be fed to the model. """ return self.model_max_length - self.num_special_tokens_to_add(pair=False) @property def max_len_sentences_pair(self) -> int: """ `int`: The maximum combined length of a pair of sentences that can be fed to the model. """ return self.model_max_length - self.num_special_tokens_to_add(pair=True) @max_len_single_sentence.setter def max_len_single_sentence(self, value) -> int: # For backward compatibility, allow to try to setup 'max_len_single_sentence'. if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose: if not self.deprecation_warnings.get("max_len_single_sentence", False): logger.warning( "Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up." ) self.deprecation_warnings["max_len_single_sentence"] = True else: raise ValueError( "Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up." ) @max_len_sentences_pair.setter def max_len_sentences_pair(self, value) -> int: # For backward compatibility, allow to try to setup 'max_len_sentences_pair'. if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose: if not self.deprecation_warnings.get("max_len_sentences_pair", False): logger.warning( "Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up." ) self.deprecation_warnings["max_len_sentences_pair"] = True else: raise ValueError("Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up.") def _set_processor_class(self, processor_class: str): """Sets processor class as an attribute.""" self._processor_class = processor_class @property def added_tokens_decoder(self) -> Dict[int, AddedToken]: raise NotImplementedError() def __repr__(self) -> str: added_tokens_decoder_rep = "\n\t".join([f"{k}: {v.__repr__()}," for k, v in self.added_tokens_decoder.items()]) return ( f"{self.__class__.__name__}(name_or_path='{self.name_or_path}'," f" vocab_size={self.vocab_size}, model_max_length={self.model_max_length}, is_fast={self.is_fast}," f" padding_side='{self.padding_side}', truncation_side='{self.truncation_side}'," f" special_tokens={self.special_tokens_map}, clean_up_tokenization_spaces={self.clean_up_tokenization_spaces}), " " added_tokens_decoder={\n\t" + added_tokens_decoder_rep + "\n}" ) def __len__(self) -> int: raise NotImplementedError() def get_vocab(self) -> Dict[str, int]: """ Returns the vocabulary as a dictionary of token to index. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. Returns: `Dict[str, int]`: The vocabulary. """ raise NotImplementedError() def apply_chat_template( self, conversation: Union[List[Dict[str, str]], "Conversation"], chat_template: Optional[str] = None, add_generation_prompt: bool = False, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **tokenizer_kwargs, ) -> Union[str, List[int]]: """ Converts a Conversation object or a list of dictionaries with `"role"` and `"content"` keys to a list of token ids. This method is intended for use with chat models, and will read the tokenizer's chat_template attribute to determine the format and control tokens to use when converting. When chat_template is None, it will fall back to the default_chat_template specified at the class level. Args: conversation (Union[List[Dict[str, str]], "Conversation"]): A Conversation object or list of dicts with "role" and "content" keys, representing the chat history so far. chat_template (str, *optional*): A Jinja template to use for this conversion. If this is not passed, the model's default chat template will be used instead. add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate the start of an assistant message. This is useful when you want to generate a response from the model. Note that this argument will be passed to the chat template, and so it must be supported in the template for this argument to have any effect. tokenize (`bool`, defaults to `True`): Whether to tokenize the output. If `False`, the output will be a string. padding (`bool`, defaults to `False`): Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`. truncation (`bool`, defaults to `False`): Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`. max_length (`int`, *optional*): Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If not specified, the tokenizer's `max_length` attribute will be used as a default. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable values are: - `'tf'`: Return TensorFlow `tf.Tensor` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. **tokenizer_kwargs: Additional kwargs to pass to the tokenizer. Returns: `List[int]`: A list of token ids representing the tokenized chat so far, including control tokens. This output is ready to pass to the model, either directly or via methods like `generate()`. """ if hasattr(conversation, "messages"): # Indicates it's a Conversation object conversation = conversation.messages # priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template` if chat_template is None: if self.chat_template is not None: chat_template = self.chat_template else: chat_template = self.default_chat_template # Compilation function uses a cache to avoid recompiling the same template compiled_template = self._compile_jinja_template(chat_template) rendered = compiled_template.render( messages=conversation, add_generation_prompt=add_generation_prompt, **self.special_tokens_map ) if padding is True: padding = "max_length" # There's only one sequence here, so "longest" makes no sense if tokenize: return self.encode( rendered, add_special_tokens=False, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **tokenizer_kwargs, ) else: return rendered @lru_cache def _compile_jinja_template(self, chat_template): try: import jinja2 from jinja2.exceptions import TemplateError from jinja2.sandbox import ImmutableSandboxedEnvironment except ImportError: raise ImportError("apply_chat_template requires jinja2 to be installed.") if version.parse(jinja2.__version__) <= version.parse("3.0.0"): raise ImportError( "apply_chat_template requires jinja2>=3.0.0 to be installed. Your version is " f"{jinja2.__version__}." ) def raise_exception(message): raise TemplateError(message) jinja_env = ImmutableSandboxedEnvironment(trim_blocks=True, lstrip_blocks=True) jinja_env.globals["raise_exception"] = raise_exception return jinja_env.from_string(chat_template) @property def default_chat_template(self): """ This template formats inputs in the standard ChatML format. See https://github.com/openai/openai-python/blob/main/chatml.md """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using a default chat template " "that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) return ( "{% for message in messages %}" "{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}" "{% endfor %}" "{% if add_generation_prompt %}" "{{ '<|im_start|>assistant\n' }}" "{% endif %}" ) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ): r""" Instantiate a [`~tokenization_utils_base.PreTrainedTokenizerBase`] (or a derived class) from a predefined tokenizer. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`] method, e.g., `./my_model_directory/`. - (**Deprecated**, not applicable to all derived classes) A path or url to a single saved vocabulary file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g., `./my_model_directory/vocab.txt`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the vocabulary files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). local_files_only (`bool`, *optional*, defaults to `False`): Whether or not to only rely on local files and not to attempt to download any files. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. subfolder (`str`, *optional*): In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. inputs (additional positional arguments, *optional*): Will be passed along to the Tokenizer `__init__` method. kwargs (additional keyword arguments, *optional*): Will be passed to the Tokenizer `__init__` method. Can be used to set special tokens like `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`. See parameters in the `__init__` for more details. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python # We can't instantiate directly the base class *PreTrainedTokenizerBase* so let's show our examples on a derived class: BertTokenizer # Download vocabulary from huggingface.co and cache. tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # Download vocabulary from huggingface.co (user-uploaded) and cache. tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased") # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) tokenizer = BertTokenizer.from_pretrained("./test/saved_model/") # If the tokenizer uses a single vocabulary file, you can point directly to this file tokenizer = BertTokenizer.from_pretrained("./test/saved_model/my_vocab.txt") # You can link tokens to special vocabulary when instantiating tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", unk_token="<unk>") # You should be sure '<unk>' is in the vocabulary when doing that. # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead) assert tokenizer.unk_token == "<unk>" ```""" resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) use_auth_token = kwargs.pop("use_auth_token", None) subfolder = kwargs.pop("subfolder", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) commit_hash = kwargs.pop("_commit_hash", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token user_agent = {"file_type": "tokenizer", "from_auto_class": from_auto_class, "is_fast": "Fast" in cls.__name__} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) vocab_files = {} init_configuration = {} is_local = os.path.isdir(pretrained_model_name_or_path) single_file_id = None if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): if len(cls.vocab_files_names) > 1: raise ValueError( f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is not " "supported for this tokenizer. Use a model identifier or the path to a directory instead." ) warnings.warn( f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is deprecated and " "won't be possible anymore in v5. Use a model identifier or the path to a directory instead.", FutureWarning, ) file_id = list(cls.vocab_files_names.keys())[0] vocab_files[file_id] = pretrained_model_name_or_path single_file_id = file_id else: # At this point pretrained_model_name_or_path is either a directory or a model identifier name additional_files_names = { "added_tokens_file": ADDED_TOKENS_FILE, # kept only for legacy "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE, # kept only for legacy "tokenizer_config_file": TOKENIZER_CONFIG_FILE, # tokenizer_file used to initialize a slow from a fast. Properly copy the `addedTokens` instead of adding in random orders "tokenizer_file": FULL_TOKENIZER_FILE, } vocab_files = {**cls.vocab_files_names, **additional_files_names} if "tokenizer_file" in vocab_files: # Try to get the tokenizer config to see if there are versioned tokenizer files. fast_tokenizer_file = FULL_TOKENIZER_FILE resolved_config_file = cached_file( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, user_agent=user_agent, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) commit_hash = extract_commit_hash(resolved_config_file, commit_hash) if resolved_config_file is not None: with open(resolved_config_file, encoding="utf-8") as reader: tokenizer_config = json.load(reader) if "fast_tokenizer_files" in tokenizer_config: fast_tokenizer_file = get_fast_tokenizer_file(tokenizer_config["fast_tokenizer_files"]) vocab_files["tokenizer_file"] = fast_tokenizer_file # Get files from url, cache, or disk depending on the case resolved_vocab_files = {} unresolved_files = [] for file_id, file_path in vocab_files.items(): if file_path is None: resolved_vocab_files[file_id] = None elif single_file_id == file_id: if os.path.isfile(file_path): resolved_vocab_files[file_id] = file_path elif is_remote_url(file_path): resolved_vocab_files[file_id] = download_url(file_path, proxies=proxies) else: resolved_vocab_files[file_id] = cached_file( pretrained_model_name_or_path, file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) commit_hash = extract_commit_hash(resolved_vocab_files[file_id], commit_hash) if len(unresolved_files) > 0: logger.info( f"Can't load following files from cache: {unresolved_files} and cannot check if these " "files are necessary for the tokenizer to operate." ) if all(full_file_name is None for full_file_name in resolved_vocab_files.values()): raise EnvironmentError( f"Can't load tokenizer for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing all relevant files for a {cls.__name__} tokenizer." ) for file_id, file_path in vocab_files.items(): if file_id not in resolved_vocab_files: continue if is_local: logger.info(f"loading file {file_path}") else: logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}") return cls._from_pretrained( resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=commit_hash, _is_local=is_local, **kwargs, ) @classmethod def _from_pretrained( cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=None, cache_dir=None, local_files_only=False, _commit_hash=None, _is_local=False, **kwargs, ): # We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json # file or if `from_slow` is set to True. from_slow = kwargs.get("from_slow", False) has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None: slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained( copy.deepcopy(resolved_vocab_files), pretrained_model_name_or_path, copy.deepcopy(init_configuration), *init_inputs, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=_commit_hash, **(copy.deepcopy(kwargs)), ) else: slow_tokenizer = None # Prepare tokenizer initialization kwargs # Did we saved some inputs and kwargs to reload ? tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: init_kwargs = json.load(tokenizer_config_handle) # First attempt. We get tokenizer_class from tokenizer_config to check mismatch between tokenizers. config_tokenizer_class = init_kwargs.get("tokenizer_class") init_kwargs.pop("tokenizer_class", None) if not has_tokenizer_file: init_kwargs.pop("tokenizer_file", None) saved_init_inputs = init_kwargs.pop("init_inputs", ()) if not init_inputs: init_inputs = saved_init_inputs else: config_tokenizer_class = None init_kwargs = init_configuration if "auto_map" in init_kwargs and not _is_local: # For backward compatibility with odl format. if isinstance(init_kwargs["auto_map"], (tuple, list)): init_kwargs["auto_map"] = {"AutoTokenizer": init_kwargs["auto_map"]} init_kwargs["auto_map"] = add_model_info_to_auto_map( init_kwargs["auto_map"], pretrained_model_name_or_path ) if config_tokenizer_class is None: from .models.auto.configuration_auto import AutoConfig # tests_ignore # Second attempt. If we have not yet found tokenizer_class, let's try to use the config. try: config = AutoConfig.from_pretrained( pretrained_model_name_or_path, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=_commit_hash, ) config_tokenizer_class = config.tokenizer_class except (OSError, ValueError, KeyError): # skip if an error occurred. config = None if config_tokenizer_class is None: # Third attempt. If we have not yet found the original type of the tokenizer, # we are loading we see if we can infer it from the type of the configuration file from .models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES # tests_ignore if hasattr(config, "model_type"): model_type = config.model_type else: # Fallback: use pattern matching on the string. model_type = None for pattern in TOKENIZER_MAPPING_NAMES.keys(): if pattern in str(pretrained_model_name_or_path): model_type = pattern break if model_type is not None: config_tokenizer_class, config_tokenizer_class_fast = TOKENIZER_MAPPING_NAMES.get( model_type, (None, None) ) if config_tokenizer_class is None: config_tokenizer_class = config_tokenizer_class_fast if config_tokenizer_class is not None: if cls.__name__.replace("Fast", "") != config_tokenizer_class.replace("Fast", ""): logger.warning( "The tokenizer class you load from this checkpoint is not the same type as the class this" " function is called from. It may result in unexpected tokenization. \nThe tokenizer class you" f" load from this checkpoint is '{config_tokenizer_class}'. \nThe class this function is called" f" from is '{cls.__name__}'." ) # Update with newly provided kwargs init_kwargs.update(kwargs) # Set max length if needed if pretrained_model_name_or_path in cls.max_model_input_sizes: # if we're using a pretrained model, ensure the tokenizer # wont index sequences longer than the number of positional embeddings model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path] if model_max_length is not None and isinstance(model_max_length, (int, float)): model_max_length = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length) # TODO(PVP) - uncomment following line in Transformers v5 # init_kwargs["model_max_length"] = model_max_length # TODO(PVP) - remove in Transformers v5 # --- init_kwargs["model_max_length"] = cls._eventually_correct_t5_max_length( pretrained_model_name_or_path, model_max_length, init_kwargs.get("model_max_length") ) # --- # Merge resolved_vocab_files arguments in init_kwargs. added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None) special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None) for args_name, file_path in resolved_vocab_files.items(): if args_name not in init_kwargs: init_kwargs[args_name] = file_path tokenizer_file = resolved_vocab_files.pop("tokenizer_file", None) if slow_tokenizer is not None: init_kwargs["__slow_tokenizer"] = slow_tokenizer init_kwargs["name_or_path"] = pretrained_model_name_or_path #### Handle tokenizer serialization of added and special tokens added_tokens_decoder: Dict[int, AddedToken] = {} added_tokens_map: Dict[str, AddedToken] = {} # if we have info on the slow added tokens if "added_tokens_decoder" in init_kwargs: for idx, token in init_kwargs["added_tokens_decoder"].items(): if isinstance(token, dict): token = AddedToken(**token) if isinstance(token, AddedToken): added_tokens_decoder[int(idx)] = token added_tokens_map[str(token)] = token else: raise ValueError( f"Found a {token.__class__} in the saved `added_tokens_decoder`, should be a dictionary or an AddedToken instance" ) else: # begin legacy: read the added_tokens_file and update kwargs with special_tokens_map if modified if special_tokens_map_file is not None: with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle: special_tokens_map = json.load(special_tokens_map_handle) for key, value in special_tokens_map.items(): if key in kwargs and kwargs[key]: # This value has already been redefined by the kwargs # We keep this new value and ignore the one stored in the special_tokens_map_file continue if isinstance(value, dict): value = AddedToken(**value, special=True) elif key == "additional_special_tokens" and isinstance(value, list): additional_special_tokens = init_kwargs.pop("additional_special_tokens", []) or [] for token in value: token = AddedToken(**token, special=True) if isinstance(token, dict) else token if token not in additional_special_tokens: additional_special_tokens.append(token) value = additional_special_tokens init_kwargs[key] = value # slow -> slow|fast, legacy: convert the `"added_tokens.json"` file to `added_tokens_decoder`. # this is for legacy purpose. We don't add the tokens after init for efficiency. if added_tokens_file is not None: special_tokens = [] for key in cls.SPECIAL_TOKENS_ATTRIBUTES & init_kwargs.keys(): if init_kwargs[key] is not None: if key == "additional_special_tokens": special_tokens += [str(token) for token in init_kwargs[key]] else: special_tokens.append(str(init_kwargs[key])) with open(added_tokens_file, encoding="utf-8") as added_tokens_handle: added_tok_encoder = json.load(added_tokens_handle) for str_token, index in added_tok_encoder.items(): # if index not in added_tokens_decoder and str_token not in added_tokens_map: special = str_token in special_tokens added_tokens_decoder[index] = AddedToken( str_token, rstrip=False, lstrip=False, normalized=not special, special=special ) added_tokens_map[str(token)] = added_tokens_decoder[index] # allows converting a fast -> slow: add the `tokenizer.json`'s `"added_tokens"` to the slow tokenizer # if `tokenizer_config.json` is `None` if tokenizer_file is not None: # This is for slow so can be done before with open(tokenizer_file, encoding="utf-8") as tokenizer_file_handle: tokenizer_file_handle = json.load(tokenizer_file_handle) added_tokens = tokenizer_file_handle.pop("added_tokens") for serialized_tokens in added_tokens: idx = serialized_tokens.pop("id") added_tokens_decoder[idx] = AddedToken(**serialized_tokens) added_tokens_map[str(added_tokens_decoder[idx])] = added_tokens_decoder[idx] # end legacy # Passing AddedTokens and not strings to the class to prevent it from casting the string to a different AddedToken # convert {'__type': 'AddedToken', 'content': '<ent>', 'lstrip': False, 'normalized': True, ...} to AddedTokens init_kwargs["added_tokens_decoder"] = added_tokens_decoder init_kwargs = cls.convert_added_tokens(init_kwargs, save=False) for key in cls.SPECIAL_TOKENS_ATTRIBUTES & init_kwargs.keys(): if added_tokens_map != {} and init_kwargs[key] is not None: if key != "additional_special_tokens": init_kwargs[key] = added_tokens_map.get(str(init_kwargs[key]), init_kwargs[key]) # Instantiate the tokenizer. try: tokenizer = cls(*init_inputs, **init_kwargs) except OSError: raise OSError( "Unable to load vocabulary from file. " "Please check that the provided vocabulary is accessible and not corrupted." ) if added_tokens_decoder != {} and max(list(added_tokens_decoder.keys())[-1], 0) > tokenizer.vocab_size: logger.warning_advice( "Special tokens have been added in the vocabulary, make sure the associated word embeddings are" " fine-tuned or trained." ) return tokenizer @staticmethod def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length): # This method should be deleted in Transformers v5 # Its only purpose is to potentially throw a warning # that incorrectly defined max lengths of T5's tokenizer are used # which we will correct in Transformers v5. return max_model_length @classmethod def convert_added_tokens(cls, obj: Union[AddedToken, Any], save=False, add_type_field=True): if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken": obj.pop("__type") return AddedToken(**obj) if isinstance(obj, AddedToken) and save: obj = obj.__getstate__() if add_type_field: obj["__type"] = "AddedToken" else: # Don't save "special" for previous tokenizers obj.pop("special") return obj elif isinstance(obj, (list, tuple)): return [cls.convert_added_tokens(o, save=save, add_type_field=add_type_field) for o in obj] elif isinstance(obj, dict): return {k: cls.convert_added_tokens(v, save=save, add_type_field=add_type_field) for k, v in obj.items()} return obj def save_pretrained( self, save_directory: Union[str, os.PathLike], legacy_format: Optional[bool] = None, filename_prefix: Optional[str] = None, push_to_hub: bool = False, **kwargs, ) -> Tuple[str]: """ Save the full tokenizer state. This method make sure the full tokenizer can then be re-loaded using the [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method.. Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for instance, modifying `tokenizer.do_lower_case` after creation). Args: save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved. legacy_format (`bool`, *optional*): Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate added_tokens files. If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with "slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be loaded in the corresponding "slow" tokenizer. If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value error is raised. filename_prefix (`str`, *optional*): A prefix to add to the names of the files saved by the tokenizer. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Returns: A tuple of `str`: The files saved. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) special_tokens_map_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE ) tokenizer_config_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE ) tokenizer_config = copy.deepcopy(self.init_kwargs) # Let's save the init kwargs target_keys = set(self.init_kwargs.keys()) # Let's save the special tokens map (only the strings) target_keys.update(["model_max_length", "clean_up_tokenization_spaces"]) for k in target_keys: if hasattr(self, k): tokenizer_config[k] = getattr(self, k) # Let's make sure we properly save the special tokens. tokenizer_config.update(self.special_tokens_map) if self.chat_template is not None: tokenizer_config["chat_template"] = self.chat_template if len(self.init_inputs) > 0: tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs) for file_id in self.vocab_files_names.keys(): tokenizer_config.pop(file_id, None) # no typefields, this way old fast and slow can load it tokenizer_config = self.convert_added_tokens(tokenizer_config, add_type_field=True, save=True) # Process added tokens seperatly: allows previous versions to ignore it! added_tokens = {} for key, value in self.added_tokens_decoder.items(): added_tokens[key] = value.__getstate__() tokenizer_config["added_tokens_decoder"] = added_tokens # Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained tokenizer_class = self.__class__.__name__ # Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast` if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast": tokenizer_class = tokenizer_class[:-4] tokenizer_config["tokenizer_class"] = tokenizer_class if getattr(self, "_auto_map", None) is not None: tokenizer_config["auto_map"] = self._auto_map if getattr(self, "_processor_class", None) is not None: tokenizer_config["processor_class"] = self._processor_class # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=tokenizer_config) # remove private information if "name_or_path" in tokenizer_config: tokenizer_config.pop("name_or_path") tokenizer_config.pop("special_tokens_map_file", None) tokenizer_config.pop("tokenizer_file", None) with open(tokenizer_config_file, "w", encoding="utf-8") as f: out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) logger.info(f"tokenizer config file saved in {tokenizer_config_file}") # Sanitize AddedTokens in special_tokens_map # kept for forward compatibility, will be removed in transoformers 5. Typefields are not saved for FC, special should not be save either write_dict = self.convert_added_tokens(self.special_tokens_map_extended, save=True, add_type_field=False) with open(special_tokens_map_file, "w", encoding="utf-8") as f: out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) logger.info(f"Special tokens file saved in {special_tokens_map_file}") file_names = (tokenizer_config_file, special_tokens_map_file) save_files = self._save_pretrained( save_directory=save_directory, file_names=file_names, legacy_format=legacy_format, filename_prefix=filename_prefix, ) if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) return save_files def _save_pretrained( self, save_directory: Union[str, os.PathLike], file_names: Tuple[str], legacy_format: Optional[bool] = None, filename_prefix: Optional[str] = None, ) -> Tuple[str]: """ Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens. Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`] """ if legacy_format is False: raise ValueError( "Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format." ) save_directory = str(save_directory) added_tokens_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE ) # the new get_added_vocab() also returns special tokens and tokens that have an index < vocab_size added_vocab = {tok: index for tok, index in self.added_tokens_encoder.items() if index >= self.vocab_size} if added_vocab: with open(added_tokens_file, "w", encoding="utf-8") as f: out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n" f.write(out_str) logger.info(f"added tokens file saved in {added_tokens_file}") vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix) return file_names + vocab_files + (added_tokens_file,) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save only the vocabulary of the tokenizer (vocabulary + added tokens). This method won't save the configuration and special token mappings of the tokenizer. Use [`~PreTrainedTokenizerFast._save_pretrained`] to save the whole state of the tokenizer. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ raise NotImplementedError def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: """ Converts a string into a sequence of tokens, replacing unknown tokens with the `unk_token`. Args: text (`str`): The sequence to be encoded. pair (`str`, *optional*): A second sequence to be encoded with the first. add_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to add the special tokens associated with the corresponding model. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific encode method. See details in [`~PreTrainedTokenizerBase.__call__`] Returns: `List[str]`: The list of tokens. """ raise NotImplementedError @add_end_docstrings( ENCODE_KWARGS_DOCSTRING, """ **kwargs: Passed along to the `.tokenize()` method. """, """ Returns: `List[int]`, `torch.Tensor`, `tf.Tensor` or `np.ndarray`: The tokenized ids of the text. """, ) def encode( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary. Same as doing `self.convert_tokens_to_ids(self.tokenize(text))`. Args: text (`str`, `List[str]` or `List[int]`): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). text_pair (`str`, `List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). """ encoded_inputs = self.encode_plus( text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] def num_special_tokens_to_add(self, pair: bool = False) -> int: raise NotImplementedError def _get_padding_truncation_strategies( self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs ): """ Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy and pad_to_max_length) and behaviors. """ old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate") old_pad_to_max_length = kwargs.pop("pad_to_max_length", False) # Backward compatibility for previous behavior, maybe we should deprecate it: # If you only set max_length, it activates truncation for max_length if max_length is not None and padding is False and truncation is None: if verbose: if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False): logger.warning( "Truncation was not explicitly activated but `max_length` is provided a specific value, please" " use `truncation=True` to explicitly truncate examples to max length. Defaulting to" " 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the" " tokenizer you can select this strategy more precisely by providing a specific strategy to" " `truncation`." ) self.deprecation_warnings["Truncation-not-explicitly-activated"] = True truncation = "longest_first" # Get padding strategy if padding is False and old_pad_to_max_length: if verbose: warnings.warn( "The `pad_to_max_length` argument is deprecated and will be removed in a future version, " "use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or " "use `padding='max_length'` to pad to a max length. In this case, you can give a specific " "length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the " "maximal input size of the model (e.g. 512 for Bert).", FutureWarning, ) if max_length is None: padding_strategy = PaddingStrategy.LONGEST else: padding_strategy = PaddingStrategy.MAX_LENGTH elif padding is not False: if padding is True: if verbose: if max_length is not None and ( truncation is None or truncation is False or truncation == "do_not_truncate" ): warnings.warn( "`max_length` is ignored when `padding`=`True` and there is no truncation strategy. " "To pad to max length, use `padding='max_length'`." ) if old_pad_to_max_length is not False: warnings.warn("Though `pad_to_max_length` = `True`, it is ignored because `padding`=`True`.") padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(padding, PaddingStrategy): padding_strategy = PaddingStrategy(padding) elif isinstance(padding, PaddingStrategy): padding_strategy = padding else: padding_strategy = PaddingStrategy.DO_NOT_PAD # Get truncation strategy if truncation is None and old_truncation_strategy != "do_not_truncate": if verbose: warnings.warn( "The `truncation_strategy` argument is deprecated and will be removed in a future version, use" " `truncation=True` to truncate examples to a max length. You can give a specific length with" " `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input" " size of the model (e.g. 512 for Bert). If you have pairs of inputs, you can give a specific" " truncation strategy selected among `truncation='only_first'` (will only truncate the first" " sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the" " pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence" " in the pairs).", FutureWarning, ) truncation_strategy = TruncationStrategy(old_truncation_strategy) elif truncation is not False and truncation is not None: if truncation is True: truncation_strategy = ( TruncationStrategy.LONGEST_FIRST ) # Default to truncate the longest sequences in pairs of inputs elif not isinstance(truncation, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation) elif isinstance(truncation, TruncationStrategy): truncation_strategy = truncation else: truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: if self.model_max_length > LARGE_INTEGER: if verbose: if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False): logger.warning( "Asking to pad to max_length but no maximum length is provided and the model has no" " predefined maximum length. Default to no padding." ) self.deprecation_warnings["Asking-to-pad-to-max_length"] = True padding_strategy = PaddingStrategy.DO_NOT_PAD else: max_length = self.model_max_length if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE: if self.model_max_length > LARGE_INTEGER: if verbose: if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False): logger.warning( "Asking to truncate to max_length but no maximum length is provided and the model has" " no predefined maximum length. Default to no truncation." ) self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE else: max_length = self.model_max_length # Test if we have a padding token if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.pad_token is None or self.pad_token_id < 0): raise ValueError( "Asking to pad but the tokenizer does not have a padding token. " "Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` " "or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`." ) # Check that we will truncate to a multiple of pad_to_multiple_of if both are provided if ( truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and padding_strategy != PaddingStrategy.DO_NOT_PAD and pad_to_multiple_of is not None and max_length is not None and (max_length % pad_to_multiple_of != 0) ): raise ValueError( "Truncation and padding are both activated but " f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})." ) return padding_strategy, truncation_strategy, max_length, kwargs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences. Args: text (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). """ # To avoid duplicating all_kwargs = { "add_special_tokens": add_special_tokens, "padding": padding, "truncation": truncation, "max_length": max_length, "stride": stride, "is_split_into_words": is_split_into_words, "pad_to_multiple_of": pad_to_multiple_of, "return_tensors": return_tensors, "return_token_type_ids": return_token_type_ids, "return_attention_mask": return_attention_mask, "return_overflowing_tokens": return_overflowing_tokens, "return_special_tokens_mask": return_special_tokens_mask, "return_offsets_mapping": return_offsets_mapping, "return_length": return_length, "verbose": verbose, } all_kwargs.update(kwargs) if text is None and text_target is None: raise ValueError("You need to specify either `text` or `text_target`.") if text is not None: # The context manager will send the inputs as normal texts and not text_target, but we shouldn't change the # input mode in this case. if not self._in_target_context_manager: self._switch_to_input_mode() encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) if text_target is not None: self._switch_to_target_mode() target_encodings = self._call_one(text=text_target, text_pair=text_pair_target, **all_kwargs) # Leave back tokenizer in input mode self._switch_to_input_mode() if text_target is None: return encodings elif text is None: return target_encodings else: encodings["labels"] = target_encodings["input_ids"] return encodings def _call_one( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if not _is_valid_text_input(text): raise ValueError( "text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None and not _is_valid_text_input(text_pair): raise ValueError( "text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) " "or `List[List[str]]` (batch of pretokenized examples)." ) if is_split_into_words: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) if is_batched: if isinstance(text_pair, str): raise TypeError( "when tokenizing batches of text, `text_pair` must be a list or tuple with the same length as" " `text`." ) if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: text (`str`, `List[str]` or `List[int]` (the latter only for not-fast tokenizers)): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). text_pair (`str`, `List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, text_pair=text_pair, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput, EncodedInput], text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: raise NotImplementedError @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a list of sequences or a list of pairs of sequences. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: batch_text_or_text_pairs (`List[str]`, `List[Tuple[str, str]]`, `List[List[str]]`, `List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also `List[List[int]]`, `List[Tuple[List[int], List[int]]]`): Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in `encode_plus`). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair], List[EncodedInput], List[EncodedInputPair], ], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: raise NotImplementedError def pad( self, encoded_inputs: Union[ BatchEncoding, List[BatchEncoding], Dict[str, EncodedInput], Dict[str, List[EncodedInput]], List[Dict[str, EncodedInput]], ], padding: Union[bool, str, PaddingStrategy] = True, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, ) -> BatchEncoding: """ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`). Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. <Tip> If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however. </Tip> Args: encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ if self.__class__.__name__.endswith("Fast"): if not self.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False): logger.warning_advice( f"You're using a {self.__class__.__name__} tokenizer. Please note that with a fast tokenizer," " using the `__call__` method is faster than using a method to encode the text followed by a call" " to the `pad` method to get a padded encoding." ) self.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} # The model's main input name, usually `input_ids`, has be passed for padding if self.model_input_names[0] not in encoded_inputs: raise ValueError( "You should supply an encoding or a list of encodings to this method " f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" ) required_input = encoded_inputs[self.model_input_names[0]] if required_input is None or (isinstance(required_input, Sized) and len(required_input) == 0): if return_attention_mask: encoded_inputs["attention_mask"] = [] return encoded_inputs # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch first_element = required_input[0] if isinstance(first_element, (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. for item in required_input: if len(item) != 0: first_element = item[0] break # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. if not isinstance(first_element, (int, list, tuple)): if is_tf_tensor(first_element): return_tensors = "tf" if return_tensors is None else return_tensors elif is_torch_tensor(first_element): return_tensors = "pt" if return_tensors is None else return_tensors elif isinstance(first_element, np.ndarray): return_tensors = "np" if return_tensors is None else return_tensors else: raise ValueError( f"type of {first_element} unknown: {type(first_element)}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in encoded_inputs.items(): encoded_inputs[key] = to_py_obj(value) # Convert padding_strategy in PaddingStrategy padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( padding=padding, max_length=max_length, verbose=verbose ) required_input = encoded_inputs[self.model_input_names[0]] if required_input and not isinstance(required_input[0], (list, tuple)): encoded_inputs = self._pad( encoded_inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) return BatchEncoding(encoded_inputs, tensor_type=return_tensors) batch_size = len(required_input) assert all( len(v) == batch_size for v in encoded_inputs.values() ), "Some items in the output dictionary have a different batch size than others." if padding_strategy == PaddingStrategy.LONGEST: max_length = max(len(inputs) for inputs in required_input) padding_strategy = PaddingStrategy.MAX_LENGTH batch_outputs = {} for i in range(batch_size): inputs = {k: v[i] for k, v in encoded_inputs.items()} outputs = self._pad( inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) return BatchEncoding(batch_outputs, tensor_type=return_tensors) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ if token_ids_1 is None: return len(token_ids_0) * [0] return [0] * len(token_ids_0) + [1] * len(token_ids_1) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. This implementation does not add special tokens and this method should be overridden in a subclass. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: return token_ids_0 return token_ids_0 + token_ids_1 @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) # Build output dictionary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], pair_ids: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Truncates a sequence pair in-place following the strategy. Args: ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, pair_ids, [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) if self.truncation_side == "left": overflowing_tokens = ids[:window_len] ids = ids[num_tokens_to_remove:] elif self.truncation_side == "right": overflowing_tokens = ids[-window_len:] ids = ids[:-num_tokens_to_remove] else: raise ValueError(f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'.") else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) len_pair_ids = len(pair_ids) if pair_ids is not None else 0 len_ids = len(ids) first_remove = min(abs(len_pair_ids - len_ids), num_tokens_to_remove) second_remove = num_tokens_to_remove - first_remove if len_ids > len_pair_ids: ids_to_move = first_remove + second_remove // 2 pair_ids_to_move = second_remove - second_remove // 2 else: ids_to_move = second_remove // 2 pair_ids_to_move = first_remove + second_remove - (second_remove // 2) if self.truncation_side == "right": ids = ids[:-ids_to_move] if ids_to_move > 0 else ids pair_ids = pair_ids[:-pair_ids_to_move] if pair_ids is not None and pair_ids_to_move > 0 else pair_ids elif self.truncation_side == "left": ids = ids[ids_to_move:] pair_ids = pair_ids[pair_ids_to_move:] if pair_ids is not None else None else: raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) if self.truncation_side == "right": overflowing_tokens = pair_ids[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] elif self.truncation_side == "left": overflowing_tokens = pair_ids[:window_len] pair_ids = pair_ids[num_tokens_to_remove:] else: raise ValueError("invalid truncation strategy:" + str(self.truncation_side)) else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return (ids, pair_ids, overflowing_tokens) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we often want to remove sub-word tokenization artifacts at the same time. Args: tokens (`List[str]`): The token to join in a string. Returns: `str`: The joined tokens. """ raise NotImplementedError def batch_decode( self, sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]`: The list of decoded sentences. """ return [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) for seq in sequences ] def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces`. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ # Convert inputs to python lists token_ids = to_py_obj(token_ids) return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, **kwargs, ) -> str: raise NotImplementedError def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ assert already_has_special_tokens and token_ids_1 is None, ( "You cannot use ``already_has_special_tokens=False`` with this tokenizer. " "Please use a slow (full python) tokenizer to activate this argument. " "Or set `return_special_tokens_mask=True` when calling the encoding method " "to get the special tokens mask in any tokenizer. " ) all_special_ids = self.all_special_ids # cache the property special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0] return special_tokens_mask @staticmethod def clean_up_tokenization(out_string: str) -> str: """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms. Args: out_string (`str`): The text to clean up. Returns: `str`: The cleaned-up string. """ out_string = ( out_string.replace(" .", ".") .replace(" ?", "?") .replace(" !", "!") .replace(" ,", ",") .replace(" ' ", "'") .replace(" n't", "n't") .replace(" 'm", "'m") .replace(" 's", "'s") .replace(" 've", "'ve") .replace(" 're", "'re") ) return out_string def _eventual_warn_about_too_long_sequence(self, ids: List[int], max_length: Optional[int], verbose: bool): """ Depending on the input and internal state we might trigger a warning about a sequence that is too long for its corresponding model Args: ids (`List[str]`): The ids produced by the tokenization max_length (`int`, *optional*): The max_length desired (does not trigger a warning if it is set) verbose (`bool`): Whether or not to print more information and warnings. """ if max_length is None and len(ids) > self.model_max_length and verbose: if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " f"for this model ({len(ids)} > {self.model_max_length}). Running this sequence through the model " "will result in indexing errors" ) self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True def _switch_to_input_mode(self): """ Private method to put the tokenizer in input mode (when it has different modes for input/outputs) """ pass def _switch_to_target_mode(self): """ Private method to put the tokenizer in target mode (when it has different modes for input/outputs) """ pass @contextmanager def as_target_tokenizer(self): """ Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels. """ warnings.warn( "`as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your " "labels by using the argument `text_target` of the regular `__call__` method (either in the same call as " "your input texts if you use the same keyword arguments, or in a separate call." ) self._switch_to_target_mode() self._in_target_context_manager = True yield self._in_target_context_manager = False self._switch_to_input_mode() @classmethod def register_for_auto_class(cls, auto_class="AutoTokenizer"): """ Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the library are already mapped with `AutoTokenizer`. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoTokenizer"`): The auto class to register this new tokenizer with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = None, truncation: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare model inputs for translation. For best performance, translate one sentence at a time. Arguments: src_texts (`List[str]`): List of documents to summarize or source language texts. tgt_texts (`list`, *optional*): List of summaries or target language texts. max_length (`int`, *optional*): Controls the maximum length for encoder inputs (documents to summarize or source language texts) If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. max_target_length (`int`, *optional*): Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set to `None`, this will use the max_length value. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `True`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). **kwargs: Additional keyword arguments passed along to `self.__call__`. Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to the encoder. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. - **labels** -- List of token ids for tgt_texts. The full set of keys `[input_ids, attention_mask, labels]`, will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys. """ # docstyle-ignore formatted_warning = """ `prepare_seq2seq_batch` is deprecated and will be removed in version 5 of HuggingFace Transformers. Use the regular `__call__` method to prepare your inputs and targets. Here is a short example: model_inputs = tokenizer(src_texts, text_target=tgt_texts, ...) If you either need to use different keyword arguments for the source and target texts, you should do two calls like this: model_inputs = tokenizer(src_texts, ...) labels = tokenizer(text_target=tgt_texts, ...) model_inputs["labels"] = labels["input_ids"] See the documentation of your specific tokenizer for more details on the specific arguments to the tokenizer of choice. For a more complete example, see the implementation of `prepare_seq2seq_batch`. """ warnings.warn(formatted_warning, FutureWarning) # mBART-specific kwargs that should be ignored by other models. kwargs.pop("src_lang", None) kwargs.pop("tgt_lang", None) if max_length is None: max_length = self.model_max_length model_inputs = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = max_length with self.as_target_tokenizer(): labels = self( tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, ) model_inputs["labels"] = labels["input_ids"] return model_inputs def get_fast_tokenizer_file(tokenization_files: List[str]) -> str: """ Get the tokenization file to use for this version of transformers. Args: tokenization_files (`List[str]`): The list of available configuration files. Returns: `str`: The tokenization file to use. """ tokenizer_files_map = {} for file_name in tokenization_files: search = _re_tokenizer_file.search(file_name) if search is not None: v = search.groups()[0] tokenizer_files_map[v] = file_name available_versions = sorted(tokenizer_files_map.keys()) # Defaults to FULL_TOKENIZER_FILE and then try to look at some newer versions. tokenizer_file = FULL_TOKENIZER_FILE transformers_version = version.parse(__version__) for v in available_versions: if version.parse(v) <= transformers_version: tokenizer_file = tokenizer_files_map[v] else: # No point going further since the versions are sorted. break return tokenizer_file # To update the docstring, we need to copy the method, otherwise we change the original docstring. PreTrainedTokenizerBase.push_to_hub = copy_func(PreTrainedTokenizerBase.push_to_hub) if PreTrainedTokenizerBase.push_to_hub.__doc__ is not None: PreTrainedTokenizerBase.push_to_hub.__doc__ = PreTrainedTokenizerBase.push_to_hub.__doc__.format( object="tokenizer", object_class="AutoTokenizer", object_files="tokenizer files" )
transformers/src/transformers/tokenization_utils_base.py/0
{ "file_path": "transformers/src/transformers/tokenization_utils_base.py", "repo_id": "transformers", "token_count": 84984 }
342
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer from .base import PipelineTool class TextSummarizationTool(PipelineTool): """ Example: ```py from transformers.tools import TextSummarizationTool summarizer = TextSummarizationTool() summarizer(long_text) ``` """ default_checkpoint = "philschmid/bart-large-cnn-samsum" description = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) name = "summarizer" pre_processor_class = AutoTokenizer model_class = AutoModelForSeq2SeqLM inputs = ["text"] outputs = ["text"] def encode(self, text): return self.pre_processor(text, return_tensors="pt", truncation=True) def forward(self, inputs): return self.model.generate(**inputs)[0] def decode(self, outputs): return self.pre_processor.decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)
transformers/src/transformers/tools/text_summarization.py/0
{ "file_path": "transformers/src/transformers/tools/text_summarization.py", "repo_id": "transformers", "token_count": 560 }
343
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import requires_backends LAYOUTLM_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None class LayoutLMv2Model: def __init__(self, *args, **kwargs): requires_backends(self, ["detectron2"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["detectron2"])
transformers/src/transformers/utils/dummy_detectron2_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_detectron2_objects.py", "repo_id": "transformers", "token_count": 156 }
344
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Hub utilities: utilities related to download and cache models """ import json import os import re import shutil import sys import tempfile import traceback import warnings from concurrent import futures from pathlib import Path from typing import Dict, List, Optional, Tuple, Union from urllib.parse import urlparse from uuid import uuid4 import huggingface_hub import requests from huggingface_hub import ( _CACHED_NO_EXIST, CommitOperationAdd, ModelCard, ModelCardData, constants, create_branch, create_commit, create_repo, get_hf_file_metadata, hf_hub_download, hf_hub_url, try_to_load_from_cache, ) from huggingface_hub.file_download import REGEX_COMMIT_HASH, http_get from huggingface_hub.utils import ( EntryNotFoundError, GatedRepoError, HFValidationError, LocalEntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, build_hf_headers, hf_raise_for_status, send_telemetry, ) from huggingface_hub.utils._deprecation import _deprecate_method from requests.exceptions import HTTPError from . import __version__, logging from .generic import working_or_temp_dir from .import_utils import ( ENV_VARS_TRUE_VALUES, _tf_version, _torch_version, is_tf_available, is_torch_available, is_training_run_on_sagemaker, ) from .logging import tqdm logger = logging.get_logger(__name__) # pylint: disable=invalid-name _is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False def is_offline_mode(): return _is_offline_mode torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) default_cache_path = constants.default_cache_path old_default_cache_path = os.path.join(torch_cache_home, "transformers") # Determine default cache directory. Lots of legacy environment variables to ensure backward compatibility. # The best way to set the cache path is with the environment variable HF_HOME. For more details, checkout this # documentation page: https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables. # # In code, use `HF_HUB_CACHE` as the default cache path. This variable is set by the library and is guaranteed # to be set to the right value. # # TODO: clean this for v5? PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", constants.HF_HUB_CACHE) PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) # Onetime move from the old location to the new one if no ENV variable has been set. if ( os.path.isdir(old_default_cache_path) and not os.path.isdir(constants.HF_HUB_CACHE) and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ and "TRANSFORMERS_CACHE" not in os.environ ): logger.warning( "In Transformers v4.22.0, the default path to cache downloaded models changed from" " '~/.cache/torch/transformers' to '~/.cache/huggingface/hub'. Since you don't seem to have" " overridden and '~/.cache/torch/transformers' is a directory that exists, we're moving it to" " '~/.cache/huggingface/hub' to avoid redownloading models you have already in the cache. You should" " only see this message once." ) shutil.move(old_default_cache_path, constants.HF_HUB_CACHE) HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(constants.HF_HOME, "modules")) TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules" SESSION_ID = uuid4().hex # Add deprecation warning for old environment variables. for key in ("PYTORCH_PRETRAINED_BERT_CACHE", "PYTORCH_TRANSFORMERS_CACHE", "TRANSFORMERS_CACHE"): if os.getenv(key) is not None: warnings.warn( f"Using `{key}` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.", FutureWarning, ) S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" _staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES _default_endpoint = "https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co" HUGGINGFACE_CO_RESOLVE_ENDPOINT = _default_endpoint if os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) is not None: warnings.warn( "Using the environment variable `HUGGINGFACE_CO_RESOLVE_ENDPOINT` is deprecated and will be removed in " "Transformers v5. Use `HF_ENDPOINT` instead.", FutureWarning, ) HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", HUGGINGFACE_CO_RESOLVE_ENDPOINT) HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}" HUGGINGFACE_CO_EXAMPLES_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/examples" def _get_cache_file_to_return( path_or_repo_id: str, full_filename: str, cache_dir: Union[str, Path, None] = None, revision: Optional[str] = None ): # We try to see if we have a cached version (not up to date): resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: return resolved_file return None def is_remote_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") # TODO: remove this once fully deprecated # TODO? remove from './examples/research_projects/lxmert/utils.py' as well # TODO? remove from './examples/research_projects/visual_bert/utils.py' as well @_deprecate_method(version="4.39.0", message="This method is outdated and does not support the new cache system.") def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]: """ Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape `(model_url, etag, size_MB)`. Filenames in `cache_dir` are use to get the metadata for each model, only urls ending with *.bin* are added. Args: cache_dir (`Union[str, Path]`, *optional*): The cache directory to search for models within. Will default to the transformers cache if unset. Returns: List[Tuple]: List of tuples each with shape `(model_url, etag, size_MB)` """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE elif isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.isdir(cache_dir): return [] cached_models = [] for file in os.listdir(cache_dir): if file.endswith(".json"): meta_path = os.path.join(cache_dir, file) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"] if url.endswith(".bin"): size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6 cached_models.append((url, etag, size_MB)) return cached_models def define_sagemaker_information(): try: instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json() dlc_container_used = instance_data["Image"] dlc_tag = instance_data["Image"].split(":")[1] except Exception: dlc_container_used = None dlc_tag = None sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}")) runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None sagemaker_object = { "sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None), "sm_region": os.getenv("AWS_REGION", None), "sm_number_gpu": os.getenv("SM_NUM_GPUS", 0), "sm_number_cpu": os.getenv("SM_NUM_CPUS", 0), "sm_distributed_training": runs_distributed_training, "sm_deep_learning_container": dlc_container_used, "sm_deep_learning_container_tag": dlc_tag, "sm_account_id": account_id, } return sagemaker_object def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: """ Formats a user-agent string with basic info about a request. """ ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_tf_available(): ua += f"; tensorflow/{_tf_version}" if constants.HF_HUB_DISABLE_TELEMETRY: return ua + "; telemetry/off" if is_training_run_on_sagemaker(): ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items()) # CI will set this value to True if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(user_agent, dict): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) elif isinstance(user_agent, str): ua += "; " + user_agent return ua def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str]) -> Optional[str]: """ Extracts the commit hash from a resolved filename toward a cache file. """ if resolved_file is None or commit_hash is not None: return commit_hash resolved_file = str(Path(resolved_file).as_posix()) search = re.search(r"snapshots/([^/]+)/", resolved_file) if search is None: return None commit_hash = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None def cached_file( path_or_repo_id: Union[str, os.PathLike], filename: str, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: bool = False, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, subfolder: str = "", repo_type: Optional[str] = None, user_agent: Optional[Union[str, Dict[str, str]]] = None, _raise_exceptions_for_gated_repo: bool = True, _raise_exceptions_for_missing_entries: bool = True, _raise_exceptions_for_connection_errors: bool = True, _commit_hash: Optional[str] = None, **deprecated_kwargs, ) -> Optional[str]: """ Tries to locate a file in a local folder and repo, downloads and cache it if necessary. Args: path_or_repo_id (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a model repo on huggingface.co. - a path to a *directory* potentially containing the file. filename (`str`): The name of the file to locate in `path_or_repo`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. repo_type (`str`, *optional*): Specify the repo type (useful when downloading from a space for instance). <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo). Examples: ```python # Download a model weight from the Hub and cache it. model_weights_file = cached_file("bert-base-uncased", "pytorch_model.bin") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token # Private arguments # _raise_exceptions_for_gated_repo: if False, do not raise an exception for gated repo error but return # None. # _raise_exceptions_for_missing_entries: if False, do not raise an exception for missing entries but return # None. # _raise_exceptions_for_connection_errors: if False, do not raise an exception for connection errors but return # None. # _commit_hash: passed when we are chaining several calls to various files (e.g. when loading a tokenizer or # a pipeline). If files are cached for this commit hash, avoid calls to head and get from the cache. if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True if subfolder is None: subfolder = "" path_or_repo_id = str(path_or_repo_id) full_filename = os.path.join(subfolder, filename) if os.path.isdir(path_or_repo_id): resolved_file = os.path.join(os.path.join(path_or_repo_id, subfolder), filename) if not os.path.isfile(resolved_file): if _raise_exceptions_for_missing_entries: raise EnvironmentError( f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." ) else: return None return resolved_file if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if _commit_hash is not None and not force_download: # If the file is cached under that commit hash, we return it directly. resolved_file = try_to_load_from_cache( path_or_repo_id, full_filename, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type ) if resolved_file is not None: if resolved_file is not _CACHED_NO_EXIST: return resolved_file elif not _raise_exceptions_for_missing_entries: return None else: raise EnvironmentError(f"Could not locate {full_filename} inside {path_or_repo_id}.") user_agent = http_user_agent(user_agent) try: # Load from URL or cache if already cached resolved_file = hf_hub_download( path_or_repo_id, filename, subfolder=None if len(subfolder) == 0 else subfolder, repo_type=repo_type, revision=revision, cache_dir=cache_dir, user_agent=user_agent, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only, ) except GatedRepoError as e: resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) if resolved_file is not None or not _raise_exceptions_for_gated_repo: return resolved_file raise EnvironmentError( "You are trying to access a gated repo.\nMake sure to request access at " f"https://huggingface.co/{path_or_repo_id} and pass a token having permission to this repo either " "by logging in with `huggingface-cli login` or by passing `token=<your_token>`." ) from e except RepositoryNotFoundError as e: raise EnvironmentError( f"{path_or_repo_id} is not a local folder and is not a valid model identifier " "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token " "having permission to this repo either by logging in with `huggingface-cli login` or by passing " "`token=<your_token>`" ) from e except RevisionNotFoundError as e: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists " "for this model name. Check the model page at " f"'https://huggingface.co/{path_or_repo_id}' for available revisions." ) from e except LocalEntryNotFoundError as e: resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) if ( resolved_file is not None or not _raise_exceptions_for_missing_entries or not _raise_exceptions_for_connection_errors ): return resolved_file raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this file, couldn't find it in the" f" cached files and it looks like {path_or_repo_id} is not the path to a directory containing a file named" f" {full_filename}.\nCheckout your internet connection or see how to run the library in offline mode at" " 'https://huggingface.co/docs/transformers/installation#offline-mode'." ) from e except EntryNotFoundError as e: if not _raise_exceptions_for_missing_entries: return None if revision is None: revision = "main" raise EnvironmentError( f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." ) from e except HTTPError as err: resolved_file = _get_cache_file_to_return(path_or_repo_id, full_filename, cache_dir, revision) if resolved_file is not None or not _raise_exceptions_for_connection_errors: return resolved_file raise EnvironmentError(f"There was a specific connection error when trying to load {path_or_repo_id}:\n{err}") except HFValidationError as e: raise EnvironmentError( f"Incorrect path_or_model_id: '{path_or_repo_id}'. Please provide either the path to a local folder or the repo_id of a model on the Hub." ) from e return resolved_file # TODO: deprecate `get_file_from_repo` or document it differently? # Docstring is exactly the same as `cached_repo` but behavior is slightly different. If file is missing or if # there is a connection error, `cached_repo` will return None while `get_file_from_repo` will raise an error. # IMO we should keep only 1 method and have a single `raise_error` argument (to be discussed). def get_file_from_repo( path_or_repo: Union[str, os.PathLike], filename: str, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: bool = False, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, subfolder: str = "", **deprecated_kwargs, ): """ Tries to locate a file in a local folder and repo, downloads and cache it if necessary. Args: path_or_repo (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a model repo on huggingface.co. - a path to a *directory* potentially containing the file. filename (`str`): The name of the file to locate in `path_or_repo`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo) or `None` if the file does not exist. Examples: ```python # Download a tokenizer configuration from huggingface.co and cache. tokenizer_config = get_file_from_repo("bert-base-uncased", "tokenizer_config.json") # This model does not have a tokenizer config so the result will be None. tokenizer_config = get_file_from_repo("xlm-roberta-base", "tokenizer_config.json") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token return cached_file( path_or_repo_id=path_or_repo, filename=filename, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, ) def download_url(url, proxies=None): """ Downloads a given url in a temporary file. This function is not safe to use in multiple processes. Its only use is for deprecated behavior allowing to download config/models with a single url instead of using the Hub. Args: url (`str`): The url of the file to download. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. Returns: `str`: The location of the temporary file where the url was downloaded. """ warnings.warn( f"Using `from_pretrained` with the url of a file (here {url}) is deprecated and won't be possible anymore in" " v5 of Transformers. You should host your file on the Hub (hf.co) instead and use the repository ID. Note" " that this is not compatible with the caching system (your file will be downloaded at each execution) or" " multiple processes (each process will download the file in a different temporary file).", FutureWarning, ) tmp_fd, tmp_file = tempfile.mkstemp() with os.fdopen(tmp_fd, "wb") as f: http_get(url, f, proxies=proxies) return tmp_file def has_file( path_or_repo: Union[str, os.PathLike], filename: str, revision: Optional[str] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, **deprecated_kwargs, ): """ Checks if a repo contains a given file without downloading it. Works for remote repos and local folders. <Tip warning={false}> This function will raise an error if the repository `path_or_repo` is not valid or if `revision` does not exist for this repo, but will return False for regular connection errors. </Tip> """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if os.path.isdir(path_or_repo): return os.path.isfile(os.path.join(path_or_repo, filename)) url = hf_hub_url(path_or_repo, filename=filename, revision=revision) headers = build_hf_headers(token=token, user_agent=http_user_agent()) r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=10) try: hf_raise_for_status(r) return True except GatedRepoError as e: logger.error(e) raise EnvironmentError( f"{path_or_repo} is a gated repository. Make sure to request access at " f"https://huggingface.co/{path_or_repo} and pass a token having permission to this repo either by " "logging in with `huggingface-cli login` or by passing `token=<your_token>`." ) from e except RepositoryNotFoundError as e: logger.error(e) raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.") except RevisionNotFoundError as e: logger.error(e) raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this " f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions." ) except requests.HTTPError: # We return false for EntryNotFoundError (logical) as well as any connection error. return False class PushToHubMixin: """ A Mixin containing the functionality to push a model or tokenizer to the hub. """ def _create_repo( self, repo_id: str, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, repo_url: Optional[str] = None, organization: Optional[str] = None, ) -> str: """ Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves the token. """ if repo_url is not None: warnings.warn( "The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` " "instead." ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`." ) repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "") if organization is not None: warnings.warn( "The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your " "organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)." ) if not repo_id.startswith(organization): if "/" in repo_id: repo_id = repo_id.split("/")[-1] repo_id = f"{organization}/{repo_id}" url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True) return url.repo_id def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]): """ Returns the list of files with their last modification timestamp. """ return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)} def _upload_modified_files( self, working_dir: Union[str, os.PathLike], repo_id: str, files_timestamps: Dict[str, float], commit_message: Optional[str] = None, token: Optional[Union[bool, str]] = None, create_pr: bool = False, revision: str = None, commit_description: str = None, ): """ Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`. """ if commit_message is None: if "Model" in self.__class__.__name__: commit_message = "Upload model" elif "Config" in self.__class__.__name__: commit_message = "Upload config" elif "Tokenizer" in self.__class__.__name__: commit_message = "Upload tokenizer" elif "FeatureExtractor" in self.__class__.__name__: commit_message = "Upload feature extractor" elif "Processor" in self.__class__.__name__: commit_message = "Upload processor" else: commit_message = f"Upload {self.__class__.__name__}" modified_files = [ f for f in os.listdir(working_dir) if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f] ] # filter for actual files + folders at the root level modified_files = [ f for f in modified_files if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f)) ] operations = [] # upload standalone files for file in modified_files: if os.path.isdir(os.path.join(working_dir, file)): # go over individual files of folder for f in os.listdir(os.path.join(working_dir, file)): operations.append( CommitOperationAdd( path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f) ) ) else: operations.append( CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file) ) if revision is not None: create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True) logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}") return create_commit( repo_id=repo_id, operations=operations, commit_message=commit_message, commit_description=commit_description, token=token, create_pr=create_pr, revision=revision, ) def push_to_hub( self, repo_id: str, use_temp_dir: Optional[bool] = None, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, max_shard_size: Optional[Union[int, str]] = "5GB", create_pr: bool = False, safe_serialization: bool = True, revision: str = None, commit_description: str = None, tags: Optional[List[str]] = None, **deprecated_kwargs, ) -> str: """ Upload the {object_files} to the 🤗 Model Hub. Parameters: repo_id (`str`): The name of the repository you want to push your {object} to. It should contain your organization name when pushing to a given organization. use_temp_dir (`bool`, *optional*): Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. commit_message (`str`, *optional*): Message to commit while pushing. Will default to `"Upload {object}"`. private (`bool`, *optional*): Whether or not the repository created should be private. token (`bool` or `str`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights in safetensors format for safer serialization. revision (`str`, *optional*): Branch to push the uploaded files to. commit_description (`str`, *optional*): The description of the commit that will be created tags (`List[str]`, *optional*): List of tags to push on the Hub. Examples: ```python from transformers import {object_class} {object} = {object_class}.from_pretrained("bert-base-cased") # Push the {object} to your namespace with the name "my-finetuned-bert". {object}.push_to_hub("my-finetuned-bert") # Push the {object} to an organization with the name "my-finetuned-bert". {object}.push_to_hub("huggingface/my-finetuned-bert") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) ignore_metadata_errors = deprecated_kwargs.pop("ignore_metadata_errors", False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) if repo_path_or_name is not None: # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer # repo_id from the folder path, if it exists. warnings.warn( "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " "`repo_id` instead.", FutureWarning, ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." ) if os.path.isdir(repo_path_or_name): # repo_path: infer repo_id from the path repo_id = repo_id.split(os.path.sep)[-1] working_dir = repo_id else: # repo_name: use it as repo_id repo_id = repo_path_or_name working_dir = repo_id.split("/")[-1] else: # Repo_id is passed correctly: infer working_dir from it working_dir = repo_id.split("/")[-1] # Deprecation warning will be sent after for repo_url and organization repo_url = deprecated_kwargs.pop("repo_url", None) organization = deprecated_kwargs.pop("organization", None) repo_id = self._create_repo( repo_id, private=private, token=token, repo_url=repo_url, organization=organization ) # Create a new empty model card and eventually tag it model_card = create_and_tag_model_card( repo_id, tags, token=token, ignore_metadata_errors=ignore_metadata_errors ) if use_temp_dir is None: use_temp_dir = not os.path.isdir(working_dir) with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: files_timestamps = self._get_files_timestamps(work_dir) # Save all files. self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) # Update model card if needed: model_card.save(os.path.join(work_dir, "README.md")) return self._upload_modified_files( work_dir, repo_id, files_timestamps, commit_message=commit_message, token=token, create_pr=create_pr, revision=revision, commit_description=commit_description, ) def send_example_telemetry(example_name, *example_args, framework="pytorch"): """ Sends telemetry that helps tracking the examples use. Args: example_name (`str`): The name of the example. *example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only try to extract the model and dataset name from those. Nothing else is tracked. framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example. """ if is_offline_mode(): return data = {"example": example_name, "framework": framework} for args in example_args: args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None} if "model_name_or_path" in args_as_dict: model_name = args_as_dict["model_name_or_path"] # Filter out local paths if not os.path.isdir(model_name): data["model_name"] = args_as_dict["model_name_or_path"] if "dataset_name" in args_as_dict: data["dataset_name"] = args_as_dict["dataset_name"] elif "task_name" in args_as_dict: # Extract script name from the example_name script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "") script_name = script_name.replace("_no_trainer", "") data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}" # Send telemetry in the background send_telemetry( topic="examples", library_name="transformers", library_version=__version__, user_agent=http_user_agent(data) ) def convert_file_size_to_int(size: Union[int, str]): """ Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). Args: size (`int` or `str`): The size to convert. Will be directly returned if an `int`. Example: ```py >>> convert_file_size_to_int("1MiB") 1048576 ``` """ if isinstance(size, int): return size if size.upper().endswith("GIB"): return int(size[:-3]) * (2**30) if size.upper().endswith("MIB"): return int(size[:-3]) * (2**20) if size.upper().endswith("KIB"): return int(size[:-3]) * (2**10) if size.upper().endswith("GB"): int_size = int(size[:-2]) * (10**9) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("MB"): int_size = int(size[:-2]) * (10**6) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("KB"): int_size = int(size[:-2]) * (10**3) return int_size // 8 if size.endswith("b") else int_size raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") def get_checkpoint_shard_files( pretrained_model_name_or_path, index_filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, token=None, user_agent=None, revision=None, subfolder="", _commit_hash=None, **deprecated_kwargs, ): """ For a given model: - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the Hub - returns the list of paths to all the shards, as well as some metadata. For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). """ import json use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if not os.path.isfile(index_filename): raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") with open(index_filename, "r") as f: index = json.loads(f.read()) shard_filenames = sorted(set(index["weight_map"].values())) sharded_metadata = index["metadata"] sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) sharded_metadata["weight_map"] = index["weight_map"].copy() # First, let's deal with local folder. if os.path.isdir(pretrained_model_name_or_path): shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames] return shard_filenames, sharded_metadata # At this stage pretrained_model_name_or_path is a model identifier on the Hub cached_filenames = [] # Check if the model is already cached or not. We only try the last checkpoint, this should cover most cases of # downloaded (if interrupted). last_shard = try_to_load_from_cache( pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash ) show_progress_bar = last_shard is None or force_download for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar): try: # Load from URL cached_filename = cached_file( pretrained_model_name_or_path, shard_filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _commit_hash=_commit_hash, ) # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so # we don't have to catch them here. except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is " "required according to the checkpoint index." ) except HTTPError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try" " again after checking your internet connection." ) cached_filenames.append(cached_filename) return cached_filenames, sharded_metadata # All what is below is for conversion between old cache format and new cache format. def get_all_cached_files(cache_dir=None): """ Returns a list for all files cached with appropriate metadata. """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE else: cache_dir = str(cache_dir) if not os.path.isdir(cache_dir): return [] cached_files = [] for file in os.listdir(cache_dir): meta_path = os.path.join(cache_dir, f"{file}.json") if not os.path.isfile(meta_path): continue with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"].replace('"', "") cached_files.append({"file": file, "url": url, "etag": etag}) return cached_files def extract_info_from_url(url): """ Extract repo_name, revision and filename from an url. """ search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url) if search is None: return None repo, revision, filename = search.groups() cache_repo = "--".join(["models"] + repo.split("/")) return {"repo": cache_repo, "revision": revision, "filename": filename} def create_and_tag_model_card( repo_id: str, tags: Optional[List[str]] = None, token: Optional[str] = None, ignore_metadata_errors: bool = False, ): """ Creates or loads an existing model card and tags it. Args: repo_id (`str`): The repo_id where to look for the model card. tags (`List[str]`, *optional*): The list of tags to add in the model card token (`str`, *optional*): Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token. ignore_metadata_errors (`str`): If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk. """ try: # Check if the model card is present on the remote repo model_card = ModelCard.load(repo_id, token=token, ignore_metadata_errors=ignore_metadata_errors) except EntryNotFoundError: # Otherwise create a simple model card from template model_description = "This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated." card_data = ModelCardData(tags=[] if tags is None else tags, library_name="transformers") model_card = ModelCard.from_template(card_data, model_description=model_description) if tags is not None: for model_tag in tags: if model_tag not in model_card.data.tags: model_card.data.tags.append(model_tag) return model_card def clean_files_for(file): """ Remove, if they exist, file, file.json and file.lock """ for f in [file, f"{file}.json", f"{file}.lock"]: if os.path.isfile(f): os.remove(f) def move_to_new_cache(file, repo, filename, revision, etag, commit_hash): """ Move file to repo following the new huggingface hub cache organization. """ os.makedirs(repo, exist_ok=True) # refs os.makedirs(os.path.join(repo, "refs"), exist_ok=True) if revision != commit_hash: ref_path = os.path.join(repo, "refs", revision) with open(ref_path, "w") as f: f.write(commit_hash) # blobs os.makedirs(os.path.join(repo, "blobs"), exist_ok=True) blob_path = os.path.join(repo, "blobs", etag) shutil.move(file, blob_path) # snapshots os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True) os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True) pointer_path = os.path.join(repo, "snapshots", commit_hash, filename) huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path) clean_files_for(file) def move_cache(cache_dir=None, new_cache_dir=None, token=None): if new_cache_dir is None: new_cache_dir = TRANSFORMERS_CACHE if cache_dir is None: # Migrate from old cache in .cache/huggingface/transformers old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers" if os.path.isdir(str(old_cache)): cache_dir = str(old_cache) else: cache_dir = new_cache_dir cached_files = get_all_cached_files(cache_dir=cache_dir) logger.info(f"Moving {len(cached_files)} files to the new cache system") hub_metadata = {} for file_info in tqdm(cached_files): url = file_info.pop("url") if url not in hub_metadata: try: hub_metadata[url] = get_hf_file_metadata(url, token=token) except requests.HTTPError: continue etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash if etag is None or commit_hash is None: continue if file_info["etag"] != etag: # Cached file is not up to date, we just throw it as a new version will be downloaded anyway. clean_files_for(os.path.join(cache_dir, file_info["file"])) continue url_info = extract_info_from_url(url) if url_info is None: # Not a file from huggingface.co continue repo = os.path.join(new_cache_dir, url_info["repo"]) move_to_new_cache( file=os.path.join(cache_dir, file_info["file"]), repo=repo, filename=url_info["filename"], revision=url_info["revision"], etag=etag, commit_hash=commit_hash, ) class PushInProgress: """ Internal class to keep track of a push in progress (which might contain multiple `Future` jobs). """ def __init__(self, jobs: Optional[futures.Future] = None) -> None: self.jobs = [] if jobs is None else jobs def is_done(self): return all(job.done() for job in self.jobs) def wait_until_done(self): futures.wait(self.jobs) def cancel(self) -> None: self.jobs = [ job for job in self.jobs # Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list if not (job.cancel() or job.done()) ] cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt") if not os.path.isfile(cache_version_file): cache_version = 0 else: with open(cache_version_file) as f: try: cache_version = int(f.read()) except ValueError: cache_version = 0 cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0 if cache_version < 1 and cache_is_not_empty: if is_offline_mode(): logger.warning( "You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local " "cache seems to be the one of a previous version. It is very likely that all your calls to any " "`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have " "your cache be updated automatically, then you can go back to offline mode." ) else: logger.warning( "The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a " "one-time only operation. You can interrupt this and resume the migration later on by calling " "`transformers.utils.move_cache()`." ) try: if TRANSFORMERS_CACHE != constants.HF_HUB_CACHE: # Users set some env variable to customize cache storage move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE) else: move_cache() except Exception as e: trace = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " "file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(TRANSFORMERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set " "the environment variable TRANSFORMERS_CACHE to a writable directory." )
transformers/src/transformers/utils/hub.py/0
{ "file_path": "transformers/src/transformers/utils/hub.py", "repo_id": "transformers", "token_count": 23259 }
345
{"[MASK]": 0, "[UNK]": 1, "[PAD]": 2, "DUMMY": 3, "DUMMY2": 4, "[MASK2]": 5}
transformers/tests/fixtures/test_entity_vocab.json/0
{ "file_path": "transformers/tests/fixtures/test_entity_vocab.json", "repo_id": "transformers", "token_count": 45 }
346
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class FlaxAutoModelTest(unittest.TestCase): @slow def test_bert_from_pretrained(self): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(model_name): config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = FlaxAutoModel.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, FlaxBertModel) @slow def test_roberta_from_pretrained(self): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(model_name): config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = FlaxAutoModel.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, FlaxRobertaModel) @slow def test_bert_jax_jit(self): for model_name in ["bert-base-cased", "bert-large-uncased"]: tokenizer = AutoTokenizer.from_pretrained(model_name) model = FlaxBertModel.from_pretrained(model_name) tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX) @jax.jit def eval(**kwargs): return model(**kwargs) eval(**tokens).block_until_ready() @slow def test_roberta_jax_jit(self): for model_name in ["roberta-base", "roberta-large"]: tokenizer = AutoTokenizer.from_pretrained(model_name) model = FlaxRobertaModel.from_pretrained(model_name) tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX) @jax.jit def eval(**kwargs): return model(**kwargs) eval(**tokens).block_until_ready() def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = FlaxAutoModel.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = FlaxAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_model_file_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): _ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model") def test_model_from_pt_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"): _ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
transformers/tests/models/auto/test_modeling_flax_auto.py/0
{ "file_path": "transformers/tests/models/auto/test_modeling_flax_auto.py", "repo_id": "transformers", "token_count": 1730 }
347
# coding=utf-8 # Copyright 2020 Ecole Polytechnique and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class BarthezTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BarthezTokenizer rust_tokenizer_class = BarthezTokenizerFast test_rust_tokenizer = True test_sentencepiece = True def setUp(self): super().setUp() tokenizer = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname, legacy_format=False) self.tokenizer = tokenizer def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<pad>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(vocab_keys[-1], "<mask>") self.assertEqual(len(vocab_keys), 101_122) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 101_122) @require_torch def test_prepare_batch(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [0, 57, 3018, 70307, 91, 2] batch = self.tokenizer( src_text, max_length=len(expected_src_tokens), padding=True, truncation=True, return_tensors="pt" ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 6), batch.input_ids.shape) self.assertEqual((2, 6), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(expected_src_tokens, result) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) @slow def test_tokenizer_integration(self): expected_encoding = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip # moussaKam/mbarthez is a french model. So we also use french texts. sequences = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="moussaKam/mbarthez", revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6", sequences=sequences, )
transformers/tests/models/barthez/test_tokenization_barthez.py/0
{ "file_path": "transformers/tests/models/barthez/test_tokenization_barthez.py", "repo_id": "transformers", "token_count": 2393 }
348
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Blenderbot model. """ import tempfile import unittest from transformers import BlenderbotConfig, is_torch_available from transformers.testing_utils import ( backend_empty_cache, require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer from transformers.models.blenderbot.modeling_blenderbot import ( BlenderbotDecoder, BlenderbotEncoder, BlenderbotForCausalLM, ) def prepare_blenderbot_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class BlenderbotModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=50, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id # forcing a certain token to be generated, sets all other tokens to -inf # if however the token to be generated is already at -inf then it can lead token # `nan` values and thus break generation self.forced_bos_token_id = None self.forced_eos_token_id = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, forced_bos_token_id=self.forced_bos_token_id, forced_eos_token_id=self.forced_eos_token_id, ) def get_pipeline_config(self): config = self.get_config() config.max_position_embeddings = 100 config.vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = BlenderbotModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": BlenderbotForConditionalGeneration, "feature-extraction": BlenderbotModel, "summarization": BlenderbotForConditionalGeneration, "text-generation": BlenderbotForCausalLM, "text2text-generation": BlenderbotForConditionalGeneration, "translation": BlenderbotForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False def setUp(self): self.model_tester = BlenderbotModelTester(self) self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = BlenderbotForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) @unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.") @require_torch @require_sentencepiece @require_tokenizers class Blenderbot3BIntegrationTests(unittest.TestCase): ckpt = "facebook/blenderbot-3B" @cached_property def tokenizer(self): return BlenderbotTokenizer.from_pretrained(self.ckpt) @slow def test_generation_from_short_input_same_as_parlai_3B(self): FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} backend_empty_cache(torch_device) model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device) src_text = ["Sam"] model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device) generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS) tgt_text = 'Sam is a great name. It means "sun" in Gaelic.' generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW) assert generated_txt[0].strip() == tgt_text src_text = ( "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel" " like i'm going to throw up.\nand why is that?" ) model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device) generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0] reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW) assert "I think it's because we are so worried about what people think of us." == reply.strip() del model class BlenderbotStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, encoder_no_repeat_ngram_size=0, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.encoder_no_repeat_ngram_size = encoder_no_repeat_ngram_size self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, encoder_no_repeat_ngram_size=self.encoder_no_repeat_ngram_size, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = BlenderbotDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = BlenderbotDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # past_key_values = model(input_ids, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class BlenderbotStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BlenderbotDecoder, BlenderbotForCausalLM) if is_torch_available() else () all_generative_model_classes = (BlenderbotForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = BlenderbotStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers/tests/models/blenderbot/test_modeling_blenderbot.py/0
{ "file_path": "transformers/tests/models/blenderbot/test_modeling_blenderbot.py", "repo_id": "transformers", "token_count": 10081 }
349
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class TFCamembertModelIntegrationTest(unittest.TestCase): @slow def test_output_embeds_base_model(self): model = TFCamembertModel.from_pretrained("jplu/tf-camembert-base") input_ids = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]], dtype=tf.int32, ) # J'aime le camembert !" output = model(input_ids)["last_hidden_state"] expected_shape = tf.TensorShape((1, 10, 768)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]], dtype=tf.float32, ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
transformers/tests/models/camembert/test_modeling_tf_camembert.py/0
{ "file_path": "transformers/tests/models/camembert/test_modeling_tf_camembert.py", "repo_id": "transformers", "token_count": 783 }
350
import inspect import tempfile import unittest import numpy as np import transformers from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.clip.modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPTextModel, FlaxCLIPTextModelWithProjection, FlaxCLIPVisionModel, ) if is_torch_available(): import torch class FlaxCLIPVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = CLIPVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) return config, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxCLIPVisionModelTest(FlaxModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (FlaxCLIPVisionModel,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxCLIPVisionModelTester(self) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs).to_tuple() with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict) with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict) self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1) # CLIP has a different seq_length image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) # FlaxCLIPVisionModel does not have any base model def test_save_load_from_base(self): pass # FlaxCLIPVisionModel does not have any base model def test_save_load_to_base(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_from_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_to_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_bf16_to_base_pt(self): pass @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs) class FlaxCLIPTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = CLIPTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_flax class FlaxCLIPTextModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxCLIPTextModel, FlaxCLIPTextModelWithProjection) if is_flax_available() else () def setUp(self): self.model_tester = FlaxCLIPTextModelTester(self) # FlaxCLIPTextModel does not have any base model def test_save_load_from_base(self): pass # FlaxCLIPVisionModel does not have any base model def test_save_load_to_base(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_from_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_to_base_pt(self): pass # FlaxCLIPVisionModel does not have any base model @is_pt_flax_cross_test def test_save_load_bf16_to_base_pt(self): pass @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) class FlaxCLIPModelTester: def __init__(self, parent, is_training=True): self.parent = parent self.text_model_tester = FlaxCLIPTextModelTester(parent) self.vision_model_tester = FlaxCLIPVisionModelTester(parent) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = CLIPConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) return config, input_ids, attention_mask, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_flax class FlaxCLIPModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxCLIPModel,) if is_flax_available() else () test_attention_outputs = False def setUp(self): self.model_tester = FlaxCLIPModelTester(self) # hidden_states are tested in individual model tests def test_hidden_states_output(self): pass def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_ids, pixel_values, **kwargs): return model(input_ids=input_ids, pixel_values=pixel_values, **kwargs).to_tuple() with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict) with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict) self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs[:4], outputs[:4]): self.assertEqual(jitted_output.shape, output.shape) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_ids", "pixel_values", "attention_mask", "position_ids"] self.assertListEqual(arg_names[:4], expected_arg_names) def test_get_image_features(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = FlaxCLIPModel(config) @jax.jit def model_jitted(pixel_values): return model.get_image_features(pixel_values=pixel_values) with self.subTest("JIT Enabled"): jitted_output = model_jitted(inputs_dict["pixel_values"]) with self.subTest("JIT Disabled"): with jax.disable_jit(): output = model_jitted(inputs_dict["pixel_values"]) self.assertEqual(jitted_output.shape, output.shape) self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) def test_get_text_features(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = FlaxCLIPModel(config) @jax.jit def model_jitted(input_ids, attention_mask, **kwargs): return model.get_text_features(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_output = model_jitted(**inputs_dict) with self.subTest("JIT Disabled"): with jax.disable_jit(): output = model_jitted(**inputs_dict) self.assertEqual(jitted_output.shape, output.shape) self.assertTrue(np.allclose(jitted_output, output, atol=1e-3)) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("openai/clip-vit-base-patch32", from_pt=True) outputs = model(input_ids=np.ones((1, 1)), pixel_values=np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() self.assertEqual( len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual( len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) # overwrite from common since FlaxCLIPModel returns nested output # which is not supported in the common test def test_from_pretrained_save_pretrained(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if model_class.__name__ != "FlaxBertModel": continue with self.subTest(model_class.__name__): model = model_class(config) prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) outputs = model(**prepared_inputs_dict).to_tuple() # verify that normal save_pretrained works as expected with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_loaded = model_class.from_pretrained(tmpdirname) outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] for output_loaded, output in zip(outputs_loaded, outputs): self.assert_almost_equals(output_loaded, output, 1e-3) # verify that save_pretrained for distributed training # with `params=params` works as expected with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, params=model.params) model_loaded = model_class.from_pretrained(tmpdirname) outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()[:4] for output_loaded, output in zip(outputs_loaded, outputs): self.assert_almost_equals(output_loaded, output, 1e-3)
transformers/tests/models/clip/test_modeling_flax_clip.py/0
{ "file_path": "transformers/tests/models/clip/test_modeling_flax_clip.py", "repo_id": "transformers", "token_count": 11160 }
351
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class CodeGenTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = CodeGenTokenizer rust_tokenizer_class = CodeGenTokenizerFast test_rust_tokenizer = True from_pretrained_kwargs = {"add_prefix_space": True} test_seq2seq = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "lower newer" bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text, add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) sequence = "lower newer" # Testing tokenization tokens = tokenizer.tokenize(sequence, add_prefix_space=True) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) # Testing conversion to ids without special tokens ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) # Testing conversion to ids with special tokens rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) ids = tokenizer.encode(sequence, add_prefix_space=True) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # Testing the unknown token input_tokens = tokens + [rust_tokenizer.unk_token] input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_pretokenized_inputs(self, *args, **kwargs): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def test_padding(self, max_length=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) def test_padding_if_pad_token_set_slow(self): tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>") # Simple input s = "This is a simple input" s2 = ["This is a simple input looooooooong", "This is a simple input"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] pad_token_id = tokenizer.pad_token_id out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np") out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np") out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np") out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np") # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1], 30) self.assertTrue(pad_token_id in out_s["input_ids"]) self.assertTrue(0 in out_s["attention_mask"]) # s2 # test automatic padding self.assertEqual(out_s2["input_ids"].shape[-1], 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_s2["input_ids"][0]) self.assertFalse(0 in out_s2["attention_mask"][0]) # short slice does have padding self.assertTrue(pad_token_id in out_s2["input_ids"][1]) self.assertTrue(0 in out_s2["attention_mask"][1]) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1], 60) self.assertTrue(pad_token_id in out_p["input_ids"]) self.assertTrue(0 in out_p["attention_mask"]) # p2 # test automatic padding pair self.assertEqual(out_p2["input_ids"].shape[-1], 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_p2["input_ids"][0]) self.assertFalse(0 in out_p2["attention_mask"][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_p2["input_ids"][1]) self.assertTrue(0 in out_p2["attention_mask"][1]) def test_add_bos_token_slow(self): bos_token = "$$$" tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True) s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] bos_token_id = tokenizer.bos_token_id out_s = tokenizer(s) out_s2 = tokenizer(s2) self.assertEqual(out_s.input_ids[0], bos_token_id) self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids)) decode_s = tokenizer.decode(out_s.input_ids) decode_s2 = tokenizer.batch_decode(out_s2.input_ids) self.assertTrue(decode_s.startswith(bos_token)) self.assertTrue(all(d.startswith(bos_token) for d in decode_s2)) @slow def test_truncation(self): tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") text = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" expected_trucated_text = "\nif len_a > len_b: result = a\nelse: result = b" input_ids = tokenizer.encode(text) truncation_pattern = ["^#", re.escape("<|endoftext|>"), "^'''", '^"""', "\n\n\n"] decoded_text = tokenizer.decode(input_ids, truncate_before_pattern=truncation_pattern) self.assertEqual(decoded_text, expected_trucated_text) # TODO @ArthurZ outputs of the fast tokenizer are different in this case, un-related to the PR # tokenizer has no padding token def test_padding_different_model_input_name(self): pass
transformers/tests/models/codegen/test_tokenization_codegen.py/0
{ "file_path": "transformers/tests/models/codegen/test_tokenization_codegen.py", "repo_id": "transformers", "token_count": 4905 }
352
# coding=utf-8 # Copyright 2018 Microsoft Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class DebertaModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, relative_attention=False, position_biased_input=True, pos_att_type="None", num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.relative_attention = relative_attention self.position_biased_input = position_biased_input self.pos_att_type = pos_att_type self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def check_loss_output(self, result): self.parent.assertListEqual(list(result.loss.size()), []) def create_and_check_deberta_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaModel(config=config) model.to(torch_device) model.eval() sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def create_and_check_deberta_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_deberta_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(result) def create_and_check_deberta_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_deberta_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DebertaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_torchscript = False test_pruning = False test_head_masking = False is_encoder_decoder = False def setUp(self): self.model_tester = DebertaModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_deberta_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DebertaModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch @require_sentencepiece @require_tokenizers class DebertaModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = DebertaModel.from_pretrained("microsoft/deberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4), f"{output[:, 1:4, 1:4]}")
transformers/tests/models/deberta/test_modeling_deberta.py/0
{ "file_path": "transformers/tests/models/deberta/test_modeling_deberta.py", "repo_id": "transformers", "token_count": 5314 }
353
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer from transformers.testing_utils import slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin # using a different tiny model than the one used for default params defined in init to ensure proper testing FSMT_TINY2 = "stas/tiny-wmt19-en-ru" class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = FSMTTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.langs = ["en", "ru"] config = { "langs": self.langs, "src_vocab_size": 10, "tgt_vocab_size": 20, } self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"]) self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"]) config_file = os.path.join(self.tmpdirname, "tokenizer_config.json") self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) with open(config_file, "w") as fp: fp.write(json.dumps(config)) @cached_property def tokenizer_ru_en(self): return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en") @cached_property def tokenizer_en_ru(self): return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru") def test_online_tokenizer_config(self): """this just tests that the online tokenizer files get correctly fetched and loaded via its tokenizer_config.json and it's not slow so it's run by normal CI """ tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2) self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"]) self.assertEqual(tokenizer.src_vocab_size, 21) self.assertEqual(tokenizer.tgt_vocab_size, 21) def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_ru_en text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == text + [2] assert encoded_pair == text + [2] + text_2 + [2] @slow def test_match_encode_decode(self): tokenizer_enc = self.tokenizer_en_ru tokenizer_dec = self.tokenizer_ru_en targets = [ [ "Here's a little song I wrote. Don't worry, be happy.", [2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2], ], ["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]], ] # if data needs to be recreated or added, run: # import torch # model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe") # for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""") for src_text, tgt_input_ids in targets: encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None) self.assertListEqual(encoded_ids, tgt_input_ids) # and decode backward, using the reversed languages model decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True) self.assertEqual(decoded_text, src_text) @slow def test_tokenizer_lower(self): tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True) tokens = tokenizer.tokenize("USA is United States of America") expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"] self.assertListEqual(tokens, expected) @unittest.skip("FSMTConfig.__init__ requires non-optional args") def test_torch_encode_plus_sent_to_model(self): pass @unittest.skip("FSMTConfig.__init__ requires non-optional args") def test_np_encode_plus_sent_to_model(self): pass
transformers/tests/models/fsmt/test_tokenization_fsmt.py/0
{ "file_path": "transformers/tests/models/fsmt/test_tokenization_fsmt.py", "repo_id": "transformers", "token_count": 2945 }
354
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np import transformers from transformers import GPT2Config, GPT2Tokenizer, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gpt2.modeling_flax_gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model if is_torch_available(): import torch class FlaxGPT2ModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = GPT2Config( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=False, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, ) return (config, input_ids, input_mask) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def prepare_config_and_inputs_for_decoder(self): config, input_ids, attention_mask = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_bool_attention_mask_in_generation(self, model_class_name, config, input_ids, attention_mask): model = model_class_name(config) output_int_att_mask = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=3, ) output_bool_att_mask = model.generate( input_ids=input_ids, attention_mask=attention_mask.astype(bool), max_new_tokens=3, ) self.parent.assertTrue( (output_bool_att_mask.sequences == output_int_att_mask.sequences).all(), "Generated response differ between boolean and integer attention mask", ) @require_flax class FlaxGPT2ModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxGPT2Model, FlaxGPT2LMHeadModel) if is_flax_available() else () all_generative_model_classes = (FlaxGPT2LMHeadModel,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxGPT2ModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) def test_bool_attention_mask_in_generation(self): for model_class_name in self.all_generative_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_bool_attention_mask_in_generation( model_class_name, config, input_ids, attention_mask ) @slow def test_batch_generation(self): tokenizer = GPT2Tokenizer.from_pretrained("gpt2", pad_token="</s>", padding_side="left") inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True) model = FlaxGPT2LMHeadModel.from_pretrained("gpt2") model.do_sample = False model.config.pad_token_id = model.config.eos_token_id jit_generate = jax.jit(model.generate) output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True) expected_string = [ "Hello this is a long string of words. I'm going to start with the first one.\n", "Hey, I'm not sure if I'm going to be able to do", ] self.assertListEqual(output_string, expected_string) # overwrite from common since `attention_mask` in combination # with `causal_mask` behaves slighly differently @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) batch_size, seq_length = pt_inputs["input_ids"].shape rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): pt_inputs["attention_mask"][batch_idx, :start_index] = 0 pt_inputs["attention_mask"][batch_idx, start_index:] = 1 prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() self.assertEqual( len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2) # overwrite from common since `attention_mask` in combination # with `causal_mask` behaves slighly differently @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() fx_model = model_class(config, dtype=jnp.float32) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) batch_size, seq_length = pt_inputs["input_ids"].shape rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): pt_inputs["attention_mask"][batch_idx, :start_index] = 0 pt_inputs["attention_mask"][batch_idx, start_index:] = 1 prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual( len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("gpt2", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
transformers/tests/models/gpt2/test_modeling_flax_gpt2.py/0
{ "file_path": "transformers/tests/models/gpt2/test_modeling_flax_gpt2.py", "repo_id": "transformers", "token_count": 7399 }
355
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Hubert model. """ import math import os import pickle import tempfile import unittest import pytest from transformers import HubertConfig, is_torch_available from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device from transformers.utils import is_torch_fx_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( HubertForCTC, HubertForSequenceClassification, HubertModel, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, ) from transformers.models.hubert.modeling_hubert import _compute_mask_indices if is_torch_fx_available(): from transformers.utils.fx import symbolic_trace class HubertModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return HubertConfig( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, do_stable_layer_norm=self.do_stable_layer_norm, ) def create_and_check_model(self, config, input_values, attention_mask): model = HubertModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = HubertModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = HubertForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = HubertForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = HubertForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = HubertForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = HubertForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class HubertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (HubertForCTC, HubertForSequenceClassification, HubertModel) if is_torch_available() else () pipeline_model_mapping = ( { "audio-classification": HubertForSequenceClassification, "automatic-speech-recognition": HubertForCTC, "feature-extraction": HubertModel, } if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_headmasking = False def setUp(self): self.model_tester = HubertModelTester(self) self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Hubert has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Hubert cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Hubert has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "quantizer.weight_proj.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # Hubert cannot be TorchScripted because of torch.nn.utils.weight_norm def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): # TODO: fix it self.skipTest("torch 2.1 breaks torch fx tests for wav2vec2/hubert.") if not is_torch_fx_available() or not self.fx_compatible: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) try: if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward labels = inputs.get("labels", None) input_names = [ "attention_mask", "decoder_attention_mask", "decoder_input_ids", "input_features", "input_ids", "input_values", ] if labels is not None: input_names.append("labels") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) model_output = model(**filtered_inputs) traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) else: input_names = [ "attention_mask", "bbox", "input_features", "input_ids", "input_values", "pixel_values", "token_type_ids", "visual_feats", "visual_pos", ] labels = inputs.get("labels", None) start_positions = inputs.get("start_positions", None) end_positions = inputs.get("end_positions", None) if labels is not None: input_names.append("labels") if start_positions is not None: input_names.append("start_positions") if end_positions is not None: input_names.append("end_positions") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) model_output = model(**filtered_inputs) traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) except Exception as e: self.fail(f"Couldn't trace module: {e}") def flatten_output(output): flatten = [] for x in output: if isinstance(x, (tuple, list)): flatten += flatten_output(x) elif not isinstance(x, torch.Tensor): continue else: flatten.append(x) return flatten model_output = flatten_output(model_output) traced_output = flatten_output(traced_output) num_outputs = len(model_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], traced_output[i]), f"traced {i}th output doesn't match model {i}th output for {model_class}", ) # Test that the model can be serialized and restored properly with tempfile.TemporaryDirectory() as tmp_dir_name: pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") try: with open(pkl_file_name, "wb") as f: pickle.dump(traced_model, f) with open(pkl_file_name, "rb") as f: loaded = pickle.load(f) except Exception as e: self.fail(f"Couldn't serialize / deserialize the traced model: {e}") loaded_output = loaded(**filtered_inputs) loaded_output = flatten_output(loaded_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], loaded_output[i]), f"serialized model {i}th output doesn't match model {i}th output for {model_class}", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = HubertModel.from_pretrained("facebook/hubert-base-ls960") self.assertIsNotNone(model) @require_torch class HubertRobustModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (HubertForCTC, HubertForSequenceClassification, HubertModel) if is_torch_available() else () test_pruning = False test_headmasking = False def setUp(self): self.model_tester = HubertModelTester( self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True ) self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_batched_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_batch_inference(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Hubert has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Hubert cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Hubert has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "quantizer.weight_proj.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") self.assertIsNotNone(model) @require_torch class HubertUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) @require_torch @require_soundfile @slow class HubertModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): from datasets import load_dataset ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_ctc_batched(self): model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft", torch_dtype=torch.float16).to( torch_device ) processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft", do_lower_case=True) input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.half().to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_keyword_spotting(self): model = HubertForSequenceClassification.from_pretrained( "superb/hubert-base-superb-ks", torch_dtype=torch.float16 ).to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks") input_data = self._load_superb("ks", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True) input_values = inputs.input_values.half().to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): outputs = model(input_values, attention_mask=attention_mask) predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1) expected_labels = [2, 6, 10, 9] # s3prl logits for the same batch expected_logits = torch.tensor([7.6692, 17.7795, 11.1562, 11.8232], dtype=torch.float16, device=torch_device) self.assertListEqual(predicted_ids.tolist(), expected_labels) self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=3e-2)) def test_inference_intent_classification(self): model = HubertForSequenceClassification.from_pretrained( "superb/hubert-base-superb-ic", torch_dtype=torch.float16 ).to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ic") input_data = self._load_superb("ic", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True) input_values = inputs.input_values.half().to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): outputs = model(input_values, attention_mask=attention_mask) predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1) predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1) predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1) expected_labels_action = [1, 0, 4, 3] expected_logits_action = torch.tensor( [5.9052, 12.5865, 4.4840, 10.0240], dtype=torch.float16, device=torch_device ) expected_labels_object = [1, 10, 3, 4] expected_logits_object = torch.tensor( [5.5316, 11.7946, 8.1672, 23.2415], dtype=torch.float16, device=torch_device ) expected_labels_location = [0, 0, 0, 1] expected_logits_location = torch.tensor( [5.2053, 8.9577, 10.0447, 8.1481], dtype=torch.float16, device=torch_device ) self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action) self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object) self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location) # TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572 self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=3e-1)) self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=3e-1)) self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=3e-1)) def test_inference_speaker_identification(self): model = HubertForSequenceClassification.from_pretrained( "superb/hubert-base-superb-sid", torch_dtype=torch.float16 ).to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-sid") input_data = self._load_superb("si", 4) output_logits = [] with torch.no_grad(): for example in input_data["speech"]: input = processor(example, return_tensors="pt", padding=True) output = model(input.input_values.half().to(torch_device), attention_mask=None) output_logits.append(output.logits[0]) output_logits = torch.stack(output_logits) predicted_logits, predicted_ids = torch.max(output_logits, dim=-1) expected_labels = [5, 1, 1, 3] # s3prl logits for the same batch expected_logits = torch.tensor( [78231.5547, 123166.6094, 122785.4141, 84851.2969], dtype=torch.float16, device=torch_device ) self.assertListEqual(predicted_ids.tolist(), expected_labels) # TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572 self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=10)) def test_inference_emotion_recognition(self): model = HubertForSequenceClassification.from_pretrained( "superb/hubert-base-superb-er", torch_dtype=torch.float16 ).to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-er") input_data = self._load_superb("er", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True) input_values = inputs.input_values.half().to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): outputs = model(input_values, attention_mask=attention_mask) predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1) expected_labels = [1, 1, 2, 2] # s3prl logits for the same batch expected_logits = torch.tensor([2.8384, 2.3389, 3.8564, 4.5558], dtype=torch.float16, device=torch_device) self.assertListEqual(predicted_ids.tolist(), expected_labels) # TODO: lower the tolerance after merging the padding fix https://github.com/pytorch/fairseq/pull/3572 self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-1)) def test_inference_distilhubert(self): model = HubertModel.from_pretrained("ntu-spml/distilhubert").to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("ntu-spml/distilhubert") # TODO: can't test on batched inputs due to incompatible padding https://github.com/pytorch/fairseq/pull/3572 input_speech = self._load_datasamples(1) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): outputs = model(input_values).last_hidden_state # expected outputs taken from the original SEW implementation expected_outputs_first = torch.tensor( [ [ [-0.3505, 0.1167, 0.0608, 0.1294], [-0.3085, 0.0481, 0.1106, 0.0955], [-0.3107, -0.0391, 0.0739, 0.1360], [-0.2385, -0.1795, -0.0928, 0.2389], ] ], device=torch_device, ) expected_outputs_last = torch.tensor( [ [ [-0.0732, 0.0255, 0.0529, -0.1372], [-0.0812, 0.1259, 0.0564, -0.0438], [-0.0054, 0.0758, -0.0002, -0.1617], [0.0133, -0.0320, -0.0687, 0.0062], ] ], device=torch_device, ) expected_output_sum = -3776.0730 self.assertTrue(torch.allclose(outputs[:, :4, :4], expected_outputs_first, atol=5e-3)) self.assertTrue(torch.allclose(outputs[:, -4:, -4:], expected_outputs_last, atol=5e-3)) self.assertTrue(abs(outputs.sum() - expected_output_sum) < 0.1)
transformers/tests/models/hubert/test_modeling_hubert.py/0
{ "file_path": "transformers/tests/models/hubert/test_modeling_hubert.py", "repo_id": "transformers", "token_count": 18040 }
356
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class LiltModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=24, num_hidden_layers=2, num_attention_heads=6, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def get_config(self): return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, ): model = LiltModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, ): config.num_labels = self.num_labels model = LiltForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, ): model = LiltForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class LiltModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = False test_pruning = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): self.model_tester = LiltModelTester(self) self.config_tester = ConfigTester(self, config_class=LiltConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = LiltModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch @slow class LiltModelIntegrationTest(unittest.TestCase): def test_inference_no_head(self): model = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(torch_device) input_ids = torch.tensor([[1, 2]], device=torch_device) bbox = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=torch_device) # forward pass with torch.no_grad(): outputs = model(input_ids=input_ids, bbox=bbox) expected_shape = torch.Size([1, 2, 768]) expected_slice = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]], device=torch_device, ) self.assertTrue(outputs.last_hidden_state.shape, expected_shape) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], expected_slice, atol=1e-3))
transformers/tests/models/lilt/test_modeling_lilt.py/0
{ "file_path": "transformers/tests/models/lilt/test_modeling_lilt.py", "repo_id": "transformers", "token_count": 5376 }
357
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple from transformers import AddedToken, LukeTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt") SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json") class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = LukeTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"} def get_tokenizer(self, task=None, **kwargs): kwargs.update(self.special_tokens_map) tokenizer = LukeTokenizer( vocab_file=SAMPLE_VOCAB, merges_file=SAMPLE_MERGE_FILE, entity_vocab_file=SAMPLE_ENTITY_VOCAB, task=task, **kwargs, ) return tokenizer def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertEqual(encoded_sentence, encoded_text_from_decode) self.assertEqual(encoded_pair, encoded_pair_from_decode) def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]: txt = "Beyonce lives in Los Angeles" ids = tokenizer.encode(txt, add_special_tokens=False) return txt, ids def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_padding_entity_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) pad_id = tokenizer.entity_vocab["[PAD]"] mask_id = tokenizer.entity_vocab["[MASK]"] encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]]) # test with a sentence with no entity encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]]) def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." spans = [(15, 34)] entities = ["East Asian language"] with self.assertRaises(ValueError): tokenizer(sentence, entities=tuple(entities), entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) with self.assertRaises(ValueError): tokenizer(sentence, entities=[0], entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=[0]) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)]) def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[span, span]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0]) def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_pair_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0]) def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_span_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0, 0]) @slow @require_torch class LukeTokenizerIntegrationTests(unittest.TestCase): tokenizer_class = LukeTokenizer from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() def test_single_text_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_single_text_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ] ] ) # fmt: on def test_single_text_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer( sentence, entities=entities, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_text_pair_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_entity_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True) # test words self.assertEqual(len(encoding["input_ids"]), 42) self.assertEqual(len(encoding["attention_mask"]), 42) self.assertEqual(len(encoding["token_type_ids"]), 42) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous" " netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>" ) # test entities self.assertEqual(encoding["entity_ids"], [2]) self.assertEqual(encoding["entity_attention_mask"], [1]) self.assertEqual(encoding["entity_token_type_ids"], [0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_entity_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True ) sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) # entity information span = (39, 42) encoding = tokenizer( sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt" ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 512)) self.assertEqual(encoding["attention_mask"].shape, (1, 512)) self.assertEqual(encoding["token_type_ids"].shape, (1, 512)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 1)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_pair_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False), "<ent> Ana Ivanovic<ent>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>" ) self.assertEqual(encoding["entity_ids"], [2, 3]) self.assertEqual(encoding["entity_attention_mask"], [1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_entity_pair_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 2)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_span_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual(encoding["entity_ids"], [2, 2, 2]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on self.assertEqual(encoding["entity_start_positions"], [1, 3, 9]) self.assertEqual(encoding["entity_end_positions"], [2, 5, 9]) def test_entity_span_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) self.assertEqual(encoding["entity_start_positions"].shape, (1, 16)) self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))
transformers/tests/models/luke/test_tokenization_luke.py/0
{ "file_path": "transformers/tests/models/luke/test_tokenization_luke.py", "repo_id": "transformers", "token_count": 14108 }
358
