text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LayoutLM model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_layoutlm import LayoutLMConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LayoutLMConfig" _CHECKPOINT_FOR_DOC = "microsoft/layoutlm-base-uncased" LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "layoutlm-base-uncased", "layoutlm-large-uncased", ] LayoutLMLayerNorm = nn.LayerNorm class LayoutLMEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super(LayoutLMEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids=None, bbox=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) words_embeddings = inputs_embeds position_embeddings = self.position_embeddings(position_ids) try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = ( words_embeddings + position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + token_type_embeddings ) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->LayoutLM class LayoutLMSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in LayoutLMModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->LayoutLM class LayoutLMSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->LayoutLM class LayoutLMAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = LayoutLMSelfAttention(config, position_embedding_type=position_embedding_type) self.output = LayoutLMSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LayoutLMIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM class LayoutLMOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->LayoutLM class LayoutLMLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = LayoutLMAttention(config, position_embedding_type="absolute") self.intermediate = LayoutLMIntermediate(config) self.output = LayoutLMOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->LayoutLM class LayoutLMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LayoutLMPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM class LayoutLMPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->LayoutLM class LayoutLMLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = LayoutLMPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM class LayoutLMOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = LayoutLMLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class LayoutLMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlm" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayoutLMLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) LAYOUTLM_START_DOCSTRING = r""" The LayoutLM model was proposed in [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei and Ming Zhou. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LayoutLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for tokens that are NOT MASKED, `0` for MASKED tokens. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1` indicates the head is **not masked**, `0` indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLM_START_DOCSTRING, ) class LayoutLMModel(LayoutLMPreTrainedModel): def __init__(self, config): super(LayoutLMModel, self).__init__(config) self.config = config self.embeddings = LayoutLMEmbeddings(config) self.encoder = LayoutLMEncoder(config) self.pooler = LayoutLMPooler(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> outputs = model( ... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids ... ) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if bbox is None: bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""LayoutLM Model with a `language modeling` head on top.""", LAYOUTLM_START_DOCSTRING) class LayoutLMForMaskedLM(LayoutLMPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.layoutlm = LayoutLMModel(config) self.cls = LayoutLMOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "[MASK]"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> labels = tokenizer("Hello world", return_tensors="pt")["input_ids"] >>> outputs = model( ... input_ids=input_ids, ... bbox=bbox, ... attention_mask=attention_mask, ... token_type_ids=token_type_ids, ... labels=labels, ... ) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids, bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLM Model with a sequence classification head on top (a linear layer on top of the pooled output) e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForSequenceClassification(LayoutLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMForSequenceClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> sequence_label = torch.tensor([1]) >>> outputs = model( ... input_ids=input_ids, ... bbox=bbox, ... attention_mask=attention_mask, ... token_type_ids=token_type_ids, ... labels=sequence_label, ... ) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for sequence labeling (information extraction) tasks such as the [FUNSD](https://guillaumejaume.github.io/FUNSD/) dataset and the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset. """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForTokenClassification(LayoutLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LayoutLMForTokenClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") >>> model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased") >>> words = ["Hello", "world"] >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] >>> token_boxes = [] >>> for word, box in zip(words, normalized_word_boxes): ... word_tokens = tokenizer.tokenize(word) ... token_boxes.extend([box] * len(word_tokens)) >>> # add bounding boxes of cls + sep tokens >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] >>> encoding = tokenizer(" ".join(words), return_tensors="pt") >>> input_ids = encoding["input_ids"] >>> attention_mask = encoding["attention_mask"] >>> token_type_ids = encoding["token_type_ids"] >>> bbox = torch.tensor([token_boxes]) >>> token_labels = torch.tensor([1, 1, 0, 0]).unsqueeze(0) # batch size of 1 >>> outputs = model( ... input_ids=input_ids, ... bbox=bbox, ... attention_mask=attention_mask, ... token_type_ids=token_type_ids, ... labels=token_labels, ... ) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLM Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the final hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLM_START_DOCSTRING, ) class LayoutLMForQuestionAnswering(LayoutLMPreTrainedModel): def __init__(self, config, has_visual_segment_embedding=True): super().__init__(config) self.num_labels = config.num_labels self.layoutlm = LayoutLMModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.layoutlm.embeddings.word_embeddings @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Example: In the example below, we prepare a question + context pair for the LayoutLM model. It will give us a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image). ```python >>> from transformers import AutoTokenizer, LayoutLMForQuestionAnswering >>> from datasets import load_dataset >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True) >>> model = LayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac") >>> dataset = load_dataset("nielsr/funsd", split="train") >>> example = dataset[0] >>> question = "what's his name?" >>> words = example["words"] >>> boxes = example["bboxes"] >>> encoding = tokenizer( ... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt" ... ) >>> bbox = [] >>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)): ... if s == 1: ... bbox.append(boxes[w]) ... elif i == tokenizer.sep_token_id: ... bbox.append([1000] * 4) ... else: ... bbox.append([0] * 4) >>> encoding["bbox"] = torch.tensor([bbox]) >>> word_ids = encoding.word_ids(0) >>> outputs = model(**encoding) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits >>> start, end = word_ids[start_scores.argmax(-1)], word_ids[end_scores.argmax(-1)] >>> print(" ".join(words[start : end + 1])) M. Hamann P. Harper, P. Martinez ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlm( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/layoutlm/modeling_layoutlm.py/0
{ "file_path": "transformers/src/transformers/models/layoutlm/modeling_layoutlm.py", "repo_id": "transformers", "token_count": 26057 }
318
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LayoutLMv3 model.""" import collections import math from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_layoutlmv3 import LayoutLMv3Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LayoutLMv3Config" LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/layoutlmv3-base", "microsoft/layoutlmv3-large", # See all LayoutLMv3 models at https://huggingface.co/models?filter=layoutlmv3 ] LAYOUTLMV3_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LayoutLMv3Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LAYOUTLMV3_MODEL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] token. See `pixel_values` for `patch_sequence_length`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / config.patch_size) * (width / config.patch_size))`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class LayoutLMv3PatchEmbeddings(nn.Module): """LayoutLMv3 image (patch) embeddings. This class also automatically interpolates the position embeddings for varying image sizes.""" def __init__(self, config): super().__init__() image_size = ( config.input_size if isinstance(config.input_size, collections.abc.Iterable) else (config.input_size, config.input_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) self.patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values, position_embedding=None): embeddings = self.proj(pixel_values) if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1) position_embedding = position_embedding.permute(0, 3, 1, 2) patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] position_embedding = F.interpolate(position_embedding, size=(patch_height, patch_width), mode="bicubic") embeddings = embeddings + position_embedding embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings class LayoutLMv3TextEmbeddings(nn.Module): """ LayoutLMv3 text embeddings. Same as `RobertaEmbeddings` but with added spatial (layout) embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) def calculate_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(torch.clip(bbox[:, :, 3] - bbox[:, :, 1], 0, 1023)) w_position_embeddings = self.w_position_embeddings(torch.clip(bbox[:, :, 2] - bbox[:, :, 0], 0, 1023)) # below is the difference between LayoutLMEmbeddingsV2 (torch.cat) and LayoutLMEmbeddingsV1 (add) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) return spatial_position_embeddings def create_position_ids_from_input_ids(self, input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) def forward( self, input_ids=None, bbox=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( input_ids.device ) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings spatial_position_embeddings = self.calculate_spatial_position_embeddings(bbox) embeddings = embeddings + spatial_position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutLMv3PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMv3Config base_model_prefix = "layoutlmv3" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class LayoutLMv3SelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def cogview_attention(self, attention_scores, alpha=32): """ https://arxiv.org/abs/2105.13290 Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores). Seems the new attention_probs will result in a slower speed and a little bias. Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison. The smaller atol (e.g., 1e-08), the better. """ scaled_attention_scores = attention_scores / alpha max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return nn.Softmax(dim=-1)(new_attention_scores) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # The attention scores QT K/√d could be significantly larger than input elements, and result in overflow. # Changing the computational order into QT(K/√d) alleviates the problem. (https://arxiv.org/pdf/2105.13290.pdf) attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2)) if self.has_relative_attention_bias and self.has_spatial_attention_bias: attention_scores += (rel_pos + rel_2d_pos) / math.sqrt(self.attention_head_size) elif self.has_relative_attention_bias: attention_scores += rel_pos / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. # Use the trick of the CogView paper to stablize training attention_probs = self.cogview_attention(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput class LayoutLMv3SelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Attention with LayoutLMv2->LayoutLMv3 class LayoutLMv3Attention(nn.Module): def __init__(self, config): super().__init__() self.self = LayoutLMv3SelfAttention(config) self.output = LayoutLMv3SelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Layer with LayoutLMv2->LayoutLMv3 class LayoutLMv3Layer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMv3Attention(config) self.intermediate = LayoutLMv3Intermediate(config) self.output = LayoutLMv3Output(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class LayoutLMv3Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMv3Layer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if self.has_relative_attention_bias: self.rel_pos_bins = config.rel_pos_bins self.max_rel_pos = config.max_rel_pos self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config.max_rel_2d_pos self.rel_2d_pos_bins = config.rel_2d_pos_bins self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) def relative_position_bucket(self, relative_position, bidirectional=True, num_buckets=32, max_distance=128): ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def _cal_1d_pos_emb(self, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = self.relative_position_bucket( rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos, ) rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2) rel_pos = rel_pos.contiguous() return rel_pos def _cal_2d_pos_emb(self, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) rel_pos_x = self.relative_position_bucket( rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_y = self.relative_position_bucket( rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2) rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2) rel_pos_x = rel_pos_x.contiguous() rel_pos_y = rel_pos_y.contiguous() rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward( self, hidden_states, bbox=None, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, position_ids=None, patch_height=None, patch_width=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None rel_pos = self._cal_1d_pos_emb(position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb(bbox) if self.has_spatial_attention_bias else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos, rel_2d_pos, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate class LayoutLMv3Intermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaOutput class LayoutLMv3Output(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states @add_start_docstrings( "The bare LayoutLMv3 Model transformer outputting raw hidden-states without any specific head on top.", LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3Model(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config if config.text_embed: self.embeddings = LayoutLMv3TextEmbeddings(config) if config.visual_embed: # use the default pre-training parameters for fine-tuning (e.g., input_size) # when the input_size is larger in fine-tuning, we will interpolate the position embeddings in forward self.patch_embed = LayoutLMv3PatchEmbeddings(config) size = int(config.input_size / config.patch_size) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.pos_embed = nn.Parameter(torch.zeros(1, size * size + 1, config.hidden_size)) self.pos_drop = nn.Dropout(p=0.0) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: self.init_visual_bbox(image_size=(size, size)) self.norm = nn.LayerNorm(config.hidden_size, eps=1e-6) self.encoder = LayoutLMv3Encoder(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def init_visual_bbox(self, image_size=(14, 14), max_len=1000): """ Create the bounding boxes for the visual (patch) tokens. """ visual_bbox_x = torch.div( torch.arange(0, max_len * (image_size[1] + 1), max_len), image_size[1], rounding_mode="trunc" ) visual_bbox_y = torch.div( torch.arange(0, max_len * (image_size[0] + 1), max_len), image_size[0], rounding_mode="trunc" ) visual_bbox = torch.stack( [ visual_bbox_x[:-1].repeat(image_size[0], 1), visual_bbox_y[:-1].repeat(image_size[1], 1).transpose(0, 1), visual_bbox_x[1:].repeat(image_size[0], 1), visual_bbox_y[1:].repeat(image_size[1], 1).transpose(0, 1), ], dim=-1, ).view(-1, 4) cls_token_box = torch.tensor([[0 + 1, 0 + 1, max_len - 1, max_len - 1]]) self.visual_bbox = torch.cat([cls_token_box, visual_bbox], dim=0) def calculate_visual_bbox(self, device, dtype, batch_size): visual_bbox = self.visual_bbox.repeat(batch_size, 1, 1) visual_bbox = visual_bbox.to(device).type(dtype) return visual_bbox def forward_image(self, pixel_values): embeddings = self.patch_embed(pixel_values) # add [CLS] token batch_size, seq_len, _ = embeddings.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add position embeddings if self.pos_embed is not None: embeddings = embeddings + self.pos_embed embeddings = self.pos_drop(embeddings) embeddings = self.norm(embeddings) return embeddings @add_start_docstrings_to_model_forward( LAYOUTLMV3_MODEL_INPUTS_DOCSTRING.format("batch_size, token_sequence_length") ) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModel >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModel.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif pixel_values is not None: batch_size = len(pixel_values) device = pixel_values.device else: raise ValueError("You have to specify either input_ids or inputs_embeds or pixel_values") if input_ids is not None or inputs_embeds is not None: if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if bbox is None: bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, bbox=bbox, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) final_bbox = final_position_ids = None patch_height = patch_width = None if pixel_values is not None: patch_height, patch_width = ( int(pixel_values.shape[2] / self.config.patch_size), int(pixel_values.shape[3] / self.config.patch_size), ) visual_embeddings = self.forward_image(pixel_values) visual_attention_mask = torch.ones( (batch_size, visual_embeddings.shape[1]), dtype=torch.long, device=device ) if attention_mask is not None: attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) else: attention_mask = visual_attention_mask if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_spatial_attention_bias: visual_bbox = self.calculate_visual_bbox(device, dtype=torch.long, batch_size=batch_size) if bbox is not None: final_bbox = torch.cat([bbox, visual_bbox], dim=1) else: final_bbox = visual_bbox visual_position_ids = torch.arange( 0, visual_embeddings.shape[1], dtype=torch.long, device=device ).repeat(batch_size, 1) if input_ids is not None or inputs_embeds is not None: position_ids = torch.arange(0, input_shape[1], device=device).unsqueeze(0) position_ids = position_ids.expand(input_shape) final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) else: final_position_ids = visual_position_ids if input_ids is not None or inputs_embeds is not None: embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1) else: embedding_output = visual_embeddings embedding_output = self.LayerNorm(embedding_output) embedding_output = self.dropout(embedding_output) elif self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: if self.config.has_spatial_attention_bias: final_bbox = bbox if self.config.has_relative_attention_bias: position_ids = self.embeddings.position_ids[:, : input_shape[1]] position_ids = position_ids.expand_as(input_ids) final_position_ids = position_ids extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, None, device, dtype=embedding_output.dtype ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, bbox=final_bbox, position_ids=final_position_ids, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, patch_height=patch_height, patch_width=patch_width, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class LayoutLMv3ClassificationHead(nn.Module): """ Head for sentence-level classification tasks. Reference: RobertaClassificationHead """ def __init__(self, config, pool_feature=False): super().__init__() self.pool_feature = pool_feature if pool_feature: self.dense = nn.Linear(config.hidden_size * 3, config.hidden_size) else: self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, x): x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ LayoutLMv3 Model with a token classification head on top (a linear layer on top of the final hidden states) e.g. for sequence labeling (information extraction) tasks such as [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13), [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda). """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv3 = LayoutLMv3Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.num_labels < 10: self.classifier = nn.Linear(config.hidden_size, config.num_labels) else: self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForTokenClassification >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> word_labels = example["ner_tags"] >>> encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") >>> outputs = model(**encoding) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, pixel_values=pixel_values, ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # only take the text part of the output representations sequence_output = outputs[0][:, :seq_length] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv3 Model with a span classification head on top for extractive question-answering tasks such as [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to compute `span start logits` and `span end logits`). """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv3 = LayoutLMv3Model(config) self.qa_outputs = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForQuestionAnswering >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> question = "what's his name?" >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**encoding, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ LayoutLMv3 Model with a sequence classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. """, LAYOUTLMV3_START_DOCSTRING, ) class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.layoutlmv3 = LayoutLMv3Model(config) self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) self.init_weights() @add_start_docstrings_to_model_forward( LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, bbox: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.LongTensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: """ Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForSequenceClassification >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> image = example["image"] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") >>> sequence_label = torch.tensor([1]) >>> outputs = model(**encoding, labels=sequence_label) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv3( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, bbox=bbox, pixel_values=pixel_values, ) sequence_output = outputs[0][:, 0, :] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/layoutlmv3/modeling_layoutlmv3.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv3/modeling_layoutlmv3.py", "repo_id": "transformers", "token_count": 26176 }
319
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LeViT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class LevitConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LevitModel`]. It is used to instantiate a LeViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LeViT [facebook/levit-128S](https://huggingface.co/facebook/levit-128S) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size of the input image. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. kernel_size (`int`, *optional*, defaults to 3): The kernel size for the initial convolution layers of patch embedding. stride (`int`, *optional*, defaults to 2): The stride size for the initial convolution layers of patch embedding. padding (`int`, *optional*, defaults to 1): The padding size for the initial convolution layers of patch embedding. patch_size (`int`, *optional*, defaults to 16): The patch size for embeddings. hidden_sizes (`List[int]`, *optional*, defaults to `[128, 256, 384]`): Dimension of each of the encoder blocks. num_attention_heads (`List[int]`, *optional*, defaults to `[4, 8, 12]`): Number of attention heads for each attention layer in each block of the Transformer encoder. depths (`List[int]`, *optional*, defaults to `[4, 4, 4]`): The number of layers in each encoder block. key_dim (`List[int]`, *optional*, defaults to `[16, 16, 16]`): The size of key in each of the encoder blocks. drop_path_rate (`int`, *optional*, defaults to 0): The dropout probability for stochastic depths, used in the blocks of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. attention_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`): Ratio of the size of the output dimension compared to input dimension of attention layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import LevitConfig, LevitModel >>> # Initializing a LeViT levit-128S style configuration >>> configuration = LevitConfig() >>> # Initializing a model (with random weights) from the levit-128S style configuration >>> model = LevitModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "levit" def __init__( self, image_size=224, num_channels=3, kernel_size=3, stride=2, padding=1, patch_size=16, hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, mlp_ratio=[2, 2, 2], attention_ratio=[2, 2, 2], initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.hidden_sizes = hidden_sizes self.num_attention_heads = num_attention_heads self.depths = depths self.key_dim = key_dim self.drop_path_rate = drop_path_rate self.patch_size = patch_size self.attention_ratio = attention_ratio self.mlp_ratio = mlp_ratio self.initializer_range = initializer_range self.down_ops = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] # Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig class LevitOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/levit/configuration_levit.py/0
{ "file_path": "transformers/src/transformers/models/levit/configuration_levit.py", "repo_id": "transformers", "token_count": 2270 }
320
# coding=utf-8 # Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Llava model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json", } class LlavaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Llava-9B. e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`LlavaVisionConfig`, *optional*): Custom vision config or dict text_config (`Union[AutoConfig, dict]`, *optional*): The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the CLIP backbone. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] Example: ```python >>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a Llava llava-1.5-7b style configuration >>> configuration = LlavaConfig(vision_config, text_config) >>> # Initializing a model from the llava-1.5-7b style configuration >>> model = LlavaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava" is_composition = False def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, vocab_size=32000, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.vocab_size = vocab_size self.vision_config = vision_config if isinstance(self.vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: self.vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) self.vocab_size = self.vocab_size self.text_config = text_config if isinstance(self.text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) self.vocab_size = self.text_config.vocab_size elif text_config is None: self.text_config = CONFIG_MAPPING["llama"]() super().__init__(**kwargs)
transformers/src/transformers/models/llava/configuration_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/configuration_llava.py", "repo_id": "transformers", "token_count": 2085 }
321
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for M2M100.""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/m2m100_418M": 1024, } # fmt: off FAIRSEQ_LANGUAGE_CODES = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } # fmt: on class M2M100Tokenizer(PreTrainedTokenizer): """ Construct an M2M100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. spm_file (`str`): Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. language_codes (`str`, *optional*, defaults to `"m2m100"`): What language codes to use. Should be one of `"m2m100"` or `"wmt21"`. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en", tgt_lang="ro") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> outputs = model(**model_inputs) # should work ```""" vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, spm_file, src_lang=None, tgt_lang=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", pad_token="<pad>", unk_token="<unk>", language_codes="m2m100", sp_model_kwargs: Optional[Dict[str, Any]] = None, num_madeup_words=8, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.language_codes = language_codes fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes] self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} additional_special_tokens = kwargs.pop("additional_special_tokens", []) for lang_code in fairseq_language_code: token = self.get_lang_token(lang_code) if token not in additional_special_tokens and lang_code not in str(token) not in self.added_tokens_encoder: additional_special_tokens.append(token) self.vocab_file = vocab_file self.encoder = load_json(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} self.spm_file = spm_file self.sp_model = load_spm(spm_file, self.sp_model_kwargs) self.encoder_size = len(self.encoder) self.lang_token_to_id = { self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code) } self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)} self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()} self._src_lang = src_lang if src_lang is not None else "en" self.tgt_lang = tgt_lang self.cur_lang_id = self.get_lang_id(self._src_lang) self.num_madeup_words = num_madeup_words super().__init__( src_lang=src_lang, tgt_lang=tgt_lang, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, language_codes=language_codes, sp_model_kwargs=self.sp_model_kwargs, additional_special_tokens=additional_special_tokens, num_madeup_words=num_madeup_words, **kwargs, ) self.set_src_lang_special_tokens(self._src_lang) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(token, self.encoder[self.unk_token]) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: save_dir = Path(save_directory) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory") vocab_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) spm_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder, vocab_save_path) if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): copyfile(self.spm_file, spm_save_path) elif not os.path.isfile(self.spm_file): with open(spm_save_path, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (str(vocab_save_path), str(spm_save_path)) def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs) tgt_lang_id = self.get_lang_id(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def _switch_to_input_mode(self): self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" lang_token = self.get_lang_token(src_lang) self.cur_lang_id = self.lang_token_to_id[lang_token] self.prefix_tokens = [self.cur_lang_id] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" lang_token = self.get_lang_token(tgt_lang) self.cur_lang_id = self.lang_token_to_id[lang_token] self.prefix_tokens = [self.cur_lang_id] self.suffix_tokens = [self.eos_token_id] def get_lang_token(self, lang: str) -> str: return self.lang_code_to_token[lang] def get_lang_id(self, lang: str) -> int: lang_token = self.get_lang_token(lang) return self.lang_token_to_id[lang_token] def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) spm.Load(str(path)) return spm def load_json(path: str) -> Union[Dict, List]: with open(path, "r") as f: return json.load(f) def save_json(data, path: str) -> None: with open(path, "w") as f: json.dump(data, f, indent=2)
transformers/src/transformers/models/m2m_100/tokenization_m2m_100.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/tokenization_m2m_100.py", "repo_id": "transformers", "token_count": 7599 }
322
#################################################################################################### # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import MegatronBertConfig #################################################################################################### def recursive_print(name, val, spaces=0): # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace BERT. input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param #################################################################################################### def convert_megatron_checkpoint(args, input_state_dict, config): # The converted output model. output_state_dict = {} # old versions did not store training args ds_args = input_state_dict.get("args", None) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) config.tokenizer_type = ds_args.tokenizer_type config.vocab_size = ds_args.padded_vocab_size config.max_position_embeddings = ds_args.max_position_embeddings config.hidden_size = ds_args.hidden_size config.num_hidden_layers = ds_args.num_layers config.num_attention_heads = ds_args.num_attention_heads config.intermediate_size = ds_args.ffn_hidden_size if "ffn_hidden_size" in ds_args else 4 * ds_args.hidden_size # pprint(config) # The number of heads. heads = config.num_attention_heads # The hidden_size per head. hidden_size_per_head = config.hidden_size // heads # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): checkpoint_version = input_state_dict["checkpoint_version"] else: checkpoint_version = 0.0 # The model. model = input_state_dict["model"] # The language model. lm = model["language_model"] # The embeddings. embeddings = lm["embedding"] # The word embeddings. word_embeddings = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. word_embeddings = word_embeddings[: config.vocab_size, :] # Store the word embeddings. output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings # The position embeddings. pos_embeddings = embeddings["position_embeddings"]["weight"] assert pos_embeddings.size(0) == config.max_position_embeddings and pos_embeddings.size(1) == config.hidden_size # Store the position embeddings. output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings # The token-type embeddings. tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"] # Store the position embeddings. output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings # The transformer. transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The simple map of names for "automated" rules. megatron_to_transformers = { "attention.dense": ".attention.output.dense.", "self_attention.dense": ".attention.output.dense.", "mlp.dense_h_to_4h": ".intermediate.dense.", "mlp.dense_4h_to_h": ".output.dense.", } # Keep track of the attention/query/value tensor. attention_qkv_weight = None # Extract the layers. for key, val in transformer.items(): # Match the name. m = layer_re.match(key) # Stop if that's not a layer if m is None: break # The index of the layer. layer_idx = int(m.group(1)) # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) # The name of the layer. layer_name = f"bert.encoder.layer.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): ln_name = "attention.ln" if op_name.startswith("input") else "ln" output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Make sure the QKV pointer is nil. assert attention_qkv_weight is None, "" out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) # Store the tensor as we need the bias as well to interleave QKV and biases. attention_qkv_weight = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": # Make sure we read the weight tensor. assert attention_qkv_weight is not None, "" # Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved. q = attention_qkv_weight[0 * config.hidden_size : 1 * config.hidden_size, :] k = attention_qkv_weight[1 * config.hidden_size : 2 * config.hidden_size, :] v = attention_qkv_weight[2 * config.hidden_size : 3 * config.hidden_size, :] out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) # Split the bias. q_bias = out_val[0 * config.hidden_size : 1 * config.hidden_size] k_bias = out_val[1 * config.hidden_size : 2 * config.hidden_size] v_bias = out_val[2 * config.hidden_size : 3 * config.hidden_size] # Store. output_state_dict[f"{layer_name}.attention.self.query.weight"] = q output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias output_state_dict[f"{layer_name}.attention.self.key.weight"] = k output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias output_state_dict[f"{layer_name}.attention.self.value.weight"] = v output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias # Clear the stored tensor. attention_qkv_weight = None # Copy weights and biases as is. elif weight_or_bias in ["weight", "bias"]: out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + weight_or_bias] = val # The final layernorm. output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"] output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"] # The pooler. pooler = lm["pooler"] # Store the matrix and the bias. output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"] output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"] # The LM head from Megatron (for RACE). lm_head = model["lm_head"] # The transform matrix. output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"] output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"] # The transform LN. output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"] output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"] # For the decoder, we replicate the weights. output_state_dict["cls.predictions.decoder.weight"] = word_embeddings output_state_dict["cls.predictions.bias"] = lm_head["bias"] # The classifier from Megatron (for MLNI). binary_head = model["binary_head"] # Store the classifier. output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"] output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"] # It should be done! return output_state_dict #################################################################################################### def main(): # Create the argument parser. parser = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure", action="store_true") parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint") parser.add_argument( "--config_file", default="", type=str, help="An optional config json file describing the pre-trained model.", ) args = parser.parse_args() # Extract the basename. basename = os.path.dirname(args.path_to_checkpoint) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from "{args.path_to_checkpoint}"') if args.path_to_checkpoint.endswith(".zip"): with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict: input_state_dict = torch.load(pytorch_dict, map_location="cpu") else: input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu") if args.config_file == "": # Default config of megatron-bert 345m config = MegatronBertConfig() # different megatron-bert-*-345m models have different vocab sizes, so override the default # config (which is for megatron-bert-cased-345m) with the actual vocab dimension config.vocab_size = input_state_dict["model"]["lm_head"]["bias"].numel() else: config = MegatronBertConfig.from_json_file(args.config_file) # Convert. print("Converting") output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, output_state_dict) # Store the config to file. print("Saving config") config.save_pretrained(basename) # Store the state_dict to file. output_checkpoint_file = os.path.join(basename, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(output_state_dict, output_checkpoint_file) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
transformers/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py/0
{ "file_path": "transformers/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py", "repo_id": "transformers", "token_count": 5187 }
323
# coding=utf-8 # Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MRA model.""" import math from pathlib import Path from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.utils.cpp_extension import load from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_ninja_available, is_torch_cuda_available, logging, ) from .configuration_mra import MraConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4" _CONFIG_FOR_DOC = "MraConfig" _TOKENIZER_FOR_DOC = "AutoTokenizer" MRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uw-madison/mra-base-512-4", # See all Mra models at https://huggingface.co/models?filter=mra ] def load_cuda_kernels(): global cuda_kernel src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra" def append_root(files): return [src_folder / file for file in files] src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"]) cuda_kernel = load("cuda_kernel", src_files, verbose=True) import cuda_kernel cuda_kernel = None if is_torch_cuda_available() and is_ninja_available(): logger.info("Loading custom CUDA kernels...") try: load_cuda_kernels() except Exception as e: logger.warning( "Failed to load CUDA kernels. Mra requires custom CUDA kernels. Please verify that compatible versions of" f" PyTorch and CUDA Toolkit are installed: {e}" ) else: pass def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block): """ Computes maximum values for softmax stability. """ if len(sparse_qk_prod.size()) != 4: raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if sparse_qk_prod.size(2) != 32: raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.") if sparse_qk_prod.size(3) != 32: raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.") index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2) index_vals = index_vals.contiguous() indices = indices.int() indices = indices.contiguous() max_vals, max_vals_scatter = cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block) max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :] return max_vals, max_vals_scatter def sparse_mask(mask, indices, block_size=32): """ Converts attention mask to a sparse mask for high resolution logits. """ if len(mask.size()) != 2: raise ValueError("mask must be a 2-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if mask.shape[0] != indices.shape[0]: raise ValueError("mask and indices must have the same size in the zero-th dimension.") batch_size, seq_len = mask.shape num_block = seq_len // block_size batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) mask = mask.reshape(batch_size, num_block, block_size) mask = mask[batch_idx[:, None], (indices % num_block).long(), :] return mask def mm_to_sparse(dense_query, dense_key, indices, block_size=32): """ Performs Sampled Dense Matrix Multiplication. """ batch_size, query_size, dim = dense_query.size() _, key_size, dim = dense_key.size() if query_size % block_size != 0: raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.") if key_size % block_size != 0: raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2) dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) if len(dense_query.size()) != 4: raise ValueError("dense_query must be a 4-dimensional tensor.") if len(dense_key.size()) != 4: raise ValueError("dense_key must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if dense_query.size(3) != 32: raise ValueError("The third dimension of dense_query must be 32.") if dense_key.size(3) != 32: raise ValueError("The third dimension of dense_key must be 32.") dense_query = dense_query.contiguous() dense_key = dense_key.contiguous() indices = indices.int() indices = indices.contiguous() return cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int()) def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32): """ Performs matrix multiplication of a sparse matrix with a dense matrix. """ batch_size, key_size, dim = dense_key.size() if key_size % block_size != 0: raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") if sparse_query.size(2) != block_size: raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.") if sparse_query.size(3) != block_size: raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.") dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(dense_key.size()) != 4: raise ValueError("dense_key must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if dense_key.size(3) != 32: raise ValueError("The size of the third dimension of dense_key must be 32.") sparse_query = sparse_query.contiguous() indices = indices.int() indices = indices.contiguous() dense_key = dense_key.contiguous() dense_qk_prod = cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim) return dense_qk_prod def transpose_indices(indices, dim_1_block, dim_2_block): return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long() class MraSampledDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, dense_query, dense_key, indices, block_size): sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size) ctx.save_for_backward(dense_query, dense_key, indices) ctx.block_size = block_size return sparse_qk_prod @staticmethod def backward(ctx, grad): dense_query, dense_key, indices = ctx.saved_tensors block_size = ctx.block_size query_num_block = dense_query.size(1) // block_size key_num_block = dense_key.size(1) // block_size indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block) grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block) return grad_query, grad_key, None, None @staticmethod def operator_call(dense_query, dense_key, indices, block_size=32): return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size) class MraSparseDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, sparse_query, indices, dense_key, query_num_block): sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) ctx.save_for_backward(sparse_query, indices, dense_key) ctx.query_num_block = query_num_block return sparse_qk_prod @staticmethod def backward(ctx, grad): sparse_query, indices, dense_key = ctx.saved_tensors query_num_block = ctx.query_num_block key_num_block = dense_key.size(1) // sparse_query.size(-1) indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block) grad_query = mm_to_sparse(grad, dense_key, indices) return grad_query, None, grad_key, None @staticmethod def operator_call(sparse_query, indices, dense_key, query_num_block): return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block) class MraReduceSum: @staticmethod def operator_call(sparse_query, indices, query_num_block, key_num_block): batch_size, num_block, block_size, _ = sparse_query.size() if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") _, _, block_size, _ = sparse_query.size() batch_size, num_block = indices.size() sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size) batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) global_idxes = ( torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block ).reshape(batch_size * num_block) temp = torch.zeros( (batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device ) output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size) output = output.reshape(batch_size, query_num_block * block_size) return output def get_low_resolution_logit(query, key, block_size, mask=None, value=None): """ Compute low resolution approximation. """ batch_size, seq_len, head_dim = query.size() num_block_per_row = seq_len // block_size value_hat = None if mask is not None: token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1) query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) if value is not None: value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) else: token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device) query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) if value is not None: value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim) low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values if mask is not None: low_resolution_logit = ( low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float() ) return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat def get_block_idxes( low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks ): """ Compute the indices of the subset of components to be used in the approximation. """ batch_size, total_blocks_per_row, _ = low_resolution_logit.shape if initial_prior_diagonal_n_blocks > 0: offset = initial_prior_diagonal_n_blocks // 2 temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device) diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset) low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3 if initial_prior_first_n_blocks > 0: low_resolution_logit[:, :initial_prior_first_n_blocks, :] = ( low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3 ) low_resolution_logit[:, :, :initial_prior_first_n_blocks] = ( low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3 ) top_k_vals = torch.topk( low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False ) indices = top_k_vals.indices if approx_mode == "full": threshold = top_k_vals.values.min(dim=-1).values high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float() elif approx_mode == "sparse": high_resolution_mask = None else: raise ValueError(f"{approx_mode} is not a valid approx_model value.") return indices, high_resolution_mask def mra2_attention( query, key, value, mask, num_blocks, approx_mode, block_size=32, initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, ): """ Use Mra to approximate self-attention. """ if cuda_kernel is None: return torch.zeros_like(query).requires_grad_() batch_size, num_head, seq_len, head_dim = query.size() meta_batch = batch_size * num_head if seq_len % block_size != 0: raise ValueError("sequence length must be divisible by the block_size.") num_block_per_row = seq_len // block_size query = query.reshape(meta_batch, seq_len, head_dim) key = key.reshape(meta_batch, seq_len, head_dim) value = value.reshape(meta_batch, seq_len, head_dim) if mask is not None: query = query * mask[:, :, None] key = key * mask[:, :, None] value = value * mask[:, :, None] if approx_mode == "full": low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit( query, key, block_size, mask, value ) elif approx_mode == "sparse": with torch.no_grad(): low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit( query, key, block_size, mask ) else: raise Exception('approx_mode must be "full" or "sparse"') with torch.no_grad(): low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max indices, high_resolution_mask = get_block_idxes( low_resolution_logit_normalized, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks, ) high_resolution_logit = MraSampledDenseMatMul.operator_call( query, key, indices, block_size=block_size ) / math.sqrt(head_dim) max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row) high_resolution_logit = high_resolution_logit - max_vals_scatter if mask is not None: high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None]) high_resolution_attn = torch.exp(high_resolution_logit) high_resolution_attn_out = MraSparseDenseMatMul.operator_call( high_resolution_attn, indices, value, num_block_per_row ) high_resolution_normalizer = MraReduceSum.operator_call( high_resolution_attn, indices, num_block_per_row, num_block_per_row ) if approx_mode == "full": low_resolution_attn = ( torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask) * token_count[:, None, :] ) low_resolution_attn_out = ( torch.matmul(low_resolution_attn, value_hat)[:, :, None, :] .repeat(1, 1, block_size, 1) .reshape(meta_batch, seq_len, head_dim) ) low_resolution_normalizer = ( low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len) ) log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals if mask is not None: log_correction = log_correction * mask low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float()) low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None] low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float()) high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None] high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr context_layer = (high_resolution_attn_out + low_resolution_attn_out) / ( high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6 ) elif approx_mode == "sparse": context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6) else: raise Exception('config.approx_mode must be "full" or "sparse"') if mask is not None: context_layer = context_layer * mask[:, :, None] context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim) return context_layer class MraEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MraSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = ( position_embedding_type if position_embedding_type is not None else config.position_embedding_type ) self.num_block = (config.max_position_embeddings // 32) * config.block_per_row self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2)) self.approx_mode = config.approx_mode self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) batch_size, num_heads, seq_len, head_dim = query_layer.size() # revert changes made by get_extended_attention_mask attention_mask = 1.0 + attention_mask / 10000.0 attention_mask = ( attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int() ) # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs # smaller than this are padded with zeros. gpu_warp_size = 32 if head_dim < gpu_warp_size: pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1) key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1) value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1) context_layer = mra2_attention( query_layer.float(), key_layer.float(), value_layer.float(), attention_mask.float(), self.num_block, approx_mode=self.approx_mode, initial_prior_first_n_blocks=self.initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks, ) if head_dim < gpu_warp_size: context_layer = context_layer[:, :, :, :head_dim] context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class MraSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MraAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type) self.output = MraSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None): self_outputs = self.self(hidden_states, attention_mask) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class MraIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class MraOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MraLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MraAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = MraIntermediate(config) self.output = MraOutput(config) def forward(self, hidden_states, attention_mask=None): self_attention_outputs = self.attention(hidden_states, attention_mask) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MraEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform class MraPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra class MraLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MraPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra class MraOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MraLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra class MraPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MraConfig base_model_prefix = "mra" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MRA_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MRA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MRA Model transformer outputting raw hidden-states without any specific head on top.", MRA_START_DOCSTRING, ) class MraModel(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = MraEmbeddings(config) self.encoder = MraEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""MRA Model with a `language modeling` head on top.""", MRA_START_DOCSTRING) class MraForMaskedLM(MraPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.cls = MraOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra class MraClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", MRA_START_DOCSTRING, ) class MraForSequenceClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.classifier = MraClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", MRA_START_DOCSTRING, ) class MraForMultipleChoice(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", MRA_START_DOCSTRING, ) class MraForTokenClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", MRA_START_DOCSTRING, ) class MraForQuestionAnswering(MraPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.mra = MraModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/mra/modeling_mra.py/0
{ "file_path": "transformers/src/transformers/models/mra/modeling_mra.py", "repo_id": "transformers", "token_count": 26093 }
324
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = {"configuration_nat": ["NAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "NatConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_nat"] = [ "NAT_PRETRAINED_MODEL_ARCHIVE_LIST", "NatForImageClassification", "NatModel", "NatPreTrainedModel", "NatBackbone", ] if TYPE_CHECKING: from .configuration_nat import NAT_PRETRAINED_CONFIG_ARCHIVE_MAP, NatConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nat import ( NAT_PRETRAINED_MODEL_ARCHIVE_LIST, NatBackbone, NatForImageClassification, NatModel, NatPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/nat/__init__.py/0
{ "file_path": "transformers/src/transformers/models/nat/__init__.py", "repo_id": "transformers", "token_count": 657 }
325
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Nougat. """ from typing import Dict, List, Optional, Union from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy from ...processing_utils import ProcessorMixin from ...utils import PaddingStrategy, TensorType class NougatProcessor(ProcessorMixin): r""" Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor. [`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the [`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information. Args: image_processor ([`NougatImageProcessor`]): An instance of [`NougatImageProcessor`]. The image processor is a required input. tokenizer ([`NougatTokenizerFast`]): An instance of [`NougatTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__( self, images=None, text=None, do_crop_margin: bool = None, do_resize: bool = None, size: Dict[str, int] = None, resample: "PILImageResampling" = None, # noqa: F821 do_thumbnail: bool = None, do_align_long_axis: bool = None, do_pad: bool = None, do_rescale: bool = None, rescale_factor: Union[int, float] = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821 input_data_format: Optional[Union[str, "ChannelDimension"]] = None, # noqa: F821 text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: inputs = self.image_processor( images, do_crop_margin=do_crop_margin, do_resize=do_resize, size=size, resample=resample, do_thumbnail=do_thumbnail, do_align_long_axis=do_align_long_axis, do_pad=do_pad, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, return_tensors=return_tensors, data_format=data_format, input_data_format=input_data_format, ) if text is not None: encodings = self.tokenizer( text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, ) if text is None: return inputs elif images is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_generation(self, *args, **kwargs): """ This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.post_process_generation(*args, **kwargs)
transformers/src/transformers/models/nougat/processing_nougat.py/0
{ "file_path": "transformers/src/transformers/models/nougat/processing_nougat.py", "repo_id": "transformers", "token_count": 2932 }
326
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OpenAI GPT model.""" from __future__ import annotations from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFConv1D, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_openai import OpenAIGPTConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai-gpt" _CONFIG_FOR_DOC = "OpenAIGPTConfig" TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai-gpt", # See all OpenAI GPT models at https://huggingface.co/models?filter=openai-gpt ] class TFAttention(keras.layers.Layer): def __init__(self, nx, config, scale=False, **kwargs): super().__init__(**kwargs) n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implementation] assert ( n_state % config.n_head == 0 ), f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}" self.n_head = config.n_head self.split_size = n_state self.scale = scale self.output_attentions = config.output_attentions self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn") self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj") self.attn_dropout = keras.layers.Dropout(config.attn_pdrop) self.resid_dropout = keras.layers.Dropout(config.resid_pdrop) self.n_state = n_state self.pruned_heads = set() def prune_heads(self, heads): pass @staticmethod def causal_attention_mask(nd, ns): """ 1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:, None] j = tf.range(ns) m = i >= j - ns + nd return m def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False): # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) if self.scale: dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores w = w / tf.math.sqrt(dk) # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = tf.cast(self.causal_attention_mask(nd, ns), dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w * b - 1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask attention_mask = tf.cast(attention_mask, dtype=w.dtype) w = w + attention_mask w = stable_softmax(w, axis=-1) w = self.attn_dropout(w, training=training) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [tf.matmul(w, v)] if output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = tf.transpose(x, [0, 2, 1, 3]) x_shape = shape_list(x) new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]] return tf.reshape(x, new_x_shape) def split_heads(self, x): x_shape = shape_list(x) new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head] x = tf.reshape(x, new_x_shape) return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) def call(self, x, attention_mask, head_mask, output_attentions, training=False): x = self.c_attn(x) query, key, value = tf.split(x, 3, axis=2) query = self.split_heads(query) key = self.split_heads(key) value = self.split_heads(value) attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a, training=training) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "c_attn", None) is not None: with tf.name_scope(self.c_attn.name): self.c_attn.build([None, None, self.n_state * 3]) if getattr(self, "c_proj", None) is not None: with tf.name_scope(self.c_proj.name): self.c_proj.build([None, None, self.n_state]) class TFMLP(keras.layers.Layer): def __init__(self, n_state, config, **kwargs): super().__init__(**kwargs) nx = config.n_embd self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc") self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj") self.act = get_tf_activation("gelu") self.dropout = keras.layers.Dropout(config.resid_pdrop) self.nx = nx self.n_state = n_state def call(self, x, training=False): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) h2 = self.dropout(h2, training=training) return h2 def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "c_fc", None) is not None: with tf.name_scope(self.c_fc.name): self.c_fc.build([None, None, self.n_state]) if getattr(self, "c_proj", None) is not None: with tf.name_scope(self.c_proj.name): self.c_proj.build([None, None, self.nx]) class TFBlock(keras.layers.Layer): def __init__(self, config, scale=False, **kwargs): super().__init__(**kwargs) nx = config.n_embd self.attn = TFAttention(nx, config, scale, name="attn") self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1") self.mlp = TFMLP(4 * nx, config, name="mlp") self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2") self.nx = nx def call(self, x, attention_mask, head_mask, output_attentions, training=False): output_attn = self.attn(x, attention_mask, head_mask, output_attentions, training=training) a = output_attn[0] # output_attn: a, (attentions) n = self.ln_1(x + a) m = self.mlp(n, training=training) h = self.ln_2(n + m) outputs = [h] + output_attn[1:] return outputs # x, (attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attn", None) is not None: with tf.name_scope(self.attn.name): self.attn.build(None) if getattr(self, "ln_1", None) is not None: with tf.name_scope(self.ln_1.name): self.ln_1.build([None, None, self.nx]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "ln_2", None) is not None: with tf.name_scope(self.ln_2.name): self.ln_2.build([None, None, self.nx]) @keras_serializable class TFOpenAIGPTMainLayer(keras.layers.Layer): config_class = OpenAIGPTConfig def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.num_hidden_layers = config.n_layer self.n_embd = config.n_embd self.n_positions = config.n_positions self.initializer_range = config.initializer_range self.tokens_embed = TFSharedEmbeddings( config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="tokens_embed" ) self.drop = keras.layers.Dropout(config.embd_pdrop) self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)] def build(self, input_shape=None): with tf.name_scope("positions_embed"): self.positions_embed = self.add_weight( name="embeddings", shape=[self.n_positions, self.n_embd], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "tokens_embed", None) is not None: with tf.name_scope(self.tokens_embed.name): self.tokens_embed.build(None) if getattr(self, "h", None) is not None: for layer in self.h: with tf.name_scope(layer.name): layer.build(None) def get_input_embeddings(self): return self.tokens_embed def set_input_embeddings(self, value): self.tokens_embed.weight = value self.tokens_embed.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) input_ids = tf.reshape(input_ids, [-1, input_shape[-1]]) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if position_ids is None: position_ids = tf.expand_dims(tf.range(input_shape[-1]), axis=0) if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. one_cst = tf.constant(1.0) attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype) attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0)) else: attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.tokens_embed(input_ids, mode="embedding") position_embeds = tf.gather(self.positions_embed, position_ids) if token_type_ids is not None: token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) check_embeddings_within_bounds(token_type_ids, self.config.vocab_size, "token_type_ids") token_type_embeds = self.tokens_embed(token_type_ids, mode="embedding") else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states, training=training) output_shape = input_shape + [shape_list(hidden_states)[-1]] all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = block( hidden_states, attention_mask, head_mask[i], output_attentions, training=training, ) hidden_states = outputs[0] if output_attentions: all_attentions = all_attentions + (outputs[1],) hidden_states = tf.reshape(hidden_states, output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = OpenAIGPTConfig base_model_prefix = "transformer" @dataclass class TFOpenAIGPTDoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None mc_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None OPENAI_GPT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ OPENAI_GPT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.", OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") # OpenAIGPT does not have past caching features self.supports_xla_generation = False def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFCausalLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.transformer.tokens_embed(hidden_states, mode="linear") loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels, shifted_logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, inputs, **kwargs): return {"input_ids": inputs} def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) config.num_labels = 1 self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") self.multiple_choice_head = TFSequenceSummary( config, initializer_range=config.initializer_range, name="multiple_choice_head" ) @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, mc_token_ids: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]: r""" mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - 1]`. Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFOpenAIGPTDoubleHeadsModel >>> tokenizer = AutoTokenizer.from_pretrained("openai-gpt") >>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained("openai-gpt") >>> # Add a [CLS] to the vocabulary (we should train it also!) >>> tokenizer.add_special_tokens({"cls_token": "[CLS]"}) >>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size >>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> encoding = tokenizer(choices, return_tensors="tf") >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> inputs["mc_token_ids"] = tf.constant( ... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1] ... )[ ... None, : ... ] # Batch size 1 >>> outputs = model(inputs) >>> lm_prediction_scores, mc_prediction_scores = outputs[:2] ```""" if input_ids is not None: input_shapes = shape_list(input_ids) else: input_shapes = shape_list(inputs_embeds)[:-1] seq_length = input_shapes[-1] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:]) if return_dict and output_hidden_states: # We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the # input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged) all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,) else: all_hidden_states = None lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear") mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training) mc_logits = tf.squeeze(mc_logits, axis=-1) if not return_dict: return (lm_logits, mc_logits) + transformer_outputs[1:] return TFOpenAIGPTDoubleHeadsModelOutput( logits=lm_logits, mc_logits=mc_logits, hidden_states=all_hidden_states, attentions=transformer_outputs.attentions, ) @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "multiple_choice_head", None) is not None: with tf.name_scope(self.multiple_choice_head.name): self.multiple_choice_head.build(None) @add_start_docstrings( """ The OpenAI GPT Model transformer with a sequence classification head on top (linear layer). [`TFOpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, OPENAI_GPT_START_DOCSTRING, ) class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="score", use_bias=False, ) self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if input_ids is not None: batch_size, sequence_length = shape_list(input_ids)[:2] else: batch_size, sequence_length = shape_list(inputs_embeds)[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "score", None) is not None: with tf.name_scope(self.score.name): self.score.build([None, None, self.config.n_embd]) if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None)
transformers/src/transformers/models/openai/modeling_tf_openai.py/0
{ "file_path": "transformers/src/transformers/models/openai/modeling_tf_openai.py", "repo_id": "transformers", "token_count": 17626 }
327
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OWL-ViT model configuration""" import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class OwlViTTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OwlViT [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OwlViTTextModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 16): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token in the input sequences. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the input sequences. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the input sequences. Example: ```python >>> from transformers import OwlViTTextConfig, OwlViTTextModel >>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration >>> configuration = OwlViTTextConfig() >>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration >>> model = OwlViTTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "owlvit_text_model" def __init__( self, vocab_size=49408, hidden_size=512, intermediate_size=2048, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=16, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, pad_token_id=0, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type") == "owlvit": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class OwlViTVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 768): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import OwlViTVisionConfig, OwlViTVisionModel >>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration >>> configuration = OwlViTVisionConfig() >>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration >>> model = OwlViTVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "owlvit_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=768, patch_size=32, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type") == "owlvit": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class OwlViTConfig(PretrainedConfig): r""" [`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`OwlViTTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`OwlViTVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimensionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* parameter. Default is used as per the original OWL-ViT implementation. return_dict (`bool`, *optional*, defaults to `True`): Whether or not the model should return a dictionary. If `False`, returns a tuple. kwargs (*optional*): Dictionary of keyword arguments. """ model_type = "owlvit" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, return_dict=True, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values.") if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values.") self.text_config = OwlViTTextConfig(**text_config) self.vision_config = OwlViTVisionConfig(**vision_config) self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.return_dict = return_dict self.initializer_factor = 1.0 @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) @classmethod def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs): r""" Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision model configuration. Returns: [`OwlViTConfig`]: An instance of a configuration object """ config_dict = {} config_dict["text_config"] = text_config config_dict["vision_config"] = vision_config return cls.from_dict(config_dict, **kwargs) class OwlViTOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, processor: "ProcessorMixin", batch_size: int = -1, seq_length: int = -1, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: text_input_dict = super().generate_dummy_inputs( processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework ) image_input_dict = super().generate_dummy_inputs( processor.image_processor, batch_size=batch_size, framework=framework ) return {**text_input_dict, **image_input_dict} @property def default_onnx_opset(self) -> int: return 14
transformers/src/transformers/models/owlvit/configuration_owlvit.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/configuration_owlvit.py", "repo_id": "transformers", "token_count": 6648 }
328
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import warnings import flatdict import torch from transformers import LlamaTokenizer, PersimmonConfig, PersimmonForCausalLM try: from transformers import LlamaTokenizerFast tokenizer_class = LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) tokenizer_class = LlamaTokenizer """ Sample usage: ``` git clone https://github.com/persimmon-ai-labs/adept-inference wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar python src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py --input_dir /path/to/downloaded/persimmon/weights/ --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import PersimmonForCausalLM, PersimmonTokenizer model = PersimmonForCausalLM.from_pretrained("/output/path") tokenizer = PersimmonTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ KEYS_TO_MODIFY_MAPPING = { "self_attention": "self_attn", "language_model.encoder": "model", "word_embeddings_for_head": "lm_head", "language_model.embedding.word_embeddings": "model.embed_tokens", } KEYS_TO_REMOVE = "rotary_emb.inv_freq" def rename_state_dict(state_dict): model_state_dict = {} for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) if KEYS_TO_REMOVE in key: continue model_state_dict[key] = value return model_state_dict def convert_persimmon_checkpoint(pytorch_dump_folder_path, ada_lib_path, pt_model_path, safe_serialization=False): import sys sys.path.insert(0, ada_lib_path) model_state_dict_base = torch.load(pt_model_path, map_location="cpu") state_dict = flatdict.FlatDict(model_state_dict_base["model"], ".") state_dict = rename_state_dict(state_dict) transformers_config = PersimmonConfig() model = PersimmonForCausalLM(transformers_config, eos_token_id=71013, bos_token_id=71013).to(torch.bfloat16) model.load_state_dict(state_dict) model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization) transformers_config.save_pretrained(pytorch_dump_folder_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of Persimmon weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--pt_model_path", help="Location of Persimmon `model_optim_rng.pt`", ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument( "--ada_lib_path", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") args = parser.parse_args() spm_path = os.path.join(args.input_dir, "adept_vocab.model") convert_persimmon_checkpoint( pytorch_dump_folder_path=args.output_dir, pt_model_path=args.pt_model_path, safe_serialization=args.safe_serialization, ada_lib_path=args.ada_lib_path, ) tokenizer = tokenizer_class(spm_path, bos_token="|ENDOFTEXT|", eos_token="|ENDOFTEXT|") tokenizer.save_pretrained(args.output_dir) if __name__ == "__main__": main()
transformers/src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py", "repo_id": "transformers", "token_count": 1749 }
329
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from torch import nn from transformers import PLBartConfig, PLBartForConditionalGeneration, PLBartForSequenceClassification def remove_ignore_keys_(state_dict): ignore_keys = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(k, None) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_plbart_checkpoint_from_disk( checkpoint_path, hf_config_path="uclanlp/plbart-base", finetuned=False, classification=False ): state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] remove_ignore_keys_(state_dict) vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0] plbart_config = PLBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size) state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] if not classification: model = PLBartForConditionalGeneration(plbart_config) model.model.load_state_dict(state_dict) if finetuned: model.lm_head = make_linear_from_emb(model.model.shared) else: classification_head = {} for key, value in state_dict.copy().items(): if key.startswith("classification_heads.sentence_classification_head"): classification_head[key.replace("classification_heads.sentence_classification_head.", "")] = value state_dict.pop(key) model = PLBartForSequenceClassification(plbart_config) model.model.load_state_dict(state_dict) model.classification_head.load_state_dict(classification_head) return model if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="uclanlp/plbart-base", type=str, help="Which huggingface architecture to use: plbart-base", ) parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") parser.add_argument( "--classification", action="store_true", help="whether the model is a classification checkpoint" ) args = parser.parse_args() model = convert_fairseq_plbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, classification=args.classification, ) model.save_pretrained(args.pytorch_dump_folder_path)
transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py/0
{ "file_path": "transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py", "repo_id": "transformers", "token_count": 1325 }
330
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Qwen2.""" import json import os import unicodedata from functools import lru_cache from typing import Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, "merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, } MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" @lru_cache() # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Qwen2Tokenizer(PreTrainedTokenizer): """ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import Qwen2Tokenizer >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") >>> tokenizer("Hello world")["input_ids"] [9707, 1879] >>> tokenizer(" Hello world")["input_ids"] [21927, 1879] ``` This is expected. You should not use GPT2Tokenizer instead, because of the different pretokenization rules. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*): The beginning of sequence token. Not applicable for this tokenizer. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not the model should cleanup the spaces that were added when splitting the input text during the tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. split_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the special tokens should be split during the tokenization process. The default behavior is to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = MAX_MODEL_INPUT_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token=None, eos_token="<|endoftext|>", pad_token="<|endoftext|>", clean_up_tokenization_spaces=False, split_special_tokens=False, **kwargs, ): # Qwen vocab does not contain control tokens; added tokens need to be special bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(pad_token, str) else pad_token ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} bpe_merges = [] with open(merges_file, encoding="utf-8") as merges_handle: for line in merges_handle: line = line.strip() if not line or line.startswith("#"): continue bpe_merges.append(tuple(line.split())) self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) # NOTE: the cache can grow without bound and will get really large for long running processes # (esp. for texts of language that do not use space between word, e.g. Chinese); technically # not a memory leak but appears as one. # GPT2Tokenizer has the same problem, so let's be consistent. self.cache = {} self.pat = re.compile(PRETOKENIZE_REGEX) if kwargs.get("add_prefix_space", False): logger.warning_once( f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect." ) super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, clean_up_tokenization_spaces=clean_up_tokenization_spaces, split_special_tokens=split_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: Optional[bool] = False, spaces_between_special_tokens: bool = False, **kwargs, ) -> str: # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer return super().decode( token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, **kwargs): text = unicodedata.normalize("NFC", text) return (text, kwargs)
transformers/src/transformers/models/qwen2/tokenization_qwen2.py/0
{ "file_path": "transformers/src/transformers/models/qwen2/tokenization_qwen2.py", "repo_id": "transformers", "token_count": 6208 }
331
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Reformer checkpoint.""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def set_param(torch_layer, weight, bias=None): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" torch_layer.weight = nn.Parameter(weight) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" torch_layer.bias = nn.Parameter(bias) def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query_key = np.asarray(weights[0]) np_value = np.asarray(weights[1]) np_dense = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key, torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query = np.asarray(weights[0]) np_key = np.asarray(weights[1]) np_value = np.asarray(weights[2]) np_dense = np.asarray(weights[3]) set_param( torch_layer.self_attention.query, torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.key, torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_block_weights_in_torch(weights, torch_block, hidden_size): # layernorm 1 layer_norm_1 = weights[0][0][0] layer_norm_1_weight = np.asarray(layer_norm_1[0]) layer_norm_1_bias = np.asarray(layer_norm_1[1]) set_param( torch_block.attention.layer_norm, torch.tensor(layer_norm_1_weight), torch.tensor(layer_norm_1_bias), ) # lsh weights + output attn_weights = weights[0][1] if len(attn_weights) < 4: set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size) else: set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size) # intermediate weighs intermediate_weights = weights[2][0][1][2] # Chunked Feed Forward if len(intermediate_weights) == 4: intermediate_weights = intermediate_weights[2] # layernorm 2 layer_norm_2_weight = np.asarray(intermediate_weights[0][0]) layer_norm_2_bias = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm, torch.tensor(layer_norm_2_weight), torch.tensor(layer_norm_2_bias), ) # intermediate dense inter_dense_weight = np.asarray(intermediate_weights[1][0]) inter_dense_bias = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense, torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(), torch.tensor(inter_dense_bias), ) # intermediate out out_dense_weight = np.asarray(intermediate_weights[4][0]) out_dense_bias = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense, torch.tensor(out_dense_weight).transpose(0, 1).contiguous(), torch.tensor(out_dense_bias), ) def set_model_weights_in_torch(weights, torch_model, hidden_size): # reformer model torch_model_reformer = torch_model.reformer # word embeds word_embeddings = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(word_embeddings), ) if isinstance(weights[3], tuple): position_embeddings = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): emb_weights = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights)) trax_layer_weights = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( trax_layer_weights ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(block_weights, layer, hidden_size) # output layer norm layer_norm_out_weight = np.asarray(weights[7][0]) layer_norm_out_bias = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(layer_norm_out_weight), torch.tensor(layer_norm_out_bias), ) # output embeddings output_embed_weights = np.asarray(weights[9][0]) output_embed_bias = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder, torch.tensor(output_embed_weights).transpose(0, 1).contiguous(), torch.tensor(output_embed_bias), ) def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path): # Initialise PyTorch model config = ReformerConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = ReformerModelWithLMHead(config) with open(trax_model_pkl_path, "rb") as f: model_weights = pickle.load(f)["weights"] set_model_weights_in_torch(model_weights, model, config.hidden_size) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 3213 }
332
# coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RemBERT.""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/rembert": 256, } class RemBertTokenizer(PreTrainedTokenizer): """ Construct a RemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=True, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _tokenize(self, text, sample=False): """Tokenize a string.""" pieces = self.sp_model.EncodeAsPieces(text) return pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): out_string = self.sp_model.decode_pieces(tokens) return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REMBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/rembert/tokenization_rembert.py/0
{ "file_path": "transformers/src/transformers/models/rembert/tokenization_rembert.py", "repo_id": "transformers", "token_count": 4632 }
333
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_roberta_prelayernorm"] = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_roberta_prelayernorm"] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_roberta_prelayernorm"] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/roberta_prelayernorm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/roberta_prelayernorm/__init__.py", "repo_id": "transformers", "token_count": 2258 }
334
# coding=utf-8 # Copyright 2022 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow SegFormer model.""" from __future__ import annotations import math from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput, TFSemanticSegmenterOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "nvidia/segformer-b0-finetuned-ade-512-512", # See all SegFormer models at https://huggingface.co/models?filter=segformer ] # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->Segformer class TFSegformerDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFSegformerOverlapPatchEmbeddings(keras.layers.Layer): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size, **kwargs): super().__init__(**kwargs) self.padding = keras.layers.ZeroPadding2D(padding=patch_size // 2) self.proj = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=stride, padding="VALID", name="proj" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") self.num_channels = num_channels self.hidden_size = hidden_size def call(self, pixel_values: tf.Tensor) -> Tuple[tf.Tensor, int, int]: embeddings = self.proj(self.padding(pixel_values)) height = shape_list(embeddings)[1] width = shape_list(embeddings)[2] hidden_dim = shape_list(embeddings)[3] # (batch_size, height, width, num_channels) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = tf.reshape(embeddings, (-1, height * width, hidden_dim)) embeddings = self.layer_norm(embeddings) return embeddings, height, width def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, None, self.num_channels]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerEfficientSelfAttention(keras.layers.Layer): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = self.hidden_size // self.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense(self.all_head_size, name="query") self.key = keras.layers.Dense(self.all_head_size, name="key") self.value = keras.layers.Dense(self.all_head_size, name="value") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = keras.layers.Conv2D( filters=hidden_size, kernel_size=sequence_reduction_ratio, strides=sequence_reduction_ratio, name="sr" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] # to [batch_size, seq_length, num_attention_heads, attention_head_size] batch_size = shape_list(tensor)[0] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] # to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[2] query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: # Reshape to (batch_size, height, width, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, -1, num_channels)) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) scale = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, scale) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size)) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.hidden_size]) if getattr(self, "sr", None) is not None: with tf.name_scope(self.sr.name): self.sr.build([None, None, None, self.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerSelfOutput(keras.layers.Layer): def __init__(self, config: SegformerConfig, hidden_size: int, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size]) class TFSegformerAttention(keras.layers.Layer): def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.self = TFSegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="self", ) self.dense_output = TFSegformerSelfOutput(config, hidden_size=hidden_size, name="output") def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.dense_output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFSegformerDWConv(keras.layers.Layer): def __init__(self, dim: int = 768, **kwargs): super().__init__(**kwargs) self.depthwise_convolution = keras.layers.Conv2D( filters=dim, kernel_size=3, strides=1, padding="same", groups=dim, name="dwconv" ) self.dim = dim def call(self, hidden_states: tf.Tensor, height: int, width: int) -> tf.Tensor: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) hidden_states = self.depthwise_convolution(hidden_states) new_height = shape_list(hidden_states)[1] new_width = shape_list(hidden_states)[2] num_channels = shape_list(hidden_states)[3] hidden_states = tf.reshape(hidden_states, (batch_size, new_height * new_width, num_channels)) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build([None, None, None, self.dim]) class TFSegformerMixFFN(keras.layers.Layer): def __init__( self, config: SegformerConfig, in_features: int, hidden_features: int = None, out_features: int = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features self.dense1 = keras.layers.Dense(hidden_features, name="dense1") self.depthwise_convolution = TFSegformerDWConv(hidden_features, name="dwconv") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.dense2 = keras.layers.Dense(out_features, name="dense2") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_features = hidden_features self.in_features = in_features def call(self, hidden_states: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.depthwise_convolution(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense1", None) is not None: with tf.name_scope(self.dense1.name): self.dense1.build([None, None, self.in_features]) if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build(None) if getattr(self, "dense2", None) is not None: with tf.name_scope(self.dense2.name): self.dense2.build([None, None, self.hidden_features]) class TFSegformerLayer(keras.layers.Layer): """This corresponds to the Block class in the original implementation.""" def __init__( self, config, hidden_size: int, num_attention_heads: int, drop_path: float, sequence_reduction_ratio: int, mlp_ratio: int, **kwargs, ): super().__init__(**kwargs) self.layer_norm_1 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_1") self.attention = TFSegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="attention", ) self.drop_path = TFSegformerDropPath(drop_path) if drop_path > 0.0 else keras.layers.Activation("linear") self.layer_norm_2 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_2") mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = TFSegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size, name="mlp") self.hidden_size = hidden_size def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Tuple: self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output, training=training) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output, training=training) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm_1", None) is not None: with tf.name_scope(self.layer_norm_1.name): self.layer_norm_1.build([None, None, self.hidden_size]) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "layer_norm_2", None) is not None: with tf.name_scope(self.layer_norm_2.name): self.layer_norm_2.build([None, None, self.hidden_size]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) class TFSegformerEncoder(keras.layers.Layer): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # stochastic depth decay rule drop_path_decays = [x.numpy() for x in tf.linspace(0.0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( TFSegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], name=f"patch_embeddings.{i}", ) ) self.embeddings = embeddings # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( TFSegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], name=f"block.{i}.{j}", ) ) blocks.append(layers) self.block = blocks # Layer norms self.layer_norms = [ keras.layers.LayerNormalization(epsilon=1e-05, name=f"layer_norm.{i}") for i in range(config.num_encoder_blocks) ] def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = shape_list(pixel_values)[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.embeddings, self.block, self.layer_norms)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks # (each block consists of multiple layers i.e., list of layers) for i, blk in enumerate(block_layer): layer_outputs = blk( hidden_states, height, width, output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, height, width, num_channels) if idx != len(self.embeddings) - 1 or (idx == len(self.embeddings) - 1 and self.config.reshape_last_stage): num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norms", None) is not None: for layer, shape in zip(self.layer_norms, self.config.hidden_sizes): with tf.name_scope(layer.name): layer.build([None, None, shape]) if getattr(self, "block", None) is not None: for block in self.block: for layer in block: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "embeddings", None) is not None: for layer in self.embeddings: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSegformerMainLayer(keras.layers.Layer): config_class = SegformerConfig def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # hierarchical Transformer encoder self.encoder = TFSegformerEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2]) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: if tf.greater(len(encoder_outputs[1:]), 0): transposed_encoder_outputs = tuple(tf.transpose(v, perm=[0, 3, 1, 2]) for v in encoder_outputs[1:][0]) return (sequence_output,) + (transposed_encoder_outputs,) else: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) class TFSegformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 512, 512), dtype=tf.float32)} SEGFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class TFSegformerModel(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config # hierarchical Transformer encoder self.segformer = TFSegformerMainLayer(config, name="segformer") @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class TFSegformerForImageClassification(TFSegformerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.segformer = TFSegformerMainLayer(config, name="segformer") # Classifier head self.classifier = keras.layers.Dense(config.num_labels, name="classifier") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSequenceClassifierOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = shape_list(sequence_output)[0] sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1]) sequence_output = tf.reshape(sequence_output, (batch_size, -1, self.config.hidden_sizes[-1])) # global average pooling sequence_output = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]]) class TFSegformerMLP(keras.layers.Layer): """ Linear Embedding. """ def __init__(self, input_dim: int, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.proj = keras.layers.Dense(config.decoder_hidden_size, name="proj") self.input_dim = input_dim def call(self, hidden_states: tf.Tensor) -> tf.Tensor: height = shape_list(hidden_states)[1] width = shape_list(hidden_states)[2] hidden_dim = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (-1, height * width, hidden_dim)) hidden_states = self.proj(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, self.input_dim]) class TFSegformerDecodeHead(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = TFSegformerMLP(config=config, input_dim=config.hidden_sizes[i], name=f"linear_c.{i}") mlps.append(mlp) self.mlps = mlps # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = keras.layers.Conv2D( filters=config.decoder_hidden_size, kernel_size=1, use_bias=False, name="linear_fuse" ) self.batch_norm = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="batch_norm") self.activation = keras.layers.Activation("relu") self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = keras.layers.Conv2D(filters=config.num_labels, kernel_size=1, name="classifier") self.config = config def call(self, encoder_hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.mlps): if self.config.reshape_last_stage is False and len(shape_list(encoder_hidden_state)) == 3: height = tf.math.sqrt(tf.cast(shape_list(encoder_hidden_state)[1], tf.float32)) height = width = tf.cast(height, tf.int32) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # unify channel dimension encoder_hidden_state = tf.transpose(encoder_hidden_state, perm=[0, 2, 3, 1]) height, width = shape_list(encoder_hidden_state)[1:3] encoder_hidden_state = mlp(encoder_hidden_state) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # upsample temp_state = tf.transpose(encoder_hidden_states[0], perm=[0, 2, 3, 1]) upsample_resolution = shape_list(temp_state)[1:-1] encoder_hidden_state = tf.image.resize(encoder_hidden_state, size=upsample_resolution, method="bilinear") all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(tf.concat(all_hidden_states[::-1], axis=-1)) hidden_states = self.batch_norm(hidden_states, training=training) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # logits of shape (batch_size, height/4, width/4, num_labels) logits = self.classifier(hidden_states) return logits def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_fuse", None) is not None: with tf.name_scope(self.linear_fuse.name): self.linear_fuse.build( [None, None, None, self.config.decoder_hidden_size * self.config.num_encoder_blocks] ) if getattr(self, "batch_norm", None) is not None: with tf.name_scope(self.batch_norm.name): self.batch_norm.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "mlps", None) is not None: for layer in self.mlps: with tf.name_scope(layer.name): layer.build(None) @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class TFSegformerForSemanticSegmentation(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) self.segformer = TFSegformerMainLayer(config, name="segformer") self.decode_head = TFSegformerDecodeHead(config, name="decode_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a (per-pixel) classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFSegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs, training=False) >>> # logits are of shape (batch_size, num_labels, height/4, width/4) >>> logits = outputs.logits >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: if not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") else: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None)
transformers/src/transformers/models/segformer/modeling_tf_segformer.py/0
{ "file_path": "transformers/src/transformers/models/segformer/modeling_tf_segformer.py", "repo_id": "transformers", "token_count": 19147 }
335
# coding=utf-8 # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for Splinter.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_splinter import SplinterTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "tau/splinter-base": "https://huggingface.co/tau/splinter-base/resolve/main/vocab.txt", "tau/splinter-base-qass": "https://huggingface.co/tau/splinter-base-qass/resolve/main/vocab.txt", "tau/splinter-large": "https://huggingface.co/tau/splinter-large/resolve/main/vocab.txt", "tau/splinter-large-qass": "https://huggingface.co/tau/splinter-large-qass/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "tau/splinter-base": 512, "tau/splinter-base-qass": 512, "tau/splinter-large": 512, "tau/splinter-large-qass": 512, } PRETRAINED_INIT_CONFIGURATION = { "tau/splinter-base": {"do_lower_case": False}, "tau/splinter-base-qass": {"do_lower_case": False}, "tau/splinter-large": {"do_lower_case": False}, "tau/splinter-large-qass": {"do_lower_case": False}, } class SplinterTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. question_token (`str`, *optional*, defaults to `"[QUESTION]"`): The token used for constructing question representations. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = SplinterTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", question_token="[QUESTION]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, additional_special_tokens=(question_token,), **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get("lowercase", do_lower_case) != do_lower_case or pre_tok_state.get("strip_accents", strip_accents) != strip_accents ): pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) pre_tok_state["lowercase"] = do_lower_case pre_tok_state["strip_accents"] = strip_accents self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) self.do_lower_case = do_lower_case @property def question_token_id(self): """ `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question representation. """ return self.convert_tokens_to_ids(self.question_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special tokens. A Splinter sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` Args: token_ids_0 (`List[int]`): The question token IDs if pad_on_right, else context tokens IDs token_ids_1 (`List[int]`, *optional*): The context token IDs if pad_on_right, else question token IDs Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if self.padding_side == "right": # Input is question-then-context return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep else: # Input is context-then-question return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ sep = [self.sep_token_id] cls = [self.cls_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] if self.padding_side == "right": # Input is question-then-context return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] else: # Input is context-then-question return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/splinter/tokenization_splinter_fast.py/0
{ "file_path": "transformers/src/transformers/models/splinter/tokenization_splinter_fast.py", "repo_id": "transformers", "token_count": 3965 }
336
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_swin2sr": ["SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swin2SRConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_swin2sr"] = [ "SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST", "Swin2SRForImageSuperResolution", "Swin2SRModel", "Swin2SRPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_swin2sr"] = ["Swin2SRImageProcessor"] if TYPE_CHECKING: from .configuration_swin2sr import SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP, Swin2SRConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin2sr import ( SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST, Swin2SRForImageSuperResolution, Swin2SRModel, Swin2SRPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_swin2sr import Swin2SRImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/swin2sr/__init__.py/0
{ "file_path": "transformers/src/transformers/models/swin2sr/__init__.py", "repo_id": "transformers", "token_count": 863 }
337
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TAPAS checkpoint.""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch( task, reset_position_index_per_cell, tf_checkpoint_path, tapas_config_file, pytorch_dump_path ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file config = TapasConfig.from_json_file(tapas_config_file) # set absolute/relative position embeddings parameter config.reset_position_index_per_cell = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": model = TapasForQuestionAnswering(config=config) elif task == "WTQ": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = True # hparam_utils.py hparams config.answer_loss_cutoff = 0.664694 config.cell_selection_preference = 0.207951 config.huber_loss_delta = 0.121194 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = False config.temperature = 0.0352513 model = TapasForQuestionAnswering(config=config) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = False # hparam_utils.py hparams config.answer_loss_cutoff = 36.4519 config.cell_selection_preference = 0.903421 config.huber_loss_delta = 222.088 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = True config.temperature = 0.763141 model = TapasForQuestionAnswering(config=config) elif task == "TABFACT": model = TapasForSequenceClassification(config=config) elif task == "MLM": model = TapasForMaskedLM(config=config) elif task == "INTERMEDIATE_PRETRAINING": model = TapasModel(config=config) else: raise ValueError(f"Task {task} not supported.") print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_tapas(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512) tokenizer.save_pretrained(pytorch_dump_path) print("Used relative position embeddings:", model.config.reset_position_index_per_cell) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1935 }
338
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TrOCR checkpoints from the unilm repository.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(encoder_config, decoder_config): rename_keys = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, encoder_config): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) in_proj_weight = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight") state_dict[f"encoder.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : encoder_config.hidden_size, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -encoder_config.hidden_size :, : ] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of the IAM Handwriting Database def prepare_img(checkpoint_url): if "handwritten" in checkpoint_url: url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: url = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" im = Image.open(requests.get(url, stream=True).raw).convert("RGB") return im @torch.no_grad() def convert_tr_ocr_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our VisionEncoderDecoderModel structure. """ # define encoder and decoder configs based on checkpoint_url encoder_config = ViTConfig(image_size=384, qkv_bias=False) decoder_config = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: decoder_config.encoder_hidden_size = 768 elif "large" in checkpoint_url: # use ViT-large encoder encoder_config.hidden_size = 1024 encoder_config.intermediate_size = 4096 encoder_config.num_hidden_layers = 24 encoder_config.num_attention_heads = 16 decoder_config.encoder_hidden_size = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: decoder_config.tie_word_embeddings = False decoder_config.activation_function = "relu" decoder_config.max_position_embeddings = 1024 decoder_config.scale_embedding = True decoder_config.use_learned_position_embeddings = False decoder_config.layernorm_embedding = False # load HuggingFace model encoder = ViTModel(encoder_config, add_pooling_layer=False) decoder = TrOCRForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() # load state_dict of original model, rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)["model"] rename_keys = create_rename_keys(encoder_config, decoder_config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, encoder_config) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("decoder") and "output_projection" not in key: state_dict["decoder.model." + key] = val else: state_dict[key] = val # load state dict model.load_state_dict(state_dict) # Check outputs on an image image_processor = ViTImageProcessor(size=encoder_config.image_size) tokenizer = RobertaTokenizer.from_pretrained("roberta-large") processor = TrOCRProcessor(image_processor, tokenizer) pixel_values = processor(images=prepare_img(checkpoint_url), return_tensors="pt").pixel_values # verify logits decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) logits = outputs.logits expected_shape = torch.Size([1, 1, 50265]) if "trocr-base-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: expected_slice = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: expected_slice = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-3), "First elements of logits not as expected" Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py", "repo_id": "transformers", "token_count": 4295 }
339
# coding=utf-8 # Copyright 2023 Google LLC and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert T5X checkpoint to PyTorch Steps: - Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install - Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example: `gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/` - Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use https://huggingface.co/google/t5-v1_1-small/blob/main/config.json - Convert: ``` python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\ --pytorch_dump_path=$HOME/t5_1_1_small_pt ``` """ import argparse import collections import numpy as np import torch from flax import traverse_util from t5x import checkpoints from transformers import MT5Config, UMT5EncoderModel, UMT5ForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def t5x_relpos_bias_lookup(params, i, prefix): """Returns the Relative Position Bias parameters of a layer. Does not transpose.""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def t5x_attention_lookup(params, i, prefix, layer_name="attention"): """Returns the KOQV parameters of (self-)attention. Does not transpose.""" k_tmp = k_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :]) k = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2]) o_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :]) o = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2]) q_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :]) q = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2]) v_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :]) v = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2]) return k, o, q, v def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False): """Returns the MLP parameters of a layer. Does not transpose.""" if split_mlp_wi: wi_0 = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] wi_1 = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] wi = (wi_0, wi_1) else: wi = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] wo = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def t5x_layer_norm_lookup(params, i, prefix, layer_name): """Returns the layer norm param of a layer.""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def convert_t5x_to_pytorch( variables: dict, *, num_layers: int, is_encoder_only: bool, scalable_attention: bool = False ): """Converts the parameters from T5X-Flax to Transformers-PyTorch.""" old = traverse_util.flatten_dict(variables["target"]) old = {"/".join(k): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi split_mlp_wi = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:", split_mlp_wi) new = collections.OrderedDict() # Shared embeddings. new["shared.weight"] = old["token_embedder/embedding"] # Encoder. for i in range(num_layers): # Block i, layer 0 (Self Attention). layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention") new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T # Block i, layer 1 (MLP). layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm") wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi) new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm if split_mlp_wi: new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T else: new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T if scalable_attention: # convert the rel_embedding of each layer new[f"encoder.block.{i}.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup( old, i, "encoder" ).T new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"] if not scalable_attention: new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup( old, 0, "encoder" ).T new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup( old, 0, "decoder" ).T if not is_encoder_only: # Decoder. for i in range(num_layers): # Block i, layer 0 (Self Attention). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention") new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T # Block i, layer 1 (Cross Attention). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention") new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T # Block i, layer 2 (MLP). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm") wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi) new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm if split_mlp_wi: new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T else: new[f"encoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T if scalable_attention: # convert the rel_embedding of each layer new[ f"decoder.block.{i}.layer.0.SelfAttention.relative_attention_bias.weight" ] = t5x_relpos_bias_lookup(old, i, "decoder").T new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T return new def make_state_dict(converted_params, is_encoder_only: bool): """Prepares a state dict for the PyTorch model.""" # Make a state dict with torch tensors. state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head.") state_dict["lm_head.weight"] = state_dict["shared.weight"] return state_dict def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only, scalable_attention): """Replaces the params in model witht the T5X converted params.""" variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) converted = convert_t5x_to_pytorch( variables, num_layers=config.num_layers, is_encoder_only=is_encoder_only, scalable_attention=scalable_attention ) state_dict = make_state_dict(converted, is_encoder_only) model.load_state_dict(state_dict, strict=True) def convert_t5x_checkpoint_to_pytorch( t5x_checkpoint_path, config_file, pytorch_dump_path, is_encoder_only: bool = False, scalable_attention: bool = False, ): """Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint.""" # Initialise PyTorch model config = MT5Config.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: model = UMT5EncoderModel(config) else: model = UMT5ForConditionalGeneration(config) # Load weights from tf checkpoint load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only, scalable_attention) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Verify that we can load the checkpoint. model.from_pretrained(pytorch_dump_path) print("Done") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) args = parser.parse_args() convert_t5x_checkpoint_to_pytorch( args.t5x_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
transformers/src/transformers/models/umt5/convert_umt5_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/umt5/convert_umt5_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 5299 }
340
# coding=utf-8 # Copyright 2022 NAVER AI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViLT model.""" import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, ModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ( find_pruneable_heads_and_indices, meshgrid, prune_linear_layer, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_vilt import ViltConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViltConfig" _CHECKPOINT_FOR_DOC = "dandelin/vilt-b32-mlm" VILT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "dandelin/vilt-b32-mlm", # See all ViLT models at https://huggingface.co/models?filter=vilt ] @dataclass class ViltForImagesAndTextClassificationOutput(ModelOutput): """ Class for outputs of [`ViltForImagesAndTextClassification`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`List[tuple(torch.FloatTensor)]`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): List of tuples of `torch.FloatTensor` (one for each image-text pair, each tuple containing the attention weights of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[List[Tuple[torch.FloatTensor]]] = None attentions: Optional[List[Tuple[torch.FloatTensor]]] = None class ViltEmbeddings(nn.Module): """ Construct the text and patch embeddings. Text embeddings are equivalent to BERT embeddings. Patch embeddings are equivalent to ViT embeddings. """ def __init__(self, config): super().__init__() # text embeddings self.text_embeddings = TextEmbeddings(config) # patch embeddings self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViltPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) # modality type (text/patch) embeddings self.token_type_embeddings = nn.Embedding(config.modality_type_vocab_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def visual_embed(self, pixel_values, pixel_mask, max_image_length=200): _, _, ph, pw = self.patch_embeddings.projection.weight.shape x = self.patch_embeddings(pixel_values) x_mask = pixel_mask[:, None, :, :].float() x_mask = nn.functional.interpolate(x_mask, size=(x.shape[2], x.shape[3])).long() x_h = x_mask[:, 0].sum(dim=1)[:, 0] x_w = x_mask[:, 0].sum(dim=2)[:, 0] batch_size, num_channels, height, width = x.shape patch_dim = self.config.image_size // self.config.patch_size spatial_pos = self.position_embeddings[:, 1:, :].transpose(1, 2).view(1, num_channels, patch_dim, patch_dim) pos_embed = torch.cat( [ nn.functional.pad( nn.functional.interpolate( spatial_pos, size=(h, w), mode="bilinear", align_corners=True, ), (0, width - w, 0, height - h), ) for h, w in zip(x_h, x_w) ], dim=0, ) pos_embed = pos_embed.flatten(2).transpose(1, 2) x = x.flatten(2).transpose(1, 2) # Set `device` here, otherwise `patch_index` will always be on `CPU` and will fail near the end for torch>=1.13 patch_index = torch.stack( meshgrid(torch.arange(x_mask.shape[-2]), torch.arange(x_mask.shape[-1]), indexing="ij"), dim=-1 ).to(device=x_mask.device) patch_index = patch_index[None, None, :, :, :] patch_index = patch_index.expand(x_mask.shape[0], x_mask.shape[1], -1, -1, -1) patch_index = patch_index.flatten(1, 3) x_mask = x_mask.flatten(1) if max_image_length < 0 or max_image_length is None or not isinstance(max_image_length, int): # suppose aug is 800 x 1333, then, maximum effective res is 800 x 1333 (if one side gets bigger, the other will be constrained and be shrinked) # (800 // self.patch_size) * (1333 // self.patch_size) is the maximum number of patches that single image can get. # if self.patch_size = 32, 25 * 41 = 1025 # if res is 384 x 640, 12 * 20 = 240 effective_resolution = x_h * x_w max_image_length = effective_resolution.max() else: effective_resolution = x_h * x_w max_image_length = min(effective_resolution.max(), max_image_length) valid_idx = x_mask.nonzero(as_tuple=False) non_valid_idx = (1 - x_mask).nonzero(as_tuple=False) unique_rows = valid_idx[:, 0].unique() valid_row_idx = [valid_idx[valid_idx[:, 0] == u] for u in unique_rows] non_valid_row_idx = [non_valid_idx[non_valid_idx[:, 0] == u] for u in unique_rows] valid_nums = [v.size(0) for v in valid_row_idx] non_valid_nums = [v.size(0) for v in non_valid_row_idx] pad_nums = [max_image_length - v for v in valid_nums] select = [] for i, (v, nv, p) in enumerate(zip(valid_nums, non_valid_nums, pad_nums)): if p <= 0: valid_choice = torch.multinomial(torch.ones(v).float(), max_image_length) select.append(valid_row_idx[i][valid_choice]) else: pad_choice = torch.multinomial(torch.ones(nv).float(), p, replacement=True) select.append(torch.cat([valid_row_idx[i], non_valid_row_idx[i][pad_choice]], dim=0)) select = torch.cat(select, dim=0) x = x[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels) x_mask = x_mask[select[:, 0], select[:, 1]].view(batch_size, -1) # `patch_index` should be on the same device as `select` (for torch>=1.13), which is ensured at definition time. patch_index = patch_index[select[:, 0], select[:, 1]].view(batch_size, -1, 2) pos_embed = pos_embed[select[:, 0], select[:, 1]].view(batch_size, -1, num_channels) cls_tokens = self.cls_token.expand(batch_size, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = torch.cat( (self.position_embeddings[:, 0, :][:, None, :].expand(batch_size, -1, -1), pos_embed), dim=1 ) x = x + pos_embed x = self.dropout(x) x_mask = torch.cat([torch.ones(x_mask.shape[0], 1).to(x_mask), x_mask], dim=1) return x, x_mask, (patch_index, (height, width)) def forward( self, input_ids, attention_mask, token_type_ids, pixel_values, pixel_mask, inputs_embeds, image_embeds, image_token_type_idx=1, ): # PART 1: text embeddings text_embeds = self.text_embeddings( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) # PART 2: patch embeddings (with interpolated position encodings) if image_embeds is None: image_embeds, image_masks, patch_index = self.visual_embed( pixel_values, pixel_mask, max_image_length=self.config.max_image_length ) else: image_masks = pixel_mask.flatten(1) # PART 3: add modality type embeddings # 0 indicates text, 1 indicates image, 2 is optionally used when a second image is provided (NLVR2) if image_token_type_idx is None: image_token_type_idx = 1 text_embeds = text_embeds + self.token_type_embeddings( torch.zeros_like(attention_mask, dtype=torch.long, device=text_embeds.device) ) image_embeds = image_embeds + self.token_type_embeddings( torch.full_like(image_masks, image_token_type_idx, dtype=torch.long, device=text_embeds.device) ) # PART 4: concatenate embeddings = torch.cat([text_embeds, image_embeds], dim=1) masks = torch.cat([attention_mask, image_masks], dim=1) return embeddings, masks class TextEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ViltPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) target_dtype = self.projection.weight.dtype x = self.projection(pixel_values.to(dtype=target_dtype)) return x class ViltSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Vilt class ViltSelfOutput(nn.Module): """ The residual connection is defined in ViltLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class ViltAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = ViltSelfAttention(config) self.output = ViltSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Vilt class ViltIntermediate(nn.Module): def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Vilt class ViltOutput(nn.Module): def __init__(self, config: ViltConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class ViltLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViltAttention(config) self.intermediate = ViltIntermediate(config) self.output = ViltOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViLT, layernorm is applied before self-attention attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states.to(attention_output.device) # in ViLT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class ViltEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ViltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViltConfig base_model_prefix = "vilt" supports_gradient_checkpointing = True _no_split_modules = ["ViltEmbeddings", "ViltSelfAttention"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VILT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViltConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VILT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViltImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_images, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViltImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, num_images, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. image_embeds (`torch.FloatTensor` of shape `(batch_size, num_images, num_patches, hidden_size)`, *optional*): Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `pixel_values` into patch embeddings. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViLT Model transformer outputting raw hidden-states without any specific head on top.", VILT_START_DOCSTRING, ) class ViltModel(ViltPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ViltEmbeddings(config) self.encoder = ViltEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViltPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.text_embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.text_embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, image_token_type_idx: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutputWithPooling, Tuple[torch.FloatTensor]]: r""" Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltModel >>> from PIL import Image >>> import requests >>> # prepare image and text >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "hello world" >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltModel.from_pretrained("dandelin/vilt-b32-mlm") >>> inputs = processor(image, text, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") text_batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((text_batch_size, seq_length)), device=device) if pixel_values is not None and image_embeds is not None: raise ValueError("You cannot specify both pixel_values and image_embeds at the same time") elif pixel_values is None and image_embeds is None: raise ValueError("You have to specify either pixel_values or image_embeds") image_batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeds.shape[0] if image_batch_size != text_batch_size: raise ValueError("The text inputs and image inputs need to have the same batch size") if pixel_mask is None: pixel_mask = torch.ones((image_batch_size, self.config.image_size, self.config.image_size), device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, attention_mask = self.embeddings( input_ids, attention_mask, token_type_ids, pixel_values, pixel_mask, inputs_embeds, image_embeds, image_token_type_idx=image_token_type_idx, ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ViltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """ ViLT Model with a language modeling head on top as done during pretraining. """, VILT_START_DOCSTRING, ) class ViltForMaskedLM(ViltPreTrainedModel): _tied_weights_keys = ["mlm_score.decoder.weight", "mlm_score.decoder.bias"] def __init__(self, config): super().