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple from transformers.models.mluke.tokenization_mluke import MLukeTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json") class MLukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = MLukeTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"} def get_tokenizer(self, task=None, **kwargs): kwargs.update(self.special_tokens_map) kwargs.update({"task": task}) tokenizer = MLukeTokenizer(vocab_file=SAMPLE_VOCAB, entity_vocab_file=SAMPLE_ENTITY_VOCAB, **kwargs) return tokenizer def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" spm_tokens = ["▁l", "ow", "er", "▁new", "er"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, spm_tokens) input_tokens = tokens + [tokenizer.unk_token] input_spm_tokens = [149, 116, 40, 410, 40] + [3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_spm_tokens) def mluke_dict_integration_testing(self): tokenizer = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [35378, 8999, 38]) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False), [35378, 8999, 38, 33273, 11676, 604, 365, 21392, 201, 1819], ) def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("hf-internal-testing/tiny-random-mluke") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertEqual(encoded_sentence, encoded_text_from_decode) self.assertEqual(encoded_pair, encoded_pair_from_decode) def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]: txt = "Beyonce lives in Los Angeles" ids = tokenizer.encode(txt, add_special_tokens=False) return txt, ids def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_padding_entity_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) pad_id = tokenizer.entity_vocab["[PAD]"] mask_id = tokenizer.entity_vocab["[MASK]"] encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]]) # test with a sentence with no entity encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]]) def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer() sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and Afghanistan." entities = ["DUMMY"] spans = [(0, 9)] with self.assertRaises(ValueError): tokenizer(sentence, entities=tuple(entities), entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) with self.assertRaises(ValueError): tokenizer(sentence, entities=[0], entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=[0]) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)]) def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[span, span]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0]) def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_pair_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0]) def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_span_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0, 0]) @slow @require_torch class MLukeTokenizerIntegrationTests(unittest.TestCase): tokenizer_class = MLukeTokenizer from_pretrained_kwargs = {"cls_token": "<s>"} @classmethod def setUpClass(cls): cls.tokenizer = MLukeTokenizer.from_pretrained("studio-ousia/mluke-base", return_token_type_ids=True) cls.entity_classification_tokenizer = MLukeTokenizer.from_pretrained( "studio-ousia/mluke-base", return_token_type_ids=True, task="entity_classification" ) cls.entity_pair_tokenizer = MLukeTokenizer.from_pretrained( "studio-ousia/mluke-base", return_token_type_ids=True, task="entity_pair_classification" ) cls.entity_span_tokenizer = MLukeTokenizer.from_pretrained( "studio-ousia/mluke-base", return_token_type_ids=True, task="entity_span_classification" ) def test_single_text_no_padding_or_truncation(self): tokenizer = self.tokenizer sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." entities = ["en:ISO 639-3", "DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"] spans = [(0, 9), (59, 63), (68, 75), (77, 88)] encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s> ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン ( Afghanistan ).</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][17], spaces_between_special_tokens=False), "Iran") self.assertEqual( tokenizer.decode(encoding["input_ids"][19:25], spaces_between_special_tokens=False), "アフガニスタン" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][26], spaces_between_special_tokens=False), "Afghanistan" ) self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["en:ISO 639-3"], tokenizer.entity_vocab["[UNK]"], tokenizer.entity_vocab["ja:アフガニスタン"], tokenizer.entity_vocab["en:Afghanistan"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_single_text_only_entity_spans_no_padding_or_truncation(self): tokenizer = self.tokenizer sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." entities = ["en:ISO 639-3", "DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"] spans = [(0, 9), (59, 63), (68, 75), (77, 88)] encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s> ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン ( Afghanistan ).</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][17], spaces_between_special_tokens=False), "Iran") self.assertEqual( tokenizer.decode(encoding["input_ids"][20:25], spaces_between_special_tokens=False), "アフガニスタン" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][26], spaces_between_special_tokens=False), "Afghanistan" ) self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["en:ISO 639-3"], tokenizer.entity_vocab["[UNK]"], tokenizer.entity_vocab["ja:アフガニスタン"], tokenizer.entity_vocab["en:Afghanistan"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_single_text_padding_pytorch_tensors(self): tokenizer = self.tokenizer sentence = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." entities = ["en:ISO 639-3", "DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"] spans = [(0, 9), (59, 63), (68, 75), (77, 88)] encoding = tokenizer( sentence, entities=entities, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_text_pair_no_padding_or_truncation(self): tokenizer = self.tokenizer sentence = "ISO 639-3 uses the code fas" sentence_pair = "for the dialects spoken across Iran and アフガニスタン (Afghanistan)." entities = ["en:ISO 639-3"] entities_pair = ["DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"] spans = [(0, 9)] spans_pair = [(31, 35), (40, 47), (49, 60)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s> ISO 639-3 uses the code fas</s></s> for the dialects spoken across Iran and アフガニスタン ( Afghanistan" " ).</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][19], spaces_between_special_tokens=False), "Iran") self.assertEqual( tokenizer.decode(encoding["input_ids"][21:27], spaces_between_special_tokens=False), "アフガニスタン" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][28], spaces_between_special_tokens=False), "Afghanistan" ) self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["en:ISO 639-3"], tokenizer.entity_vocab["[UNK]"], tokenizer.entity_vocab["ja:アフガニスタン"], tokenizer.entity_vocab["en:Afghanistan"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [19, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [21, 22, 23, 24, 25, 26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [28, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_text_pair_only_entity_spans_no_padding_or_truncation(self): tokenizer = self.tokenizer sentence = "ISO 639-3 uses the code fas" sentence_pair = "for the dialects spoken across Iran and アフガニスタン (Afghanistan)." entities = ["en:ISO 639-3"] entities_pair = ["DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"] spans = [(0, 9)] spans_pair = [(31, 35), (40, 47), (49, 60)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s> ISO 639-3 uses the code fas</s></s> for the dialects spoken across Iran and アフガニスタン ( Afghanistan" " ).</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][1:5], spaces_between_special_tokens=False), "ISO 639-3" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][19], spaces_between_special_tokens=False), "Iran") self.assertEqual( tokenizer.decode(encoding["input_ids"][21:27], spaces_between_special_tokens=False), "アフガニスタン" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][28], spaces_between_special_tokens=False), "Afghanistan" ) self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["en:ISO 639-3"], tokenizer.entity_vocab["[UNK]"], tokenizer.entity_vocab["ja:アフガニスタン"], tokenizer.entity_vocab["en:Afghanistan"], ], ) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [19, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [21, 22, 23, 24, 25, 26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [28, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_text_pair_padding_pytorch_tensors(self): tokenizer = self.tokenizer sentence = "ISO 639-3 uses the code fas" sentence_pair = "for the dialects spoken across Iran and アフガニスタン (Afghanistan)." entities = ["en:ISO 639-3"] entities_pair = ["DUMMY_ENTITY", "ja:アフガニスタン", "en:Afghanistan"] spans = [(0, 9)] spans_pair = [(31, 35), (40, 47), (49, 60)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, padding="max_length", max_length=40, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 40)) self.assertEqual(encoding["attention_mask"].shape, (1, 40)) self.assertEqual(encoding["token_type_ids"].shape, (1, 40)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_entity_classification_no_padding_or_truncation(self): tokenizer = self.entity_classification_tokenizer sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True) # test words self.assertEqual(len(encoding["input_ids"]), 23) self.assertEqual(len(encoding["attention_mask"]), 23) self.assertEqual(len(encoding["token_type_ids"]), 23) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s> Japanese is an<ent>East Asian language<ent>spoken by about 128 million people, primarily in" " Japan.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][4:9], spaces_between_special_tokens=False), "<ent>East Asian language<ent>", ) # test entities mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1]) self.assertEqual(encoding["entity_token_type_ids"], [0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [[4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]] ) # fmt: on def test_entity_classification_padding_pytorch_tensors(self): tokenizer = self.entity_classification_tokenizer sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) encoding = tokenizer( sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt" ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 512)) self.assertEqual(encoding["attention_mask"].shape, (1, 512)) self.assertEqual(encoding["token_type_ids"].shape, (1, 512)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 1)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_pair_classification_no_padding_or_truncation(self): tokenizer = self.entity_pair_tokenizer sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information spans = [(0, 8), (84, 89)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s><ent>Japanese<ent>is an East Asian language spoken by about 128 million people, primarily" " in<ent2>Japan<ent2>.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][1:4], spaces_between_special_tokens=False), "<ent>Japanese<ent>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][20:23], spaces_between_special_tokens=False), "<ent2>Japan<ent2>" ) mask_id = tokenizer.entity_vocab["[MASK]"] mask2_id = tokenizer.entity_vocab["[MASK2]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask2_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [20, 21, 22, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_entity_pair_classification_padding_pytorch_tensors(self): tokenizer = self.entity_pair_tokenizer sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information spans = [(0, 8), (84, 89)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 2)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_span_classification_no_padding_or_truncation(self): tokenizer = self.entity_span_tokenizer sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." spans = [(0, 8), (15, 34), (84, 89)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s> Japanese is an East Asian language spoken by about 128 million people, primarily in Japan.</s>", ) mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [18, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]] ) # fmt: on self.assertEqual(encoding["entity_start_positions"], [1, 4, 18]) self.assertEqual(encoding["entity_end_positions"], [1, 6, 18]) def test_entity_span_classification_padding_pytorch_tensors(self): tokenizer = self.entity_span_tokenizer sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." spans = [(0, 8), (15, 34), (84, 89)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) self.assertEqual(encoding["entity_start_positions"].shape, (1, 16)) self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))
transformers/tests/models/mluke/test_tokenization_mluke.py/0
{ "file_path": "transformers/tests/models/mluke/test_tokenization_mluke.py", "repo_id": "transformers", "token_count": 14687 }
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MobileViTV2 model. """ import unittest from transformers import MobileViTV2Config from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, MobileViTV2Model from transformers.models.mobilevitv2.modeling_mobilevitv2 import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class MobileViTV2ConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "width_multiplier")) class MobileViTV2ModelTester: def __init__( self, parent, batch_size=13, image_size=64, patch_size=2, num_channels=3, hidden_act="swish", conv_kernel_size=3, output_stride=32, classifier_dropout_prob=0.1, initializer_range=0.02, is_training=True, use_labels=True, num_labels=10, scope=None, width_multiplier=0.25, ffn_dropout=0.0, attn_dropout=0.0, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.last_hidden_size = make_divisible(512 * width_multiplier, divisor=8) self.hidden_act = hidden_act self.conv_kernel_size = conv_kernel_size self.output_stride = output_stride self.classifier_dropout_prob = classifier_dropout_prob self.use_labels = use_labels self.is_training = is_training self.num_labels = num_labels self.initializer_range = initializer_range self.scope = scope self.width_multiplier = width_multiplier self.ffn_dropout_prob = ffn_dropout self.attn_dropout_prob = attn_dropout def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return MobileViTV2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, base_attn_unit_dims=[16, 24, 32], n_attn_blocks=[1, 1, 2], aspp_out_channels=32, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = MobileViTV2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = MobileViTV2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = MobileViTV2ForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as MobileViTV2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (MobileViTV2Model, MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": MobileViTV2Model, "image-classification": MobileViTV2ForImageClassification, "image-segmentation": MobileViTV2ForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = MobileViTV2ModelTester(self) self.config_tester = MobileViTV2ConfigTester(self, config_class=MobileViTV2Config, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="MobileViTV2 does not output attentions") def test_attention_outputs(self): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run.") def test_multi_gpu_data_parallel_forward(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_stages = 5 self.assertEqual(len(hidden_states), expected_num_stages) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. divisor = 2 for i in range(len(hidden_states)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = MobileViTV2Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class MobileViTV2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = MobileViTV2ForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_semantic_segmentation(self): model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") model = model.to(torch_device) image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ], device=torch_device, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) @slow def test_post_processing_semantic_segmentation(self): model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") model = model.to(torch_device) image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)]) expected_shape = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, expected_shape)
transformers/tests/models/mobilevitv2/test_modeling_mobilevitv2.py/0
{ "file_path": "transformers/tests/models/mobilevitv2/test_modeling_mobilevitv2.py", "repo_id": "transformers", "token_count": 6227 }
360
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch PoolFormer model. """ import unittest from transformers import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MODEL_MAPPING, PoolFormerConfig, PoolFormerForImageClassification, PoolFormerModel from transformers.models.poolformer.modeling_poolformer import POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class PoolFormerConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class PoolFormerModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[16, 32, 64, 128], downsampling_rates=[1, 4, 8, 16], is_training=False, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = PoolFormerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, initializer_range=self.initializer_range, ) return config, pixel_values, labels def create_and_check_model(self, config, pixel_values, labels): model = PoolFormerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = self.image_size // 32.0 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class PoolFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (PoolFormerModel, PoolFormerForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": PoolFormerModel, "image-classification": PoolFormerForImageClassification} if is_torch_available() else {} ) test_head_masking = False test_pruning = False test_resize_embeddings = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = PoolFormerModelTester(self) self.config_tester = PoolFormerConfigTester(self, config_class=PoolFormerConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip("PoolFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("PoolFormer does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @slow def test_model_from_pretrained(self): for model_name in POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = PoolFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch class PoolFormerModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_classification_head(self): image_processor = PoolFormerImageProcessor() model = PoolFormerForImageClassification.from_pretrained("sail/poolformer_s12").to(torch_device) inputs = image_processor(images=prepare_img(), return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.6113, 0.1685, -0.0492]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/poolformer/test_modeling_poolformer.py/0
{ "file_path": "transformers/tests/models/poolformer/test_modeling_poolformer.py", "repo_id": "transformers", "token_count": 3673 }
361
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow RegNet model. """ from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class TFRegNetModelTester: def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = TFRegNetModel(config=config) result = model(pixel_values, training=False) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = TFRegNetForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFRegNetModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as RegNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = TFRegNetModelTester(self) self.config_tester = ConfigTester(self, config_class=RegNetConfig, has_text_modality=False) def create_and_test_config_common_properties(self): return @unittest.skip(reason="RegNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def test_keras_fit(self): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() layers_type = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: config.layer_type = layer_type inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Since RegNet does not have any attention we need to rewrite this test. def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFRegNetModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class RegNetModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs, training=False) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant([-0.4180, -1.5051, -3.4836]) tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4)
transformers/tests/models/regnet/test_modeling_tf_regnet.py/0
{ "file_path": "transformers/tests/models/regnet/test_modeling_tf_regnet.py", "repo_id": "transformers", "token_count": 4911 }
362
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import RobertaPreLayerNormConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, ) from transformers.models.roberta_prelayernorm.modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormEmbeddings, create_position_ids_from_input_ids, ) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTester with Roberta->RobertaPreLayerNorm class RobertaPreLayerNormModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaPreLayerNormModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RobertaPreLayerNormModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RobertaPreLayerNormForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RobertaPreLayerNormForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaPreLayerNormForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RobertaPreLayerNormForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RobertaPreLayerNormForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaPreLayerNormForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RobertaPreLayerNormModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormModel, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (RobertaPreLayerNormForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": RobertaPreLayerNormModel, "fill-mask": RobertaPreLayerNormForMaskedLM, "question-answering": RobertaPreLayerNormForQuestionAnswering, "text-classification": RobertaPreLayerNormForSequenceClassification, "text-generation": RobertaPreLayerNormForCausalLM, "token-classification": RobertaPreLayerNormForTokenClassification, "zero-shot": RobertaPreLayerNormForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = False model_split_percents = [0.5, 0.8, 0.9] # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.setUp with Roberta->RobertaPreLayerNorm def setUp(self): self.model_tester = RobertaPreLayerNormModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaPreLayerNormConfig, hidden_size=37) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_config def test_config(self): self.config_tester.run_common_tests() # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_model def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_model_various_embeddings def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_model_as_decoder def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_model_as_decoder_with_default_input_mask def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_for_causal_lm def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_decoder_model_past_with_large_inputs def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_for_masked_lm def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_for_token_classification def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_for_multiple_choice def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_for_question_answering def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_model_from_pretrained with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm def test_model_from_pretrained(self): for model_name in ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RobertaPreLayerNormModel.from_pretrained(model_name) self.assertIsNotNone(model) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_create_position_ids_respects_padding_index with Roberta->RobertaPreLayerNorm def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaPreLayerNormEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = RobertaPreLayerNormEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) # Copied from tests.models.roberta.test_modeling_roberta.RobertaModelTest.test_create_position_ids_from_inputs_embeds with Roberta->RobertaPreLayerNorm def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaPreLayerNormEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = RobertaPreLayerNormEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class RobertaPreLayerNormModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = RobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. EXPECTED_SLICE = torch.tensor( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], EXPECTED_SLICE, atol=1e-4)) @slow def test_inference_no_head(self): model = RobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. EXPECTED_SLICE = torch.tensor( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], EXPECTED_SLICE, atol=1e-4))
transformers/tests/models/roberta_prelayernorm/test_modeling_roberta_prelayernorm.py/0
{ "file_path": "transformers/tests/models/roberta_prelayernorm/test_modeling_roberta_prelayernorm.py", "repo_id": "transformers", "token_count": 10713 }
363
# coding=utf-8 # Copyright 2021-2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SpeechT5 feature extractors.""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechT5FeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class SpeechT5FeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=1, padding_value=0.0, sampling_rate=16000, do_normalize=True, num_mel_bins=80, hop_length=16, win_length=64, win_function="hann_window", fmin=80, fmax=7600, mel_floor=1e-10, return_attention_mask=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.padding_value = padding_value self.sampling_rate = sampling_rate self.do_normalize = do_normalize self.num_mel_bins = num_mel_bins self.hop_length = hop_length self.win_length = win_length self.win_function = win_function self.fmin = fmin self.fmax = fmax self.mel_floor = mel_floor self.return_attention_mask = return_attention_mask def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size speech_inputs = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs def prepare_inputs_for_target(self, equal_length=False, numpify=False): if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.num_mel_bins)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size speech_inputs = [ floats_list((x, self.num_mel_bins)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs @require_torch class SpeechT5FeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = SpeechT5FeatureExtractor def setUp(self): self.feat_extract_tester = SpeechT5FeatureExtractionTester(self) def _check_zero_mean_unit_variance(self, input_vector): self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3)) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test not batched input encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_zero_mean_unit_variance_normalization_np(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] paddings = ["longest", "max_length", "do_not_pad"] max_lengths = [None, 1600, None] for max_length, padding in zip(max_lengths, paddings): processed = feat_extract(speech_inputs, padding=padding, max_length=max_length, return_tensors="np") input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self.assertTrue(input_values[0][800:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:1000]) self.assertTrue(input_values[0][1000:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:1200]) def test_zero_mean_unit_variance_normalization(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lengths = range(800, 1400, 200) speech_inputs = [floats_list((1, x))[0] for x in lengths] paddings = ["longest", "max_length", "do_not_pad"] max_lengths = [None, 1600, None] for max_length, padding in zip(max_lengths, paddings): processed = feat_extract(speech_inputs, max_length=max_length, padding=padding) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self._check_zero_mean_unit_variance(input_values[1][:1000]) self._check_zero_mean_unit_variance(input_values[2][:1200]) def test_zero_mean_unit_variance_normalization_trunc_np_max_length(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = feat_extract( speech_inputs, truncation=True, max_length=1000, padding="max_length", return_tensors="np" ) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def test_zero_mean_unit_variance_normalization_trunc_np_longest(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = feat_extract( speech_inputs, truncation=True, max_length=1000, padding="longest", return_tensors="np" ) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000)) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = feat_extract( speech_inputs, truncation=True, max_length=2000, padding="longest", return_tensors="np" ) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200)) def test_double_precision_pad(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.float32) def test_call_target(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_values = feature_extractor(audio_target=np_speech_inputs, padding=True, return_tensors="np").input_values self.assertTrue(input_values.ndim == 3) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_values encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_values self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_batch_feature_target(self): speech_inputs = self.feat_extract_tester.prepare_inputs_for_target() feat_extract = self.feature_extraction_class(**self.feat_extract_dict) input_name = feat_extract.model_input_names[0] processed_features = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(x) == len(y) for x, y in zip(speech_inputs, processed_features[input_name]))) speech_inputs = self.feat_extract_tester.prepare_inputs_for_target(equal_length=True) processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="np") batch_features_input = processed_features[input_name] if len(batch_features_input.shape) < 3: batch_features_input = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins) ) @require_torch def test_batch_feature_target_pt(self): speech_inputs = self.feat_extract_tester.prepare_inputs_for_target(equal_length=True) feat_extract = self.feature_extraction_class(**self.feat_extract_dict) input_name = feat_extract.model_input_names[0] processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="pt") batch_features_input = processed_features[input_name] if len(batch_features_input.shape) < 3: batch_features_input = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.num_mel_bins) ) @require_torch def test_padding_accepts_tensors_target_pt(self): feat_extract = self.feature_extraction_class(**self.feat_extract_dict) speech_inputs = self.feat_extract_tester.prepare_inputs_for_target() input_name = feat_extract.model_input_names[0] processed_features = BatchFeature({input_name: speech_inputs}) feat_extract.feature_size = feat_extract.num_mel_bins # hack! input_np = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name] input_pt = feat_extract.pad(processed_features, padding="longest", return_tensors="pt")[input_name] self.assertTrue(abs(input_np.astype(np.float32).sum() - input_pt.numpy().astype(np.float32).sum()) < 1e-2) def test_attention_mask_target(self): feat_dict = self.feat_extract_dict feat_dict["return_attention_mask"] = True feat_extract = self.feature_extraction_class(**feat_dict) speech_inputs = self.feat_extract_tester.prepare_inputs_for_target() input_lengths = [len(x) for x in speech_inputs] input_name = feat_extract.model_input_names[0] processed = BatchFeature({input_name: speech_inputs}) feat_extract.feature_size = feat_extract.num_mel_bins # hack! processed = feat_extract.pad(processed, padding="longest", return_tensors="np") self.assertIn("attention_mask", processed) self.assertListEqual(list(processed.attention_mask.shape), list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist(), input_lengths) def test_attention_mask_with_truncation_target(self): feat_dict = self.feat_extract_dict feat_dict["return_attention_mask"] = True feat_extract = self.feature_extraction_class(**feat_dict) speech_inputs = self.feat_extract_tester.prepare_inputs_for_target() input_lengths = [len(x) for x in speech_inputs] input_name = feat_extract.model_input_names[0] processed = BatchFeature({input_name: speech_inputs}) max_length = min(input_lengths) feat_extract.feature_size = feat_extract.num_mel_bins # hack! processed_pad = feat_extract.pad( processed, padding="max_length", max_length=max_length, truncation=True, return_tensors="np" ) self.assertIn("attention_mask", processed_pad) self.assertListEqual( list(processed_pad.attention_mask.shape), [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist(), [max_length for x in speech_inputs] ) def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_integration(self): # fmt: off EXPECTED_INPUT_VALUES = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = SpeechT5FeatureExtractor() input_values = feature_extractor(input_speech, return_tensors="pt").input_values self.assertEquals(input_values.shape, (1, 93680)) self.assertTrue(torch.allclose(input_values[0, :30], EXPECTED_INPUT_VALUES, atol=1e-6)) def test_integration_target(self): # fmt: off EXPECTED_INPUT_VALUES = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = SpeechT5FeatureExtractor() input_values = feature_extractor(audio_target=input_speech, return_tensors="pt").input_values self.assertEquals(input_values.shape, (1, 366, 80)) self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-4))
transformers/tests/models/speecht5/test_feature_extraction_speecht5.py/0
{ "file_path": "transformers/tests/models/speecht5/test_feature_extraction_speecht5.py", "repo_id": "transformers", "token_count": 8423 }
364
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Swin2SR model. """ import unittest from transformers import Swin2SRConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Swin2SRForImageSuperResolution, Swin2SRModel from transformers.models.swin2sr.modeling_swin2sr import SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import Swin2SRImageProcessor class Swin2SRModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=1, num_channels=3, num_channels_out=1, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=False, upscale=2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_channels_out = num_channels_out self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.upscale = upscale # here we set some attributes to make tests pass self.num_hidden_layers = len(depths) self.hidden_size = embed_dim self.seq_length = (image_size // patch_size) ** 2 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return Swin2SRConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_channels_out=self.num_channels_out, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, upscale=self.upscale, ) def create_and_check_model(self, config, pixel_values, labels): model = Swin2SRModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.embed_dim, self.image_size, self.image_size) ) def create_and_check_for_image_super_resolution(self, config, pixel_values, labels): model = Swin2SRForImageSuperResolution(config) model.to(torch_device) model.eval() result = model(pixel_values) expected_image_size = self.image_size * self.upscale self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels_out, expected_image_size, expected_image_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Swin2SRModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Swin2SRModel, Swin2SRForImageSuperResolution) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": Swin2SRModel, "image-to-image": Swin2SRForImageSuperResolution} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False def setUp(self): self.model_tester = Swin2SRModelTester(self) self.config_tester = ConfigTester(self, config_class=Swin2SRConfig, embed_dim=37) def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_for_image_super_resolution(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_super_resolution(*config_and_inputs) # TODO: check if this works again for PyTorch 2.x.y @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") def test_multi_gpu_data_parallel_forward(self): pass @unittest.skip(reason="Swin2SR does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Swin2SR does not support training yet") def test_training(self): pass @unittest.skip(reason="Swin2SR does not support training yet") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) @slow def test_model_from_pretrained(self): for model_name in SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Swin2SRModel.from_pretrained(model_name) self.assertIsNotNone(model) # overwriting because of `logit_scale` parameter def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "logit_scale" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True window_size_squared = config.window_size**2 model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) @require_vision @require_torch @slow class Swin2SRModelIntegrationTest(unittest.TestCase): def test_inference_image_super_resolution_head(self): processor = Swin2SRImageProcessor() model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64").to(torch_device) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 3, 976, 1296]) self.assertEqual(outputs.reconstruction.shape, expected_shape) expected_slice = torch.tensor( [[0.5458, 0.5546, 0.5638], [0.5526, 0.5565, 0.5651], [0.5396, 0.5426, 0.5621]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.reconstruction[0, 0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/swin2sr/test_modeling_swin2sr.py/0
{ "file_path": "transformers/tests/models/swin2sr/test_modeling_swin2sr.py", "repo_id": "transformers", "token_count": 5790 }
365
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViLT model. """ import unittest from datasets import load_dataset from packaging import version from transformers import ViltConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltForTokenClassification, ViltModel, ) from transformers.models.vilt.modeling_vilt import VILT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import ViltProcessor class ViltModelTester: def __init__( self, parent, batch_size=13, seq_length=7, image_size=30, patch_size=2, num_channels=3, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, scope=None, modality_type_vocab_size=2, add_multiple_images=False, num_images=-1, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.modality_type_vocab_size = modality_type_vocab_size self.add_multiple_images = add_multiple_images self.num_images = num_images # we set the expected sequence length (which is used in several tests) # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) if self.add_multiple_images: pixel_values = floats_tensor([self.batch_size, 2, self.num_channels, self.image_size, self.image_size]) else: pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return (config, input_ids, token_type_ids, input_mask, pixel_values, token_labels) def get_config(self): return ViltConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, num_labels=self.num_labels, modality_type_vocab_size=self.modality_type_vocab_size, num_images=self.num_images, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ): model = ViltModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, pixel_values=pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ): model = ViltForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "pixel_values": pixel_values, } return config, inputs_dict def prepare_pixel_values(self): return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) @require_torch class ViltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ViltModel, ViltForQuestionAnswering, ViltForImageAndTextRetrieval, ViltForMaskedLM, ViltForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": ViltModel, "visual-question-answering": ViltForQuestionAnswering} if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False model_split_percents = [0.5, 0.8, 0.9] # ViltForMaskedLM, ViltForQuestionAnswering and ViltForImagesAndTextClassification require special treatment def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "ViltForQuestionAnswering": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_labels, device=torch_device ) elif model_class.__name__ in ["ViltForMaskedLM", "ViltForTokenClassification"]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) elif model_class.__name__ == "ViltForImagesAndTextClassification": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = ViltModelTester(self) self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class.__name__ == "ViltForImagesAndTextClassification": config.modality_type_vocab_size = 3 # ViltForImageAndTextRetrieval doesn't support training for now if model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) for k, v in inputs.items(): print(k, v.shape) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True # ViltForImageAndTextRetrieval doesn't support training for now if ( model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_save_load(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_determinism(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_model_outputs_equivalence(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "expected_seq_len", None) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": # attentions are a list of length num_images # each element contains the attentions of a particular image index self.assertEqual(len(attentions), self.model_tester.num_images) self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) else: self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": # attentions are a list of length num_images # each element contains the attentions of a particular image index self.assertEqual(len(attentions), self.model_tester.num_images) self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) else: self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertListEqual( list(attentions[0][0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertEqual(len(self_attentions), self.model_tester.num_images) self.assertEqual(len(self_attentions[0]), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0][0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) else: self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index self.assertEqual(len(hidden_states), self.model_tester.num_images) self.assertEqual(len(hidden_states[0]), expected_num_layers) else: self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.expected_seq_len if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertListEqual( list(hidden_states[0][0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) else: self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: print("Model class:", model_class) inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index hidden_states[0].retain_grad() attentions[0].retain_grad() else: hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index self.assertIsNotNone(hidden_states[0].grad) self.assertIsNotNone(attentions[0].grad) else: self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) @slow def test_model_from_pretrained(self): for model_name in VILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ViltModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class ViltForImagesAndTextClassificationModelTest(ViltModelTest, unittest.TestCase): all_model_classes = (ViltForImagesAndTextClassification,) if is_torch_available() else () def setUp(self): self.model_tester = ViltModelTester(self, modality_type_vocab_size=3, add_multiple_images=True, num_images=2) self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) @unittest.skip("We only test the model that takes in multiple images") def test_model(self): pass @unittest.skip("We only test the model that takes in multiple images") def test_for_token_classification(self): pass # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViltModelIntegrationTest(unittest.TestCase): @cached_property def default_processor(self): return ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") if is_vision_available() else None @slow def test_inference_masked_lm(self): model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm").to(torch_device) processor = self.default_processor image = prepare_img() text = "a bunch of [MASK] laying on a [MASK]." inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 11, 30522]) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4)) # verify masked token prediction equals "cats" predicted_id = outputs.logits[0, 4, :].argmax(-1).item() assert processor.decode([predicted_id]) == "cats" @slow def test_inference_visual_question_answering(self): model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa").to(torch_device) processor = self.default_processor image = prepare_img() text = "How many cats are there?" inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 3129)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) # compute loss vqa_labels = [[2, 3, 155, 800]] vqa_scores = [[1.0, 0.3, 0.3, 0.3]] labels = torch.zeros(1, model.config.num_labels).to(torch_device) for i, (labels_example, scores_example) in enumerate(zip(vqa_labels, vqa_scores)): for l, s in zip(labels_example, scores_example): labels[i, l] = s # forward pass outputs = model(**inputs, labels=labels) # verify we have a positive loss self.assertTrue(outputs.loss > 0) @slow def test_inference_natural_language_visual_reasoning(self): model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2").to( torch_device ) processor = self.default_processor dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test") image1 = Image.open(dataset[0]["file"]).convert("RGB") image2 = Image.open(dataset[1]["file"]).convert("RGB") text = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) encoding_1 = processor(image1, text, return_tensors="pt") encoding_2 = processor(image2, text, return_tensors="pt") pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1) # forward pass outputs = model( input_ids=encoding_1.input_ids.to(torch_device), pixel_values=pixel_values.to(torch_device), ) # verify the logits expected_shape = torch.Size([1, 2]) self.assertEqual(outputs.logits.shape, expected_shape) is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") if is_pillow_less_than_9: expected_slice = torch.tensor( [-2.4013, 2.9342], device=torch_device, ) else: expected_slice = torch.tensor( [-2.3713, 2.9168], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/vilt/test_modeling_vilt.py/0
{ "file_path": "transformers/tests/models/vilt/test_modeling_vilt.py", "repo_id": "transformers", "token_count": 11964 }
366
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class FlaxViTModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) return config, pixel_values def create_and_check_model(self, config, pixel_values): model = FlaxViTModel(config=config) result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values): config.num_labels = self.type_sequence_label_size model = FlaxViTForImageClassification(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = FlaxViTForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def setUp(self) -> None: self.model_tester = FlaxViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # We need to override this test because ViT's forward signature is different than text models. def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # We need to override this test because ViT expects pixel_values instead of input_ids def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("google/vit-base-patch16-224") outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs)
transformers/tests/models/vit/test_modeling_flax_vit.py/0
{ "file_path": "transformers/tests/models/vit/test_modeling_flax_vit.py", "repo_id": "transformers", "token_count": 3243 }
367
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VITS model. """ import copy import os import tempfile import unittest from typing import Dict, List, Tuple import numpy as np from transformers import PretrainedConfig, VitsConfig from transformers.testing_utils import ( is_flaky, is_torch_available, require_torch, require_torch_multi_gpu, slow, torch_device, ) from transformers.trainer_utils import set_seed from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, global_rng, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import VitsModel, VitsTokenizer CONFIG_NAME = "config.json" GENERATION_CONFIG_NAME = "generation_config.json" def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) setattr(configs_no_init, key, no_init_subconfig) return configs_no_init @require_torch class VitsModelTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=False, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=64, flow_size=16, vocab_size=38, spectrogram_bins=8, duration_predictor_num_flows=2, duration_predictor_filter_channels=16, prior_encoder_num_flows=2, upsample_initial_channel=16, upsample_rates=[8, 2], upsample_kernel_sizes=[16, 4], resblock_kernel_sizes=[3, 7], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.flow_size = flow_size self.vocab_size = vocab_size self.spectrogram_bins = spectrogram_bins self.duration_predictor_num_flows = duration_predictor_num_flows self.duration_predictor_filter_channels = duration_predictor_filter_channels self.prior_encoder_num_flows = prior_encoder_num_flows self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_config(self): return VitsConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, flow_size=self.flow_size, vocab_size=self.vocab_size, spectrogram_bins=self.spectrogram_bins, duration_predictor_num_flows=self.duration_predictor_num_flows, prior_encoder_num_flows=self.prior_encoder_num_flows, duration_predictor_filter_channels=self.duration_predictor_filter_channels, posterior_encoder_num_wavenet_layers=self.num_hidden_layers, upsample_initial_channel=self.upsample_initial_channel, upsample_rates=self.upsample_rates, upsample_kernel_sizes=self.upsample_kernel_sizes, resblock_kernel_sizes=self.resblock_kernel_sizes, resblock_dilation_sizes=self.resblock_dilation_sizes, ) def create_and_check_model_forward(self, config, inputs_dict): model = VitsModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] result = model(input_ids, attention_mask=attention_mask) self.parent.assertEqual((self.batch_size, 624), result.waveform.shape) @require_torch class VitsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (VitsModel,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": VitsModel, "text-to-audio": VitsModel} if is_torch_available() else {} ) is_encoder_decoder = False test_pruning = False test_headmasking = False test_resize_embeddings = False test_head_masking = False test_torchscript = False has_attentions = False input_name = "input_ids" def setUp(self): self.model_tester = VitsModelTester(self) self.config_tester = ConfigTester(self, config_class=VitsConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # TODO: @ydshieh @is_flaky(description="torch 2.2.0 gives `Timeout >120.0s`") def test_pipeline_feature_extraction(self): super().test_pipeline_feature_extraction() @unittest.skip("Need to fix this after #26538") def test_model_forward(self): set_seed(12345) global_rng.seed(12345) config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) @require_torch_multi_gpu # override to force all elements of the batch to have the same sequence length across GPUs def test_multi_gpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_stochastic_duration_prediction = False # move input tensors to cuda:O for key, value in inputs_dict.items(): if torch.is_tensor(value): # make all elements of the batch the same -> ensures the output seq lengths are the same for DP value[1:] = value[0] inputs_dict[key] = value.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = torch.nn.DataParallel(model) set_seed(555) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)).waveform @unittest.skip("VITS is not deterministic") def test_determinism(self): pass @is_flaky( max_attempts=3, description="Weight initialisation for the VITS conv layers sometimes exceeds the kaiming normal range", ) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() uniform_init_parms = [ "emb_rel_k", "emb_rel_v", "conv_1", "conv_2", "conv_pre", "conv_post", "conv_proj", "conv_dds", "project", "wavenet.in_layers", "wavenet.res_skip_layers", "upsampler", "resblocks", ] configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip("VITS has no inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("VITS has no input embeddings") def test_model_common_attributes(self): pass # override since the model is not deterministic, so we need to set the seed for each forward pass def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): set_seed(0) tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) set_seed(0) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) # override since the model is not deterministic, so we need to set the seed for each forward pass def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_save_load(out1, out2): # make sure we don't have nans out_2 = out2.cpu().numpy() out_2[np.isnan(out_2)] = 0 out_1 = out1.cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): set_seed(0) first = model(**self._prepare_for_class(inputs_dict, model_class))[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) # the config file (and the generation config file, if it can generate) should be saved self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) self.assertEqual( model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) ) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): set_seed(0) second = model(**self._prepare_for_class(inputs_dict, model_class))[0] if isinstance(first, tuple) and isinstance(second, tuple): for tensor1, tensor2 in zip(first, second): check_save_load(tensor1, tensor2) else: check_save_load(first, second) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) @require_torch @slow class VitsModelIntegrationTests(unittest.TestCase): def test_forward(self): # GPU gives different results than CPU torch_device = "cpu" model = VitsModel.from_pretrained("facebook/mms-tts-eng") model.to(torch_device) tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") set_seed(555) # make deterministic input_text = "Mister quilter is the apostle of the middle classes and we are glad to welcome his gospel!" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device) with torch.no_grad(): outputs = model(input_ids) self.assertEqual(outputs.waveform.shape, (1, 87040)) # fmt: off EXPECTED_LOGITS = torch.tensor( [ -0.0042, 0.0176, 0.0354, 0.0504, 0.0621, 0.0777, 0.0980, 0.1224, 0.1475, 0.1679, 0.1817, 0.1832, 0.1713, 0.1542, 0.1384, 0.1256, 0.1147, 0.1066, 0.1026, 0.0958, 0.0823, 0.0610, 0.0340, 0.0022, -0.0337, -0.0677, -0.0969, -0.1178, -0.1311, -0.1363 ] ) # fmt: on self.assertTrue(torch.allclose(outputs.waveform[0, 10000:10030].cpu(), EXPECTED_LOGITS, atol=1e-4))
transformers/tests/models/vits/test_modeling_vits.py/0
{ "file_path": "transformers/tests/models/vits/test_modeling_vits.py", "repo_id": "transformers", "token_count": 8429 }
368
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Wav2Vec2-Conformer model. """ import math import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import Wav2Vec2ConformerConfig, is_torch_available from transformers.testing_utils import ( is_pt_flax_cross_test, require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Wav2Vec2ConformerForAudioFrameClassification, Wav2Vec2ConformerForCTC, Wav2Vec2ConformerForPreTraining, Wav2Vec2ConformerForSequenceClassification, Wav2Vec2ConformerForXVector, Wav2Vec2ConformerModel, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, ) from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import ( Wav2Vec2ConformerGumbelVectorQuantizer, _compute_mask_indices, _sample_negative_indices, ) class Wav2Vec2ConformerModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, mask_time_prob=0.5, mask_time_length=2, vocab_size=32, do_stable_layer_norm=False, num_adapter_layers=1, adapter_stride=2, tdnn_dim=(32, 32), tdnn_kernel=(5, 3), tdnn_dilation=(1, 2), xvector_output_dim=32, position_embeddings_type="relative", scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.num_adapter_layers = num_adapter_layers self.adapter_stride = adapter_stride self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.scope = scope self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim self.position_embeddings_type = position_embeddings_type output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1 def prepare_config_and_inputs(self, position_embeddings_type="relative"): input_values = floats_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config(position_embeddings_type=position_embeddings_type) return config, input_values, attention_mask def get_config(self, position_embeddings_type="relative"): return Wav2Vec2ConformerConfig( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, mask_time_prob=self.mask_time_prob, mask_time_length=self.mask_time_length, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, do_stable_layer_norm=self.do_stable_layer_norm, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, num_adapter_layers=self.num_adapter_layers, adapter_stride=self.adapter_stride, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, position_embeddings_type=position_embeddings_type, ) def create_and_check_model(self, config, input_values, attention_mask): model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter(self, config, input_values, attention_mask): config.add_adapter = True model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter_for_ctc(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 2 * config.hidden_size model = Wav2Vec2ConformerForCTC(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size) ) def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 8 model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size), ) def create_and_check_model_float16(self, config, input_values, attention_mask): model = Wav2Vec2ConformerModel(config=config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = Wav2Vec2ConformerModel.from_pretrained(tmpdirname, torch_dtype=torch.float16) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_values.type(dtype=torch.float16), attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = Wav2Vec2ConformerModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = Wav2Vec2ConformerForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = Wav2Vec2ConformerForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Wav2Vec2ConformerForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Wav2Vec2ConformerForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_xvector_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Wav2Vec2ConformerForXVector(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = Wav2Vec2ConformerForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with self.parent.assertRaises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class Wav2Vec2ConformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Wav2Vec2ConformerForCTC, Wav2Vec2ConformerModel, Wav2Vec2ConformerForSequenceClassification, Wav2Vec2ConformerForPreTraining, Wav2Vec2ConformerForAudioFrameClassification, Wav2Vec2ConformerForXVector, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": Wav2Vec2ConformerForSequenceClassification, "automatic-speech-recognition": Wav2Vec2ConformerForCTC, "feature-extraction": Wav2Vec2ConformerModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False def setUp(self): self.model_tester = Wav2Vec2ConformerModelTester(self) self.config_tester = ConfigTester(self, config_class=Wav2Vec2ConformerConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_relative(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative") self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_rotary(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary") self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_no_rel_pos(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type=None) self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_adapter(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter(*config_and_inputs) def test_model_with_adapter_for_ctc(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs) def test_model_with_adapter_proj_dim(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs) @require_torch_accelerator @require_torch_fp16 def test_model_float16_with_relative(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative") self.model_tester.create_and_check_model_float16(*config_and_inputs) @require_torch_accelerator @require_torch_fp16 def test_model_float16_with_rotary(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary") self.model_tester.create_and_check_model_float16(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_xvector_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_xvector_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Wav2Vec2Conformer has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Wav2Vec2Conformer cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Wav2Vec2Conformer has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_flax_to_pt(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_pt_to_flax(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "pos_bias_u") and module.pos_bias_u is not None: module.pos_bias_u.data.fill_(3) if hasattr(module, "pos_bias_v") and module.pos_bias_v is not None: module.pos_bias_v.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) def test_mask_feature_prob_ctc(self): model = Wav2Vec2ConformerForCTC.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", mask_feature_prob=0.2, mask_feature_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) def test_mask_time_prob_ctc(self): model = Wav2Vec2ConformerForCTC.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", mask_time_prob=0.2, mask_time_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2-conformer", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = Wav2Vec2ConformerModel.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") self.assertIsNotNone(model) @require_torch class Wav2Vec2ConformerUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_low_prob(self): # with these settings num_masked_spans=0.5, which means probabilistic rounding # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in # the other 5 out of 10, cases num_masked_spans=1 n_trials = 100 batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 count_dimensions_masked = 0 count_dimensions_not_masked = 0 for _ in range(n_trials): mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) num_masks = torch.sum(mask).item() if num_masks > 0: count_dimensions_masked += 1 else: count_dimensions_not_masked += 1 # as we test for at least 10 masked dimension and at least # 10 non-masked dimension, this test could fail with probability: # P(100 coin flips, at most 9 heads) = 1.66e-18 self.assertGreater(count_dimensions_masked, int(n_trials * 0.1)) self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1)) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) mask = torch.from_numpy(mask).to(torch_device) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_mask_indices_short_audio(self): batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) # force one example to be heavily padded attention_mask[0, 5:] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2 ) # make sure that non-padded examples cannot be padded self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any()) def test_compute_perplexity(self): probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100 ppl = Wav2Vec2ConformerGumbelVectorQuantizer._compute_perplexity(probs) self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3) # mask half of the input mask = torch.ones((2,), device=torch_device, dtype=torch.bool) mask[0] = 0 ppl = Wav2Vec2ConformerGumbelVectorQuantizer._compute_perplexity(probs, mask) self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3) def test_sample_negatives(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view( sequence_length, hidden_size ) # each value in vector consits of same value features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous() # sample negative indices sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None) sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device) negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)] negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features) == 0).sum() == 0.0) # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1)) def test_sample_negatives_with_mask(self): batch_size = 2 sequence_length = 10 hidden_size = 4 num_negatives = 3 # second half of last input tensor is padded mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) mask[-1, sequence_length // 2 :] = 0 features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view( sequence_length, hidden_size ) # each value in vector consits of same value features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous() # replace masked feature vectors with -100 to test that those are not sampled features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100) # sample negative indices sampled_negative_indices = _sample_negative_indices( (batch_size, sequence_length), num_negatives, mask.cpu().numpy() ) sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device) negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)] negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3) self.assertTrue((negatives >= 0).all().item()) self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size)) # make sure no negatively sampled vector is actually a positive one for negative in negatives: self.assertTrue(((negative - features) == 0).sum() == 0.0) # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1)) @require_torch @slow class Wav2Vec2ConformerModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter(lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]) speech_samples = speech_samples[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_inference_ctc_normal_batched_rel_pos(self): model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained( "facebook/wav2vec2-conformer-rel-pos-large-960h-ft", do_lower_case=True ) input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loincloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_normal_batched_rope(self): model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained( "facebook/wav2vec2-conformer-rope-large-960h-ft", do_lower_case=True ) input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_pretrained(self): model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") model.to(torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-conformer-rel-pos-large", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True) batch_size = inputs_dict["input_values"].shape[0] feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1])) features_shape = (batch_size, feature_seq_length) torch.manual_seed(0) mask_time_indices = _compute_mask_indices( features_shape, model.config.mask_time_prob, model.config.mask_time_length, min_masks=2, ) mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device) with torch.no_grad(): outputs = model( inputs_dict.input_values.to(torch_device), attention_mask=inputs_dict.attention_mask.to(torch_device), mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) # retrieve cosine sim of masked features cosine_sim_masked = cosine_sim[mask_time_indices] # ... now compare to randomly initialized model config = Wav2Vec2ConformerConfig.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") model_rand = Wav2Vec2ConformerForPreTraining(config).to(torch_device).eval() with torch.no_grad(): outputs_rand = model_rand( inputs_dict.input_values.to(torch_device), attention_mask=inputs_dict.attention_mask.to(torch_device), mask_time_indices=mask_time_indices, ) # compute cosine similarity cosine_sim_rand = torch.cosine_similarity( outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1 ) # retrieve cosine sim of masked features cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices] # a pretrained wav2vec2_conformer model has learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states > 0.5 # a random wav2vec2_conformer model has not learned to predict the quantized latent states # => the cosine similarity between quantized states and predicted states is very likely < 0.1 self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
transformers/tests/models/wav2vec2_conformer/test_modeling_wav2vec2_conformer.py/0
{ "file_path": "transformers/tests/models/wav2vec2_conformer/test_modeling_wav2vec2_conformer.py", "repo_id": "transformers", "token_count": 17966 }
369
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class OptimizationFTest(unittest.TestCase): def assertListAlmostEqual(self, list1, list2, tol): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) def testGradientAccumulator(self): accumulator = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(ValueError): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step, 3) self.assertEqual(len(accumulator.gradients), 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step, 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2) def testGradientAccumulatorDistributionStrategy(self): context._context = None ops.enable_eager_execution_internal() physical_devices = tf.config.list_physical_devices("CPU") if len(physical_devices) == 1: tf.config.set_logical_device_configuration( physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) devices = tf.config.list_logical_devices(device_type="CPU") strategy = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): accumulator = GradientAccumulator() variable = tf.Variable([4.0, 3.0]) optimizer, _ = create_optimizer(5e-5, 10, 5) gradient_placeholder = tf.Variable([0.0, 0.0], trainable=False) def accumulate_on_replica(gradient): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable]))) @tf.function def accumulate(grad1, grad2): with strategy.scope(): local_variables = strategy.experimental_local_results(gradient_placeholder) local_variables[0].assign(grad1) local_variables[1].assign(grad2) strategy.run(accumulate_on_replica, args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(apply_on_replica) def _check_local_values(grad1, grad2): values = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value(), grad1, tol=1e-2) self.assertListAlmostEqual(values[1].value(), grad2, tol=1e-2) accumulate([1.0, 2.0], [-1.0, 1.0]) accumulate([3.0, -1.0], [-1.0, -1.0]) accumulate([-2.0, 2.0], [3.0, -2.0]) self.assertEqual(accumulator.step, 3) _check_local_values([2.0, 3.0], [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step, 0) _check_local_values([0.0, 0.0], [0.0, 0.0])
transformers/tests/optimization/test_optimization_tf.py/0
{ "file_path": "transformers/tests/optimization/test_optimization_tf.py", "repo_id": "transformers", "token_count": 1782 }
370
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass @is_pipeline_test @require_vision @require_timm @require_torch class ObjectDetectionPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING def get_test_pipeline(self, model, tokenizer, processor): object_detector = ObjectDetectionPipeline(model=model, image_processor=processor) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def run_pipeline_test(self, object_detector, examples): outputs = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0) self.assertGreater(len(outputs), 0) for detected_object in outputs: self.assertEqual( detected_object, { "score": ANY(float), "label": ANY(str), "box": {"xmin": ANY(int), "ymin": ANY(int), "xmax": ANY(int), "ymax": ANY(int)}, }, ) import datasets # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") batch = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["image"], # LA dataset[1]["image"], # L dataset[2]["image"], ] batch_outputs = object_detector(batch, threshold=0.0) self.assertEqual(len(batch), len(batch_outputs)) for outputs in batch_outputs: self.assertGreater(len(outputs), 0) for detected_object in outputs: self.assertEqual( detected_object, { "score": ANY(float), "label": ANY(str), "box": {"xmin": ANY(int), "ymin": ANY(int), "xmax": ANY(int), "ymax": ANY(int)}, }, ) @require_tf @unittest.skip("Object detection not implemented in TF") def test_small_model_tf(self): pass @require_torch def test_small_model_pt(self): model_id = "hf-internal-testing/tiny-detr-mobilenetsv3" model = AutoModelForObjectDetection.from_pretrained(model_id) feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor) outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ) outputs = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ], threshold=0.0, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ], ) @require_torch @slow def test_large_model_pt(self): model_id = "facebook/detr-resnet-50" model = AutoModelForObjectDetection.from_pretrained(model_id) feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor) outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ) outputs = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ], ) @require_torch @slow def test_integration_torch_object_detection(self): model_id = "facebook/detr-resnet-50" object_detector = pipeline("object-detection", model=model_id) outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ) outputs = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ], ) @require_torch @slow def test_threshold(self): threshold = 0.9985 model_id = "facebook/detr-resnet-50" object_detector = pipeline("object-detection", model=model_id) outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=threshold) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ) @require_torch @require_pytesseract @slow def test_layoutlm(self): model_id = "Narsil/layoutlmv3-finetuned-funsd" threshold = 0.9993 object_detector = pipeline("object-detection", model=model_id, threshold=threshold) outputs = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ], )
transformers/tests/pipelines/test_pipelines_object_detection.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_object_detection.py", "repo_id": "transformers", "token_count": 6048 }
371