__init__(config) self.vilt = ViltModel(config) self.mlm_score = ViltMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.mlm_score.decoder def set_output_embeddings(self, new_embeddings): self.mlm_score.decoder = new_embeddings @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]: r""" labels (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Labels for computing the masked language modeling loss. Indices should be in *[-100, 0, ..., config.vocab_size]* (see *input_ids* docstring) Tokens with indices set to *-100* are ignored (masked), the loss is only computed for the tokens with labels in *[0, ..., config.vocab_size]* Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForMaskedLM >>> import requests >>> from PIL import Image >>> import re >>> import torch >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "a bunch of [MASK] laying on a [MASK]." >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> tl = len(re.findall("\[MASK\]", text)) >>> inferred_token = [text] >>> # gradually fill in the MASK tokens, one by one >>> with torch.no_grad(): ... for i in range(tl): ... encoded = processor.tokenizer(inferred_token) ... input_ids = torch.tensor(encoded.input_ids) ... encoded = encoded["input_ids"][0][1:-1] ... outputs = model(input_ids=input_ids, pixel_values=encoding.pixel_values) ... mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size) ... # only take into account text features (minus CLS and SEP token) ... mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :] ... mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1) ... # only take into account text ... mlm_values[torch.tensor(encoded) != 103] = 0 ... select = mlm_values.argmax().item() ... encoded[select] = mlm_ids[select].item() ... inferred_token = [processor.decode(encoded)] >>> selected_token = "" >>> encoded = processor.tokenizer(inferred_token) >>> output = processor.decode(encoded.input_ids[0], skip_special_tokens=True) >>> print(output) a bunch of cats laying on a couch. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] # split up final hidden states into text and image features text_seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] text_features, _ = (sequence_output[:, :text_seq_len], sequence_output[:, text_seq_len:]) mlm_logits = self.mlm_score(text_features) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token # move labels to correct device to enable PP labels = labels.to(mlm_logits.device) masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (mlm_logits,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=mlm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class ViltPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class ViltMLMHead(nn.Module): def __init__(self, config, weight=None): super().__init__() self.config = config self.transform = ViltPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) if weight is not None: self.decoder.weight = weight # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, x): x = self.transform(x) x = self.decoder(x) return x @add_start_docstrings( """ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for visual question answering, e.g. for VQAv2. """, VILT_START_DOCSTRING, ) class ViltForQuestionAnswering(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config) # Classifier head self.classifier = nn.Sequential( nn.Linear(config.hidden_size, config.hidden_size * 2), nn.LayerNorm(config.hidden_size * 2), nn.GELU(), nn.Linear(config.hidden_size * 2, config.num_labels), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.FloatTensor` of shape `(batch_size, num_labels)`, *optional*): Labels for computing the visual question answering loss. This tensor must be either a one-hot encoding of all answers that are applicable for a given example in the batch, or a soft encoding indicating which answers are applicable, where 1.0 is the highest score. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForQuestionAnswering >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are there?" >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") >>> model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: 2 ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooler_output) loss = None if labels is not None: # move labels to correct device to enable PP labels = labels.to(logits.device) loss = nn.functional.binary_cross_entropy_with_logits(logits, labels) * labels.shape[1] # see https://github.com/jnhwkim/ban-vqa/blob/master/train.py#L19 if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Vilt Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the [CLS] token) for image-to-text or text-to-image retrieval, e.g. MSCOCO and F30K. """, VILT_START_DOCSTRING, ) class ViltForImageAndTextRetrieval(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.vilt = ViltModel(config) # Classifier head self.rank_output = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels are currently not supported. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForImageAndTextRetrieval >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco") >>> model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco") >>> # forward pass >>> scores = dict() >>> for text in texts: ... # prepare inputs ... encoding = processor(image, text, return_tensors="pt") ... outputs = model(**encoding) ... scores[text] = outputs.logits[0, :].item() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] logits = self.rank_output(pooler_output) loss = None if labels is not None: # move labels to correct device to enable PP labels = labels.to(logits.device) raise NotImplementedError("Training is not yet supported.") if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Vilt Model transformer with a classifier head on top for natural language visual reasoning, e.g. NLVR2. """, VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING, ) class ViltForImagesAndTextClassification(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config) # Classifier head num_images = config.num_images self.classifier = nn.Sequential( nn.Linear(config.hidden_size * num_images, config.hidden_size * num_images), nn.LayerNorm(config.hidden_size * num_images), nn.GELU(), nn.Linear(config.hidden_size * num_images, config.num_labels), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViltForImagesAndTextClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ViltForImagesAndTextClassificationOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Binary classification labels. Returns: Examples: ```python >>> from transformers import ViltProcessor, ViltForImagesAndTextClassification >>> import requests >>> from PIL import Image >>> image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) >>> image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw) >>> text = "The left image contains twice the number of dogs as the right image." >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") >>> model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") >>> # prepare inputs >>> encoding = processor([image1, image2], text, return_tensors="pt") >>> # forward pass >>> outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is not None and pixel_values.ndim == 4: # add dummy num_images dimension pixel_values = pixel_values.unsqueeze(1) if image_embeds is not None and image_embeds.ndim == 3: # add dummy num_images dimension image_embeds = image_embeds.unsqueeze(1) num_images = pixel_values.shape[1] if pixel_values is not None else None if num_images is None: num_images = image_embeds.shape[1] if image_embeds is not None else None if num_images != self.config.num_images: raise ValueError( "Make sure to match the number of images in the model with the number of images in the input." ) pooler_outputs = [] hidden_states = [] if output_hidden_states else None attentions = [] if output_attentions else None for i in range(num_images): # forward every image through the model outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values[:, i, :, :, :] if pixel_values is not None else None, pixel_mask=pixel_mask[:, i, :, :] if pixel_mask is not None else None, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds[:, i, :, :] if image_embeds is not None else None, image_token_type_idx=i + 1, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooler_output = outputs.pooler_output if return_dict else outputs[1] pooler_outputs.append(pooler_output) if output_hidden_states: hidden_states.append(outputs.hidden_states) if output_attentions: attentions.append(outputs.attentions) pooled_output = torch.cat(pooler_outputs, dim=-1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits, hidden_states, attentions) return ((loss,) + output) if loss is not None else output return ViltForImagesAndTextClassificationOutput( loss=loss, logits=logits, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """ ViLT Model with a token classification head on top (a linear layer on top of the final hidden-states of the text tokens) e.g. for Named-Entity-Recognition (NER) tasks. """, VILT_START_DOCSTRING, ) class ViltForTokenClassification(ViltPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.vilt = ViltModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VILT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, image_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, text_sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vilt( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, pixel_values=pixel_values, pixel_mask=pixel_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, image_embeds=image_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] text_input_size = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output[:, :text_input_size]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/vilt/modeling_vilt.py/0
{ "file_path": "transformers/src/transformers/models/vilt/modeling_vilt.py", "repo_id": "transformers", "token_count": 27525 }
341
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT hybrid checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token")) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias")) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias")) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT hybrid configuration backbone_config = BitConfig( global_padding="same", layer_type="bottleneck", depths=(3, 4, 9), out_features=["stage3"], embedding_dynamic_padding=True, ) config = ViTHybridConfig(backbone_config=backbone_config, image_size=384, num_labels=1000) base_model = False # load original model from timm timm_model = timm.create_model(vit_name, pretrained=True) timm_model.eval() # load state_dict of original model, remove and rename some keys state_dict = timm_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} # load HuggingFace model if vit_name[-5:] == "in21k": model = ViTHybridModel(config).eval() else: model = ViTHybridForImageClassification(config).eval() model.load_state_dict(state_dict) # create image processor transform = create_transform(**resolve_data_config({}, model=timm_model)) timm_transforms = transform.transforms pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } processor = ViTHybridImageProcessor( do_resize=True, size={"shortest_edge": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=True, crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, do_normalize=True, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) image = prepare_img() timm_pixel_values = transform(image).unsqueeze(0) pixel_values = processor(image, return_tensors="pt").pixel_values # verify pixel values assert torch.allclose(timm_pixel_values, pixel_values) # verify logits with torch.no_grad(): outputs = model(pixel_values) logits = outputs.logits print("Predicted class:", logits.argmax(-1).item()) if base_model: timm_pooled_output = timm_model.forward_features(pixel_values) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(timm_pooled_output, outputs.pooler_output, atol=1e-3) else: timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}") model.push_to_hub(f"ybelkada/{vit_name}") processor.push_to_hub(f"ybelkada/{vit_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) args = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/vit_hybrid/convert_vit_hybrid_timm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vit_hybrid/convert_vit_hybrid_timm_to_pytorch.py", "repo_id": "transformers", "token_count": 5670 }
342
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VitMatte model configuration""" import copy from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING logger = logging.get_logger(__name__) VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "hustvl/vitmatte-small-composition-1k": "https://huggingface.co/hustvl/vitmatte-small-composition-1k/resolve/main/config.json", } class VitMatteConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of [`VitMatteForImageMatting`]. It is used to instantiate a ViTMatte model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViTMatte [hustvl/vitmatte-small-composition-1k](https://huggingface.co/hustvl/vitmatte-small-composition-1k) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `VitDetConfig()`): The configuration of the backbone model. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `False`): Whether to use pretrained weights for the backbone. use_timm_backbone (`bool`, *optional*, defaults to `False`): Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers library. hidden_size (`int`, *optional*, defaults to 384): The number of input channels of the decoder. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch norm layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. convstream_hidden_sizes (`List[int]`, *optional*, defaults to `[48, 96, 192]`): The output channels of the ConvStream module. fusion_hidden_sizes (`List[int]`, *optional*, defaults to `[256, 128, 64, 32]`): The output channels of the Fusion blocks. Example: ```python >>> from transformers import VitMatteConfig, VitMatteForImageMatting >>> # Initializing a ViTMatte hustvl/vitmatte-small-composition-1k style configuration >>> configuration = VitMatteConfig() >>> # Initializing a model (with random weights) from the hustvl/vitmatte-small-composition-1k style configuration >>> model = VitMatteForImageMatting(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vitmatte" def __init__( self, backbone_config: PretrainedConfig = None, backbone=None, use_pretrained_backbone=False, use_timm_backbone=False, hidden_size: int = 384, batch_norm_eps: float = 1e-5, initializer_range: float = 0.02, convstream_hidden_sizes: List[int] = [48, 96, 192], fusion_hidden_sizes: List[int] = [256, 128, 64, 32], **kwargs, ): super().__init__(**kwargs) if use_pretrained_backbone: raise ValueError("Pretrained backbones are not supported yet.") if backbone_config is not None and backbone is not None: raise ValueError("You can't specify both `backbone` and `backbone_config`.") if backbone_config is None and backbone is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `VitDet` backbone.") backbone_config = CONFIG_MAPPING["vitdet"](out_features=["stage4"]) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) self.backbone_config = backbone_config self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = use_timm_backbone self.batch_norm_eps = batch_norm_eps self.hidden_size = hidden_size self.initializer_range = initializer_range self.convstream_hidden_sizes = convstream_hidden_sizes self.fusion_hidden_sizes = fusion_hidden_sizes def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["backbone_config"] = self.backbone_config.to_dict() output["model_type"] = self.__class__.model_type return output
transformers/src/transformers/models/vitmatte/configuration_vitmatte.py/0
{ "file_path": "transformers/src/transformers/models/vitmatte/configuration_vitmatte.py", "repo_id": "transformers", "token_count": 2165 }
343
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2 checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( Wav2Vec2Config, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2ForCTC, Wav2Vec2ForPreTraining, Wav2Vec2Processor, logging, ) from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2ForSequenceClassification logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def read_txt_into_dict(filename): result = {} with open(filename, "r") as file: for line_number, line in enumerate(file): line = line.strip() if line: words = line.split() key = line_number value = words[0] result[key] = value return result def set_recursively(key, value, full_name, weight_type, hf_pointer): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) hf_param_name = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(param_key): hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]] weight_type = "param" if weight_type is not None and weight_type != "param": hf_shape = getattr(hf_pointer, weight_type).shape elif weight_type is not None and weight_type == "param": shape_pointer = hf_pointer for attribute in hf_param_name.split("."): shape_pointer = getattr(shape_pointer, attribute) hf_shape = shape_pointer.shape # let's reduce dimension value = value[0] else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value elif weight_type == "param": for attribute in hf_param_name.split("."): hf_pointer = getattr(hf_pointer, attribute) hf_pointer.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def rename_dict(key, value, full_name, weight_type, hf_dict): hf_param_name = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(param_key): hf_param_name = PARAM_MAPPING[full_name.split(".")[-1]] weight_type = "param" if weight_type is not None and weight_type != "param": full_key = ".".join([key, weight_type]) elif weight_type is not None and weight_type == "param": full_key = ".".join([key, hf_param_name]) else: full_key = key hf_dict[full_key] = value if "lm_head" in full_key else value[0] PARAM_MAPPING = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def load_wav2vec2_layer(name, value, hf_model=None, hf_dict=None): is_used = False for key, mapped_key in MAPPING.items(): mapped_key = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None if hf_dict is not None: rename_dict(mapped_key, value, name, weight_type, hf_dict) else: set_recursively(mapped_key, value, name, weight_type, hf_model) return is_used return is_used def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.wav2vec2.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: is_used = load_wav2vec2_layer(name, value, hf_model) if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_wav2vec2_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True, is_seq_class=False ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Wav2Vec2Config.from_pretrained(config_path) else: config = Wav2Vec2Config() if is_seq_class: id2label = read_txt_into_dict(dict_path) config.id2label = id2label hf_wav2vec = Wav2Vec2ForSequenceClassification(config) feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=True, ) feature_extractor.save_pretrained(pytorch_dump_folder_path) elif is_finetuned: if dict_path: target_dict = Dictionary.load(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) vocab_dict = target_dict.indices # fairseq has the <pad> and <s> switched vocab_dict["<pad>"] = 0 vocab_dict["<s>"] = 1 with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(vocab_dict, vocab_handle) tokenizer = Wav2Vec2CTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_wav2vec = Wav2Vec2ForCTC(config) else: hf_wav2vec = Wav2Vec2ForPreTraining(config) if is_finetuned or is_seq_class: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) else: task_arg = argparse.Namespace(task="audio_pretraining") task = fairseq.tasks.setup_task(task_arg) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=task) model = model[0].eval() recursively_load_weights(model, hf_wav2vec, not is_finetuned) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) args = parser.parse_args() is_finetuned = not args.not_finetuned and not args.is_seq_class convert_wav2vec2_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 6600 }
344
# coding=utf-8 # Copyright 2022 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2-Conformer model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_peft_available, logging, replace_return_docstrings, ) from .configuration_wav2vec2_conformer import Wav2Vec2ConformerConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2ConformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/wav2vec2-conformer-rope-large-960h-ft" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 64.21 WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/wav2vec2-conformer-rel-pos-large", # See all Wav2Vec2Conformer models at https://huggingface.co/models?filter=wav2vec2-conformer ] @dataclass # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerForPreTrainingOutput(ModelOutput): """ Output type of [`Wav2Vec2ConformerForPreTraining`], with potential hidden states and attentions. Args: loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`): The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None contrastive_loss: Optional[torch.FloatTensor] = None diversity_loss: Optional[torch.FloatTensor] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = Wav2Vec2ConformerSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2ConformerRotaryPositionalEmbedding(nn.Module): """Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf """ def __init__(self, config): super().__init__() dim = config.hidden_size // config.num_attention_heads base = config.rotary_embedding_base inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.cached_sequence_length = None self.cached_rotary_positional_embedding = None def forward(self, hidden_states): sequence_length = hidden_states.shape[1] if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: return self.cached_rotary_positional_embedding self.cached_sequence_length = sequence_length # Embeddings are computed in the dtype of the inv_freq constant time_stamps = torch.arange(sequence_length).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) embeddings = torch.cat((freqs, freqs), dim=-1) cos_embeddings = embeddings.cos()[:, None, None, :] sin_embeddings = embeddings.sin()[:, None, None, :] # Computed embeddings are cast to the dtype of the hidden state inputs self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states) return self.cached_rotary_positional_embedding class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module): """Relative positional encoding module.""" def __init__(self, config): super().__init__() self.max_len = config.max_source_positions self.d_model = config.hidden_size self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)) def extend_pe(self, x): # Reset the positional encodings if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` is the position of query vector and `j` is the # position of key vector. We use positive relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pe_positive = torch.zeros(x.size(1), self.d_model) pe_negative = torch.zeros(x.size(1), self.d_model) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reverse the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative = pe_negative[1:].unsqueeze(0) pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, hidden_states: torch.Tensor): self.extend_pe(hidden_states) start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1 end_idx = self.pe.size(1) // 2 + hidden_states.size(1) relative_position_embeddings = self.pe[:, start_idx:end_idx] return relative_position_embeddings # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [Wav2Vec2ConformerGroupNormConvLayer(config, layer_id=0)] + [ Wav2Vec2ConformerNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ Wav2Vec2ConformerLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2ConformerConvolutionModule(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=(config.conv_depthwise_kernel_size - 1) // 2, groups=config.hidden_size, bias=False, ) self.batch_norm = nn.BatchNorm1d(config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.conformer_conv_dropout) def forward(self, hidden_states): hidden_states = self.layer_norm(hidden_states) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2ConformerSelfAttention(nn.Module): """Construct an Wav2Vec2ConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings. """ def __init__(self, config): super().__init__() self.head_size = config.hidden_size // config.num_attention_heads self.num_heads = config.num_attention_heads self.position_embeddings_type = config.position_embeddings_type self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(p=config.attention_dropout) if self.position_embeddings_type == "relative": # linear transformation for positional encoding self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states if self.position_embeddings_type == "rotary": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'" ) query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) if self.position_embeddings_type == "relative": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type ==" " 'relative'" ) # apply relative_position_embeddings to qk scores # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860 scores = self._apply_relative_embeddings( query=query, key=key, relative_position_embeddings=relative_position_embeddings ) else: scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) # apply attention_mask if necessary if attention_mask is not None: scores = scores + attention_mask # => (batch, head, time1, time2) probs = torch.softmax(scores, dim=-1) probs = self.dropout(probs) # => (batch, head, time1, d_k) hidden_states = torch.matmul(probs, value) # => (batch, time1, hidden_size) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) hidden_states = self.linear_out(hidden_states) return hidden_states, probs def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): batch_size, sequence_length, hidden_size = hidden_states.size() hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) cos = relative_position_embeddings[0, :sequence_length, ...] sin = relative_position_embeddings[1, :sequence_length, ...] # rotate hidden_states with rotary embeddings hidden_states = hidden_states.transpose(0, 1) rotated_states_begin = hidden_states[..., : self.head_size // 2] rotated_states_end = hidden_states[..., self.head_size // 2 :] rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) hidden_states = (hidden_states * cos) + (rotated_states * sin) hidden_states = hidden_states.transpose(0, 1) hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) return hidden_states def _apply_relative_embeddings(self, query, key, relative_position_embeddings): # 1. project positional embeddings # => (batch, head, 2*time1-1, d_k) proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) proj_relative_position_embeddings = proj_relative_position_embeddings.view( relative_position_embeddings.size(0), -1, self.num_heads, self.head_size ) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) # 2. Add bias to query # => (batch, head, time1, d_k) query = query.transpose(1, 2) q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) # 3. attention score: first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # => (batch, head, time1, time2) scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) # 4. then compute matrix b and matrix d # => (batch, head, time1, 2*time1-1) scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) # 5. shift matrix b and matrix d zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1] # 6. sum matrices # => (batch, head, time1, time2) scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) return scores class Wav2Vec2ConformerEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.attention_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = Wav2Vec2ConformerFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = nn.Dropout(dropout) self.self_attn = Wav2Vec2ConformerSelfAttention(config) # Conformer Convolution self.conv_module = Wav2Vec2ConformerConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = Wav2Vec2ConformerFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weigts = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weigts class Wav2Vec2ConformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.position_embeddings_type == "relative": self.embed_positions = Wav2Vec2ConformerRelPositionalEmbedding(config) elif config.position_embeddings_type == "rotary": self.embed_positions = Wav2Vec2ConformerRotaryPositionalEmbedding(config) else: self.embed_positions = None self.pos_conv_embed = Wav2Vec2ConformerPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2ConformerEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 hidden_states[~attention_mask] = 0.0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, relative_position_embeddings, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GumbelVectorQuantizer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible " f"by `config.num_codevector_groups` {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs, mask=None): if mask is not None: mask_extended = mask.flatten()[:, None, None].expand(probs.shape) probs = torch.where(mask_extended, probs, torch.zeros_like(probs)) marginal_probs = probs.sum(dim=0) / mask.sum() else: marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states, mask_time_indices=None): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs, mask_time_indices) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Wav2Vec2Conformer class Wav2Vec2ConformerAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2ConformerConfig base_model_prefix = "wav2vec2_conformer" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init. if isinstance(module, Wav2Vec2ConformerForPreTraining): module.project_hid.reset_parameters() module.project_q.reset_parameters() module.project_hid._is_hf_initialized = True module.project_q._is_hf_initialized = True # gumbel softmax requires special init elif isinstance(module, Wav2Vec2ConformerGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, Wav2Vec2ConformerSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, Wav2Vec2ConformerPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, Wav2Vec2ConformerFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask WAV2VEC2_CONFORMER_START_DOCSTRING = r""" Wav2Vec2Conformer was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2ConformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV2VEC2_CONFORMER_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2Conformer Model transformer outputting raw hidden-states without any specific head on top.", WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel): def __init__(self, config: Wav2Vec2ConformerConfig): super().__init__(config) self.config = config self.feature_extractor = Wav2Vec2ConformerFeatureEncoder(config) self.feature_projection = Wav2Vec2ConformerFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.encoder = Wav2Vec2ConformerEncoder(config) self.adapter = Wav2Vec2ConformerAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.freeze_feature_encoder def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model.forward with wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """Wav2Vec2Conformer Model with a quantizer and `VQ` head on top.""", WAV2VEC2_CONFORMER_START_DOCSTRING ) class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config: Wav2Vec2ConformerConfig): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = Wav2Vec2ConformerGumbelVectorQuantizer(config) self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.set_gumbel_temperature def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() @staticmethod # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.compute_contrastive_logits def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 0.1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as( target_features ) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Wav2Vec2ConformerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTraining.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,wav2vec2_conformer-base->wav2vec2-conformer-rel-pos-large def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.BoolTensor] = None, sampled_negative_indices: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2ConformerForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining >>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import _compute_mask_indices, _sample_negative_indices >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item() >>> mask_time_indices = _compute_mask_indices( ... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2 ... ) >>> sampled_negative_indices = _sample_negative_indices( ... features_shape=(batch_size, sequence_length), ... num_negatives=model.config.num_negatives, ... mask_time_indices=mask_time_indices, ... ) >>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long) >>> sampled_negative_indices = torch.tensor( ... data=sampled_negative_indices, device=input_values.device, dtype=torch.long ... ) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1) >>> # show that cosine similarity is much higher than random >>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5 tensor(True) >>> # for contrastive loss training model should be put into train mode >>> model = model.train() >>> loss = model( ... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices ... ).loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if mask_time_indices is not None: mask_time_indices = mask_time_indices.to(torch.bool) outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, mask_time_indices=mask_time_indices, return_dict=return_dict, ) # 1. project all transformed features (including masked) to final vq dim transformer_features = self.project_hid(outputs[0]) # 2. quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) if attention_mask is not None: # compute reduced attention_mask correponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) quantized_features, codevector_perplexity = self.quantizer( extract_features, mask_time_indices=mask_time_indices ) quantized_features = self.project_q(quantized_features) loss = contrastive_loss = diversity_loss = None if sampled_negative_indices is not None: batch_size, sequence_length, hidden_size = quantized_features.shape # for training, we sample negatives # 3. sample K negatives (distractors) quantized states for contrastive loss # if attention_mask is passed, make sure that padded feature vectors cannot be sampled # sample negative quantized vectors BTC => (BxT)C negative_quantized_features = quantized_features.view(-1, hidden_size)[ sampled_negative_indices.long().view(-1) ] negative_quantized_features = negative_quantized_features.view( batch_size, sequence_length, -1, hidden_size ).permute(2, 0, 1, 3) # 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa` # of equation (3) in https://arxiv.org/pdf/2006.11477.pdf logits = self.compute_contrastive_logits( quantized_features[None, :], negative_quantized_features, transformer_features, self.config.contrastive_logits_temperature, ) # 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low), # its cosine similarity will be masked neg_is_pos = (quantized_features == negative_quantized_features).all(-1) if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") # 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) = # -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa)) logits = logits.transpose(0, 2).reshape(-1, logits.size(0)) target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten() contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum") # 7. compute diversity loss: \mathbf{L}_d num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum() # 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return Wav2Vec2ConformerForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, contrastive_loss=contrastive_loss, diversity_loss=diversity_loss, ) @add_start_docstrings( """Wav2Vec2Conformer Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2ConformerForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2Conformer Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" ) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2Conformer Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.__init__ with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2Conformer adapters (config.add_adapter=True)" ) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.freeze_base_model with wav2vec2->wav2vec2_conformer def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->wav2vec2_conformer def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2Conformer Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV2VEC2_CONFORMER_START_DOCSTRING, ) class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2_conformer = Wav2Vec2ConformerModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_feature_encoder with wav2vec2->wav2vec2_conformer def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.wav2vec2_conformer.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.freeze_base_model with wav2vec2->wav2vec2_conformer def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_conformer.parameters(): param.requires_grad = False # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector._get_tdnn_output_lengths with wav2vec2->wav2vec2_conformer def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV2VEC2_CONFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with Wav2Vec2->Wav2Vec2Conformer,wav2vec2->wav2vec2_conformer,WAV_2_VEC_2->WAV2VEC2_CONFORMER def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_conformer( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py", "repo_id": "transformers", "token_count": 40665 }
345
# coding=utf-8 # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax whisper model.""" import math import random from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...generation.flax_logits_process import FlaxWhisperTimeStampLogitsProcessor from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, FlaxSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_whisper import WhisperConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai/whisper-tiny" _CONFIG_FOR_DOC = "WhisperConfig" remat = nn_partitioning.remat def sinusoidal_embedding_init(key, shape, dtype=jnp.float_) -> jax.Array: """Returns sinusoids for positional embedding""" length, channels = shape if channels % 2 != 0: raise ValueError( f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." ) log_timescale_increment = math.log(10000) / (channels // 2 - 1) inv_timescales = jnp.exp(-log_timescale_increment * jnp.arange(channels // 2)) scaled_time = jnp.arange(length).reshape(-1, 1) * inv_timescales.reshape(1, -1) return jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1).astype(dtype) WHISPER_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ WHISPER_INPUTS_DOCSTRING = r""" Args: input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but is not used. By default the silence in the input log mel spectrogram are ignored. decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't use masking, but this argument is preserved for compatibility. By default the silence in the input log mel spectrogram are ignored. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_ENCODE_INPUTS_DOCSTRING = r""" Args: input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]. attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but is not used. By default the silence in the input log mel spectrogram are ignored. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) encoder_outputs (`tuple(tuple(numpy.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxWhisperAttention(nn.Module): config: WhisperConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj = dense(use_bias=self.bias) self.k_proj = dense(use_bias=False) self.v_proj = dense(use_bias=self.bias) self.out_proj = dense(use_bias=self.bias) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_target_positions), dtype="bool"), dtype="bool" ) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] query_states = self.q_proj(hidden_states) if is_cross_attention: key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights def _split_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only # attend to those key positions that have already been generated and cached, not the # remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Whisper class FlaxWhisperEncoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxWhisperEncoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperEncoderCheckpointLayer = remat(FlaxWhisperEncoderLayer, static_argnums=(2, 3)) self.layers = [ FlaxWhisperEncoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] else: self.layers = [ FlaxWhisperEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Whisper class FlaxWhisperDecoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class FlaxWhisperDecoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperDecoderCheckpointLayer = remat(FlaxWhisperDecoderLayer, static_argnums=(4, 5, 6)) self.layers = [ FlaxWhisperDecoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] else: self.layers = [ FlaxWhisperDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxWhisperEncoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.conv1 = nn.Conv( self.config.d_model, kernel_size=(3,), padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.conv2 = nn.Conv( self.config.d_model, kernel_size=(3,), strides=2, padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layers = FlaxWhisperEncoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.embed_positions = nn.Embed( self.config.max_source_positions, self.config.d_model, dtype=self.dtype, embedding_init=sinusoidal_embedding_init, ) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_features: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: if input_features.shape[1:] != (self.config.num_mel_bins, self.config.max_source_positions * 2): raise ValueError( "input_features.shape[1:], must be equal to (self.config.num_mel_bins," f" self.config.max_source_positions * 2) (got {input_features.shape[1:]}, but should be" f" ({self.config.num_mel_bins}, {self.config.max_source_positions * 2}))" ) input_features = input_features.transpose(0, 2, 1) hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False) hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False) embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions)) # freeze the sinusoidal embeddings by stopping the back-prop embed_positions = jax.lax.stop_gradient(embed_positions) hidden_states = hidden_states + embed_positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=None, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxWhisperDecoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.embed_tokens = nn.Embed(self.config.vocab_size, self.config.d_model, dtype=self.dtype) self.embed_positions = nn.Embed(self.config.max_target_positions, self.config.d_model, dtype=self.dtype) self.layers = FlaxWhisperDecoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-5) def __call__( self, input_ids: jnp.ndarray, attention_mask: jnp.ndarray, position_ids: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: input_embeds = self.embed_tokens(input_ids) position_embeds = self.embed_positions(position_ids) hidden_states = input_embeds + position_embeds hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxWhisperModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.decoder = FlaxWhisperDecoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, decoder_attention_mask: jnp.ndarray, decoder_position_ids: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): config_class = WhisperConfig base_model_prefix: str = "model" main_input_name = "input_features" module_class: nn.Module = None def __init__( self, config: WhisperConfig, input_shape: Tuple[int] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) if input_shape is None: input_shape = (1, config.num_mel_bins, 2 * config.max_source_positions) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->Whisper def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig) def encode( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_features, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_features, **kwargs) return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> import jax.numpy as jnp >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_features = processor(ds[0]["audio"]["array"], return_tensors="np").input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((input_features.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare decoder inputs if decoder_position_ids is None: if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Whisper Model transformer outputting raw hidden-states without any specific head on top.", WHISPER_START_DOCSTRING, ) class FlaxWhisperModel(FlaxWhisperPreTrainedModel): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxWhisperModule append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) class FlaxWhisperForConditionalGenerationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.model = FlaxWhisperModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_features, decoder_input_ids, decoder_attention_mask: jnp.ndarray = None, decoder_position_ids: jnp.ndarray = None, position_ids: jnp.ndarray = None, attention_mask: jnp.ndarray = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings("The Whisper Model with a language modeling head.", WHISPER_START_DOCSTRING) class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4") # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def generate( self, input_features, generation_config=None, logits_processor=None, return_timestamps=None, task=None, language=None, is_multilingual=None, **kwargs, ): if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: generation_config.return_timestamps = return_timestamps if task is not None: generation_config.task = task if is_multilingual is not None: generation_config.is_multilingual = is_multilingual if language is not None: generation_config.language = language if kwargs is not None and "decoder_input_ids" in kwargs: decoder_input_length = len(kwargs["decoder_input_ids"]) else: decoder_input_length = 1 forced_decoder_ids = [] if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: if hasattr(generation_config, "language"): forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language])) else: forced_decoder_ids.append((1, None)) if hasattr(generation_config, "task"): forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) if ( hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps ) or return_timestamps: logits_processor = [ FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length) ] else: if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if len(forced_decoder_ids) > 0: generation_config.forced_decoder_ids = forced_decoder_ids return super().generate( input_features, generation_config, logits_processor=logits_processor, **kwargs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r""" Returns: Transcription example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> generated_ids = model.generate(input_ids=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ``` """ overwrite_call_docstring( FlaxWhisperForConditionalGeneration, WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxWhisperForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC ) class FlaxWhisperForAudioClassificationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.config.is_encoder_decoder = False num_layers = self.config.num_hidden_layers + 1 if self.config.use_weighted_layer_sum: self.layer_weights = jnp.repeat(1 / num_layers, num_layers) self.projector = nn.Dense(self.config.classifier_proj_size, dtype=self.dtype) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_features, encoder_outputs=None, output_attentions=None, output_hidden_states: bool = True, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = jnp.stack(encoder_outputs, axis=1) norm_weights = jax.nn.softmax(self.layer_weights, axis=-1) hidden_states = jnp.sum(hidden_states * jnp.reshape(norm_weights, [-1, 1, 1]), axis=1) else: hidden_states = encoder_outputs[0] hidden_states = self.projector(hidden_states) pooled_output = jnp.mean(hidden_states, axis=1) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + encoder_outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("The Whisper Model with an audio classification head on top.", WHISPER_START_DOCSTRING) class FlaxWhisperForAudioClassification(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForAudioClassificationModule dtype: jnp.dtype = jnp.float32 def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING = r""" Returns: Transcription example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoFeatureExtractor, FlaxWhisperForAudioClassification >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> model = FlaxWhisperForAudioClassification.from_pretrained( ... "sanchit-gandhi/whisper-medium-fleurs-lang-id", from_pt=True ... ) >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) >>> sample = next(iter(ds)) >>> inputs = feature_extractor( ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="np" ... ) >>> input_features = inputs.input_features >>> logits = model(input_features).logits >>> predicted_class_ids = jnp.argmax(logits).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label 'af_za' ``` """ overwrite_call_docstring( FlaxWhisperForAudioClassification, WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING ) append_replace_return_docstrings( FlaxWhisperForAudioClassification, output_type=FlaxSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC )
transformers/src/transformers/models/whisper/modeling_flax_whisper.py/0
{ "file_path": "transformers/src/transformers/models/whisper/modeling_flax_whisper.py", "repo_id": "transformers", "token_count": 32247 }
346
# coding=utf-8 # Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch XGLM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xglm import XGLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/xglm-564M" _CONFIG_FOR_DOC = "XGLMConfig" XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/xglm-564M", # See all XGLM models at https://huggingface.co/models?filter=xglm ] XGLM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XGLM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class XGLMSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, position_ids: torch.Tensor = None, past_key_values_length: int = 0): bsz, seq_len = position_ids.size() position_ids += self.offset # Expand embeddings if needed. `position_ids.max()` is NOT used to keep torch.fx compatibility. max_pos = 2 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() class XGLMAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 if attn_weights.dtype == torch.float16: attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) else: attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class XGLMDecoderLayer(nn.Module): def __init__(self, config: XGLMConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = XGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout if config.add_cross_attention: self.encoder_attn = XGLMAttention( embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class XGLMPreTrainedModel(PreTrainedModel): config_class = XGLMConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["XGLMDecoderLayer"] def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @add_start_docstrings( "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", XGLM_START_DOCSTRING, ) class XGLMModel(XGLMPreTrainedModel): """ Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`XGLMDecoderLayer`] Args: config: XGLMConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: XGLMConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = XGLMSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, config.pad_token_id, ) self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if position_ids is None: position_ids = torch.arange( past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=input_ids.device if input_ids is not None else inputs_embeds.device, ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) hidden_states = inputs_embeds + self.embed_positions(position_ids, past_key_values_length) hidden_states = nn.functional.dropout(hidden_states, p=float(self.dropout), training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache =" " False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XGLM_START_DOCSTRING, ) class XGLMForCausalLM(XGLMPreTrainedModel): base_model_prefix = "model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = XGLMModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: # shift labels and add a pad token to the end shift_labels = labels.new_zeros(labels.shape) shift_labels[:, :-1] = labels[:, 1:].clone() shift_labels[:, -1] = self.config.pad_token_id loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] else: position_ids = None # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/xglm/modeling_xglm.py/0
{ "file_path": "transformers/src/transformers/models/xglm/modeling_xglm.py", "repo_id": "transformers", "token_count": 17039 }
347
# coding=utf-8 # Copyright 2023 The Meta AI Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ X-MOD configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class XmodConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XmodModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. pre_norm (`bool`, *optional*, defaults to `False`): Whether to apply layer normalization before each block. adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2): The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`. adapter_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply a new layer normalization before the adapter modules (shared across all adapters). adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`): Whether to reuse the second layer normalization and apply it before the adapter modules as well. ln_before_adapter (`bool`, *optional*, defaults to `True`): Whether to apply the layer normalization before the residual connection around the adapter module. languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`): An iterable of language codes for which adapter modules should be initialized. default_language (`str`, *optional*): Language code of a default language. It will be assumed that the input is in this language if no language codes are explicitly passed to the forward method. Examples: ```python >>> from transformers import XmodConfig, XmodModel >>> # Initializing an X-MOD facebook/xmod-base style configuration >>> configuration = XmodConfig() >>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration >>> model = XmodModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xmod" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, pre_norm=False, adapter_reduction_factor=2, adapter_layer_norm=False, adapter_reuse_layer_norm=True, ln_before_adapter=True, languages=("en_XX",), default_language=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.pre_norm = pre_norm self.adapter_reduction_factor = adapter_reduction_factor self.adapter_layer_norm = adapter_layer_norm self.adapter_reuse_layer_norm = adapter_reuse_layer_norm self.ln_before_adapter = ln_before_adapter self.languages = list(languages) self.default_language = default_language # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Xmod class XmodOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers/src/transformers/models/xmod/configuration_xmod.py/0
{ "file_path": "transformers/src/transformers/models/xmod/configuration_xmod.py", "repo_id": "transformers", "token_count": 3839 }
348
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from inspect import signature from itertools import chain from pathlib import Path from typing import TYPE_CHECKING, Iterable, List, Tuple, Union import numpy as np from packaging.version import Version, parse from ..tokenization_utils_base import PreTrainedTokenizerBase from ..utils import ( TensorType, is_tf_available, is_torch_available, logging, ) from .config import OnnxConfig if is_torch_available(): from ..modeling_utils import PreTrainedModel if is_tf_available(): from ..modeling_tf_utils import TFPreTrainedModel if TYPE_CHECKING: from ..feature_extraction_utils import FeatureExtractionMixin from ..processing_utils import ProcessorMixin from ..tokenization_utils import PreTrainedTokenizer logger = logging.get_logger(__name__) # pylint: disable=invalid-name # This is the minimal required version to support some ONNX Runtime features ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0") def check_onnxruntime_requirements(minimum_version: Version): """ Check onnxruntime is installed and if the installed version match is recent enough Raises: ImportError: If onnxruntime is not installed or too old version is found """ try: import onnxruntime # Parse the version of the installed onnxruntime ort_version = parse(onnxruntime.__version__) # We require 1.4.0 minimum if ort_version < ORT_QUANTIZE_MINIMUM_VERSION: raise ImportError( f"We found an older version of onnxruntime ({onnxruntime.__version__}) " f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n" "Please update onnxruntime by running `pip install --upgrade onnxruntime`" ) except ImportError: raise ImportError( "onnxruntime doesn't seem to be currently installed. " "Please install the onnxruntime by running `pip install onnxruntime`" " and relaunch the conversion." ) def export_pytorch( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], model: "PreTrainedModel", config: OnnxConfig, opset: int, output: Path, tokenizer: "PreTrainedTokenizer" = None, device: str = "cpu", ) -> Tuple[List[str], List[str]]: """ Export a PyTorch model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]): The preprocessor used for encoding the data. model ([`PreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. device (`str`, *optional*, defaults to `cpu`): The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer if issubclass(type(model), PreTrainedModel): import torch from torch.onnx import export as onnx_export logger.info(f"Using framework PyTorch: {torch.__version__}") with torch.no_grad(): model.config.return_dict = True model.eval() # Check if we need to override certain configuration item if config.values_override is not None: logger.info(f"Overriding {len(config.values_override)} configuration item(s)") for override_config_key, override_config_value in config.values_override.items(): logger.info(f"\t- {override_config_key} -> {override_config_value}") setattr(model.config, override_config_key, override_config_value) # Ensure inputs match # TODO: Check when exporting QA we provide "is_pair=True" model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.PYTORCH) device = torch.device(device) if device.type == "cuda" and torch.cuda.is_available(): model.to(device) model_inputs_device = {} for k, v in model_inputs.items(): if isinstance(v, Tuple): model_inputs_device[k] = tuple( x.to(device) if isinstance(x, torch.Tensor) else None for x in v ) elif isinstance(v, List): model_inputs_device[k] = [ tuple(x.to(device) if isinstance(x, torch.Tensor) else None for x in t) for t in v ] else: model_inputs_device[k] = v.to(device) model_inputs = model_inputs_device inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys()) onnx_outputs = list(config.outputs.keys()) if not inputs_match: raise ValueError("Model and config inputs doesn't match") config.patch_ops() onnx_export( model, (model_inputs,), f=output.as_posix(), input_names=list(config.inputs.keys()), output_names=onnx_outputs, dynamic_axes=dict(chain(config.inputs.items(), config.outputs.items())), do_constant_folding=True, opset_version=opset, ) config.restore_ops() return matched_inputs, onnx_outputs def export_tensorflow( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin"], model: "TFPreTrainedModel", config: OnnxConfig, opset: int, output: Path, tokenizer: "PreTrainedTokenizer" = None, ) -> Tuple[List[str], List[str]]: """ Export a TensorFlow model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`] or [`FeatureExtractionMixin`]): The preprocessor used for encoding the data. model ([`TFPreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ import onnx import tensorflow as tf import tf2onnx if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer model.config.return_dict = True # Check if we need to override certain configuration item if config.values_override is not None: logger.info(f"Overriding {len(config.values_override)} configuration item(s)") for override_config_key, override_config_value in config.values_override.items(): logger.info(f"\t- {override_config_key} -> {override_config_value}") setattr(model.config, override_config_key, override_config_value) # Ensure inputs match model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.TENSORFLOW) inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys()) onnx_outputs = list(config.outputs.keys()) input_signature = [ tf.TensorSpec([None] * tensor.ndim, dtype=tensor.dtype, name=key) for key, tensor in model_inputs.items() ] onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature, opset=opset) onnx.save(onnx_model, output.as_posix()) config.restore_ops() return matched_inputs, onnx_outputs def export( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], model: Union["PreTrainedModel", "TFPreTrainedModel"], config: OnnxConfig, opset: int, output: Path, tokenizer: "PreTrainedTokenizer" = None, device: str = "cpu", ) -> Tuple[List[str], List[str]]: """ Export a Pytorch or TensorFlow model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]): The preprocessor used for encoding the data. model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. device (`str`, *optional*, defaults to `cpu`): The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Only PyTorch is supported for export on CUDA devices. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ if not (is_torch_available() or is_tf_available()): raise ImportError( "Cannot convert because neither PyTorch nor TensorFlow are not installed. " "Please install torch or tensorflow first." ) if is_tf_available() and isinstance(model, TFPreTrainedModel) and device == "cuda": raise RuntimeError("`tf2onnx` does not support export on CUDA device.") if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer if is_torch_available(): from ..utils import get_torch_version if not config.is_torch_support_available: logger.warning( f"Unsupported PyTorch version for this model. Minimum required is {config.torch_onnx_minimum_version}," f" got: {get_torch_version()}" ) if is_torch_available() and issubclass(type(model), PreTrainedModel): return export_pytorch(preprocessor, model, config, opset, output, tokenizer=tokenizer, device=device) elif is_tf_available() and issubclass(type(model), TFPreTrainedModel): return export_tensorflow(preprocessor, model, config, opset, output, tokenizer=tokenizer) def validate_model_outputs( config: OnnxConfig, preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], reference_model: Union["PreTrainedModel", "TFPreTrainedModel"], onnx_model: Path, onnx_named_outputs: List[str], atol: float, tokenizer: "PreTrainedTokenizer" = None, ): from onnxruntime import InferenceSession, SessionOptions logger.info("Validating ONNX model...") if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to validate the model outputs.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer # generate inputs with a different batch_size and seq_len that was used for conversion to properly test # dynamic input shapes. if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): reference_model_inputs = config.generate_dummy_inputs( preprocessor, batch_size=config.default_fixed_batch + 1, seq_length=config.default_fixed_sequence + 1, framework=TensorType.PYTORCH, ) else: reference_model_inputs = config.generate_dummy_inputs( preprocessor, batch_size=config.default_fixed_batch + 1, seq_length=config.default_fixed_sequence + 1, framework=TensorType.TENSORFLOW, ) # Create ONNX Runtime session options = SessionOptions() session = InferenceSession(onnx_model.as_posix(), options, providers=["CPUExecutionProvider"]) # Compute outputs from the reference model if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): reference_model.to("cpu") ref_outputs = reference_model(**reference_model_inputs) ref_outputs_dict = {} # We flatten potential collection of outputs (i.e. past_keys) to a flat structure for name, value in ref_outputs.items(): # Overwriting the output name as "present" since it is the name used for the ONNX outputs # ("past_key_values" being taken for the ONNX inputs) if name == "past_key_values": name = "present" if isinstance(value, (list, tuple)): value = config.flatten_output_collection_property(name, value) ref_outputs_dict.update(value) else: ref_outputs_dict[name] = value # Create onnxruntime inputs from the reference model inputs reference_model_inputs_onnxruntime = config.generate_dummy_inputs_onnxruntime(reference_model_inputs) # We flatten potential collection of inputs (i.e. past_keys) onnx_inputs = {} for name, value in reference_model_inputs_onnxruntime.items(): if isinstance(value, (list, tuple)): value = config.flatten_output_collection_property(name, value) onnx_inputs.update({tensor_name: pt_tensor.numpy() for tensor_name, pt_tensor in value.items()}) else: onnx_inputs[name] = value.numpy() # Compute outputs from the ONNX model onnx_outputs = session.run(onnx_named_outputs, onnx_inputs) # Check we have a subset of the keys into onnx_outputs against ref_outputs ref_outputs_set, onnx_outputs_set = set(ref_outputs_dict.keys()), set(onnx_named_outputs) if not onnx_outputs_set.issubset(ref_outputs_set): logger.info( f"\t-[x] ONNX model output names {onnx_outputs_set} do not match reference model {ref_outputs_set}" ) raise ValueError( "Outputs doesn't match between reference model and ONNX exported model: " f"{onnx_outputs_set.difference(ref_outputs_set)}" ) else: logger.info(f"\t-[✓] ONNX model output names match reference model ({onnx_outputs_set})") # Check the shape and values match for name, ort_value in zip(onnx_named_outputs, onnx_outputs): if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): ref_value = ref_outputs_dict[name].detach().numpy() else: ref_value = ref_outputs_dict[name].numpy() logger.info(f'\t- Validating ONNX Model output "{name}":') # Shape if not ort_value.shape == ref_value.shape: logger.info(f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}") raise ValueError( "Outputs shape doesn't match between reference model and ONNX exported model: " f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)" ) else: logger.info(f"\t\t-[✓] {ort_value.shape} matches {ref_value.shape}") # Values if not np.allclose(ref_value, ort_value, atol=atol): bad_indices = np.logical_not(np.isclose(ref_value, ort_value, atol=atol)) logger.info(f"\t\t-[x] values not close enough (atol: {atol})") raise ValueError( "Outputs values doesn't match between reference model and ONNX exported model: " f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))} for " f"{ref_value[bad_indices]} vs {ort_value[bad_indices]}" ) else: logger.info(f"\t\t-[✓] all values close (atol: {atol})") def ensure_model_and_config_inputs_match( model: Union["PreTrainedModel", "TFPreTrainedModel"], model_inputs: Iterable[str] ) -> Tuple[bool, List[str]]: """ :param model_inputs: :param config_inputs: :return: """ if is_torch_available() and issubclass(type(model), PreTrainedModel): forward_parameters = signature(model.forward).parameters else: forward_parameters = signature(model.call).parameters model_inputs_set = set(model_inputs) # We are fine if config_inputs has more keys than model_inputs forward_inputs_set = set(forward_parameters.keys()) is_ok = model_inputs_set.issubset(forward_inputs_set) # Make sure the input order match (VERY IMPORTANT !!!!) matching_inputs = forward_inputs_set.intersection(model_inputs_set) ordered_inputs = [parameter for parameter in forward_parameters.keys() if parameter in matching_inputs] return is_ok, ordered_inputs
transformers/src/transformers/onnx/convert.py/0
{ "file_path": "transformers/src/transformers/onnx/convert.py", "repo_id": "transformers", "token_count": 7864 }
349
from typing import Any, Dict, List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import ( MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES, ) logger = logging.get_logger(__name__) Prediction = Dict[str, Any] Predictions = List[Prediction] @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ImageSegmentationPipeline(Pipeline): """ Image segmentation pipeline using any `AutoModelForXXXSegmentation`. This pipeline predicts masks of objects and their classes. Example: ```python >>> from transformers import pipeline >>> segmenter = pipeline(model="facebook/detr-resnet-50-panoptic") >>> segments = segmenter("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") >>> len(segments) 2 >>> segments[0]["label"] 'bird' >>> segments[1]["label"] 'bird' >>> type(segments[0]["mask"]) # This is a black and white mask showing where is the bird on the original image. <class 'PIL.Image.Image'> >>> segments[0]["mask"].size (768, 512) ``` This image segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-segmentation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-segmentation). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") mapping = MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES) mapping.update(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES) mapping.update(MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES) self.check_model_type(mapping) def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} postprocess_kwargs = {} if "subtask" in kwargs: postprocess_kwargs["subtask"] = kwargs["subtask"] preprocess_kwargs["subtask"] = kwargs["subtask"] if "threshold" in kwargs: postprocess_kwargs["threshold"] = kwargs["threshold"] if "mask_threshold" in kwargs: postprocess_kwargs["mask_threshold"] = kwargs["mask_threshold"] if "overlap_mask_area_threshold" in kwargs: postprocess_kwargs["overlap_mask_area_threshold"] = kwargs["overlap_mask_area_threshold"] if "timeout" in kwargs: preprocess_kwargs["timeout"] = kwargs["timeout"] return preprocess_kwargs, {}, postprocess_kwargs def __call__(self, images, **kwargs) -> Union[Predictions, List[Prediction]]: """ Perform segmentation (detect masks & classes) in the image(s) passed as inputs. Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing an HTTP(S) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the same format: all as HTTP(S) links, all as local paths, or all as PIL images. subtask (`str`, *optional*): Segmentation task to be performed, choose [`semantic`, `instance` and `panoptic`] depending on model capabilities. If not set, the pipeline will attempt tp resolve in the following order: `panoptic`, `instance`, `semantic`. threshold (`float`, *optional*, defaults to 0.9): Probability threshold to filter out predicted masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.5): Mask overlap threshold to eliminate small, disconnected segments. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A dictionary or a list of dictionaries containing the result. If the input is a single image, will return a list of dictionaries, if the input is a list of several images, will return a list of list of dictionaries corresponding to each image. The dictionaries contain the mask, label and score (where applicable) of each detected object and contains the following keys: - **label** (`str`) -- The class label identified by the model. - **mask** (`PIL.Image`) -- A binary mask of the detected object as a Pil Image of shape (width, height) of the original image. Returns a mask filled with zeros if no object is found. - **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of the "object" described by the label and the mask. """ return super().__call__(images, **kwargs) def preprocess(self, image, subtask=None, timeout=None): image = load_image(image, timeout=timeout) target_size = [(image.height, image.width)] if self.model.config.__class__.__name__ == "OneFormerConfig": if subtask is None: kwargs = {} else: kwargs = {"task_inputs": [subtask]} inputs = self.image_processor(images=[image], return_tensors="pt", **kwargs) inputs["task_inputs"] = self.tokenizer( inputs["task_inputs"], padding="max_length", max_length=self.model.config.task_seq_len, return_tensors=self.framework, )["input_ids"] else: inputs = self.image_processor(images=[image], return_tensors="pt") inputs["target_size"] = target_size return inputs def _forward(self, model_inputs): target_size = model_inputs.pop("target_size") model_outputs = self.model(**model_inputs) model_outputs["target_size"] = target_size return model_outputs def postprocess( self, model_outputs, subtask=None, threshold=0.9, mask_threshold=0.5, overlap_mask_area_threshold=0.5 ): fn = None if subtask in {"panoptic", None} and hasattr(self.image_processor, "post_process_panoptic_segmentation"): fn = self.image_processor.post_process_panoptic_segmentation elif subtask in {"instance", None} and hasattr(self.image_processor, "post_process_instance_segmentation"): fn = self.image_processor.post_process_instance_segmentation if fn is not None: outputs = fn( model_outputs, threshold=threshold, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, target_sizes=model_outputs["target_size"], )[0] annotation = [] segmentation = outputs["segmentation"] for segment in outputs["segments_info"]: mask = (segmentation == segment["id"]) * 255 mask = Image.fromarray(mask.numpy().astype(np.uint8), mode="L") label = self.model.config.id2label[segment["label_id"]] score = segment["score"] annotation.append({"score": score, "label": label, "mask": mask}) elif subtask in {"semantic", None} and hasattr(self.image_processor, "post_process_semantic_segmentation"): outputs = self.image_processor.post_process_semantic_segmentation( model_outputs, target_sizes=model_outputs["target_size"] )[0] annotation = [] segmentation = outputs.numpy() labels = np.unique(segmentation) for label in labels: mask = (segmentation == label) * 255 mask = Image.fromarray(mask.astype(np.uint8), mode="L") label = self.model.config.id2label[label] annotation.append({"score": None, "label": label, "mask": mask}) else: raise ValueError(f"Subtask {subtask} is not supported for model {type(self.model)}") return annotation
transformers/src/transformers/pipelines/image_segmentation.py/0
{ "file_path": "transformers/src/transformers/pipelines/image_segmentation.py", "repo_id": "transformers", "token_count": 3828 }
350
import inspect from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import ArgumentHandler, ChunkPipeline, build_pipeline_init_args logger = logging.get_logger(__name__) class ZeroShotClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for zero-shot for text classification by turning each possible label into an NLI premise/hypothesis pair. """ def _parse_labels(self, labels): if isinstance(labels, str): labels = [label.strip() for label in labels.split(",") if label.strip()] return labels def __call__(self, sequences, labels, hypothesis_template): if len(labels) == 0 or len(sequences) == 0: raise ValueError("You must include at least one label and at least one sequence.") if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(hypothesis_template) ) if isinstance(sequences, str): sequences = [sequences] sequence_pairs = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class ZeroShotClassificationPipeline(ChunkPipeline): """ NLI-based zero-shot classification pipeline using a `ModelForSequenceClassification` trained on NLI (natural language inference) tasks. Equivalent of `text-classification` pipelines, but these models don't require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it's slower but it is **much** more flexible. Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Then, the logit for *entailment* is taken as the logit for the candidate label being valid. Any NLI model can be used, but the id of the *entailment* label must be included in the model config's :attr:*~transformers.PretrainedConfig.label2id*. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="facebook/bart-large-mnli") >>> oracle( ... "I have a problem with my iphone that needs to be resolved asap!!", ... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"], ... ) {'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['urgent', 'phone', 'computer', 'not urgent', 'tablet'], 'scores': [0.504, 0.479, 0.013, 0.003, 0.002]} >>> oracle( ... "I have a problem with my iphone that needs to be resolved asap!!", ... candidate_labels=["english", "german"], ... ) {'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['english', 'german'], 'scores': [0.814, 0.186]} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This NLI pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-classification"`. The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?search=nli). """ def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs): self._args_parser = args_parser super().__init__(*args, **kwargs) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def entailment_id(self): for label, ind in self.model.config.label2id.items(): if label.lower().startswith("entail"): return ind return -1 def _parse_and_tokenize( self, sequence_pairs, padding=True, add_special_tokens=True, truncation=TruncationStrategy.ONLY_FIRST, **kwargs ): """ Parse arguments and tokenize only_first so that hypothesis (label) is not truncated """ return_tensors = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) self.tokenizer.pad_token = self.tokenizer.eos_token try: inputs = self.tokenizer( sequence_pairs, add_special_tokens=add_special_tokens, return_tensors=return_tensors, padding=padding, truncation=truncation, ) except Exception as e: if "too short" in str(e): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. inputs = self.tokenizer( sequence_pairs, add_special_tokens=add_special_tokens, return_tensors=return_tensors, padding=padding, truncation=TruncationStrategy.DO_NOT_TRUNCATE, ) else: raise e return inputs def _sanitize_parameters(self, **kwargs): if kwargs.get("multi_class", None) is not None: kwargs["multi_label"] = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) preprocess_params = {} if "candidate_labels" in kwargs: preprocess_params["candidate_labels"] = self._args_parser._parse_labels(kwargs["candidate_labels"]) if "hypothesis_template" in kwargs: preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"] postprocess_params = {} if "multi_label" in kwargs: postprocess_params["multi_label"] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self, sequences: Union[str, List[str]], *args, **kwargs, ): """ Classify the sequence(s) given as inputs. See the [`ZeroShotClassificationPipeline`] documentation for more information. Args: sequences (`str` or `List[str]`): The sequence(s) to classify, will be truncated if the model input is too large. candidate_labels (`str` or `List[str]`): The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. hypothesis_template (`str`, *optional*, defaults to `"This example is {}."`): The template used to turn each label into an NLI-style hypothesis. This template must include a {} or similar syntax for the candidate label to be inserted into the template. For example, the default template is `"This example is {}."` With the candidate label `"sports"`, this would be fed into the model like `"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template works well in many cases, but it may be worthwhile to experiment with different templates depending on the task setting. multi_label (`bool`, *optional*, defaults to `False`): Whether or not multiple candidate labels can be true. If `False`, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If `True`, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. Return: A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: - **sequence** (`str`) -- The sequence for which this is the output. - **labels** (`List[str]`) -- The labels sorted by order of likelihood. - **scores** (`List[float]`) -- The probabilities for each of the labels. """ if len(args) == 0: pass elif len(args) == 1 and "candidate_labels" not in kwargs: kwargs["candidate_labels"] = args[0] else: raise ValueError(f"Unable to understand extra arguments {args}") return super().__call__(sequences, **kwargs) def preprocess(self, inputs, candidate_labels=None, hypothesis_template="This example is {}."): sequence_pairs, sequences = self._args_parser(inputs, candidate_labels, hypothesis_template) for i, (candidate_label, sequence_pair) in enumerate(zip(candidate_labels, sequence_pairs)): model_input = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(candidate_labels) - 1, **model_input, } def _forward(self, inputs): candidate_label = inputs["candidate_label"] sequence = inputs["sequence"] model_inputs = {k: inputs[k] for k in self.tokenizer.model_input_names} # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False outputs = self.model(**model_inputs) model_outputs = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def postprocess(self, model_outputs, multi_label=False): candidate_labels = [outputs["candidate_label"] for outputs in model_outputs] sequences = [outputs["sequence"] for outputs in model_outputs] logits = np.concatenate([output["logits"].numpy() for output in model_outputs]) N = logits.shape[0] n = len(candidate_labels) num_sequences = N // n reshaped_outputs = logits.reshape((num_sequences, n, -1)) if multi_label or len(candidate_labels) == 1: # softmax over the entailment vs. contradiction dim for each label independently entailment_id = self.entailment_id contradiction_id = -1 if entailment_id == 0 else 0 entail_contr_logits = reshaped_outputs[..., [contradiction_id, entailment_id]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels entail_logits = reshaped_outputs[..., self.entailment_id] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) top_inds = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
transformers/src/transformers/pipelines/zero_shot_classification.py/0
{ "file_path": "transformers/src/transformers/pipelines/zero_shot_classification.py", "repo_id": "transformers", "token_count": 5051 }
351
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging logger = logging.get_logger(__name__) # TODO: should be moved to `utils` after refactoring of SageMakerTrainer def is_sagemaker_model_parallel_available(): # Get the sagemaker specific mp parameters from smp_options variable. smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}") try: # Parse it and check the field "partitions" is included, it is required for model parallel. smp_options = json.loads(smp_options) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}") try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". mpi_options = json.loads(mpi_options) if not mpi_options.get("sagemaker_mpi_enabled", False): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed") is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SageMakerTrainingArguments(TrainingArguments): mp_parameters: str = field( default="", metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"}, ) def __post_init__(self): super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead.", FutureWarning, ) @cached_property def _setup_devices(self) -> "torch.device": logger.info("PyTorch: setting up devices") if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: device = torch.device("cpu") self._n_gpu = 0 elif is_sagemaker_model_parallel_available(): local_rank = smp.local_rank() device = torch.device("cuda", local_rank) self._n_gpu = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp", timeout=self.ddp_timeout_delta) self.local_rank = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK")) device = torch.device("cuda", self.local_rank) self._n_gpu = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. self._n_gpu = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl", timeout=self.ddp_timeout_delta) device = torch.device("cuda", self.local_rank) self._n_gpu = 1 if device.type == "cuda": torch.cuda.set_device(device) return device @property def world_size(self): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def place_model_on_device(self): return not is_sagemaker_model_parallel_available() @property def _no_sync_in_gradient_accumulation(self): return False
transformers/src/transformers/sagemaker/training_args_sm.py/0
{ "file_path": "transformers/src/transformers/sagemaker/training_args_sm.py", "repo_id": "transformers", "token_count": 2130 }
352
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore CHAT_MESSAGE_PROMPT = """ Human: <<task>> Assistant: """ DEFAULT_PROMPTS_REPO = "huggingface-tools/default-prompts" PROMPT_FILES = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def download_prompt(prompt_or_repo_id, agent_name, mode="run"): """ Downloads and caches the prompt from a repo and returns it contents (if necessary) """ if prompt_or_repo_id is None: prompt_or_repo_id = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s", prompt_or_repo_id) is not None: return prompt_or_repo_id prompt_file = cached_file( prompt_or_repo_id, PROMPT_FILES[mode], repo_type="dataset", user_agent={"agent": agent_name} ) with open(prompt_file, "r", encoding="utf-8") as f: return f.read()
transformers/src/transformers/tools/prompts.py/0
{ "file_path": "transformers/src/transformers/tools/prompts.py", "repo_id": "transformers", "token_count": 541 }
353
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from huggingface_hub import get_full_repo_name # for backward compatibility from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY as DISABLE_TELEMETRY # for backward compatibility from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushInProgress, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ACCELERATE_MIN_VERSION, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_auto_awq_available, is_auto_gptq_available, is_bitsandbytes_available, is_bs4_available, is_coloredlogs_available, is_cv2_available, is_cython_available, is_datasets_available, is_decord_available, is_detectron2_available, is_essentia_available, is_faiss_available, is_flash_attn_2_available, is_flash_attn_available, is_flash_attn_greater_or_equal_2_10, is_flax_available, is_fsdp_available, is_ftfy_available, is_g2p_en_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jinja_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_levenshtein_available, is_librosa_available, is_natten_available, is_ninja_available, is_nltk_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_pretty_midi_available, is_protobuf_available, is_psutil_available, is_py3nvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tf2onnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bf16_available, is_torch_bf16_available_on_device, is_torch_bf16_cpu_available, is_torch_bf16_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fp16_available_on_device, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_npu_available, is_torch_sdpa_available, is_torch_tensorrt_fx_available, is_torch_tf32_available, is_torch_tpu_available, is_torch_xpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) from .peft_utils import ( ADAPTER_CONFIG_NAME, ADAPTER_SAFE_WEIGHTS_NAME, ADAPTER_WEIGHTS_NAME, check_peft_version, find_adapter_config_file, ) WEIGHTS_NAME = "pytorch_model.bin" WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json" TF2_WEIGHTS_NAME = "tf_model.h5" TF2_WEIGHTS_INDEX_NAME = "tf_model.h5.index.json" TF_WEIGHTS_NAME = "model.ckpt" FLAX_WEIGHTS_NAME = "flax_model.msgpack" FLAX_WEIGHTS_INDEX_NAME = "flax_model.msgpack.index.json" SAFE_WEIGHTS_NAME = "model.safetensors" SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json" CONFIG_NAME = "config.json" FEATURE_EXTRACTOR_NAME = "preprocessor_config.json" IMAGE_PROCESSOR_NAME = FEATURE_EXTRACTOR_NAME PROCESSOR_NAME = "processor_config.json" GENERATION_CONFIG_NAME = "generation_config.json" MODEL_CARD_NAME = "modelcard.json" SENTENCEPIECE_UNDERLINE = "▁" SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility MULTIPLE_CHOICE_DUMMY_INPUTS = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
transformers/src/transformers/utils/__init__.py/0
{ "file_path": "transformers/src/transformers/utils/__init__.py", "repo_id": "transformers", "token_count": 3201 }
354
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class AlbertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BartTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BarthezTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BigBirdTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BlenderbotTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BlenderbotSmallTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class BloomTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class CamembertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class CLIPTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class CodeLlamaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class CodeGenTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class ConvBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class CpmTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class DebertaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class DebertaV2TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class RetriBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class DistilBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class DPRContextEncoderTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class DPRQuestionEncoderTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class DPRReaderTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class ElectraTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class FNetTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class FunnelTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class GPT2TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class GPTNeoXTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class GPTNeoXJapaneseTokenizer(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class HerbertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LayoutLMTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LayoutLMv2TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LayoutLMv3TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LayoutXLMTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LEDTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LlamaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LongformerTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class LxmertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MarkupLMTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MBartTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MBart50TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MobileBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MPNetTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MT5TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class MvpTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class NllbTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class NougatTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class OpenAIGPTTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class PegasusTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class Qwen2TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class RealmTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class ReformerTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class RemBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class RobertaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class RoFormerTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class SeamlessM4TTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class SplinterTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class SqueezeBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class T5TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class WhisperTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class XGLMTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class XLMRobertaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class XLNetTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"]) class PreTrainedTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
transformers/src/transformers/utils/dummy_tokenizers_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_tokenizers_objects.py", "repo_id": "transformers", "token_count": 4238 }
355
# coding=utf-8 # Copyright 2022 {{cookiecutter.authors}}. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the {{cookiecutter.modelname}} tokenizer. """ import unittest {% if cookiecutter.has_slow_class == "True" and cookiecutter.has_fast_class == "True" -%} from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}TokenizerFast {% elif cookiecutter.has_slow_class == "True" -%} from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer {% elif cookiecutter.has_fast_class == "True" -%} from transformers import {{cookiecutter.camelcase_modelname}}TokenizerFast {% endif -%} {% if cookiecutter.has_fast_class == "True" and cookiecutter.slow_tokenizer_use_sentencepiece == "True" -%} from transformers.testing_utils import require_sentencepiece, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_sentencepiece @require_tokenizers {% elif cookiecutter.slow_tokenizer_use_sentencepiece == "True" -%} from transformers.testing_utils import require_sentencepiece from ...test_tokenization_common import TokenizerTesterMixin @require_sentencepiece {% elif cookiecutter.has_fast_class == "True" -%} from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers {% else -%} from ...test_tokenization_common import TokenizerTesterMixin {% endif -%} class {{cookiecutter.camelcase_modelname}}TokenizationTest(TokenizerTesterMixin, unittest.TestCase): {% if cookiecutter.has_slow_class == "True" -%} tokenizer_class = {{cookiecutter.camelcase_modelname}}Tokenizer test_slow_tokenizer = True {% else -%} tokenizer_class = None test_slow_tokenizer = False {% endif -%} {% if cookiecutter.has_fast_class == "True" -%} rust_tokenizer_class = {{cookiecutter.camelcase_modelname}}TokenizerFast test_rust_tokenizer = True {% else -%} rust_tokenizer_class = None test_rust_tokenizer = False {% endif -%} {% if cookiecutter.slow_tokenizer_use_sentencepiece == "True" -%} test_sentencepiece = True {% endif -%} # TODO: Check in `TokenizerTesterMixin` if other attributes need to be changed def setUp(self): super().setUp() raise NotImplementedError( "Here you have to implement the saving of a toy tokenizer in " "`self.tmpdirname`." ) # TODO: add tests with hard-coded target values
transformers/templates/adding_a_missing_tokenization_test/cookiecutter-template-{{cookiecutter.modelname}}/test_tokenization_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_missing_tokenization_test/cookiecutter-template-{{cookiecutter.modelname}}/test_tokenization_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 1016 }
356
## Copyright 2022 The HuggingFace Team. All rights reserved. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## This file is made so that specific statements may be copied inside existing files. This is useful to copy ## import statements in __init__.py, or to complete model lists in the AUTO files. ## ## It is to be used as such: ## Put '# To replace in: "FILE_PATH"' in order to indicate the contents will be copied in the file at path FILE_PATH ## Put '# Below: "STATEMENT"' in order to copy the contents below **the first occurrence** of that line in the file at FILE_PATH ## Put '# Replace with:' followed by the lines containing the content to define the content ## End a statement with '# End.'. If starting a new statement without redefining the FILE_PATH, it will continue pasting ## content in that file. ## ## Put '## COMMENT' to comment on the file. # To replace in: "src/transformers/__init__.py" # Below: " # PyTorch models structure" if generating PyTorch # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "{{cookiecutter.camelcase_modelname}}ForMaskedLM", "{{cookiecutter.camelcase_modelname}}ForCausalLM", "{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "{{cookiecutter.camelcase_modelname}}ForTokenClassification", "{{cookiecutter.camelcase_modelname}}Layer", "{{cookiecutter.camelcase_modelname}}Model", "{{cookiecutter.camelcase_modelname}}PreTrainedModel", "load_tf_weights_in_{{cookiecutter.lowercase_modelname}}", ] ) {% else %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "{{cookiecutter.camelcase_modelname}}ForCausalLM", "{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "{{cookiecutter.camelcase_modelname}}Model", "{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% endif -%} # End. # Below: " # TensorFlow models structure" if generating TensorFlow # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "TF{{cookiecutter.camelcase_modelname}}ForMaskedLM", "TF{{cookiecutter.camelcase_modelname}}ForCausalLM", "TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "TF{{cookiecutter.camelcase_modelname}}ForTokenClassification", "TF{{cookiecutter.camelcase_modelname}}Layer", "TF{{cookiecutter.camelcase_modelname}}Model", "TF{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% else %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "TF{{cookiecutter.camelcase_modelname}}Model", "TF{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% endif -%} # End. # Below: " # Flax models structure" if generating Flax # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM", "Flax{{cookiecutter.camelcase_modelname}}ForCausalLM", "Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification", "Flax{{cookiecutter.camelcase_modelname}}Layer", "Flax{{cookiecutter.camelcase_modelname}}Model", "Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% else %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "Flax{{cookiecutter.camelcase_modelname}}Model", "Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% endif -%} # End. # Below: " # Fast tokenizers structure" # Replace with: _import_structure["models.{{cookiecutter.lowercase_modelname}}"].append("{{cookiecutter.camelcase_modelname}}TokenizerFast") # End. # Below: " # Models" # Replace with: "models.{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP", "{{cookiecutter.camelcase_modelname}}Config", "{{cookiecutter.camelcase_modelname}}Tokenizer"], # End. # To replace in: "src/transformers/__init__.py" # Below: " # PyTorch model imports" if generating PyTorch # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} from .models.{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.camelcase_modelname}}ForMaskedLM, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForMultipleChoice, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}ForTokenClassification, {{cookiecutter.camelcase_modelname}}Layer, {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}PreTrainedModel, load_tf_weights_in_{{cookiecutter.lowercase_modelname}}, ) {% else %} from .models.{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif -%} # End. # Below: " # TensorFlow model imports" if generating TensorFlow # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} from .models.{{cookiecutter.lowercase_modelname}} import ( TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}Layer, TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% else %} from .models.{{cookiecutter.lowercase_modelname}} import ( TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif -%} # End. # Below: " # Flax model imports" if generating Flax # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} from .models.{{cookiecutter.lowercase_modelname}} import ( Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM, Flax{{cookiecutter.camelcase_modelname}}ForCausalLM, Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice, Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification, Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification, Flax{{cookiecutter.camelcase_modelname}}Layer, Flax{{cookiecutter.camelcase_modelname}}Model, Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% else %} from .models.{{cookiecutter.lowercase_modelname}} import ( Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification, Flax{{cookiecutter.camelcase_modelname}}Model, Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif -%} # End. # Below: " # Fast tokenizers imports" # Replace with: from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}TokenizerFast # End. # Below: " from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig" # Replace with: from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Tokenizer # End. # To replace in: "src/transformers/models/__init__.py" # Below: "from . import (" # Replace with: {{cookiecutter.lowercase_modelname}}, # End. # To replace in: "src/transformers/models/auto/configuration_auto.py" # Below: "# Add configs here" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}Config"), # End. # Below: "# Add archive maps here" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP"), # End. # Below: "# Add full (and cased) model names here" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}"), # End. # To replace in: "src/transformers/models/auto/modeling_auto.py" if generating PyTorch # Below: "# Base model mapping" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}Model"), # End. # Below: "# Model with LM heads mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForMaskedLM"), {% else %} ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForConditionalGeneration"), {% endif -%} # End. # Below: "# Model for Causal LM mapping" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForCausalLM"), # End. # Below: "# Model for Masked LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForMaskedLM"), {% else -%} {% endif -%} # End. # Below: "# Model for Sequence Classification mapping" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification"), # End. # Below: "# Model for Question Answering mapping" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering"), # End. # Below: "# Model for Token Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForTokenClassification"), {% else -%} {% endif -%} # End. # Below: "# Model for Multiple Choice mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForMultipleChoice"), {% else -%} {% endif -%} # End. # Below: "# Model for Seq2Seq Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else %} ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}ForConditionalGeneration"), {% endif -%} # End. # To replace in: "src/transformers/models/auto/modeling_tf_auto.py" if generating TensorFlow # Below: "# Base model mapping" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}Model"), # End. # Below: "# Model with LM heads mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForMaskedLM"), {% else %} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration"), {% endif -%} # End. # Below: "# Model for Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForCausalLM"), {% else -%} {% endif -%} # End. # Below: "# Model for Masked LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForMaskedLM"), {% else -%} {% endif -%} # End. # Below: "# Model for Sequence Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification"), {% else -%} {% endif -%} # End. # Below: "# Model for Question Answering mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering"), {% else -%} {% endif -%} # End. # Below: "# Model for Token Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForTokenClassification"), {% else -%} {% endif -%} # End. # Below: "# Model for Multiple Choice mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice"), {% else -%} {% endif -%} # End. # Below: "# Model for Seq2Seq Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else %} ("{{cookiecutter.lowercase_modelname}}", "TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration"), {% endif -%} # End. # To replace in: "src/transformers/models/auto/modeling_flax_auto.py" if generating Flax # Below: "# Base model mapping" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}Model"), # End. # Below: "# Model for Masked LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM"), {% else %} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration"), {% endif -%} # End. # Below: "# Model for Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForCausalLM"), {% else -%} {% endif -%} # End. # Below: "# Model for Masked LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM"), {% else -%} {% endif -%} # End. # Below: "# Model for Sequence Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification"), {% else %} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification"), {% endif -%} # End. # Below: "# Model for Question Answering mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering"), {% else %} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering"), {% endif -%} # End. # Below: "# Model for Token Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification"), {% else -%} {% endif -%} # End. # Below: "# Model for Multiple Choice mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice"), {% else -%} {% endif -%} # End. # Below: "# Model for Seq2Seq Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else %} ("{{cookiecutter.lowercase_modelname}}", "Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration"), {% endif -%} # End. # To replace in: "utils/check_repo.py" if generating PyTorch # Below: "models to ignore for model xxx mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} "{{cookiecutter.camelcase_modelname}}Encoder", "{{cookiecutter.camelcase_modelname}}Decoder", "{{cookiecutter.camelcase_modelname}}DecoderWrapper", {% endif -%} # End. # Below: "models to ignore for not tested" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} "{{cookiecutter.camelcase_modelname}}Encoder", # Building part of bigger (tested) model. "{{cookiecutter.camelcase_modelname}}Decoder", # Building part of bigger (tested) model. "{{cookiecutter.camelcase_modelname}}DecoderWrapper", # Building part of bigger (tested) model. {% endif -%} # End.
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/to_replace_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/to_replace_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 7744 }
357
# coding=utf-8 # Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeq2SeqLM, TFAutoModelForSpeechSeq2Seq, TFAutoModelForVision2Seq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) from transformers.modeling_tf_utils import keras if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class UtilsFunctionsTest(unittest.TestCase): # tests whether the top_k_top_p_filtering function behaves as expected def test_top_k_top_p_filtering(self): logits = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ], dtype=tf.float32, ) non_inf_expected_idx = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32, ) # expected non filtered idx as noted above non_inf_expected_output = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023], dtype=tf.float32, ) # expected non filtered values as noted above output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4) non_inf_output = output[output != -float("inf")] non_inf_idx = tf.cast( tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32, ) tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12) tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx) @require_tf class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): framework_dependent_parameters = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeq2Seq, "AutoModelForSeq2SeqLM": TFAutoModelForSeq2SeqLM, "AutoModelForVision2Seq": TFAutoModelForVision2Seq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def test_generate_tf_function_export_fixed_input_length(self): # TF-only test: tf.saved_model export test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_length = 2 max_new_tokens = 2 class DummyModel(tf.Module): def __init__(self, model): super(DummyModel, self).__init__() self.model = model @tf.function( input_signature=( tf.TensorSpec((None, input_length), tf.int32, name="input_ids"), tf.TensorSpec((None, input_length), tf.int32, name="attention_mask"), ), jit_compile=True, ) def serving(self, input_ids, attention_mask): outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, return_dict_in_generate=True, ) return {"sequences": outputs["sequences"]} dummy_input_ids = [[2, 0], [102, 103]] dummy_attention_masks = [[1, 0], [1, 1]] dummy_model = DummyModel(model=test_model) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving}) serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"] for batch_size in range(1, len(dummy_input_ids) + 1): inputs = { "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } tf_func_outputs = serving_func(**inputs)["sequences"] tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens) tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs) @slow def test_generate_tf_function_export_fixed_batch_size(self): # TF-only test: tf.saved_model export test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") batch_size = 1 max_new_tokens = 2 class DummyModel(tf.Module): def __init__(self, model): super(DummyModel, self).__init__() self.model = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None), tf.int32, name="input_ids"), tf.TensorSpec((batch_size, None), tf.int32, name="attention_mask"), ), jit_compile=True, ) def serving(self, input_ids, attention_mask): outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, return_dict_in_generate=True, ) return {"sequences": outputs["sequences"]} dummy_input_ids = [[2], [102, 103]] dummy_attention_masks = [[1], [1, 1]] dummy_model = DummyModel(model=test_model) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving}) serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"] for input_row in range(len(dummy_input_ids)): inputs = { "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } tf_func_outputs = serving_func(**inputs)["sequences"] tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens) tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs) @slow @require_tensorflow_text def test_generate_tf_function_export_with_tf_tokenizer(self): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small", filename="spiece.model", local_dir=tmp_dir) class CompleteSentenceTransformer(keras.layers.Layer): def __init__(self): super().__init__() self.tokenizer = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(tmp_dir, "spiece.model"), "rb").read() ) self.model = TFAutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def call(self, inputs, *args, **kwargs): tokens = self.tokenizer.tokenize(inputs) input_ids, attention_mask = text.pad_model_inputs( tokens, max_seq_length=64, pad_value=self.model.config.pad_token_id ) outputs = self.model.generate(input_ids=input_ids, attention_mask=attention_mask) return self.tokenizer.detokenize(outputs) complete_model = CompleteSentenceTransformer() inputs = keras.layers.Input(shape=(1,), dtype=tf.string, name="inputs") outputs = complete_model(inputs) keras_model = keras.Model(inputs, outputs) keras_model.save(tmp_dir) def test_eos_token_id_int_and_list_top_k_top_sampling(self): # Has PT equivalent: this test relies on random sampling generation_kwargs = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } expectation = 14 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors="tf") model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") eos_token_id = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) eos_token_id = [638, 198] with tf.device(":/CPU:0"): tf.random.set_seed(0) generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_model_kwarg_encoder_signature_filtering(self): # Has PT equivalent: ample use of framework-specific code bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") article = """Hugging Face is a technology company based in New York and Paris.""" input_ids = bart_tokenizer(article, return_tensors="tf").input_ids bart_model = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") output = bart_model.generate(input_ids).numpy() # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and # saves the day. class FakeBart(TFBartForConditionalGeneration): def call(self, input_ids, foo=None, **kwargs): return super().call(input_ids, **kwargs) bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") fake_output = bart_model.generate(input_ids, foo="bar").numpy() self.assertTrue(np.array_equal(output, fake_output)) # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail # because it doesn't do signature filtering. class FakeEncoder(bart_model.model.encoder.__class__): def call(self, input_ids, **kwargs): return super().call(input_ids, **kwargs) fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared) bart_model.model.encoder = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) fake_output = bart_model.generate(input_ids).numpy() with self.assertRaises(ValueError): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(input_ids, foo="bar")
transformers/tests/generation/test_tf_utils.py/0
{ "file_path": "transformers/tests/generation/test_tf_utils.py", "repo_id": "transformers", "token_count": 7612 }
358
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BART model. """ import copy import tempfile import unittest import timeout_decorator # noqa from transformers import BartConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoModelForSequenceClassification, BartForCausalLM, BartForConditionalGeneration, BartForQuestionAnswering, BartForSequenceClassification, BartModel, BartTokenizer, pipeline, ) from transformers.models.bart.modeling_bart import BartDecoder, BartEncoder, shift_tokens_right def prepare_bart_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class BartModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id # forcing a certain token to be generated, sets all other tokens to -inf # if however the token to be generated is already at -inf then it can lead token # `nan` values and thus break generation self.forced_bos_token_id = None self.forced_eos_token_id = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_bart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return BartConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, forced_bos_token_id=self.forced_bos_token_id, forced_eos_token_id=self.forced_eos_token_id, ) def get_pipeline_config(self): config = self.get_config() config.max_position_embeddings = 100 config.vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BartModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = BartModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = BartEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = BartDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class BartHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): input_ids = torch.tensor( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=torch.long, device=torch_device, ) batch_size = input_ids.shape[0] config = BartConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def test_sequence_classification_forward(self): config, input_ids, batch_size = self._get_config_and_data() labels = _long_tensor([2] * batch_size).to(torch_device) model = BartForSequenceClassification(config) model.to(torch_device) outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=labels) expected_shape = torch.Size((batch_size, config.num_labels)) self.assertEqual(outputs["logits"].shape, expected_shape) self.assertIsInstance(outputs["loss"].item(), float) def test_question_answering_forward(self): config, input_ids, batch_size = self._get_config_and_data() sequence_labels = ids_tensor([batch_size], 2).to(torch_device) model = BartForQuestionAnswering(config) model.to(torch_device) outputs = model( input_ids=input_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.assertEqual(outputs["start_logits"].shape, input_ids.shape) self.assertEqual(outputs["end_logits"].shape, input_ids.shape) self.assertIsInstance(outputs["loss"].item(), float) @timeout_decorator.timeout(1) def test_lm_forward(self): config, input_ids, batch_size = self._get_config_and_data() lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size).to(torch_device) lm_model = BartForConditionalGeneration(config) lm_model.to(torch_device) outputs = lm_model(input_ids=input_ids, labels=lm_labels) expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) self.assertIsInstance(outputs["loss"].item(), float) def test_lm_uneven_forward(self): config = BartConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lm_model = BartForConditionalGeneration(config).to(torch_device) context = torch.tensor( [[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long ) summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long) outputs = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_generate_beam_search(self): input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], device=torch_device, dtype=torch.long) config = BartConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) lm_model = BartForConditionalGeneration(config).to(torch_device) lm_model.eval() max_length = 5 generated_ids = lm_model.generate( input_ids.clone(), do_sample=True, num_return_sequences=1, num_beams=2, no_repeat_ngram_size=3, max_length=max_length, ) self.assertEqual(generated_ids.shape, (input_ids.shape[0], max_length)) def test_shift_tokens_right(self): input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long) shifted = shift_tokens_right(input_ids, 1, 2) n_pad_before = input_ids.eq(1).float().sum() n_pad_after = shifted.eq(1).float().sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(n_pad_after, n_pad_before - 1) self.assertTrue(torch.eq(shifted[:, 0], 2).all()) @slow def test_tokenization(self): tokenizer = BartTokenizer.from_pretrained("facebook/bart-large") examples = [" Hello world", " DomDramg"] # need leading spaces for equality fairseq_results = [ torch.tensor([0, 20920, 232, 2]), torch.tensor([0, 11349, 495, 4040, 571, 2]), ] for ex, desired_result in zip(examples, fairseq_results): bart_toks = tokenizer.encode(ex, return_tensors="pt").squeeze() assert_tensors_close(desired_result.long(), bart_toks, prefix=ex) @require_torch_fp16 def test_generate_fp16(self): config, input_ids, batch_size = self._get_config_and_data() attention_mask = input_ids.ne(1).to(torch_device) model = BartForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_dummy_inputs(self): config, *_ = self._get_config_and_data() model = BartForConditionalGeneration(config).eval().to(torch_device) model(**model.dummy_inputs) def test_resize_tokens_embeddings_more(self): config, input_ids, _ = self._get_config_and_data() def _get_embs(m): return (m.get_input_embeddings().weight.data.clone(), m.get_output_embeddings().weight.data.clone()) model = BartForConditionalGeneration(config).eval().to(torch_device) input, output = _get_embs(model) self.assertTrue(torch.eq(input, output).all()) new_vocab_size = 45 model.resize_token_embeddings(new_vocab_size) input_new, output_new = _get_embs(model) self.assertEqual(input_new.shape, (new_vocab_size, config.d_model)) self.assertEqual(output_new.shape, (new_vocab_size, config.d_model)) self.assertTrue(torch.eq(input_new, output_new).all()) @require_torch class BartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (BartModel, BartForConditionalGeneration, BartForSequenceClassification, BartForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (BartForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": BartForConditionalGeneration, "feature-extraction": BartModel, "fill-mask": BartForConditionalGeneration, "question-answering": BartForQuestionAnswering, "summarization": BartForConditionalGeneration, "text-classification": BartForSequenceClassification, "text-generation": BartForCausalLM, "text2text-generation": BartForConditionalGeneration, "translation": BartForConditionalGeneration, "zero-shot": BartForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = False # Fix me Michael test_pruning = False def setUp(self): self.model_tester = BartModelTester(self) self.config_tester = ConfigTester(self, config_class=BartConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # BartForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (BartModel, BartForConditionalGeneration, BartForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = BartForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) @require_torch @slow class FastIntegrationTests(unittest.TestCase): """These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer.""" @cached_property def tok(self): return BartTokenizer.from_pretrained("facebook/bart-large") @cached_property def xsum_1_1_model(self): return BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1") def test_xsum_1_1_generation(self): hf = self.xsum_1_1_model tok = self.tok ARTICLE = ( "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes." ) EXPECTED = ( " The International Criminal Court (ICC) has announced that it has been announced by the International" " Criminal court." ) dct = tok(ARTICLE, return_tensors="pt") generated_ids = hf.generate(**dct, num_beams=4) result = tok.batch_decode(generated_ids, skip_special_tokens=True)[0] assert EXPECTED == result def test_xsum_1_1_batch_generation(self): # test batch batch = self.tok( [ "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories." " The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is" " based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted" ' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including' ' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination' " into the situation in Palestinian territories, paving the way for possible war crimes investigations" " against Israelis. As members of the court, Palestinians may be subject to counter-charges as well." " Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts" " to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony," ' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome' ' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he' ' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of' ' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was' ' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State' " of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a" ' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she' ' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize' " Palestine for joining the ICC should immediately end their pressure, and countries that support" " universal acceptance of the court's treaty should speak out to welcome its membership,\" said" " Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts" " to undermine international justice, not Palestine's decision to join a treaty to which over 100" ' countries around the world are members." In January, when the preliminary ICC examination was' " opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was" ' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s' ' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we' ' do not believe that it is eligible to join the ICC," the State Department said in a statement. It' ' urged the warring sides to resolve their differences through direct negotiations. "We will continue' ' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.' " But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows' " the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor" ' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."' " The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The" " inquiry will include alleged war crimes committed since June. The International Criminal Court was" " set up in 2002 to prosecute genocide, crimes against humanity and war crimes.", "The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted" " Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor" ' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A' " person who has such a video needs to immediately give it to the investigators.\" Robin's comments" " follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the" " French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was" " recovered from a phone at the wreckage site. The two publications described the supposed video, but" " did not post it on their websites. The publications said that they watched the video, which was" " found by a source close to the investigation. \"One can hear cries of 'My God' in several" ' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps' " of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy" ' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing' " scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident" " investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc" " Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the" ' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell' ' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."' " Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute" " in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working" " hand-in-hand with investigators. But none of the cell phones found so far have been sent to the" " institute, Menichini said. Asked whether staff involved in the search could have leaked a memory" ' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:' ' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are' ' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is' " something we did not know before. ... Overall we can say many things of the investigation weren't" ' revealed by the investigation at the beginning," he said. What was mental state of Germanwings' " co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled" " depression years before he took the controls of Germanwings Flight 9525, which he's accused of" " deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school" ' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email' " correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa" " said, included medical documents he submitted in connection with resuming his flight training. The" " announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle" " with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa," " whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday" ' as a "swift and seamless clarification" and said it was sharing the information and documents --' " including training and medical records -- with public prosecutors. Spohr traveled to the crash site" " Wednesday, where recovery teams have been working for the past week to recover human remains and" " plane debris scattered across a steep mountainside. He saw the crisis center set up in" " Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving" " families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no" " visible human remains were left at the site but recovery teams would keep searching. French" " President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the" " victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini" " said. Among those personal belongings could be more cell phones belonging to the 144 passengers and" " six crew on board. Check out the latest from our correspondents . The details about Lubitz's" " correspondence with the flight school during his training were among several developments as" " investigators continued to delve into what caused the crash and Lubitz's possible motive for" " downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical" ' certificate, had passed all his examinations and "held all the licenses required." Earlier, a' " spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal" " Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent" " psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting" " Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether" " Lubitz feared his medical condition would cause him to lose his pilot's license, a European" ' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part' " of his life,\" the source said, it's only one theory being considered. Another source, a law" " enforcement official briefed on the investigation, also told CNN that authorities believe the" " primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly" " because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor" " and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had" " psychological issues, the European government official said. But no matter what details emerge about" " his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the' " fact that maybe they weren't going to keep doing their job and they're upset about that and so" ' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels' " entitled to also take that rage and turn it outward on 149 other people who had nothing to do with" " the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of" " Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from" " Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff," " Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.", ], return_tensors="pt", padding="longest", truncation=True, ) generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4) result = self.tok.batch_decode(generated_ids, skip_special_tokens=True) assert ( result[0] == " The International Criminal Court (ICC) has announced that it has been announced by the International" " Criminal court." ) assert ( result[1] == " An investigation into the crash that killed at least 10 people in the French capital has been" " released by the French police investigating the crash." ) def test_encoder_equiv(self): # test batch batch = self.tok( [ "The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories." " The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is" " based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted" ' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including' ' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination' " into the situation in Palestinian territories, paving the way for possible war crimes investigations" " against Israelis. As members of the court, Palestinians may be subject to counter-charges as well." " Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts" " to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony," ' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome' ' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he' ' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of' ' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was' ' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State' " of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a" ' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she' ' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize' " Palestine for joining the ICC should immediately end their pressure, and countries that support" " universal acceptance of the court's treaty should speak out to welcome its membership,\" said" " Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts" " to undermine international justice, not Palestine's decision to join a treaty to which over 100" ' countries around the world are members." In January, when the preliminary ICC examination was' " opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was" ' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s' ' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we' ' do not believe that it is eligible to join the ICC," the State Department said in a statement. It' ' urged the warring sides to resolve their differences through direct negotiations. "We will continue' ' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.' " But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows' " the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor" ' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."' " The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The" " inquiry will include alleged war crimes committed since June. The International Criminal Court was" " set up in 2002 to prosecute genocide, crimes against humanity and war crimes.", "The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted" " Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor" ' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A' " person who has such a video needs to immediately give it to the investigators.