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures") class ImageProcessorUtilTester(unittest.TestCase): def test_cached_files_are_used_when_internet_is_down(self): # A mock response for an HTTP head request to emulate server down response_mock = mock.Mock() response_mock.status_code = 500 response_mock.headers = {} response_mock.raise_for_status.side_effect = HTTPError response_mock.json.return_value = {} # Download this model to make sure it's in the cache. _ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: _ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def test_legacy_load_from_url(self): # This test is for deprecated behavior and can be removed in v5 _ = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def test_image_processor_from_pretrained_subfolder(self): with self.assertRaises(OSError): # config is in subfolder, the following should not work without specifying the subfolder _ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") config = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor" ) self.assertIsNotNone(config) @is_staging_test class ImageProcessorPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @classmethod def tearDownClass(cls): try: delete_repo(token=cls._token, repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-image-processor") except HTTPError: pass def test_push_to_hub(self): image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) image_processor.push_to_hub("test-image-processor", token=self._token) new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(v, getattr(new_image_processor, k)) # Reset repo delete_repo(token=self._token, repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( tmp_dir, repo_id="test-image-processor", push_to_hub=True, token=self._token ) new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(v, getattr(new_image_processor, k)) def test_push_to_hub_in_organization(self): image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) image_processor.push_to_hub("valid_org/test-image-processor", token=self._token) new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(v, getattr(new_image_processor, k)) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, token=self._token ) new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(v, getattr(new_image_processor, k)) def test_push_to_hub_dynamic_image_processor(self): CustomImageProcessor.register_for_auto_class() image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) image_processor.push_to_hub("test-dynamic-image-processor", token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"}, ) new_image_processor = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=True ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
transformers/tests/test_image_processing_utils.py/0
{ "file_path": "transformers/tests/test_image_processing_utils.py", "repo_id": "transformers", "token_count": 2518 }
372
# coding=utf-8 # Copyright 2018 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import gc import json import math import os import random import re import subprocess import sys import tempfile import unittest from itertools import product from pathlib import Path from typing import Dict, List from unittest.mock import Mock, patch import numpy as np from huggingface_hub import HfFolder, delete_repo, list_repo_commits, list_repo_files from parameterized import parameterized from requests.exceptions import HTTPError from transformers import ( AutoTokenizer, IntervalStrategy, PretrainedConfig, TrainerCallback, TrainingArguments, get_polynomial_decay_schedule_with_warmup, is_torch_available, logging, ) from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS from transformers.testing_utils import ( ENDPOINT_STAGING, TOKEN, USER, CaptureLogger, LoggingLevel, TestCasePlus, backend_device_count, execute_subprocess_async, get_gpu_count, get_tests_dir, is_staging_test, require_accelerate, require_deepspeed, require_intel_extension_for_pytorch, require_optuna, require_ray, require_safetensors, require_sentencepiece, require_sigopt, require_tensorboard, require_tokenizers, require_torch, require_torch_accelerator, require_torch_bf16, require_torch_gpu, require_torch_multi_accelerator, require_torch_non_multi_accelerator, require_torch_non_multi_gpu, require_torch_tensorrt_fx, require_torch_tf32, require_torch_up_to_2_accelerators, require_torchdynamo, require_wandb, slow, torch_device, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend, get_last_checkpoint from transformers.training_args import OptimizerNames from transformers.utils import ( SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, is_apex_available, is_bitsandbytes_available, is_safetensors_available, is_torchdistx_available, ) from transformers.utils.hp_naming import TrialShortNamer if is_torch_available(): import torch from torch import nn from torch.utils.data import IterableDataset import transformers.optimization from transformers import ( AutoModelForCausalLM, AutoModelForSequenceClassification, EarlyStoppingCallback, GlueDataset, GlueDataTrainingArguments, GPT2Config, GPT2LMHeadModel, LineByLineTextDataset, PreTrainedModel, Trainer, TrainerState, ) from transformers.modeling_utils import unwrap_model if is_safetensors_available(): import safetensors.torch PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt" class RegressionDataset: def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): np.random.seed(seed) self.label_names = ["labels"] if label_names is None else label_names self.length = length self.x = np.random.normal(size=(length,)).astype(np.float32) self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names] self.ys = [y.astype(np.float32) for y in self.ys] def __len__(self): return self.length def __getitem__(self, i): result = {name: y[i] for name, y in zip(self.label_names, self.ys)} result["input_x"] = self.x[i] return result @dataclasses.dataclass class RegressionTrainingArguments(TrainingArguments): a: float = 0.0 b: float = 0.0 keep_report_to: bool = False def __post_init__(self): super().__post_init__() # save resources not dealing with reporting unless specified (also avoids the warning when it's not set) # can be explicitly disabled via `keep_report_to` if not self.keep_report_to: self.report_to = [] class RepeatDataset: def __init__(self, x, length=64): self.x = x self.length = length def __len__(self): return self.length def __getitem__(self, i): return {"input_ids": self.x, "labels": self.x} class DynamicShapesDataset: def __init__(self, length=64, seed=42, batch_size=8): self.length = length np.random.seed(seed) sizes = np.random.randint(1, 20, (length // batch_size,)) # For easy batching, we make every batch_size consecutive samples the same size. self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)] self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)] def __len__(self): return self.length def __getitem__(self, i): return {"input_x": self.xs[i], "labels": self.ys[i]} class AlmostAccuracy: def __init__(self, thresh=0.25): self.thresh = thresh def __call__(self, eval_pred): predictions, labels = eval_pred true = np.abs(predictions - labels) <= self.thresh return {"accuracy": true.astype(np.float32).mean().item()} class RegressionModelConfig(PretrainedConfig): def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs): super().__init__(**kwargs) self.a = a self.b = b self.double_output = double_output self.random_torch = random_torch self.hidden_size = 1 if is_torch_available(): class SampleIterableDataset(IterableDataset): def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names) def __iter__(self): for i in range(len(self.dataset)): yield self.dataset[i] class FiniteIterableDataset(SampleIterableDataset): def __init__(self, a=2, b=3, length=64, seed=42, label_names=None): super().__init__(a, b, length, seed, label_names) self.current_sample = 0 def __iter__(self): while self.current_sample < len(self.dataset): yield self.dataset[self.current_sample] self.current_sample += 1 class MultiLoader: def __init__(self, loaders): self.loaders = loaders def __len__(self): return sum(len(loader) for loader in self.loaders) def __iter__(self): for loader in self.loaders: yield from loader class CustomDataloaderTrainer(Trainer): def get_train_dataloader(self): dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()] return MultiLoader(dataloaders) def get_eval_dataloader(self, eval_dataset): dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)] return MultiLoader(dataloaders) class RegressionModel(nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = nn.Parameter(torch.tensor(a).float()) self.b = nn.Parameter(torch.tensor(b).float()) self.double_output = double_output self.config = None def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b if labels is None: return (y, y) if self.double_output else (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y, y) if self.double_output else (loss, y) class RegressionDictModel(nn.Module): def __init__(self, a=0, b=0): super().__init__() self.a = nn.Parameter(torch.tensor(a).float()) self.b = nn.Parameter(torch.tensor(b).float()) self.config = None def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b result = {"output": y} if labels is not None: result["loss"] = nn.functional.mse_loss(y, labels) return result class RegressionPreTrainedModel(PreTrainedModel): config_class = RegressionModelConfig base_model_prefix = "regression" def __init__(self, config): super().__init__(config) self.a = nn.Parameter(torch.tensor(config.a).float()) self.b = nn.Parameter(torch.tensor(config.b).float()) self.double_output = config.double_output def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b if labels is None: return (y, y) if self.double_output else (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y, y) if self.double_output else (loss, y) class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel): config_class = RegressionModelConfig base_model_prefix = "regression" supports_gradient_checkpointing = True def __init__(self, config): super().__init__(config) self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)]) self.head = nn.Linear(config.hidden_size, 1) self.gradient_checkpointing = False self.double_output = config.double_output def forward(self, input_x, labels=None, **kwargs): y = input_x.unsqueeze(0) for layer in self.layers: if self.training and self.gradient_checkpointing: outputs = self._gradient_checkpointing_func(layer.__call__, y) else: outputs = layer(y) y = outputs * 3 logits = self.head(y) if labels is None: return (logits, logits) if self.double_output else (logits,) loss = nn.functional.mse_loss(logits, labels) return (loss, y, y) if self.double_output else (loss, y) class RegressionRandomPreTrainedModel(PreTrainedModel): config_class = RegressionModelConfig base_model_prefix = "regression" def __init__(self, config): super().__init__(config) self.a = nn.Parameter(torch.tensor(config.a).float()) self.b = nn.Parameter(torch.tensor(config.b).float()) self.random_torch = config.random_torch def forward(self, input_x, labels=None, **kwargs): y = input_x * self.a + self.b if self.random_torch: torch_rand = torch.randn(1).squeeze() np_rand = np.random.rand() rand_rand = random.random() if self.random_torch: y += 0.05 * torch_rand y += 0.05 * torch.tensor(np_rand + rand_rand) if labels is None: return (y,) loss = nn.functional.mse_loss(y, labels) return (loss, y) class TstLayer(nn.Module): def __init__(self, hidden_size): super().__init__() self.linear1 = nn.Linear(hidden_size, hidden_size) self.ln1 = nn.LayerNorm(hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.ln2 = nn.LayerNorm(hidden_size) self.bias = nn.Parameter(torch.zeros(hidden_size)) def forward(self, x): h = self.ln1(nn.functional.relu(self.linear1(x))) h = nn.functional.relu(self.linear2(x)) return self.ln2(x + h + self.bias) def get_regression_trainer( a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs ): label_names = kwargs.get("label_names", None) gradient_checkpointing = kwargs.get("gradient_checkpointing", False) train_dataset = RegressionDataset(length=train_len, label_names=label_names) eval_dataset = RegressionDataset(length=eval_len, label_names=label_names) model_init = kwargs.pop("model_init", None) if model_init is not None: model = None else: if pretrained: config = RegressionModelConfig(a=a, b=b, double_output=double_output) # We infer the correct model class if one uses gradient_checkpointing or not target_cls = ( RegressionPreTrainedModel if not gradient_checkpointing else RegressionPreTrainedModelWithGradientCheckpointing ) model = target_cls(config) else: model = RegressionModel(a=a, b=b, double_output=double_output) compute_metrics = kwargs.pop("compute_metrics", None) data_collator = kwargs.pop("data_collator", None) optimizers = kwargs.pop("optimizers", (None, None)) output_dir = kwargs.pop("output_dir", "./regression") preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None) args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs) return Trainer( model, args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, optimizers=optimizers, model_init=model_init, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) class TrainerIntegrationCommon: def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True): weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"] if is_pretrained: file_list.append("config.json") for step in range(freq, total, freq): checkpoint = os.path.join(output_dir, f"checkpoint-{step}") self.assertTrue(os.path.isdir(checkpoint)) for filename in file_list: self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename))) def check_best_model_has_been_loaded( self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True ): checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}") log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history values = [d[metric] for d in log_history] best_value = max(values) if greater_is_better else min(values) best_checkpoint = (values.index(best_value) + 1) * freq checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}") if is_pretrained: best_model = RegressionPreTrainedModel.from_pretrained(checkpoint) best_model.to(trainer.args.device) else: best_model = RegressionModel() if not safe_weights: state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME)) else: state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME)) best_model.load_state_dict(state_dict) best_model.to(trainer.args.device) self.assertTrue(torch.allclose(best_model.a, trainer.model.a)) self.assertTrue(torch.allclose(best_model.b, trainer.model.b)) metrics = trainer.evaluate() self.assertEqual(metrics[metric], best_value) def check_trainer_state_are_the_same(self, trainer_state, trainer_state1): # We'll pop things so operate on copies. state = trainer_state.copy() state1 = trainer_state1.copy() # Log history main contain different logs for the time metrics (after resuming a training). log_history = state.pop("log_history", None) log_history1 = state1.pop("log_history", None) self.assertEqual(state, state1) skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"] for log, log1 in zip(log_history, log_history1): for key in skip_log_keys: _ = log.pop(key, None) _ = log1.pop(key, None) self.assertEqual(log, log1) def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True): # Converts a checkpoint of a regression model to a sharded checkpoint. if load_safe: loader = safetensors.torch.load_file weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME) else: loader = torch.load weights_file = os.path.join(folder, WEIGHTS_NAME) if save_safe: extension = "safetensors" saver = safetensors.torch.save_file index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME) shard_name = SAFE_WEIGHTS_NAME else: extension = "bin" saver = torch.save index_file = os.path.join(folder, WEIGHTS_INDEX_NAME) shard_name = WEIGHTS_NAME state_dict = loader(weights_file) os.remove(weights_file) keys = list(state_dict.keys()) shard_files = [ shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}") for idx in range(len(keys)) ] index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}} with open(index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) for param_name, shard_file in zip(keys, shard_files): saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file)) @require_torch @require_sentencepiece @require_tokenizers class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon): """ Only tests that want to tap into the auto-pre-run 2 trainings: - self.default_trained_model - self.alternate_trained_model directly, or via check_trained_model """ def setUp(self): super().setUp() args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size trainer = get_regression_trainer(learning_rate=0.1) trainer.train() self.default_trained_model = (trainer.model.a, trainer.model.b) trainer = get_regression_trainer(learning_rate=0.1, seed=314) trainer.train() self.alternate_trained_model = (trainer.model.a, trainer.model.b) def check_trained_model(self, model, alternate_seed=False): # Checks a training seeded with learning_rate = 0.1 (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model self.assertTrue(torch.allclose(model.a, a)) self.assertTrue(torch.allclose(model.b, b)) def test_reproducible_training(self): # Checks that training worked, model trained and seed made a reproducible training. trainer = get_regression_trainer(learning_rate=0.1) trainer.train() self.check_trained_model(trainer.model) # Checks that a different seed gets different (reproducible) results. trainer = get_regression_trainer(learning_rate=0.1, seed=314) trainer.train() self.check_trained_model(trainer.model, alternate_seed=True) def test_trainer_with_datasets(self): import datasets np.random.seed(42) x = np.random.normal(size=(64,)).astype(np.float32) y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)) train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y}) # Base training. Should have the same results as test_reproducible_training model = RegressionModel() args = TrainingArguments("./regression", learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset) trainer.train() self.check_trained_model(trainer.model) # Can return tensors. train_dataset.set_format(type="torch", dtype=torch.float32) model = RegressionModel() trainer = Trainer(model, args, train_dataset=train_dataset) trainer.train() self.check_trained_model(trainer.model) # Adding one column not used by the model should have no impact z = np.random.normal(size=(64,)).astype(np.float32) train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z}) model = RegressionModel() trainer = Trainer(model, args, train_dataset=train_dataset) trainer.train() self.check_trained_model(trainer.model) def test_model_init(self): train_dataset = RegressionDataset() args = TrainingArguments("./regression", learning_rate=0.1) trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel()) trainer.train() self.check_trained_model(trainer.model) # Re-training should restart from scratch, thus lead the same results. trainer.train() self.check_trained_model(trainer.model) # Re-training should restart from scratch, thus lead the same results and new seed should be used. trainer.args.seed = 314 trainer.train() self.check_trained_model(trainer.model, alternate_seed=True) def test_gradient_accumulation(self): # Training with half the batch size but accumulation steps as 2 should give the same results. trainer = get_regression_trainer( gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1 ) trainer.train() self.check_trained_model(trainer.model) def test_gradient_checkpointing(self): trainer = get_regression_trainer( per_device_train_batch_size=1, learning_rate=0.1, gradient_checkpointing=True, gradient_checkpointing_kwargs={"use_reentrant": False}, ) previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()} trainer.train() # Check if model weights have been updated for k, v in trainer.model.named_parameters(): self.assertFalse( torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4), f"Model weights for {k} have not been updated", ) def test_training_loss(self): n_gpus = max(1, backend_device_count(torch_device)) # With even logs trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus)) trainer.train() log_history = trainer.state.log_history losses = [log["loss"] for log in log_history if "loss" in log] train_loss = log_history[-1]["train_loss"] self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4) # With uneven logs trainer = get_regression_trainer(logging_steps=5) trainer.train() log_history = trainer.state.log_history # Training loss should be the same as before new_train_loss = log_history[-1]["train_loss"] self.assertAlmostEqual(train_loss, new_train_loss, places=4) def test_custom_optimizer(self): train_dataset = RegressionDataset() args = TrainingArguments("./regression") model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=1.0) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0) trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler)) trainer.train() (a, b) = self.default_trained_model self.assertFalse(torch.allclose(trainer.model.a, a)) self.assertFalse(torch.allclose(trainer.model.b, b)) self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0) def test_lr_scheduler_kwargs(self): # test scheduler kwargs passed via TrainingArguments train_dataset = RegressionDataset() model = RegressionModel() num_steps, num_warmup_steps = 10, 2 extra_kwargs = {"power": 5.0, "lr_end": 1e-5} # Non-default arguments args = TrainingArguments( "./regression", lr_scheduler_type="polynomial", lr_scheduler_kwargs=extra_kwargs, learning_rate=0.2, warmup_steps=num_warmup_steps, ) trainer = Trainer(model, args, train_dataset=train_dataset) trainer.create_optimizer_and_scheduler(num_training_steps=num_steps) # Checking that the scheduler was created self.assertIsNotNone(trainer.lr_scheduler) # Checking that the correct args were passed sched1 = trainer.lr_scheduler sched2 = get_polynomial_decay_schedule_with_warmup( trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs ) self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args) self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords) def test_reduce_lr_on_plateau_args(self): # test passed arguments for a custom ReduceLROnPlateau scheduler train_dataset = RegressionDataset(length=64) eval_dataset = RegressionDataset(length=64) args = TrainingArguments( "./regression", evaluation_strategy="epoch", metric_for_best_model="eval_loss", ) model = RegressionModel() optimizer = torch.optim.SGD(model.parameters(), lr=1.0) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2) trainer = Trainer( model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler) ) trainer.train() self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau) self.assertEqual(trainer.lr_scheduler.factor, 0.2) self.assertEqual(trainer.lr_scheduler.patience, 5) self.assertEqual(trainer.lr_scheduler.cooldown, 2) def test_reduce_lr_on_plateau(self): # test the ReduceLROnPlateau scheduler class TrainerWithLRLogs(Trainer): def log(self, logs): # the LR is computed after metrics and does not exist for the first epoch if hasattr(self.lr_scheduler, "_last_lr"): logs["learning_rate"] = self.lr_scheduler._last_lr[0] super().log(logs) train_dataset = RegressionDataset(length=64) eval_dataset = RegressionDataset(length=64) args = TrainingArguments( "./regression", lr_scheduler_type="reduce_lr_on_plateau", evaluation_strategy="epoch", metric_for_best_model="eval_loss", num_train_epochs=10, learning_rate=0.2, ) model = RegressionModel() trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train() self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau) patience = trainer.lr_scheduler.patience logs = trainer.state.log_history[1:] best_loss = logs[0]["eval_loss"] bad_epochs = 0 for i, log in enumerate(logs[:-1]): # Compare learning rate to next epoch's loss = log["eval_loss"] just_decreased = False if loss > best_loss: bad_epochs += 1 if bad_epochs > patience: self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"]) just_decreased = True bad_epochs = 0 else: best_loss = loss bad_epochs = 0 if not just_decreased: self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"]) def test_adafactor_lr_none(self): # test the special case where lr=None, since Trainer can't not have lr_scheduler from transformers.optimization import Adafactor, AdafactorSchedule train_dataset = RegressionDataset() args = TrainingArguments("./regression") model = RegressionModel() optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) lr_scheduler = AdafactorSchedule(optimizer) trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler)) trainer.train() (a, b) = self.default_trained_model self.assertFalse(torch.allclose(trainer.model.a, a)) self.assertFalse(torch.allclose(trainer.model.b, b)) self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0) @require_torch_accelerator @require_torch_bf16 def test_mixed_bf16(self): # very basic test trainer = get_regression_trainer(learning_rate=0.1, bf16=True) trainer.train() self.check_trained_model(trainer.model) # --bf16 --half_precision_backend apex can't be used together with self.assertRaises(ValueError): trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex") # will add more specific tests once there are some bugs to fix @require_torch_gpu @require_torch_tf32 def test_tf32(self): # very basic test trainer = get_regression_trainer(learning_rate=0.1, tf32=True) trainer.train() self.check_trained_model(trainer.model) @require_torch @require_sentencepiece @require_tokenizers class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon): def setUp(self): super().setUp() args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_trainer_works_with_dict(self): # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break # anything. train_dataset = RegressionDataset() eval_dataset = RegressionDataset() model = RegressionDictModel() args = TrainingArguments("./regression") trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train() _ = trainer.evaluate() _ = trainer.predict(eval_dataset) def test_evaluation_with_keys_to_drop(self): config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4) tiny_gpt2 = GPT2LMHeadModel(config) x = torch.randint(0, 100, (128,)) eval_dataset = RepeatDataset(x) args = TrainingArguments("./test") trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset) # By default the past_key_values are removed result = trainer.predict(eval_dataset) self.assertTrue(isinstance(result.predictions, np.ndarray)) # We can still get them by setting ignore_keys to [] result = trainer.predict(eval_dataset, ignore_keys=[]) self.assertTrue(isinstance(result.predictions, tuple)) self.assertEqual(len(result.predictions), 2) def test_training_arguments_are_left_untouched(self): trainer = get_regression_trainer() trainer.train() args = TrainingArguments("./regression", report_to=[]) dict1, dict2 = args.to_dict(), trainer.args.to_dict() for key in dict1.keys(): # Logging dir can be slightly different as they default to something with the time. if key != "logging_dir": self.assertEqual(dict1[key], dict2[key]) def test_number_of_steps_in_training(self): # Regular training has n_epochs * len(train_dl) steps trainer = get_regression_trainer(learning_rate=0.1) train_output = trainer.train() self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size) # Check passing num_train_epochs works (and a float version too): trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5) train_output = trainer.train() self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size)) # If we pass a max_steps, num_train_epochs is ignored trainer = get_regression_trainer(learning_rate=0.1, max_steps=10) train_output = trainer.train() self.assertEqual(train_output.global_step, 10) @require_torch_bf16 @require_intel_extension_for_pytorch def test_number_of_steps_in_training_with_ipex(self): for mix_bf16 in [True, False]: # Regular training has n_epochs * len(train_dl) steps trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True) train_output = trainer.train() self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size) # Check passing num_train_epochs works (and a float version too): trainer = get_regression_trainer( learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True ) train_output = trainer.train() self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size)) # If we pass a max_steps, num_train_epochs is ignored trainer = get_regression_trainer( learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True ) train_output = trainer.train() self.assertEqual(train_output.global_step, 10) def test_neftune(self): config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4) tiny_gpt2 = GPT2LMHeadModel(config) x = torch.randint(0, 100, (128,)) train_dataset = RepeatDataset(x) # Trainer without inf/nan filter args = TrainingArguments( "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4 ) trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset) trainer.model = trainer._activate_neftune(trainer.model) dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device) emb1 = trainer.model.get_input_embeddings()(dummy_input) emb2 = trainer.model.get_input_embeddings()(dummy_input) self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!") # redefine the model tiny_gpt2 = GPT2LMHeadModel(config) # Trainer without inf/nan filter args = TrainingArguments( "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4 ) trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset) # Check that it trains without errors trainer.train() # Make sure forward pass works fine _ = trainer.model(dummy_input) self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0) trainer.model.eval() # Check that we get identical embeddings just in case emb1 = trainer.model.get_input_embeddings()(dummy_input) emb2 = trainer.model.get_input_embeddings()(dummy_input) self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!") def test_logging_inf_nan_filter(self): config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4) tiny_gpt2 = GPT2LMHeadModel(config) x = torch.randint(0, 100, (128,)) train_dataset = RepeatDataset(x) # Trainer without inf/nan filter args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False) trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset) trainer.train() log_history_no_filter = trainer.state.log_history # Trainer with inf/nan filter args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True) trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset) trainer.train() log_history_filter = trainer.state.log_history def is_any_loss_nan_or_inf(log_history): losses = [l["loss"] for l in log_history[:-1]] return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses) self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter)) self.assertFalse(is_any_loss_nan_or_inf(log_history_filter)) def test_train_and_eval_dataloaders(self): n_gpu = max(1, backend_device_count(torch_device)) trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16) self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu) trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16) self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu) # Check drop_last works trainer = get_regression_trainer( train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32 ) self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1) self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1) trainer = get_regression_trainer( train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32, dataloader_drop_last=True, ) self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu)) self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu)) # Check passing a new dataset for evaluation works new_eval_dataset = RegressionDataset(length=128) self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu)) # tests that we do not require dataloader to have a .dataset attribute def test_dataloader_without_dataset(self): train_dataset = RegressionDataset(length=128) trainer = CustomDataloaderTrainer( model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset ) trainer.train() trainer.evaluate() @require_torch_multi_accelerator def test_data_is_not_parallelized_when_model_is_parallel(self): model = RegressionModel() # Make the Trainer believe it's a parallelized model model.is_parallelizable = True model.model_parallel = True args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16) trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset()) # Check the Trainer was fooled self.assertTrue(trainer.is_model_parallel) self.assertEqual(trainer.args.n_gpu, 1) # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16) self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16) self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16) self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16) def test_evaluate(self): trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy()) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy()) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With logits preprocess trainer = get_regression_trainer( a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), preprocess_logits_for_metrics=lambda logits, labels: logits + 1, ) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) def test_evaluate_with_jit(self): trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer( a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True ) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With logits preprocess trainer = get_regression_trainer( a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), preprocess_logits_for_metrics=lambda logits, labels: logits + 1, jit_mode_eval=True, ) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) @require_torch_bf16 @require_intel_extension_for_pytorch def test_evaluate_with_ipex(self): for mix_bf16 in [True, False]: trainer = get_regression_trainer( a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True ) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer( a=1.5, b=2.5, use_ipex=True, eval_len=66, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True, ) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With logits preprocess trainer = get_regression_trainer( a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), preprocess_logits_for_metrics=lambda logits, labels: logits + 1, bf16=mix_bf16, use_cpu=True, ) results = trainer.evaluate() x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) def test_predict(self): trainer = get_regression_trainer(a=1.5, b=2.5) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With more than one output of the model trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertEqual(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) # With more than one output/label of the model trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"]) outputs = trainer.predict(trainer.eval_dataset) preds = outputs.predictions labels = outputs.label_ids x = trainer.eval_dataset.x self.assertEqual(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0])) self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1])) def test_predict_with_jit(self): trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With more than one output of the model trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertEqual(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) # With more than one output/label of the model trainer = get_regression_trainer( a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True ) outputs = trainer.predict(trainer.eval_dataset) preds = outputs.predictions labels = outputs.label_ids x = trainer.eval_dataset.x self.assertEqual(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0])) self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1])) @require_torch_bf16 @require_intel_extension_for_pytorch def test_predict_with_ipex(self): for mix_bf16 in [True, False]: trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With a number of elements not a round multiple of the batch size trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With more than one output of the model trainer = get_regression_trainer( a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True ) preds = trainer.predict(trainer.eval_dataset).predictions x = trainer.eval_dataset.x self.assertEqual(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) # With more than one output/label of the model trainer = get_regression_trainer( a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], use_ipex=True, bf16=mix_bf16, use_cpu=True, ) outputs = trainer.predict(trainer.eval_dataset) preds = outputs.predictions labels = outputs.label_ids x = trainer.eval_dataset.x self.assertEqual(len(preds), 2) self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5)) self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0])) self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1])) def test_dynamic_shapes(self): eval_dataset = DynamicShapesDataset(batch_size=self.batch_size) model = RegressionModel(a=2, b=1) args = TrainingArguments("./regression") trainer = Trainer(model, args, eval_dataset=eval_dataset) # Check evaluation can run to completion _ = trainer.evaluate() # Check predictions preds = trainer.predict(eval_dataset) for expected, seen in zip(eval_dataset.ys, preds.label_ids): self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) for expected, seen in zip(eval_dataset.xs, preds.predictions): self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) # Same tests with eval accumulation args = TrainingArguments("./regression", eval_accumulation_steps=2) trainer = Trainer(model, args, eval_dataset=eval_dataset) # Check evaluation can run to completion _ = trainer.evaluate() # Check predictions preds = trainer.predict(eval_dataset) for expected, seen in zip(eval_dataset.ys, preds.label_ids): self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) for expected, seen in zip(eval_dataset.xs, preds.predictions): self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]])) self.assertTrue(np.all(seen[expected.shape[0] :] == -100)) def test_log_level(self): # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere) logger = logging.get_logger() log_info_string = "Running training" # test with the default log_level - should be the same as before and thus we test depending on is_info is_info = logging.get_verbosity() <= 20 with CaptureLogger(logger) as cl: trainer = get_regression_trainer() trainer.train() if is_info: self.assertIn(log_info_string, cl.out) else: self.assertNotIn(log_info_string, cl.out) with LoggingLevel(logging.INFO): # test with low log_level - lower than info with CaptureLogger(logger) as cl: trainer = get_regression_trainer(log_level="debug") trainer.train() self.assertIn(log_info_string, cl.out) with LoggingLevel(logging.INFO): # test with high log_level - should be quiet with CaptureLogger(logger) as cl: trainer = get_regression_trainer(log_level="error") trainer.train() self.assertNotIn(log_info_string, cl.out) def test_save_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5) trainer.train() self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size)) # With a regular model that is not a PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False) trainer.train() self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False) def test_save_checkpoints_is_atomic(self): class UnsaveableTokenizer(PreTrainedTokenizerBase): def save_pretrained(self, *args, **kwargs): raise OSError("simulated file write error") with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5) # Attach unsaveable tokenizer to partially fail checkpointing trainer.tokenizer = UnsaveableTokenizer() with self.assertRaises(OSError) as _context: trainer.train() assert get_last_checkpoint(tmpdir) is None @require_safetensors def test_safe_checkpoints(self): for save_safetensors in [True, False]: with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors) trainer.train() self.check_saved_checkpoints( tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors ) # With a regular model that is not a PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors ) trainer.train() self.check_saved_checkpoints( tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors ) @require_torch_multi_accelerator def test_run_seq2seq_double_train_wrap_once(self): # test that we don't wrap the model more than once # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for # example DataParallel(DataParallel(model)) trainer = get_regression_trainer() trainer.train() model_wrapped_before = trainer.model_wrapped trainer.train() model_wrapped_after = trainer.model_wrapped self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice") @require_torch_up_to_2_accelerators def test_can_resume_training(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: kwargs = { "output_dir": tmpdir, "train_len": 128, "save_steps": 5, "learning_rate": 0.1, "logging_steps": 5, } trainer = get_regression_trainer(**kwargs) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check with a later checkpoint that it also works when we span over one epoch checkpoint = os.path.join(tmpdir, "checkpoint-15") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # With a regular model that is not a PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: kwargs = { "output_dir": tmpdir, "train_len": 128, "save_steps": 5, "learning_rate": 0.1, "pretrained": False, } trainer = get_regression_trainer(**kwargs) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check with a later checkpoint that it also works when we span over one epoch checkpoint = os.path.join(tmpdir, "checkpoint-15") # Reinitialize trainer and load model trainer = get_regression_trainer(**kwargs) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) # Now check failures # 1. fail to find a bogus checkpoint trainer = get_regression_trainer() with self.assertRaises(Exception) as context: trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus") self.assertTrue("Can't find a valid checkpoint at" in str(context.exception)) # 2. fail to find any checkpoint - due a fresh output_dir output_dir2 = self.get_auto_remove_tmp_dir() trainer = get_regression_trainer(output_dir=output_dir2) with self.assertRaises(Exception) as context: trainer.train(resume_from_checkpoint=True) self.assertTrue("No valid checkpoint found in output directory" in str(context.exception)) @unittest.skip( reason="@muellerzr: Fix once Trainer can take an accelerate configuration. Need to set `seedable_sampler=True`." ) def test_resume_training_with_randomness(self): # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes # GPU 0 will call first and sometimes GPU 1). random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1 if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True train_dataset = RegressionDataset(length=128) eval_dataset = RegressionDataset() with self.subTest("Test every step"): config = RegressionModelConfig(a=0, b=2, random_torch=random_torch) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() model = RegressionRandomPreTrainedModel(config) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15")) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() self.assertAlmostEqual(a, a1, delta=1e-5) self.assertAlmostEqual(b, b1, delta=1e-5) with self.subTest("Test every epoch"): config = RegressionModelConfig(a=0, b=2, random_torch=random_torch) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() model = RegressionRandomPreTrainedModel(config) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")] # There should be one checkpoint per epoch. self.assertEqual(len(checkpoints), 3) checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0] trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir)) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() self.assertAlmostEqual(a, a1, delta=1e-5) self.assertAlmostEqual(b, b1, delta=1e-5) @slow @require_accelerate @require_torch_non_multi_accelerator def test_auto_batch_size_finder(self): if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True SRC_DIR = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification") ) sys.path.append(SRC_DIR) import run_glue with tempfile.TemporaryDirectory() as tmpdir: testargs = f""" run_glue.py --model_name_or_path distilbert-base-uncased --task_name mrpc --do_train --do_eval --max_seq_len 128 --per_device_train_batch_size 4096 --learning_rate 2e-5 --num_train_epochs 1 --output_dir {tmpdir} --auto_find_batch_size 0 """.split() with self.assertRaises(RuntimeError): with patch.object(sys, "argv", testargs): run_glue.main() testargs[-1] = "1" with patch.object(sys, "argv", testargs): run_glue.main() @require_deepspeed def test_auto_batch_size_with_resume_from_checkpoint_with_deepspeed(self): train_dataset = RegressionDataset(length=128) config = RegressionModelConfig(a=0, b=2) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() class MockCudaOOMCallback(TrainerCallback): def on_step_end(self, args, state, control, **kwargs): # simulate OOM on the first step if state.train_batch_size >= 16: raise RuntimeError("CUDA out of memory.") deepspeed = { "zero_optimization": { "stage": 1, }, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", } args = RegressionTrainingArguments( tmp_dir, do_train=True, max_steps=2, save_steps=1, per_device_train_batch_size=16, auto_find_batch_size=True, deepspeed=deepspeed, ) trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()]) trainer.train() # After `auto_find_batch_size` is ran we should now be at 8 self.assertEqual(trainer._train_batch_size, 8) # We can then make a new Trainer trainer = Trainer(model, args, train_dataset=train_dataset) # Check we are at 16 to start self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1)) trainer.train(resume_from_checkpoint=True) # We should be back to 8 again, picking up based upon the last ran Trainer self.assertEqual(trainer._train_batch_size, 8) def test_auto_batch_size_with_resume_from_checkpoint(self): train_dataset = RegressionDataset(length=128) config = RegressionModelConfig(a=0, b=2) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() class MockCudaOOMCallback(TrainerCallback): def on_step_end(self, args, state, control, **kwargs): # simulate OOM on the first step if state.train_batch_size >= 16: raise RuntimeError("CUDA out of memory.") args = RegressionTrainingArguments( tmp_dir, do_train=True, max_steps=2, save_steps=1, per_device_train_batch_size=16, auto_find_batch_size=True, ) trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()]) trainer.train() # After `auto_find_batch_size` is ran we should now be at 8 self.assertEqual(trainer._train_batch_size, 8) # We can then make a new Trainer trainer = Trainer(model, args, train_dataset=train_dataset) # Check we are at 16 to start self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1)) trainer.train(resume_from_checkpoint=True) # We should be back to 8 again, picking up based upon the last ran Trainer self.assertEqual(trainer._train_batch_size, 8) # regression for this issue: https://github.com/huggingface/transformers/issues/12970 def test_training_with_resume_from_checkpoint_false(self): train_dataset = RegressionDataset(length=128) eval_dataset = RegressionDataset() config = RegressionModelConfig(a=0, b=2) model = RegressionRandomPreTrainedModel(config) tmp_dir = self.get_auto_remove_tmp_dir() args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1) trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset) trainer.train(resume_from_checkpoint=False) @require_torch_up_to_2_accelerators def test_resume_training_with_shard_checkpoint(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") self.convert_to_sharded_checkpoint(checkpoint) # Reinitialize trainer trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) @require_safetensors @require_torch_up_to_2_accelerators def test_resume_training_with_safe_checkpoint(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). for initial_safe in [False, True]: for loaded_safe in [False, True]: with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=initial_safe, ) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe) # Reinitialize trainer trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe ) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) @require_torch_up_to_2_accelerators def test_resume_training_with_gradient_accumulation(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, gradient_accumulation_steps=2, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, gradient_accumulation_steps=2, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.train(resume_from_checkpoint=checkpoint) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) @require_torch_up_to_2_accelerators def test_resume_training_with_frozen_params(self): # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model # won't be the same since the training dataloader is shuffled). with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.model.a.requires_grad_(False) trainer.train() (a, b) = trainer.model.a.item(), trainer.model.b.item() state = dataclasses.asdict(trainer.state) checkpoint = os.path.join(tmpdir, "checkpoint-5") # Reinitialize trainer trainer = get_regression_trainer( output_dir=tmpdir, train_len=128, per_device_train_batch_size=4, save_steps=5, learning_rate=0.1, ) trainer.model.a.requires_grad_(False) trainer.train(resume_from_checkpoint=checkpoint) self.assertFalse(trainer.model.a.requires_grad) (a1, b1) = trainer.model.a.item(), trainer.model.b.item() state1 = dataclasses.asdict(trainer.state) self.assertEqual(a, a1) self.assertEqual(b, b1) self.check_trainer_state_are_the_same(state, state1) def test_load_best_model_at_end(self): total = int(self.n_epochs * 64 / self.batch_size) with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, ) self.assertFalse(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total) self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss") with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, metric_for_best_model="accuracy", compute_metrics=AlmostAccuracy(), ) self.assertTrue(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total) self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True) with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="accuracy", compute_metrics=AlmostAccuracy(), ) self.assertTrue(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total) self.check_best_model_has_been_loaded( tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True ) # Test this works with a non PreTrainedModel with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, pretrained=False, ) self.assertFalse(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False) self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False) @require_safetensors def test_load_best_model_from_safetensors(self): total = int(self.n_epochs * 64 / self.batch_size) for save_safetensors, pretrained in product([False, True], [False, True]): with tempfile.TemporaryDirectory() as tmpdir: trainer = get_regression_trainer( a=1.5, b=2.5, output_dir=tmpdir, learning_rate=0.1, eval_steps=5, evaluation_strategy="steps", save_steps=5, load_best_model_at_end=True, save_safetensors=save_safetensors, pretrained=pretrained, ) self.assertFalse(trainer.args.greater_is_better) trainer.train() self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors) self.check_best_model_has_been_loaded( tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors ) @slow def test_trainer_eval_mrpc(self): MODEL_ID = "bert-base-cased-finetuned-mrpc" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID) data_args = GlueDataTrainingArguments( task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True ) eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev") training_args = TrainingArguments(output_dir="./examples", use_cpu=True) trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset) result = trainer.evaluate() self.assertLess(result["eval_loss"], 0.2) @slow def test_trainer_eval_multiple(self): MODEL_ID = "gpt2" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained(MODEL_ID) dataset = LineByLineTextDataset( tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence, ) for example in dataset.examples: example["labels"] = example["input_ids"] training_args = TrainingArguments( output_dir="./examples", use_cpu=True, per_device_eval_batch_size=1, ) trainer = Trainer( model=model, args=training_args, eval_dataset={ "data1": dataset, "data2": dataset, }, ) result = trainer.evaluate() self.assertIn("eval_data1_loss", result) self.assertIn("eval_data2_loss", result) @slow def test_trainer_eval_lm(self): MODEL_ID = "distilroberta-base" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) dataset = LineByLineTextDataset( tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence, ) self.assertEqual(len(dataset), 31) def test_training_iterable_dataset(self): config = RegressionModelConfig() model = RegressionPreTrainedModel(config) # Adding one column not used by the model should have no impact train_dataset = SampleIterableDataset(label_names=["labels", "extra"]) args = RegressionTrainingArguments(output_dir="./examples", max_steps=4) trainer = Trainer(model=model, args=args, train_dataset=train_dataset) trainer.train() self.assertEqual(trainer.state.global_step, 4) loader = trainer.get_train_dataloader() self.assertIsInstance(loader, torch.utils.data.DataLoader) self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler) def test_evaluation_iterable_dataset(self): config = RegressionModelConfig(a=1.5, b=2.5) model = RegressionPreTrainedModel(config) # Adding one column not used by the model should have no impact eval_dataset = SampleIterableDataset(label_names=["labels", "extra"]) args = RegressionTrainingArguments(output_dir="./examples") trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy()) results = trainer.evaluate() x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) # With a number of elements not a round multiple of the batch size eval_dataset = SampleIterableDataset(length=66) results = trainer.evaluate(eval_dataset) x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0] pred = 1.5 * x + 2.5 expected_loss = ((pred - y) ** 2).mean() self.assertAlmostEqual(results["eval_loss"], expected_loss) expected_acc = AlmostAccuracy()((pred, y))["accuracy"] self.assertAlmostEqual(results["eval_accuracy"], expected_acc) def test_predict_iterable_dataset(self): config = RegressionModelConfig(a=1.5, b=2.5) model = RegressionPreTrainedModel(config) eval_dataset = SampleIterableDataset() args = RegressionTrainingArguments(output_dir="./examples") trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy()) preds = trainer.predict(trainer.eval_dataset).predictions x = eval_dataset.dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) # With a number of elements not a round multiple of the batch size # Adding one column not used by the model should have no impact test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"]) preds = trainer.predict(test_dataset).predictions x = test_dataset.dataset.x self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) def test_num_train_epochs_in_training(self): # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given. # It should give 1 update step for each epoch. trainer = get_regression_trainer( max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5 ) train_output = trainer.train() self.assertEqual(train_output.global_step, 3) # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if # len(train_dl) < gradient_accumulation_steps. trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5) train_output = trainer.train() self.assertEqual(train_output.global_step, int(self.n_epochs)) def test_early_stopping_callback(self): # early stopping stops training before num_training_epochs with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, num_train_epochs=20, gradient_accumulation_steps=1, per_device_train_batch_size=16, load_best_model_at_end=True, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, compute_metrics=AlmostAccuracy(), metric_for_best_model="accuracy", ) trainer.add_callback(EarlyStoppingCallback(1, 0.0001)) train_output = trainer.train() self.assertLess(train_output.global_step, 20 * 64 / 16) # Invalid inputs to trainer with early stopping callback result in assertion error with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, num_train_epochs=20, gradient_accumulation_steps=1, per_device_train_batch_size=16, evaluation_strategy=IntervalStrategy.EPOCH, compute_metrics=AlmostAccuracy(), metric_for_best_model="accuracy", ) trainer.add_callback(EarlyStoppingCallback(1)) self.assertEqual(trainer.state.global_step, 0) try: trainer.train() except AssertionError: self.assertEqual(trainer.state.global_step, 0) def test_flos_extraction(self): trainer = get_regression_trainer(learning_rate=0.1) def assert_flos_extraction(trainer, wrapped_model_to_check): self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check)) self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0) # with plain model assert_flos_extraction(trainer, trainer.model) # with enforced DataParallel assert_flos_extraction(trainer, nn.DataParallel(trainer.model)) trainer.train() self.assertTrue(isinstance(trainer.state.total_flos, float)) def check_checkpoint_deletion(self, trainer, output_dir, expected): # Make fake checkpoints for n in [5, 10, 15, 20, 25]: os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True) trainer._rotate_checkpoints(output_dir=output_dir) glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")] values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints] self.assertSetEqual(set(values), set(expected)) def test_checkpoint_rotation(self): with tempfile.TemporaryDirectory() as tmp_dir: # Without best model at end trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2) self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25]) # With best model at end trainer = get_regression_trainer( output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2 ) trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5") self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25]) # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume # from checkpoint trainer = get_regression_trainer( output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1 ) trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25") self.check_checkpoint_deletion(trainer, tmp_dir, [25]) trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5") self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25]) def check_mem_metrics(self, trainer, check_func): metrics = trainer.train().metrics check_func("init_mem_cpu_alloc_delta", metrics) check_func("train_mem_cpu_alloc_delta", metrics) if backend_device_count(torch_device) > 0: check_func("init_mem_gpu_alloc_delta", metrics) check_func("train_mem_gpu_alloc_delta", metrics) metrics = trainer.evaluate() check_func("eval_mem_cpu_alloc_delta", metrics) if backend_device_count(torch_device) > 0: check_func("eval_mem_gpu_alloc_delta", metrics) metrics = trainer.predict(RegressionDataset()).metrics check_func("test_mem_cpu_alloc_delta", metrics) if backend_device_count(torch_device) > 0: check_func("test_mem_gpu_alloc_delta", metrics) def test_mem_metrics(self): # with mem metrics enabled trainer = get_regression_trainer(skip_memory_metrics=False) self.check_mem_metrics(trainer, self.assertIn) # with mem metrics disabled trainer = get_regression_trainer(skip_memory_metrics=True) self.check_mem_metrics(trainer, self.assertNotIn) @require_torch_accelerator def test_fp16_full_eval(self): # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis. # it's using pretty large safety margins, but small enough to detect broken functionality. debug = 0 n_gpus = backend_device_count(torch_device) bs = 8 eval_len = 16 * n_gpus # make the params somewhat big so that there will be enough RAM consumed to be able to # measure things. We should get about 64KB for a+b in fp32 a = torch.ones(1000, bs) + 0.001 b = torch.ones(1000, bs) - 0.001 # 1. with fp16_full_eval disabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False) metrics = trainer.evaluate() del trainer gc.collect() fp32_init = metrics["init_mem_gpu_alloc_delta"] fp32_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"fp32_init {fp32_init}") print(f"fp32_eval {fp32_eval}") # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram. # perfect world: fp32_init == 64<<10 self.assertGreater(fp32_init, 59_000) # after eval should be no extra memory allocated - with a small margin (other than the peak # memory consumption for the forward calculation that gets recovered) # perfect world: fp32_eval == close to zero self.assertLess(fp32_eval, 5_000) # 2. with fp16_full_eval enabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False) metrics = trainer.evaluate() fp16_init = metrics["init_mem_gpu_alloc_delta"] fp16_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"fp16_init {fp16_init}") print(f"fp16_eval {fp16_eval}") # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0 # perfect world: fp16_init == close to zero self.assertLess(fp16_init, 5_000) # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back) # perfect world: fp32_init == 32<<10 self.assertGreater(fp16_eval, 27_000) # 3. relative comparison fp32 vs full fp16 # should be about half of fp16_init # perfect world: fp32_init/2 == fp16_eval self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000) @require_torch_non_multi_gpu @require_torchdynamo @require_torch_tensorrt_fx def test_torchdynamo_full_eval(self): import torchdynamo # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu n_gpus = get_gpu_count() bs = 8 eval_len = 16 * n_gpus # make the params are somewhat big so that there will be enough RAM consumed to be able to # measure things. We should get about 64KB for a+b in fp32 a = torch.ones(1000, bs) + 0.001 b = torch.ones(1000, bs) - 0.001 # 1. Default - without TorchDynamo trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len) metrics = trainer.evaluate() original_eval_loss = metrics["eval_loss"] del trainer # 2. TorchDynamo eager trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager") metrics = trainer.evaluate() self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss) del trainer torchdynamo.reset() # 3. TorchDynamo nvfuser trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser") metrics = trainer.evaluate() self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss) torchdynamo.reset() # 4. TorchDynamo fx2trt trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt") metrics = trainer.evaluate() self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss) torchdynamo.reset() @unittest.skip("torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.") @require_torch_non_multi_gpu @require_torchdynamo def test_torchdynamo_memory(self): # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu import torchdynamo class CustomTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): x = inputs["x"] output = model(x) if self.args.n_gpu == 1: return output.mean() return output class MyModule(torch.nn.Module): """Simple module that does aggressive fusion""" def __init__(self): super().