\" Robin's comments" " follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the" " French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was" " recovered from a phone at the wreckage site. The two publications described the supposed video, but" " did not post it on their websites. The publications said that they watched the video, which was" " found by a source close to the investigation. \"One can hear cries of 'My God' in several" ' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps' " of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy" ' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing' " scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident" " investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc" " Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the" ' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell' ' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."' " Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute" " in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working" " hand-in-hand with investigators. But none of the cell phones found so far have been sent to the" " institute, Menichini said. Asked whether staff involved in the search could have leaked a memory" ' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:' ' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are' ' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is' " something we did not know before. ... Overall we can say many things of the investigation weren't" ' revealed by the investigation at the beginning," he said. What was mental state of Germanwings' " co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled" " depression years before he took the controls of Germanwings Flight 9525, which he's accused of" " deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school" ' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email' " correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa" " said, included medical documents he submitted in connection with resuming his flight training. The" " announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle" " with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa," " whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday" ' as a "swift and seamless clarification" and said it was sharing the information and documents --' " including training and medical records -- with public prosecutors. Spohr traveled to the crash site" " Wednesday, where recovery teams have been working for the past week to recover human remains and" " plane debris scattered across a steep mountainside. He saw the crisis center set up in" " Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving" " families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no" " visible human remains were left at the site but recovery teams would keep searching. French" " President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the" " victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini" " said. Among those personal belongings could be more cell phones belonging to the 144 passengers and" " six crew on board. Check out the latest from our correspondents . The details about Lubitz's" " correspondence with the flight school during his training were among several developments as" " investigators continued to delve into what caused the crash and Lubitz's possible motive for" " downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical" ' certificate, had passed all his examinations and "held all the licenses required." Earlier, a' " spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal" " Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent" " psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting" " Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether" " Lubitz feared his medical condition would cause him to lose his pilot's license, a European" ' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part' " of his life,\" the source said, it's only one theory being considered. Another source, a law" " enforcement official briefed on the investigation, also told CNN that authorities believe the" " primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly" " because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor" " and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had" " psychological issues, the European government official said. But no matter what details emerge about" " his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the' " fact that maybe they weren't going to keep doing their job and they're upset about that and so" ' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels' " entitled to also take that rage and turn it outward on 149 other people who had nothing to do with" " the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of" " Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from" " Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff," " Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.", ], return_tensors="pt", padding="longest", truncation=True, ) features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state expected = [[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]] assert_tensors_close(features[0, :3, :3], torch.tensor(expected), atol=1e-3) @require_torch @require_sentencepiece @require_tokenizers class BartModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return BartTokenizer.from_pretrained("facebook/bart-large") @slow def test_inference_no_head(self): model = BartModel.from_pretrained("facebook/bart-large").to(torch_device) input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = input_ids.ne(model.config.pad_token_id) with torch.no_grad(): output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3)) @slow def test_base_mask_filling(self): pbase = pipeline(task="fill-mask", model="facebook/bart-base") src_text = [" I went to the <mask>."] results = [x["token_str"] for x in pbase(src_text)] assert " bathroom" in results @slow def test_large_mask_filling(self): plarge = pipeline(task="fill-mask", model="facebook/bart-large") src_text = [" I went to the <mask>."] results = [x["token_str"] for x in plarge(src_text)] expected_results = [" bathroom", " gym", " wrong", " movies", " hospital"] self.assertListEqual(results, expected_results) @slow def test_mnli_inference(self): example_b = [0, 31414, 232, 328, 740, 1140, 69, 46078, 1588, 2, 1] input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], example_b]) model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli").to( torch_device ) # eval called in from_pre attention_mask = input_ids.ne(model.config.pad_token_id) # Test that model hasn't changed with torch.no_grad(): outputs = model(input_ids=input_ids, attention_mask=attention_mask) batched_logits = outputs.logits expected_shape = torch.Size((2, 3)) self.assertEqual(batched_logits.shape, expected_shape) expected_slice = torch.tensor([[0.1907, 1.4342, -1.0289]], device=torch_device) logits_arr = batched_logits[0].detach() # Test that padding does not change results input_ids_no_pad = _long_tensor([example_b[:-1]]) attention_mask_no_pad = input_ids_no_pad.ne(model.config.pad_token_id) with torch.no_grad(): logits2 = model(input_ids=input_ids_no_pad, attention_mask=attention_mask_no_pad).logits.squeeze() assert_tensors_close(batched_logits[1], logits2, atol=1e-3) assert_tensors_close(expected_slice, logits_arr, atol=1e-3) @slow def test_xsum_summarization_same_as_fairseq(self): model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-xsum").to(torch_device) tok = self.default_tokenizer PGE_ARTICLE = """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""" EXPECTED_SUMMARY = ( "California's largest power company has begun shutting off electricity to thousands of customers in the" " state." ) dct = tok.batch_encode_plus( [PGE_ARTICLE], max_length=1024, padding="max_length", truncation=True, return_tensors="pt", ).to(torch_device) hypotheses_batch = model.generate( input_ids=dct["input_ids"], attention_mask=dct["attention_mask"], num_beams=2, max_length=62, min_length=11, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True, decoder_start_token_id=model.config.eos_token_id, ) decoded = tok.batch_decode( hypotheses_batch, skip_special_tokens=True, ) self.assertEqual(EXPECTED_SUMMARY, decoded[0]) def test_xsum_config_generation_params(self): config = BartConfig.from_pretrained("facebook/bart-large-xsum") expected_params = {"num_beams": 6, "do_sample": False, "early_stopping": True, "length_penalty": 1.0} config_params = {k: getattr(config, k, "MISSING") for k, v in expected_params.items()} self.assertDictEqual(expected_params, config_params) @slow def test_cnn_summarization_same_as_fairseq(self): hf = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device) tok = BartTokenizer.from_pretrained("facebook/bart-large") FRANCE_ARTICLE = ( # @noq " Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) SHORTER_ARTICLE = ( " (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) # The below article tests that we don't add any hypotheses outside of the top n_beams IRAN_ARTICLE = ( " (CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) ARTICLE_SUBWAY = ( " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) dct = tok.batch_encode_plus( [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY], max_length=1024, padding="max_length", truncation_strategy="only_first", truncation=True, return_tensors="pt", ) self.assertEqual(1024, dct["input_ids"].shape[1]) hypotheses_batch = hf.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=2, ) assert hypotheses_batch[:, 1].eq(0).all().item() EXPECTED = [ "A French prosecutor says he is not aware of any video footage from on board the plane. Two German " "magazines claim to have found a cell phone video showing the crash. The publications say they watched " "the video, which was found by a source close to the investigation. All 150 on board Germanwings Flight " "9525 were killed.", "Palestinian Authority becomes 123rd member of the International Criminal Court. The move gives the court " "jurisdiction over alleged crimes in Palestinian territories. Israel and the United States opposed the " "Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki said it was a " "move toward greater justice.", "U.S. and its negotiating partners reached a strong framework agreement with Iran. Peter Bergen: The " "debate that has already begun will likely result in more heat than light. He says critics have made " "dubious assumptions and doubtful assertions. Bergen says the goal was to block Iran from building a " "nuclear weapon.", "Liana Barrientos, 39, has been married 10 times, sometimes within two weeks of each other. Prosecutors " "say the marriages were part of an immigration scam. She pleaded not guilty at State Supreme Court in the " "Bronx on Friday. If convicted, she faces up to four years in prison.", ] generated_summaries = tok.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated_summaries == EXPECTED @slow def test_contrastive_search_bart(self): article = ( " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device) input_ids = bart_tokenizer( article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt" ).input_ids.to(torch_device) outputs = bart_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64, num_beams=1) generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. " "Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is " "accused of being part of an immigration scam to get permanent residency. If convicted, she faces up " "to four years in" ], ) @slow def test_decoder_attention_mask(self): model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0).to( torch_device ) tokenizer = self.default_tokenizer sentence = "UN Chief Says There Is No <mask> in Syria" input_ids = tokenizer(sentence, return_tensors="pt").input_ids.to(torch_device) padding_size = 3 decoder_input_ids = torch.tensor( [ [model.config.decoder_start_token_id] + padding_size * [model.config.pad_token_id] + [model.config.bos_token_id] ], dtype=torch.long, device=torch_device, ) decoder_attention_mask = torch.where(decoder_input_ids == model.config.pad_token_id, 0, 1).to(torch_device) generated_ids = model.generate( input_ids=input_ids, use_cache=False, max_new_tokens=20, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) generated_sentence = tokenizer.batch_decode(generated_ids)[0] expected_sentence = "</s><pad><pad><pad><s>UN Chief Says There Is No Plan B for Peace in Syria</s>" self.assertEqual(generated_sentence, expected_sentence) class BartStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = BartConfig( vocab_size=self.vocab_size, d_model=self.d_model, encoder_layers=self.decoder_layers, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, attention_mask, lm_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.decoder_seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = BartDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = BartDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class BartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BartDecoder, BartForCausalLM) if is_torch_available() else () all_generative_model_classes = (BartForCausalLM,) if is_torch_available() else () fx_comptatible = True test_pruning = False is_encoder_decoder = False test_missing_keys = False def setUp( self, ): self.model_tester = BartStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=BartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return def test_save_load_fast_init_from_base(self): pass @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers/tests/models/bart/test_modeling_bart.py/0
{ "file_path": "transformers/tests/models/bart/test_modeling_bart.py", "repo_id": "transformers", "token_count": 35938 }
359
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BioGPT model. """ import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class BioGptModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return BioGptConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BioGptModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = BioGptForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_biogpt_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = BioGptModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_biogpt_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = BioGptModel(config=config).to(torch_device).eval() attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = BioGptForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_biogpt_weight_initialization(self, config, *args): model = BioGptModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def create_and_check_biogpt_for_token_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels model = BioGptForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BioGptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) all_generative_model_classes = (BioGptForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False def setUp(self): self.model_tester = BioGptModelTester(self) self.config_tester = ConfigTester(self, config_class=BioGptConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_biogpt_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*config_and_inputs) def test_biogpt_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_biogpt_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*config_and_inputs) def test_biogpt_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*config_and_inputs) def test_biogpt_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*config_and_inputs) @slow def test_batch_generation(self): model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(torch_device) tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BioGptModel.from_pretrained(model_name) self.assertIsNotNone(model) # Copied from tests.models.opt.test_modeling_opt.OPTModelTest.test_opt_sequence_classification_model with OPT->BioGpt,opt->biogpt,prepare_config_and_inputs->prepare_config_and_inputs_for_common def test_biogpt_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = BioGptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.opt.test_modeling_opt.OPTModelTest.test_opt_sequence_classification_model_for_multi_label with OPT->BioGpt,opt->biogpt,prepare_config_and_inputs->prepare_config_and_inputs_for_common def test_biogpt_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = BioGptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class BioGptModelIntegrationTest(unittest.TestCase): @slow def test_inference_lm_head_model(self): model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") input_ids = torch.tensor([[2, 4805, 9, 656, 21]]) output = model(input_ids)[0] vocab_size = 42384 expected_shape = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_biogpt_generation(self): tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("COVID-19 is", return_tensors="pt").to(torch_device) output_ids = model.generate( **tokenized, min_length=100, max_length=1024, num_beams=5, early_stopping=True, ) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
transformers/tests/models/biogpt/test_modeling_biogpt.py/0
{ "file_path": "transformers/tests/models/biogpt/test_modeling_biogpt.py", "repo_id": "transformers", "token_count": 8732 }
360
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Blip model. """ import inspect import os import tempfile import unittest import numpy as np import requests from transformers import BlipConfig, BlipTextConfig, BlipVisionConfig from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_torch_fp16, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipTextModel, BlipVisionModel, ) from transformers.models.blip.modeling_blip import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import BlipProcessor class BlipVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return BlipVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = BlipVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class BlipVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Blip does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (BlipVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = BlipVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=BlipVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Blip does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BlipVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class BlipTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def create_and_check_model(self, config, input_ids, input_mask): model = BlipTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BlipTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (BlipTextModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = BlipTextModelTester(self) self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Blip does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BlipTextModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_pt_tf_model_equivalence(self): super().test_pt_tf_model_equivalence(allow_missing_keys=True) class BlipModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = BlipModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_torch class BlipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (BlipModel,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": BlipModel, "image-to-text": BlipForConditionalGeneration} if is_torch_available() else {} ) fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = BlipModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for Blip def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save BlipConfig and check if we can load BlipVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save BlipConfig and check if we can load BlipTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = BlipTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BlipModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_pt_tf_model_equivalence(self): super().test_pt_tf_model_equivalence(allow_missing_keys=True) class BlipTextRetrievalModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = BlipModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict class BlipTextImageModelsModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = BlipModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "labels": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict class BlipVQAModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return BlipConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = BlipModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "labels": input_ids, "decoder_input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, } return config, inputs_dict @require_torch @require_vision class BlipVQAModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (BlipForQuestionAnswering,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = BlipVQAModelTester(self) def _prepare_inputs_for_vqa(self): _, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict["labels"] = inputs_dict["input_ids"] inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"] inputs_dict.pop("return_loss") return inputs_dict def test_class_name_consistency(self): """ Tests that all VQA models have a class name that ends with "ForQuestionAnswering" """ for model_class in self.all_model_classes: model = model_class(self.model_tester.get_config()) self.assertTrue( model.__class__.__name__.endswith("ForQuestionAnswering"), f"Class name should end with 'ForVisualQuestionAnswering' got {model.__class__.__name__}", ) def test_training(self): """ Tests that all VQA models can be trained on a single batch """ for model_class in self.all_model_classes: model = model_class(self.model_tester.get_config()).to(torch_device) model.train() loss = model(**self.model_tester.prepare_config_and_inputs_for_common()[1]).loss loss.backward() # verify the gradients are not None for name, param in model.named_parameters(): self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}") def test_forward_signature(self): """ Test if the forward function has the expected arguments. """ for model_class in self.all_model_classes: model = model_class(self.model_tester.get_config()) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so args are the first n entries args = list(signature.parameters.keys()) expected_args = [ "input_ids", "attention_mask", "labels", "decoder_input_ids", "decoder_attention_mask", ] for arg in expected_args: self.assertTrue( arg in args, f"Argument {arg} of forward function signature should include {arg}. Found {args}.", ) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass @require_torch class BlipTextRetrievalModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (BlipForImageTextRetrieval,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = BlipTextRetrievalModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass # override as the `logit_scale` parameter initilization is different for Blip def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save BlipConfig and check if we can load BlipVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save BlipConfig and check if we can load BlipTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = BlipTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BlipModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class BlipTextImageModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (BlipForConditionalGeneration,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = BlipTextImageModelsModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="BlipModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() # override as the `logit_scale` parameter initilization is different for Blip def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save BlipConfig and check if we can load BlipVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save BlipConfig and check if we can load BlipTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = BlipTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BlipModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch @slow class BlipModelIntegrationTest(unittest.TestCase): def test_inference_image_captioning(self): model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(torch_device) processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") image = prepare_img() # image only inputs = processor(images=image, return_tensors="pt").to(torch_device) predictions = model.generate(**inputs) # Test output self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]) # image and context context = ["a picture of"] inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device) predictions = model.generate(**inputs) # Test output self.assertEqual( predictions[0].tolist(), [30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102], ) @require_torch_accelerator @require_torch_fp16 def test_inference_image_captioning_fp16(self): model = BlipForConditionalGeneration.from_pretrained( "Salesforce/blip-image-captioning-base", torch_dtype=torch.float16 ).to(torch_device) processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") image = prepare_img() # image only inputs = processor(images=image, return_tensors="pt").to(torch_device, torch.float16) predictions = model.generate(**inputs) # Test output self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]) # image and context context = ["a picture of"] inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device, torch.float16) predictions = model.generate(**inputs) # Test output self.assertEqual( predictions[0].tolist(), [30522, 1037, 3861, 1997, 1037, 2450, 1998, 2014, 3899, 2006, 1996, 3509, 102], ) def test_inference_vqa(self): model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(torch_device) processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") image = prepare_img() text = "how many dogs are in the picture?" inputs = processor(image, text=text, return_tensors="pt").to(torch_device) out = model.generate(**inputs) # Test output self.assertEqual(out[0].tolist(), [30522, 1015, 102]) def test_inference_itm(self): model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco").to(torch_device) processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base-coco") image = prepare_img() text = "A woman and her dog sitting in a beach" inputs = processor(image, text, return_tensors="pt").to(torch_device) out_itm = model(**inputs) out = model(**inputs, use_itm_head=False) expected_scores = torch.Tensor([[0.0029, 0.9971]]) self.assertTrue(torch.allclose(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3)) self.assertTrue(torch.allclose(out[0].cpu(), torch.Tensor([[0.5162]]), rtol=1e-3, atol=1e-3))
transformers/tests/models/blip/test_modeling_blip.py/0
{ "file_path": "transformers/tests/models/blip/test_modeling_blip.py", "repo_id": "transformers", "token_count": 23968 }
361
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Bros model. """ import copy import unittest from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import is_torch_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BrosConfig, BrosForTokenClassification, BrosModel, BrosSpadeEEForTokenClassification, BrosSpadeELForTokenClassification, ) from transformers.models.bros.modeling_bros import ( BROS_PRETRAINED_MODEL_ARCHIVE_LIST, ) class BrosModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_bbox_first_token_mask=True, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_bbox_first_token_mask = use_bbox_first_token_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.seq_length, 8], 1) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) bbox_first_token_mask = None if self.use_bbox_first_token_mask: bbox_first_token_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.bool).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) token_labels = None if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) initial_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) subsequent_token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return ( config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ) def get_config(self): return BrosConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): model = BrosModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): config.num_labels = self.num_labels model = BrosForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_spade_ee_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): config.num_labels = self.num_labels model = BrosSpadeEEForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, bbox_first_token_mask=bbox_first_token_mask, token_type_ids=token_type_ids, initial_token_labels=token_labels, subsequent_token_labels=token_labels, ) self.parent.assertEqual(result.initial_token_logits.shape, (self.batch_size, self.seq_length, self.num_labels)) self.parent.assertEqual( result.subsequent_token_logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1) ) def create_and_check_for_spade_el_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ): config.num_labels = self.num_labels model = BrosSpadeELForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, bbox_first_token_mask=bbox_first_token_mask, token_type_ids=token_type_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.seq_length + 1)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, bbox_first_token_mask, token_labels, initial_token_labels, subsequent_token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class BrosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): test_pruning = False test_torchscript = False test_mismatched_shapes = False all_model_classes = ( ( BrosForTokenClassification, BrosSpadeEEForTokenClassification, BrosSpadeELForTokenClassification, BrosModel, ) if is_torch_available() else () ) all_generative_model_classes = () if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": BrosModel, "token-classification": BrosForTokenClassification} if is_torch_available() else {} ) # BROS requires `bbox` in the inputs which doesn't fit into the above 2 pipelines' input formats. # see https://github.com/huggingface/transformers/pull/26294 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): self.model_tester = BrosModelTester(self) self.config_tester = ConfigTester(self, config_class=BrosConfig, hidden_size=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class.__name__ in ["BrosForTokenClassification", "BrosSpadeELForTokenClassification"]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["bbox_first_token_mask"] = torch.ones( [self.model_tester.batch_size, self.model_tester.seq_length], dtype=torch.bool, device=torch_device, ) elif model_class.__name__ in ["BrosSpadeEEForTokenClassification"]: inputs_dict["initial_token_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["subsequent_token_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["bbox_first_token_mask"] = torch.ones( [self.model_tester.batch_size, self.model_tester.seq_length], dtype=torch.bool, device=torch_device, ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_multi_gpu_data_parallel_forward(self): super().test_multi_gpu_data_parallel_forward() def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_spade_ee_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_spade_ee_token_classification(*config_and_inputs) def test_for_spade_el_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_spade_el_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in BROS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BrosModel.from_pretrained(model_name) self.assertIsNotNone(model) def prepare_bros_batch_inputs(): attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) bbox = torch.tensor( [ [ [0.0000, 0.0000, 0.0000, 0.0000], [0.5223, 0.5590, 0.5787, 0.5720], [0.5853, 0.5590, 0.6864, 0.5720], [0.5853, 0.5590, 0.6864, 0.5720], [0.1234, 0.5700, 0.2192, 0.5840], [0.2231, 0.5680, 0.2782, 0.5780], [0.2874, 0.5670, 0.3333, 0.5780], [0.3425, 0.5640, 0.4344, 0.5750], [0.0866, 0.7770, 0.1181, 0.7870], [0.1168, 0.7770, 0.1522, 0.7850], [0.1535, 0.7750, 0.1864, 0.7850], [0.1890, 0.7750, 0.2572, 0.7850], [1.0000, 1.0000, 1.0000, 1.0000], ], [ [0.0000, 0.0000, 0.0000, 0.0000], [0.4396, 0.6720, 0.4659, 0.6850], [0.4698, 0.6720, 0.4843, 0.6850], [0.1575, 0.6870, 0.2021, 0.6980], [0.2047, 0.6870, 0.2730, 0.7000], [0.1299, 0.7010, 0.1430, 0.7140], [0.1299, 0.7010, 0.1430, 0.7140], [0.1562, 0.7010, 0.2441, 0.7120], [0.1562, 0.7010, 0.2441, 0.7120], [0.2454, 0.7010, 0.3150, 0.7120], [0.3176, 0.7010, 0.3320, 0.7110], [0.3333, 0.7000, 0.4029, 0.7140], [1.0000, 1.0000, 1.0000, 1.0000], ], ] ) input_ids = torch.tensor( [ [101, 1055, 8910, 1012, 5719, 3296, 5366, 3378, 2146, 2846, 10807, 13494, 102], [101, 2112, 1997, 3671, 6364, 1019, 1012, 5057, 1011, 4646, 2030, 2974, 102], ] ) return input_ids, bbox, attention_mask @require_torch class BrosModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = BrosModel.from_pretrained("jinho8345/bros-base-uncased").to(torch_device) input_ids, bbox, attention_mask = prepare_bros_batch_inputs() with torch.no_grad(): outputs = model( input_ids.to(torch_device), bbox.to(torch_device), attention_mask=attention_mask.to(torch_device), return_dict=True, ) # verify the logits expected_shape = torch.Size((2, 13, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-0.3074, 0.1363, 0.3143], [0.0925, -0.1155, 0.1050], [0.0221, 0.0003, 0.1285]] ).to(torch_device) torch.set_printoptions(sci_mode=False) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/bros/test_modeling_bros.py/0
{ "file_path": "transformers/tests/models/bros/test_modeling_bros.py", "repo_id": "transformers", "token_count": 8384 }
362
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch CLAP model. """ import inspect import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import is_torch_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapTextModel, ClapTextModelWithProjection, ) from transformers.models.clap.modeling_clap import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST class ClapAudioModelTester: def __init__( self, parent, batch_size=12, image_size=60, num_mel_bins=16, window_size=4, spec_size=64, patch_size=2, patch_stride=2, seq_length=16, freq_ratio=2, num_channels=3, is_training=True, hidden_size=32, patch_embeds_hidden_size=16, projection_dim=32, depths=[2, 2], num_hidden_layers=2, num_heads=[2, 2], intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_mel_bins = num_mel_bins self.window_size = window_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.depths = depths self.num_heads = num_heads self.num_attention_heads = num_heads[0] self.seq_length = seq_length self.spec_size = spec_size self.freq_ratio = freq_ratio self.patch_stride = patch_stride self.patch_embeds_hidden_size = patch_embeds_hidden_size self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_features = floats_tensor([self.batch_size, 1, self.hidden_size, self.num_mel_bins]) config = self.get_config() return config, input_features def get_config(self): return ClapAudioConfig( image_size=self.image_size, patch_size=self.patch_size, num_mel_bins=self.num_mel_bins, window_size=self.window_size, num_channels=self.num_channels, hidden_size=self.hidden_size, patch_stride=self.patch_stride, projection_dim=self.projection_dim, depths=self.depths, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, spec_size=self.spec_size, freq_ratio=self.freq_ratio, patch_embeds_hidden_size=self.patch_embeds_hidden_size, ) def create_and_check_model(self, config, input_features): model = ClapAudioModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_features) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_projection(self, config, input_features): model = ClapAudioModelWithProjection(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_features) self.parent.assertEqual(result.audio_embeds.shape, (self.batch_size, self.projection_dim)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_features = config_and_inputs inputs_dict = {"input_features": input_features} return config, inputs_dict @require_torch class ClapAudioModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as CLAP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (ClapAudioModel, ClapAudioModelWithProjection) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = ClapAudioModelTester(self) self.config_tester = ConfigTester(self, config_class=ClapAudioConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ClapAudioModel does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [2 * self.model_tester.patch_embeds_hidden_size, 2 * self.model_tester.patch_embeds_hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass") def test_retain_grad_hidden_states_attentions(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_features"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_projection(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_projection(*config_and_inputs) @unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass") def test_training(self): pass @unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClapAudioModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow def test_model_with_projection_from_pretrained(self): for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClapAudioModelWithProjection.from_pretrained(model_name) self.assertIsNotNone(model) self.assertTrue(hasattr(model, "audio_projection")) class ClapTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, projection_hidden_act="relu", ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.projection_hidden_act = projection_hidden_act def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return ClapTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, projection_hidden_act=self.projection_hidden_act, ) def create_and_check_model(self, config, input_ids, input_mask): model = ClapTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_with_projection(self, config, input_ids, input_mask): model = ClapTextModelWithProjection(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class ClapTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ClapTextModel, ClapTextModelWithProjection) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = ClapTextModelTester(self) self.config_tester = ConfigTester(self, config_class=ClapTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_projection(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_projection(*config_and_inputs) @unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass") def test_training(self): pass @unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="ClapTextModel does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClapTextModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow def test_model_with_projection_from_pretrained(self): for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClapTextModelWithProjection.from_pretrained(model_name) self.assertIsNotNone(model) self.assertTrue(hasattr(model, "text_projection")) class ClapModelTester: def __init__(self, parent, text_kwargs=None, audio_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if audio_kwargs is None: audio_kwargs = {} self.parent = parent self.text_model_tester = ClapTextModelTester(parent, **text_kwargs) self.audio_model_tester = ClapAudioModelTester(parent, **audio_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): _, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() _, input_features = self.audio_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, input_features def get_config(self): return ClapConfig.from_text_audio_configs( self.text_model_tester.get_config(), self.audio_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, input_features): model = ClapModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, input_features, attention_mask) self.parent.assertEqual( result.logits_per_audio.shape, (self.audio_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.audio_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, input_features = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "input_features": input_features, "return_loss": True, } return config, inputs_dict @require_torch class ClapModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (ClapModel,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": ClapModel} if is_torch_available() else {} fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = ClapModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="ClapModel does not have input/output embeddings") def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for CLAP def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] input_features = inputs_dict["input_features"] # CLAP needs input_features traced_model = torch.jit.trace(model, (input_ids, input_features)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_audio_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save ClapConfig and check if we can load ClapAudioConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) audio_config = ClapAudioConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.audio_config.to_dict(), audio_config.to_dict()) # Save ClapConfig and check if we can load ClapTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = ClapTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ClapModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch class ClapModelIntegrationTest(unittest.TestCase): paddings = ["repeatpad", "repeat", "pad"] def test_integration_unfused(self): EXPECTED_MEANS_UNFUSED = { "repeatpad": 0.0024, "pad": 0.0020, "repeat": 0.0023, } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[-1] model_id = "laion/clap-htsat-unfused" model = ClapModel.from_pretrained(model_id).to(torch_device) processor = ClapProcessor.from_pretrained(model_id) for padding in self.paddings: inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding).to( torch_device ) audio_embed = model.get_audio_features(**inputs) expected_mean = EXPECTED_MEANS_UNFUSED[padding] self.assertTrue( torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) ) def test_integration_fused(self): EXPECTED_MEANS_FUSED = { "repeatpad": 0.00069, "repeat": 0.00196, "pad": -0.000379, } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[-1] model_id = "laion/clap-htsat-fused" model = ClapModel.from_pretrained(model_id).to(torch_device) processor = ClapProcessor.from_pretrained(model_id) for padding in self.paddings: inputs = processor( audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding, truncation="fusion" ).to(torch_device) audio_embed = model.get_audio_features(**inputs) expected_mean = EXPECTED_MEANS_FUSED[padding] self.assertTrue( torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) ) def test_batched_fused(self): EXPECTED_MEANS_FUSED = { "repeatpad": 0.0010, "repeat": 0.0020, "pad": 0.0006, } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] model_id = "laion/clap-htsat-fused" model = ClapModel.from_pretrained(model_id).to(torch_device) processor = ClapProcessor.from_pretrained(model_id) for padding in self.paddings: inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding, truncation="fusion").to( torch_device ) audio_embed = model.get_audio_features(**inputs) expected_mean = EXPECTED_MEANS_FUSED[padding] self.assertTrue( torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) ) def test_batched_unfused(self): EXPECTED_MEANS_FUSED = { "repeatpad": 0.0016, "repeat": 0.0019, "pad": 0.0019, } librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] model_id = "laion/clap-htsat-unfused" model = ClapModel.from_pretrained(model_id).to(torch_device) processor = ClapProcessor.from_pretrained(model_id) for padding in self.paddings: inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding).to(torch_device) audio_embed = model.get_audio_features(**inputs) expected_mean = EXPECTED_MEANS_FUSED[padding] self.assertTrue( torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) )
transformers/tests/models/clap/test_modeling_clap.py/0
{ "file_path": "transformers/tests/models/clap/test_modeling_clap.py", "repo_id": "transformers", "token_count": 13255 }
363
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecAudio model. """ import math import unittest import numpy as np from datasets import load_dataset from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from transformers import Data2VecAudioConfig, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_soundfile, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Wav2Vec2Processor, ) from transformers.models.data2vec.modeling_data2vec_audio import _compute_mask_indices class Data2VecAudioModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, mask_time_prob=0.5, mask_time_length=2, vocab_size=32, num_adapter_layers=1, adapter_stride=2, tdnn_dim=(32, 32), tdnn_kernel=(5, 3), tdnn_dilation=(1, 2), xvector_output_dim=32, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.num_adapter_layers = num_adapter_layers self.adapter_stride = adapter_stride self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.scope = scope self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1 def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return Data2VecAudioConfig( hidden_size=self.hidden_size, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, mask_time_prob=self.mask_time_prob, mask_time_length=self.mask_time_length, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, num_adapter_layers=self.num_adapter_layers, adapter_stride=self.adapter_stride, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, ) def create_and_check_model(self, config, input_values, attention_mask): model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter(self, config, input_values, attention_mask): config.add_adapter = True model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 8 model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size), ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = Data2VecAudioForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = Data2VecAudioForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_xvector_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForXVector(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = Data2VecAudioForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with self.parent.assertRaises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class Data2VecAudioModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Data2VecAudioForCTC, Data2VecAudioModel, Data2VecAudioForSequenceClassification, Data2VecAudioForAudioFrameClassification, Data2VecAudioForXVector, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": Data2VecAudioForSequenceClassification, "automatic-speech-recognition": Data2VecAudioForCTC, "feature-extraction": Data2VecAudioModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = Data2VecAudioModelTester(self) self.config_tester = ConfigTester(self, config_class=Data2VecAudioConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_adapter(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter(*config_and_inputs) def test_model_with_adapter_proj_dim(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_xvector_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_xvector_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Data2VecAudio has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Data2VecAudio cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Data2VecAudio has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_flax_to_pt(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_pt_to_flax(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) def test_mask_feature_prob_ctc(self): model = Data2VecAudioForCTC.from_pretrained( "hf-internal-testing/tiny-random-data2vec-seq-class", mask_feature_prob=0.2, mask_feature_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) def test_mask_time_prob_ctc(self): model = Data2VecAudioForCTC.from_pretrained( "facebook/data2vec-audio-base-960h", mask_time_prob=0.2, mask_time_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 299, 32)) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = Data2VecAudioModel.from_pretrained("facebook/data2vec-audio-base") self.assertIsNotNone(model) @require_torch class Data2VecAudioUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_low_prob(self): # with these settings num_masked_spans=0.5, which means probabilistic rounding # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in # the other 5 out of 10, cases num_masked_spans=1 n_trials = 100 batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 count_dimensions_masked = 0 count_dimensions_not_masked = 0 for _ in range(n_trials): mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) num_masks = torch.sum(mask).item() if num_masks > 0: count_dimensions_masked += 1 else: count_dimensions_not_masked += 1 # as we test for at least 10 masked dimension and at least # 10 non-masked dimension, this test could fail with probability: # P(100 coin flips, at most 9 heads) = 1.66e-18 self.assertGreater(count_dimensions_masked, int(n_trials * 0.1)) self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1)) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) mask = torch.from_numpy(mask).to(torch_device) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_mask_indices_short_audio(self): batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) # force one example to be heavily padded attention_mask[0, 5:] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2 ) # make sure that non-padded examples cannot be padded self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any()) @require_torch @require_soundfile @slow class Data2VecAudioModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_ctc_normal(self): model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_batched(self): model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h").to(torch_device) processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with thousands of spectators were trivialities not worth thinking about", "his instant of panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
transformers/tests/models/data2vec/test_modeling_data2vec_audio.py/0
{ "file_path": "transformers/tests/models/data2vec/test_modeling_data2vec_audio.py", "repo_id": "transformers", "token_count": 13305 }
364
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Deformable DETR model. """ import inspect import math import unittest from typing import Dict, List, Tuple from transformers import DeformableDetrConfig, ResNetConfig, is_torch_available, is_vision_available from transformers.file_utils import cached_property from transformers.testing_utils import ( require_timm, require_torch, require_torch_accelerator, require_vision, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DeformableDetrForObjectDetection, DeformableDetrModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class DeformableDetrModelTester: def __init__( self, parent, batch_size=8, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_queries=12, num_channels=3, image_size=196, n_targets=8, num_labels=91, num_feature_levels=4, encoder_n_points=2, decoder_n_points=6, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.num_queries = num_queries self.num_channels = num_channels self.image_size = image_size self.n_targets = n_targets self.num_labels = num_labels self.num_feature_levels = num_feature_levels self.encoder_n_points = encoder_n_points self.decoder_n_points = decoder_n_points # we also set the expected seq length for both encoder and decoder self.encoder_seq_length = ( math.ceil(self.image_size / 8) ** 2 + math.ceil(self.image_size / 16) ** 2 + math.ceil(self.image_size / 32) ** 2 + math.ceil(self.image_size / 64) ** 2 ) self.decoder_seq_length = self.num_queries def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device) labels.append(target) config = self.get_config() return config, pixel_values, pixel_mask, labels def get_config(self): resnet_config = ResNetConfig( num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], hidden_act="relu", num_labels=3, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ) return DeformableDetrConfig( d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, num_queries=self.num_queries, num_labels=self.num_labels, num_feature_levels=self.num_feature_levels, encoder_n_points=self.encoder_n_points, decoder_n_points=self.decoder_n_points, use_timm_backbone=False, backbone=None, backbone_config=resnet_config, use_pretrained_backbone=False, ) def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def create_and_check_deformable_detr_model(self, config, pixel_values, pixel_mask, labels): model = DeformableDetrModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size)) def create_and_check_deformable_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): model = DeformableDetrForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) @require_torch class DeformableDetrModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (DeformableDetrModel, DeformableDetrForObjectDetection) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": DeformableDetrModel, "object-detection": DeformableDetrForObjectDetection} if is_torch_available() else {} ) is_encoder_decoder = True test_torchscript = False test_pruning = False test_head_masking = False test_missing_keys = False # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "DeformableDetrForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) target["masks"] = torch.ones( self.model_tester.n_targets, self.model_tester.image_size, self.model_tester.image_size, device=torch_device, dtype=torch.float, ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = DeformableDetrModelTester(self) self.config_tester = ConfigTester(self, config_class=DeformableDetrConfig, has_text_modality=False) def test_config(self): # we don't test common_properties and arguments_init as these don't apply for Deformable DETR self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() def test_deformable_detr_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deformable_detr_model(*config_and_inputs) def test_deformable_detr_object_detection_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deformable_detr_object_detection_head_model(*config_and_inputs) @unittest.skip(reason="Deformable DETR does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Deformable DETR does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="Deformable DETR is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="Deformable DETR does not use token embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.encoder_n_points, ], ) out_len = len(outputs) correct_outlen = 8 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Object Detection model returns pred_logits and pred_boxes if model_class.__name__ == "DeformableDetrForObjectDetection": correct_outlen += 2 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.decoder_n_points, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, self.model_tester.num_feature_levels, self.model_tester.encoder_n_points, ], ) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: print("Model class:", model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_retain_grad_hidden_states_attentions(self): # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) # we take the second output since last_hidden_state is the second item output = outputs[1] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_forward_auxiliary_loss(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.auxiliary_loss = True # only test for object detection and segmentation model for model_class in self.all_model_classes[1:]: model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) outputs = model(**inputs) self.assertIsNotNone(outputs.auxiliary_outputs) self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = ["pixel_values", "pixel_mask"] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else [] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["pixel_values", "pixel_mask"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_different_timm_backbone(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # let's pick a random timm backbone config.backbone = "tf_mobilenetv3_small_075" config.use_timm_backbone = True config.backbone_config = None for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "DeformableDetrForObjectDetection": expected_shape = ( self.model_tester.batch_size, self.model_tester.num_queries, self.model_tester.num_labels, ) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(outputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: print("Model class:", model_class) model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if param.requires_grad: if ( "level_embed" in name or "sampling_offsets.bias" in name or "value_proj" in name or "output_proj" in name or "reference_points" in name ): continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_two_stage_training(self): model_class = DeformableDetrForObjectDetection config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True config.two_stage = True config.auxiliary_loss = True config.with_box_refine = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_timm @require_vision @slow class DeformableDetrModelIntegrationTests(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("SenseTime/deformable-detr") if is_vision_available() else None def test_inference_object_detection_head(self): model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr").to(torch_device) image_processor = self.default_image_processor image = prepare_img() encoding = image_processor(images=image, return_tensors="pt").to(torch_device) pixel_values = encoding["pixel_values"].to(torch_device) pixel_mask = encoding["pixel_mask"].to(torch_device) with torch.no_grad(): outputs = model(pixel_values, pixel_mask) expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [[-9.6645, -4.3449, -5.8705], [-9.7035, -3.8504, -5.0724], [-10.5634, -5.3379, -7.5116]] ).to(torch_device) expected_boxes = torch.tensor( [[0.8693, 0.2289, 0.2492], [0.3150, 0.5489, 0.5845], [0.5563, 0.7580, 0.8518]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.3, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.7999, 0.7894, 0.6331, 0.4720, 0.4382]).to(torch_device) expected_labels = [17, 17, 75, 75, 63] expected_slice_boxes = torch.tensor([16.5028, 52.8390, 318.2544, 470.7841]).to(torch_device) self.assertEqual(len(results["scores"]), 5) self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) self.assertSequenceEqual(results["labels"].tolist(), expected_labels) self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) def test_inference_object_detection_head_with_box_refine_two_stage(self): model = DeformableDetrForObjectDetection.from_pretrained( "SenseTime/deformable-detr-with-box-refine-two-stage" ).to(torch_device) image_processor = self.default_image_processor image = prepare_img() encoding = image_processor(images=image, return_tensors="pt").to(torch_device) pixel_values = encoding["pixel_values"].to(torch_device) pixel_mask = encoding["pixel_mask"].to(torch_device) with torch.no_grad(): outputs = model(pixel_values, pixel_mask) expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape_logits) expected_logits = torch.tensor( [[-6.7108, -4.3213, -6.3777], [-8.9014, -6.1799, -6.7240], [-6.9315, -4.4735, -6.2298]] ).to(torch_device) expected_boxes = torch.tensor( [[0.2583, 0.5499, 0.4683], [0.7652, 0.9068, 0.4882], [0.5490, 0.2763, 0.0564]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) @require_torch_accelerator def test_inference_object_detection_head_equivalence_cpu_gpu(self): image_processor = self.default_image_processor image = prepare_img() encoding = image_processor(images=image, return_tensors="pt") pixel_values = encoding["pixel_values"] pixel_mask = encoding["pixel_mask"] # 1. run model on CPU model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr-single-scale") with torch.no_grad(): cpu_outputs = model(pixel_values, pixel_mask) # 2. run model on GPU model.to(torch_device) with torch.no_grad(): gpu_outputs = model(pixel_values.to(torch_device), pixel_mask.to(torch_device)) # 3. assert equivalence for key in cpu_outputs.keys(): assert torch.allclose(cpu_outputs[key], gpu_outputs[key].cpu(), atol=1e-4) expected_logits = torch.tensor( [[-9.9051, -4.2541, -6.4852], [-9.6947, -4.0854, -6.8033], [-10.0665, -5.8470, -7.7003]] ) assert torch.allclose(cpu_outputs.logits[0, :3, :3], expected_logits, atol=1e-4)
transformers/tests/models/deformable_detr/test_modeling_deformable_detr.py/0
{ "file_path": "transformers/tests/models/deformable_detr/test_modeling_deformable_detr.py", "repo_id": "transformers", "token_count": 14133 }
365
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Dinov2 model. """ import unittest from transformers import Dinov2Config from transformers.testing_utils import ( is_flaky, require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Dinov2Backbone, Dinov2ForImageClassification, Dinov2Model from transformers.models.dinov2.modeling_dinov2 import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class Dinov2ModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope # in Dinov2, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return Dinov2Config( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = Dinov2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_backbone(self, config, pixel_values, labels): model = Dinov2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) expected_size = self.image_size // config.patch_size self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size] ) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = Dinov2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size] ) # verify channels self.parent.assertEqual(len(model.channels), 1) # verify backbone works with apply_layernorm=False and reshape_hidden_states=False config.apply_layernorm = False config.reshape_hidden_states = False model = Dinov2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.seq_length, self.hidden_size] ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = Dinov2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = Dinov2ForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Dinov2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Dinov2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( Dinov2Model, Dinov2ForImageClassification, Dinov2Backbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": Dinov2Model, "image-classification": Dinov2ForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Dinov2ModelTester(self) self.config_tester = ConfigTester(self, config_class=Dinov2Config, has_text_modality=False, hidden_size=37) @is_flaky(max_attempts=3, description="`torch.nn.init.trunc_normal_` is flaky.") def test_initialization(self): super().test_initialization() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Dinov2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="Dinov2 does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): for model_name in DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Dinov2Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class Dinov2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("facebook/dinov2-base") if is_vision_available() else None @slow def test_inference_no_head(self): model = Dinov2Model.from_pretrained("facebook/dinov2-base").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the last hidden states expected_shape = torch.Size((1, 257, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-2.1747, -0.4729, 1.0936], [-3.2780, -0.8269, -0.9210], [-2.9129, 1.1284, -0.7306]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @require_torch class Dinov2BackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (Dinov2Backbone,) if is_torch_available() else () config_class = Dinov2Config has_attentions = False def setUp(self): self.model_tester = Dinov2ModelTester(self)
transformers/tests/models/dinov2/test_modeling_dinov2.py/0
{ "file_path": "transformers/tests/models/dinov2/test_modeling_dinov2.py", "repo_id": "transformers", "token_count": 5085 }
366
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.modeling_tf_utils import keras from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) # copied from tests.test_modeling_tf_roberta class TFEsmModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): model = TFEsmModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFEsmModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, encoder_hidden_states=encoder_hidden_states) # Also check the case where encoder outputs are not passed result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFEsmForMaskedLM(config=config) result = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFEsmForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFEsmModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFEsmModelTester(self) self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): """Test the base model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): """Test the base model as a decoder (of an encoder-decoder architecture) is_deocder=True + cross_attention + pass encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFEsmModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Protein models do not support embedding resizing.") def test_resize_token_embeddings(self): pass @unittest.skip("Protein models do not support embedding resizing.") def test_save_load_after_resize_token_embeddings(self): pass def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None @require_tf class TFEsmModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 33] self.assertEqual(list(output.numpy().shape), expected_shape) # compare the actual values for a slice. expected_slice = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-2)) @slow def test_inference_no_head(self): model = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
transformers/tests/models/esm/test_modeling_tf_esm.py/0
{ "file_path": "transformers/tests/models/esm/test_modeling_tf_esm.py", "repo_id": "transformers", "token_count": 5430 }
367
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch GPTNeoX model. """ import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class GPTNeoXModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_labels = None if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, input_ids, input_mask, token_labels def get_config(self): return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_decoder(self): config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs() config.is_decoder = True return config, input_ids, input_mask, token_labels def create_and_check_model(self, config, input_ids, input_mask): model = GPTNeoXModel(config=config) model.to(torch_device) model.eval() _ = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder(self, config, input_ids, input_mask): config.add_cross_attention = True model = GPTNeoXModel(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm(self, config, input_ids, input_mask, token_labels): model = GPTNeoXForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering(self, config, input_ids, input_mask, token_labels): config.num_labels = self.num_labels model = GPTNeoXForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification(self, config, input_ids, input_mask, token_labels): config.num_labels = self.num_labels model = GPTNeoXForSequenceClassification(config) model.to(torch_device) model.eval() sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification(self, config, input_ids, input_mask, token_labels): config.num_labels = self.num_labels model = GPTNeoXForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_decoder_model_past_large_inputs(self, config, input_ids, input_mask): config.is_decoder = True model = GPTNeoXForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True) output_from_no_past = output_from_no_past["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask, token_labels = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class GPTNeoXModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (GPTNeoXForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_missing_keys = False test_model_parallel = False test_head_masking = False def setUp(self): self.model_tester = GPTNeoXModelTester(self) self.config_tester = ConfigTester(self, config_class=GPTNeoXConfig, hidden_size=64, num_attention_heads=8) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(config, input_ids, input_mask) def test_model_as_decoder(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(config, input_ids, input_mask) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder(config, input_ids, input_mask) def test_decoder_model_past_large_inputs(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(config, input_ids, input_mask) def test_model_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_model_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_model_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_model_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = GPTNeoXModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = GPTNeoXModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class GPTNeoXLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_gptneox(self): tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped") for checkpointing in [True, False]: model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped") if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(torch_device) inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 expected_output = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" output_ids = model.generate(**inputs, do_sample=False, max_new_tokens=20) output_str = tokenizer.batch_decode(output_ids)[0] self.assertEqual(output_str, expected_output) def pythia_integration_test(self): model_name_or_path = "EleutherAI/pythia-70m" model = GPTNeoXForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16).to(torch_device) EXPECTED_LOGITS = torch.tensor([1069.0000, 228.7500, 1072.0000, 1072.0000, 1069.0000, 1068.0000, 1068.0000, 1071.0000, 1071.0000, 1071.0000, 1073.0000, 1070.0000, 1071.0000, 1075.0000, 1073.0000, 1075.0000, 1074.0000, 1069.0000, 1072.0000, 1071.0000, 1071.0000, 1071.0000, 1070.0000, 1069.0000, 1069.0000, 1069.0000, 1070.0000, 1075.0000, 1073.0000, 1074.0000]) # fmt: skip input_ids = [29, 93, 303, 64, 5478, 49651, 10394, 187, 34, 12939, 875] # alternative: tokenizer('<|im_start|>system\nA chat between') input_ids = torch.as_tensor(input_ids)[None].to(torch_device) outputs = model(input_ids)["logits"][:, -1][0, :30] self.assertTrue(torch.allclose(EXPECTED_LOGITS, outputs, atol=1e-5))
transformers/tests/models/gpt_neox/test_modeling_gpt_neox.py/0
{ "file_path": "transformers/tests/models/gpt_neox/test_modeling_gpt_neox.py", "repo_id": "transformers", "token_count": 7007 }
368
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch GroupViT model. """ import inspect import os import random import tempfile import unittest import numpy as np import requests from transformers import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig from transformers.testing_utils import is_pt_tf_cross_test, require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import GroupViTModel, GroupViTTextModel, GroupViTVisionModel from transformers.models.groupvit.modeling_groupvit import GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import CLIPProcessor class GroupViTVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, depths=[6, 3, 3], num_group_tokens=[64, 8, 0], num_output_groups=[64, 8, 8], num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.depths = depths self.num_hidden_layers = sum(depths) self.expected_num_hidden_layers = len(depths) + 1 self.num_group_tokens = num_group_tokens self.num_output_groups = num_output_groups self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope num_patches = (image_size // patch_size) ** 2 # no [CLS] token for GroupViT self.seq_length = num_patches def prepare_config_and_inputs(self): rng = random.Random(0) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size], rng=rng) config = self.get_config() return config, pixel_values def get_config(self): return GroupViTVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, depths=self.depths, num_group_tokens=self.num_group_tokens, num_output_groups=self.num_output_groups, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = GroupViTVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.num_output_groups[-1], self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class GroupViTVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as GROUPVIT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (GroupViTVisionModel,) if is_torch_available() else () test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = GroupViTVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=GroupViTVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="GroupViT does not use inputs_embeds") def test_inputs_embeds(self): pass @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self): import tensorflow as tf seed = 338 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) tf.random.set_seed(seed) return super().test_pt_tf_model_equivalence() def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) expected_num_attention_outputs = sum(g > 0 for g in self.model_tester.num_group_tokens) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions # GroupViT returns attention grouping of each stage self.assertEqual(len(attentions), sum(g > 0 for g in self.model_tester.num_group_tokens)) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions # GroupViT returns attention grouping of each stage self.assertEqual(len(attentions), expected_num_attention_outputs) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions # GroupViT returns attention grouping of each stage self.assertEqual(len(self_attentions), expected_num_attention_outputs) for i, self_attn in enumerate(self_attentions): if self_attn is None: continue self.assertListEqual( list(self_attentions[i].shape[-2:]), [ self.model_tester.num_output_groups[i], self.model_tester.num_output_groups[i - 1] if i > 0 else seq_len, ], ) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="GroupViTVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="GroupViTVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass # override since the attention mask from GroupViT is not used to compute loss, thus no grad def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] if config.is_encoder_decoder: # Seq2Seq models encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.decoder_hidden_states[0] decoder_hidden_states.retain_grad() if self.has_attentions: encoder_attentions = outputs.encoder_attentions[0] encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) if self.has_attentions: self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) else: # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: attentions = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNone(attentions.grad) @slow def test_model_from_pretrained(self): for model_name in GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GroupViTVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class GroupViTTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): rng = random.Random(0) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size, rng=rng) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return GroupViTTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask): model = GroupViTTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class GroupViTTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (GroupViTTextModel,) if is_torch_available() else () test_pruning = False test_head_masking = False def setUp(self): self.model_tester = GroupViTTextModelTester(self) self.config_tester = ConfigTester(self, config_class=GroupViTTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="GroupViTTextModel does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="GroupViTTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="GroupViTTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GroupViTTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class GroupViTModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = GroupViTTextModelTester(parent, **text_kwargs) self.vision_model_tester = GroupViTVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return GroupViTConfig.from_text_vision_configs( self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 ) def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = GroupViTModel(config).to(torch_device).eval() with torch.no_grad(): result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_torch class GroupViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GroupViTModel,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": GroupViTModel} if is_torch_available() else {} test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = GroupViTModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="hidden_states are tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="input_embeds are tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="GroupViTModel does not have input/output embeddings") def test_model_common_attributes(self): pass # overwritten from parent as this equivalent test needs a specific `seed` and hard to get a good one! def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-5, name="outputs", attributes=None): super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol=tol, name=name, attributes=attributes) @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self): import tensorflow as tf seed = 163 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) tf.random.set_seed(seed) return super().test_pt_tf_model_equivalence() # override as the `logit_scale` parameter initilization is different for GROUPVIT def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # GROUPVIT needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save GroupViTConfig and check if we can load GroupViTVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = GroupViTVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save GroupViTConfig and check if we can load GroupViTTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = GroupViTTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GroupViTModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch class GroupViTModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "nvidia/groupvit-gcc-yfcc" model = GroupViTModel.from_pretrained(model_name) processor = CLIPProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt" ) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[13.3523, 6.3629]]) self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
transformers/tests/models/groupvit/test_modeling_groupvit.py/0
{ "file_path": "transformers/tests/models/groupvit/test_modeling_groupvit.py", "repo_id": "transformers", "token_count": 12757 }
369
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class TestTokenizationLED(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = LEDTokenizer rust_tokenizer_class = LEDTokenizerFast test_rust_tokenizer = True def setUp(self): super().setUp() vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return "lower newer", "lower newer" @cached_property def default_tokenizer(self): return LEDTokenizer.from_pretrained("allenai/led-base-16384") @cached_property def default_tokenizer_fast(self): return LEDTokenizerFast.from_pretrained("allenai/led-base-16384") @require_torch def test_prepare_batch(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(expected_src_tokens, result) @require_torch def test_prepare_batch_empty_target_text(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertNotIn("labels", batch) self.assertNotIn("decoder_attention_mask", batch) @require_torch def test_tokenizer_as_target_length(self): tgt_text = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt") self.assertEqual(32, targets["input_ids"].shape[1]) @require_torch def test_prepare_batch_not_longer_than_maxlen(self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer( ["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt" ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual(batch.input_ids.shape, (2, 5122)) @require_torch def test_special_tokens(self): src_text = ["A long paragraph for summarization."] tgt_text = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: inputs = tokenizer(src_text, return_tensors="pt") targets = tokenizer(text_target=tgt_text, return_tensors="pt") input_ids = inputs["input_ids"] labels = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def test_global_attention_mask(self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: src_text = ["Summary of the text.", "Another summary."] expected_global_attention_mask = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] encoded_output = tokenizer(src_text, padding=False) encoded_output["global_attention_mask"] = [[0] * len(x) for x in encoded_output["input_ids"]] outputs = tokenizer.pad(encoded_output) self.assertSequenceEqual(outputs["global_attention_mask"], expected_global_attention_mask) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
transformers/tests/models/led/test_tokenization_led.py/0
{ "file_path": "transformers/tests/models/led/test_tokenization_led.py", "repo_id": "transformers", "token_count": 3789 }
370
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import warnings from transformers import AutoTokenizer, MarianConfig, MarianTokenizer, TranslationPipeline, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFMarianModel, TFMarianMTModel @require_tf class TFMarianModelTester: config_cls = MarianConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFMarianModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFMarianMTModel, TFMarianModel) if is_tf_available() else () all_generative_model_classes = (TFMarianMTModel,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFMarianMTModel, "feature-extraction": TFMarianModel, "summarization": TFMarianMTModel, "text2text-generation": TFMarianMTModel, "translation": TFMarianMTModel, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = False def setUp(self): self.model_tester = TFMarianModelTester(self) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @unittest.skip("Skipping for now, to fix @ArthurZ or @ydshieh") def test_pipeline_conversational(self): pass @require_tf class AbstractMarianIntegrationTest(unittest.TestCase): maxDiff = 1000 # show more chars for failing integration tests @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self) -> MarianTokenizer: return AutoTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): warnings.simplefilter("error") model: TFMarianMTModel = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) assert isinstance(model, TFMarianMTModel) c = model.config self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]]) self.assertEqual(c.max_length, 512) self.assertEqual(c.decoder_start_token_id, c.pad_token_id) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128 ) generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True) return generated_words @require_sentencepiece @require_tokenizers @require_tf class TestMarian_MT_EN(AbstractMarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks if pad_token_id logits not set to LARGE_NEGATIVE.""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers @require_tf class TestMarian_en_zh(AbstractMarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_en_zh(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers @require_tf class TestMarian_en_ROMANCE(AbstractMarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected() @unittest.skip("Skipping until #12647 is resolved.") @slow def test_pipeline(self): pipeline = TranslationPipeline(self.model, self.tokenizer, framework="tf") output = pipeline(self.src_text) self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
transformers/tests/models/marian/test_modeling_tf_marian.py/0
{ "file_path": "transformers/tests/models/marian/test_modeling_tf_marian.py", "repo_id": "transformers", "token_count": 5072 }
371
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MBART model. """ import copy import tempfile import unittest from transformers import MBartConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, BatchEncoding, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, ) from transformers.models.mbart.modeling_mbart import MBartDecoder, MBartEncoder def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class MBartModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id # forcing a certain token to be generated, sets all other tokens to -inf # if however the token to be generated is already at -inf then it can lead token # `nan` values and thus break generation self.forced_bos_token_id = None self.forced_eos_token_id = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return MBartConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, forced_bos_token_id=self.forced_bos_token_id, forced_eos_token_id=self.forced_eos_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = MBartModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = MBartModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = MBartEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = MBartDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class MBartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (MBartModel, MBartForConditionalGeneration, MBartForSequenceClassification, MBartForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (MBartForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": MBartForConditionalGeneration, "feature-extraction": MBartModel, "fill-mask": MBartForConditionalGeneration, "question-answering": MBartForQuestionAnswering, "summarization": MBartForConditionalGeneration, "text-classification": MBartForSequenceClassification, "text-generation": MBartForCausalLM, "text2text-generation": MBartForConditionalGeneration, "translation": MBartForConditionalGeneration, "zero-shot": MBartForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = False # Fix me Michael test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def setUp(self): self.model_tester = MBartModelTester(self) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # MBartForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MBartModel, MBartForConditionalGeneration, MBartForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = MBartForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_ensure_weights_are_shared(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.tie_word_embeddings = True model = MBartForConditionalGeneration(config) # MBart shares four weights. # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors. self.assertEqual( len( { model.get_output_embeddings().weight.data_ptr(), model.get_input_embeddings().weight.data_ptr(), model.base_model.decoder.embed_tokens.weight.data_ptr(), model.base_model.encoder.embed_tokens.weight.data_ptr(), } ), 1, ) config.tie_word_embeddings = False model = MBartForConditionalGeneration(config) # MBart shares four weights. # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors. self.assertEqual( len( { model.get_output_embeddings().weight.data_ptr(), model.get_input_embeddings().weight.data_ptr(), model.base_model.decoder.embed_tokens.weight.data_ptr(), model.base_model.encoder.embed_tokens.weight.data_ptr(), } ), 2, ) def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) @require_torch @require_sentencepiece @require_tokenizers class AbstractSeq2SeqIntegrationTest(unittest.TestCase): maxDiff = 1000 # longer string compare tracebacks checkpoint_name = None @classmethod def setUpClass(cls): cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False) return cls @cached_property def model(self): """Only load the model if needed.""" model = MBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device) if "cuda" in torch_device: model = model.half() return model @require_torch @require_sentencepiece @require_tokenizers class MBartEnroIntegrationTest(AbstractSeq2SeqIntegrationTest): checkpoint_name = "facebook/mbart-large-en-ro" src_text = [ " UN Chief Says There Is No Military Solution in Syria", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' " face decât să înrăutăţească violenţa şi mizeria pentru milioane de oameni.", ] expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, 250004] @slow def test_enro_generate_one(self): batch: BatchEncoding = self.tokenizer( ["UN Chief Says There Is No Military Solution in Syria"], return_tensors="pt" ).to(torch_device) translated_tokens = self.model.generate(**batch) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) self.assertEqual(self.tgt_text[0], decoded[0]) # self.assertEqual(self.tgt_text[1], decoded[1]) @slow def test_enro_generate_batch(self): batch: BatchEncoding = self.tokenizer(self.src_text, return_tensors="pt", padding=True, truncation=True).to( torch_device ) translated_tokens = self.model.generate(**batch) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) assert self.tgt_text == decoded def test_mbart_enro_config(self): mbart_models = ["facebook/mbart-large-en-ro"] expected = {"scale_embedding": True, "output_past": True} for name in mbart_models: config = MBartConfig.from_pretrained(name) for k, v in expected.items(): try: self.assertEqual(v, getattr(config, k)) except AssertionError as e: e.args += (name, k) raise def test_mbart_fast_forward(self): config = MBartConfig( vocab_size=99, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, add_final_layer_norm=True, ) lm_model = MBartForConditionalGeneration(config).to(torch_device) context = torch.tensor( [[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long ) summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long) result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(result.logits.shape, expected_shape) @require_torch @require_sentencepiece @require_tokenizers class MBartCC25IntegrationTest(AbstractSeq2SeqIntegrationTest): checkpoint_name = "facebook/mbart-large-cc25" src_text = [ " UN Chief Says There Is No Military Solution in Syria", " I ate lunch twice yesterday", ] tgt_text = ["Şeful ONU declară că nu există o soluţie militară în Siria", "to be padded"] @unittest.skip("This test is broken, still generates english") def test_cc25_generate(self): inputs = self.tokenizer([self.src_text[0]], return_tensors="pt").to(torch_device) translated_tokens = self.model.generate( input_ids=inputs["input_ids"].to(torch_device), decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"], ) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) self.assertEqual(self.tgt_text[0], decoded[0]) @slow def test_fill_mask(self): inputs = self.tokenizer(["One of the best <mask> I ever read!"], return_tensors="pt").to(torch_device) outputs = self.model.generate( inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id["en_XX"], num_beams=1 ) prediction: str = self.tokenizer.batch_decode( outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True )[0] self.assertEqual(prediction, "of the best books I ever read!") class MBartStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = MBartConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = MBartDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = MBartDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class MBartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MBartDecoder, MBartForCausalLM) if is_torch_available() else () all_generative_model_classes = (MBartForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = MBartStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers/tests/models/mbart/test_modeling_mbart.py/0
{ "file_path": "transformers/tests/models/mbart/test_modeling_mbart.py", "repo_id": "transformers", "token_count": 13301 }
372
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import MistralConfig, is_flax_available, is_tokenizers_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import jax.numpy as jnp from transformers.models.mistral.modeling_flax_mistral import ( FlaxMistralForCausalLM, FlaxMistralModel, ) if is_tokenizers_available(): from transformers import LlamaTokenizerFast class FlaxMistralModelTester: def __init__( self, parent, batch_size=2, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, window_size=7, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.window_size = window_size self.initializer_range = initializer_range self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = np.tril(np.ones((self.batch_size, self.seq_length))) config = MistralConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, use_cache=True, is_decoder=False, initializer_range=self.initializer_range, sliding_window=self.window_size, ) config.pad_token_id = config.eos_token_id return (config, input_ids, input_mask) # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.prepare_config_and_inputs_for_common def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward_with_attn_mask def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxMistralModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxMistralModel, FlaxMistralForCausalLM) if is_flax_available() else () all_generative_model_classes = (FlaxMistralForCausalLM,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxMistralModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("mistralai/Mistral-7B-v0.1", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @slow @require_flax class FlaxMistralIntegrationTest(unittest.TestCase): def setUp(self): self.model_id = "mistralai/Mistral-7B-v0.1" self.model = FlaxMistralForCausalLM.from_pretrained(self.model_id, from_pt=True) self.test_batch = jnp.arange(32).reshape(4, 8) + 1911 def test_model_logits(self): input_ids = jnp.array([[1, 306, 4658, 278, 6593, 310, 2834, 338]]) EXPECTED_MEAN = np.array([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]]) EXPECTED_SLICE = np.array([-5.8781,-5.8616,-0.1052,-4.7200,-5.8781,-5.8774,-5.8773,-5.8777,-5.8781,-5.8780,-5.8781,-5.8779,-1.0787,1.7583,-5.8779,-5.8780,-5.8783,-5.8778,-5.8776,-5.8781,-5.8784,-5.8778,-5.8778,-5.8777,-5.8779,-5.8778,-5.8776,-5.8780,-5.8779,-5.8781]) # fmt: skip flax_logits = self.model(input_ids).logits diff_mean = jnp.abs(flax_logits.mean(-1) - EXPECTED_MEAN).max() diff_slice = jnp.abs(flax_logits[0, 0, :30] - EXPECTED_SLICE).max() self.assertAlmostEqual(diff_mean, 0, places=3) self.assertAlmostEqual(diff_slice, 0, places=3) def test_generated_text(self): tokenizer = LlamaTokenizerFast.from_pretrained(self.model_id) tokenizer.pad_token_id = 2 EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I’m not a big""" prompt = "My favourite condiment is " inputs = tokenizer(prompt, return_tensors="np", truncation=True, padding=True) generated_ids = self.model.generate(**inputs, max_new_tokens=20, temperature=0).sequences generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(generated_text, EXPECTED_TEXT_COMPLETION)
transformers/tests/models/mistral/test_modeling_flax_mistral.py/0
{ "file_path": "transformers/tests/models/mistral/test_modeling_flax_mistral.py", "repo_id": "transformers", "token_count": 4641 }
373
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import pickle import tempfile import unittest from transformers import MT5Config, is_torch_available from transformers.models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from transformers.utils import is_torch_fx_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_fx_available(): from transformers.utils.fx import symbolic_trace if is_torch_available(): import torch from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, MT5EncoderModel, MT5ForConditionalGeneration, MT5ForQuestionAnswering, MT5ForSequenceClassification, MT5ForTokenClassification, MT5Model, ) from transformers.models.mt5.modeling_mt5 import MT5_PRETRAINED_MODEL_ARCHIVE_LIST # Copied from tests.models.t5.test_modeling_t5.T5ModelTester with T5->MT5 class MT5ModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, decoder_seq_length=7, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, scope=None, decoder_layers=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = decoder_layers def get_large_model_config(self): return MT5Config.from_pretrained("t5-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_pipeline_config(self): return MT5Config( vocab_size=166, # t5 forces 100 extra tokens d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def get_config(self): return MT5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def check_prepare_lm_labels_via_shift_left( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5Model(config=config) model.to(torch_device) model.eval() # make sure that lm_labels are correctly padded from the right lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id) # add casaul pad token mask triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not() lm_labels.masked_fill_(triangular_mask, self.pad_token_id) decoder_input_ids = model._shift_right(lm_labels) for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)): # first item self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id) if i < decoder_input_ids_slice.shape[-1]: if i < decoder_input_ids.shape[-1] - 1: # items before diagonal self.parent.assertListEqual( decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist() ) # pad items after diagonal if i < decoder_input_ids.shape[-1] - 2: self.parent.assertListEqual( decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist() ) else: # all items after square self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist()) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5Model(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_with_lm_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5ForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_with_sequence_classification_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device) model = MT5ForSequenceClassification(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=input_ids, labels=labels, ) # self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_decoder_model_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5Model(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5Model(config=config).get_decoder() model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5Model(config=config).get_decoder().to(torch_device).eval() # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_generate_with_past_key_values( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5ForConditionalGeneration(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = MT5Model(config=config).to(torch_device).half().eval() output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_encoder_decoder_shared_weights( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): for model_class in [MT5Model, MT5ForConditionalGeneration]: torch.manual_seed(0) model = model_class(config=config).to(torch_device).eval() # load state dict copies weights but does not tie them model.encoder.load_state_dict(model.decoder.state_dict(), strict=False) torch.manual_seed(0) tied_config = copy.deepcopy(config) tied_config.tie_encoder_decoder = True tied_model = model_class(config=tied_config).to(torch_device).eval() model_result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4 ) ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: tied_model.save_pretrained(tmpdirname) tied_model = model_class.from_pretrained(tmpdirname) tied_model.to(torch_device) tied_model.eval() # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4, ) ) def check_resize_embeddings_t5_v1_1( self, config, ): prev_vocab_size = config.vocab_size config.tie_word_embeddings = False model = MT5ForConditionalGeneration(config=config).to(torch_device).eval() model.resize_token_embeddings(prev_vocab_size - 10) self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10) self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, } return config, inputs_dict @require_torch # Copied from tests.models.t5.test_modeling_t5.T5ModelTest with T5->MT5 class MT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (MT5Model, MT5ForConditionalGeneration, MT5ForSequenceClassification, MT5ForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (MT5ForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": MT5ForConditionalGeneration, "feature-extraction": MT5Model, "question-answering": MT5ForQuestionAnswering, "summarization": MT5ForConditionalGeneration, "text-classification": MT5ForSequenceClassification, "text2text-generation": MT5ForConditionalGeneration, "translation": MT5ForConditionalGeneration, "zero-shot": MT5ForSequenceClassification, } if is_torch_available() else {} ) all_parallelizable_model_classes = (MT5Model, MT5ForConditionalGeneration) if is_torch_available() else () fx_compatible = True test_pruning = False test_resize_embeddings = True test_model_parallel = True is_encoder_decoder = True # The small MT5 model needs higher percentages for CPU/MP tests model_split_percents = [0.8, 0.9] def setUp(self): self.model_tester = MT5ModelTester(self) self.config_tester = ConfigTester(self, config_class=MT5Config, d_model=37) # `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file # `src/transformers/data/processors/squad.py` (where this test fails for this model) def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, processor_name ): if tokenizer_name is None: return True if pipeline_test_case_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): if not is_torch_fx_available() or not self.fx_compatible: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.return_dict = False for model_class in self.all_model_classes: if model_class.__name__ == "MT5ForSequenceClassification": continue model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) try: if model.config.is_encoder_decoder: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward labels = inputs.get("labels", None) input_names = [ "attention_mask", "decoder_attention_mask", "decoder_input_ids", "input_features", "input_ids", "input_values", ] if labels is not None: input_names.append("labels") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) model_output = model(**filtered_inputs) traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) else: input_names = [ "attention_mask", "bbox", "input_features", "input_ids", "input_values", "pixel_values", "token_type_ids", "visual_feats", "visual_pos", ] labels = inputs.get("labels", None) start_positions = inputs.get("start_positions", None) end_positions = inputs.get("end_positions", None) if labels is not None: input_names.append("labels") if start_positions is not None: input_names.append("start_positions") if end_positions is not None: input_names.append("end_positions") filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names} input_names = list(filtered_inputs.keys()) if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( not hasattr(model.config, "problem_type") or model.config.problem_type is None ): model.config.problem_type = "single_label_classification" traced_model = symbolic_trace(model, input_names) traced_output = traced_model(**filtered_inputs) model_output = model(**filtered_inputs) except Exception as e: self.fail(f"Couldn't trace module: {e}") def flatten_output(output): flatten = [] for x in output: if isinstance(x, (tuple, list)): flatten += flatten_output(x) elif not isinstance(x, torch.Tensor): continue else: flatten.append(x) return flatten model_output = flatten_output(model_output) traced_output = flatten_output(traced_output) num_outputs = len(model_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], traced_output[i]), f"traced {i}th output doesn't match model {i}th output for {model_class}", ) # Test that the model can be serialized and restored properly with tempfile.TemporaryDirectory() as tmp_dir_name: pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") try: with open(pkl_file_name, "wb") as f: pickle.dump(traced_model, f) with open(pkl_file_name, "rb") as f: loaded = pickle.load(f) except Exception as e: self.fail(f"Couldn't serialize / deserialize the traced model: {e}") loaded_output = loaded(**filtered_inputs) loaded_output = flatten_output(loaded_output) for i in range(num_outputs): self.assertTrue( torch.allclose(model_output[i], loaded_output[i]), f"serialized model {i}th output doesn't match model {i}th output for {model_class}", ) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_config(self): self.config_tester.run_common_tests() def test_shift_right(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # check that gated gelu feed forward and different word embeddings work config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_model(config, *config_and_inputs[1:]) # MT5ForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MT5Model, MT5ForConditionalGeneration, MT5ForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_config_and_model_silu_gated(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] config.feed_forward_proj = "gated-silu" self.model_tester.create_and_check_model(*config_and_inputs) def test_with_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_with_sequence_classification_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs) def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_past_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_decoder_model_past_with_3d_attn_mask(self): ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.model_tester.prepare_config_and_inputs() attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length], vocab_size=2, ) decoder_attention_mask = ids_tensor( [self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length], vocab_size=2, ) self.model_tester.create_and_check_decoder_model_attention_mask_past( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_generate_with_past_key_values(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_values(*config_and_inputs) def test_encoder_decoder_shared_weights(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def test_v1_1_resize_embeddings(self): config = self.model_tester.prepare_config_and_inputs()[0] self.model_tester.check_resize_embeddings_t5_v1_1(config) @slow def test_model_from_pretrained(self): for model_name in MT5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = MT5Model.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Test has a segmentation fault on torch 1.8.0") def test_export_to_onnx(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() model = MT5Model(config_and_inputs[0]).to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( model, (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), f"{tmpdirname}/t5_test.onnx", export_params=True, opset_version=9, input_names=["input_ids", "decoder_input_ids"], ) def test_generate_with_head_masking(self): attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] config_and_inputs = self.model_tester.prepare_config_and_inputs() config = config_and_inputs[0] max_length = config_and_inputs[1].shape[-1] + 3 model = MT5ForConditionalGeneration(config).eval() model.to(torch_device) head_masking = { "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device), "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device), } for attn_name, (name, mask) in zip(attention_names, head_masking.items()): head_masks = {name: mask} # Explicitly pass decoder_head_mask as it is required from MT5 model when head_mask specified if name == "head_mask": head_masks["decoder_head_mask"] = torch.ones( config.num_decoder_layers, config.num_heads, device=torch_device ) out = model.generate( config_and_inputs[1], num_beams=1, max_length=max_length, output_attentions=True, return_dict_in_generate=True, **head_masks, ) # We check the state of decoder_attentions and cross_attentions just from the last step attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_disk_offload(self): pass @unittest.skip("Does not support conversations.") def test_pipeline_conversational(self): pass # Copied from tests.models.t5.test_modeling_t5.T5EncoderOnlyModelTester with T5->MT5 class MT5EncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests use_attention_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, is_training=False, dropout_rate=0.1, initializer_factor=0.002, is_encoder_decoder=False, eos_token_id=1, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.use_attention_mask = use_attention_mask self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.is_encoder_decoder = is_encoder_decoder self.scope = None self.is_training = is_training def get_large_model_config(self): return MT5Config.from_pretrained("t5-base") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = MT5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def create_and_check_model( self, config, input_ids, attention_mask, ): model = MT5EncoderModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) def create_and_check_model_fp16_forward( self, config, input_ids, attention_mask, ): model = MT5EncoderModel(config=config).to(torch_device).half().eval() output = model(input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_with_token_classification_head( self, config, input_ids, attention_mask, ): labels = torch.tensor([1] * self.seq_length * self.batch_size, dtype=torch.long, device=torch_device) model = MT5ForTokenClassification(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, labels=labels, attention_mask=attention_mask, ) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.seq_length, config.num_labels)) self.parent.assertEqual(outputs["loss"].size(), ()) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict # Copied from tests.models.t5.test_modeling_t5.T5EncoderOnlyModelTest with T5->MT5 class MT5EncoderOnlyModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MT5EncoderModel, MT5ForTokenClassification) if is_torch_available() else () test_pruning = False test_resize_embeddings = False test_model_parallel = True pipeline_model_mapping = ( { "token-classification": MT5ForTokenClassification, } if is_torch_available() else {} ) all_parallelizable_model_classes = (MT5EncoderModel,) if is_torch_available() else () def setUp(self): self.model_tester = MT5EncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=MT5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) def test_with_token_classification_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_token_classification_head(*config_and_inputs) @require_torch @require_sentencepiece @require_tokenizers class MT5IntegrationTest(unittest.TestCase): @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>' >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-small", return_dict=True).to(torch_device) tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
transformers/tests/models/mt5/test_modeling_mt5.py/0
{ "file_path": "transformers/tests/models/mt5/test_modeling_mt5.py", "repo_id": "transformers", "token_count": 21202 }
374
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPT2Tokenizer, TFOPTForCausalLM, TFOPTModel def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class TFOPTModelTester: config_cls = OPTConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, embed_dim=16, word_embed_proj_dim=16, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.embed_dim = embed_dim self.word_embed_proj_dim = word_embed_proj_dim self.is_encoder_decoder = False def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) config = self.config_cls( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, word_embed_proj_dim=self.word_embed_proj_dim, is_encoder_decoder=False, **self.config_updates, ) inputs_dict = prepare_opt_inputs_dict(config, input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFOPTModel(config=config) input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) @require_tf class TFOPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () all_generative_model_classes = (TFOPTForCausalLM,) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) is_encoder_decoder = False test_pruning = False test_onnx = False onnx_min_opset = 10 def setUp(self): self.model_tester = TFOPTModelTester(self) self.config_tester = ConfigTester(self, config_class=OPTConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) def test_resize_token_embeddings(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(model, embedding_layer): if hasattr(embedding_layer, "weight"): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build_in_name_scope() if hasattr(embedding_layer, "weight"): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings model = model_class(config=config) old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(size) new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. assert_size = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], assert_size) # check that weights remain the same after resizing models_equal = True for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], assert_size) models_equal = True for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) def _long_tensor(tok_lst): return tf.constant(tok_lst, dtype=tf.int32) @require_tf class TFOPTHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): eos_column_vector = tf.ones((4, 1), dtype=tf.int32) * 2 input_ids = tf.concat([ids_tensor((4, 6), self.vocab_size - 3) + 3, eos_column_vector], axis=1) batch_size = input_ids.shape[0] config = OPTConfig( vocab_size=self.vocab_size, hidden_size=24, num_hidden_layers=2, num_attention_heads=2, ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size @require_sentencepiece @require_tf class OPTModelIntegrationTests(unittest.TestCase): @slow def test_inference_no_head(self): model = TFOPTModel.from_pretrained("facebook/opt-350m") input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = tf.not_equal(input_ids, model.config.pad_token_id) with tf.GradientTape(): output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state expected_shape = (1, 11, 512) self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3], expected_slice, atol=4e-3)) xla_generate = tf.function(model, jit_compile=True) output = xla_generate(input_ids, attention_mask)[0] self.assertTrue(np.allclose(output[:, :3, :3], expected_slice, atol=4e-2)) @require_tf @slow class TFOPTEmbeddingsTest(unittest.TestCase): def setUp(self): super().setUp() self.path_model = "facebook/opt-350m" def test_logits(self): model = TFOPTForCausalLM.from_pretrained(self.path_model) tokenizer = GPT2Tokenizer.from_pretrained(self.path_model) prompts = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False inputs = tokenizer(prompts, return_tensors="tf", padding=True, add_special_tokens=False) logits = tf.math.reduce_mean(model(inputs.input_ids, attention_mask=inputs.attention_mask)[0], axis=-1) logits_meta = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(logits, logits_meta, atol=1e-4)) xla_generate = tf.function(model, jit_compile=True) logits = tf.math.reduce_mean(xla_generate(inputs.input_ids, attention_mask=inputs.attention_mask)[0], axis=-1) self.assertTrue(np.allclose(logits, logits_meta, atol=1e-4)) @require_tf @slow class TFOPTGenerationTest(unittest.TestCase): @property def prompts(self): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def test_generation_pre_attn_layer_norm(self): model_id = "facebook/opt-125m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] predicted_outputs = [] tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = TFOPTForCausalLM.from_pretrained(model_id) for prompt in self.prompts: input_ids = tokenizer(prompt, return_tensors="tf").input_ids generated_ids = model.generate(input_ids, max_length=10) generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) predicted_outputs += generated_string self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) def test_batch_generation(self): model_id = "facebook/opt-350m" tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = TFOPTForCausalLM.from_pretrained(model_id) tokenizer.padding_side = "left" # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="tf", padding=True) input_ids = inputs["input_ids"] outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"]) inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1], tf.int64) ) inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence]) def test_generation_post_attn_layer_norm(self): model_id = "facebook/opt-350m" EXPECTED_OUTPUTS = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] predicted_outputs = [] tokenizer = GPT2Tokenizer.from_pretrained(model_id) model = TFOPTForCausalLM.from_pretrained(model_id) for prompt in self.prompts: input_ids = tokenizer(prompt, return_tensors="tf").input_ids generated_ids = model.generate(input_ids, max_length=10) generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) predicted_outputs += generated_string self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
transformers/tests/models/opt/test_modeling_tf_opt.py/0
{ "file_path": "transformers/tests/models/opt/test_modeling_tf_opt.py", "repo_id": "transformers", "token_count": 7496 }
375
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Pvt model. """ import unittest from transformers import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device, ) from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MODEL_MAPPING, PvtConfig, PvtForImageClassification, PvtImageProcessor, PvtModel from transformers.models.pvt.modeling_pvt import PVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class PvtConfigTester(ConfigTester): def run_common_tests(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class PvtModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[16, 32, 64, 128], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 2, 4, 8], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return PvtConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = PvtModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertIsNotNone(result.last_hidden_state) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = PvtForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = PvtForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch class PvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (PvtModel, PvtForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": PvtModel, "image-classification": PvtForImageClassification} if is_torch_available() else {} ) test_head_masking = False test_pruning = False test_resize_embeddings = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = PvtModelTester(self) self.config_tester = PvtConfigTester(self, config_class=PvtConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip("Pvt does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("Pvt does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, param in model.named_parameters(): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = sum(self.model_tester.depths) + 1 self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.batch_size, (self.model_tester.image_size // 4) ** 2, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @slow def test_model_from_pretrained(self): for model_name in PVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = PvtModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class PvtModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_classification(self): # only resize + normalize image_processor = PvtImageProcessor.from_pretrained("Zetatech/pvt-tiny-224") model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224").to(torch_device).eval() image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-1.4192, -1.9158, -0.9702]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_model(self): model = PvtModel.from_pretrained("Zetatech/pvt-tiny-224").to(torch_device).eval() image_processor = PvtImageProcessor.from_pretrained("Zetatech/pvt-tiny-224") image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass with torch.no_grad(): outputs = model(pixel_values) # verify the logits expected_shape = torch.Size((1, 50, 512)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-0.3086, 1.0402, 1.1816], [-0.2880, 0.5781, 0.6124], [0.1480, 0.6129, -0.0590]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @slow @require_accelerate @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): r""" A small test to make sure that inference work in half precision without any problem. """ model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224", torch_dtype=torch.float16) model.to(torch_device) image_processor = PvtImageProcessor(size=224) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device, dtype=torch.float16) # forward pass to make sure inference works in fp16 with torch.no_grad(): _ = model(pixel_values)
transformers/tests/models/pvt/test_modeling_pvt.py/0
{ "file_path": "transformers/tests/models/pvt/test_modeling_pvt.py", "repo_id": "transformers", "token_count": 5178 }
376