__init__() def forward(self, x): for _ in range(20): x = torch.cos(x) return x mod = MyModule() # 1. without TorchDynamo (eager baseline) a = torch.ones(1024, 1024, device="cuda", requires_grad=True) a.grad = None trainer = CustomTrainer(model=mod) # warmup for _ in range(10): orig_loss = trainer.training_step(mod, {"x": a}) # resets gc.collect() torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() orig_loss = trainer.training_step(mod, {"x": a}) orig_peak_mem = torch.cuda.max_memory_allocated() torchdynamo.reset() del trainer # 2. TorchDynamo nvfuser a = torch.ones(1024, 1024, device="cuda", requires_grad=True) a.grad = None args = TrainingArguments(output_dir="None", torchdynamo="nvfuser") trainer = CustomTrainer(model=mod, args=args) # warmup for _ in range(10): loss = trainer.training_step(mod, {"x": a}) # resets gc.collect() torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() loss = trainer.training_step(mod, {"x": a}) peak_mem = torch.cuda.max_memory_allocated() torchdynamo.reset() del trainer # Functional check self.assertAlmostEqual(loss, orig_loss) # AOT Autograd recomputaion and nvfuser recomputation optimization # aggressively fuses the operations and reduce the memory footprint. self.assertGreater(orig_peak_mem, peak_mem * 2) @require_torch_accelerator @require_torch_bf16 def test_bf16_full_eval(self): # note: most of the logic is the same as test_fp16_full_eval # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis. # it's using pretty large safety margins, but small enough to detect broken functionality. debug = 0 n_gpus = backend_device_count(torch_device) bs = 8 eval_len = 16 * n_gpus # make the params somewhat big so that there will be enough RAM consumed to be able to # measure things. We should get about 64KB for a+b in fp32 a = torch.ones(1000, bs) + 0.001 b = torch.ones(1000, bs) - 0.001 # 1. with bf16_full_eval disabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False) metrics = trainer.evaluate() del trainer gc.collect() fp32_init = metrics["init_mem_gpu_alloc_delta"] fp32_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"fp32_init {fp32_init}") print(f"fp32_eval {fp32_eval}") # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram. # perfect world: fp32_init == 64<<10 self.assertGreater(fp32_init, 59_000) # after eval should be no extra memory allocated - with a small margin (other than the peak # memory consumption for the forward calculation that gets recovered) # perfect world: fp32_eval == close to zero self.assertLess(fp32_eval, 5_000) # 2. with bf16_full_eval enabled trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False) metrics = trainer.evaluate() bf16_init = metrics["init_mem_gpu_alloc_delta"] bf16_eval = metrics["eval_mem_gpu_alloc_delta"] if debug: print(f"bf16_init {bf16_init}") print(f"bf16_eval {bf16_eval}") # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0 # perfect world: bf16_init == close to zero self.assertLess(bf16_init, 5_000) # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back) # perfect world: fp32_init == 32<<10 self.assertGreater(bf16_eval, 27_000) # 3. relative comparison fp32 vs full bf16 # should be about half of bf16_init # perfect world: fp32_init/2 == bf16_eval self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000) def test_no_wd_param_group(self): model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)])) trainer = Trainer(model=model) trainer.create_optimizer_and_scheduler(10) wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight'] # fmt: skip wd_params = [p for n, p in model.named_parameters() if n in wd_names] no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names] self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params) self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params) @slow @require_torch_multi_accelerator def test_end_to_end_example(self): # Tests that `translation.py` will run without issues script_path = os.path.abspath( os.path.join( os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py" ) ) with tempfile.TemporaryDirectory() as tmpdir: command = [ "accelerate", "launch", script_path, "--model_name_or_path", "t5-small", "--per_device_train_batch_size", "1", "--output_dir", tmpdir, "--overwrite_output_dir", "--do_train", "--max_train_samples", "64", "--num_train_epochs", "1", "--dataset_name", "wmt16", "--dataset_config", "ro-en", "--source_lang", "en", "--target_lang", "ro", "--do_predict", "--max_predict_samples", "64", "--predict_with_generate", "--ddp_timeout", "60", ] execute_subprocess_async(command) # successful return here == success - any errors would have caused an error or a timeout in the sub-call @require_torch @is_staging_test class TrainerIntegrationWithHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @classmethod def tearDownClass(cls): for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step", "test-trainer-tensorboard"]: try: delete_repo(token=cls._token, repo_id=model) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org") except HTTPError: pass def test_push_to_hub(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer"), push_to_hub=True, hub_token=self._token, ) url = trainer.push_to_hub() # Extract repo_name from the url re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url) self.assertTrue(re_search is not None) repo_name = re_search.groups()[0] self.assertEqual(repo_name, f"{USER}/test-trainer") model = RegressionPreTrainedModel.from_pretrained(repo_name) self.assertEqual(model.a.item(), trainer.model.a.item()) self.assertEqual(model.b.item(), trainer.model.b.item()) def test_push_to_hub_in_organization(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer(output_dir=tmp_dir) trainer.save_model() trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-org"), push_to_hub=True, hub_model_id="valid_org/test-trainer-org", hub_token=self._token, ) url = trainer.push_to_hub() # Extract repo_name from the url re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url) self.assertTrue(re_search is not None) repo_name = re_search.groups()[0] self.assertEqual(repo_name, "valid_org/test-trainer-org") model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org") self.assertEqual(model.a.item(), trainer.model.a.item()) self.assertEqual(model.b.item(), trainer.model.b.item()) def get_commit_history(self, repo): commit_logs = subprocess.run( "git log".split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=repo, ).stdout commits = commit_logs.split("\n\n")[1::2] return [commit.strip() for commit in commits] def test_push_to_hub_with_saves_each_epoch(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-epoch"), push_to_hub=True, hub_token=self._token, # To avoid any flakiness if the training goes faster than the uploads. hub_always_push=True, save_strategy="epoch", ) trainer.train() commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token) commits = [c.title for c in commits] self.assertIn("initial commit", commits) for i in range(1, 4): self.assertIn(f"Training in progress, epoch {i}", commits) def test_push_to_hub_with_saves_each_n_steps(self): num_gpus = max(1, backend_device_count(torch_device)) if num_gpus > 2: return with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-step"), push_to_hub=True, hub_token=self._token, # To avoid any flakiness if the training goes faster than the uploads. hub_always_push=True, save_strategy="steps", save_steps=5, ) trainer.train() commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token) commits = [c.title for c in commits] self.assertIn("initial commit", commits) # max_steps depend on the number of available GPUs max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader())) for i in range(5, max_steps, 5): self.assertIn(f"Training in progress, step {i}", commits) @require_tensorboard def test_push_to_hub_with_tensorboard_logs(self): with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"), hub_token=self._token, save_strategy="epoch", report_to=["tensorboard"], keep_report_to=True, ) trainer.train() # Push the runs via `push_to_hub()` trainer.push_to_hub() files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token) found_log = False for f in files: if len(f.split("runs")) > 1 and "events.out.tfevents" in f: found_log = True assert found_log is True, "No tensorboard log found in repo" @require_torch @require_optuna class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): return {} def model_init(trial): if trial is not None: a = trial.suggest_int("a", -4, 4) b = trial.suggest_int("b", -4, 4) else: a = 0 b = 0 config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(config) def hp_name(trial): return MyTrialShortNamer.shortname(trial.params) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4) @require_torch @require_optuna class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): return {} def model_init(trial): if trial is not None: a = trial.suggest_int("a", -4, 4) b = trial.suggest_int("b", -4, 4) else: a = 0 b = 0 config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(config) def hp_name(trial): return MyTrialShortNamer.shortname(trial.params) def compute_objective(metrics: Dict[str, float]) -> List[float]: return metrics["eval_loss"], metrics["eval_accuracy"] with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=10, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, compute_metrics=AlmostAccuracy(), ) trainer.hyperparameter_search( direction=["minimize", "maximize"], hp_space=hp_space, hp_name=hp_name, n_trials=4, compute_objective=compute_objective, ) @require_torch @require_ray class TrainerHyperParameterRayIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def ray_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): from ray import tune return { "a": tune.randint(-4, 4), "b": tune.randint(-4, 4), } def model_init(config): if config is None: a = 0 b = 0 else: a = config["a"] b = config["b"] model_config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(model_config) def hp_name(params): return MyTrialShortNamer.shortname(params) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search( direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4 ) def test_hyperparameter_search(self): self.ray_hyperparameter_search() def test_hyperparameter_search_ray_client(self): import ray from ray.util.client.ray_client_helpers import ray_start_client_server with ray_start_client_server(): assert ray.util.client.ray.is_connected() self.ray_hyperparameter_search() @slow @require_torch @require_sigopt class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): return [ {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"}, {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"}, ] def model_init(trial): if trial is not None: a = trial.assignments["a"] b = trial.assignments["b"] else: a = 0 b = 0 config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(config) def hp_name(trial): return MyTrialShortNamer.shortname(trial.assignments) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search( direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4 ) optim_test_params = [] if is_torch_available(): default_adam_kwargs = { "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2), "eps": TrainingArguments.adam_epsilon, "lr": TrainingArguments.learning_rate, } default_lion_kwargs = { "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2), "lr": TrainingArguments.learning_rate, } default_anyprecision_kwargs = { "use_kahan_summation": False, "momentum_dtype": torch.float32, "variance_dtype": torch.float32, "compensation_buffer_dtype": torch.bfloat16, } optim_test_params = [ ( TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"), transformers.optimization.AdamW, default_adam_kwargs, ), ( TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"), transformers.optimization.AdamW, default_adam_kwargs, ), ( TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"), torch.optim.AdamW, default_adam_kwargs, ), ( TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"), transformers.optimization.Adafactor, { "scale_parameter": False, "relative_step": False, "lr": TrainingArguments.learning_rate, }, ), ] if is_apex_available(): import apex optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"), apex.optimizers.FusedAdam, default_adam_kwargs, ) ) if is_bitsandbytes_available(): import bitsandbytes as bnb optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"), bnb.optim.AdamW, default_adam_kwargs, ) ) optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"), bnb.optim.AdamW, default_adam_kwargs, ) ) optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"), bnb.optim.AdamW, default_adam_kwargs, ) ) optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"), bnb.optim.AdamW, default_adam_kwargs, ) ) optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.LION, output_dir="None"), bnb.optim.Lion, default_lion_kwargs, ) ) optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"), bnb.optim.Lion, default_lion_kwargs, ) ) optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"), bnb.optim.Lion, default_lion_kwargs, ) ) if is_torchdistx_available(): import torchdistx optim_test_params.append( ( TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"), torchdistx.optimizers.AnyPrecisionAdamW, dict(default_adam_kwargs, **default_anyprecision_kwargs), ) ) @require_torch class TrainerOptimizerChoiceTest(unittest.TestCase): def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs): actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) self.assertEqual(expected_cls, actual_cls) self.assertIsNotNone(optim_kwargs) for p, v in expected_kwargs.items(): self.assertTrue(p in optim_kwargs) actual_v = optim_kwargs[p] self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.") @parameterized.expand(optim_test_params, skip_on_empty=True) def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs): # exercises all the valid --optim options self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs) trainer = get_regression_trainer(**training_args.to_dict()) trainer.train() def test_fused_adam(self): # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists. # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow # the test to run without requiring an apex installation. mock = Mock() modules = { "apex": mock, "apex.optimizers": mock.optimizers, "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"), mock.optimizers.FusedAdam, default_adam_kwargs, ) def test_fused_adam_no_apex(self): args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None") # Pretend that apex does not exist, even if installed. By setting apex to None, importing # apex will fail even if apex is installed. with patch.dict("sys.modules", {"apex.optimizers": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) def test_bnb_adam8bit(self): # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists. # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow # the test to run without requiring a bnb installation. mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.AdamW": mock.optim.AdamW, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"), mock.optim.AdamW, default_adam_kwargs, ) def test_bnb_paged_adam8bit_alias(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.AdamW": mock.optim.AdamW, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"), mock.optim.AdamW, default_adam_kwargs, ) def test_bnb_paged_adam(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.AdamW": mock.optim.AdamW, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"), mock.optim.AdamW, default_adam_kwargs, ) def test_bnb_paged_adam8bit(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.AdamW": mock.optim.AdamW, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"), mock.optim.AdamW, default_adam_kwargs, ) def test_bnb_lion(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.Lion": mock.optim.Lion, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.LION, output_dir="None"), mock.optim.Lion, default_lion_kwargs, ) def test_bnb_lion8bit(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.Lion": mock.optim.Lion, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"), mock.optim.Lion, default_lion_kwargs, ) def test_bnb_paged_lion8bit(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.Lion": mock.optim.Lion, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"), mock.optim.Lion, default_lion_kwargs, ) def test_bnb_paged_lion(self): mock = Mock() modules = { "bitsandbytes": mock, "bitsandbytes.optim": mock.optim, "bitsandbytes.optim.Lion": mock.optim.Lion, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"), mock.optim.Lion, default_lion_kwargs, ) def test_bnb_adam8bit_no_bnb(self): args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None") # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing # bnb will fail even if bnb is installed. with patch.dict("sys.modules", {"bitsandbytes.optim": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) def test_bnb_paged_adam_no_bnb(self): args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None") # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing # bnb will fail even if bnb is installed. with patch.dict("sys.modules", {"bitsandbytes.optim": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) def test_bnb_paged_adam8bit_no_bnb(self): args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None") # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing # bnb will fail even if bnb is installed. with patch.dict("sys.modules", {"bitsandbytes.optim": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) def test_bnb_paged_lion_no_bnb(self): args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None") # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing # bnb will fail even if bnb is installed. with patch.dict("sys.modules", {"bitsandbytes.optim": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) def test_bnb_paged_lion8bit_no_bnb(self): args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None") # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing # bnb will fail even if bnb is installed. with patch.dict("sys.modules", {"bitsandbytes.optim": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) def test_anyprecision_adamw(self): # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists. # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow # the test to run without requiring a bnb installation. mock = Mock() modules = { "torchdistx": mock, "torchdistx.optimizers": mock.optimizers, "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW, } with patch.dict("sys.modules", modules): self.check_optim_and_kwargs( TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"), mock.optimizers.AnyPrecisionAdamW, dict(default_adam_kwargs, **default_anyprecision_kwargs), ) def test_no_torchdistx_anyprecision_adamw(self): args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None") # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing # torchdistx.optimizers will fail even if torchdistx is installed. with patch.dict("sys.modules", {"torchdistx.optimizers": None}): with self.assertRaises(ValueError): Trainer.get_optimizer_cls_and_kwargs(args) @require_torch @require_wandb class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase): def setUp(self): args = TrainingArguments("..") self.n_epochs = args.num_train_epochs self.batch_size = args.train_batch_size def test_hyperparameter_search(self): class MyTrialShortNamer(TrialShortNamer): DEFAULTS = {"a": 0, "b": 0} def hp_space(trial): return { "method": "random", "metric": {}, "parameters": { "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, "b": {"distribution": "int_uniform", "min": 1, "max": 6}, }, } def model_init(config): if config is None: a = 0 b = 0 else: a = config["a"] b = config["b"] model_config = RegressionModelConfig(a=a, b=b, double_output=False) return RegressionPreTrainedModel(model_config) def hp_name(params): return MyTrialShortNamer.shortname(params) with tempfile.TemporaryDirectory() as tmp_dir: trainer = get_regression_trainer( output_dir=tmp_dir, learning_rate=0.1, logging_steps=1, evaluation_strategy=IntervalStrategy.EPOCH, save_strategy=IntervalStrategy.EPOCH, num_train_epochs=4, disable_tqdm=True, load_best_model_at_end=True, logging_dir="runs", run_name="test", model_init=model_init, ) trainer.hyperparameter_search( direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must" ) class HyperParameterSearchBackendsTest(unittest.TestCase): def test_hyperparameter_search_backends(self): self.assertEqual( list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()), list(HPSearchBackend), )
transformers/tests/trainer/test_trainer.py/0
{ "file_path": "transformers/tests/trainer/test_trainer.py", "repo_id": "transformers", "token_count": 62122 }
373
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification MODEL_ID = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co REVISION_ID_DEFAULT = "main" # Default branch name REVISION_ID_ONE_SPECIFIC_COMMIT = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) REVISION_ID_INVALID = "aaaaaaa" # This commit does not exist, so we should 404. PINNED_SHA1 = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes PINNED_SHA256 = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" # Sha-256 of pytorch_model.bin on the top of `main`, for checking purposes # Dummy contexts to test `ContextManagers` @contextlib.contextmanager def context_en(): print("Welcome!") yield print("Bye!") @contextlib.contextmanager def context_fr(): print("Bonjour!") yield print("Au revoir!") class TestImportMechanisms(unittest.TestCase): def test_module_spec_available(self): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers") is not None class GenericUtilTests(unittest.TestCase): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_context_managers_no_context(self, mock_stdout): with ContextManagers([]): print("Transformers are awesome!") # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue(), "Transformers are awesome!\n") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_context_managers_one_context(self, mock_stdout): with ContextManagers([context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue(), "Welcome!\nTransformers are awesome!\nBye!\n") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_context_managers_two_context(self, mock_stdout): with ContextManagers([context_fr(), context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue(), "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n") @require_torch def test_find_labels_pt(self): self.assertEqual(find_labels(BertForSequenceClassification), ["labels"]) self.assertEqual(find_labels(BertForPreTraining), ["labels", "next_sentence_label"]) self.assertEqual(find_labels(BertForQuestionAnswering), ["start_positions", "end_positions"]) # find_labels works regardless of the class name (it detects the framework through inheritance) class DummyModel(BertForSequenceClassification): pass self.assertEqual(find_labels(DummyModel), ["labels"]) @require_tf def test_find_labels_tf(self): self.assertEqual(find_labels(TFBertForSequenceClassification), ["labels"]) self.assertEqual(find_labels(TFBertForPreTraining), ["labels", "next_sentence_label"]) self.assertEqual(find_labels(TFBertForQuestionAnswering), ["start_positions", "end_positions"]) # find_labels works regardless of the class name (it detects the framework through inheritance) class DummyModel(TFBertForSequenceClassification): pass self.assertEqual(find_labels(DummyModel), ["labels"]) @require_flax def test_find_labels_flax(self): # Flax models don't have labels self.assertEqual(find_labels(FlaxBertForSequenceClassification), []) self.assertEqual(find_labels(FlaxBertForPreTraining), []) self.assertEqual(find_labels(FlaxBertForQuestionAnswering), []) # find_labels works regardless of the class name (it detects the framework through inheritance) class DummyModel(FlaxBertForSequenceClassification): pass self.assertEqual(find_labels(DummyModel), [])
transformers/tests/utils/test_file_utils.py/0
{ "file_path": "transformers/tests/utils/test_file_utils.py", "repo_id": "transformers", "token_count": 2005 }
374
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py PATH_TO_TRANSFORMERS = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING SPECIAL_CASES_TO_ALLOW = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, "FuyuConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "Pop2PianoConfig": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], # Actually used in the config or generation config, in that case necessary for the sub-components generation "SeamlessM4TConfig": [ "max_new_tokens", "t2u_max_new_tokens", "t2u_decoder_attention_heads", "t2u_decoder_ffn_dim", "t2u_decoder_layers", "t2u_encoder_attention_heads", "t2u_encoder_ffn_dim", "t2u_encoder_layers", "t2u_max_position_embeddings", ], # Actually used in the config or generation config, in that case necessary for the sub-components generation "SeamlessM4Tv2Config": [ "max_new_tokens", "t2u_decoder_attention_heads", "t2u_decoder_ffn_dim", "t2u_decoder_layers", "t2u_encoder_attention_heads", "t2u_encoder_ffn_dim", "t2u_encoder_layers", "t2u_max_position_embeddings", "t2u_variance_pred_dropout", "t2u_variance_predictor_embed_dim", "t2u_variance_predictor_hidden_dim", "t2u_variance_predictor_kernel_size", ], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FastSpeech2ConformerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, # For backward compatibility with trust remote code models "MptConfig": True, "MptAttentionConfig": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, "IdeficsConfig": True, "IdeficsVisionConfig": True, "IdeficsPerceiverConfig": True, } ) def check_attribute_being_used(config_class, attributes, default_value, source_strings): """Check if any name in `attributes` is used in one of the strings in `source_strings` Args: config_class (`type`): The configuration class for which the arguments in its `__init__` will be checked. attributes (`List[str]`): The name of an argument (or attribute) and its variant names if any. default_value (`Any`): A default value for the attribute in `attributes` assigned in the `__init__` of `config_class`. source_strings (`List[str]`): The python source code strings in the same modeling directory where `config_class` is defined. The file containing the definition of `config_class` should be excluded. """ attribute_used = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): attribute_used = True # Deal with multi-line cases elif ( re.search( rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"', modeling_source, ) is not None ): attribute_used = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: attribute_used = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files attributes_to_allow = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", "sampling_rate", # backbone related arguments passed to load_backbone "use_pretrained_backbone", "backbone", "backbone_config", "use_timm_backbone", ] attributes_used_in_generation = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed case_allowed = True if not attribute_used: case_allowed = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: case_allowed = True elif attribute in ["tie_word_embeddings"] and default_value is False: case_allowed = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: case_allowed = True elif attribute.endswith("_token_id"): case_allowed = True # configuration class specific cases if not case_allowed: allowed_cases = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, []) case_allowed = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def check_config_attributes_being_used(config_class): """Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory Args: config_class (`type`): The configuration class for which the arguments in its `__init__` will be checked. """ # Get the parameters in `__init__` of the configuration class, and the default values if any signature = dict(inspect.signature(config_class.__init__).parameters) parameter_names = [x for x in list(signature.keys()) if x not in ["self", "kwargs"]] parameter_defaults = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass reversed_attribute_map = {} if len(config_class.attribute_map) > 0: reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files config_source_file = inspect.getsourcefile(config_class) model_dir = os.path.dirname(config_source_file) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith("modeling_")] # Get the source code strings modeling_sources = [] for path in modeling_paths: if os.path.isfile(path): with open(path, encoding="utf8") as fp: modeling_sources.append(fp.read()) unused_attributes = [] for config_param, default_value in zip(parameter_names, parameter_defaults): # `attributes` here is all the variant names for `config_param` attributes = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param]) if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources): unused_attributes.append(attributes[0]) return sorted(unused_attributes) def check_config_attributes(): """Check the arguments in `__init__` of all configuration classes are used in python files""" configs_with_unused_attributes = {} for _config_class in list(CONFIG_MAPPING.values()): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) config_classes_in_module = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class), lambda x: inspect.isclass(x) and issubclass(x, PretrainedConfig) and inspect.getmodule(x) == inspect.getmodule(_config_class), ) ] for config_class in config_classes_in_module: unused_attributes = check_config_attributes_being_used(config_class) if len(unused_attributes) > 0: configs_with_unused_attributes[config_class.__name__] = unused_attributes if len(configs_with_unused_attributes) > 0: error = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(error) if __name__ == "__main__": check_config_attributes()
transformers/utils/check_config_attributes.py/0
{ "file_path": "transformers/utils/check_config_attributes.py", "repo_id": "transformers", "token_count": 5620 }
375
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is used to get the list of folders under `tests/models` and split the list into `NUM_SLICES` splits. The main use case is a GitHub Actions workflow file calling this script to get the (nested) list of folders allowing it to split the list of jobs to run into multiple slices each containing a smaller number of jobs. This way, we can bypass the maximum of 256 jobs in a matrix. See the `setup` and `run_tests_gpu` jobs defined in the workflow file `.github/workflows/self-scheduled.yml` for more details. Usage: This script is required to be run under `tests` folder of `transformers` root directory. Assume we are under `transformers` root directory: ```bash cd tests python ../utils/split_model_tests.py --num_splits 64 ``` """ import argparse import os if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--num_splits", type=int, default=1, help="the number of splits into which the (flat) list of folders will be split.", ) args = parser.parse_args() tests = os.getcwd() model_tests = os.listdir(os.path.join(tests, "models")) d1 = sorted(filter(os.path.isdir, os.listdir(tests))) d2 = sorted(filter(os.path.isdir, [f"models/{x}" for x in model_tests])) d1.remove("models") d = d2 + d1 num_jobs = len(d) num_jobs_per_splits = num_jobs // args.num_splits model_splits = [] end = 0 for idx in range(args.num_splits): start = end end = start + num_jobs_per_splits + (1 if idx < num_jobs % args.num_splits else 0) model_splits.append(d[start:end]) print(model_splits)
transformers/utils/split_model_tests.py/0
{ "file_path": "transformers/utils/split_model_tests.py", "repo_id": "transformers", "token_count": 759 }
376
import json import os from ghapi.all import GhApi FOLDER_STRING = os.environ.get("FOLDER_STRING", "") folder = f"benchmark/trl/{FOLDER_STRING}" host_url = f"https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/{FOLDER_STRING}" # Create a GitHub API instance github_context = json.loads(os.environ["GITHUB_CONTEXT"]) token = os.environ["PERSONAL_ACCESS_TOKEN_GITHUB"] # this needs to refreshed every 12 months status_message = "**[COSTA BENCHMARK BOT]**: Here are the results" body = status_message repo = github_context["repository"] owner, repo = repo.split("/") api = GhApi(owner=owner, repo=repo, token=token) # for each `.png` file in the folder, add it to the comment for file in os.listdir(folder): if file.endswith(".png"): body += f"\n![{file}]({host_url}/{file})" # Create a comment on the issue api.issues.create_comment(issue_number=github_context["event"]["issue"]["number"], body=body)
trl/benchmark/post_github_comment.py/0
{ "file_path": "trl/benchmark/post_github_comment.py", "repo_id": "trl", "token_count": 358 }
377
# Use model after training Once you have trained a model using either the SFTTrainer, PPOTrainer, or DPOTrainer, you will have a fine-tuned model that can be used for text generation. In this section, we'll walk through the process of loading the fine-tuned model and generating text. If you need to run an inference server with the trained model, you can explore libraries such as [`text-generation-inference`](https://github.com/huggingface/text-generation-inference). ## Load and Generate If you have fine-tuned a model fully, meaning without the use of PEFT you can simply load it like any other language model in transformers. E.g. the value head that was trained during the PPO training is no longer needed and if you load the model with the original transformer class it will be ignored: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name_or_path = "kashif/stack-llama-2" #path/to/your/model/or/name/on/hub device = "cpu" # or "cuda" if you have a GPU model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) inputs = tokenizer.encode("This movie was really", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` Alternatively you can also use the pipeline: ```python from transformers import pipeline model_name_or_path = "kashif/stack-llama-2" #path/to/your/model/or/name/on/hub pipe = pipeline("text-generation", model=model_name_or_path) print(pipe("This movie was really")[0]["generated_text"]) ``` ## Use Adapters PEFT ```python from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer base_model_name = "kashif/stack-llama-2" #path/to/your/model/or/name/on/hub" adapter_model_name = "path/to/my/adapter" model = AutoModelForCausalLM.from_pretrained(base_model_name) model = PeftModel.from_pretrained(model, adapter_model_name) tokenizer = AutoTokenizer.from_pretrained(base_model_name) ``` You can also merge the adapters into the base model so you can use the model like a normal transformers model, however the checkpoint will be significantly bigger: ```python model = AutoModelForCausalLM.from_pretrained(base_model_name) model = PeftModel.from_pretrained(model, adapter_model_name) model = model.merge_and_unload() model.save_pretrained("merged_adapters") ``` Once you have the model loaded and either merged the adapters or keep them separately on top you can run generation as with a normal model outlined above.
trl/docs/source/use_model.md/0
{ "file_path": "trl/docs/source/use_model.md", "repo_id": "trl", "token_count": 778 }
378
from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import evaluate import numpy as np import torch import torch.nn as nn from datasets import load_dataset from peft import LoraConfig, TaskType, get_peft_model from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser, PreTrainedTokenizerBase, Trainer, TrainerCallback, TrainingArguments, ) from transformers.utils import PaddingStrategy # Define and parse arguments. @dataclass class ScriptArguments: """ These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train. """ local_rank: Optional[int] = field(default=-1, metadata={"help": "Used for multi-gpu"}) resume_from_checkpoint: Optional[bool] = field( default=False, metadata={"help": "If you want to resume training where it left off."}, ) deepspeed: Optional[str] = field( default=None, metadata={ "help": "Path to deepspeed config if using deepspeed. You may need this if the model that you want to train doesn't fit on a single GPU." }, ) per_device_train_batch_size: Optional[int] = field(default=4) per_device_eval_batch_size: Optional[int] = field(default=1) gradient_accumulation_steps: Optional[int] = field(default=1) learning_rate: Optional[float] = field(default=2e-5) weight_decay: Optional[float] = field(default=0.001) model_name: Optional[str] = field( default="gpt2", metadata={ "help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc." }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "The tokenizer for your model, if left empty will use the default for your model", }, ) bf16: Optional[bool] = field( default=True, metadata={ "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU." }, ) num_train_epochs: Optional[int] = field( default=1, metadata={"help": "The number of training epochs for the reward model."}, ) train_subset: Optional[int] = field( default=100000, metadata={"help": "The size of the subset of the training data to use"}, ) eval_subset: Optional[int] = field( default=50000, metadata={"help": "The size of the subset of the eval data to use"}, ) gradient_checkpointing: Optional[bool] = field( default=False, metadata={"help": "Enables gradient checkpointing."}, ) optim: Optional[str] = field( default="adamw_hf", metadata={"help": "The optimizer to use."}, ) lr_scheduler_type: Optional[str] = field( default="linear", metadata={"help": "The lr scheduler"}, ) max_length: Optional[int] = field(default=512) eval_first_step: Optional[bool] = field( default=False, metadata={"help": "Whether to run eval after the first step"}, ) parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # Load the human stack-exchange-paired dataset for tuning the reward model. train_dataset = load_dataset("lvwerra/stack-exchange-paired", data_dir="data/reward", split="train") if script_args.train_subset > 0: train_dataset = train_dataset.select(range(script_args.train_subset)) eval_dataset = load_dataset("lvwerra/stack-exchange-paired", data_dir="data/evaluation", split="train") if script_args.eval_subset > 0: eval_dataset = eval_dataset.select(range(script_args.eval_subset)) # Define the training args. Needs to be done before the model is loaded if you are using deepspeed. model_name_split = script_args.model_name.split("/")[-1] output_name = ( f"{model_name_split}_peft_stack-exchange-paired_rmts__{script_args.train_subset}_{script_args.learning_rate}" ) training_args = TrainingArguments( output_dir=output_name, learning_rate=script_args.learning_rate, per_device_train_batch_size=script_args.per_device_train_batch_size, per_device_eval_batch_size=script_args.per_device_eval_batch_size, num_train_epochs=script_args.num_train_epochs, weight_decay=script_args.weight_decay, evaluation_strategy="steps", eval_steps=500, save_strategy="steps", save_steps=500, gradient_accumulation_steps=script_args.gradient_accumulation_steps, gradient_checkpointing=script_args.gradient_checkpointing, deepspeed=script_args.deepspeed, local_rank=script_args.local_rank, remove_unused_columns=False, label_names=[], bf16=script_args.bf16, logging_strategy="steps", logging_steps=10, optim=script_args.optim, lr_scheduler_type=script_args.lr_scheduler_type, ) # Load the value-head model and tokenizer. tokenizer_name = script_args.tokenizer_name if script_args.tokenizer_name is not None else script_args.model_name tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=True) tokenizer.pad_token = tokenizer.eos_token peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) model = AutoModelForSequenceClassification.from_pretrained( script_args.model_name, num_labels=1, torch_dtype=torch.bfloat16 ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # Need to do this for gpt2, because it doesn't have an official pad token. tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = tokenizer.eos_token_id model.config.use_cache = not script_args.gradient_checkpointing num_proc = 24 # Can adjust to be higher if you have more processors. original_columns = train_dataset.column_names # Turn the dataset into pairs of post + summaries, where text_j is the preferred question + answer and text_k is the other. # Then tokenize the dataset. def preprocess_function(examples): new_examples = { "input_ids_j": [], "attention_mask_j": [], "input_ids_k": [], "attention_mask_k": [], } for question, response_j, response_k in zip(examples["question"], examples["response_j"], examples["response_k"]): tokenized_j = tokenizer("Question: " + question + "\n\nAnswer: " + response_j, truncation=True) tokenized_k = tokenizer("Question: " + question + "\n\nAnswer: " + response_k, truncation=True) new_examples["input_ids_j"].append(tokenized_j["input_ids"]) new_examples["attention_mask_j"].append(tokenized_j["attention_mask"]) new_examples["input_ids_k"].append(tokenized_k["input_ids"]) new_examples["attention_mask_k"].append(tokenized_k["attention_mask"]) return new_examples # preprocess the dataset and filter out QAs that are longer than script_args.max_length train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=num_proc, remove_columns=original_columns, ) train_dataset = train_dataset.filter( lambda x: len(x["input_ids_j"]) <= script_args.max_length and len(x["input_ids_k"]) <= script_args.max_length ) eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=num_proc, remove_columns=original_columns, ) eval_dataset = eval_dataset.filter( lambda x: len(x["input_ids_j"]) <= script_args.max_length and len(x["input_ids_k"]) <= script_args.max_length ) # We need to define a special data collator that batches the data in our j vs k format. @dataclass class RewardDataCollatorWithPadding: tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None return_tensors: str = "pt" def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]: features_j = [] features_k = [] for feature in features: features_j.append( { "input_ids": feature["input_ids_j"], "attention_mask": feature["attention_mask_j"], } ) features_k.append( { "input_ids": feature["input_ids_k"], "attention_mask": feature["attention_mask_k"], } ) batch_j = self.tokenizer.pad( features_j, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) batch_k = self.tokenizer.pad( features_k, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) batch = { "input_ids_j": batch_j["input_ids"], "attention_mask_j": batch_j["attention_mask"], "input_ids_k": batch_k["input_ids"], "attention_mask_k": batch_k["attention_mask"], "return_loss": True, } return batch # Define the metric that we'll use for validation. accuracy = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions, _ = eval_pred # Here, predictions is rewards_j and rewards_k. # We want to see how much of the time rewards_j > rewards_k. predictions = np.argmax(predictions, axis=0) labels = np.zeros(predictions.shape) return accuracy.compute(predictions=predictions, references=labels) class RewardTrainer(Trainer): # Define how to compute the reward loss. We use the InstructGPT pairwise logloss: https://arxiv.org/abs/2203.02155 def compute_loss(self, model, inputs, return_outputs=False): rewards_j = model(input_ids=inputs["input_ids_j"], attention_mask=inputs["attention_mask_j"])[0] rewards_k = model(input_ids=inputs["input_ids_k"], attention_mask=inputs["attention_mask_k"])[0] loss = -nn.functional.logsigmoid(rewards_j - rewards_k).mean() if return_outputs: return loss, {"rewards_j": rewards_j, "rewards_k": rewards_k} return loss # Train the model, woohoo. trainer = RewardTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, data_collator=RewardDataCollatorWithPadding(tokenizer=tokenizer, max_length=script_args.max_length), ) if script_args.eval_first_step: class EvaluateFirstStepCallback(TrainerCallback): def on_step_end(self, args, state, control, **kwargs): if state.global_step == 1: control.should_evaluate = True trainer.add_callback(EvaluateFirstStepCallback()) trainer.train(script_args.resume_from_checkpoint) print("Saving last checkpoint of the model") model.save_pretrained(output_name + "_peft_last_checkpoint")
trl/examples/research_projects/stack_llama/scripts/reward_modeling.py/0
{ "file_path": "trl/examples/research_projects/stack_llama/scripts/reward_modeling.py", "repo_id": "trl", "token_count": 4474 }
379
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from peft import LoraConfig from tqdm import tqdm from transformers import AutoTokenizer, BitsAndBytesConfig, HfArgumentParser from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer from trl.core import LengthSampler from trl.import_utils import is_npu_available, is_xpu_available input_min_text_length = 6 input_max_text_length = 12 @dataclass class ScriptArguments: """ The name of the Casual LM model we wish to fine with PPO """ model_name: Optional[str] = field(default="huggyllama/llama-7b", metadata={"help": "the model name"}) dataset_name: Optional[str] = field(default="Anthropic/hh-rlhf", metadata={"help": "the dataset name"}) rm_adapter: Optional[str] = field( default="trl-lib/llama-7b-hh-rm-adapter", metadata={"help": "the rm adapter name"} ) log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"}) use_safetensors: Optional[bool] = field(default=False, metadata={"help": "Use safetensors"}) seed: Optional[int] = field(default=0, metadata={"help": "the random seed"}) use_score_scaling: Optional[bool] = field(default=False, metadata={"help": "Use score scaling"}) use_score_norm: Optional[bool] = field( default=False, metadata={"help": "Use score normalization. Only applicable if use_score_scaling is True"} ) score_clip: Optional[float] = field(default=None, metadata={"help": "Score clipping"}) parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] def create_and_prepare_dataset(tokenizer): dataset = load_dataset(script_args.dataset_name, split="train[:1%]") input_size = LengthSampler(input_min_text_length, input_max_text_length) def tokenize(example): text_size = input_size() example["input_ids"] = tokenizer.encode(example["chosen"])[:text_size] example["query"] = tokenizer.decode(example["input_ids"]) return example dataset = dataset.map(tokenize, batched=False) dataset.set_format("torch") return dataset lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLMWithValueHead.from_pretrained( script_args.model_name, device_map={"": "xpu:0"} if is_xpu_available() else {"": "npu:0"} if is_npu_available else {"": 0}, peft_config=lora_config, quantization_config=nf4_config, reward_adapter=script_args.rm_adapter, use_safetensors=script_args.use_safetensors, ) tokenizer = AutoTokenizer.from_pretrained(script_args.model_name) tokenizer.pad_token = tokenizer.eos_token dataset = create_and_prepare_dataset(tokenizer) def collator(data): return dict((key, [d[key] for d in data]) for key in data[0]) config = PPOConfig( model_name=script_args.model_name, log_with=script_args.log_with, learning_rate=1e-5, batch_size=8, mini_batch_size=2, gradient_accumulation_steps=2, optimize_cuda_cache=True, seed=script_args.seed, use_score_scaling=script_args.use_score_scaling, use_score_norm=script_args.use_score_norm, score_clip=script_args.score_clip, ) ppo_trainer = PPOTrainer( config, model, ref_model=None, tokenizer=tokenizer, dataset=dataset, data_collator=collator, ) generation_kwargs = { "top_k": 0.0, "top_p": 0.9, "do_sample": True, "pad_token_id": tokenizer.pad_token_id, "max_new_tokens": 32, } for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)): question_tensors = batch["input_ids"] response_tensors = ppo_trainer.generate( question_tensors, return_prompt=False, **generation_kwargs, ) batch["response"] = tokenizer.batch_decode(response_tensors, skip_special_tokens=True) # Compute reward score texts = [q + r for q, r in zip(batch["query"], batch["response"])] inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt").to(ppo_trainer.accelerator.device) raw_rewards = ppo_trainer.accelerator.unwrap_model(ppo_trainer.model).compute_reward_score(**inputs) rewards = [raw_rewards[i, -1, 1] for i in range(len(raw_rewards))] # take last token # Run PPO step stats = ppo_trainer.step(question_tensors, response_tensors, rewards) ppo_trainer.log_stats(stats, batch, rewards)
trl/examples/scripts/ppo_multi_adapter.py/0
{ "file_path": "trl/examples/scripts/ppo_multi_adapter.py", "repo_id": "trl", "token_count": 2003 }
380
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from trl.core import masked_mean, masked_var, masked_whiten, whiten class CoreTester(unittest.TestCase): """ A wrapper class for testing core utils functions """ @classmethod def setUpClass(cls): cls.test_input = torch.Tensor([1, 2, 3, 4]) cls.test_mask = torch.Tensor([0, 1, 1, 0]) cls.test_input_unmasked = cls.test_input[1:3] def test_masked_mean(self): assert torch.mean(self.test_input_unmasked) == masked_mean(self.test_input, self.test_mask) def test_masked_var(self): assert torch.var(self.test_input_unmasked) == masked_var(self.test_input, self.test_mask) def test_masked_whiten(self): whiten_unmasked = whiten(self.test_input_unmasked) whiten_masked = masked_whiten(self.test_input, self.test_mask)[1:3] diffs = (whiten_unmasked - whiten_masked).sum() assert abs(diffs.item()) < 0.00001
trl/tests/test_core.py/0
{ "file_path": "trl/tests/test_core.py", "repo_id": "trl", "token_count": 568 }
381
# flake8: noqa __version__ = "0.7.11.dev0" from .core import set_seed from .environment import TextEnvironment, TextHistory from .extras import BestOfNSampler from .import_utils import ( is_bitsandbytes_available, is_diffusers_available, is_npu_available, is_peft_available, is_wandb_available, is_xpu_available, ) from .models import ( AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead, PreTrainedModelWrapper, create_reference_model, setup_chat_format, ) from .trainer import ( DataCollatorForCompletionOnlyLM, DPOTrainer, IterativeSFTTrainer, ModelConfig, PPOConfig, PPOTrainer, RewardConfig, RewardTrainer, SFTTrainer, ) from .trainer.utils import get_kbit_device_map, get_peft_config, get_quantization_config if is_diffusers_available(): from .models import ( DDPOPipelineOutput, DDPOSchedulerOutput, DDPOStableDiffusionPipeline, DefaultDDPOStableDiffusionPipeline, ) from .trainer import DDPOConfig, DDPOTrainer
trl/trl/__init__.py/0
{ "file_path": "trl/trl/__init__.py", "repo_id": "trl", "token_count": 434 }
382
# Copyright 2023 DDPO-pytorch authors (Kevin Black), metric-space, The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from collections import defaultdict from concurrent import futures from typing import Any, Callable, Optional, Tuple from warnings import warn import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import whoami from ..models import DDPOStableDiffusionPipeline from . import BaseTrainer, DDPOConfig from .utils import PerPromptStatTracker logger = get_logger(__name__) MODEL_CARD_TEMPLATE = """--- license: apache-2.0 tags: - trl - ddpo - diffusers - reinforcement-learning - text-to-image - stable-diffusion --- # {model_name} This is a diffusion model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for image generation conditioned with text. """ class DDPOTrainer(BaseTrainer): """ The DDPOTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models. Note, this trainer is heavily inspired by the work here: https://github.com/kvablack/ddpo-pytorch As of now only Stable Diffusion based pipelines are supported Attributes: **config** (`DDPOConfig`) -- Configuration object for DDPOTrainer. Check the documentation of `PPOConfig` for more details. **reward_function** (Callable[[torch.Tensor, Tuple[str], Tuple[Any]], torch.Tensor]) -- Reward function to be used **prompt_function** (Callable[[], Tuple[str, Any]]) -- Function to generate prompts to guide model **sd_pipeline** (`DDPOStableDiffusionPipeline`) -- Stable Diffusion pipeline to be used for training. **image_samples_hook** (Optional[Callable[[Any, Any, Any], Any]]) -- Hook to be called to log images """ _tag_names = ["trl", "ddpo"] def __init__( self, config: DDPOConfig, reward_function: Callable[[torch.Tensor, Tuple[str], Tuple[Any]], torch.Tensor], prompt_function: Callable[[], Tuple[str, Any]], sd_pipeline: DDPOStableDiffusionPipeline, image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None, ): if image_samples_hook is None: warn("No image_samples_hook provided; no images will be logged") self.prompt_fn = prompt_function self.reward_fn = reward_function self.config = config self.image_samples_callback = image_samples_hook accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs) if self.config.resume_from: self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from)) if "checkpoint_" not in os.path.basename(self.config.resume_from): # get the most recent checkpoint in this directory checkpoints = list( filter( lambda x: "checkpoint_" in x, os.listdir(self.config.resume_from), ) ) if len(checkpoints) == 0: raise ValueError(f"No checkpoints found in {self.config.resume_from}") checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints]) self.config.resume_from = os.path.join( self.config.resume_from, f"checkpoint_{checkpoint_numbers[-1]}", ) accelerator_project_config.iteration = checkpoint_numbers[-1] + 1 # number of timesteps within each trajectory to train on self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction) self.accelerator = Accelerator( log_with=self.config.log_with, mixed_precision=self.config.mixed_precision, project_config=accelerator_project_config, # we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the # number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get # the total number of optimizer steps to accumulate across. gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps, **self.config.accelerator_kwargs, ) is_okay, message = self._config_check() if not is_okay: raise ValueError(message) is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard" if self.accelerator.is_main_process: self.accelerator.init_trackers( self.config.tracker_project_name, config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(), init_kwargs=self.config.tracker_kwargs, ) logger.info(f"\n{config}") set_seed(self.config.seed, device_specific=True) self.sd_pipeline = sd_pipeline self.sd_pipeline.set_progress_bar_config( position=1, disable=not self.accelerator.is_local_main_process, leave=False, desc="Timestep", dynamic_ncols=True, ) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. if self.accelerator.mixed_precision == "fp16": inference_dtype = torch.float16 elif self.accelerator.mixed_precision == "bf16": inference_dtype = torch.bfloat16 else: inference_dtype = torch.float32 self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype) self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype) self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype) trainable_layers = self.sd_pipeline.get_trainable_layers() self.accelerator.register_save_state_pre_hook(self._save_model_hook) self.accelerator.register_load_state_pre_hook(self._load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if self.config.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True self.optimizer = self._setup_optimizer( trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers ) self.neg_prompt_embed = self.sd_pipeline.text_encoder( self.sd_pipeline.tokenizer( [""] if self.config.negative_prompts is None else self.config.negative_prompts, return_tensors="pt", padding="max_length", truncation=True, max_length=self.sd_pipeline.tokenizer.model_max_length, ).input_ids.to(self.accelerator.device) )[0] if config.per_prompt_stat_tracking: self.stat_tracker = PerPromptStatTracker( config.per_prompt_stat_tracking_buffer_size, config.per_prompt_stat_tracking_min_count, ) # NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses # more memory self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora: unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer) self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters())) else: self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer) if self.config.async_reward_computation: self.executor = futures.ThreadPoolExecutor(max_workers=config.max_workers) if config.resume_from: logger.info(f"Resuming from {config.resume_from}") self.accelerator.load_state(config.resume_from) self.first_epoch = int(config.resume_from.split("_")[-1]) + 1 else: self.first_epoch = 0 def compute_rewards(self, prompt_image_pairs, is_async=False): if not is_async: rewards = [] for images, prompts, prompt_metadata in prompt_image_pairs: reward, reward_metadata = self.reward_fn(images, prompts, prompt_metadata) rewards.append( ( torch.as_tensor(reward, device=self.accelerator.device), reward_metadata, ) ) else: rewards = self.executor.map(lambda x: self.reward_fn(*x), prompt_image_pairs) rewards = [ (torch.as_tensor(reward.result(), device=self.accelerator.device), reward_metadata.result()) for reward, reward_metadata in rewards ] return zip(*rewards) def step(self, epoch: int, global_step: int): """ Perform a single step of training. Args: epoch (int): The current epoch. global_step (int): The current global step. Side Effects: - Model weights are updated - Logs the statistics to the accelerator trackers. - If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker. Returns: global_step (int): The updated global step. """ samples, prompt_image_data = self._generate_samples( iterations=self.config.sample_num_batches_per_epoch, batch_size=self.config.sample_batch_size, ) # collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...) samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()} rewards, rewards_metadata = self.compute_rewards( prompt_image_data, is_async=self.config.async_reward_computation ) for i, image_data in enumerate(prompt_image_data): image_data.extend([rewards[i], rewards_metadata[i]]) if self.image_samples_callback is not None: self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0]) rewards = torch.cat(rewards) rewards = self.accelerator.gather(rewards).cpu().numpy() self.accelerator.log( { "reward": rewards, "epoch": epoch, "reward_mean": rewards.mean(), "reward_std": rewards.std(), }, step=global_step, ) if self.config.per_prompt_stat_tracking: # gather the prompts across processes prompt_ids = self.accelerator.gather(samples["prompt_ids"]).cpu().numpy() prompts = self.sd_pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True) advantages = self.stat_tracker.update(prompts, rewards) else: advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8) # ungather advantages; keep the entries corresponding to the samples on this process samples["advantages"] = ( torch.as_tensor(advantages) .reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index] .to(self.accelerator.device) ) del samples["prompt_ids"] total_batch_size, num_timesteps = samples["timesteps"].shape for inner_epoch in range(self.config.train_num_inner_epochs): # shuffle samples along batch dimension perm = torch.randperm(total_batch_size, device=self.accelerator.device) samples = {k: v[perm] for k, v in samples.items()} # shuffle along time dimension independently for each sample # still trying to understand the code below perms = torch.stack( [torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)] ) for key in ["timesteps", "latents", "next_latents", "log_probs"]: samples[key] = samples[key][ torch.arange(total_batch_size, device=self.accelerator.device)[:, None], perms, ] original_keys = samples.keys() original_values = samples.values() # rebatch them as user defined train_batch_size is different from sample_batch_size reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values] # Transpose the list of original values transposed_values = zip(*reshaped_values) # Create new dictionaries for each row of transposed values samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values] self.sd_pipeline.unet.train() global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched) # ensure optimization step at the end of the inner epoch if not self.accelerator.sync_gradients: raise ValueError( "Optimization step should have been performed by this point. Please check calculated gradient accumulation settings." ) if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process: self.accelerator.save_state() return global_step def calculate_loss(self, latents, timesteps, next_latents, log_probs, advantages, embeds): """ Calculate the loss for a batch of an unpacked sample Args: latents (torch.Tensor): The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width] timesteps (torch.Tensor): The timesteps sampled from the diffusion model, shape: [batch_size] next_latents (torch.Tensor): The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width] log_probs (torch.Tensor): The log probabilities of the latents, shape: [batch_size] advantages (torch.Tensor): The advantages of the latents, shape: [batch_size] embeds (torch.Tensor): The embeddings of the prompts, shape: [2*batch_size or batch_size, ...] Note: the "or" is because if train_cfg is True, the expectation is that negative prompts are concatenated to the embeds Returns: loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor) (all of these are of shape (1,)) """ with self.autocast(): if self.config.train_cfg: noise_pred = self.sd_pipeline.unet( torch.cat([latents] * 2), torch.cat([timesteps] * 2), embeds, ).sample noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.config.sample_guidance_scale * ( noise_pred_text - noise_pred_uncond ) else: noise_pred = self.sd_pipeline.unet( latents, timesteps, embeds, ).sample # compute the log prob of next_latents given latents under the current model scheduler_step_output = self.sd_pipeline.scheduler_step( noise_pred, timesteps, latents, eta=self.config.sample_eta, prev_sample=next_latents, ) log_prob = scheduler_step_output.log_probs advantages = torch.clamp( advantages, -self.config.train_adv_clip_max, self.config.train_adv_clip_max, ) ratio = torch.exp(log_prob - log_probs) loss = self.loss(advantages, self.config.train_clip_range, ratio) approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2) clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float()) return loss, approx_kl, clipfrac def loss( self, advantages: torch.Tensor, clip_range: float, ratio: torch.Tensor, ): unclipped_loss = -advantages * ratio clipped_loss = -advantages * torch.clamp( ratio, 1.0 - clip_range, 1.0 + clip_range, ) return torch.mean(torch.maximum(unclipped_loss, clipped_loss)) def _setup_optimizer(self, trainable_layers_parameters): if self.config.train_use_8bit_adam: import bitsandbytes optimizer_cls = bitsandbytes.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW return optimizer_cls( trainable_layers_parameters, lr=self.config.train_learning_rate, betas=(self.config.train_adam_beta1, self.config.train_adam_beta2), weight_decay=self.config.train_adam_weight_decay, eps=self.config.train_adam_epsilon, ) def _save_model_hook(self, models, weights, output_dir): self.sd_pipeline.save_checkpoint(models, weights, output_dir) weights.pop() # ensures that accelerate doesn't try to handle saving of the model def _load_model_hook(self, models, input_dir): self.sd_pipeline.load_checkpoint(models, input_dir) models.pop() # ensures that accelerate doesn't try to handle loading of the model def _generate_samples(self, iterations, batch_size): """ Generate samples from the model Args: iterations (int): Number of iterations to generate samples for batch_size (int): Batch size to use for sampling Returns: samples (List[Dict[str, torch.Tensor]]), prompt_image_pairs (List[List[Any]]) """ samples = [] prompt_image_pairs = [] self.sd_pipeline.unet.eval() sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1) for _ in range(iterations): prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)]) prompt_ids = self.sd_pipeline.tokenizer( prompts, return_tensors="pt", padding="max_length", truncation=True, max_length=self.sd_pipeline.tokenizer.model_max_length, ).input_ids.to(self.accelerator.device) prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0] with self.autocast(): sd_output = self.sd_pipeline( prompt_embeds=prompt_embeds, negative_prompt_embeds=sample_neg_prompt_embeds, num_inference_steps=self.config.sample_num_steps, guidance_scale=self.config.sample_guidance_scale, eta=self.config.sample_eta, output_type="pt", ) images = sd_output.images latents = sd_output.latents log_probs = sd_output.log_probs latents = torch.stack(latents, dim=1) # (batch_size, num_steps + 1, ...) log_probs = torch.stack(log_probs, dim=1) # (batch_size, num_steps, 1) timesteps = self.sd_pipeline.scheduler.timesteps.repeat(batch_size, 1) # (batch_size, num_steps) samples.append( { "prompt_ids": prompt_ids, "prompt_embeds": prompt_embeds, "timesteps": timesteps, "latents": latents[:, :-1], # each entry is the latent before timestep t "next_latents": latents[:, 1:], # each entry is the latent after timestep t "log_probs": log_probs, "negative_prompt_embeds": sample_neg_prompt_embeds, } ) prompt_image_pairs.append([images, prompts, prompt_metadata]) return samples, prompt_image_pairs def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples): """ Train on a batch of samples. Main training segment Args: inner_epoch (int): The current inner epoch epoch (int): The current epoch global_step (int): The current global step batched_samples (List[Dict[str, torch.Tensor]]): The batched samples to train on Side Effects: - Model weights are updated - Logs the statistics to the accelerator trackers. Returns: global_step (int): The updated global step """ info = defaultdict(list) for i, sample in enumerate(batched_samples): if self.config.train_cfg: # concat negative prompts to sample prompts to avoid two forward passes embeds = torch.cat([sample["negative_prompt_embeds"], sample["prompt_embeds"]]) else: embeds = sample["prompt_embeds"] for j in range(self.num_train_timesteps): with self.accelerator.accumulate(self.sd_pipeline.unet): loss, approx_kl, clipfrac = self.calculate_loss( sample["latents"][:, j], sample["timesteps"][:, j], sample["next_latents"][:, j], sample["log_probs"][:, j], sample["advantages"], embeds, ) info["approx_kl"].append(approx_kl) info["clipfrac"].append(clipfrac) info["loss"].append(loss) self.accelerator.backward(loss) if self.accelerator.sync_gradients: self.accelerator.clip_grad_norm_( self.trainable_layers.parameters() if not isinstance(self.trainable_layers, list) else self.trainable_layers, self.config.train_max_grad_norm, ) self.optimizer.step() self.optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if self.accelerator.sync_gradients: # log training-related stuff info = {k: torch.mean(torch.stack(v)) for k, v in info.items()} info = self.accelerator.reduce(info, reduction="mean") info.update({"epoch": epoch, "inner_epoch": inner_epoch}) self.accelerator.log(info, step=global_step) global_step += 1 info = defaultdict(list) return global_step def _config_check(self) -> Tuple[bool, str]: samples_per_epoch = ( self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch ) total_train_batch_size = ( self.config.train_batch_size * self.accelerator.num_processes * self.config.train_gradient_accumulation_steps ) if not self.config.sample_batch_size >= self.config.train_batch_size: return ( False, f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})", ) if not self.config.sample_batch_size % self.config.train_batch_size == 0: return ( False, f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})", ) if not samples_per_epoch % total_train_batch_size == 0: return ( False, f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})", ) return True, "" def train(self, epochs: Optional[int] = None): """ Train the model for a given number of epochs """ global_step = 0 if epochs is None: epochs = self.config.num_epochs for epoch in range(self.first_epoch, epochs): global_step = self.step(epoch, global_step) def create_model_card(self, path: str, model_name: Optional[str] = "TRL DDPO Model") -> None: """Creates and saves a model card for a TRL model. Args: path (`str`): The path to save the model card to. model_name (`str`, *optional*): The name of the model, defaults to `TRL DDPO Model`. """ try: user = whoami()["name"] # handle the offline case except: # noqa warnings.warn("Cannot retrieve user information assuming you are running in offline mode.") return if not os.path.exists(path): os.makedirs(path) model_card_content = MODEL_CARD_TEMPLATE.format(model_name=model_name, model_id=f"{user}/{path}") with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f: f.write(model_card_content) def _save_pretrained(self, save_directory): self.sd_pipeline.save_pretrained(save_directory) self.create_model_card(save_directory)
trl/trl/trainer/ddpo_trainer.py/0
{ "file_path": "trl/trl/trainer/ddpo_trainer.py", "repo_id": "trl", "token_count": 12352 }
383
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Launching your 🤗 Accelerate scripts In the previous tutorial, you were introduced to how to modify your current training script to use 🤗 Accelerate. The final version of that code is shown below: ```python from accelerate import Accelerator accelerator = Accelerator() model, optimizer, training_dataloader, scheduler = accelerator.prepare( model, optimizer, training_dataloader, scheduler ) for batch in training_dataloader: optimizer.zero_grad() inputs, targets = batch outputs = model(inputs) loss = loss_function(outputs, targets) accelerator.backward(loss) optimizer.step() scheduler.step() ``` But how do you run this code and have it utilize the special hardware available to it? First, you should rewrite the above code into a function, and make it callable as a script. For example: ```diff from accelerate import Accelerator + def main(): accelerator = Accelerator() model, optimizer, training_dataloader, scheduler = accelerator.prepare( model, optimizer, training_dataloader, scheduler ) for batch in training_dataloader: optimizer.zero_grad() inputs, targets = batch outputs = model(inputs) loss = loss_function(outputs, targets) accelerator.backward(loss) optimizer.step() scheduler.step() + if __name__ == "__main__": + main() ``` Next, you need to launch it with `accelerate launch`. <Tip warning={true}> It's recommended you run `accelerate config` before using `accelerate launch` to configure your environment to your liking. Otherwise 🤗 Accelerate will use very basic defaults depending on your system setup. </Tip> ## Using accelerate launch 🤗 Accelerate has a special CLI command to help you launch your code in your system through `accelerate launch`. This command wraps around all of the different commands needed to launch your script on various platforms, without you having to remember what each of them is. <Tip> If you are familiar with launching scripts in PyTorch yourself such as with `torchrun`, you can still do this. It is not required to use `accelerate launch`. </Tip> You can launch your script quickly by using: ```bash accelerate launch {script_name.py} --arg1 --arg2 ... ``` Just put `accelerate launch` at the start of your command, and pass in additional arguments and parameters to your script afterward like normal! Since this runs the various torch spawn methods, all of the expected environment variables can be modified here as well. For example, here is how to use `accelerate launch` with a single GPU: ```bash CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ... ``` You can also use `accelerate launch` without performing `accelerate config` first, but you may need to manually pass in the right configuration parameters. In this case, 🤗 Accelerate will make some hyperparameter decisions for you, e.g., if GPUs are available, it will use all of them by default without the mixed precision. Here is how you would use all GPUs and train with mixed precision disabled: ```bash accelerate launch --multi_gpu {script_name.py} {--arg1} {--arg2} ... ``` Or by specifying a number of GPUs to use: ```bash accelerate launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ... ``` To get more specific you should pass in the needed parameters yourself. For instance, here is how you would also launch that same script on two GPUs using mixed precision while avoiding all of the warnings: ```bash accelerate launch --multi_gpu --mixed_precision=fp16 --num_processes=2 {script_name.py} {--arg1} {--arg2} ... ``` For a complete list of parameters you can pass in, run: ```bash accelerate launch -h ``` <Tip> Even if you are not using 🤗 Accelerate in your code, you can still use the launcher for starting your scripts! </Tip> For a visualization of this difference, that earlier `accelerate launch` on multi-gpu would look something like so with `torchrun`: ```bash MIXED_PRECISION="fp16" torchrun --nproc_per_node=2 --num_machines=1 {script_name.py} {--arg1} {--arg2} ... ``` You can also launch your script utilizing the launch CLI as a python module itself, enabling the ability to pass in other python-specific launching behaviors. To do so, use `accelerate.commands.launch` instead of `accelerate launch`: ```bash python -m accelerate.commands.launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ``` If you want to execute the script with any other python flags, you can pass them in as well similar to `-m`, such as the below example enabling unbuffered stdout and stderr: ```bash python -u -m accelerate.commands.launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ``` <Tip> You can run your code on CPU as well! This is helpful for debugging and testing purposes on toy models and datasets. ```bash accelerate launch --cpu {script_name.py} {--arg1} {--arg2} ``` </Tip> ## Why you should always use `accelerate config` Why is it useful to the point you should **always** run `accelerate config`? Remember that earlier call to `accelerate launch` as well as `torchrun`? Post configuration, to run that script with the needed parts you just need to use `accelerate launch` outright, without passing anything else in: ```bash accelerate launch {script_name.py} {--arg1} {--arg2} ... ``` ## Custom Configurations As briefly mentioned earlier, `accelerate launch` should be mostly used through combining set configurations made with the `accelerate config` command. These configs are saved to a `default_config.yaml` file in your cache folder for 🤗 Accelerate. This cache folder is located at (with decreasing order of priority): - The content of your environment variable `HF_HOME` suffixed with `accelerate`. - If it does not exist, the content of your environment variable `XDG_CACHE_HOME` suffixed with `huggingface/accelerate`. - If this does not exist either, the folder `~/.cache/huggingface/accelerate`. To have multiple configurations, the flag `--config_file` can be passed to the `accelerate launch` command paired with the location of the custom yaml. An example yaml may look something like the following for two GPUs on a single machine using `fp16` for mixed precision: ```yaml compute_environment: LOCAL_MACHINE deepspeed_config: {} distributed_type: MULTI_GPU fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: fp16 num_machines: 1 num_processes: 2 use_cpu: false ``` Launching a script from the location of that custom yaml file looks like the following: ```bash accelerate launch --config_file {path/to/config/my_config_file.yaml} {script_name.py} {--arg1} {--arg2} ... ``` ## Multi-node training Multi-node training with 🤗Accelerate is similar to [multi-node training with torchrun](https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html). The simplest way to launch a multi-node training run is to do the following: - Copy your codebase and data to all nodes. (or place them on a shared filesystem) - Setup your python packages on all nodes. - Run `accelerate config` on the main single node first. After specifying the number of nodes, you will be asked to specify the rank of each node (this will be 0 for the main/master node), along with the IP address and port for the main process. This is required for the worker nodes to communicate with the main process. Afterwards, you can copy or send this config file across all of your nodes, changing the `machine_rank` to 1, 2,3, etc. to avoid having to run the command (or just follow their directions directly for launching with `torchrun` as well) Once you have done this, you can start your multi-node training run by running `accelerate launch` (or `torchrun`) on all nodes. <Tip> It is required that the command be ran on all nodes for everything to start, not just running it from the main node. You can use something like SLURM or a different process executor to wrap around this requirement and call everything from a single command. </Tip> <Tip> It is recommended to use the intranet IP of your main node over the public IP for better latency. This is the `192.168.x.x` or the `172.x.x.x` address you see when you run `hostname -I` on the main node. </Tip> To get a better idea about multi-node training, check out our example for [multi-node training with FSDP](https://huggingface.co/blog/ram-efficient-pytorch-fsdp).