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ReformerConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, require_torch_multi_gpu, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerTokenizer, ) class ReformerModelTester: def __init__( self, parent, batch_size=13, seq_length=32, is_training=True, is_decoder=True, use_input_mask=True, use_labels=True, vocab_size=32, attention_head_size=16, hidden_size=32, num_attention_heads=2, local_attn_chunk_length=4, local_num_chunks_before=1, local_num_chunks_after=0, num_buckets=None, num_hashes=1, lsh_attn_chunk_length=None, lsh_num_chunks_before=None, lsh_num_chunks_after=None, chunk_size_lm_head=0, chunk_size_feed_forward=0, feed_forward_size=32, hidden_act="gelu", hidden_dropout_prob=0.1, local_attention_probs_dropout_prob=0.1, lsh_attention_probs_dropout_prob=None, max_position_embeddings=512, initializer_range=0.02, axial_norm_std=1.0, layer_norm_eps=1e-12, axial_pos_embds=True, axial_pos_shape=[4, 8], axial_pos_embds_dim=[16, 16], attn_layers=["local", "local", "local", "local"], pad_token_id=0, eos_token_id=2, scope=None, hash_seed=0, num_labels=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.is_decoder = is_decoder self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.attention_head_size = attention_head_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = len(attn_layers) if attn_layers is not None else 0 self.local_attn_chunk_length = local_attn_chunk_length self.local_num_chunks_after = local_num_chunks_after self.local_num_chunks_before = local_num_chunks_before self.num_hashes = num_hashes self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets self.lsh_attn_chunk_length = lsh_attn_chunk_length self.lsh_num_chunks_after = lsh_num_chunks_after self.lsh_num_chunks_before = lsh_num_chunks_before self.hidden_act = hidden_act self.feed_forward_size = feed_forward_size self.hidden_dropout_prob = hidden_dropout_prob self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.axial_pos_embds = axial_pos_embds self.axial_pos_shape = tuple(axial_pos_shape) self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) self.axial_norm_std = axial_norm_std self.chunk_size_lm_head = chunk_size_lm_head self.chunk_size_feed_forward = chunk_size_feed_forward self.scope = scope self.attn_layers = attn_layers self.pad_token_id = pad_token_id self.hash_seed = hash_seed attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0) self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length self.chunk_length = attn_chunk_length self.num_labels = num_labels def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) choice_labels = None if self.use_labels: choice_labels = ids_tensor([self.batch_size], 2) config = self.get_config() return ( config, input_ids, input_mask, choice_labels, ) def get_config(self): return ReformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, feed_forward_size=self.feed_forward_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob, lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=self.is_decoder, axial_pos_embds=self.axial_pos_embds, axial_pos_shape=self.axial_pos_shape, axial_pos_embds_dim=self.axial_pos_embds_dim, local_attn_chunk_length=self.local_attn_chunk_length, local_num_chunks_after=self.local_num_chunks_after, local_num_chunks_before=self.local_num_chunks_before, num_hashes=self.num_hashes, num_buckets=self.num_buckets, lsh_attn_chunk_length=self.lsh_attn_chunk_length, lsh_num_chunks_after=self.lsh_num_chunks_after, lsh_num_chunks_before=self.lsh_num_chunks_before, attn_layers=self.attn_layers, pad_token_id=self.pad_token_id, hash_seed=self.hash_seed, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 100 config.max_position_embeddings = 100 config.axial_pos_shape = (4, 25) config.is_decoder = False return config def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels): model = ReformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) # 2 * hidden_size because we use reversible resnet layers self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size) ) def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels): if not self.is_training: return config.is_decoder = False config.lsh_num_chunks_after = 1 model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"] loss.backward() def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels): config.lsh_num_chunks_after = 0 config.is_decoder = True model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels): config.is_decoder = False model = ReformerForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_reformer_model_with_attn_mask( self, config, input_ids, input_mask, choice_labels, is_decoder=False ): # no special position embeddings config.axial_pos_embds = False config.is_decoder = is_decoder if self.lsh_attn_chunk_length is not None: # need to set chunk length equal sequence length to be certain that chunking works config.lsh_attn_chunk_length = self.seq_length model = ReformerModel(config=config) model.to(torch_device) model.eval() # set all position encodings to zero so that postions don't matter with torch.no_grad(): embedding = model.embeddings.position_embeddings.embedding embedding.weight = nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device)) embedding.weight.requires_grad = False half_seq_len = self.seq_length // 2 roll = self.chunk_length half_input_ids = input_ids[:, :half_seq_len] # normal padded attn_mask = torch.cat( [torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)], dim=-1, ) input_ids_padded = torch.cat( [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1, ) # shifted padded input_ids_roll = torch.cat( [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1, ) input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1) attn_mask_roll = torch.roll(attn_mask, roll, dims=-1) output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len] output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll] self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3)) def create_and_check_reformer_layer_dropout_seed( self, config, input_ids, input_mask, choice_labels, is_decoder=False ): config.is_decoder = is_decoder layer = ReformerLayer(config).to(torch_device) layer.train() shape = ( self.batch_size, self.seq_length, config.hidden_size, ) # Batch x SeqLen x hiddenSize # get random tensors hidden_states = floats_tensor(shape) prev_attn_output = floats_tensor(shape) # now the random seeds for attention and feed forward is initialized # forward tensors with dropout layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask) next_attn_output = layer_outputs.attn_output next_hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.attention_seed) attn_outputs = layer.attention(hidden_states, attention_mask=input_mask) self.parent.assertTrue( torch.allclose( prev_attn_output + attn_outputs.hidden_states, next_attn_output, atol=1e-3, ) ) torch.manual_seed(layer.feed_forward_seed) feed_forward_hidden_states = layer.feed_forward(next_attn_output) self.parent.assertTrue( torch.allclose( next_hidden_states, hidden_states + feed_forward_hidden_states, atol=1e-3, ) ) def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels): if not self.is_training: return # disable dropout config.hidden_dropout_prob = 0 config.local_attention_probs_dropout_prob = 0 config.lsh_attention_probs_dropout_prob = 0 config.lsh_num_chunks_after = 1 config.is_decoder = False torch.manual_seed(0) model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() model.zero_grad() loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2] loss_no_chunk.backward() grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] config.chunk_size_lm_head = 1 config.chunk_size_feed_forward = 1 torch.manual_seed(0) model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() model.zero_grad() loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2] loss_chunk.backward() grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3)) self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3)) self.parent.assertTrue( torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3) ) self.parent.assertTrue( torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3) ) def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels): layer = ReformerLayer(config).to(torch_device) layer.train() shape = ( self.batch_size, self.seq_length, config.hidden_size, ) # Batch x SeqLen x hiddenSize hidden_states = floats_tensor(shape) attn_output = floats_tensor(shape) seeds = [] for _ in range(100): layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.attention_seed) seeds.append(layer.attention_seed) self.parent.assertGreater(len(set(seeds)), 70) seeds = [] for _ in range(100): layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.feed_forward_seed) seeds.append(layer.feed_forward_seed) self.parent.assertGreater(len(set(seeds)), 70) def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels): model = ReformerModel(config=config) model.to(torch_device) model.half() model.eval() output = model(input_ids, attention_mask=input_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_after = 0 config.bos_token_id = 0 config.eos_token_id = None config.max_length = 20 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() output = model.generate() self.parent.assertIsNotNone(output) def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_after = 0 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.half() model.eval() # only use last 10 inputs for generation output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False) self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels): # force chunk length to be bigger than input_ids config.lsh_attn_chunk_length = 2 * input_ids.shape[-1] config.local_attn_chunk_length = 2 * input_ids.shape[-1] config.lsh_num_chunks_after = 1 config.is_decoder = False model = ReformerForMaskedLM(config=config) model.to(torch_device) model.eval() output_logits = model(input_ids, attention_mask=input_mask)["logits"] self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1]) def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels): model = ReformerForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=choice_labels, end_positions=choice_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_before = 1 config.lsh_num_chunks_after = 0 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() input_ids_first = input_ids[:, :-1] input_ids_second = input_ids[:, -1:] # return saved cache past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"] # calculate last output with and without cache outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"] outputs_without_cache = model(input_ids)["logits"][:, -1] # select random slice idx random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item() # outputs should be similar within range self.parent.assertTrue( torch.allclose( outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2 ) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict def create_and_check_reformer_for_sequence_classification( self, config, input_ids, input_mask, choice_labels, is_decoder ): config.is_decoder = is_decoder sequence_labels = ids_tensor([self.batch_size], config.num_labels) model = ReformerForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) class ReformerTesterMixin: """ Reformer Local and Reformer LSH run essentially the same tests """ def test_config(self): self.config_tester.run_common_tests() def test_reformer_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model(*config_and_inputs) def test_reformer_lm_model_backward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs) def test_reformer_model_attn_masking(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True) self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False) def test_reformer_with_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs) def test_reformer_with_mlm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs) def test_reformer_layer_training_dropout(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True) self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False) def test_reformer_chunking_backward_equality(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs) def test_reformer_no_chunking(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs) def test_reformer_qa_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs) def test_reformer_cached_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_past_buckets_states(*config_and_inputs) def test_reformer_cached_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs) @slow def test_dropout_random_seed_is_changing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs) @require_torch_fp16 def test_reformer_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs) @require_torch_fp16 def test_reformer_model_fp16_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs) @require_torch_multi_gpu @unittest.skip( reason=( "Reformer does not work with data parallel (DP) because of a bug in PyTorch:" " https://github.com/pytorch/pytorch/issues/36035" ) ) def test_multi_gpu_data_parallel_forward(self): pass def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False) def test_retain_grad_hidden_states_attentions(self): # reformer cannot keep gradients in attentions or hidden states return def test_resize_embeddings_untied(self): # reformer cannot resize embeddings that easily return @require_torch class ReformerLocalAttnModelTest(ReformerTesterMixin, GenerationTesterMixin, ModelTesterMixin, unittest.TestCase): all_model_classes = ( (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else () test_pruning = False test_headmasking = False test_torchscript = False test_sequence_classification_problem_types = True def setUp(self): self.model_tester = ReformerModelTester(self) self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37) @slow def test_model_from_pretrained(self): for model_name in REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ReformerModelWithLMHead.from_pretrained(model_name) self.assertIsNotNone(model) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 num_chunks = tgt_len // config.local_attn_chunk_length + (tgt_len % config.local_attn_chunk_length != 0) tgt_chunk_len = config.local_attn_chunk_length src_chunk_len = config.local_attn_chunk_length * ( 1 + config.local_num_chunks_after + config.local_num_chunks_before ) if use_cache: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, min_length // config.local_attn_chunk_length + 1 + idx, ) else: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, num_chunks, tgt_chunk_len, src_chunk_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx seq_len = config.local_attn_chunk_length * ( seq_len // config.local_attn_chunk_length + (seq_len % config.local_attn_chunk_length != 0) ) if use_cache: seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass @require_torch class ReformerLSHAttnModelTest( ReformerTesterMixin, ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase ): all_model_classes = ( (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": ReformerModel, "fill-mask": ReformerForMaskedLM, "question-answering": ReformerForQuestionAnswering, "text-classification": ReformerForSequenceClassification, "text-generation": ReformerModelWithLMHead, "zero-shot": ReformerForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = ReformerModelTester( self, batch_size=13, seq_length=13, use_input_mask=True, use_labels=True, is_training=False, is_decoder=True, vocab_size=32, attention_head_size=16, hidden_size=64, num_attention_heads=2, num_buckets=2, num_hashes=4, lsh_attn_chunk_length=4, lsh_num_chunks_before=1, lsh_num_chunks_after=0, chunk_size_lm_head=5, chunk_size_feed_forward=6, feed_forward_size=32, hidden_act="relu", hidden_dropout_prob=0.1, lsh_attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, axial_norm_std=1.0, layer_norm_eps=1e-12, axial_pos_embds=True, axial_pos_shape=[4, 8], axial_pos_embds_dim=[16, 48], # sanotheu # attn_layers=[lsh,lsh,lsh,lsh], attn_layers=["lsh"], pad_token_id=0, eos_token_id=2, scope=None, hash_seed=0, num_labels=2, ) self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 num_chunks = tgt_len // config.lsh_attn_chunk_length + (tgt_len % config.lsh_attn_chunk_length != 0) tgt_chunk_len = config.lsh_attn_chunk_length src_chunk_len = config.lsh_attn_chunk_length * ( 1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before ) if use_cache: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, config.num_hashes, tgt_len, config.num_hashes * (1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before), ) else: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, num_chunks * config.num_hashes, tgt_chunk_len, src_chunk_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx if not use_cache else 1 seq_len = config.lsh_attn_chunk_length * ( seq_len // config.lsh_attn_chunk_length + (seq_len % config.lsh_attn_chunk_length != 0) ) if use_cache: seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip("Fails because the sequence length is not a multiple of 4") def test_problem_types(self): pass @unittest.skip("Fails because the sequence length is not a multiple of 4") def test_past_key_values_format(self): pass @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass @require_torch @require_sentencepiece @require_tokenizers class ReformerIntegrationTests(unittest.TestCase): """ These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "lsh" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`. """ def _get_basic_config_and_input(self): config = { "vocab_size": 320, "attention_head_size": 8, "hidden_size": 16, "num_attention_heads": 2, "num_buckets": 2, "num_hashes": 4, "lsh_attn_chunk_length": 4, "local_attn_chunk_length": 4, "lsh_num_chunks_before": 1, "lsh_num_chunks_after": 0, "local_num_chunks_before": 1, "local_num_chunks_after": 0, "chunk_size_lm_head": 0, "chunk_size_feed_forward": 0, "feed_forward_size": 32, "hidden_act": "gelu", "hidden_dropout_prob": 0.0, "lsh_attention_probs_dropout_prob": 0.0, "local_attention_probs_dropout_prob": 0.0, "max_position_embeddings": 32, "initializer_range": 0.02, "axial_norm_std": 1.0, "layer_norm_eps": 1e-12, "sinusoidal_pos_embds": False, "axial_pos_embds": True, "axial_pos_shape": [4, 8], "axial_pos_embds_dim": [8, 8], "hash_seed": 0, "is_decoder": True, } return config def _get_hidden_states(self): return torch.tensor( [ [ [ 1.90826353e00, -1.45999730e00, -6.20405462e-01, 1.52503433e00, -3.64464232e-01, -8.27359235e-01, 8.39670803e-01, 2.44492178e-01, 4.98332758e-01, 2.69175139e00, -7.08081422e-03, 1.04915401e00, -1.83476661e00, 7.67220476e-01, 2.98580543e-01, 2.84803992e-02, ], [ -2.66374286e-02, 4.33497576e-01, 3.10386309e-01, 5.46039944e-01, -2.47292666e-04, -7.52305019e-01, 2.39162103e-01, 7.25216186e-01, -7.58357372e-01, 4.20635998e-01, -4.04739919e-02, 1.59924145e-01, 2.05135748e00, -1.15997978e00, 5.37166397e-01, 2.62873606e-01, ], [ 1.85247482e-01, 7.07046037e-01, -6.77089715e-01, -2.24209655e00, -3.75307980e-02, -8.59380874e-01, -2.81027884e00, 1.01276376e00, -1.69438001e00, 4.17574660e-01, -1.49196962e00, -1.76483717e00, -1.94566312e-01, -1.71183858e00, 7.72903565e-01, -1.11557056e00, ], [ 9.46069193e-01, 1.53417623e-01, -9.58686996e-01, 1.18126669e-01, 1.75967724e00, 1.62194590e00, -5.74108159e-01, 6.79920443e-01, 5.44028163e-01, 2.05466114e-01, -3.63045868e-01, 2.41865062e-01, 3.20348382e-01, -9.05611176e-01, -1.92690727e-01, -1.19917547e00, ], ] ], dtype=torch.float32, device=torch_device, ) def _get_attn_mask(self): return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device) def _get_input_ids_and_mask(self): mask = torch.tensor( [ [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0], ], dtype=torch.long, device=torch_device, ) input_ids = torch.tensor( [ [ 89, 279, 286, 84, 194, 316, 182, 28, 283, 37, 169, 7, 253, 267, 107, 250, 44, 7, 102, 62, 3, 243, 171, 265, 302, 48, 164, 264, 148, 229, 280, 150, ], [ 9, 192, 66, 112, 163, 83, 135, 70, 224, 96, 31, 80, 196, 80, 63, 22, 85, 100, 47, 283, 0, 163, 126, 143, 195, 82, 53, 82, 18, 27, 182, 52, ], ], dtype=torch.long, device=torch_device, ) return input_ids, mask def test_lsh_layer_forward(self): config = self._get_basic_config_and_input() config["lsh_num_chunks_before"] = 0 config["attn_layers"] = ["lsh"] config["is_decoder"] = False hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.6879, -1.3083, -0.4708, 1.3555, -0.6292], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_lsh_layer_forward_complex(self): config = self._get_basic_config_and_input() config["lsh_num_chunks_before"] = 0 config["attn_layers"] = ["lsh"] config["num_buckets"] = [2, 4] attn_mask = self._get_attn_mask() hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer( prev_attn_output=hidden_states.clone(), hidden_states=hidden_states, attention_mask=attn_mask, ) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.6439, -1.2306, -0.5108, 1.3006, -0.6537], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_layer_forward(self): config = self._get_basic_config_and_input() config["local_num_chunks_before"] = 0 config["attn_layers"] = ["local"] config["is_decoder"] = False hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.4212, -2.0576, -0.9688, 1.4599, -0.1344], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_layer_forward_complex(self): config = self._get_basic_config_and_input() config["local_num_chunks_before"] = 0 config["attn_layers"] = ["local"] attn_mask = self._get_attn_mask() hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer( prev_attn_output=hidden_states, hidden_states=hidden_states, attention_mask=attn_mask, ) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.4750, -2.0235, -0.9743, 1.4463, -0.1269], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_lsh_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"] config["num_buckets"] = [2, 4] torch.manual_seed(0) model = ReformerModel(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "local", "local", "local"] torch.manual_seed(0) model = ReformerModel(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_lm_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"] config["num_buckets"] = [2, 4] config["is_decoder"] = False torch.manual_seed(0) model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[1, -1, :5] expected_output_slice = torch.tensor( [0.1018, -0.2026, 0.2116, 0.0270, -0.1233], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_lm_model_grad(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "local", "local", "local"] config["hidden_dropout_prob"] = 0.0 config["local_attention_probs_dropout_prob"] = 0.0 torch.manual_seed(0) model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device) model.train() model.zero_grad() input_ids, _ = self._get_input_ids_and_mask() loss = model(input_ids=input_ids, labels=input_ids)[0] self.assertTrue(torch.allclose(loss, torch.tensor(5.8019, dtype=torch.float, device=torch_device), atol=1e-3)) loss.backward() # check last grads to cover all proable errors grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] expected_grad_slice_word = torch.tensor( [-0.0005, -0.0001, -0.0002, -0.0006, -0.0006], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] expected_grad_slice_pos_fac_1 = torch.tensor( [-0.5235, 0.5704, 0.0922, -0.3140, 0.9928], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] expected_grad_slice_pos_fac_2 = torch.tensor( [1.7960, 1.7668, 0.5593, 0.0907, 1.8342], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3)) def test_lsh_lm_model_grad(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"] config["hidden_dropout_prob"] = 0.0 config["lsh_attention_probs_dropout_prob"] = 0.0 config["num_buckets"] = [2, 4] config["num_hashes"] = 6 torch.manual_seed(0) model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device) model.train() model.zero_grad() input_ids, _ = self._get_input_ids_and_mask() loss = model(input_ids=input_ids, labels=input_ids)[0] self.assertTrue(torch.allclose(loss, torch.tensor(5.7854, dtype=torch.float, device=torch_device), atol=1e-3)) loss.backward() # check last grads to cover all proable errors grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] expected_grad_slice_word = torch.tensor( [0.0004, 0.0003, 0.0006, -0.0004, 0.0002], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] expected_grad_slice_pos_fac_1 = torch.tensor( [-0.3792, 0.5593, -1.6993, 0.2033, 0.4131], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] expected_grad_slice_pos_fac_2 = torch.tensor( [-1.4212, -0.3201, -1.1944, 0.1258, 0.2856], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3)) @slow def test_pretrained_generate_crime_and_punish(self): model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device) tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") model.eval() input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device) output_ids = model.generate( input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8 ) output = tokenizer.decode(output_ids[0]) self.assertEqual( output, "A few months later state expression in his ideas, at the first entrance. He was positively for an inst", ) @slow def test_pretrained_generate_use_cache_equality(self): model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device) tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") model.eval() input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device) output_ids_with_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=False) output_ids_without_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=True) output_with_cache = tokenizer.decode(output_ids_with_cache[0]) output_without_cache = tokenizer.decode(output_ids_without_cache[0]) self.assertEqual(output_with_cache, output_without_cache)
transformers/tests/models/reformer/test_modeling_reformer.py/0
{ "file_path": "transformers/tests/models/reformer/test_modeling_reformer.py", "repo_id": "transformers", "token_count": 26931 }
377
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import RobertaConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from transformers.models.roberta.modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaEmbeddings, create_position_ids_from_input_ids, ) ROBERTA_TINY = "sshleifer/tiny-distilroberta-base" class RobertaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RobertaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RobertaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RobertaForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RobertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RobertaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RobertaForCausalLM, RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaForMultipleChoice, RobertaForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": RobertaModel, "fill-mask": RobertaForMaskedLM, "question-answering": RobertaForQuestionAnswering, "text-classification": RobertaForSequenceClassification, "text-generation": RobertaForCausalLM, "token-classification": RobertaForTokenClassification, "zero-shot": RobertaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True model_split_percents = [0.5, 0.8, 0.9] def setUp(self): self.model_tester = RobertaModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RobertaModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = RobertaEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = RobertaEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class RobertaModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = RobertaForMaskedLM.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): model = RobertaModel.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_classification_head(self): model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]]) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') # roberta.eval() # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach() self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
transformers/tests/models/roberta/test_modeling_roberta.py/0
{ "file_path": "transformers/tests/models/roberta/test_modeling_roberta.py", "repo_id": "transformers", "token_count": 10516 }
378
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest.util import safe_repr from transformers import AutoTokenizer, RwkvConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RWKV_PRETRAINED_MODEL_ARCHIVE_LIST, RwkvForCausalLM, RwkvModel, ) from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 else: is_torch_greater_or_equal_than_2_0 = False class RwkvModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=False, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def get_large_model_config(self): return RwkvConfig.from_pretrained("sgugger/rwkv-4-pile-7b") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config( gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) return ( config, input_ids, input_mask, None, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): return RwkvConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, intermediate_size=self.intermediate_size, activation_function=self.hidden_act, resid_pdrop=self.hidden_dropout_prob, attn_pdrop=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_rwkv_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): config.output_hidden_states = True model = RwkvModel(config=config) model.to(torch_device) model.eval() result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1) def create_and_check_causl_lm(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = RwkvForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_state_equivalency(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = RwkvModel(config=config) model.to(torch_device) model.eval() outputs = model(input_ids) output_whole = outputs.last_hidden_state outputs = model(input_ids[:, :2]) output_one = outputs.last_hidden_state # Using the state computed on the first inputs, we will get the same output outputs = model(input_ids[:, 2:], state=outputs.state) output_two = outputs.last_hidden_state self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = RwkvForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids} return config, inputs_dict @unittest.skipIf( not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" ) @require_torch class RwkvModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (RwkvModel, RwkvForCausalLM) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": RwkvModel, "text-generation": RwkvForCausalLM} if is_torch_available() else {} ) # all_generative_model_classes = (RwkvForCausalLM,) if is_torch_available() else () fx_compatible = False test_missing_keys = False test_model_parallel = False test_pruning = False test_head_masking = False # Rwkv does not support head masking def setUp(self): self.model_tester = RwkvModelTester(self) self.config_tester = ConfigTester( self, config_class=RwkvConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"] ) def assertInterval(self, member, container, msg=None): r""" Simple utility function to check if a member is inside an interval. """ if isinstance(member, torch.Tensor): max_value, min_value = member.max().item(), member.min().item() elif isinstance(member, list) or isinstance(member, tuple): max_value, min_value = max(member), min(member) if not isinstance(container, list): raise TypeError("container should be a list or tuple") elif len(container) != 2: raise ValueError("container should have 2 elements") expected_min, expected_max = container is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max) if not is_inside_interval: standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container)) self.fail(self._formatMessage(msg, standardMsg)) def test_config(self): self.config_tester.run_common_tests() def test_rwkv_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_rwkv_model(*config_and_inputs) def test_rwkv_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causl_lm(*config_and_inputs) def test_state_equivalency(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_state_equivalency(*config_and_inputs) def test_initialization(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, param in model.named_parameters(): if "time_decay" in name: if param.requires_grad: self.assertTrue(param.data.max().item() == 3.0) self.assertTrue(param.data.min().item() == -5.0) elif "time_first" in name: if param.requires_grad: # check if it's a ones like self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5)) elif any(x in name for x in ["time_mix_key", "time_mix_receptance"]): if param.requires_grad: self.assertInterval( param.data, [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) elif "time_mix_value" in name: if param.requires_grad: self.assertInterval( param.data, [0.0, 1.3], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_attention_outputs(self): r""" Overriding the test_attention_outputs test as the attention outputs of Rwkv are different from other models it has a shape `batch_size, seq_len, hidden_size`. """ config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) batch_size = inputs["input_ids"].shape[0] with torch.no_grad(): outputs = model(**inputs) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) batch_size = inputs["input_ids"].shape[0] with torch.no_grad(): outputs = model(**inputs) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [batch_size, seq_len, config.hidden_size], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) batch_size = inputs["input_ids"].shape[0] with torch.no_grad(): outputs = model(**inputs) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [batch_size, seq_len, config.hidden_size], ) @slow def test_model_from_pretrained(self): for model_name in RWKV_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RwkvModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skipIf( not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204" ) @slow class RWKVIntegrationTests(unittest.TestCase): def setUp(self): self.model_id = "RWKV/rwkv-4-169m-pile" self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) def test_simple_generate(self): expected_output = "Hello my name is Jasmine and I am a newbie to the" model = RwkvForCausalLM.from_pretrained(self.model_id).to(torch_device) input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device) output = model.generate(input_ids, max_new_tokens=10) output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output) def test_simple_generate_bf16(self): expected_output = "Hello my name is Jasmine and I am a newbie to the" input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device) model = RwkvForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device) output = model.generate(input_ids, max_new_tokens=10) output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output)
transformers/tests/models/rwkv/test_modeling_rwkv.py/0
{ "file_path": "transformers/tests/models/rwkv/test_modeling_rwkv.py", "repo_id": "transformers", "token_count": 8254 }
379
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Table Transformer model. """ import inspect import math import unittest from huggingface_hub import hf_hub_download from transformers import ResNetConfig, TableTransformerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import TableTransformerForObjectDetection, TableTransformerModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class TableTransformerModelTester: def __init__( self, parent, batch_size=8, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_queries=12, num_channels=3, min_size=200, max_size=200, n_targets=8, num_labels=3, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.n_targets = n_targets self.num_labels = num_labels # we also set the expected seq length for both encoder and decoder self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32) self.decoder_seq_length = self.num_queries def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device) labels.append(target) config = self.get_config() return config, pixel_values, pixel_mask, labels def get_config(self): resnet_config = ResNetConfig( num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], hidden_act="relu", num_labels=3, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ) return TableTransformerConfig( d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, num_queries=self.num_queries, num_labels=self.num_labels, use_timm_backbone=False, backbone_config=resnet_config, backbone=None, use_pretrained_backbone=False, ) def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def create_and_check_table_transformer_model(self, config, pixel_values, pixel_mask, labels): model = TableTransformerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size) ) def create_and_check_table_transformer_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): model = TableTransformerForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) def create_and_check_table_transformer_no_timm_backbone(self, config, pixel_values, pixel_mask, labels): config.use_timm_backbone = False config.backbone_config = ResNetConfig() model = TableTransformerForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) @require_torch class TableTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TableTransformerModel, TableTransformerForObjectDetection, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TableTransformerModel, "object-detection": TableTransformerForObjectDetection} if is_torch_available() else {} ) is_encoder_decoder = True test_torchscript = False test_pruning = False test_head_masking = False test_missing_keys = False # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ in ["TableTransformerForObjectDetection"]: labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) target["masks"] = torch.ones( self.model_tester.n_targets, self.model_tester.min_size, self.model_tester.max_size, device=torch_device, dtype=torch.float, ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = TableTransformerModelTester(self) self.config_tester = ConfigTester(self, config_class=TableTransformerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_table_transformer_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_table_transformer_model(*config_and_inputs) def test_table_transformer_object_detection_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_table_transformer_object_detection_head_model(*config_and_inputs) def test_table_transformer_no_timm_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_table_transformer_no_timm_backbone(*config_and_inputs) @unittest.skip(reason="Table Transformer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Table Transformer does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="Table Transformer is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="Table Transformer does not use token embeddings") def test_resize_tokens_embeddings(self): pass @slow def test_model_outputs_equivalence(self): # TODO Niels: fix me! pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = self.model_tester.decoder_seq_length encoder_seq_length = self.model_tester.encoder_seq_length decoder_key_length = self.model_tester.decoder_seq_length encoder_key_length = self.model_tester.encoder_seq_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Object Detection model returns pred_logits and pred_boxes if model_class.__name__ == "TableTransformerForObjectDetection": correct_outlen += 2 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_retain_grad_hidden_states_attentions(self): # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_forward_auxiliary_loss(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.auxiliary_loss = True # only test for object detection and segmentation model for model_class in self.all_model_classes[1:]: model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) outputs = model(**inputs) self.assertIsNotNone(outputs.auxiliary_outputs) self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = ["pixel_values", "pixel_mask"] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else [] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["pixel_values", "pixel_mask"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_different_timm_backbone(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # let's pick a random timm backbone config.backbone = "tf_mobilenetv3_small_075" for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "TableTransformerForObjectDetection": expected_shape = ( self.model_tester.batch_size, self.model_tester.num_queries, self.model_tester.num_labels + 1, ) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(outputs) def test_greyscale_images(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # use greyscale pixel values inputs_dict["pixel_values"] = floats_tensor( [self.model_tester.batch_size, 1, self.model_tester.min_size, self.model_tester.max_size] ) # let's set num_channels to 1 config.num_channels = 1 config.backbone_config.num_channels = 1 for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertTrue(outputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) configs_no_init.init_xavier_std = 1e9 for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if "bbox_attention" in name and "bias" not in name: self.assertLess( 100000, abs(param.data.max().item()), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_timm @require_vision @slow class TableTransformerModelIntegrationTests(unittest.TestCase): def test_table_detection(self): image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection") model.to(torch_device) file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") image = Image.open(file_path).convert("RGB") inputs = image_processor(image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) expected_shape = (1, 15, 3) self.assertEqual(outputs.logits.shape, expected_shape) expected_logits = torch.tensor( [[-6.7329, -16.9590, 6.7447], [-8.0038, -22.3071, 6.9288], [-7.2445, -20.9855, 7.3465]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_boxes = torch.tensor( [[0.4868, 0.1764, 0.6729], [0.6674, 0.4621, 0.3864], [0.4720, 0.1757, 0.6362]], device=torch_device ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-3))
transformers/tests/models/table_transformer/test_modeling_table_transformer.py/0
{ "file_path": "transformers/tests/models/table_transformer/test_modeling_table_transformer.py", "repo_id": "transformers", "token_count": 10593 }
380
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch TVLT model. """ import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import ( TvltConfig, is_datasets_available, is_speech_available, is_torch_available, is_vision_available, ) from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch import torch.nn as nn from transformers import TvltForAudioVisualClassification, TvltForPreTraining, TvltModel from transformers.models.tvlt.modeling_tvlt import TVLT_PRETRAINED_MODEL_ARCHIVE_LIST if is_datasets_available(): from datasets import load_dataset if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor class TvltModelTester: def __init__( self, parent, batch_size=2, image_size=32, spectrogram_length=32, frequency_length=16, image_patch_size=[2, 2], audio_patch_size=[2, 2], num_image_channels=3, num_audio_channels=1, num_frames=2, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=128, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, qkv_bias=True, use_mean_pooling=True, decoder_num_attention_heads=4, decoder_hidden_size=32, decoder_num_hidden_layers=2, decoder_intermediate_size=128, image_mask_ratio=0.75, audio_mask_ratio=0.15, audio_mask_type="frame-level", task_matching=True, task_mae=True, num_labels=1, is_training=True, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.spectrogram_length = spectrogram_length self.frequency_length = frequency_length self.image_patch_size = image_patch_size self.audio_patch_size = audio_patch_size self.num_image_channels = num_image_channels self.num_audio_channels = num_audio_channels self.num_frames = num_frames self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.use_mean_pooling = use_mean_pooling self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_hidden_size = decoder_hidden_size self.decoder_num_hidden_layers = decoder_num_hidden_layers self.decoder_intermediate_size = decoder_intermediate_size self.image_mask_ratio = image_mask_ratio self.audio_mask_ratio = audio_mask_ratio self.task_matching = task_matching self.task_mae = task_mae self.num_labels = num_labels self.expected_pixel_seq_len = (self.image_size // self.image_patch_size[0]) ** 2 * self.num_frames self.expected_audio_seq_len = (self.spectrogram_length // self.audio_patch_size[0]) * ( self.frequency_length // self.audio_patch_size[1] ) # we set the expected sequence length (which is used in several tests) # this is equal to the seq length of number of image/video patches + number of audio patches self.expected_seq_len = self.expected_pixel_seq_len + self.expected_audio_seq_len + 1 self.image_mae_output_dim = image_patch_size[0] ** 2 * num_image_channels self.audio_mae_output_dim = audio_patch_size[0] * audio_patch_size[1] * num_audio_channels self.is_training = is_training def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] ) audio_values = floats_tensor( [self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length] ) pixel_mask = floats_tensor([self.batch_size, self.expected_pixel_seq_len]) audio_mask = floats_tensor([self.batch_size, self.expected_audio_seq_len]) config = self.get_config() return (config, pixel_values, audio_values, pixel_mask, audio_mask) def prepare_config_and_inputs_for_pretraining(self): pixel_values = floats_tensor( [self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] ) audio_values = floats_tensor( [self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length] ) pixel_mask = floats_tensor([self.batch_size, self.expected_pixel_seq_len]) audio_mask = floats_tensor([self.batch_size, self.expected_audio_seq_len]) pixel_values_mixed = floats_tensor( [self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] ) pixel_mask_mixed = floats_tensor([self.batch_size, self.expected_pixel_seq_len]) labels = floats_tensor([self.batch_size]) config = self.get_config() return ( config, pixel_values, audio_values, pixel_mask, audio_mask, pixel_values_mixed, pixel_mask_mixed, labels, ) def get_config(self): return TvltConfig( image_size=self.image_size, spectrogram_length=self.spectrogram_length, frequency_length=self.frequency_length, image_patch_size=self.image_patch_size, audio_patch_size=self.audio_patch_size, num_image_channels=self.num_image_channels, num_audio_channels=self.num_audio_channels, num_frames=self.num_frames, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, qkv_bias=self.qkv_bias, use_mean_pooling=self.use_mean_pooling, decoder_num_attention_heads=self.decoder_num_attention_heads, decoder_hidden_size=self.decoder_hidden_size, decoder_num_hidden_layers=self.decoder_num_hidden_layers, decoder_intermediate_size=self.decoder_intermediate_size, image_mask_ratio=self.image_mask_ratio, audio_mask_ratio=self.audio_mask_ratio, task_matching=self.task_matching, task_mae=self.task_mae, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, audio_values, pixel_mask, audio_mask): model = TvltModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask) result = model(pixel_values, audio_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def create_and_check_for_audiovisual_classification( self, config, pixel_values, audio_values, pixel_mask, audio_mask ): model = TvltForAudioVisualClassification(config=config) model.to(torch_device) model.eval() result = model(pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask) result = model(pixel_values, audio_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_pretraining( self, config, pixel_values, audio_values, pixel_mask, audio_mask, pixel_values_mixed, pixel_mask_mixed, labels, ): model = TvltForPreTraining(config=config) model.to(torch_device) model.train() result = model( pixel_values, audio_values, pixel_mask, audio_mask, pixel_values_mixed=pixel_values_mixed, pixel_mask_mixed=pixel_mask_mixed, labels=labels, ) self.parent.assertEqual( result.pixel_logits.shape, (self.batch_size, self.expected_pixel_seq_len, self.image_mae_output_dim) ) self.parent.assertEqual( result.audio_logits.shape, (self.batch_size, self.expected_audio_seq_len, self.audio_mae_output_dim) ) self.parent.assertEqual(result.matching_logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_pretraining_inference( self, config, pixel_values, audio_values, pixel_mask, audio_mask, pixel_values_mixed, pixel_mask_mixed, labels, ): model = TvltForPreTraining(config=config) model.to(torch_device) model.eval() result = model( pixel_values, audio_values, pixel_mask, audio_mask, pixel_values_mixed=pixel_values_mixed, pixel_mask_mixed=pixel_mask_mixed, labels=labels, ) if result.pixel_logits is not None: self.parent.assertEqual( result.pixel_logits.shape, (self.batch_size, self.expected_pixel_seq_len, self.image_mae_output_dim) ) if result.audio_logits is not None: self.parent.assertEqual( result.audio_logits.shape, (self.batch_size, self.expected_audio_seq_len, self.audio_mae_output_dim) ) self.parent.assertEqual(result.matching_logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, pixel_values, audio_values, pixel_mask, audio_mask) = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "audio_values": audio_values, "pixel_mask": pixel_mask, "audio_mask": audio_mask, } return config, inputs_dict def prepare_pixel_values(self): return floats_tensor( [self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] ) def prepare_audio_values(self): return floats_tensor( [self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length] ) @require_torch class TvltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TvltModel, TvltForPreTraining, TvltForAudioVisualClassification) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": TvltModel} if is_torch_available() else {} fx_compatible = False test_pruning = False test_headmasking = False test_torchscript = False test_resize_embeddings = False main_input_name = "pixel_values" # TvltForAudioVisualClassification and TvltForPreTraining require special treatment def _prepare_for_class(self, inputs_dict, model_class, return_labels=True): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class.__name__ == "TvltForAudioVisualClassification": inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size,), dtype=torch.long, device=torch_device ) elif model_class.__name__ == "TvltForPreTraining": inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size,), dtype=torch.float, device=torch_device ) inputs_dict["pixel_values_mixed"] = torch.zeros( ( self.model_tester.batch_size, self.model_tester.num_frames, self.model_tester.num_image_channels, self.model_tester.image_size, self.model_tester.image_size, ), dtype=torch.float, device=torch_device, ) inputs_dict["pixel_mask_mixed"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.expected_pixel_seq_len), dtype=torch.float, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = TvltModelTester(self) self.config_tester = ConfigTester(self, config_class=TvltConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="TVLT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) input_embeddings = model.get_input_embeddings() self.assertIsInstance(input_embeddings, (tuple)) for embedding in input_embeddings: self.assertIsInstance(embedding, (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values", "audio_values"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_audiovisual_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_audiovisual_classification(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_pretraining() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) self.model_tester.create_and_check_for_pretraining_inference(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TVLT_PRETRAINED_MODEL_ARCHIVE_LIST: model = TvltModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[1:]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class) for k, v in inputs.items(): print(k, v.shape) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[1:]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class) loss = model(**inputs).loss loss.backward() def test_attention_outputs(self): if not self.has_attentions: pass else: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes[2:]: seq_len = self.model_tester.expected_seq_len inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[2:]: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(num_frames=8): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file)[:num_frames] return list(video) def prepare_audio(num_samples=1): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch @require_vision class TvltModelIntegrationTest(unittest.TestCase): @cached_property def default_processors(self): # logits were tested with a different mean and std, so we use the same here return ( TvltImageProcessor() if is_vision_available() else None, TvltFeatureExtractor(), ) def test_inference_for_base_model(self): model = TvltModel.from_pretrained("ZinengTang/tvlt-base").to(torch_device) image_processor, audio_feature_extractor = self.default_processors video = prepare_video() audio = prepare_audio() video_inputs = image_processor(video, return_tensors="pt").to(torch_device) audio_inputs = audio_feature_extractor(audio, return_tensors="pt").to(torch_device) inputs = {} inputs.update(video_inputs) inputs.update(audio_inputs) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_last_hidden_state_slice = torch.tensor([[-0.0186, -0.0691], [0.0242, -0.0398]], device=torch_device) self.assertTrue( torch.allclose(outputs.last_hidden_state[:, :2, :2], expected_last_hidden_state_slice, atol=1e-4) ) def test_inference_for_pretraining(self): model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base").to(torch_device) image_processor, audio_feature_extractor = self.default_processors video = prepare_video() video_mixed = prepare_video() audio = prepare_audio() video_inputs = image_processor(video, return_tensors="pt", mask_pixel=True).to(torch_device) video_mixed_inputs = image_processor(video_mixed, is_mixed=True, return_tensors="pt").to(torch_device) audio_inputs = audio_feature_extractor(audio, return_tensors="pt", mask_audio=True).to(torch_device) labels = torch.tensor([[0.0]], device=torch_device) inputs = {} inputs.update(video_inputs) inputs.update(video_mixed_inputs) inputs.update(audio_inputs) inputs.update({"labels": labels}) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_pixel_logits_shape = torch.Size([1, 1568, 768]) expected_audio_logits_shape = torch.Size([1, 96, 256]) expected_matching_logits_shape = torch.Size([1, 1]) if outputs.pixel_logits is not None: self.assertEqual(outputs.pixel_logits.shape, expected_pixel_logits_shape) if outputs.audio_logits is not None: self.assertEqual(outputs.audio_logits.shape, expected_audio_logits_shape) self.assertTrue(outputs.matching_logits.shape, expected_matching_logits_shape)
transformers/tests/models/tvlt/test_modeling_tvlt.py/0
{ "file_path": "transformers/tests/models/tvlt/test_modeling_tvlt.py", "repo_id": "transformers", "token_count": 11461 }
381
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class VisionTextDualEncoderProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) image_processor_map = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() image_processor = self.get_image_processor() processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, image_processor=image_processor) processor.save_pretrained(self.tmpdirname) processor = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_save_load_pretrained_additional_features(self): processor = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with self.assertRaises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = VisionTextDualEncoderProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
transformers/tests/models/vision_text_dual_encoder/test_processor_vision_text_dual_encoder.py/0
{ "file_path": "transformers/tests/models/vision_text_dual_encoder/test_processor_vision_text_dual_encoder.py", "repo_id": "transformers", "token_count": 2796 }
382
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViTDet model. """ import unittest from transformers import VitDetConfig from transformers.testing_utils import is_flaky, require_torch, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import VitDetBackbone, VitDetModel class VitDetModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.num_patches_one_direction = self.image_size // self.patch_size self.seq_length = (self.image_size // self.patch_size) ** 2 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return VitDetConfig( image_size=self.image_size, pretrain_image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = VitDetModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction), ) def create_and_check_backbone(self, config, pixel_values, labels): model = VitDetBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction], ) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, [config.hidden_size]) # verify backbone works with out_features=None config.out_features = None model = VitDetBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual( list(result.feature_maps[0].shape), [self.batch_size, self.hidden_size, self.num_patches_one_direction, self.num_patches_one_direction], ) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_size]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class VitDetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as VitDet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (VitDetModel, VitDetBackbone) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": VitDetModel} if is_torch_available() else {} fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = VitDetModelTester(self) self.config_tester = ConfigTester(self, config_class=VitDetConfig, has_text_modality=False, hidden_size=37) @is_flaky(max_attempts=3, description="`torch.nn.init.trunc_normal_` is flaky.") def test_initialization(self): super().test_initialization() # TODO: Fix me (once this model gets more usage) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_cpu_offload(self): super().test_cpu_offload() # TODO: Fix me (once this model gets more usage) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_disk_offload_bin(self): super().test_disk_offload() @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_disk_offload_safetensors(self): super().test_disk_offload() # TODO: Fix me (once this model gets more usage) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_model_parallelism(self): super().test_model_parallelism() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="VitDet does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_stages = self.model_tester.num_hidden_layers self.assertEqual(len(hidden_states), expected_num_stages + 1) # VitDet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [ self.model_tester.num_patches_one_direction, self.model_tester.num_patches_one_direction, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # overwrite since VitDet only supports retraining gradients of hidden states def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = self.has_attentions # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) @unittest.skip(reason="VitDet does not support feedforward chunking") def test_feed_forward_chunking(self): pass @unittest.skip(reason="VitDet does not have standalone checkpoints since it used as backbone in other models") def test_model_from_pretrained(self): pass @require_torch class VitDetBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (VitDetBackbone,) if is_torch_available() else () config_class = VitDetConfig has_attentions = False def setUp(self): self.model_tester = VitDetModelTester(self)
transformers/tests/models/vitdet/test_modeling_vitdet.py/0
{ "file_path": "transformers/tests/models/vitdet/test_modeling_vitdet.py", "repo_id": "transformers", "token_count": 4686 }
383
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch YOLOS model. """ import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class YolosModelTester: def __init__( self, parent, batch_size=13, image_size=[30, 30], patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, n_targets=8, num_detection_tokens=10, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.n_targets = n_targets self.num_detection_tokens = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens num_patches = (image_size[1] // patch_size) * (image_size[0] // patch_size) self.expected_seq_len = num_patches + 1 + self.num_detection_tokens def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) labels.append(target) config = self.get_config() return config, pixel_values, labels def get_config(self): return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = YolosModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def create_and_check_for_object_detection(self, config, pixel_values, labels): model = YolosForObjectDetection(config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) result = model(pixel_values=pixel_values, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class YolosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as YOLOS does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (YolosModel, YolosForObjectDetection) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False # special case for head model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "YolosForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = YolosModelTester(self) self.config_tester = ConfigTester(self, config_class=YolosConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_inputs_embeds(self): # YOLOS does not use inputs_embeds pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in YOLOS, the seq_len is different seq_len = self.model_tester.expected_seq_len for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # YOLOS has a different seq_length seq_length = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_object_detection(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = YolosModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class YolosModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("hustvl/yolos-small") if is_vision_available() else None @slow def test_inference_object_detection_head(self): model = YolosForObjectDetection.from_pretrained("hustvl/yolos-small").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(inputs.pixel_values) # verify outputs expected_shape = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice_logits = torch.tensor( [[-23.7219, -10.3165, -14.9083], [-41.5429, -15.2403, -24.1478], [-29.3909, -12.7173, -19.4650]], device=torch_device, ) expected_slice_boxes = torch.tensor( [[0.2536, 0.5449, 0.4643], [0.2037, 0.7735, 0.3672], [0.7692, 0.4056, 0.4549]], device=torch_device ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) # verify postprocessing results = image_processor.post_process_object_detection( outputs, threshold=0.3, target_sizes=[image.size[::-1]] )[0] expected_scores = torch.tensor([0.9991, 0.9801, 0.9978, 0.9875, 0.9848]).to(torch_device) expected_labels = [75, 75, 17, 63, 17] expected_slice_boxes = torch.tensor([331.8438, 80.5440, 369.9546, 188.0579]).to(torch_device) self.assertEqual(len(results["scores"]), 5) self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) self.assertSequenceEqual(results["labels"].tolist(), expected_labels) self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
transformers/tests/models/yolos/test_modeling_yolos.py/0
{ "file_path": "transformers/tests/models/yolos/test_modeling_yolos.py", "repo_id": "transformers", "token_count": 6759 }
384
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, PreTrainedTokenizerBase, is_vision_available, ) from transformers.pipelines import ImageClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torch_or_tf, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass @is_pipeline_test @require_torch_or_tf @require_vision class ImageClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING def get_test_pipeline(self, model, tokenizer, processor): image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2) examples = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", ] return image_classifier, examples def run_pipeline_test(self, image_classifier, examples): outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png") self.assertEqual( outputs, [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ) import datasets # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") # Accepts URL + PIL.Image + lists outputs = image_classifier( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["image"], # LA dataset[1]["image"], # L dataset[2]["image"], ] ) self.assertEqual( outputs, [ [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ], ) @require_torch def test_small_model_pt(self): small_model = "hf-internal-testing/tiny-random-vit" image_classifier = pipeline("image-classification", model=small_model) outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], ) outputs = image_classifier( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ], top_k=2, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], ], ) @require_tf def test_small_model_tf(self): small_model = "hf-internal-testing/tiny-random-vit" image_classifier = pipeline("image-classification", model=small_model, framework="tf") outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], ) outputs = image_classifier( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ], top_k=2, ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], ], ) def test_custom_tokenizer(self): tokenizer = PreTrainedTokenizerBase() # Assert that the pipeline can be initialized with a feature extractor that is not in any mapping image_classifier = pipeline( "image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer ) self.assertIs(image_classifier.tokenizer, tokenizer) @slow @require_torch def test_perceiver(self): # Perceiver is not tested by `run_pipeline_test` properly. # That is because the type of feature_extractor and model preprocessor need to be kept # in sync, which is not the case in the current design image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv") outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.4385, "label": "tabby, tabby cat"}, {"score": 0.321, "label": "tiger cat"}, {"score": 0.0502, "label": "Egyptian cat"}, {"score": 0.0137, "label": "crib, cot"}, {"score": 0.007, "label": "radiator"}, ], ) image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier") outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.5658, "label": "tabby, tabby cat"}, {"score": 0.1309, "label": "tiger cat"}, {"score": 0.0722, "label": "Egyptian cat"}, {"score": 0.0707, "label": "remote control, remote"}, {"score": 0.0082, "label": "computer keyboard, keypad"}, ], ) image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned") outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [ {"score": 0.3022, "label": "tabby, tabby cat"}, {"score": 0.2362, "label": "Egyptian cat"}, {"score": 0.1856, "label": "tiger cat"}, {"score": 0.0324, "label": "remote control, remote"}, {"score": 0.0096, "label": "quilt, comforter, comfort, puff"}, ], ) @slow @require_torch def test_multilabel_classification(self): small_model = "hf-internal-testing/tiny-random-vit" # Sigmoid is applied for multi-label classification image_classifier = pipeline("image-classification", model=small_model) image_classifier.model.config.problem_type = "multi_label_classification" outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(outputs, decimals=4), [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], ) outputs = image_classifier( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(outputs, decimals=4), [ [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], ], ) @slow @require_torch def test_function_to_apply(self): small_model = "hf-internal-testing/tiny-random-vit" # Sigmoid is applied for multi-label classification image_classifier = pipeline("image-classification", model=small_model) outputs = image_classifier( "http://images.cocodataset.org/val2017/000000039769.jpg", function_to_apply="sigmoid", ) self.assertEqual( nested_simplify(outputs, decimals=4), [{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}], )
transformers/tests/pipelines/test_pipelines_image_classification.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_image_classification.py", "repo_id": "transformers", "token_count": 4939 }
385