accelerate/docs/source/basic_tutorials/launch.md/0
{ "file_path": "accelerate/docs/source/basic_tutorials/launch.md", "repo_id": "accelerate", "token_count": 2702 }
0
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Distributed Inference with 🤗 Accelerate Distributed inference is a common use case, especially with natural language processing (NLP) models. Users often want to send a number of different prompts, each to a different GPU, and then get the results back. This also has other cases outside of just NLP, however for this tutorial we will focus on just this idea of each GPU receiving a different prompt, and then returning the results. ## The Problem Normally when doing this, users send the model to a specific device to load it from the CPU, and then move each prompt to a different device. A basic pipeline using the `diffusers` library might look something like so: ```python import torch import torch.distributed as dist from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) ``` Followed then by performing inference based on the specific prompt: ```python def run_inference(rank, world_size): dist.init_process_group("nccl", rank=rank, world_size=world_size) pipe.to(rank) if torch.distributed.get_rank() == 0: prompt = "a dog" elif torch.distributed.get_rank() == 1: prompt = "a cat" result = pipe(prompt).images[0] result.save(f"result_{rank}.png") ``` One will notice how we have to check the rank to know what prompt to send, which can be a bit tedious. A user might then also think that with 🤗 Accelerate, using the `Accelerator` to prepare a dataloader for such a task might also be a simple way to manage this. (To learn more, check out the relevant section in the [Quick Tour](../quicktour#distributed-evaluation)) Can it manage it? Yes. Does it add unneeded extra code however: also yes. ## The Solution With 🤗 Accelerate, we can simplify this process by using the [`Accelerator.split_between_processes`] context manager (which also exists in `PartialState` and `AcceleratorState`). This function will automatically split whatever data you pass to it (be it a prompt, a set of tensors, a dictionary of the prior data, etc.) across all the processes (with a potential to be padded) for you to use right away. Let's rewrite the above example using this context manager: ```python from accelerate import PartialState # Can also be Accelerator or AcceleratorState from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) distributed_state = PartialState() pipe.to(distributed_state.device) # Assume two processes with distributed_state.split_between_processes(["a dog", "a cat"]) as prompt: result = pipe(prompt).images[0] result.save(f"result_{distributed_state.process_index}.png") ``` And then to launch the code, we can use the 🤗 Accelerate: If you have generated a config file to be used using `accelerate config`: ```bash accelerate launch distributed_inference.py ``` If you have a specific config file you want to use: ```bash accelerate launch --config_file my_config.json distributed_inference.py ``` Or if don't want to make any config files and launch on two GPUs: > Note: You will get some warnings about values being guessed based on your system. To remove these you can do `accelerate config default` or go through `accelerate config` to create a config file. ```bash accelerate launch --num_processes 2 distributed_inference.py ``` We've now reduced the boilerplate code needed to split this data to a few lines of code quite easily. But what if we have an odd distribution of prompts to GPUs? For example, what if we have 3 prompts, but only 2 GPUs? Under the context manager, the first GPU would receive the first two prompts and the second GPU the third, ensuring that all prompts are split and no overhead is needed. *However*, what if we then wanted to do something with the results of *all the GPUs*? (Say gather them all and perform some kind of post processing) You can pass in `apply_padding=True` to ensure that the lists of prompts are padded to the same length, with extra data being taken from the last sample. This way all GPUs will have the same number of prompts, and you can then gather the results. <Tip> This is only needed when trying to perform an action such as gathering the results, where the data on each device needs to be the same length. Basic inference does not require this. </Tip> For instance: ```python from accelerate import PartialState # Can also be Accelerator or AcceleratorState from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) distributed_state = PartialState() pipe.to(distributed_state.device) # Assume two processes with distributed_state.split_between_processes(["a dog", "a cat", "a chicken"], apply_padding=True) as prompt: result = pipe(prompt).images ``` On the first GPU, the prompts will be `["a dog", "a cat"]`, and on the second GPU it will be `["a chicken", "a chicken"]`. Make sure to drop the final sample, as it will be a duplicate of the previous one.
accelerate/docs/source/usage_guides/distributed_inference.md/0
{ "file_path": "accelerate/docs/source/usage_guides/distributed_inference.md", "repo_id": "accelerate", "token_count": 1620 }
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to combine both the gradient accumulation # and automatic batch size finder utilities of Accelerate to perfrom # automatic gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) observed_batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # New Code # # We use the `find_executable_batch_size` decorator, passing in the desired observed batch size # to train on. If a CUDA OOM error occurs, it will retry this loop cutting the batch size in # half each time. From this, we can calculate the number of gradient accumulation steps needed # and modify the Accelerator object as a result @find_executable_batch_size(starting_batch_size=int(observed_batch_size)) def inner_training_loop(batch_size): # Since we need to modify the outside accelerator object, we need to bring it # to the local scope nonlocal accelerator # We can calculate the number of gradient accumulation steps based on the current # batch size vs the starting batch size num_gradient_accumulation_steps = observed_batch_size // batch_size # And then set it in the Accelerator directly: accelerator.gradient_accumulation_steps = num_gradient_accumulation_steps # Next we need to free all of the stored model references in the Accelerator each time accelerator.free_memory() # And set the seed so our results are reproducable each reset set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # And perform gradient accumulation with accelerator.accumulate(model): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() # New Code # # We modify the starting batch size to be an observed batch size of 256, to guarentee an initial CUDA OOM config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 256} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/by_feature/automatic_gradient_accumulation.py/0
{ "file_path": "accelerate/examples/by_feature/automatic_gradient_accumulation.py", "repo_id": "accelerate", "token_count": 3689 }
2
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup from setuptools import find_packages extras = {} extras["quality"] = ["black ~= 23.1", "ruff >= 0.0.241", "hf-doc-builder >= 0.3.0", "urllib3 < 2.0.0"] extras["docs"] = [] extras["test_prod"] = ["pytest", "pytest-xdist", "pytest-subtests", "parameterized"] extras["test_dev"] = [ "datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed<0.13.0", "tqdm", "bitsandbytes", "timm" ] extras["testing"] = extras["test_prod"] + extras["test_dev"] extras["rich"] = ["rich"] extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard", "dvclive"] extras["dev"] = extras["quality"] + extras["testing"] + extras["rich"] extras["sagemaker"] = [ "sagemaker", # boto3 is a required package in sagemaker ] setup( name="accelerate", version="0.27.0.dev0", description="Accelerate", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="deep learning", license="Apache", author="The HuggingFace team", author_email="[email protected]", url="https://github.com/huggingface/accelerate", package_dir={"": "src"}, packages=find_packages("src"), entry_points={ "console_scripts": [ "accelerate=accelerate.commands.accelerate_cli:main", "accelerate-config=accelerate.commands.config:main", "accelerate-estimate-memory=accelerate.commands.estimate:main", "accelerate-launch=accelerate.commands.launch:main", ] }, python_requires=">=3.8.0", install_requires=["numpy>=1.17", "packaging>=20.0", "psutil", "pyyaml", "torch>=1.10.0,<2.2.0", "huggingface_hub", "safetensors>=0.3.1"], extras_require=extras, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], ) # Release checklist # 1. Checkout the release branch (for a patch the current release branch, for a new minor version, create one): # git checkout -b vXX.xx-release # The -b is only necessary for creation (so remove it when doing a patch) # 2. Change the version in __init__.py and setup.py to the proper value. # 3. Commit these changes with the message: "Release: v<VERSION>" # 4. Add a tag in git to mark the release: # git tag v<VERSION> -m 'Adds tag v<VERSION> for pypi' # Push the tag and release commit to git: git push --tags origin vXX.xx-release # 5. Run the following commands in the top-level directory: # rm -rf dist # rm -rf build # python setup.py bdist_wheel # python setup.py sdist # 6. Upload the package to the pypi test server first: # twine upload dist/* -r testpypi # 7. Check that you can install it in a virtualenv by running: # pip install accelerate # pip uninstall accelerate # pip install -i https://testpypi.python.org/pypi accelerate # accelerate env # accelerate test # 8. Upload the final version to actual pypi: # twine upload dist/* -r pypi # 9. Add release notes to the tag in github once everything is looking hunky-dory. # 10. Go back to the main branch and update the version in __init__.py, setup.py to the new version ".dev" and push to # main.
accelerate/setup.py/0
{ "file_path": "accelerate/setup.py", "repo_id": "accelerate", "token_count": 1517 }
3
#!/usr/bin/env python # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from huggingface_hub import model_info from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError from accelerate import init_empty_weights from accelerate.utils import ( calculate_maximum_sizes, convert_bytes, is_timm_available, is_transformers_available, ) if is_transformers_available(): import transformers from transformers import AutoConfig, AutoModel if is_timm_available(): import timm def verify_on_hub(repo: str, token: str = None): "Verifies that the model is on the hub and returns the model info." try: return model_info(repo, token=token) except GatedRepoError: return "gated" except RepositoryNotFoundError: return "repo" def check_has_model(error): """ Checks what library spawned `error` when a model is not found """ if is_timm_available() and isinstance(error, RuntimeError) and "Unknown model" in error.args[0]: return "timm" elif ( is_transformers_available() and isinstance(error, OSError) and "does not appear to have a file named" in error.args[0] ): return "transformers" else: return "unknown" def create_empty_model(model_name: str, library_name: str, trust_remote_code: bool = False, access_token: str = None): """ Creates an empty model from its parent library on the `Hub` to calculate the overall memory consumption. Args: model_name (`str`): The model name on the Hub library_name (`str`): The library the model has an integration with, such as `transformers`. Will be used if `model_name` has no metadata on the Hub to determine the library. trust_remote_code (`bool`, `optional`, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. access_token (`str`, `optional`, defaults to `None`): The access token to use to access private or gated models on the Hub. (for use on the Gradio app) Returns: `torch.nn.Module`: The torch model that has been initialized on the `meta` device. """ model_info = verify_on_hub(model_name, access_token) # Simplified errors if model_info == "gated": raise GatedRepoError( f"Repo for model `{model_name}` is gated. You must be authenticated to access it. Please run `huggingface-cli login`." ) elif model_info == "repo": raise RepositoryNotFoundError( f"Repo for model `{model_name}` does not exist on the Hub. If you are trying to access a private repo," " make sure you are authenticated via `huggingface-cli login` and have access." ) if library_name is None: library_name = getattr(model_info, "library_name", False) if not library_name: raise ValueError( f"Model `{model_name}` does not have any library metadata on the Hub, please manually pass in a `--library_name` to use (such as `transformers`)" ) if library_name == "transformers": if not is_transformers_available(): raise ImportError( f"To check `{model_name}`, `transformers` must be installed. Please install it via `pip install transformers`" ) print(f"Loading pretrained config for `{model_name}` from `transformers`...") auto_map = model_info.config.get("auto_map", False) config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=access_token) with init_empty_weights(): # remote code could specify a specific `AutoModel` class in the `auto_map` constructor = AutoModel if isinstance(auto_map, dict): value = None for key in auto_map.keys(): if key.startswith("AutoModelFor"): value = key break if value is not None: constructor = getattr(transformers, value) model = constructor.from_config(config, trust_remote_code=trust_remote_code) elif library_name == "timm": if not is_timm_available(): raise ImportError( f"To check `{model_name}`, `timm` must be installed. Please install it via `pip install timm`" ) print(f"Loading pretrained config for `{model_name}` from `timm`...") with init_empty_weights(): model = timm.create_model(model_name, pretrained=False) else: raise ValueError( f"Library `{library_name}` is not supported yet, please open an issue on GitHub for us to add support." ) return model def create_ascii_table(headers: list, rows: list, title: str): "Creates a pretty table from a list of rows, minimal version of `tabulate`." sep_char, in_between = "│", "─" column_widths = [] for i in range(len(headers)): column_values = [row[i] for row in rows] + [headers[i]] max_column_width = max(len(value) for value in column_values) column_widths.append(max_column_width) formats = [f"%{column_widths[i]}s" for i in range(len(rows[0]))] pattern = f"{sep_char}{sep_char.join(formats)}{sep_char}" diff = 0 def make_row(left_char, middle_char, right_char): return f"{left_char}{middle_char.join([in_between * n for n in column_widths])}{in_between * diff}{right_char}" separator = make_row("├", "┼", "┤") if len(title) > sum(column_widths): diff = abs(len(title) - len(separator)) column_widths[-1] += diff # Update with diff separator = make_row("├", "┼", "┤") initial_rows = [ make_row("┌", in_between, "┐"), f"{sep_char}{title.center(len(separator) - 2)}{sep_char}", make_row("├", "┬", "┤"), ] table = "\n".join(initial_rows) + "\n" column_widths[-1] += diff centered_line = [text.center(column_widths[i]) for i, text in enumerate(headers)] table += f"{pattern % tuple(centered_line)}\n{separator}\n" for i, line in enumerate(rows): centered_line = [t.center(column_widths[i]) for i, t in enumerate(line)] table += f"{pattern % tuple(centered_line)}\n" table += f'└{"┴".join([in_between * n for n in column_widths])}┘' return table def estimate_command_parser(subparsers=None): if subparsers is not None: parser = subparsers.add_parser("estimate-memory") else: parser = argparse.ArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.") parser.add_argument("model_name", type=str, help="The model name on the Hugging Face Hub.") parser.add_argument( "--library_name", type=str, help="The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub.", choices=["timm", "transformers"], ) parser.add_argument( "--dtypes", type=str, nargs="+", default=["float32", "float16", "int8", "int4"], help="The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4`", choices=["float32", "float16", "int8", "int4"], ) parser.add_argument( "--trust_remote_code", action="store_true", help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag should only be used for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.""", ) if subparsers is not None: parser.set_defaults(func=estimate_command) return parser def gather_data(args): "Creates an empty model and gathers the data for the sizes" try: model = create_empty_model( args.model_name, library_name=args.library_name, trust_remote_code=args.trust_remote_code ) except (RuntimeError, OSError) as e: library = check_has_model(e) if library != "unknown": raise RuntimeError( f"Tried to load `{args.model_name}` with `{library}` but a possible model to load was not found inside the repo." ) raise e total_size, largest_layer = calculate_maximum_sizes(model) data = [] for dtype in args.dtypes: dtype_total_size = total_size dtype_largest_layer = largest_layer[0] if dtype == "float16": dtype_total_size /= 2 dtype_largest_layer /= 2 elif dtype == "int8": dtype_total_size /= 4 dtype_largest_layer /= 4 elif dtype == "int4": dtype_total_size /= 8 dtype_largest_layer /= 8 dtype_training_size = dtype_total_size * 4 data.append([dtype, dtype_largest_layer, dtype_total_size, dtype_training_size]) return data def estimate_command(args): data = gather_data(args) for row in data: for i, item in enumerate(row): if isinstance(item, (int, float)): row[i] = convert_bytes(item) headers = ["dtype", "Largest Layer", "Total Size", "Training using Adam"] title = f"Memory Usage for loading `{args.model_name}`" table = create_ascii_table(headers, data, title) print(table) def main(): parser = estimate_command_parser() args = parser.parse_args() estimate_command(args) if __name__ == "__main__": main()
accelerate/src/accelerate/commands/estimate.py/0
{ "file_path": "accelerate/src/accelerate/commands/estimate.py", "repo_id": "accelerate", "token_count": 4176 }
4
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import warnings import torch from .state import AcceleratorState, GradientState from .utils import DistributedType, honor_type, is_tpu_available if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def move_to_device(state, device): if isinstance(state, (list, tuple)): return honor_type(state, (move_to_device(t, device) for t in state)) elif isinstance(state, dict): return type(state)({k: move_to_device(v, device) for k, v in state.items()}) elif isinstance(state, torch.Tensor): return state.to(device) return state class AcceleratedOptimizer(torch.optim.Optimizer): """ Internal wrapper around a torch optimizer. Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient accumulation. Args: optimizer (`torch.optim.optimizer.Optimizer`): The optimizer to wrap. device_placement (`bool`, *optional*, defaults to `True`): Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of `optimizer` on the right device. scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*): The scaler to use in the step function if training with mixed precision. """ def __init__(self, optimizer, device_placement=True, scaler=None): self.optimizer = optimizer self.scaler = scaler self.accelerator_state = AcceleratorState() self.gradient_state = GradientState() self.device_placement = device_placement self._is_overflow = False if self.scaler is not None: self._accelerate_step_called = False self._optimizer_original_step_method = self.optimizer.step self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step) # Handle device placement if device_placement: state_dict = self.optimizer.state_dict() if self.accelerator_state.distributed_type == DistributedType.TPU: xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device) else: state_dict = move_to_device(state_dict, self.accelerator_state.device) self.optimizer.load_state_dict(state_dict) @property def state(self): return self.optimizer.state @state.setter def state(self, state): self.optimizer.state = state @property def param_groups(self): return self.optimizer.param_groups @param_groups.setter def param_groups(self, param_groups): self.optimizer.param_groups = param_groups @property def defaults(self): return self.optimizer.defaults @defaults.setter def defaults(self, defaults): self.optimizer.defaults = defaults def add_param_group(self, param_group): self.optimizer.add_param_group(param_group) def load_state_dict(self, state_dict): if self.accelerator_state.distributed_type == DistributedType.TPU and self.device_placement: xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device) self.optimizer.load_state_dict(state_dict) def state_dict(self): return self.optimizer.state_dict() def zero_grad(self, set_to_none=None): if self.gradient_state.sync_gradients: accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters if accept_arg: if set_to_none is None: set_to_none = False self.optimizer.zero_grad(set_to_none=set_to_none) else: if set_to_none is not None: raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.") self.optimizer.zero_grad() def step(self, closure=None): if self.gradient_state.sync_gradients: if self.accelerator_state.distributed_type == DistributedType.TPU: optimizer_args = {"closure": closure} if closure is not None else {} xm.optimizer_step(self.optimizer, optimizer_args=optimizer_args) elif self.scaler is not None: self.optimizer.step = self._optimizer_patched_step_method self.scaler.step(self.optimizer, closure) self.scaler.update() if not self._accelerate_step_called: # If the optimizer step was skipped, gradient overflow was detected. self._is_overflow = True else: self._is_overflow = False # Reset the step method to the original one self.optimizer.step = self._optimizer_original_step_method # Reset the indicator self._accelerate_step_called = False else: self.optimizer.step(closure) def _switch_parameters(self, parameters_map): for param_group in self.optimizer.param_groups: param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]] @property def is_overflow(self): """Whether or not the optimizer step was done, or skipped because of gradient overflow.""" warnings.warn( "The `is_overflow` property is deprecated and will be removed in version 1.0 of Accelerate use " "`optimizer.step_was_skipped` instead.", FutureWarning, ) return self._is_overflow @property def step_was_skipped(self): """Whether or not the optimizer step was skipped.""" return self._is_overflow def __getstate__(self): _ignored_keys = [ "_accelerate_step_called", "_optimizer_original_step_method", "_optimizer_patched_step_method", ] return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys} def __setstate__(self, state): self.__dict__.update(state) if self.scaler is not None: self._accelerate_step_called = False self._optimizer_original_step_method = self.optimizer.step self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step) def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method): def patched_step(*args, **kwargs): accelerated_optimizer._accelerate_step_called = True return method(*args, **kwargs) return patched_step
accelerate/src/accelerate/optimizer.py/0
{ "file_path": "accelerate/src/accelerate/optimizer.py", "repo_id": "accelerate", "token_count": 2970 }
5
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def check_model_parameters(model_a, model_b, did_step, iteration): for param, grad_param in zip(model_a.parameters(), model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def step_model(model, input, target, accelerator, do_backward=True): model.train() output = model(input) loss = F.mse_loss(output, target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(loss) def get_training_setup(accelerator, sched=False): "Returns everything needed to perform basic training" set_seed(42) model = RegressionModel() ddp_model = deepcopy(model) dset = RegressionDataset(length=80) dataloader = DataLoader(dset, batch_size=16) model.to(accelerator.device) if sched: opt = AdamW(params=model.parameters(), lr=1e-3) ddp_opt = AdamW(params=ddp_model.parameters(), lr=1e-3) sched = LambdaLR(opt, lr_lambda=lambda epoch: epoch**0.65) ddp_sched = LambdaLR(ddp_opt, lr_lambda=lambda epoch: epoch**0.65) # Make a copy of `model` if sched: ddp_model, ddp_opt, ddp_sched, dataloader = accelerator.prepare(ddp_model, ddp_opt, ddp_sched, dataloader) else: ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def test_noop_sync(accelerator): # Test when on a single CPU or GPU that the context manager does nothing model, ddp_model, dataloader = get_training_setup(accelerator) # Use a single batch ddp_input, ddp_target = next(iter(dataloader)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model input, target = accelerator.gather((ddp_input, ddp_target)) input, target = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(model, input, target, accelerator) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(ddp_model): step_model(ddp_model, ddp_input, ddp_target, accelerator) else: # Sync grads step_model(ddp_model, ddp_input, ddp_target, accelerator) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(model, ddp_model, True, iteration) for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) ddp_input = ddp_input[torch.randperm(len(ddp_input))] def test_distributed_sync(accelerator): # Test on distributed setup that context manager behaves properly model, ddp_model, dataloader = get_training_setup(accelerator) # Use a single batch ddp_input, ddp_target = next(iter(dataloader)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model input, target = accelerator.gather((ddp_input, ddp_target)) input, target = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(model, input, target, accelerator) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(ddp_model): step_model(ddp_model, ddp_input, ddp_target, accelerator) else: # Sync grads step_model(ddp_model, ddp_input, ddp_target, accelerator) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) ddp_input = ddp_input[torch.randperm(len(ddp_input))] def test_distributed_sync_multiple_fwd(accelerator): # Test on distributed setup that context manager behaves properly when used with multiple forwards followed by multiple backwards model, ddp_model, dataloader = get_training_setup(accelerator) # Do multiple forwards losses = [] num_iterations = 3 for iteration in range(num_iterations): ddp_input, ddp_target = next(iter(dataloader)).values() # Gather the distributed inputs and targs for the base model input, target = accelerator.gather((ddp_input, ddp_target)) input, target = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(model, input, target, accelerator) # Accumulate grads locally with accelerator.no_sync(ddp_model): ddp_output = ddp_model(ddp_input) loss = F.mse_loss(ddp_output, ddp_target.to(ddp_output.device)) losses.append(loss) # Do multiple backwards and sync only at the last backward for iteration in range(num_iterations): loss = losses[iteration] if iteration < num_iterations - 1: # Accumulate grads locally accelerator.backward(loss) # DDP model and model should only be in sync after last backward for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): if not param.requires_grad: continue # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Sync grads if last backward with accelerator.trigger_sync_in_backward(ddp_model): accelerator.backward(loss) # DDP model and model should only be in sync after last backward for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): if not param.requires_grad: continue # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" def test_gradient_accumulation(split_batches=False, dispatch_batches=False): accelerator = Accelerator( split_batches=split_batches, dispatch_batches=dispatch_batches, gradient_accumulation_steps=2 ) # Test that context manager behaves properly model, ddp_model, dataloader = get_training_setup(accelerator) for iteration, batch in enumerate(dataloader): ddp_input, ddp_target = batch.values() # Gather the distributed inputs and targs for the base model input, target = accelerator.gather((ddp_input, ddp_target)) input, target = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(model, input, target, accelerator, False) # Do "gradient accumulation" (noop) with accelerator.accumulate(ddp_model): step_model(ddp_model, ddp_input, ddp_target, accelerator) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(dataloader) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) ddp_input = ddp_input[torch.randperm(len(ddp_input))] GradientState._reset_state() def test_gradient_accumulation_with_opt_and_scheduler(split_batches=False, dispatch_batches=False): accelerator = Accelerator( split_batches=split_batches, dispatch_batches=dispatch_batches, gradient_accumulation_steps=2 ) # Test that context manager behaves properly model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched = get_training_setup(accelerator, True) for iteration, batch in enumerate(dataloader): ddp_input, ddp_target = batch.values() # Gather the distributed inputs and targs for the base model input, target = accelerator.gather((ddp_input, ddp_target)) input, target = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(model, input, target, accelerator, False) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(ddp_model): step_model(ddp_model, ddp_input, ddp_target, accelerator) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' did_step = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(dataloader)) if accelerator.num_processes > 1: check_model_parameters(model, ddp_model, did_step, iteration) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def test_dataloader_break(): accelerator = Accelerator() first_dset = RegressionDataset(length=80) first_dataloader = DataLoader(first_dset, batch_size=16) second_dset = RegressionDataset(length=96) second_dataloader = DataLoader(second_dset, batch_size=16) first_dataloader, second_dataloader = accelerator.prepare(first_dataloader, second_dataloader) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(first_dataloader): assert id(accelerator.gradient_state.active_dataloader) == id(first_dataloader) if iteration < len(first_dataloader) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(second_dataloader): assert id(accelerator.gradient_state.active_dataloader) == id(second_dataloader) if batch_num < len(second_dataloader) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def main(): accelerator = Accelerator() state = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(accelerator) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(accelerator) if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager with multiple forwards**") test_distributed_sync_multiple_fwd(accelerator) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU): for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, ", f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**", ) test_gradient_accumulation(split_batch, dispatch_batches) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<", "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU): for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**", ) test_gradient_accumulation_with_opt_and_scheduler(split_batch, dispatch_batches) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_sync.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_sync.py", "repo_id": "accelerate", "token_count": 7271 }
6
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections.abc import Mapping from typing import Dict, List, Optional, Union import numpy as np import torch from safetensors import safe_open def offload_weight(weight, weight_name, offload_folder, index=None): dtype = None # Check the string instead of the dtype to be compatible with versions of PyTorch that don't have bfloat16. if str(weight.dtype) == "torch.bfloat16": # Need to reinterpret the underlined data as int16 since NumPy does not handle bfloat16s. weight = weight.view(torch.int16) dtype = "bfloat16" array = weight.cpu().numpy() tensor_file = os.path.join(offload_folder, f"{weight_name}.dat") if index is not None: if dtype is None: dtype = str(array.dtype) index[weight_name] = {"dtype": dtype, "shape": list(array.shape)} if array.ndim == 0: array = array[None] file_array = np.memmap(tensor_file, dtype=array.dtype, mode="w+", shape=array.shape) file_array[:] = array[:] file_array.flush() return index def load_offloaded_weight(weight_file, weight_info): shape = tuple(weight_info["shape"]) if shape == (): # NumPy memory-mapped arrays can't have 0 dims so it was saved as 1d tensor shape = (1,) dtype = weight_info["dtype"] if dtype == "bfloat16": # NumPy does not support bfloat16 so this was saved as a int16 dtype = "int16" weight = np.memmap(weight_file, dtype=dtype, shape=shape, mode="r") if len(weight_info["shape"]) == 0: weight = weight[0] weight = torch.tensor(weight) if weight_info["dtype"] == "bfloat16": weight = weight.view(torch.bfloat16) return weight def save_offload_index(index, offload_folder): if index is None or len(index) == 0: # Nothing to save return offload_index_file = os.path.join(offload_folder, "index.json") if os.path.isfile(offload_index_file): with open(offload_index_file, "r", encoding="utf-8") as f: current_index = json.load(f) else: current_index = {} current_index.update(index) with open(offload_index_file, "w", encoding="utf-8") as f: json.dump(current_index, f, indent=2) def offload_state_dict(save_dir: Union[str, os.PathLike], state_dict: Dict[str, torch.Tensor]): """ Offload a state dict in a given folder. Args: save_dir (`str` or `os.PathLike`): The directory in which to offload the state dict. state_dict (`Dict[str, torch.Tensor]`): The dictionary of tensors to offload. """ os.makedirs(save_dir, exist_ok=True) index = {} for name, parameter in state_dict.items(): index = offload_weight(parameter, name, save_dir, index=index) # Update index save_offload_index(index, save_dir) class PrefixedDataset(Mapping): """ Will access keys in a given dataset by adding a prefix. Args: dataset (`Mapping`): Any map with string keys. prefix (`str`): A prefix to add when trying to access any element in the underlying dataset. """ def __init__(self, dataset: Mapping, prefix: str): self.dataset = dataset self.prefix = prefix def __getitem__(self, key): return self.dataset[f"{self.prefix}{key}"] def __iter__(self): return iter([key for key in self.dataset if key.startswith(self.prefix)]) def __len__(self): return len(self.dataset) class OffloadedWeightsLoader(Mapping): """ A collection that loads weights stored in a given state dict or memory-mapped on disk. Args: state_dict (`Dict[str, torch.Tensor]`, *optional*): A dictionary parameter name to tensor. save_folder (`str` or `os.PathLike`, *optional*): The directory in which the weights are stored (by `offload_state_dict` for instance). index (`Dict`, *optional*): A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default to the index saved in `save_folder`. """ def __init__( self, state_dict: Dict[str, torch.Tensor] = None, save_folder: Optional[Union[str, os.PathLike]] = None, index: Mapping = None, device=None, ): if state_dict is None and save_folder is None and index is None: raise ValueError("Need either a `state_dict`, a `save_folder` or an `index` containing offloaded weights.") self.state_dict = {} if state_dict is None else state_dict self.save_folder = save_folder if index is None and save_folder is not None: with open(os.path.join(save_folder, "index.json")) as f: index = json.load(f) self.index = {} if index is None else index self.all_keys = list(self.state_dict.keys()) self.all_keys.extend([key for key in self.index if key not in self.all_keys]) self.device = device def __getitem__(self, key: str): # State dict gets priority if key in self.state_dict: return self.state_dict[key] weight_info = self.index[key] if weight_info.get("safetensors_file") is not None: device = "cpu" if self.device is None else self.device tensor = None try: with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f: tensor = f.get_tensor(weight_info.get("weight_name", key)) except TypeError: # if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f: tensor = f.get_tensor(weight_info.get("weight_name", key)) if "dtype" in weight_info: tensor = tensor.to(getattr(torch, weight_info["dtype"])) if tensor.device != torch.device(device): tensor = tensor.to(device) return tensor weight_file = os.path.join(self.save_folder, f"{key}.dat") return load_offloaded_weight(weight_file, weight_info) def __iter__(self): return iter(self.all_keys) def __len__(self): return len(self.all_keys) def extract_submodules_state_dict(state_dict: Dict[str, torch.Tensor], submodule_names: List[str]): """ Extract the sub state-dict corresponding to a list of given submodules. Args: state_dict (`Dict[str, torch.Tensor]`): The state dict to extract from. submodule_names (`List[str]`): The list of submodule names we want to extract. """ result = {} for module_name in submodule_names: # We want to catch module_name parameter (module_name.xxx) or potentially module_name, but not any of the # submodules that could being like module_name (transformers.h.1 and transformers.h.10 for instance) result.update( { key: param for key, param in state_dict.items() if key == module_name or key.startswith(module_name + ".") } ) return result
accelerate/src/accelerate/utils/offload.py/0
{ "file_path": "accelerate/src/accelerate/utils/offload.py", "repo_id": "accelerate", "token_count": 3180 }
7
compute_environment: LOCAL_MACHINE deepspeed_config: {} distributed_type: 'NO' fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 1 use_cpu: false
accelerate/tests/test_configs/0_11_0.yaml/0
{ "file_path": "accelerate/tests/test_configs/0_11_0.yaml", "repo_id": "accelerate", "token_count": 95 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu, require_non_cpu @require_cpu class CPUOptimizerTester(unittest.TestCase): def test_accelerated_optimizer_pickling(self): model = torch.nn.Linear(10, 10) optimizer = torch.optim.SGD(model.parameters(), 0.1) accelerator = Accelerator() optimizer = accelerator.prepare(optimizer) try: pickle.loads(pickle.dumps(optimizer)) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}") AcceleratorState._reset_state() @require_non_cpu class OptimizerTester(unittest.TestCase): def test_accelerated_optimizer_step_was_skipped(self): model = torch.nn.Linear(5, 5) optimizer = torch.optim.SGD(model.parameters(), 0.1) accelerator = Accelerator(mixed_precision="fp16") model, optimizer = accelerator.prepare(model, optimizer) loss = model(torch.randn(2, 5, device=accelerator.device)).sum() accelerator.backward(loss) for p in model.parameters(): # Fake the gradients, as if there's no overflow p.grad.fill_(0.01) optimizer.step() self.assertTrue(optimizer.step_was_skipped is False) loss = model(torch.randn(2, 5, device=accelerator.device)).sum() accelerator.backward(loss) for p in model.parameters(): p.grad.fill_(0.01) # Manually set the gradients to be NaN, as if there's an overflow p.grad[0] = torch.tensor(float("nan")) optimizer.step() self.assertTrue(optimizer.step_was_skipped is True) loss = model(torch.randn(2, 5, device=accelerator.device)).sum() accelerator.backward(loss) for p in model.parameters(): p.grad.fill_(0.01) # Manually set the gradients to be NaN, as if there's an overflow p.grad[0] = torch.tensor(float("nan")) optimizer.step() self.assertTrue(optimizer.step_was_skipped is True) loss = model(torch.randn(2, 5, device=accelerator.device)).sum() accelerator.backward(loss) for p in model.parameters(): # Fake the gradients, as if there's no overflow p.grad.fill_(0.01) optimizer.step() self.assertTrue(optimizer.step_was_skipped is False) AcceleratorState._reset_state()
accelerate/tests/test_optimizer.py/0
{ "file_path": "accelerate/tests/test_optimizer.py", "repo_id": "accelerate", "token_count": 1214 }
9
# Model arguments model_name_or_path: alignment-handbook/zephyr-7b-sft-qlora torch_dtype: float16 # LoRA arguments use_peft: true load_in_4bit: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj # Data training arguments dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.01 do_eval: true evaluation_strategy: steps eval_steps: 100 gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: zephyr-7b-dpo-qlora learning_rate: 5.0e-6 log_level: info logging_steps: 10 lr_scheduler_type: cosine max_length: 1024 max_prompt_length: 512 num_train_epochs: 1 optim: paged_adamw_32bit output_dir: data/zephyr-7b-dpo-qlora # It is handy to append `hub_model_revision` to keep track of your local experiments per_device_train_batch_size: 4 per_device_eval_batch_size: 8 push_to_hub: true save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/zephyr-7b-beta/dpo/config_qlora.yaml/0
{ "file_path": "alignment-handbook/recipes/zephyr-7b-beta/dpo/config_qlora.yaml", "repo_id": "alignment-handbook", "token_count": 477 }
10
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from alignment import DataArguments, H4ArgumentParser, ModelArguments, SFTConfig class H4ArgumentParserTest(unittest.TestCase): def setUp(self): self.parser = H4ArgumentParser((ModelArguments, DataArguments, SFTConfig)) self.yaml_file_path = "tests/fixtures/config_sft_full.yaml" def test_load_yaml(self): model_args, data_args, training_args = self.parser.parse_yaml_file(os.path.abspath(self.yaml_file_path)) self.assertEqual(model_args.model_name_or_path, "mistralai/Mistral-7B-v0.1") def test_load_yaml_and_args(self): command_line_args = [ "--model_name_or_path=test", "--use_peft=true", "--lora_r=16", "--lora_dropout=0.5", ] model_args, data_args, training_args = self.parser.parse_yaml_and_args( os.path.abspath(self.yaml_file_path), command_line_args ) self.assertEqual(model_args.model_name_or_path, "test") self.assertEqual(model_args.use_peft, True) self.assertEqual(model_args.lora_r, 16) self.assertEqual(model_args.lora_dropout, 0.5)
alignment-handbook/tests/test_configs.py/0
{ "file_path": "alignment-handbook/tests/test_configs.py", "repo_id": "alignment-handbook", "token_count": 697 }
11
[book] authors = ["Nicolas Patry"] language = "en" multilingual = false src = "src" title = "Candle Documentation"
candle/candle-book/book.toml/0
{ "file_path": "candle/candle-book/book.toml", "repo_id": "candle", "token_count": 38 }
12
# Advanced Cuda usage
candle/candle-book/src/inference/cuda/README.md/0
{ "file_path": "candle/candle-book/src/inference/cuda/README.md", "repo_id": "candle", "token_count": 6 }
13
use crate::benchmarks::{BenchDevice, BenchDeviceHandler}; use candle_core::{DType, Device, Tensor}; use criterion::{black_box, criterion_group, Criterion, Throughput}; use std::time::Instant; fn run(a: &Tensor) { a.affine(12.34, 56.78).unwrap(); } fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) { let b = 1; let m = 1024; let k = 1024; let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap(); let flops = b * m * k * dtype.size_in_bytes(); let mut group = c.benchmark_group(device.bench_name(name)); group.throughput(Throughput::Bytes(flops as u64)); group.bench_function("iter", move |b| { b.iter_custom(|iters| { let start = Instant::now(); for _i in 0..iters { run(black_box(&tensor)); } device.sync().unwrap(); start.elapsed() }) }); group.finish(); } fn criterion_benchmark(c: &mut Criterion) { let handler = BenchDeviceHandler::new().unwrap(); for device in handler.devices { run_affine_benchmark(c, &device, DType::F32, "affine_f32"); run_affine_benchmark(c, &device, DType::F16, "affine_f16"); run_affine_benchmark(c, &device, DType::BF16, "affine_bf16"); } } criterion_group!(benches, criterion_benchmark);
candle/candle-core/benches/benchmarks/affine.rs/0
{ "file_path": "candle/candle-core/benches/benchmarks/affine.rs", "repo_id": "candle", "token_count": 591 }
14
pub trait VecOps: num_traits::NumAssign + Copy { fn min(self, rhs: Self) -> Self; fn max(self, rhs: Self) -> Self; /// Dot-product of two vectors. /// /// # Safety /// /// The length of `lhs` and `rhs` have to be at least `len`. `res` has to point to a valid /// element. #[inline(always)] unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) { *res = Self::zero(); for i in 0..len { *res += *lhs.add(i) * *rhs.add(i) } } /// Sum of all elements in a vector. /// /// # Safety /// /// The length of `xs` must be at least `len`. `res` has to point to a valid /// element. #[inline(always)] unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) { *res = Self::zero(); for i in 0..len { *res += *xs.add(i) } } /// Maximum element in a non-empty vector. /// /// # Safety /// /// The length of `xs` must be at least `len` and positive. `res` has to point to a valid /// element. #[inline(always)] unsafe fn vec_reduce_max(xs: *const Self, res: *mut Self, len: usize) { *res = *xs; for i in 1..len { *res = (*res).max(*xs.add(i)) } } /// Minimum element in a non-empty vector. /// /// # Safety /// /// The length of `xs` must be at least `len` and positive. `res` has to point to a valid /// element. #[inline(always)] unsafe fn vec_reduce_min(xs: *const Self, res: *mut Self, len: usize) { *res = *xs; for i in 1..len { *res = (*res).min(*xs.add(i)) } } } impl VecOps for f32 { #[inline(always)] fn min(self, other: Self) -> Self { Self::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { Self::max(self, other) } #[inline(always)] unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) { super::vec_dot_f32(lhs, rhs, res, len) } #[inline(always)] unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) { super::vec_sum(xs, res, len) } } impl VecOps for half::f16 { #[inline(always)] fn min(self, other: Self) -> Self { Self::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { Self::max(self, other) } #[inline(always)] unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) { let mut res_f32 = 0f32; super::vec_dot_f16(lhs, rhs, &mut res_f32, len); *res = half::f16::from_f32(res_f32); } } impl VecOps for f64 { #[inline(always)] fn min(self, other: Self) -> Self { Self::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { Self::max(self, other) } } impl VecOps for half::bf16 { #[inline(always)] fn min(self, other: Self) -> Self { Self::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { Self::max(self, other) } } impl VecOps for u8 { #[inline(always)] fn min(self, other: Self) -> Self { <Self as Ord>::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { <Self as Ord>::max(self, other) } } impl VecOps for u32 { #[inline(always)] fn min(self, other: Self) -> Self { <Self as Ord>::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { <Self as Ord>::max(self, other) } } impl VecOps for i64 { #[inline(always)] fn min(self, other: Self) -> Self { <Self as Ord>::min(self, other) } #[inline(always)] fn max(self, other: Self) -> Self { <Self as Ord>::max(self, other) } } #[inline(always)] pub fn par_for_each(n_threads: usize, func: impl Fn(usize) + Send + Sync) { if n_threads == 1 { func(0) } else { rayon::scope(|s| { for thread_idx in 0..n_threads { let func = &func; s.spawn(move |_| func(thread_idx)); } }) } } #[inline(always)] pub fn par_range(lo: usize, up: usize, n_threads: usize, func: impl Fn(usize) + Send + Sync) { if n_threads == 1 { for i in lo..up { func(i) } } else { rayon::scope(|s| { for thread_idx in 0..n_threads { let func = &func; s.spawn(move |_| { for i in (thread_idx..up).step_by(n_threads) { func(i) } }); } }) } }
candle/candle-core/src/cpu/kernels.rs/0
{ "file_path": "candle/candle-core/src/cpu/kernels.rs", "repo_id": "candle", "token_count": 2328 }
15
use crate::backend::{BackendDevice, BackendStorage}; use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose1D, ParamsConvTranspose2D}; use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT}; use crate::{CpuStorage, DType, Layout, Result, Shape}; use candle_metal_kernels; use candle_metal_kernels::Kernels; use metal; use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger}; use std::collections::HashMap; use std::ffi::c_void; use std::path::Path; use std::sync::{Arc, Mutex, RwLock, TryLockError}; /// Simple way to catch lock error without /// depending on T #[derive(thiserror::Error, Debug)] pub enum LockError { #[error("{0}")] Poisoned(String), #[error("Would block")] WouldBlock, } impl<T> From<TryLockError<T>> for MetalError { fn from(value: TryLockError<T>) -> Self { match value { TryLockError::Poisoned(p) => MetalError::LockError(LockError::Poisoned(p.to_string())), TryLockError::WouldBlock => MetalError::LockError(LockError::WouldBlock), } } } /// Metal related errors #[derive(thiserror::Error, Debug)] pub enum MetalError { #[error("{0}")] Message(String), #[error(transparent)] KernelError(#[from] candle_metal_kernels::MetalKernelError), #[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")] MatMulNonContiguous { lhs_stride: Vec<usize>, rhs_stride: Vec<usize>, mnk: (usize, usize, usize), }, #[error("{0:?}")] LockError(LockError), #[error("{msg}, expected: {expected:?}, got: {got:?}")] UnexpectedDType { msg: &'static str, expected: DType, got: DType, }, } impl From<String> for MetalError { fn from(e: String) -> Self { MetalError::Message(e) } } type AllocatedBuffers = Arc<RwLock<HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>>>; #[derive(Clone)] pub struct MetalDevice { /// Raw metal device: <https://developer.apple.com/documentation/metal/mtldevice?language=objc> device: metal::Device, /// Single command queue for the entire device. command_queue: metal::CommandQueue, /// One command buffer at a time. /// The scheduler works by allowing multiple /// [ComputeCommandEncoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) /// on a single command buffer. Using a single command buffer would be fastest on the GPU but /// prevents overlapping of CPU and GPU commands (because command buffer needs to be committed /// to start to work). /// Despite what the documentation says, command buffers are NOT ordered. They are ordered /// for their START time, but there's no guarantee that command buffer1 will finish before /// command buffer2 starts (or there are metal bugs there) command_buffer: Arc<RwLock<metal::CommandBuffer>>, /// Keeps track of the current amount of compute command encoders on the current /// command buffer /// Arc, RwLock because of the interior mutability. command_buffer_index: Arc<RwLock<usize>>, /// The maximum amount of [compute command encoder](https://developer.apple.com/documentation/metal/mtlcomputecommandencoder?language=objc) per [command buffer](https://developer.apple.com/documentation/metal/mtlcommandbuffer?language=objc) compute_per_buffer: usize, /// Simple keeper struct to keep track of the already compiled kernels so we can reuse them. /// Heavily used by [`candle_metal_kernels`] kernels: Arc<candle_metal_kernels::Kernels>, /// Simple allocator struct. /// The buffers are stored in size buckets since ML tends to use similar shapes over and over. /// We store the buffers in [`Arc`] because it's much faster than Obj-c internal ref counting /// (could be linked to FFI communication overhead). /// /// Whenever a buffer has a strong_count==1, we can reuse it, it means it was dropped in the /// graph calculation, and only we the allocator kept a reference to it, therefore it's free /// to be reused. However, in order for this to work, we need to guarantee the order of /// operation, so that this buffer is not being used by another kernel at the same time. /// Arc is the CPU reference count, it doesn't mean anything on the GPU side of things. /// /// Whenever we actually allocate a new buffer, we make a full sweep to cleanup unused buffers /// (strong_count = 1). buffers: AllocatedBuffers, /// Seed for random number generation. seed: Arc<Mutex<Buffer>>, } impl std::fmt::Debug for MetalDevice { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "MetalDevice({:?})", self.device.registry_id()) } } impl std::ops::Deref for MetalDevice { type Target = metal::DeviceRef; fn deref(&self) -> &Self::Target { &self.device } } impl MetalDevice { pub fn id(&self) -> NSUInteger { self.registry_id() } pub fn metal_device(&self) -> &metal::Device { &self.device } pub fn command_queue(&self) -> &CommandQueue { &self.command_queue } pub fn command_buffer(&self) -> Result<CommandBuffer> { let mut command_buffer_lock = self.command_buffer.try_write().map_err(MetalError::from)?; let mut command_buffer = command_buffer_lock.to_owned(); let mut index = self .command_buffer_index .try_write() .map_err(MetalError::from)?; if *index > self.compute_per_buffer { command_buffer.commit(); command_buffer = self.command_queue.new_command_buffer().to_owned(); *command_buffer_lock = command_buffer.clone(); *index = 0; } *index += 1; Ok(command_buffer) } pub fn wait_until_completed(&self) -> Result<()> { let mut command_buffer = self.command_buffer.try_write().map_err(MetalError::from)?; match command_buffer.status() { metal::MTLCommandBufferStatus::Committed | metal::MTLCommandBufferStatus::Scheduled | metal::MTLCommandBufferStatus::Completed => { panic!("Already committed"); } _ => {} } command_buffer.commit(); command_buffer.wait_until_completed(); *command_buffer = self.command_queue.new_command_buffer().to_owned(); Ok(()) } pub fn kernels(&self) -> &Kernels { &self.kernels } pub fn device(&self) -> &metal::Device { &self.device } /// Creates a new buffer (not necessarily zeroed). /// The buffer is [MTLPrivate](https://developer.apple.com/documentation/metal/mtlstoragemode) /// This means the buffer data cannot be read on the CPU directly. /// /// [`name`] is only used to keep track of the resource origin in case of bugs pub fn new_buffer( &self, element_count: usize, dtype: DType, name: &str, ) -> Result<Arc<Buffer>> { let size = (element_count * dtype.size_in_bytes()) as NSUInteger; self.allocate_buffer(size, MTLResourceOptions::StorageModePrivate, name) } /// Creates a new buffer (not necessarily zeroed). /// The buffer is [MTLManaged](https://developer.apple.com/documentation/metal/mtlstoragemode) /// This means the buffer can be read on the CPU but will require manual /// synchronization when the CPU memory is modified /// Used as a bridge to gather data back from the GPU pub fn new_buffer_managed(&self, size: NSUInteger) -> Result<Arc<Buffer>> { self.allocate_buffer(size, MTLResourceOptions::StorageModeManaged, "managed") } /// Creates a new buffer from data. /// The buffer is [MTLPrivate](https://developer.apple.com/documentation/metal/mtlstoragemode) /// /// This method will block the computation because of the /// lack of lifetime management through the GPU. /// Internal comment for technical details. pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Result<Arc<Buffer>> { let size = core::mem::size_of_val(data) as NSUInteger; let tmp = self.device.new_buffer_with_data( data.as_ptr() as *const core::ffi::c_void, size, metal::MTLResourceOptions::StorageModeManaged, ); let real = self.allocate_buffer( size, metal::MTLResourceOptions::StorageModePrivate, "with_data", )?; let command_buffer = self.command_buffer()?; command_buffer.set_label("with_data"); let blit = command_buffer.new_blit_command_encoder(); blit.set_label("with_data_blit"); blit.copy_from_buffer(&tmp, 0, &real, 0, tmp.length()); blit.end_encoding(); // This is necessary, for mmaped safetensors // Because of the unsafe slice cast we're doing. // The slice might not live long enough for metal // To actually fill the GPU buffer. // Putting this wait forces the GPU buffer to be filled // with the actual data allowing the CPU storage to do // deallocate properly. self.wait_until_completed()?; Ok(real) } pub fn allocate_zeros(&self, size_in_bytes: usize) -> Result<Arc<Buffer>> { let buffer = self.allocate_buffer( size_in_bytes as NSUInteger, MTLResourceOptions::StorageModePrivate, "allocate_zeros", )?; let command_buffer = self.command_buffer()?; command_buffer.set_label("zeros"); let blit = command_buffer.new_blit_command_encoder(); blit.fill_buffer( &buffer, metal::NSRange { location: 0, length: buffer.length(), }, 0, ); blit.end_encoding(); Ok(buffer) } /// The critical allocator algorithm fn allocate_buffer( &self, size: NSUInteger, option: MTLResourceOptions, _name: &str, ) -> Result<Arc<Buffer>> { let mut buffers = self.buffers.try_write().map_err(MetalError::from)?; let subbuffers = buffers.entry((size, option)).or_insert(vec![]); for sub in &mut *subbuffers { if Arc::strong_count(sub) == 1 { return Ok(sub.clone()); } } let new_buffer = self.device.new_buffer(size as NSUInteger, option); let new_buffer = Arc::new(new_buffer); subbuffers.push(new_buffer.clone()); for subbuffers in buffers.values_mut() { let newbuffers = subbuffers .iter() .filter(|s| Arc::strong_count(s) > 1) .map(Arc::clone) .collect(); *subbuffers = newbuffers; } Ok(new_buffer) } /// Create a metal GPU capture trace on [`path`]. pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> { let capture = metal::CaptureManager::shared(); let descriptor = metal::CaptureDescriptor::new(); descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument); descriptor.set_capture_device(self); descriptor.set_output_url(path); capture .start_capture(&descriptor) .map_err(MetalError::from)?; Ok(()) } } #[derive(Debug, Clone)] pub struct MetalStorage { /// The actual buffer containing the data. buffer: Arc<metal::Buffer>, /// a reference to the device owning this buffer device: MetalDevice, /// The dtype is kept since buffers are untyped. dtype: DType, } impl BackendStorage for MetalStorage { type Device = MetalDevice; fn try_clone(&self, _: &Layout) -> Result<Self> { Ok(self.clone()) } fn dtype(&self) -> DType { self.dtype } fn device(&self) -> &Self::Device { &self.device } fn to_cpu_storage(&self) -> Result<CpuStorage> { match self.dtype { DType::U8 => Ok(CpuStorage::U8(self.to_cpu()?)), DType::U32 => Ok(CpuStorage::U32(self.to_cpu()?)), DType::I64 => Ok(CpuStorage::I64(self.to_cpu()?)), DType::F16 => Ok(CpuStorage::F16(self.to_cpu()?)), DType::BF16 => Ok(CpuStorage::BF16(self.to_cpu()?)), DType::F32 => Ok(CpuStorage::F32(self.to_cpu()?)), DType::F64 => Ok(CpuStorage::F64(self.to_cpu()?)), } } fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> { let device = self.device().clone(); let shape = layout.shape(); let el = shape.elem_count(); let dtype = self.dtype; let buffer = device.new_buffer(el, self.dtype, "affine")?; let command_buffer = self.device.command_buffer()?; if layout.is_contiguous() && layout.start_offset() == 0 { let name = match self.dtype { DType::F32 => "affine_f32", DType::F16 => "affine_f16", DType::BF16 => "affine_bf16", dtype => crate::bail!("Metal contiguous affine {dtype:?} not implemented"), }; candle_metal_kernels::call_affine( &device.device, &command_buffer, &device.kernels, name, el, &self.buffer, &buffer, mul as f32, add as f32, ) .map_err(MetalError::from)?; } else { let name = match self.dtype { DType::F32 => "affine_f32_strided", DType::F16 => "affine_f16_strided", DType::BF16 => "affine_bf16_strided", dtype => crate::bail!("Metal strided affine {dtype:?} not implemented"), }; candle_metal_kernels::call_affine_strided( &device.device, &command_buffer, &device.kernels, name, layout.dims(), &self.buffer, layout.stride(), layout.start_offset() * dtype.size_in_bytes(), &buffer, mul as f32, add as f32, ) .map_err(MetalError::from)?; } Ok(Self::new(buffer, device.clone(), dtype)) } fn powf(&self, layout: &Layout, pow: f64) -> Result<Self> { let device = self.device().clone(); let shape = layout.shape(); let el = shape.elem_count(); let dtype = self.dtype; let buffer = device.new_buffer(el, self.dtype, "powf")?; let command_buffer = self.device.command_buffer()?; if layout.is_contiguous() && layout.start_offset() == 0 { let name = match self.dtype { DType::F32 => "powf_f32", DType::F16 => "powf_f16", dtype => crate::bail!("Metal contiguous powf {dtype:?} not implemented"), }; candle_metal_kernels::call_powf( &device.device, &command_buffer, &device.kernels, name, el, &self.buffer, &buffer, pow as f32, ) .map_err(MetalError::from)?; } else { let name = match self.dtype { DType::F32 => "powf_f32_strided", DType::F16 => "powf_f16_strided", dtype => crate::bail!("Metal strided powf {dtype:?} not implemented"), }; candle_metal_kernels::call_powf_strided( &device.device, &command_buffer, &device.kernels, name, layout.dims(), &self.buffer, layout.stride(), layout.start_offset() * dtype.size_in_bytes(), &buffer, pow as f32, ) .map_err(MetalError::from)?; } Ok(Self::new(buffer, device.clone(), dtype)) } fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> { let device = self.device().clone(); let shape = layout.shape(); let el = shape.elem_count(); let dtype = self.dtype; let buffer = device.new_buffer(el, self.dtype, "elu")?; let command_buffer = self.device.command_buffer()?; if layout.is_contiguous() && layout.start_offset() == 0 { let name = match self.dtype { DType::F32 => "elu_f32", DType::F16 => "elu_f16", dtype => crate::bail!("Metal contiguous elu {dtype:?} not implemented"), }; candle_metal_kernels::call_elu( &device.device, &command_buffer, &device.kernels, name, el, &self.buffer, &buffer, alpha as f32, ) .map_err(MetalError::from)?; } else { let name = match self.dtype { DType::F32 => "elu_f32_strided", DType::F16 => "elu_f16_strided", dtype => crate::bail!("Metal strided elu {dtype:?} not implemented"), }; candle_metal_kernels::call_elu_strided( &device.device, &command_buffer, &device.kernels, name, layout.dims(), &self.buffer, layout.stride(), layout.start_offset() * dtype.size_in_bytes(), &buffer, alpha as f32, ) .map_err(MetalError::from)?; } Ok(Self::new(buffer, device.clone(), dtype)) } fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> { let device = self.device.clone(); let src_stride = layout.stride(); let src_dims = layout.shape().dims(); // Source dims and strides with the sum dims at the end. let mut dims = vec![]; let mut stride = vec![]; let mut dst_el: usize = 1; for (dim_idx, &d) in src_dims.iter().enumerate() { if !sum_dims.contains(&dim_idx) { dst_el *= d; dims.push(d); stride.push(src_stride[dim_idx]); } } for &dim_idx in sum_dims.iter() { dims.push(src_dims[dim_idx]); stride.push(src_stride[dim_idx]); } // The reduction loop requires the shared array to be properly initialized and for // this we want the number of threads to be a power of two. let (name, check_empty, return_index) = match (op, self.dtype) { (ReduceOp::Sum, DType::F32) => ("fast_sum_f32_strided", false, false), (ReduceOp::Min, DType::F32) => ("fast_min_f32_strided", true, false), (ReduceOp::Max, DType::F32) => ("fast_max_f32_strided", true, false), (ReduceOp::ArgMin, DType::F32) => ("fast_argmin_f32_strided", true, true), (ReduceOp::ArgMax, DType::F32) => ("fast_argmax_f32_strided", true, true), (ReduceOp::Sum, DType::U32) => ("fast_sum_u32_strided", false, false), (ReduceOp::Min, DType::U32) => ("fast_min_u32_strided", true, false), (ReduceOp::Max, DType::U32) => ("fast_max_u32_strided", true, false), (ReduceOp::ArgMin, DType::U32) => ("fast_argmin_u32_strided", true, true), (ReduceOp::ArgMax, DType::U32) => ("fast_argmax_u32_strided", true, true), (ReduceOp::Sum, DType::F16) => ("fast_sum_f16_strided", false, false), (ReduceOp::Min, DType::F16) => ("fast_min_f16_strided", true, false), (ReduceOp::Max, DType::F16) => ("fast_max_f16_strided", true, false), (ReduceOp::ArgMin, DType::F16) => ("fast_argmin_f16_strided", true, true), (ReduceOp::ArgMax, DType::F16) => ("fast_argmax_f16_strided", true, true), (ReduceOp::Sum, DType::BF16) => ("fast_sum_bf16_strided", false, false), (ReduceOp::Min, DType::BF16) => ("fast_min_bf16_strided", true, false), (ReduceOp::Max, DType::BF16) => ("fast_max_bf16_strided", true, false), (ReduceOp::ArgMin, DType::BF16) => ("fast_argmin_bf16_strided", true, true), (ReduceOp::ArgMax, DType::BF16) => ("fast_argmax_bf16_strided", true, true), (ReduceOp::Sum, DType::I64) => ("fast_sum_i64_strided", false, false), (ReduceOp::Min, DType::I64) => ("fast_min_i64_strided", true, false), (ReduceOp::Max, DType::I64) => ("fast_max_i64_strided", true, false), (ReduceOp::ArgMin, DType::I64) => ("fast_argmin_i64_strided", true, true), (ReduceOp::ArgMax, DType::I64) => ("fast_argmax_i64_strided", true, true), (ReduceOp::Sum, DType::U8) => ("fast_sum_u8_strided", false, false), (ReduceOp::Min, DType::U8) => ("fast_min_u8_strided", true, false), (ReduceOp::Max, DType::U8) => ("fast_max_u8_strided", true, false), (ReduceOp::ArgMin, DType::U8) => ("fast_argmin_u8_strided", true, true), (ReduceOp::ArgMax, DType::U8) => ("fast_argmax_u8_strided", true, true), (k, dtype) => crate::bail!("Metal reduce op {k:?} {dtype:?} not implemented"), }; if check_empty && layout.shape().elem_count() == 0 { Err(crate::Error::EmptyTensor { op: "reduce" }.bt())? } let dtype = if return_index { DType::U32 } else { self.dtype }; let buffer = device.new_buffer(dst_el, dtype, "reduce")?; let command_buffer = self.device.command_buffer()?; candle_metal_kernels::call_reduce_strided( &device.device, &command_buffer, &device.kernels, name, &dims, &stride, dst_el, &self.buffer, layout.start_offset() * self.dtype.size_in_bytes(), &buffer, ) .map_err(MetalError::from)?; Ok(Self::new(buffer, device, dtype)) } fn cmp(&self, op: CmpOp, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout) -> Result<Self> { let name = match op { CmpOp::Eq => "eq", CmpOp::Ne => "ne", CmpOp::Le => "le", CmpOp::Ge => "ge", CmpOp::Lt => "lt", CmpOp::Gt => "gt", }; self.binary(name, rhs, lhs_l, rhs_l) } fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> { let device = self.device(); let shape = layout.shape(); let el_count = shape.elem_count(); let buffer = device.new_buffer(el_count, dtype, "todtype")?; let command_buffer = device.command_buffer()?; if layout.is_contiguous() && layout.start_offset() == 0 { let kernel_name = match (self.dtype, dtype) { (DType::U32, DType::F32) => "cast_u32_f32", (DType::U32, DType::U8) => "cast_u32_u8", (DType::U32, DType::I64) => "cast_u32_i64", (DType::U32, DType::BF16) => "cast_u32_bf16", (DType::U8, DType::U32) => "cast_u8_u32", (DType::U8, DType::F32) => "cast_u8_f32", (DType::U8, DType::I64) => "cast_u8_i64", (DType::U8, DType::BF16) => "cast_u8_bf16", (DType::F32, DType::F16) => "cast_f32_f16", (DType::F32, DType::BF16) => "cast_f32_bf16", (DType::I64, DType::F32) => "cast_i64_f32", (DType::F16, DType::BF16) => "cast_f16_bf16", (DType::F16, DType::F32) => "cast_f16_f32", (DType::BF16, DType::U8) => "cast_bf16_u8", (DType::BF16, DType::U32) => "cast_bf16_u32", (DType::BF16, DType::F16) => "cast_bf16_f16", (DType::BF16, DType::F32) => "cast_bf16_f32", (left, right) => { crate::bail!("Metal contiguous to_dtype {left:?} {right:?} not implemented") } }; candle_metal_kernels::call_cast_contiguous( &device.device, &command_buffer, &device.kernels, kernel_name, el_count, &self.buffer, layout.start_offset() * self.dtype.size_in_bytes(), &buffer, ) .map_err(MetalError::from)?; } else { let kernel_name = match (self.dtype, dtype) { (DType::U32, DType::F32) => "cast_u32_f32_strided", (DType::U32, DType::U8) => "cast_u32_u8_strided", (DType::U32, DType::I64) => "cast_u32_i64_strided", (DType::U8, DType::U32) => "cast_u8_u32_strided", (DType::U8, DType::F32) => "cast_u8_f32_strided", (DType::U8, DType::I64) => "cast_u8_i64_strided", (DType::F32, DType::F16) => "cast_f32_f16_strided", (DType::F16, DType::F32) => "cast_f16_f32_strided", (DType::I64, DType::F32) => "cast_i64_f32_strided", (DType::F32, DType::BF16) => "cast_f32_bf16_strided", (DType::BF16, DType::F32) => "cast_bf16_f32_strided", (left, right) => { crate::bail!("Metal strided to_dtype {left:?} {right:?} not implemented") } }; candle_metal_kernels::call_cast_strided( &device.device, &command_buffer, &device.kernels, kernel_name, layout.dims(), &self.buffer, layout.stride(), layout.start_offset() * self.dtype.size_in_bytes(), &buffer, ) .map_err(MetalError::from)?; } command_buffer.set_label("to_dtype"); Ok(Self::new(buffer, device.clone(), dtype)) } fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> { let device = self.device(); let dtype = self.dtype; let shape = layout.shape(); let el_count = shape.elem_count(); let buffer = device.new_buffer(el_count, dtype, B::KERNEL)?; let command_buffer = device.command_buffer()?; command_buffer.set_label(B::KERNEL); if layout.is_contiguous() && layout.start_offset() == 0 { use candle_metal_kernels::unary::contiguous; let kernel_name = match (B::KERNEL, dtype) { ("ucos", DType::F32) => contiguous::cos::FLOAT, ("usin", DType::F32) => contiguous::sin::FLOAT, ("usqr", DType::F32) => contiguous::sqr::FLOAT, ("usqrt", DType::F32) => contiguous::sqrt::FLOAT, ("uneg", DType::F32) => contiguous::neg::FLOAT, ("uexp", DType::F32) => contiguous::exp::FLOAT, ("ulog", DType::F32) => contiguous::log::FLOAT, ("ugelu", DType::F32) => contiguous::gelu::FLOAT, ("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT, ("uerf", DType::F32) => contiguous::erf::FLOAT, ("uabs", DType::F32) => contiguous::abs::FLOAT, ("uceil", DType::F32) => contiguous::ceil::FLOAT, ("ufloor", DType::F32) => contiguous::floor::FLOAT, ("uround", DType::F32) => contiguous::round::FLOAT, ("urecip", DType::F32) => contiguous::recip::FLOAT, ("utanh", DType::F32) => contiguous::tanh::FLOAT, ("urelu", DType::F32) => contiguous::relu::FLOAT, ("ucos", DType::F16) => contiguous::cos::HALF, ("usin", DType::F16) => contiguous::sin::HALF, ("usqr", DType::F16) => contiguous::sqr::HALF, ("usqrt", DType::F16) => contiguous::sqrt::HALF, ("uneg", DType::F16) => contiguous::neg::HALF, ("uexp", DType::F16) => contiguous::exp::HALF, ("ulog", DType::F16) => contiguous::log::HALF, ("ugelu", DType::F16) => contiguous::gelu::HALF, ("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF, ("uerf", DType::F16) => contiguous::erf::HALF, ("uabs", DType::F16) => contiguous::abs::HALF, ("uceil", DType::F16) => contiguous::ceil::HALF, ("ufloor", DType::F16) => contiguous::floor::HALF, ("uround", DType::F16) => contiguous::round::HALF, ("urecip", DType::F16) => contiguous::recip::HALF, ("utanh", DType::F16) => contiguous::tanh::HALF, ("urelu", DType::F16) => contiguous::relu::HALF, (name, dtype) => { crate::bail!("Metal contiguous unary {name} {dtype:?} not implemented") } }; candle_metal_kernels::call_unary_contiguous( &device.device, &command_buffer, &device.kernels, kernel_name, el_count, &self.buffer, &buffer, ) .map_err(MetalError::from)?; } else { use candle_metal_kernels::unary::strided; let kernel_name = match (B::KERNEL, dtype) { ("ucos", DType::F32) => strided::cos::FLOAT, ("usin", DType::F32) => strided::sin::FLOAT, ("usqr", DType::F32) => strided::sqr::FLOAT, ("usqrt", DType::F32) => strided::sqrt::FLOAT, ("uneg", DType::F32) => strided::neg::FLOAT, ("uexp", DType::F32) => strided::exp::FLOAT, ("ulog", DType::F32) => strided::log::FLOAT, ("ugelu", DType::F32) => strided::gelu::FLOAT, ("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT, ("uerf", DType::F32) => strided::erf::FLOAT, ("uabs", DType::F32) => strided::abs::FLOAT, ("uceil", DType::F32) => strided::ceil::FLOAT, ("ufloor", DType::F32) => strided::floor::FLOAT, ("urelu", DType::F32) => strided::relu::FLOAT, ("uround", DType::F32) => strided::round::FLOAT, ("ucos", DType::F16) => strided::cos::HALF, ("usin", DType::F16) => strided::sin::HALF, ("usqr", DType::F16) => strided::sqr::HALF, ("usqrt", DType::F16) => strided::sqrt::HALF, ("uneg", DType::F16) => strided::neg::HALF, ("uexp", DType::F16) => strided::exp::HALF, ("ulog", DType::F16) => strided::log::HALF, ("ugelu", DType::F16) => strided::gelu::HALF, ("ugelu_erf", DType::F16) => strided::gelu_erf::HALF, ("uerf", DType::F16) => strided::erf::HALF, ("uabs", DType::F16) => strided::abs::HALF, ("uceil", DType::F16) => strided::ceil::HALF, ("ufloor", DType::F16) => strided::floor::HALF, ("urelu", DType::F16) => strided::relu::HALF, ("uround", DType::F16) => strided::round::HALF, (name, dtype) => { crate::bail!("Metal strided unary {name} {dtype:?} not implemented") } }; candle_metal_kernels::call_unary_strided( &device.device, &command_buffer, &device.kernels, kernel_name, layout.dims(), &self.buffer, layout.stride(), layout.start_offset() * self.dtype.size_in_bytes(), &buffer, 0, ) .map_err(MetalError::from)?; } Ok(Self::new(buffer, device.clone(), dtype)) } fn binary_impl<B: BinaryOpT>( &self, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout, ) -> Result<Self> { self.binary(B::KERNEL, rhs, lhs_l, rhs_l) } fn where_cond( &self, layout: &Layout, t: &Self, t_l: &Layout, f: &Self, f_l: &Layout, ) -> Result<Self> { let device = self.device.clone(); let shape = t_l.shape(); let dims = shape.dims(); let el = shape.elem_count(); let dtype = t.dtype; let buffer = self.device.new_buffer(el, dtype, "where")?; let command_buffer = self.device.command_buffer()?; if t.dtype() != f.dtype() { crate::bail!( "Invalid where: different dtypes for values {:?} != {:?}", t.dtype(), f.dtype() ); } let name = match (self.dtype, t.dtype()) { (DType::U8, DType::F32) => "where_u8_f32", (DType::U8, DType::BF16) => "where_u8_bf16", (DType::U8, DType::F16) => "where_u8_f16", (DType::U8, DType::I64) => "where_u8_i64", (DType::U8, DType::U32) => "where_u8_u32", (DType::U8, DType::U8) => "where_u8_u8", (left, right) => crate::bail!("Metal where_cond {left:?} {right:?} not implemented"), }; candle_metal_kernels::call_where_cond_strided( &device.device, &command_buffer, &device.kernels, name, dims, &self.buffer, ( layout.stride(), layout.start_offset() * self.dtype.size_in_bytes(), ), &t.buffer, (&t_l.stride(), t_l.start_offset() * t.dtype.size_in_bytes()), &f.buffer, (&f_l.stride(), f_l.start_offset() * f.dtype.size_in_bytes()), &buffer, ) .map_err(MetalError::from)?; Ok(Self::new(buffer, device, dtype)) } fn conv1d( &self, layout: &Layout, kernel: &Self, kernel_l: &Layout, params: &ParamsConv1D, ) -> Result<Self> { let device = self.device().clone(); let shape = layout.shape(); let dims = shape.dims(); let strides = layout.stride(); let stride = params.stride; let dilation = params.dilation; let padding = params.padding; let k_size = params.k_size; let l_out = (dims[2] + 2 * padding - dilation * (k_size - 1) - 1) / stride + 1; let dst_el = dims[0] * l_out * dims[1] * k_size; let dst = self .device .new_buffer(dst_el, self.dtype, "conv1d_im2col")?; let command_buffer = self.device.command_buffer()?; let name = match self.dtype { DType::F32 => "im2col1d_f32", dtype => crate::bail!("Metal conv1d {dtype:?} not implemented"), }; candle_metal_kernels::call_im2col1d_strided( &self.device.device, &command_buffer, &self.device.kernels, name, layout.shape().dims(), strides, (k_size, stride, padding, dilation), &self.buffer, layout.start_offset() * self.dtype.size_in_bytes(), &dst, ) .map_err(MetalError::from)?; let col = Self { buffer: dst, device, dtype: self.dtype, }; let l_out = params.l_out(); let b = params.b_size; let n = params.c_out; let k = params.k_size * params.c_in; let m = l_out; let col_l = Layout::contiguous((b, m, k)); let res = if kernel_l.is_contiguous() { let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset()) .transpose(1, 2)? .broadcast_as((b, k, n))?; col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)? } else { // Make the kernel contiguous if not already the case. let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?; kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?; let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset()) .transpose(1, 2)? .broadcast_as((b, k, n))?; col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)? }; let res_l = Layout::contiguous((b, l_out, n)).transpose(1, 2)?; let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?; res.copy_strided_src(&mut res_t, 0, &res_l)?; Ok(res_t) } fn conv_transpose1d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &ParamsConvTranspose1D, ) -> Result<Self> { crate::bail!("Metal conv_transpose1d not implemented") } fn conv2d( &self, layout: &Layout, kernel: &Self, kernel_l: &Layout, params: &ParamsConv2D, ) -> Result<Self> { let device = self.device().clone(); let shape = layout.shape(); let dims = shape.dims(); let stride = params.stride; let dilation = params.dilation; let padding = params.padding; let h_k = params.k_h; let w_k = params.k_w; let h = dims[2]; let w = dims[3]; let h_out = (h + 2 * padding - dilation * (h_k - 1) - 1) / stride + 1; let w_out = (w + 2 * padding - dilation * (w_k - 1) - 1) / stride + 1; let dst_el = dims[0] * h_out * w_out * dims[1] * h_k * w_k; let dst = self .device .new_buffer(dst_el, self.dtype, "conv2d_im2col")?; let command_buffer = self.device.command_buffer()?; let name = match self.dtype { DType::F32 => "im2col_f32", dtype => crate::bail!("Metal conv2d {dtype:?} not implemented"), }; candle_metal_kernels::call_im2col_strided( &self.device.device, &command_buffer, &self.device.kernels, name, layout.shape().dims(), layout.stride(), (h_k, w_k, stride, padding, dilation), &self.buffer, layout.start_offset() * self.dtype.size_in_bytes(), &dst, ) .map_err(MetalError::from)?; let col = Self { buffer: dst, device, dtype: self.dtype, }; let h_out = params.out_h(); let w_out = params.out_w(); let b = params.b_size; let n = params.c_out; let k = params.k_h * params.k_w * params.c_in; let m = h_out * w_out; let col_l = Layout::contiguous((b, m, k)); let res = if kernel_l.is_contiguous() { let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset()) .transpose(1, 2)? .broadcast_as((b, k, n))?; col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)? } else { // Make the kernel contiguous if not already the case. let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?; kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?; let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset()) .transpose(1, 2)? .broadcast_as((b, k, n))?; col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)? }; let res_l = Layout::contiguous((b, h_out, w_out, n)) .transpose(1, 2)? .transpose(1, 3)?; let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?; res.copy_strided_src(&mut res_t, 0, &res_l)?; Ok(res_t) } fn conv_transpose2d( &self, _l: &Layout, _kernel: &Self, _kernel_l: &Layout, _params: &ParamsConvTranspose2D, ) -> Result<Self> { crate::bail!("Metal conv_tranpose2d not implemented") } fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> { crate::bail!("Metal avg_pool2d not implemented") } fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> { crate::bail!("Metal max_pool2d not implemented") } fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> { crate::bail!("Metal upsample_nearest1d not implemented") } fn upsample_nearest2d(&self, inp_l: &Layout, out_w: usize, out_h: usize) -> Result<Self> { // let inp = &inp.slice(inp_l.start_offset()..); let shape = inp_l.shape(); let dims = shape.dims(); let strides = inp_l.stride(); if dims.len() != 4 { crate::bail!("unexpected input shape for upsample {dims:?}") } let name = match self.dtype { DType::F32 => "upsample_nearest2d_f32", dtype => crate::bail!("Metal upsample_nearest2d {dtype:?} not implemented"), }; let dst_el = out_w * out_h * dims[0] * dims[1]; let buffer = self .device .new_buffer(dst_el, self.dtype, "upsample_nearest2d")?; let command_buffer = self.device.command_buffer()?; candle_metal_kernels::call_upsample_nearest_2d( &self.device.device, &command_buffer, &self.device.kernels, name, dims, strides, out_w, out_h, &self.buffer, inp_l.start_offset() * self.dtype.size_in_bytes(), &buffer, ) .map_err(MetalError::from)?; Ok(Self::new(buffer, self.device.clone(), self.dtype)) } fn gather(&self, src_l: &Layout, ids: &Self, ids_l: &Layout, dim: usize) -> Result<Self> { let (ids_o1, _) = match ids_l.contiguous_offsets() { Some(o12) => o12, None => Err(crate::Error::RequiresContiguous { op: "gather" }.bt())?, }; let ids_el = ids_l.dims()[dim]; let dst_el = ids_l.shape().elem_count(); let dtype = self.dtype; let device = self.device(); let buffer = device.new_buffer(dst_el, dtype, "index_select")?; let name = match (ids.dtype, self.dtype) { (DType::U32, DType::F32) => "gather_u32_f32", (DType::U32, DType::F16) => "gather_u32_f16", (left, right) => crate::bail!("Metal gather {left:?} {right:?} not implemented"), }; let command_buffer = self.device.command_buffer()?; candle_metal_kernels::call_gather( &device.device, &command_buffer, &self.device.kernels, name, src_l.dims(), ids_el, dim, &self.buffer, src_l.start_offset() * dtype.size_in_bytes(), &ids.buffer, ids_o1 * ids.dtype.size_in_bytes(), &buffer, ) .map_err(MetalError::from)?; Ok(Self::new(buffer, device.clone(), dtype)) } fn scatter_add( &self, l: &Layout, ids: &Self, ids_l: &Layout, src: &Self, src_l: &Layout, dim: usize, ) -> Result<Self> { let mut acc = self.device.zeros_impl(l.shape(), self.dtype())?; self.copy_strided_src(&mut acc, 0, l)?; let (ids_offset, _) = match ids_l.contiguous_offsets() { Some(o12) => o12, None => Err(crate::Error::RequiresContiguous { op: "scatter-add" }.bt())?, }; let src_offset = match src_l.contiguous_offsets() { Some((o1, _)) => o1, None => Err(crate::Error::RequiresContiguous { op: "scatter-add" }.bt())?, }; let name = match (ids.dtype, self.dtype) { (DType::U32, DType::F32) => "sa_u32_f32", _ => Err(MetalError::UnexpectedDType { msg: "scatter-add ids should be u8/u32/i64", expected: DType::U32, got: ids.dtype(), })?, }; let command_buffer = self.device.command_buffer()?; candle_metal_kernels::call_scatter_add( &self.device.device, &command_buffer, &self.device.kernels, name, src_l.dims(), l.dims(), dim, &src.buffer, src_offset * src.dtype.size_in_bytes(), &ids.buffer, ids_offset * ids.dtype.size_in_bytes(), &acc.buffer, ) .map_err(MetalError::from)?; Ok(acc) } fn index_select(&self, ids: &Self, src_l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> { if !(src_l.is_contiguous() && src_l.start_offset() == 0 && ids_l.is_contiguous() && ids_l.start_offset() == 0) { crate::bail!("Metal strided index_select not implemented"); } let left_size: usize = src_l.dims()[..dim].iter().product(); let right_size: usize = src_l.dims()[dim + 1..].iter().product(); let ids_el = ids_l.shape().elem_count(); let dst_el = ids_el * left_size * right_size; let dtype = self.dtype; let device = self.device(); let buffer = device.new_buffer(dst_el, dtype, "index_select")?; let name = match (ids.dtype, self.dtype) { (DType::U8, DType::BF16) => "is_u8_bf16", (DType::U32, DType::F32) => "is_u32_f32", (DType::U32, DType::F16) => "is_u32_f16", (DType::U32, DType::BF16) => "is_u32_bf16", (left, right) => { crate::bail!("Metal contiguous index_select {left:?} {right:?} not implemented") } }; let command_buffer = self.device.command_buffer()?; candle_metal_kernels::call_index_select( &device.device, &command_buffer, &self.device.kernels, name, src_l.dims(), ids_el, dim, &self.buffer, &ids.buffer, &buffer, ) .map_err(MetalError::from)?; Ok(Self::new(buffer, device.clone(), dtype)) } fn index_add( &self, l: &Layout, ids: &Self, ids_l: &Layout, src: &Self, src_l: &Layout, dim: usize, ) -> Result<Self> { let mut acc = self.device.zeros_impl(l.shape(), self.dtype())?; self.copy_strided_src(&mut acc, 0, l)?; let (ids_offset, _) = match ids_l.contiguous_offsets() { Some(o12) => o12, None => Err(crate::Error::RequiresContiguous { op: "index-add" }.bt())?, }; let src_offset = match src_l.contiguous_offsets() { Some((o1, _)) => o1, None => Err(crate::Error::RequiresContiguous { op: "index-add" }.bt())?, }; let name = match (ids.dtype, self.dtype) { (DType::U32, DType::F32) => "ia_u32_f32", _ => Err(MetalError::UnexpectedDType { msg: "index-add ids should be u32", expected: DType::U32, got: ids.dtype(), })?, }; let command_buffer = self.device.command_buffer()?; candle_metal_kernels::call_index_add( &self.device.device, &command_buffer, &self.device.kernels, name, src_l.dims(), l.dims(), ids_l.dims(), dim, &src.buffer, src_offset * src.dtype.size_in_bytes(), &ids.buffer, ids_offset * ids.dtype.size_in_bytes(), &acc.buffer, ) .map_err(MetalError::from)?; Ok(acc) } fn matmul( &self, rhs: &Self, (b, m, n, k): (usize, usize, usize, usize), lhs_l: &Layout, rhs_l: &Layout, ) -> Result<Self> { let buffer = self.device.new_buffer(b * m * n, self.dtype, "matmul")?; let name = match self.dtype { DType::F32 => "sgemm", DType::F16 => "hgemm", dtype => { return Err(MetalError::Message(format!("matmul doesn't support {dtype:?}")).into()) } }; let command_buffer = self.device.command_buffer()?; command_buffer.set_label("matmul"); candle_metal_kernels::call_gemm( &self.device.device, &command_buffer, &self.device.kernels, name, (b, m, n, k), lhs_l.stride(), lhs_l.start_offset() * self.dtype.size_in_bytes(), &self.buffer, rhs_l.stride(), rhs_l.start_offset() * rhs.dtype.size_in_bytes(), &rhs.buffer, &buffer, ) .map_err(MetalError::from)?; Ok(Self::new(buffer, self.device.clone(), self.dtype())) } fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> { let command_buffer = self.device.command_buffer()?; if src_l.is_contiguous() && self.dtype == dst.dtype() { command_buffer.set_label("copy_contiguous"); let blit = command_buffer.new_blit_command_encoder(); blit.set_label("copy_contiguous"); let src_offset = (src_l.start_offset() * self.dtype.size_in_bytes()) as NSUInteger; let length = (src_l.shape().elem_count() * self.dtype.size_in_bytes()) as NSUInteger; let dst_offset = (dst_offset * dst.dtype().size_in_bytes()) as NSUInteger; blit.copy_from_buffer(&self.buffer, src_offset, &dst.buffer(), dst_offset, length); blit.end_encoding(); } else { let src_shape = src_l.shape(); let el_count = src_shape.elem_count(); if el_count == 0 { return Ok(()); } let kernel_name = match self.dtype { DType::F32 => candle_metal_kernels::unary::strided::copy::FLOAT, DType::F16 => candle_metal_kernels::unary::strided::copy::HALF, DType::BF16 => candle_metal_kernels::unary::strided::copy::BFLOAT, DType::I64 => candle_metal_kernels::unary::strided::copy::I64, DType::U32 => candle_metal_kernels::unary::strided::copy::U32, DType::U8 => candle_metal_kernels::unary::strided::copy::U8, dtype => crate::bail!("Metal copy_strided {dtype:?} not implemented"), }; candle_metal_kernels::call_unary_strided( &self.device.device, &command_buffer, &self.device.kernels, kernel_name, src_l.dims(), &self.buffer, src_l.stride(), src_l.start_offset() * self.dtype.size_in_bytes(), &dst.buffer, dst_offset * dst.dtype.size_in_bytes(), ) .map_err(MetalError::from)?; command_buffer.set_label("copy_strided"); } Ok(()) } } impl MetalStorage { pub fn new(buffer: Arc<Buffer>, device: MetalDevice, dtype: DType) -> Self { Self { buffer, device, dtype, } } pub fn buffer(&self) -> &Buffer { &self.buffer } pub fn binary( &self, op: &'static str, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout, ) -> Result<Self> { let device = self.device(); let shape = lhs_l.shape(); let el_count = shape.elem_count(); let command_buffer = device.command_buffer()?; let (buffer, dtype) = if (lhs_l.is_contiguous() && lhs_l.start_offset() == 0) && (rhs_l.is_contiguous() && rhs_l.start_offset() == 0) && &op[..1] != "b" { use candle_metal_kernels::binary::contiguous; let (kernel_name, dtype) = match (op, self.dtype) { ("add", DType::F32) => (contiguous::add::FLOAT, self.dtype), ("sub", DType::F32) => (contiguous::sub::FLOAT, self.dtype), ("mul", DType::F32) => (contiguous::mul::FLOAT, self.dtype), ("div", DType::F32) => (contiguous::div::FLOAT, self.dtype), ("eq", DType::F32) => (contiguous::eq::FLOAT, DType::U8), ("ne", DType::F32) => (contiguous::ne::FLOAT, DType::U8), ("le", DType::F32) => (contiguous::le::FLOAT, DType::U8), ("lt", DType::F32) => (contiguous::lt::FLOAT, DType::U8), ("ge", DType::F32) => (contiguous::ge::FLOAT, DType::U8), ("gt", DType::F32) => (contiguous::gt::FLOAT, DType::U8), ("add", DType::F16) => (contiguous::add::HALF, self.dtype), ("sub", DType::F16) => (contiguous::sub::HALF, self.dtype), ("mul", DType::F16) => (contiguous::mul::HALF, self.dtype), ("div", DType::F16) => (contiguous::div::HALF, self.dtype), ("eq", DType::F16) => (contiguous::eq::HALF, DType::U8), ("ne", DType::F16) => (contiguous::ne::HALF, DType::U8), ("le", DType::F16) => (contiguous::le::HALF, DType::U8), ("lt", DType::F16) => (contiguous::lt::HALF, DType::U8), ("ge", DType::F16) => (contiguous::ge::HALF, DType::U8), ("gt", DType::F16) => (contiguous::gt::HALF, DType::U8), ("add", DType::BF16) => (contiguous::add::BFLOAT, self.dtype), ("sub", DType::BF16) => (contiguous::sub::BFLOAT, self.dtype), ("mul", DType::BF16) => (contiguous::mul::BFLOAT, self.dtype), ("div", DType::BF16) => (contiguous::div::BFLOAT, self.dtype), ("eq", DType::BF16) => (contiguous::eq::BFLOAT, DType::U8), ("ne", DType::BF16) => (contiguous::ne::BFLOAT, DType::U8), ("le", DType::BF16) => (contiguous::le::BFLOAT, DType::U8), ("lt", DType::BF16) => (contiguous::lt::BFLOAT, DType::U8), ("ge", DType::BF16) => (contiguous::ge::BFLOAT, DType::U8), ("gt", DType::BF16) => (contiguous::gt::BFLOAT, DType::U8), ("add", DType::I64) => (contiguous::add::I64, self.dtype), ("sub", DType::I64) => (contiguous::sub::I64, self.dtype), ("mul", DType::I64) => (contiguous::mul::I64, self.dtype), ("div", DType::I64) => (contiguous::div::I64, self.dtype), ("eq", DType::I64) => (contiguous::eq::I64, DType::U8), ("ne", DType::I64) => (contiguous::ne::I64, DType::U8), ("le", DType::I64) => (contiguous::le::I64, DType::U8), ("lt", DType::I64) => (contiguous::lt::I64, DType::U8), ("ge", DType::I64) => (contiguous::ge::I64, DType::U8), ("gt", DType::I64) => (contiguous::gt::I64, DType::U8), ("add", DType::U32) => (contiguous::add::U32, self.dtype), ("sub", DType::U32) => (contiguous::sub::U32, self.dtype), ("mul", DType::U32) => (contiguous::mul::U32, self.dtype), ("div", DType::U32) => (contiguous::div::U32, self.dtype), ("eq", DType::U32) => (contiguous::eq::U32, DType::U8), ("ne", DType::U32) => (contiguous::ne::U32, DType::U8), ("le", DType::U32) => (contiguous::le::U32, DType::U8), ("lt", DType::U32) => (contiguous::lt::U32, DType::U8), ("ge", DType::U32) => (contiguous::ge::U32, DType::U8), ("gt", DType::U32) => (contiguous::gt::U32, DType::U8), ("add", DType::U8) => (contiguous::add::U8, self.dtype), ("sub", DType::U8) => (contiguous::sub::U8, self.dtype), ("mul", DType::U8) => (contiguous::mul::U8, self.dtype), ("div", DType::U8) => (contiguous::div::U8, self.dtype), ("eq", DType::U8) => (contiguous::eq::U8, DType::U8), ("ne", DType::U8) => (contiguous::ne::U8, DType::U8), ("le", DType::U8) => (contiguous::le::U8, DType::U8), ("lt", DType::U8) => (contiguous::lt::U8, DType::U8), ("ge", DType::U8) => (contiguous::ge::U8, DType::U8), ("gt", DType::U8) => (contiguous::gt::U8, DType::U8), (name, dtype) => { crate::bail!("Metal contiguous binary {name} {dtype:?} not implemented") } }; let buffer = device.new_buffer(el_count, dtype, op)?; candle_metal_kernels::call_binary_contiguous( &device.device, &command_buffer, &device.kernels, kernel_name, el_count, &self.buffer, &rhs.buffer, &buffer, ) .map_err(MetalError::from)?; (buffer, dtype) } else { use candle_metal_kernels::binary::strided; let (kernel_name, dtype) = match (op, self.dtype) { ("badd", DType::F32) => (strided::add::FLOAT, self.dtype), ("bsub", DType::F32) => (strided::sub::FLOAT, self.dtype), ("bmul", DType::F32) => (strided::mul::FLOAT, self.dtype), ("bdiv", DType::F32) => (strided::div::FLOAT, self.dtype), ("bminimum", DType::F32) => (strided::min::FLOAT, self.dtype), ("bmaximum", DType::F32) => (strided::max::FLOAT, self.dtype), ("eq", DType::F32) => (strided::eq::FLOAT, DType::U8), ("ne", DType::F32) => (strided::ne::FLOAT, DType::U8), ("le", DType::F32) => (strided::le::FLOAT, DType::U8), ("lt", DType::F32) => (strided::lt::FLOAT, DType::U8), ("ge", DType::F32) => (strided::ge::FLOAT, DType::U8), ("gt", DType::F32) => (strided::gt::FLOAT, DType::U8), ("badd", DType::F16) => (strided::add::HALF, self.dtype), ("bsub", DType::F16) => (strided::sub::HALF, self.dtype), ("bmul", DType::F16) => (strided::mul::HALF, self.dtype), ("bdiv", DType::F16) => (strided::div::HALF, self.dtype), ("bminimum", DType::F16) => (strided::min::HALF, self.dtype), ("bmaximum", DType::F16) => (strided::max::HALF, self.dtype), ("eq", DType::F16) => (strided::eq::HALF, DType::U8), ("ne", DType::F16) => (strided::ne::HALF, DType::U8), ("le", DType::F16) => (strided::le::HALF, DType::U8), ("lt", DType::F16) => (strided::lt::HALF, DType::U8), ("ge", DType::F16) => (strided::ge::HALF, DType::U8), ("gt", DType::F16) => (strided::gt::HALF, DType::U8), ("badd", DType::BF16) => (strided::add::BFLOAT, self.dtype), ("bsub", DType::BF16) => (strided::sub::BFLOAT, self.dtype), ("bmul", DType::BF16) => (strided::mul::BFLOAT, self.dtype), ("bdiv", DType::BF16) => (strided::div::BFLOAT, self.dtype), ("bminimum", DType::BF16) => (strided::min::BFLOAT, self.dtype), ("bmaximum", DType::BF16) => (strided::max::BFLOAT, self.dtype), ("eq", DType::BF16) => (strided::eq::BFLOAT, DType::U8), ("ne", DType::BF16) => (strided::ne::BFLOAT, DType::U8), ("le", DType::BF16) => (strided::le::BFLOAT, DType::U8), ("lt", DType::BF16) => (strided::lt::BFLOAT, DType::U8), ("ge", DType::BF16) => (strided::ge::BFLOAT, DType::U8), ("gt", DType::BF16) => (strided::gt::BFLOAT, DType::U8), ("badd", DType::I64) => (strided::add::I64, self.dtype), ("bsub", DType::I64) => (strided::sub::I64, self.dtype), ("bmul", DType::I64) => (strided::mul::I64, self.dtype), ("bdiv", DType::I64) => (strided::div::I64, self.dtype), ("bminimum", DType::I64) => (strided::min::I64, self.dtype), ("bmaximum", DType::I64) => (strided::max::I64, self.dtype), ("eq", DType::I64) => (strided::eq::I64, DType::U8), ("ne", DType::I64) => (strided::ne::I64, DType::U8), ("le", DType::I64) => (strided::le::I64, DType::U8), ("lt", DType::I64) => (strided::lt::I64, DType::U8), ("ge", DType::I64) => (strided::ge::I64, DType::U8), ("gt", DType::I64) => (strided::gt::I64, DType::U8), ("badd", DType::U32) => (strided::add::U32, self.dtype), ("bsub", DType::U32) => (strided::sub::U32, self.dtype), ("bmul", DType::U32) => (strided::mul::U32, self.dtype), ("bdiv", DType::U32) => (strided::div::U32, self.dtype), ("bminimum", DType::U32) => (strided::min::U32, self.dtype), ("bmaximum", DType::U32) => (strided::max::U32, self.dtype), ("eq", DType::U32) => (strided::eq::U32, DType::U8), ("ne", DType::U32) => (strided::ne::U32, DType::U8), ("le", DType::U32) => (strided::le::U32, DType::U8), ("lt", DType::U32) => (strided::lt::U32, DType::U8), ("ge", DType::U32) => (strided::ge::U32, DType::U8), ("gt", DType::U32) => (strided::gt::U32, DType::U8), ("badd", DType::U8) => (strided::add::U8, self.dtype), ("bsub", DType::U8) => (strided::sub::U8, self.dtype), ("bmul", DType::U8) => (strided::mul::U8, self.dtype), ("bdiv", DType::U8) => (strided::div::U8, self.dtype), ("bminimum", DType::U8) => (strided::min::U8, self.dtype), ("bmaximum", DType::U8) => (strided::max::U8, self.dtype), ("eq", DType::U8) => (strided::eq::U8, DType::U8), ("ne", DType::U8) => (strided::ne::U8, DType::U8), ("le", DType::U8) => (strided::le::U8, DType::U8), ("lt", DType::U8) => (strided::lt::U8, DType::U8), ("ge", DType::U8) => (strided::ge::U8, DType::U8), ("gt", DType::U8) => (strided::gt::U8, DType::U8), (name, dtype) => { crate::bail!("Metal strided binary {name} {dtype:?} not implemented") } }; let buffer = device.new_buffer(el_count, dtype, op)?; candle_metal_kernels::call_binary_strided( &device.device, &command_buffer, &device.kernels, kernel_name, lhs_l.dims(), &self.buffer, lhs_l.stride(), lhs_l.start_offset() * self.dtype.size_in_bytes(), &rhs.buffer, rhs_l.stride(), rhs_l.start_offset() * rhs.dtype.size_in_bytes(), &buffer, ) .map_err(MetalError::from)?; (buffer, dtype) }; command_buffer.set_label("binary"); Ok(Self::new(buffer, device.clone(), dtype)) } pub(crate) fn to_cpu<T: Clone>(&self) -> Result<Vec<T>> { let length = self.buffer.length() as usize; let size = self.dtype.size_in_bytes(); if length % size != 0 { crate::bail!( "The Metal buffer length is not aligned with dtype {:?}", self.dtype ); } let buffer = self.device.new_buffer_managed(self.buffer.length())?; { let command_buffer = self.device.command_buffer()?; command_buffer.set_label("to_cpu"); let blit = command_buffer.new_blit_command_encoder(); blit.set_label("blit_to_cpu"); blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length()); blit.end_encoding(); } self.device.wait_until_completed()?; Ok(read_to_vec(&buffer, length / size)) } } impl BackendDevice for MetalDevice { type Storage = MetalStorage; fn new(ordinal: usize) -> Result<Self> { let device = metal::Device::all().swap_remove(ordinal); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer().to_owned(); command_buffer.enqueue(); let command_buffer = Arc::new(RwLock::new(command_buffer)); let command_buffer_index = Arc::new(RwLock::new(0)); let kernels = Arc::new(Kernels::new()); let buffers = Arc::new(RwLock::new(HashMap::new())); let compute_per_buffer = match std::env::var("CANDLE_METAL_COMPUTE_PER_BUFFER") { Ok(val) => val.parse()?, _ => 10, }; let seed = Arc::new(Mutex::new(device.new_buffer_with_data( [299792458].as_ptr() as *const c_void, 4, MTLResourceOptions::StorageModeManaged, ))); Ok(Self { device, command_queue, command_buffer, command_buffer_index, compute_per_buffer, buffers, kernels, seed, }) } fn location(&self) -> crate::DeviceLocation { crate::DeviceLocation::Metal { gpu_id: self.registry_id() as usize, } } fn same_device(&self, rhs: &Self) -> bool { self.device.registry_id() == rhs.device.registry_id() } fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<MetalStorage> { let size = shape.elem_count() * dtype.size_in_bytes(); let buffer = self.allocate_zeros(size)?; Ok(MetalStorage::new(buffer, self.clone(), dtype)) } fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> { // TODO Is there a faster way ? let cpu_storage = crate::cpu_backend::CpuDevice.ones_impl(shape, dtype)?; self.storage_from_cpu_storage(&cpu_storage) } fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> { let buffer = match storage { CpuStorage::U8(storage) => self.new_buffer_with_data(storage), CpuStorage::U32(storage) => self.new_buffer_with_data(storage), CpuStorage::I64(storage) => self.new_buffer_with_data(storage), CpuStorage::BF16(storage) => self.new_buffer_with_data(storage), CpuStorage::F16(storage) => self.new_buffer_with_data(storage), CpuStorage::F32(storage) => self.new_buffer_with_data(storage), CpuStorage::F64(storage) => self.new_buffer_with_data(storage), }?; Ok(Self::Storage::new(buffer, self.clone(), storage.dtype())) } fn rand_uniform( &self, shape: &Shape, dtype: DType, min: f64, max: f64, ) -> Result<Self::Storage> { let name = match dtype { DType::F32 => "rand_uniform_f32", DType::F16 => "rand_uniform_f16", DType::BF16 => "rand_uniform_bf16", dtype => crate::bail!("rand_uniform not implemented for {dtype:?}"), }; let buffer = self.new_buffer(shape.elem_count(), dtype, "rand_uniform")?; let command_buffer = self.command_buffer()?; candle_metal_kernels::call_random_uniform( &self.device, &command_buffer, &self.kernels, name, min as f32, max as f32, shape.elem_count(), &*self.seed.lock().unwrap(), &buffer, ) .map_err(MetalError::from)?; Ok(Self::Storage::new(buffer, self.clone(), dtype)) } fn rand_normal( &self, shape: &Shape, dtype: DType, mean: f64, stddev: f64, ) -> Result<Self::Storage> { let name = match dtype { DType::F32 => "rand_normal_f32", DType::F16 => "rand_normal_f16", DType::BF16 => "rand_normal_bf16", dtype => crate::bail!("rand_uniform not implemented for {dtype:?}"), }; let buffer = self.new_buffer(shape.elem_count(), dtype, "rand_normal")?; let command_buffer = self.command_buffer()?; candle_metal_kernels::call_random_normal( &self.device, &command_buffer, &self.kernels, name, mean as f32, stddev as f32, shape.elem_count(), &*self.seed.lock().unwrap(), &buffer, ) .map_err(MetalError::from)?; Ok(Self::Storage::new(buffer, self.clone(), dtype)) } fn set_seed(&self, seed: u64) -> Result<()> { let seed: u32 = seed.try_into().map_err(|_| { MetalError::Message("Metal seed must be less than or equal to u32::MAX".to_string()) })?; let seed_buffer = self.seed.try_lock().map_err(MetalError::from)?; let contents = seed_buffer.contents(); unsafe { std::ptr::copy([seed].as_ptr(), contents as *mut u32, 4); } seed_buffer.did_modify_range(metal::NSRange::new(0, 4)); Ok(()) } } fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> { let ptr = buffer.contents() as *const T; assert!(!ptr.is_null()); let slice = unsafe { std::slice::from_raw_parts(ptr, n) }; slice.to_vec() }
candle/candle-core/src/metal_backend.rs/0
{ "file_path": "candle/candle-core/src/metal_backend.rs", "repo_id": "candle", "token_count": 36551 }
16
//! The shape of a tensor is a tuple with the size of each of its dimensions. #![allow(clippy::redundant_closure_call)] use crate::{Error, Result}; #[derive(Clone, PartialEq, Eq)] pub struct Shape(Vec<usize>); pub const SCALAR: Shape = Shape(vec![]); impl std::fmt::Debug for Shape { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{:?}", &self.dims()) } } impl<const C: usize> From<&[usize; C]> for Shape { fn from(dims: &[usize; C]) -> Self { Self(dims.to_vec()) } } impl From<&[usize]> for Shape { fn from(dims: &[usize]) -> Self { Self(dims.to_vec()) } } impl From<&Shape> for Shape { fn from(shape: &Shape) -> Self { Self(shape.0.to_vec()) } } impl From<()> for Shape { fn from(_: ()) -> Self { Self(vec![]) } } impl From<usize> for Shape { fn from(d1: usize) -> Self { Self(vec![d1]) } } impl From<(usize,)> for Shape { fn from(d1: (usize,)) -> Self { Self(vec![d1.0]) } } impl From<(usize, usize)> for Shape { fn from(d12: (usize, usize)) -> Self { Self(vec![d12.0, d12.1]) } } impl From<(usize, usize, usize)> for Shape { fn from(d123: (usize, usize, usize)) -> Self { Self(vec![d123.0, d123.1, d123.2]) } } impl From<(usize, usize, usize, usize)> for Shape { fn from(d1234: (usize, usize, usize, usize)) -> Self { Self(vec![d1234.0, d1234.1, d1234.2, d1234.3]) } } impl From<(usize, usize, usize, usize, usize)> for Shape { fn from(d12345: (usize, usize, usize, usize, usize)) -> Self { Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4]) } } impl From<(usize, usize, usize, usize, usize, usize)> for Shape { fn from(d123456: (usize, usize, usize, usize, usize, usize)) -> Self { Self(vec![ d123456.0, d123456.1, d123456.2, d123456.3, d123456.4, d123456.5, ]) } } impl From<Vec<usize>> for Shape { fn from(dims: Vec<usize>) -> Self { Self(dims) } } macro_rules! extract_dims { ($fn_name:ident, $cnt:tt, $dims:expr, $out_type:ty) => { pub fn $fn_name(dims: &[usize]) -> Result<$out_type> { if dims.len() != $cnt { Err(Error::UnexpectedNumberOfDims { expected: $cnt, got: dims.len(), shape: Shape::from(dims), } .bt()) } else { Ok($dims(dims)) } } impl Shape { pub fn $fn_name(&self) -> Result<$out_type> { $fn_name(self.0.as_slice()) } } impl crate::Tensor { pub fn $fn_name(&self) -> Result<$out_type> { self.shape().$fn_name() } } impl std::convert::TryInto<$out_type> for Shape { type Error = crate::Error; fn try_into(self) -> std::result::Result<$out_type, Self::Error> { self.$fn_name() } } }; } impl Shape { pub fn from_dims(dims: &[usize]) -> Self { Self(dims.to_vec()) } /// The rank is the number of dimensions, 0 for a scalar value, 1 for a vector, etc. pub fn rank(&self) -> usize { self.0.len() } pub fn into_dims(self) -> Vec<usize> { self.0 } /// The dimensions as a slice of `usize`. pub fn dims(&self) -> &[usize] { &self.0 } /// The total number of elements, this is the product of all dimension sizes. pub fn elem_count(&self) -> usize { self.0.iter().product() } /// The strides given in number of elements for a contiguous n-dimensional /// arrays using this shape. pub(crate) fn stride_contiguous(&self) -> Vec<usize> { let mut stride: Vec<_> = self .0 .iter() .rev() .scan(1, |prod, u| { let prod_pre_mult = *prod; *prod *= u; Some(prod_pre_mult) }) .collect(); stride.reverse(); stride } /// Returns true if the strides are C contiguous (aka row major). pub fn is_contiguous(&self, stride: &[usize]) -> bool { if self.0.len() != stride.len() { return false; } let mut acc = 1; for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() { if stride != acc { return false; } acc *= dim; } true } /// Returns true if the strides are Fortran contiguous (aka column major). pub fn is_fortran_contiguous(&self, stride: &[usize]) -> bool { if self.0.len() != stride.len() { return false; } let mut acc = 1; for (&stride, &dim) in stride.iter().zip(self.0.iter()) { if stride != acc { return false; } acc *= dim; } true } /// Modifies the shape by adding a list of additional dimensions at the end of the existing /// dimensions. pub fn extend(mut self, additional_dims: &[usize]) -> Self { self.0.extend(additional_dims); self } /// Check whether the two shapes are compatible for broadcast, and if it is the case return the /// broadcasted shape. This is to be used for binary pointwise ops. pub fn broadcast_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<Shape> { let lhs = self; let lhs_dims = lhs.dims(); let rhs_dims = rhs.dims(); let lhs_ndims = lhs_dims.len(); let rhs_ndims = rhs_dims.len(); let bcast_ndims = usize::max(lhs_ndims, rhs_ndims); let mut bcast_dims = vec![0; bcast_ndims]; for (idx, bcast_value) in bcast_dims.iter_mut().enumerate() { let rev_idx = bcast_ndims - idx; let l_value = if lhs_ndims < rev_idx { 1 } else { lhs_dims[lhs_ndims - rev_idx] }; let r_value = if rhs_ndims < rev_idx { 1 } else { rhs_dims[rhs_ndims - rev_idx] }; *bcast_value = if l_value == r_value { l_value } else if l_value == 1 { r_value } else if r_value == 1 { l_value } else { Err(Error::ShapeMismatchBinaryOp { lhs: lhs.clone(), rhs: rhs.clone(), op, } .bt())? } } Ok(Shape::from(bcast_dims)) } pub(crate) fn broadcast_shape_matmul(&self, rhs: &Self) -> Result<(Shape, Shape)> { let lhs = self; let lhs_dims = lhs.dims(); let rhs_dims = rhs.dims(); if lhs_dims.len() < 2 || rhs_dims.len() < 2 { crate::bail!("only 2d matrixes are supported {lhs:?} {rhs:?}") } let (m, lhs_k) = (lhs_dims[lhs_dims.len() - 2], lhs_dims[lhs_dims.len() - 1]); let (rhs_k, n) = (rhs_dims[rhs_dims.len() - 2], rhs_dims[rhs_dims.len() - 1]); if lhs_k != rhs_k { crate::bail!("different inner dimensions in broadcast matmul {lhs:?} {rhs:?}") } let lhs_b = Self::from(&lhs_dims[..lhs_dims.len() - 2]); let rhs_b = Self::from(&rhs_dims[..rhs_dims.len() - 2]); let bcast = lhs_b.broadcast_shape_binary_op(&rhs_b, "broadcast_matmul")?; let bcast_dims = bcast.dims(); let bcast_lhs = [bcast_dims, &[m, lhs_k]].concat(); let bcast_rhs = [bcast_dims, &[rhs_k, n]].concat(); Ok((Shape::from(bcast_lhs), Shape::from(bcast_rhs))) } } pub trait Dim { fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize>; fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize>; } impl Dim for usize { fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> { let dim = *self; if dim >= shape.dims().len() { Err(Error::DimOutOfRange { shape: shape.clone(), dim: dim as i32, op, } .bt())? } else { Ok(dim) } } fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> { let dim = *self; if dim > shape.dims().len() { Err(Error::DimOutOfRange { shape: shape.clone(), dim: dim as i32, op, } .bt())? } else { Ok(dim) } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum D { Minus1, Minus2, } impl D { fn out_of_range(&self, shape: &Shape, op: &'static str) -> Error { let dim = match self { Self::Minus1 => -1, Self::Minus2 => -2, }; Error::DimOutOfRange { shape: shape.clone(), dim, op, } .bt() } } impl Dim for D { fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> { let rank = shape.rank(); match self { Self::Minus1 if rank >= 1 => Ok(rank - 1), Self::Minus2 if rank >= 2 => Ok(rank - 2), _ => Err(self.out_of_range(shape, op)), } } fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> { let rank = shape.rank(); match self { Self::Minus1 => Ok(rank), Self::Minus2 if rank >= 1 => Ok(rank - 1), _ => Err(self.out_of_range(shape, op)), } } } pub trait Dims: Sized { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>>; fn to_indexes(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let dims = self.to_indexes_internal(shape, op)?; for (i, &dim) in dims.iter().enumerate() { if dims[..i].contains(&dim) { Err(Error::DuplicateDimIndex { shape: shape.clone(), dims: dims.clone(), op, } .bt())? } if dim >= shape.rank() { Err(Error::DimOutOfRange { shape: shape.clone(), dim: dim as i32, op, } .bt())? } } Ok(dims) } } impl Dims for Vec<usize> { fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> { Ok(self) } } impl<const N: usize> Dims for [usize; N] { fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> { Ok(self.to_vec()) } } impl Dims for &[usize] { fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> { Ok(self.to_vec()) } } impl Dims for () { fn to_indexes_internal(self, _: &Shape, _: &'static str) -> Result<Vec<usize>> { Ok(vec![]) } } impl<D: Dim + Sized> Dims for D { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let dim = self.to_index(shape, op)?; Ok(vec![dim]) } } impl<D: Dim> Dims for (D,) { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let dim = self.0.to_index(shape, op)?; Ok(vec![dim]) } } impl<D1: Dim, D2: Dim> Dims for (D1, D2) { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let d0 = self.0.to_index(shape, op)?; let d1 = self.1.to_index(shape, op)?; Ok(vec![d0, d1]) } } impl<D1: Dim, D2: Dim, D3: Dim> Dims for (D1, D2, D3) { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let d0 = self.0.to_index(shape, op)?; let d1 = self.1.to_index(shape, op)?; let d2 = self.2.to_index(shape, op)?; Ok(vec![d0, d1, d2]) } } impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim> Dims for (D1, D2, D3, D4) { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let d0 = self.0.to_index(shape, op)?; let d1 = self.1.to_index(shape, op)?; let d2 = self.2.to_index(shape, op)?; let d3 = self.3.to_index(shape, op)?; Ok(vec![d0, d1, d2, d3]) } } impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim> Dims for (D1, D2, D3, D4, D5) { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let d0 = self.0.to_index(shape, op)?; let d1 = self.1.to_index(shape, op)?; let d2 = self.2.to_index(shape, op)?; let d3 = self.3.to_index(shape, op)?; let d4 = self.4.to_index(shape, op)?; Ok(vec![d0, d1, d2, d3, d4]) } } impl<D1: Dim, D2: Dim, D3: Dim, D4: Dim, D5: Dim, D6: Dim> Dims for (D1, D2, D3, D4, D5, D6) { fn to_indexes_internal(self, shape: &Shape, op: &'static str) -> Result<Vec<usize>> { let d0 = self.0.to_index(shape, op)?; let d1 = self.1.to_index(shape, op)?; let d2 = self.2.to_index(shape, op)?; let d3 = self.3.to_index(shape, op)?; let d4 = self.4.to_index(shape, op)?; let d5 = self.5.to_index(shape, op)?; Ok(vec![d0, d1, d2, d3, d4, d5]) } } extract_dims!(dims0, 0, |_: &[usize]| (), ()); extract_dims!(dims1, 1, |d: &[usize]| d[0], usize); extract_dims!(dims2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize)); extract_dims!( dims3, 3, |d: &[usize]| (d[0], d[1], d[2]), (usize, usize, usize) ); extract_dims!( dims4, 4, |d: &[usize]| (d[0], d[1], d[2], d[3]), (usize, usize, usize, usize) ); extract_dims!( dims5, 5, |d: &[usize]| (d[0], d[1], d[2], d[3], d[4]), (usize, usize, usize, usize, usize) ); pub trait ShapeWithOneHole { fn into_shape(self, el_count: usize) -> Result<Shape>; } impl<S: Into<Shape>> ShapeWithOneHole for S { fn into_shape(self, _el_count: usize) -> Result<Shape> { Ok(self.into()) } } impl ShapeWithOneHole for ((),) { fn into_shape(self, el_count: usize) -> Result<Shape> { Ok(el_count.into()) } } fn hole_size(el_count: usize, prod_d: usize, s: &dyn std::fmt::Debug) -> Result<usize> { if prod_d == 0 { crate::bail!("cannot reshape tensor of {el_count} elements to {s:?}") } if el_count % prod_d != 0 { crate::bail!("cannot reshape tensor with {el_count} elements to {s:?}") } Ok(el_count / prod_d) } impl ShapeWithOneHole for ((), usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let ((), d1) = self; Ok((hole_size(el_count, d1, &self)?, d1).into()) } } impl ShapeWithOneHole for (usize, ()) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, ()) = self; Ok((d1, hole_size(el_count, d1, &self)?).into()) } } impl ShapeWithOneHole for ((), usize, usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let ((), d1, d2) = self; Ok((hole_size(el_count, d1 * d2, &self)?, d1, d2).into()) } } impl ShapeWithOneHole for (usize, (), usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, (), d2) = self; Ok((d1, hole_size(el_count, d1 * d2, &self)?, d2).into()) } } impl ShapeWithOneHole for (usize, usize, ()) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, d2, ()) = self; Ok((d1, d2, hole_size(el_count, d1 * d2, &self)?).into()) } } impl ShapeWithOneHole for ((), usize, usize, usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let ((), d1, d2, d3) = self; let d = hole_size(el_count, d1 * d2 * d3, &self)?; Ok((d, d1, d2, d3).into()) } } impl ShapeWithOneHole for (usize, (), usize, usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, (), d2, d3) = self; let d = hole_size(el_count, d1 * d2 * d3, &self)?; Ok((d1, d, d2, d3).into()) } } impl ShapeWithOneHole for (usize, usize, (), usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, d2, (), d3) = self; let d = hole_size(el_count, d1 * d2 * d3, &self)?; Ok((d1, d2, d, d3).into()) } } impl ShapeWithOneHole for (usize, usize, usize, ()) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, d2, d3, ()) = self; let d = hole_size(el_count, d1 * d2 * d3, &self)?; Ok((d1, d2, d3, d).into()) } } impl ShapeWithOneHole for ((), usize, usize, usize, usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let ((), d1, d2, d3, d4) = self; let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?; Ok((d, d1, d2, d3, d4).into()) } } impl ShapeWithOneHole for (usize, (), usize, usize, usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, (), d2, d3, d4) = self; let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?; Ok((d1, d, d2, d3, d4).into()) } } impl ShapeWithOneHole for (usize, usize, (), usize, usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, d2, (), d3, d4) = self; let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?; Ok((d1, d2, d, d3, d4).into()) } } impl ShapeWithOneHole for (usize, usize, usize, (), usize) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, d2, d3, (), d4) = self; let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?; Ok((d1, d2, d3, d, d4).into()) } } impl ShapeWithOneHole for (usize, usize, usize, usize, ()) { fn into_shape(self, el_count: usize) -> Result<Shape> { let (d1, d2, d3, d4, ()) = self; let d = hole_size(el_count, d1 * d2 * d3 * d4, &self)?; Ok((d1, d2, d3, d4, d).into()) } } #[cfg(test)] mod tests { use super::*; #[test] fn stride() { let shape = Shape::from(()); assert_eq!(shape.stride_contiguous(), Vec::<usize>::new()); let shape = Shape::from(42); assert_eq!(shape.stride_contiguous(), [1]); let shape = Shape::from((42, 1337)); assert_eq!(shape.stride_contiguous(), [1337, 1]); let shape = Shape::from((299, 792, 458)); assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]); } }
candle/candle-core/src/shape.rs/0
{ "file_path": "candle/candle-core/src/shape.rs", "repo_id": "candle", "token_count": 9806 }
17
use candle_core::{DType, Result, Tensor}; #[test] fn npy() -> Result<()> { let npy = Tensor::read_npy("tests/test.npy")?; assert_eq!( npy.to_dtype(DType::U8)?.to_vec1::<u8>()?, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ); Ok(()) } #[test] fn npz() -> Result<()> { let npz = Tensor::read_npz("tests/test.npz")?; assert_eq!(npz.len(), 2); assert_eq!(npz[0].0, "x"); assert_eq!(npz[1].0, "x_plus_one"); assert_eq!( npz[1].1.to_dtype(DType::U8)?.to_vec1::<u8>()?, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ); Ok(()) }
candle/candle-core/tests/serialization_tests.rs/0
{ "file_path": "candle/candle-core/tests/serialization_tests.rs", "repo_id": "candle", "token_count": 333 }
18
#![allow(unused)] use anyhow::{Context, Result}; use std::io::Write; use std::path::PathBuf; struct KernelDirectories { kernel_glob: &'static str, rust_target: &'static str, include_dirs: &'static [&'static str], } const KERNEL_DIRS: [KernelDirectories; 1] = [KernelDirectories { kernel_glob: "examples/custom-ops/kernels/*.cu", rust_target: "examples/custom-ops/cuda_kernels.rs", include_dirs: &[], }]; fn main() -> Result<()> { println!("cargo:rerun-if-changed=build.rs"); #[cfg(feature = "cuda")] { for kdir in KERNEL_DIRS.iter() { let builder = bindgen_cuda::Builder::default().kernel_paths_glob(kdir.kernel_glob); println!("cargo:info={builder:?}"); let bindings = builder.build_ptx().unwrap(); bindings.write(kdir.rust_target).unwrap() } } Ok(()) }
candle/candle-examples/build.rs/0
{ "file_path": "candle/candle-examples/build.rs", "repo_id": "candle", "token_count": 391 }
19
//! EfficientNet implementation. //! //! https://arxiv.org/abs/1905.11946 #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::efficientnet::{EfficientNet, MBConvConfig}; use clap::{Parser, ValueEnum}; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { B0, B1, B2, B3, B4, B5, B6, B7, } #[derive(Parser)] struct Args { #[arg(long)] model: Option<String>, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Variant of the model to use. #[arg(value_enum, long, default_value_t = Which::B2)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image224(args.image)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let api = hf_hub::api::sync::Api::new()?; let api = api.model("lmz/candle-efficientnet".into()); let filename = match args.which { Which::B0 => "efficientnet-b0.safetensors", Which::B1 => "efficientnet-b1.safetensors", Which::B2 => "efficientnet-b2.safetensors", Which::B3 => "efficientnet-b3.safetensors", Which::B4 => "efficientnet-b4.safetensors", Which::B5 => "efficientnet-b5.safetensors", Which::B6 => "efficientnet-b6.safetensors", Which::B7 => "efficientnet-b7.safetensors", }; api.get(filename)? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let cfg = match args.which { Which::B0 => MBConvConfig::b0(), Which::B1 => MBConvConfig::b1(), Which::B2 => MBConvConfig::b2(), Which::B3 => MBConvConfig::b3(), Which::B4 => MBConvConfig::b4(), Which::B5 => MBConvConfig::b5(), Which::B6 => MBConvConfig::b6(), Which::B7 => MBConvConfig::b7(), }; let model = EfficientNet::new(vb, cfg, candle_examples::imagenet::CLASS_COUNT as usize)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::<f32>()?; let mut prs = prs.iter().enumerate().collect::<Vec<_>>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }
candle/candle-examples/examples/efficientnet/main.rs/0
{ "file_path": "candle/candle-examples/examples/efficientnet/main.rs", "repo_id": "candle", "token_count": 1414 }
20
# candle-mistral: 7b LLM with Apache 2.0 licensed weights Mistral-7B-v0.1 is a pretrained generative LLM with 7 billion parameters. It outperforms all the publicly available 13b models as of 2023-09-28. Weights (and the original Python model code) are released under the permissive Apache 2.0 license. - [Blog post](https://mistral.ai/news/announcing-mistral-7b/) from Mistral announcing the model release. - [Model card](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFace Hub. This example supports the initial model as well as a quantized variant. ## Running the example ```bash $ cargo run --example mistral --release --features cuda -- --prompt 'Write helloworld code in Rust' --sample-len 150 Generated text: Write helloworld code in Rust ============================= This is a simple example of how to write "Hello, world!" program in Rust. ## Compile and run ``bash $ cargo build --release Compiling hello-world v0.1.0 (/home/user/rust/hello-world) Finished release [optimized] target(s) in 0.26s $ ./target/release/hello-world Hello, world! `` ## Source code ``rust fn main() { println!("Hello, world!"); } `` ## License This example is released under the terms ``` ## Running the quantized version of the model ```bash $ cargo run --example mistral --features accelerate --release -- \ $ --prompt "Here is a sample quick sort implementation in rust " --quantized -n 400 avx: false, neon: true, simd128: false, f16c: false temp: 0.00 repeat-penalty: 1.10 repeat-last-n: 64 retrieved the files in 562.292µs loaded the model in 1.100323667s Here is a sample quick sort implementation in rust ``rust fn quick_sort(arr: &mut [i32]) { if arr.len() <= 1 { return; } let pivot = arr[0]; let mut left = vec![]; let mut right = vec![]; for i in 1..arr.len() { if arr[i] < pivot { left.push(arr[i]); } else { right.push(arr[i]); } } quick_sort(&mut left); quick_sort(&mut right); let mut i = 0; for _ in &left { arr[i] = left.pop().unwrap(); i += 1; } for _ in &right { arr[i] = right.pop().unwrap(); i += 1; } } `` 226 tokens generated (10.91 token/s) ```
candle/candle-examples/examples/mistral/README.md/0
{ "file_path": "candle/candle-examples/examples/mistral/README.md", "repo_id": "candle", "token_count": 829 }
21
# candle-quantized-t5 ## Seq2Seq example This example uses a quantized version of the t5 model. ```bash $ cargo run --example quantized-t5 --release -- --prompt "translate to German: A beautiful candle." ... Eine schöne Kerze. ``` ## Generating Quantized weight files The weight file is automatically retrieved from the hub. It is also possible to generate quantized weight files from the original safetensors file by using the `tensor-tools` command line utility via: ```bash $ cargo run --example tensor-tools --release -- quantize --quantization q6k PATH/TO/T5/model.safetensors /tmp/model.gguf ``` ## Using custom models To use a different model, specify the `model-id`. For example, for text editing, you can use quantized [CoEdit models](https://huggingface.co/jbochi/candle-coedit-quantized). ```bash $ cargo run --example quantized-t5 --release -- \ --model-id "jbochi/candle-coedit-quantized" \ --prompt "Make this text coherent: Their flight is weak. They run quickly through the tree canopy." \ --temperature 0 ... Although their flight is weak, they run quickly through the tree canopy. ``` By default, it will look for `model.gguf` and `config.json`, but you can specify custom local or remote `weight-file` and `config-file`s: ```bash cargo run --example quantized-t5 --release -- \ --model-id "jbochi/candle-coedit-quantized" \ --weight-file "model-xl.gguf" \ --config-file "config-xl.json" \ --prompt "Rewrite to make this easier to understand: Note that a storm surge is what forecasters consider a hurricane's most treacherous aspect." \ --temperature 0 ... Note that a storm surge is what forecasters consider a hurricane's most dangerous part. ``` ### [MADLAD-400](https://arxiv.org/abs/2309.04662) MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models. ```bash cargo run --example quantized-t5 --release -- \ --model-id "jbochi/madlad400-3b-mt" --weight-file "model-q4k.gguf" \ --prompt "<2de> How are you, my friend?" \ --temperature 0 ... Wie geht es dir, mein Freund? ```
candle/candle-examples/examples/quantized-t5/README.md/0
{ "file_path": "candle/candle-examples/examples/quantized-t5/README.md", "repo_id": "candle", "token_count": 683 }
22
# candle-resnet A candle implementation of inference using a pre-trained [ResNet](https://arxiv.org/abs/1512.03385). This uses a classification head trained on the ImageNet dataset and returns the probabilities for the top-5 classes. ## Running an example ``` $ cargo run --example resnet --release -- --image tiger.jpg loaded image Tensor[dims 3, 224, 224; f32] model built tiger, Panthera tigris : 90.21% tiger cat : 8.93% lion, king of beasts, Panthera leo: 0.35% leopard, Panthera pardus: 0.16% jaguar, panther, Panthera onca, Felis onca: 0.09% ```
candle/candle-examples/examples/resnet/README.md/0
{ "file_path": "candle/candle-examples/examples/resnet/README.md", "repo_id": "candle", "token_count": 204 }
23
use image::{DynamicImage, ImageBuffer}; use serde::Deserialize; use std::collections::HashMap; use candle::{DType, Device, Result, Tensor}; #[derive(Debug, Clone, PartialEq, Deserialize)] pub struct ProcessorConfig { do_resize: bool, height: u32, width: u32, do_rescale: bool, do_normalize: bool, image_mean: Vec<f32>, image_std: Vec<f32>, } impl Default for ProcessorConfig { fn default() -> Self { Self { do_resize: true, height: 384, width: 384, do_rescale: true, do_normalize: true, image_mean: vec![0.5, 0.5, 0.5], image_std: vec![0.5, 0.5, 0.5], } } } pub struct ViTImageProcessor { do_resize: bool, height: u32, width: u32, do_normalize: bool, image_mean: Vec<f32>, image_std: Vec<f32>, } impl ViTImageProcessor { pub fn new(config: &ProcessorConfig) -> Self { Self { do_resize: config.do_resize, height: config.height, width: config.width, do_normalize: config.do_normalize, image_mean: config.image_mean.clone(), image_std: config.image_std.clone(), } } pub fn preprocess(&self, images: Vec<&str>) -> Result<Tensor> { let height = self.height as usize; let width = self.width as usize; let channels = 3; let images = self.load_images(images)?; let resized_images: Vec<DynamicImage> = if self.do_resize { images .iter() .map(|image| self.resize(image.clone(), None).unwrap()) .collect() } else { images }; let normalized_images: Vec<Tensor> = if self.do_normalize { resized_images .iter() .map(|image| self.normalize(image.clone(), None, None).unwrap()) .collect() } else { let resized_images: Vec<ImageBuffer<image::Rgb<u8>, Vec<u8>>> = resized_images.iter().map(|image| image.to_rgb8()).collect(); let data = resized_images .into_iter() .map(|image| image.into_raw()) .collect::<Vec<Vec<u8>>>(); data.iter() .map(|image| { Tensor::from_vec(image.clone(), (height, width, channels), &Device::Cpu) .unwrap() .permute((2, 0, 1)) .unwrap() }) .collect::<Vec<Tensor>>() }; Tensor::stack(&normalized_images, 0) } fn resize( &self, image: image::DynamicImage, size: Option<HashMap<String, u32>>, ) -> Result<image::DynamicImage> { let (height, width) = match &size { Some(size) => (size.get("height").unwrap(), size.get("width").unwrap()), None => (&self.height, &self.width), }; let resized_image = image.resize_exact(*width, *height, image::imageops::FilterType::Triangle); Ok(resized_image) } fn normalize( &self, image: image::DynamicImage, mean: Option<Vec<f32>>, std: Option<Vec<f32>>, ) -> Result<Tensor> { let mean = match mean { Some(mean) => mean, None => self.image_mean.clone(), }; let std = match std { Some(std) => std, None => self.image_std.clone(), }; let mean = Tensor::from_vec(mean, (3, 1, 1), &Device::Cpu)?; let std = Tensor::from_vec(std, (3, 1, 1), &Device::Cpu)?; let image = image.to_rgb8(); let data = image.into_raw(); let height = self.height as usize; let width = self.width as usize; let channels = 3; let data = Tensor::from_vec(data, &[height, width, channels], &Device::Cpu)?.permute((2, 0, 1))?; (data.to_dtype(DType::F32)? / 255.)? .broadcast_sub(&mean)? .broadcast_div(&std) } pub fn load_images(&self, image_path: Vec<&str>) -> Result<Vec<image::DynamicImage>> { let mut images: Vec<image::DynamicImage> = Vec::new(); for path in image_path { let img = image::io::Reader::open(path)?.decode().unwrap(); images.push(img); } Ok(images) } }
candle/candle-examples/examples/trocr/image_processor.rs/0
{ "file_path": "candle/candle-examples/examples/trocr/image_processor.rs", "repo_id": "candle", "token_count": 2274 }
24
[package] name = "candle-flash-attn" version = "0.3.3" edition = "2021" description = "Flash attention layer for the candle ML framework." repository = "https://github.com/huggingface/candle" keywords = ["blas", "tensor", "machine-learning"] categories = ["science"] license = "MIT OR Apache-2.0" readme = "README.md" [dependencies] candle = { path = "../candle-core", features = ["cuda"], package = "candle-core", version = "0.3.3" } half = { version = "2.3.1", features = ["num-traits"] } [build-dependencies] bindgen_cuda = "0.1.1" anyhow = { version = "1", features = ["backtrace"] } [dev-dependencies] anyhow = { version = "1", features = ["backtrace"] } candle-nn = { path = "../candle-nn", features = ["cuda"] }
candle/candle-flash-attn/Cargo.toml/0
{ "file_path": "candle/candle-flash-attn/Cargo.toml", "repo_id": "candle", "token_count": 266 }
25
mod ffi; use candle::backend::BackendStorage; use candle::cuda_backend::cudarc::driver::DevicePtr; use candle::cuda_backend::WrapErr; use candle::{CpuStorage, DType, Layout, Result, Shape, Tensor}; use half::{bf16, f16}; pub struct FlashAttn { pub softmax_scale: f32, pub alibi_slopes: Option<Tensor>, pub window_size_left: Option<usize>, pub window_size_right: Option<usize>, } fn round_multiple(x: usize, m: usize) -> usize { (x + m - 1) / m * m } impl FlashAttn { fn cuda_fwd_t< T: candle::cuda_backend::CudaDType + candle::cuda_backend::cudarc::driver::DeviceRepr, >( &self, q: &candle::CudaStorage, q_l: &Layout, k: &candle::CudaStorage, k_l: &Layout, v: &candle::CudaStorage, v_l: &Layout, is_bf16: bool, ) -> Result<(candle::CudaStorage, Shape)> { // https://github.com/Dao-AILab/flash-attention/blob/b252072409e69c25f2b9d473cc534e49b24decd2/csrc/flash_attn/flash_api.cpp#L187 let dev = q.device(); let out_shape = q_l.shape().clone(); let out_l = Layout::contiguous(&out_shape); let q = q.as_cuda_slice::<T>()?; let k = k.as_cuda_slice::<T>()?; let v = v.as_cuda_slice::<T>()?; let q = q.slice(q_l.start_offset()..); let k = k.slice(k_l.start_offset()..); let v = v.slice(v_l.start_offset()..); let q_stride = q_l.stride(); let k_stride = k_l.stride(); let v_stride = v_l.stride(); let o_stride = out_l.stride(); let q_rank = q_stride.len(); let k_rank = k_stride.len(); let v_rank = v_stride.len(); let o_rank = o_stride.len(); if q_rank != 4 || k_rank != 4 || v_rank != 4 { candle::bail!( "flash-attn expects input tensors of rank 4 (q: {q_rank}, k: {k_rank}, v: {v_rank}" ) } if q_stride[q_rank - 1] != 1 { candle::bail!("the last dim of q must be contiguous {q_stride:?}") } if k_stride[k_rank - 1] != 1 { candle::bail!("the last dim of k must be contiguous {k_stride:?}") } if v_stride[v_rank - 1] != 1 { candle::bail!("the last dim of v must be contiguous {v_stride:?}") } let (b_sz, seqlen_q, num_heads, head_size_og) = q_l.shape().dims4()?; let (_b_sz, seqlen_k, num_heads_k, _head_size_og) = k_l.shape().dims4()?; let expected_kv = (b_sz, seqlen_k, num_heads_k, head_size_og); if expected_kv != k_l.shape().dims4()? { candle::bail!("shape mismatch q {:?} and k {:?}", q_l.shape(), k_l.shape()) } if expected_kv != v_l.shape().dims4()? { candle::bail!("shape mismatch q {:?} and v {:?}", q_l.shape(), v_l.shape()) } if head_size_og > 256 { candle::bail!("only supports head dimension at most 256 (got {head_size_og})") } if head_size_og % 8 != 0 { // TODO: Handle head sizes that are not a multiple of 8 via some padding. candle::bail!("only supports head sizes that are a multiple of 8 (got {head_size_og})") } if num_heads % num_heads_k != 0 { candle::bail!("number of k/v heads {num_heads_k} must divide number of heads in query {num_heads}") } let alibi_slopes_ptr = if let Some(alibi_slopes) = &self.alibi_slopes { if alibi_slopes.dtype() != DType::F32 { candle::bail!( "DType mismatch alibi_slopes {:?}, expected {:?}", alibi_slopes.dtype(), DType::F32 ); } let (alibi_slopes, alibi_slopes_layout) = alibi_slopes.storage_and_layout(); if num_heads != alibi_slopes_layout.shape().dims1()? { candle::bail!( "shape mismatch alibi_slopes {:?}, expected {:?}", alibi_slopes_layout.shape(), (num_heads) ); } let alibi_slopes = match &*alibi_slopes { candle::Storage::Cuda(c) => c.as_cuda_slice::<f32>()?, _ => candle::bail!("alibi_slopes must be a cuda tensor"), }; let alibi_slopes = alibi_slopes.slice(alibi_slopes_layout.start_offset()..); *alibi_slopes.device_ptr() as *const core::ffi::c_void } else { std::ptr::null() }; // if window_size_left > self.max_seqlen_k or None => -1 let mut window_size_left = self .window_size_left .filter(|v| v <= &seqlen_k) .map(|v| v as i32) .unwrap_or(-1); // if window_size_right > self.max_seqlen_k or None => -1 let mut window_size_right = self .window_size_right .filter(|v| v <= &seqlen_k) .map(|v| v as i32) .unwrap_or(-1); let head_size = round_multiple(head_size_og, 8); let head_size_rounded = round_multiple(head_size, 32); let seqlen_q_rounded = round_multiple(seqlen_q, 128); let seqlen_k_rounded = round_multiple(seqlen_k, 128); let elem_count = out_shape.elem_count(); let dst = unsafe { dev.alloc::<T>(elem_count) }.w()?; let softmax_lse = dev.alloc_zeros::<f32>(b_sz * num_heads * seqlen_q).w()?; let is_bf16 = if is_bf16 { 1 } else { 0 }; // Causal is the special case where window_size_right == 0 and window_size_left < 0. // Local is the more general case where window_size_right >= 0 or window_size_left >= 0. let is_causal = if window_size_left < 0 && window_size_right == 0 { 1 } else { 0 }; if window_size_left < 0 && window_size_right >= 0 { window_size_left = seqlen_k as i32; } if window_size_left >= 0 && window_size_right < 0 { window_size_right = seqlen_k as i32; } unsafe { let q_ptr = *q.device_ptr() as *const core::ffi::c_void; let k_ptr = *k.device_ptr() as *const core::ffi::c_void; let v_ptr = *v.device_ptr() as *const core::ffi::c_void; let dst_ptr = *dst.device_ptr() as *const core::ffi::c_void; let softmax_lse_ptr = *softmax_lse.device_ptr() as *const core::ffi::c_void; ffi::run_mha( q_ptr, k_ptr, v_ptr, dst_ptr, softmax_lse_ptr, /* alibi_slopes_ptr */ alibi_slopes_ptr, /* cu_seqlens_q_ptr */ std::ptr::null(), /* cu_seqlens_k_ptr */ std::ptr::null(), /* q_batch_stride */ q_stride[0] as u32, /* k_batch_stride */ k_stride[0] as u32, /* v_batch_stride */ v_stride[0] as u32, /* o_batch_stride */ o_stride[0] as u32, /* alibi_slopes_batch_stride */ 0, /* q_row_stride */ q_stride[q_rank - 3] as u32, /* k_row_stride */ k_stride[k_rank - 3] as u32, /* v_row_stride */ v_stride[v_rank - 3] as u32, /* o_row_stride */ o_stride[o_rank - 3] as u32, /* q_head_stride */ q_stride[q_rank - 2] as u32, /* k_head_stride */ k_stride[k_rank - 2] as u32, /* v_head_stride */ v_stride[v_rank - 2] as u32, /* o_head_stride */ o_stride[o_rank - 2] as u32, /* b */ b_sz as u32, /* h */ num_heads as u32, /* h_k */ num_heads_k as u32, /* d */ head_size as u32, /* d_rounded */ head_size_rounded as u32, /* softmax_scale*/ self.softmax_scale, /* seqlen_q */ seqlen_q as u32, /* seqlen_k */ seqlen_k as u32, /* seqlen_q_rounded */ seqlen_q_rounded as u32, /* seqlen_k_rounded */ seqlen_k_rounded as u32, /* is_bf16 */ is_bf16, /* is_causal */ is_causal, /* window_size_left */ window_size_left, /* window_size_right */ window_size_right, ) } let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev.clone()); Ok((dst, out_shape)) } } impl candle::CustomOp3 for FlashAttn { fn name(&self) -> &'static str { "flash-attn" } fn cpu_fwd( &self, _: &CpuStorage, _: &Layout, _: &CpuStorage, _: &Layout, _: &CpuStorage, _: &Layout, ) -> Result<(CpuStorage, Shape)> { candle::bail!("no cpu support for flash-attn") } fn cuda_fwd( &self, q: &candle::CudaStorage, q_l: &Layout, k: &candle::CudaStorage, k_l: &Layout, v: &candle::CudaStorage, v_l: &Layout, ) -> Result<(candle::CudaStorage, Shape)> { match q.dtype() { candle::DType::F16 => self.cuda_fwd_t::<f16>(q, q_l, k, k_l, v, v_l, false), candle::DType::BF16 => self.cuda_fwd_t::<bf16>(q, q_l, k, k_l, v, v_l, true), dt => candle::bail!("flash-attn is only supported for f16/bf16 ({dt:?})"), } } } /// Flash-attention v2 layer. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// /// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`. pub fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { let window_size_left = None; let window_size_right = if causal { Some(0) } else { None }; let op = FlashAttn { softmax_scale, alibi_slopes: None, window_size_left, window_size_right, }; q.apply_op3(k, v, op) } /// Flash-attention v2 layer. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `window_size_left` - Limit left attention to value tokens. /// * `window_size_right` - Limit right attention to value tokens. /// /// # Causal mask /// /// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result /// of `Q @ K^T` /// /// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`. pub fn flash_attn_windowed( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, window_size_left: Option<usize>, window_size_right: Option<usize>, ) -> Result<Tensor> { let op = FlashAttn { softmax_scale, alibi_slopes: None, window_size_left, window_size_right, }; q.apply_op3(k, v, op) } /// Flash-attention v2 layer. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`. /// /// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`. pub fn flash_attn_alibi( q: &Tensor, k: &Tensor, v: &Tensor, alibi_slopes: &Tensor, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { let window_size_left = None; let window_size_right = if causal { Some(0) } else { None }; let op = FlashAttn { softmax_scale, alibi_slopes: Some(alibi_slopes.clone()), window_size_left, window_size_right, }; q.apply_op3(k, v, op) } /// Flash-attention v2 layer. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(batch, seq_len_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(batch, seq_len_kv, num_heads_kv, head_size)`. /// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`. /// * `window_size_left` - Limit left attention to value tokens. /// * `window_size_right` - Limit right attention to value tokens. /// /// # Causal mask /// /// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result /// of `Q @ K^T` /// /// The resulting tensor has dimensions `(batch, seq_len_q, num_heads_q, head_size)`. pub fn flash_attn_alibi_windowed( q: &Tensor, k: &Tensor, v: &Tensor, alibi_slopes: &Tensor, softmax_scale: f32, window_size_left: Option<usize>, window_size_right: Option<usize>, ) -> Result<Tensor> { let op = FlashAttn { softmax_scale, alibi_slopes: Some(alibi_slopes.clone()), window_size_left, window_size_right, }; q.apply_op3(k, v, op) } struct FlashAttnVarLen { pub softmax_scale: f32, pub max_seqlen_q: usize, pub max_seqlen_k: usize, pub seqlens_q: Tensor, pub seqlens_k: Tensor, pub alibi_slopes: Option<Tensor>, pub window_size_left: Option<usize>, pub window_size_right: Option<usize>, } impl FlashAttnVarLen { fn cuda_fwd_t< T: candle::cuda_backend::CudaDType + candle::cuda_backend::cudarc::driver::DeviceRepr, >( &self, q: &candle::CudaStorage, q_l: &Layout, k: &candle::CudaStorage, k_l: &Layout, v: &candle::CudaStorage, v_l: &Layout, is_bf16: bool, ) -> Result<(candle::CudaStorage, Shape)> { // https://github.com/Dao-AILab/flash-attention/blob/184b992dcb2a0890adaa19eb9b541c3e4f9d2a08/csrc/flash_attn/flash_api.cpp#L327 let dev = q.device(); let out_shape = q_l.shape().clone(); let out_l = Layout::contiguous(&out_shape); let (seqlens_q, seqlens_q_layout) = self.seqlens_q.storage_and_layout(); let seqlens_q = match &*seqlens_q { candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32! _ => candle::bail!("seqlens_q must be a cuda tensor"), }; let seqlens_q = match seqlens_q_layout.contiguous_offsets() { Some((o1, o2)) => seqlens_q.slice(o1..o2), None => candle::bail!("seqlens_q has to be contiguous"), }; let (seqlens_k, seqlens_k_layout) = self.seqlens_k.storage_and_layout(); let seqlens_k = match &*seqlens_k { candle::Storage::Cuda(c) => c.as_cuda_slice::<u32>()?, // Should be i32! _ => candle::bail!("seqlens_k must be a cuda tensor"), }; let seqlens_k = match seqlens_k_layout.contiguous_offsets() { Some((o1, o2)) => seqlens_k.slice(o1..o2), None => candle::bail!("seqlens_k has to be contiguous"), }; let q = q.as_cuda_slice::<f16>()?; let k = k.as_cuda_slice::<f16>()?; let v = v.as_cuda_slice::<f16>()?; let q = q.slice(q_l.start_offset()..); let k = k.slice(k_l.start_offset()..); let v = v.slice(v_l.start_offset()..); let q_stride = q_l.stride(); let k_stride = k_l.stride(); let v_stride = v_l.stride(); let o_stride = out_l.stride(); let q_rank = q_stride.len(); let k_rank = k_stride.len(); let v_rank = v_stride.len(); let o_rank = o_stride.len(); if q_rank != 3 || k_rank != 3 || v_rank != 3 { candle::bail!( "flash-attn-varlen expects input tensors of rank 3 (q: {q_rank}, k: {k_rank}, v: {v_rank}" ) } if q_stride[q_rank - 1] != 1 { candle::bail!("the last dim of q must be contiguous {q_stride:?}") } if k_stride[k_rank - 1] != 1 { candle::bail!("the last dim of k must be contiguous {k_stride:?}") } if v_stride[v_rank - 1] != 1 { candle::bail!("the last dim of v must be contiguous {v_stride:?}") } let (_total_q, num_heads, head_size_og) = q_l.shape().dims3()?; let (total_k, num_heads_k, _head_size_og) = k_l.shape().dims3()?; let expected_kv = (total_k, num_heads_k, head_size_og); if expected_kv != k_l.shape().dims3()? { candle::bail!("shape mismatch q {:?} and k {:?}", q_l.shape(), k_l.shape()) } if expected_kv != v_l.shape().dims3()? { candle::bail!("shape mismatch q {:?} and v {:?}", q_l.shape(), v_l.shape()) } if head_size_og > 256 { candle::bail!("only supports head dimension at most 256 (got {head_size_og})") } if head_size_og % 8 != 0 { // TODO: Handle head sizes that are not a multiple of 8 via some padding. candle::bail!("only supports head sizes that are a multiple of 8 (got {head_size_og})") } if num_heads % num_heads_k != 0 { candle::bail!("number of k/v heads {num_heads_k} must divide number of heads in query {num_heads}") } let nseqlens_q = seqlens_q_layout.shape().dims1()?; if nseqlens_q < 2 { candle::bail!("seqlens_q should have a len >= 2 {nseqlens_q}") } let nseqlens_k = seqlens_k_layout.shape().dims1()?; if nseqlens_k != nseqlens_q { candle::bail!("seqlens_q and seqlens_k should have the same number of elements {nseqlens_q} <> {nseqlens_k}") } let batch_size = nseqlens_q - 1; let alibi_slopes_ptr = if let Some(alibi_slopes) = &self.alibi_slopes { if alibi_slopes.dtype() != DType::F32 { candle::bail!( "DType mismatch alibi_slopes {:?}, expected {:?}", alibi_slopes.dtype(), DType::F32 ); } let (alibi_slopes, alibi_slopes_layout) = alibi_slopes.storage_and_layout(); if num_heads != alibi_slopes_layout.shape().dims1()? { candle::bail!( "shape mismatch alibi_slopes {:?}, expected {:?}", alibi_slopes_layout.shape(), (num_heads) ); } let alibi_slopes = match &*alibi_slopes { candle::Storage::Cuda(c) => c.as_cuda_slice::<f32>()?, _ => candle::bail!("alibi_slopes must be a cuda tensor"), }; let alibi_slopes = alibi_slopes.slice(alibi_slopes_layout.start_offset()..); *alibi_slopes.device_ptr() as *const core::ffi::c_void } else { std::ptr::null() }; // if window_size_left > self.max_seqlen_k or None => -1 let mut window_size_left = self .window_size_left .filter(|v| v <= &self.max_seqlen_k) .map(|v| v as i32) .unwrap_or(-1); // if window_size_right > self.max_seqlen_k or None => -1 let mut window_size_right = self .window_size_right .filter(|v| v <= &self.max_seqlen_k) .map(|v| v as i32) .unwrap_or(-1); let head_size = round_multiple(head_size_og, 8); let head_size_rounded = round_multiple(head_size, 32); let seqlen_q_rounded = round_multiple(self.max_seqlen_q, 128); let seqlen_k_rounded = round_multiple(self.max_seqlen_k, 128); let elem_count = out_shape.elem_count(); let dst = unsafe { dev.alloc::<f16>(elem_count) }.w()?; let softmax_lse = dev .alloc_zeros::<f32>(batch_size * num_heads * self.max_seqlen_q) .w()?; let is_bf16 = if is_bf16 { 1 } else { 0 }; // Causal is the special case where window_size_right == 0 and window_size_left < 0. // Local is the more general case where window_size_right >= 0 or window_size_left >= 0. let is_causal = if window_size_left < 0 && window_size_right == 0 { 1 } else { 0 }; if window_size_left < 0 && window_size_right >= 0 { window_size_left = self.max_seqlen_k as i32; } if window_size_left >= 0 && window_size_right < 0 { window_size_right = self.max_seqlen_k as i32; } unsafe { let q_ptr = *q.device_ptr() as *const core::ffi::c_void; let k_ptr = *k.device_ptr() as *const core::ffi::c_void; let v_ptr = *v.device_ptr() as *const core::ffi::c_void; let dst_ptr = *dst.device_ptr() as *const core::ffi::c_void; let softmax_lse_ptr = *softmax_lse.device_ptr() as *const core::ffi::c_void; let seqlens_q_ptr = *seqlens_q.device_ptr() as *const core::ffi::c_int; let seqlens_k_ptr = *seqlens_k.device_ptr() as *const core::ffi::c_int; ffi::run_mha( q_ptr, k_ptr, v_ptr, dst_ptr, softmax_lse_ptr, /* alibi_slopes_ptr */ alibi_slopes_ptr, /* cu_seqlens_q_ptr */ seqlens_q_ptr, /* cu_seqlens_k_ptr */ seqlens_k_ptr, /* q_batch_stride */ 0, /* k_batch_stride */ 0, /* v_batch_stride */ 0, /* o_batch_stride */ 0, /* alibi_slopes_batch_stride */ 0, /* q_row_stride */ q_stride[q_rank - 3] as u32, /* k_row_stride */ k_stride[k_rank - 3] as u32, /* v_row_stride */ v_stride[v_rank - 3] as u32, /* o_row_stride */ o_stride[o_rank - 3] as u32, /* q_head_stride */ q_stride[q_rank - 2] as u32, /* k_head_stride */ k_stride[k_rank - 2] as u32, /* v_head_stride */ v_stride[v_rank - 2] as u32, /* o_head_stride */ o_stride[o_rank - 2] as u32, /* b */ batch_size as u32, /* h */ num_heads as u32, /* h_k */ num_heads_k as u32, /* d */ head_size as u32, /* d_rounded */ head_size_rounded as u32, /* softmax_scale*/ self.softmax_scale, /* seqlen_q */ self.max_seqlen_q as u32, /* seqlen_k */ self.max_seqlen_k as u32, /* seqlen_q_rounded */ seqlen_q_rounded as u32, /* seqlen_k_rounded */ seqlen_k_rounded as u32, /* is_bf16 */ is_bf16, /* is_causal */ is_causal, /* window_size_left */ window_size_left, /* window_size_right */ window_size_right, ) } let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev.clone()); Ok((dst, out_shape)) } } impl candle::CustomOp3 for FlashAttnVarLen { fn name(&self) -> &'static str { "flash-attn-varlen" } fn cpu_fwd( &self, _: &CpuStorage, _: &Layout, _: &CpuStorage, _: &Layout, _: &CpuStorage, _: &Layout, ) -> Result<(CpuStorage, Shape)> { candle::bail!("no cpu support for flash-attn") } fn cuda_fwd( &self, q: &candle::CudaStorage, q_l: &Layout, k: &candle::CudaStorage, k_l: &Layout, v: &candle::CudaStorage, v_l: &Layout, ) -> Result<(candle::CudaStorage, Shape)> { match q.dtype() { candle::DType::F16 => self.cuda_fwd_t::<f16>(q, q_l, k, k_l, v, v_l, false), candle::DType::BF16 => self.cuda_fwd_t::<bf16>(q, q_l, k, k_l, v, v_l, true), dt => candle::bail!("flash-attn is only supported for f16/bf16 ({dt:?})"), } } } #[allow(clippy::too_many_arguments)] /// Flash-attention v2 layer with variable-length batching. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q. /// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v. /// * `max_seqlen_q` - The maximum query sequence length for q in the batch. /// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch. /// /// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`, /// `seqlen_1 + seqlen_2`, etc. /// /// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`. pub fn flash_attn_varlen( q: &Tensor, k: &Tensor, v: &Tensor, seqlens_q: &Tensor, seqlens_k: &Tensor, max_seqlen_q: usize, max_seqlen_k: usize, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { let window_size_left = None; let window_size_right = if causal { Some(0) } else { None }; let op = FlashAttnVarLen { softmax_scale, max_seqlen_q, max_seqlen_k, seqlens_q: seqlens_q.clone(), seqlens_k: seqlens_k.clone(), alibi_slopes: None, window_size_left, window_size_right, }; q.apply_op3(k, v, op) } #[allow(clippy::too_many_arguments)] /// Flash-attention v2 layer with variable-length batching. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q. /// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v. /// * `max_seqlen_q` - The maximum query sequence length for q in the batch. /// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch. /// * `window_size_left` - Limit left attention to value tokens. /// * `window_size_right` - Limit right attention to value tokens. /// /// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`, /// `seqlen_1 + seqlen_2`, etc. /// /// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`. /// /// # Causal mask /// /// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result /// of `Q @ K^T` pub fn flash_attn_varlen_windowed( q: &Tensor, k: &Tensor, v: &Tensor, seqlens_q: &Tensor, seqlens_k: &Tensor, max_seqlen_q: usize, max_seqlen_k: usize, softmax_scale: f32, window_size_left: Option<usize>, window_size_right: Option<usize>, ) -> Result<Tensor> { let op = FlashAttnVarLen { softmax_scale, max_seqlen_q, max_seqlen_k, seqlens_q: seqlens_q.clone(), seqlens_k: seqlens_k.clone(), alibi_slopes: None, window_size_left, window_size_right, }; q.apply_op3(k, v, op) } #[allow(clippy::too_many_arguments)] /// Flash-attention v2 layer with variable-length batching. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`. /// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q. /// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v. /// * `max_seqlen_q` - The maximum query sequence length for q in the batch. /// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch. /// /// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`, /// `seqlen_1 + seqlen_2`, etc. /// /// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`. pub fn flash_attn_varlen_alibi( q: &Tensor, k: &Tensor, v: &Tensor, alibi_slopes: &Tensor, seqlens_q: &Tensor, seqlens_k: &Tensor, max_seqlen_q: usize, max_seqlen_k: usize, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { let window_size_left = None; let window_size_right = if causal { Some(0) } else { None }; let op = FlashAttnVarLen { softmax_scale, max_seqlen_q, max_seqlen_k, seqlens_q: seqlens_q.clone(), seqlens_k: seqlens_k.clone(), alibi_slopes: Some(alibi_slopes.clone()), window_size_left, window_size_right, }; q.apply_op3(k, v, op) } #[allow(clippy::too_many_arguments)] /// Flash-attention v2 layer with variable-length batching. /// /// This implements scaled dot-product attention, `softmax(Q @ K^T . softmax_scale) @ V`. /// Multi-query and grouped-query attention are supported by using tensors k and v with fewer heads /// than q, the number of heads in k and v has to be divisible by the number of heads in q. /// /// # Arguments /// /// * `q` - Query tensor with shape `(total_q, num_heads_q, head_size)`. /// * `k` - Key tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `v` - Value tensor with shape `(total_kv, num_heads_kv, head_size)`. /// * `alibi_slopes` - Alibi slopes tensor with shape `(num_heads_q)`. /// * `seqlens_q` - The cumulative lengths of the sequences in the batch, used to index in q. /// * `seqlens_k` - The cumulative lengths of the sequences in the batch, used to index in k and v. /// * `max_seqlen_q` - The maximum query sequence length for q in the batch. /// * `max_seqlen_k` - The maximum query sequence length for k and v in the batch. /// * `window_size_left` - Limit left attention to value tokens. /// * `window_size_right` - Limit right attention to value tokens. /// /// `seqlens_q` and `seqlens_k` contain `batch_size + 1` elements, typically `0`, `seqlen_1`, /// `seqlen_1 + seqlen_2`, etc. /// /// The resulting tensor has dimensions `(total_q, num_heads_q, head_size)`. /// /// # Causal mask /// /// `window_size_left=None` with `window_size_right=Some(0)` applies a causal mask to the result /// of `Q @ K^T` pub fn flash_attn_varlen_alibi_windowed( q: &Tensor, k: &Tensor, v: &Tensor, alibi_slopes: &Tensor, seqlens_q: &Tensor, seqlens_k: &Tensor, max_seqlen_q: usize, max_seqlen_k: usize, softmax_scale: f32, window_size_left: Option<usize>, window_size_right: Option<usize>, ) -> Result<Tensor> { let op = FlashAttnVarLen { softmax_scale, max_seqlen_q, max_seqlen_k, seqlens_q: seqlens_q.clone(), seqlens_k: seqlens_k.clone(), alibi_slopes: Some(alibi_slopes.clone()), window_size_left, window_size_right, }; q.apply_op3(k, v, op) }
candle/candle-flash-attn/src/lib.rs/0
{ "file_path": "candle/candle-flash-attn/src/lib.rs", "repo_id": "candle", "token_count": 15951 }
26