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_accelerator, require_vision, slow, torch_device, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class Image: @staticmethod def open(*args, **kwargs): pass @is_pipeline_test @require_torch @require_vision class VisualQuestionAnsweringPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def get_test_pipeline(self, model, tokenizer, processor): vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa") examples = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def run_pipeline_test(self, vqa_pipeline, examples): outputs = vqa_pipeline(examples, top_k=1) self.assertEqual( outputs, [ [{"score": ANY(float), "answer": ANY(str)}], [{"score": ANY(float), "answer": ANY(str)}], ], ) @require_torch def test_small_model_pt(self): vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa") image = "./tests/fixtures/tests_samples/COCO/000000039769.png" question = "How many cats are there?" outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2) self.assertEqual( outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}] ) outputs = vqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}] ) @require_torch @require_torch_accelerator def test_small_model_pt_blip2(self): vqa_pipeline = pipeline( "visual-question-answering", model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration" ) image = "./tests/fixtures/tests_samples/COCO/000000039769.png" question = "How many cats are there?" outputs = vqa_pipeline(image=image, question=question) self.assertEqual(outputs, [{"answer": ANY(str)}]) outputs = vqa_pipeline({"image": image, "question": question}) self.assertEqual(outputs, [{"answer": ANY(str)}]) outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}]) self.assertEqual(outputs, [[{"answer": ANY(str)}]] * 2) vqa_pipeline = pipeline( "visual-question-answering", model="hf-internal-testing/tiny-random-Blip2ForConditionalGeneration", model_kwargs={"torch_dtype": torch.float16}, device=torch_device, ) self.assertEqual(vqa_pipeline.model.device, torch.device("{}:0".format(torch_device))) self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16) self.assertEqual(vqa_pipeline.model.vision_model.dtype, torch.float16) outputs = vqa_pipeline(image=image, question=question) self.assertEqual(outputs, [{"answer": ANY(str)}]) @slow @require_torch def test_large_model_pt(self): vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa") image = "./tests/fixtures/tests_samples/COCO/000000039769.png" question = "How many cats are there?" outputs = vqa_pipeline(image=image, question=question, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) outputs = vqa_pipeline({"image": image, "question": question}, top_k=2) self.assertEqual( nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) outputs = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(outputs, decimals=4), [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2, ) @slow @require_torch @require_torch_accelerator def test_large_model_pt_blip2(self): vqa_pipeline = pipeline( "visual-question-answering", model="Salesforce/blip2-opt-2.7b", model_kwargs={"torch_dtype": torch.float16}, device=torch_device, ) self.assertEqual(vqa_pipeline.model.device, torch.device("{}:0".format(torch_device))) self.assertEqual(vqa_pipeline.model.language_model.dtype, torch.float16) image = "./tests/fixtures/tests_samples/COCO/000000039769.png" question = "Question: how many cats are there? Answer:" outputs = vqa_pipeline(image=image, question=question) self.assertEqual(outputs, [{"answer": "two"}]) outputs = vqa_pipeline({"image": image, "question": question}) self.assertEqual(outputs, [{"answer": "two"}]) outputs = vqa_pipeline([{"image": image, "question": question}, {"image": image, "question": question}]) self.assertEqual(outputs, [[{"answer": "two"}]] * 2) @require_tf @unittest.skip("Visual question answering not implemented in TF") def test_small_model_tf(self): pass
transformers/tests/pipelines/test_pipelines_visual_question_answering.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_visual_question_answering.py", "repo_id": "transformers", "token_count": 2897 }
386
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) BERT_TEST_FILE = os.path.join("tests", "models", "bert", "test_modeling_bert.py") BLIP_TEST_FILE = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class GetTestInfoTester(unittest.TestCase): def test_get_test_to_tester_mapping(self): bert_test_tester_mapping = get_test_to_tester_mapping(BERT_TEST_FILE) blip_test_tester_mapping = get_test_to_tester_mapping(BLIP_TEST_FILE) EXPECTED_BERT_MAPPING = {"BertModelTest": "BertModelTester"} EXPECTED_BLIP_MAPPING = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(bert_test_tester_mapping), EXPECTED_BERT_MAPPING) self.assertEqual(get_test_info.to_json(blip_test_tester_mapping), EXPECTED_BLIP_MAPPING) def test_get_model_to_test_mapping(self): bert_model_test_mapping = get_model_to_test_mapping(BERT_TEST_FILE) blip_model_test_mapping = get_model_to_test_mapping(BLIP_TEST_FILE) EXPECTED_BERT_MAPPING = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } EXPECTED_BLIP_MAPPING = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(bert_model_test_mapping), EXPECTED_BERT_MAPPING) self.assertEqual(get_test_info.to_json(blip_model_test_mapping), EXPECTED_BLIP_MAPPING) def test_get_model_to_tester_mapping(self): bert_model_tester_mapping = get_model_to_tester_mapping(BERT_TEST_FILE) blip_model_tester_mapping = get_model_to_tester_mapping(BLIP_TEST_FILE) EXPECTED_BERT_MAPPING = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } EXPECTED_BLIP_MAPPING = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(bert_model_tester_mapping), EXPECTED_BERT_MAPPING) self.assertEqual(get_test_info.to_json(blip_model_tester_mapping), EXPECTED_BLIP_MAPPING)
transformers/tests/repo_utils/test_get_test_info.py/0
{ "file_path": "transformers/tests/repo_utils/test_get_test_info.py", "repo_id": "transformers", "token_count": 2131 }
387
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class ConfigTester(object): def __init__(self, parent, config_class=None, has_text_modality=True, common_properties=None, **kwargs): self.parent = parent self.config_class = config_class self.has_text_modality = has_text_modality self.inputs_dict = kwargs self.common_properties = common_properties def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) common_properties = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"]) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(config, prop), msg=f"`{prop}` does not exist") # Test that config has the common properties as setter for idx, name in enumerate(common_properties): try: setattr(config, name, idx) self.parent.assertEqual( getattr(config, name), idx, msg=f"`{name} value {idx} expected, but was {getattr(config, name)}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(common_properties): try: config = self.config_class(**{name: idx}) self.parent.assertEqual( getattr(config, name), idx, msg=f"`{name} value {idx} expected, but was {getattr(config, name)}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def create_and_test_config_to_json_string(self): config = self.config_class(**self.inputs_dict) obj = json.loads(config.to_json_string()) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key], value) def create_and_test_config_to_json_file(self): config_first = self.config_class(**self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "config.json") config_first.to_json_file(json_file_path) config_second = self.config_class.from_json_file(json_file_path) self.parent.assertEqual(config_second.to_dict(), config_first.to_dict()) def create_and_test_config_from_and_save_pretrained(self): config_first = self.config_class(**self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(tmpdirname) config_second = self.config_class.from_pretrained(tmpdirname) self.parent.assertEqual(config_second.to_dict(), config_first.to_dict()) with self.parent.assertRaises(OSError): self.config_class.from_pretrained(f".{tmpdirname}") def create_and_test_config_from_and_save_pretrained_subfolder(self): config_first = self.config_class(**self.inputs_dict) subfolder = "test" with tempfile.TemporaryDirectory() as tmpdirname: sub_tmpdirname = os.path.join(tmpdirname, subfolder) config_first.save_pretrained(sub_tmpdirname) config_second = self.config_class.from_pretrained(tmpdirname, subfolder=subfolder) self.parent.assertEqual(config_second.to_dict(), config_first.to_dict()) def create_and_test_config_with_num_labels(self): config = self.config_class(**self.inputs_dict, num_labels=5) self.parent.assertEqual(len(config.id2label), 5) self.parent.assertEqual(len(config.label2id), 5) config.num_labels = 3 self.parent.assertEqual(len(config.id2label), 3) self.parent.assertEqual(len(config.label2id), 3) def check_config_can_be_init_without_params(self): if self.config_class.is_composition: with self.parent.assertRaises(ValueError): config = self.config_class() else: config = self.config_class() self.parent.assertIsNotNone(config) def check_config_arguments_init(self): kwargs = copy.deepcopy(config_common_kwargs) config = self.config_class(**kwargs) wrong_values = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.float16: wrong_values.append(("torch_dtype", config.torch_dtype, torch.float16)) elif getattr(config, key) != value: wrong_values.append((key, getattr(config, key), value)) if len(wrong_values) > 0: errors = "\n".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values]) raise ValueError(f"The following keys were not properly set in the config:\n{errors}") def run_common_tests(self): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
transformers/tests/test_configuration_common.py/0
{ "file_path": "transformers/tests/test_configuration_common.py", "repo_id": "transformers", "token_count": 2863 }
388
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import itertools import json import os import pickle import re import shutil import tempfile import traceback import unittest from collections import OrderedDict from itertools import takewhile from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union from parameterized import parameterized from transformers import ( AlbertTokenizer, AlbertTokenizerFast, BertTokenizer, BertTokenizerFast, PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast, SpecialTokensMixin, Trainer, TrainingArguments, is_flax_available, is_tf_available, is_torch_available, logging, ) from transformers.testing_utils import ( check_json_file_has_correct_format, get_tests_dir, is_pt_tf_cross_test, require_jinja, require_tf, require_tokenizers, require_torch, run_test_in_subprocess, slow, ) from transformers.tokenization_utils import AddedToken if is_torch_available(): import torch.nn as nn if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel logger = logging.get_logger(__name__) NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"] SMALL_TRAINING_CORPUS = [ ["This is the first sentence.", "This is the second one."], ["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."], ] def filter_non_english(_, pretrained_name: str): """Filter all the model for non-english language""" return not any(lang in pretrained_name for lang in NON_ENGLISH_TAGS) def filter_roberta_detectors(_, pretrained_name: str): return "detector" not in pretrained_name def merge_model_tokenizer_mappings( model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]], tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]], ) -> Dict[ Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"], Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]], ]: configurations = list(model_mapping.keys()) model_tokenizer_mapping = OrderedDict([]) for configuration in configurations: if configuration in model_mapping and configuration in tokenizer_mapping: model = model_mapping[configuration] tokenizer = tokenizer_mapping[configuration][0] tokenizer_fast = tokenizer_mapping[configuration][1] if tokenizer is not None: if configuration.__name__.startswith(tokenizer.__name__.replace("Tokenizer", "")): model_tokenizer_mapping.update({tokenizer: (configuration, model)}) if tokenizer_fast is not None: if configuration.__name__.startswith(tokenizer_fast.__name__.replace("TokenizerFast", "")): model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)}) return model_tokenizer_mapping def _test_subword_regularization_tokenizer(in_queue, out_queue, timeout): error = None try: inputs = in_queue.get(timeout=timeout) tokenizer = inputs["tokenizer"] sp_model_kwargs = inputs["sp_model_kwargs"] test_sentencepiece_ignore_case = inputs["test_sentencepiece_ignore_case"] unittest.TestCase().assertTrue(hasattr(tokenizer, "sp_model_kwargs")) unittest.TestCase().assertIsNotNone(tokenizer.sp_model_kwargs) unittest.TestCase().assertTrue(isinstance(tokenizer.sp_model_kwargs, dict)) unittest.TestCase().assertDictEqual(tokenizer.sp_model_kwargs, sp_model_kwargs) check_subword_sampling(tokenizer, test_sentencepiece_ignore_case=test_sentencepiece_ignore_case) except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() def check_subword_sampling( tokenizer: PreTrainedTokenizer, text: str = None, test_sentencepiece_ignore_case: bool = True, ) -> None: """ Check if the tokenizer generates different results when subword regularization is enabled. Subword regularization augments training data with subword sampling. This has a random component. Args: tokenizer: The tokenizer to check. text: The text to use for the checks. test_sentencepiece_ignore_case: See `TokenizerTesterMixin.test_sentencepiece_ignore_case`. """ text = "This is a test for subword regularization." if text is None else text if test_sentencepiece_ignore_case: text = text.lower() tokens_list = [] for _ in range(5): tokens_list.append(tokenizer.tokenize(text)) # the list of different pairs of tokens_list combinations = itertools.combinations(tokens_list, 2) # check of sampling is done subword_sampling_found = False for combination in combinations: if combination[0] != combination[1]: subword_sampling_found = True unittest.TestCase().assertTrue(subword_sampling_found) # check if converting back to original text works for tokens in tokens_list: if test_sentencepiece_ignore_case: unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower()) else: unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens)) class TokenizerTesterMixin: tokenizer_class = None rust_tokenizer_class = None test_slow_tokenizer = True test_rust_tokenizer = True space_between_special_tokens = False from_pretrained_kwargs = None from_pretrained_filter = None from_pretrained_vocab_key = "vocab_file" test_seq2seq = True # set to True to test a sentencepiece tokenizer test_sentencepiece = False # set to True to ignore casing when testing a sentencepiece tokenizer # test_sentencepiece must also be set to True test_sentencepiece_ignore_case = False def setUp(self) -> None: # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the # information available in Tokenizer (name, rust class, python class, vocab key name) if self.test_rust_tokenizer: tokenizers_list = [ ( self.rust_tokenizer_class, pretrained_name, self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {}, ) for pretrained_name in self.rust_tokenizer_class.pretrained_vocab_files_map[ self.from_pretrained_vocab_key ].keys() if self.from_pretrained_filter is None or (self.from_pretrained_filter is not None and self.from_pretrained_filter(pretrained_name)) ] self.tokenizers_list = tokenizers_list[:1] # Let's just test the first pretrained vocab for speed else: self.tokenizers_list = [] with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data: self._data = f_data.read().replace("\n\n", "\n").strip() self.tmpdirname = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdirname) def get_input_output_texts(self, tokenizer): input_txt = self.get_clean_sequence(tokenizer)[0] return input_txt, input_txt def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: # the length of the tokenizer does not always represent the tokens that it can encode: what if there are holes? toks = [ (i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in set(tokenizer.get_vocab().values()) ] toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks)) if max_length is not None and len(toks) > max_length: toks = toks[:max_length] if min_length is not None and len(toks) < min_length and len(toks) > 0: while len(toks) < min_length: toks = toks + toks # toks_str = [t[1] for t in toks] toks_ids = [t[0] for t in toks] # Ensure consistency output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) if " " not in output_txt and len(toks_ids) > 1: output_txt = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) ) if with_prefix_space: output_txt = " " + output_txt output_ids = tokenizer.encode(output_txt, add_special_tokens=False) return output_txt, output_ids def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]: if fast and self.test_rust_tokenizer and self.test_slow_tokenizer: return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)] elif fast and self.test_rust_tokenizer: return [self.get_rust_tokenizer(**kwargs)] elif self.test_slow_tokenizer: return [self.get_tokenizer(**kwargs)] else: raise ValueError("This tokenizer class has no tokenizer to be tested.") def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast: return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def tokenizer_integration_test_util( self, expected_encoding: Dict, model_name: str, revision: str = None, sequences: List[str] = None, decode_kwargs: Dict[str, Any] = None, padding: bool = True, ): """ Util for integration test. Text is tokenized and then reverted back to text. Both results are then checked. Args: expected_encoding: The expected result of the tokenizer output. model_name: The model name of the tokenizer to load and use. revision: The full git revision number of the model. This is to pin the tokenizer config and to avoid that tests start to fail if the config gets changed upstream. sequences: Can overwrite the texts that are used to check the tokenizer. This is useful if the tokenizer supports non english languages like france. decode_kwargs: Additional args for the ``decode`` function which reverts the tokenized text back to a string. padding: Activates and controls padding of the tokenizer. """ decode_kwargs = {} if decode_kwargs is None else decode_kwargs if sequences is None: sequences = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained " "models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] if self.test_sentencepiece_ignore_case: sequences = [sequence.lower() for sequence in sequences] tokenizer_classes = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained( model_name, revision=revision, # to pin the tokenizer version ) encoding = tokenizer(sequences, padding=padding) decoded_sequences = [ tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"] ] encoding_data = encoding.data self.assertDictEqual(encoding_data, expected_encoding) for expected, decoded in zip(sequences, decoded_sequences): if self.test_sentencepiece_ignore_case: expected = expected.lower() self.assertEqual(expected, decoded) def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int): # Ensure we match max_length self.assertEqual(len(input_r), max_length) self.assertEqual(len(input_p), max_length) # Ensure the number of padded tokens is the same padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r))) padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p))) self.assertSequenceEqual(padded_tokens_r, padded_tokens_p) def assert_batch_padded_input_match( self, input_r: dict, input_p: dict, max_length: int, pad_token_id: int, model_main_input_name: str = "input_ids", ): for i_r in input_r.values(): ( self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(len(i_r[1]), max_length), ) ( self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(len(i_r[1]), max_length), ) for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]): self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id) for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]): self.assertSequenceEqual(i_r, i_p) @staticmethod def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences): # Switch from batch_encode_plus format: {'input_ids': [[...], [...]], ...} # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}] return [ {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()} for i in range(len(batch_encode_plus_sequences["input_ids"])) ] # TODO: this test can be combined with `test_sentencepiece_tokenize_and_convert_tokens_to_string` after the latter is extended to all tokenizers. def test_tokenize_special_tokens(self): """Test `tokenize` with special tokens.""" tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]" SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]" # Both methods should add the token to `_additional_special_tokens` and `added_tokens_decoder` tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) tokenizer.add_special_tokens( {"additional_special_tokens": [SPECIAL_TOKEN_2]}, replace_additional_special_tokens=False ) token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) # next is failing for almost all the Fast tokenizers now. # self.assertEqual(token_2[0], SPECIAL_TOKEN_2) # TODO: this test could be extended to all tokenizers - not just the sentencepiece def test_sentencepiece_tokenize_and_convert_tokens_to_string(self): """Test ``_tokenize`` and ``convert_tokens_to_string``.""" if not self.test_sentencepiece: return tokenizer = self.get_tokenizer() text = "This is text to test the tokenizer." if self.test_sentencepiece_ignore_case: text = text.lower() tokens = tokenizer.tokenize(text) self.assertTrue(len(tokens) > 0) # check if converting back to original text works reverse_text = tokenizer.convert_tokens_to_string(tokens) if self.test_sentencepiece_ignore_case: reverse_text = reverse_text.lower() self.assertEqual(reverse_text, text) special_tokens = tokenizer.all_special_tokens special_tokens_string = tokenizer.convert_tokens_to_string(special_tokens) for special_token in special_tokens: self.assertIn(special_token, special_tokens_string) if self.test_rust_tokenizer: rust_tokenizer = self.get_rust_tokenizer() special_tokens_string_rust = rust_tokenizer.convert_tokens_to_string(special_tokens) self.assertEqual(special_tokens_string, special_tokens_string_rust) def test_sentencepiece_tokenize_and_decode(self): if not self.test_sentencepiece: return text = "This is text to test the tokenizer." if self.test_rust_tokenizer: tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() slow_ids = tokenizer(text).input_ids fast_ids = rust_tokenizer(text).input_ids self.assertEqual(slow_ids, fast_ids) slow_decoded = tokenizer.decode(slow_ids) fast_decoded = rust_tokenizer.decode(slow_ids) self.assertEqual(slow_decoded, fast_decoded) def test_subword_regularization_tokenizer(self) -> None: if not self.test_sentencepiece: return # Subword regularization is only available for the slow tokenizer. sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1} tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs) run_test_in_subprocess( test_case=self, target_func=_test_subword_regularization_tokenizer, inputs={ "tokenizer": tokenizer, "sp_model_kwargs": sp_model_kwargs, "test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case, }, ) def test_pickle_subword_regularization_tokenizer(self) -> None: if not self.test_sentencepiece: return """Google pickle __getstate__ __setstate__ if you are struggling with this.""" # Subword regularization is only available for the slow tokenizer. sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1} tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs) tokenizer_bin = pickle.dumps(tokenizer) del tokenizer tokenizer_new = pickle.loads(tokenizer_bin) run_test_in_subprocess( test_case=self, target_func=_test_subword_regularization_tokenizer, inputs={ "tokenizer": tokenizer_new, "sp_model_kwargs": sp_model_kwargs, "test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case, }, ) def test_save_sentencepiece_tokenizer(self) -> None: if not self.test_sentencepiece or not self.test_slow_tokenizer: return # We want to verify that we will be able to save the tokenizer even if the original files that were used to # build the tokenizer have been deleted in the meantime. text = "This is text to test the tokenizer." tokenizer_slow_1 = self.get_tokenizer() encoding_tokenizer_slow_1 = tokenizer_slow_1(text) tmpdirname_1 = tempfile.mkdtemp() tmpdirname_2 = tempfile.mkdtemp() tokenizer_slow_1.save_pretrained(tmpdirname_1) tokenizer_slow_2 = self.tokenizer_class.from_pretrained(tmpdirname_1) encoding_tokenizer_slow_2 = tokenizer_slow_2(text) shutil.rmtree(tmpdirname_1) tokenizer_slow_2.save_pretrained(tmpdirname_2) tokenizer_slow_3 = self.tokenizer_class.from_pretrained(tmpdirname_2) encoding_tokenizer_slow_3 = tokenizer_slow_3(text) shutil.rmtree(tmpdirname_2) self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_2) self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_3) def test_model_input_names_signature(self): accepted_model_main_input_names = [ "input_ids", # nlp models "input_values", # speech models ] tokenizers = self.get_tokenizers() for tokenizer in tokenizers: # first name of model_input_names has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names) def test_rust_tokenizer_signature(self): if not self.test_rust_tokenizer: return signature = inspect.signature(self.rust_tokenizer_class.__init__) self.assertIn("tokenizer_file", signature.parameters) self.assertIsNone(signature.parameters["tokenizer_file"].default) def test_tokenizer_slow_store_full_signature(self): if not self.test_slow_tokenizer: return signature = inspect.signature(self.tokenizer_class.__init__) tokenizer = self.get_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_tokenizer_fast_store_full_signature(self): if not self.test_rust_tokenizer: return signature = inspect.signature(self.rust_tokenizer_class.__init__) tokenizer = self.get_rust_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty and parameter_name not in [ "vocab_file", "merges_file", "tokenizer_file", ]: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence, _ = self.get_input_output_texts(tokenizer) # We don't have an exact equivalence on `tokenize()` between Rust and Slow # Slow tokenizer only split tokens, Rust tokenizers will replace with <unk> # tokens = tokenizer.tokenize(sequence) # rust_tokens = rust_tokenizer.tokenize(sequence) # self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) ids = tokenizer.encode(sequence, add_special_tokens=True) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True) self.assertListEqual(ids, rust_ids) def test_tokenizers_common_properties(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) self.assertTrue(hasattr(tokenizer, attr + "_id")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids")) attributes_list = [ "model_max_length", "init_inputs", "init_kwargs", ] if not isinstance(tokenizer, PreTrainedTokenizerFast): attributes_list += [ "added_tokens_encoder", "added_tokens_decoder", ] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) def test_tokenizers_common_ids_setters(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] vocab = tokenizer.get_vocab() token_id_to_test_setters = next(iter(vocab.values())) token_to_test_setters = tokenizer.convert_ids_to_tokens( token_id_to_test_setters, skip_special_tokens=False ) for attr in attributes_list: setattr(tokenizer, attr + "_id", None) self.assertEqual(getattr(tokenizer, attr), None) self.assertEqual(getattr(tokenizer, attr + "_id"), None) setattr(tokenizer, attr + "_id", token_id_to_test_setters) self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) setattr(tokenizer, "additional_special_tokens_ids", []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters]) @parameterized.expand([(True,), (False,)]) def test_tokenizers_special_tokens_properties_unset(self, verbose): tokenizers = self.get_tokenizers(verbose=verbose) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", "additional_special_tokens", ] for attr in attributes_list: setattr(tokenizer, attr, None) self.assertIsNone(getattr(tokenizer, attr)) def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"]) additional_special_tokens = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens( {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False ) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) self.assertIn("bim", after_vocab) self.assertIn("bambam", after_vocab) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) # Test that we can also use the non-legacy saving format for fast tokenizers tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: if not tokenizer.is_fast: continue with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"]) additional_special_tokens = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens( {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False ) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) self.assertIn("bim", after_vocab) self.assertIn("bambam", after_vocab) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) def test_pickle_tokenizer(self): """Google pickle __getstate__ __setstate__ if you are struggling with this.""" tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertIsNotNone(tokenizer) text = "Munich and Berlin are nice cities" subwords = tokenizer.tokenize(text) filename = os.path.join(self.tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) subwords_loaded = tokenizer_new.tokenize(text) self.assertListEqual(subwords, subwords_loaded) @require_tokenizers def test_pickle_added_tokens(self): tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True) tok2 = pickle.loads(pickle.dumps(tok1)) self.assertEqual(tok1.__getstate__(), tok2.__getstate__()) def test_added_tokens_do_lower_case(self): tokenizers = self.get_tokenizers(do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case: continue special_token = tokenizer.all_special_tokens[0] text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks]) toks_after_adding = tokenizer.tokenize(text) toks_after_adding2 = tokenizer.tokenize(text2) # Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`, # while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3. self.assertIn(added, [2, 4]) self.assertListEqual(toks_after_adding, toks_after_adding2) self.assertTrue( len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer ) # Check that none of the special tokens are lowercased sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B" # Convert the tokenized list to str as some special tokens are tokenized like normal tokens # which have a prefix spacee e.g. the mask token of Albert, and cannot match the original # special tokens exactly. tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens)) for special_token in tokenizer.all_special_tokens: self.assertTrue(special_token in tokenized_sequence or special_token.lower() in tokenized_sequence) tokenizers = self.get_tokenizers(do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case: continue special_token = tokenizer.all_special_tokens[0] text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks]) self.assertIn(added, [2, 4]) toks_after_adding = tokenizer.tokenize(text) toks_after_adding2 = tokenizer.tokenize(text2) self.assertEqual(len(toks_after_adding), len(toks_after_adding2)) # Length should still be the same self.assertNotEqual( toks_after_adding[1], toks_after_adding2[1] ) # But at least the first non-special tokens should differ self.assertTrue( len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer ) # TODO @ArthurZ Nuke this def test_add_tokens_tokenizer(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests (but also otherwise) because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = [ AddedToken("aaaaa bbbbbb", rstrip=True, lstrip=True), AddedToken("cccccccccdddddddd", rstrip=True, lstrip=True), ] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = { "eos_token": AddedToken(">>>>|||<||<<|<<", rstrip=True, lstrip=True), "pad_token": AddedToken("<<<<<|||>|>>>>|>", rstrip=True, lstrip=True), } added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( ">>>>|||<||<<|<< aaaaa bbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, ids = self.get_clean_sequence(tokenizer) special_token = AddedToken("[SPECIAL_TOKEN]", lstrip=True, rstrip=True) tokenizer.add_special_tokens({"cls_token": special_token}) special_token = str(special_token) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(encoded, input_encoded + special_token_id) decoded = tokenizer.decode(encoded, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, output_text = self.get_input_output_texts(tokenizer) tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) self.assertEqual(text_2, output_text) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False, fast=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): new_toks = [ # These are added tokens, they will be normalized.... AddedToken("[ABC]", normalized=True, lstrip=True, rstrip=True), AddedToken("[DEF]", normalized=True, lstrip=True, rstrip=True), AddedToken("GHI IHG", normalized=True, lstrip=True, rstrip=True), ] tokenizer.add_tokens(new_toks) tokenizer.add_tokens([AddedToken("[SAMPLE]", normalized=True)], special_tokens=True) input = "[ABC][DEF][ABC]GHI IHG[DEF]" if self.space_between_special_tokens: output = "[ABC] [DEF] [ABC] GHI IHG [DEF]" else: output = input encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) return # TODO @ArthurZ Refactor testing as now the do_normalize works for special and non special encoded = tokenizer.encode("[ABC] [DEF][SAMPLE]", add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=False) self.assertIn(decoded, ["[ABC] [DEF] [SAMPLE]", "[ABC] [DEF] [SAMPLE]".lower()]) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=True) self.assertIn(decoded, ["[ABC] [DEF]", "[ABC] [DEF]".lower()]) encoded = tokenizer.encode("[ABC][SAMPLE][DEF]", add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True) self.assertIn(decoded, ["[ABC] [SAMPLE] [DEF]", "[ABC][SAMPLE][DEF]".lower()]) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=False) self.assertIn(decoded, ["[ABC][SAMPLE][DEF]", "[ABC][SAMPLE][DEF]".lower()]) def test_pretrained_model_lists(self): # We should have at least one default checkpoint for each tokenizer # We should specify the max input length as well (used in some part to list the pretrained checkpoints) self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) self.assertEqual( len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), len(self.tokenizer_class.max_model_input_sizes), ) weights_list = list(self.tokenizer_class.max_model_input_sizes.keys()) weights_lists_2 = [] for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items(): weights_lists_2.append(list(map_list.keys())) for weights_list_2 in weights_lists_2: self.assertListEqual(weights_list, weights_list_2) def test_mask_output(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if ( tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer" and "token_type_ids" in tokenizer.model_input_names ): seq_0 = "Test this method." seq_1 = "With these inputs." information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True) sequences, mask = information["input_ids"], information["token_type_ids"] self.assertEqual(len(sequences), len(mask)) def test_token_type_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(seq_0, return_token_type_ids=True) self.assertIn(0, output["token_type_ids"]) def test_sequence_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: if not tokenizer.is_fast: continue with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." seq_1 = "With these inputs." # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(seq_0) self.assertIn(0, output.sequence_ids()) output = tokenizer(seq_0, seq_1) self.assertIn(0, output.sequence_ids()) self.assertIn(1, output.sequence_ids()) if tokenizer.num_special_tokens_to_add(pair=True): self.assertIn(None, output.sequence_ids()) @require_jinja def test_chat_template(self): dummy_template = "{% for message in messages %}{{message['role'] + message['content']}}{% endfor %}" dummy_conversation = [ {"role": "system", "content": "system message"}, {"role": "user", "content": "user message"}, {"role": "assistant", "content": "assistant message"}, ] expected_output = "systemsystem messageuseruser messageassistantassistant message" tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): output = tokenizer.apply_chat_template( dummy_conversation, chat_template=dummy_template, tokenize=False ) self.assertEqual(output, expected_output) # Test we can pass chat_template arg # Check that no error raised when tokenize=True tokenizer.apply_chat_template(dummy_conversation, chat_template=dummy_template, tokenize=True) tokenizer.chat_template = dummy_template self.assertEqual(tokenizer.chat_template, dummy_template) # Test property setter output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False) self.assertEqual(output, expected_output) # Test chat_template attribute is used if no arg is passed tokenizer.apply_chat_template(dummy_conversation, tokenize=True) # Check that no error raised with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer = tokenizer.from_pretrained(tmp_dir_name) self.assertEqual(tokenizer.chat_template, dummy_template) # Test template has persisted output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False) self.assertEqual(output, expected_output) # Test output is the same after reloading tokenizer.apply_chat_template(dummy_conversation, tokenize=True) # Check that no error raised def test_number_of_added_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." seq_1 = "With these inputs." sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: self.assertEqual( tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences) ) def test_maximum_encoding_length_single_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) sequence = tokenizer.encode(seq_0, add_special_tokens=False) total_length = len(sequence) self.assertGreater( total_length, 4, "Issue with the testing sequence, please update it, it's too short" ) # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_1 = seq_0 * model_max_length sequence1 = tokenizer(seq_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) self.assertGreater( total_length1, model_max_length, "Issue with the testing sequence, please update it, it's too short", ) # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"Truncation: {truncation_state}"): output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer(seq_1, padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer([seq_1], padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) # Overflowing tokens stride = 2 information = tokenizer( seq_0, max_length=total_length - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence[:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) else: truncated_sequence = information["input_ids"] overflowing_tokens = information["overflowing_tokens"] self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence[:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) def test_maximum_encoding_length_pair_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Build a sequence from our model's vocabulary stride = 2 seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) if len(ids) <= 2 + stride: seq_0 = (seq_0 + " ") * (2 + stride) ids = None seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False) self.assertGreater(len(seq0_tokens), 2 + stride) seq_1 = "This is another sentence to be encoded." seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False) if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2: seq1_tokens = seq1_tokens + seq1_tokens seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False) seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False) self.assertGreater(len(seq1_tokens), 2 + stride) smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens # We are not using the special tokens - a bit too hard to test all the tokenizers with this # TODO try this again later sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) # , add_prefix_space=False) # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_2 = seq_0 * model_max_length self.assertGreater(len(seq_2), model_max_length) sequence1 = tokenizer(seq_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False) total_length2 = len(sequence2["input_ids"]) self.assertLess( total_length1, model_max_length - 10, "Issue with the testing sequence, please update it." ) self.assertGreater( total_length2, model_max_length, "Issue with the testing sequence, please update it." ) # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"): output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer( [seq_2], [seq_1], padding=padding_state, truncation=truncation_state ) self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second") self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second") self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode( seq_1, add_special_tokens=False ) truncated_second_sequence = ( tokenizer.encode(seq_0, add_special_tokens=False) + tokenizer.encode(seq_1, add_special_tokens=False)[:-2] ) truncated_longest_sequence = ( truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence ) overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[ -(2 + stride) : ] + tokenizer.encode(seq_1, add_special_tokens=False) overflow_second_sequence = ( tokenizer.encode(seq_0, add_special_tokens=False) + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :] ) overflow_longest_sequence = ( overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_longest_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) self.assertEqual(overflowing_tokens, overflow_longest_sequence) else: # No overflowing tokens when using 'longest' in python tokenizers with self.assertRaises(ValueError) as context: information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) self.assertTrue( context.exception.args[0].startswith( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_longest_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) self.assertEqual(overflowing_tokens, overflow_longest_sequence) else: # No overflowing tokens when using 'longest' in python tokenizers with self.assertRaises(ValueError) as context: information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) self.assertTrue( context.exception.args[0].startswith( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) ) information_first_truncated = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="only_first", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information_first_truncated["input_ids"][0] overflowing_tokens = information_first_truncated["input_ids"][1] self.assertEqual(len(information_first_truncated["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_first_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens)) self.assertEqual(overflowing_tokens, overflow_first_sequence) else: truncated_sequence = information_first_truncated["input_ids"] overflowing_tokens = information_first_truncated["overflowing_tokens"] self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_first_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :]) information_second_truncated = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="only_second", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information_second_truncated["input_ids"][0] overflowing_tokens = information_second_truncated["input_ids"][1] self.assertEqual(len(information_second_truncated["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens)) self.assertEqual(overflowing_tokens, overflow_second_sequence) else: truncated_sequence = information_second_truncated["input_ids"] overflowing_tokens = information_second_truncated["overflowing_tokens"] self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :]) # def test_encode_input_type(self): # tokenizers = self.get_tokenizers(do_lower_case=False) # for tokenizer in tokenizers: # with self.subTest(f"{tokenizer.__class__.__name__}"): # sequence = "Let's encode this sequence" # tokens = sequence.split() # tokenizer.tokenize(sequence) # # input_ids = tokenizer.convert_tokens_to_ids(tokens) # formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False) # self.assertEqual( # tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input # ) # # This is not supported with the Rust tokenizers # # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input) # def test_swap_special_token(self): # tokenizers = self.get_tokenizers(do_lower_case=False) # for tokenizer in tokenizers: # with self.subTest(f"{tokenizer.__class__.__name__}"): # # Our mask token # mask = "<mask>" # # We take a single word in the middle of the vocabulary # all_tokens = sorted(tokenizer.get_vocab().keys()) # word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1]) # sequence_0 = "Encode " + word + " sequence" # sequence_masked_0 = "Encode " + mask + " sequence" # sequence_1 = word + " this sequence" # sequence_masked_1 = mask + " this sequence" # # Add tokens so that masked token isn't split # # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()] # # tokenizer.add_tokens(tokens) # tokenizer.add_special_tokens( # {"mask_token": AddedToken(mask, normalized=False)} # ) # Eat left space on Byte-level BPE tokenizers # mask_ind = tokenizer.convert_tokens_to_ids(mask) # # Test first masked sequence # encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False) # encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False) # self.assertEqual(len(encoded_masked), len(encoded_0)) # mask_loc = encoded_masked.index(mask_ind) # encoded_masked[mask_loc] = encoded_0[mask_loc] # self.assertEqual(encoded_masked, encoded_0) # # Test second masked sequence # encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False) # encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False) # self.assertEqual(len(encoded_masked), len(encoded_1)) # mask_loc = encoded_masked.index(mask_ind) # encoded_masked[mask_loc] = encoded_1[mask_loc] # self.assertEqual(encoded_masked, encoded_1) def test_special_tokens_mask(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence_0 = "Encode this." # Testing single inputs encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, add_special_tokens=True, return_special_tokens_mask=True, # , add_prefix_space=False ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]] self.assertEqual(encoded_sequence, filtered_sequence) def test_special_tokens_mask_input_pairs(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence_0 = "Encode this." sequence_1 = "This one too please." encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True, # add_prefix_space=False, ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) def test_padding_side_in_kwargs(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): if self.test_rust_tokenizer: tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, padding_side="left", **kwargs ) self.assertEqual(tokenizer_r.padding_side, "left") tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, padding_side="right", **kwargs ) self.assertEqual(tokenizer_r.padding_side, "right") self.assertRaises( ValueError, self.rust_tokenizer_class.from_pretrained, pretrained_name, padding_side="unauthorized", **kwargs, ) if self.test_slow_tokenizer: tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="left", **kwargs) self.assertEqual(tokenizer_p.padding_side, "left") tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="right", **kwargs) self.assertEqual(tokenizer_p.padding_side, "right") self.assertRaises( ValueError, self.tokenizer_class.from_pretrained, pretrained_name, padding_side="unauthorized", **kwargs, ) def test_truncation_side_in_kwargs(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): if self.test_rust_tokenizer: tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, truncation_side="left", **kwargs ) self.assertEqual(tokenizer_r.truncation_side, "left") tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, truncation_side="right", **kwargs ) self.assertEqual(tokenizer_r.truncation_side, "right") self.assertRaises( ValueError, self.rust_tokenizer_class.from_pretrained, pretrained_name, truncation_side="unauthorized", **kwargs, ) if self.test_slow_tokenizer: tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, truncation_side="left", **kwargs ) self.assertEqual(tokenizer_p.truncation_side, "left") tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, truncation_side="right", **kwargs ) self.assertEqual(tokenizer_p.truncation_side, "right") self.assertRaises( ValueError, self.tokenizer_class.from_pretrained, pretrained_name, truncation_side="unauthorized", **kwargs, ) def test_right_and_left_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) self.assertEqual(sequence_length + padding_size, padded_sequence_length) self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence) # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) self.assertEqual(sequence_length + padding_size, padded_sequence_length) self.assertEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence) # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding' encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence, padding=True) padded_sequence_right_length = len(padded_sequence_right) self.assertEqual(sequence_length, padded_sequence_right_length) self.assertEqual(encoded_sequence, padded_sequence_right) tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(sequence, padding="longest") padded_sequence_left_length = len(padded_sequence_left) self.assertEqual(sequence_length, padded_sequence_left_length) self.assertEqual(encoded_sequence, padded_sequence_left) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence) padded_sequence_right_length = len(padded_sequence_right) self.assertEqual(sequence_length, padded_sequence_right_length) self.assertEqual(encoded_sequence, padded_sequence_right) tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(sequence, padding=False) padded_sequence_left_length = len(padded_sequence_left) self.assertEqual(sequence_length, padded_sequence_left_length) self.assertEqual(encoded_sequence, padded_sequence_left) def test_right_and_left_truncation(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "This is a test sequence" # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True truncation_size = 3 tokenizer.truncation_side = "right" encoded_sequence = tokenizer.encode(sequence, add_special_tokens=False) sequence_length = len(encoded_sequence) # Remove EOS/BOS tokens truncated_sequence = tokenizer.encode( sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False ) truncated_sequence_length = len(truncated_sequence) self.assertEqual(sequence_length, truncated_sequence_length + truncation_size) self.assertEqual(encoded_sequence[:-truncation_size], truncated_sequence) # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the truncation flag set to True tokenizer.truncation_side = "left" sequence_length = len(encoded_sequence) truncated_sequence = tokenizer.encode( sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False ) truncated_sequence_length = len(truncated_sequence) self.assertEqual(sequence_length, truncated_sequence_length + truncation_size) self.assertEqual(encoded_sequence[truncation_size:], truncated_sequence) # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_truncation' sequence_length = len(encoded_sequence) tokenizer.truncation_side = "right" truncated_sequence_right = tokenizer.encode(sequence, truncation=True, add_special_tokens=False) truncated_sequence_right_length = len(truncated_sequence_right) self.assertEqual(sequence_length, truncated_sequence_right_length) self.assertEqual(encoded_sequence, truncated_sequence_right) tokenizer.truncation_side = "left" truncated_sequence_left = tokenizer.encode( sequence, truncation="longest_first", add_special_tokens=False ) truncated_sequence_left_length = len(truncated_sequence_left) self.assertEqual(sequence_length, truncated_sequence_left_length) self.assertEqual(encoded_sequence, truncated_sequence_left) tokenizer.truncation_side = "right" truncated_sequence_right = tokenizer.encode(sequence, add_special_tokens=False) truncated_sequence_right_length = len(truncated_sequence_right) self.assertEqual(sequence_length, truncated_sequence_right_length) self.assertEqual(encoded_sequence, truncated_sequence_right) tokenizer.truncation_side = "left" truncated_sequence_left = tokenizer.encode(sequence, truncation=False, add_special_tokens=False) truncated_sequence_left_length = len(truncated_sequence_left) self.assertEqual(sequence_length, truncated_sequence_left_length) self.assertEqual(encoded_sequence, truncated_sequence_left) def test_padding_to_max_length(self): """We keep this test for backward compatibility but it should be remove when `pad_to_max_length` is deprecated.""" tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) # FIXME: the next line should be padding(max_length) to avoid warning padded_sequence = tokenizer.encode( sequence, max_length=sequence_length + padding_size, pad_to_max_length=True ) padded_sequence_length = len(padded_sequence) self.assertEqual(sequence_length + padding_size, padded_sequence_length) self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence) # Check that nothing is done when a maximum length is not specified encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True) padded_sequence_right_length = len(padded_sequence_right) self.assertEqual(sequence_length, padded_sequence_right_length) self.assertEqual(encoded_sequence, padded_sequence_right) def test_padding_to_multiple_of(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.pad_token is None: self.skipTest("No padding token.") else: empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8) normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8) for key, value in empty_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = tokenizer("This", pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # Should also work with truncation normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # truncation to something which is not a multiple of pad_to_multiple_of raises an error self.assertRaises( ValueError, tokenizer.__call__, "This", padding=True, truncation=True, max_length=12, pad_to_multiple_of=8, ) def test_padding_with_attention_mask(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.pad_token is None: self.skipTest("No padding token.") if "attention_mask" not in tokenizer.model_input_names: self.skipTest("This model does not use attention mask.") features = [ {"input_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]}, {"input_ids": [1, 2, 3], "attention_mask": [1, 1, 0]}, ] padded_features = tokenizer.pad(features) if tokenizer.padding_side == "right": self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]]) else: self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]]) def test_encode_plus_with_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "Sequence" # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_size = 10 padding_idx = tokenizer.pad_token_id token_type_padding_idx = tokenizer.pad_token_type_id encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True) input_ids = encoded_sequence["input_ids"] special_tokens_mask = encoded_sequence["special_tokens_mask"] sequence_length = len(input_ids) # Test 'longest' and 'no_padding' don't do anything tokenizer.padding_side = "right" not_padded_sequence = tokenizer.encode_plus( sequence, padding=True, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) self.assertEqual(sequence_length, not_padded_sequence_length) self.assertEqual(input_ids, not_padded_input_ids) self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask) not_padded_sequence = tokenizer.encode_plus( sequence, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) self.assertEqual(sequence_length, not_padded_sequence_length) self.assertEqual(input_ids, not_padded_input_ids) self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask) # Test right padding tokenizer.padding_side = "right" right_padded_sequence = tokenizer.encode_plus( sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) right_padded_input_ids = right_padded_sequence["input_ids"] right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"] right_padded_sequence_length = len(right_padded_input_ids) self.assertEqual(sequence_length + padding_size, right_padded_sequence_length) self.assertEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids) self.assertEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask) # Test left padding tokenizer.padding_side = "left" left_padded_sequence = tokenizer.encode_plus( sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) left_padded_input_ids = left_padded_sequence["input_ids"] left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"] left_padded_sequence_length = len(left_padded_input_ids) self.assertEqual(sequence_length + padding_size, left_padded_sequence_length) self.assertEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids) self.assertEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask) if "token_type_ids" in tokenizer.model_input_names: token_type_ids = encoded_sequence["token_type_ids"] left_padded_token_type_ids = left_padded_sequence["token_type_ids"] right_padded_token_type_ids = right_padded_sequence["token_type_ids"] self.assertEqual( token_type_ids + [token_type_padding_idx] * padding_size, right_padded_token_type_ids ) self.assertEqual( [token_type_padding_idx] * padding_size + token_type_ids, left_padded_token_type_ids ) if "attention_mask" in tokenizer.model_input_names: attention_mask = encoded_sequence["attention_mask"] right_padded_attention_mask = right_padded_sequence["attention_mask"] left_padded_attention_mask = left_padded_sequence["attention_mask"] self.assertEqual(attention_mask + [0] * padding_size, right_padded_attention_mask) self.assertEqual([0] * padding_size + attention_mask, left_padded_attention_mask) def test_padding_warning_message_fast_tokenizer(self): if not self.test_rust_tokenizer: return sequence = "This is a text" tokenizer_fast = self.get_rust_tokenizer() # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer_fast, sequence) encoding_fast = tokenizer_fast(sequence) with self.assertLogs("transformers", level="WARNING") as cm: tokenizer_fast.pad(encoding_fast) self.assertEqual(len(cm.records), 1) self.assertIn( "Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to" " encode the text followed by a call to the `pad` method to get a padded encoding.", cm.records[0].message, ) if not self.test_slow_tokenizer: return tokenizer_slow = self.get_tokenizer() # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer_slow, sequence) encoding_slow = tokenizer_slow(sequence) with self.assertLogs(level="WARNING") as cm: # We want to assert there are no warnings, but the 'assertLogs' method does not support that. # Therefore, we are adding a dummy warning, and then we will assert it is the only warning. logger.warning("Dummy warning") tokenizer_slow.pad(encoding_slow) self.assertEqual(len(cm.records), 1) self.assertIn( "Dummy warning", cm.records[0].message, ) def test_separate_tokenizers(self): # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today. tokenizers = self.get_tokenizers(random_argument=True) new_tokenizers = self.get_tokenizers(random_argument=False) for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers): with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertTrue(tokenizer.init_kwargs["random_argument"]) self.assertTrue(tokenizer.init_kwargs["random_argument"]) self.assertFalse(new_tokenizer.init_kwargs["random_argument"]) def test_get_vocab(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_dict = tokenizer.get_vocab() self.assertIsInstance(vocab_dict, dict) self.assertGreaterEqual(len(tokenizer), len(vocab_dict)) vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] self.assertEqual(len(vocab), len(tokenizer)) tokenizer.add_tokens(["asdfasdfasdfasdf"]) vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] self.assertEqual(len(vocab), len(tokenizer)) def test_conversion_reversible(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab = tokenizer.get_vocab() for word, ind in vocab.items(): if word == tokenizer.unk_token: continue self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind) self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] # Test not batched encoded_sequences_1 = tokenizer.encode_plus(sequences[0]) encoded_sequences_2 = tokenizer(sequences[0]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test not batched pairs encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1]) encoded_sequences_2 = tokenizer(sequences[0], sequences[1]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test batched encoded_sequences_1 = tokenizer.batch_encode_plus(sequences) encoded_sequences_2 = tokenizer(sequences) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test batched pairs encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences))) encoded_sequences_2 = tokenizer(sequences, sequences) self.assertEqual(encoded_sequences_1, encoded_sequences_2) def test_batch_encode_plus_batch_sequence_length(self): # Tests that all encoded values have the correct size tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences] encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) maximum_length = len( max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len) ) # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences_padded = [ tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True) self.assertListEqual( encoded_sequences_padded, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded), ) # check 'longest' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( sequences, max_length=maximum_length + 10, padding="longest" ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) # check 'no_padding' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( sequences, max_length=maximum_length + 10, padding=False ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) @require_tokenizers def test_added_token_are_matched_longest_first(self): if not self.test_slow_tokenizer: self.skipTest("This test is only for slow tokenizers") return tokenizers = self.get_tokenizers(fast=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): try: tokenizer.add_tokens([AddedToken("extra_id_1")]) tokenizer.add_tokens([AddedToken("extra_id_100")]) except Exception: # Canine cannot add tokens which are not codepoints self.skipTest("Cannot add those Added tokens") # XXX: This used to split on `extra_id_1` first we're matching # longest first now. tokens = tokenizer.tokenize("This is some extra_id_100") self.assertIn("extra_id_100", tokens) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.add_tokens([AddedToken("extra_id_100")]) tokenizer.add_tokens([AddedToken("extra_id_1")]) tokens = tokenizer.tokenize("This is some extra_id_100") self.assertIn("extra_id_100", tokens) @require_tokenizers def test_added_token_serializable(self): # TODO this is tested 10_000 times.... tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): new_token = AddedToken("new_token", lstrip=True) tokenizer.add_tokens([new_token]) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer.from_pretrained(tmp_dir_name) def test_batch_encode_plus_padding(self): # Test that padded sequences are equivalent between batch_encode_plus and encode_plus # Right padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) # Left padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.padding_side = "left" sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) def test_pretokenized_inputs(self): # Test when inputs are pretokenized tokenizers = self.get_tokenizers(do_lower_case=False) # , add_prefix_space=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space: continue # Prepare a sequence from our tokenizer vocabulary sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20) # sequence = " " + sequence # To be sure the byte-level tokenizers are feeling good token_sequence = sequence.split() # sequence_no_prefix_space = sequence.strip() # Test encode for pretokenized inputs output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False) output_sequence = tokenizer.encode(sequence, add_special_tokens=False) self.assertEqual(output, output_sequence) output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True) output_sequence = tokenizer.encode(sequence, add_special_tokens=True) self.assertEqual(output, output_sequence) # Test encode_plus for pretokenized inputs output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False) output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True) output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) # Test batch_encode_plus for pretokenized inputs sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()] token_sequence_batch = [s.split() for s in sequence_batch] sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch] output = tokenizer.batch_encode_plus( token_sequence_batch, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.batch_encode_plus( sequence_batch_cleaned_up_spaces, add_special_tokens=False ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.batch_encode_plus( token_sequence_batch, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.batch_encode_plus( sequence_batch_cleaned_up_spaces, add_special_tokens=True ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) # Test encode for pretokenized inputs pairs output = tokenizer.encode( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False) self.assertEqual(output, output_sequence) output = tokenizer.encode( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True) self.assertEqual(output, output_sequence) # Test encode_plus for pretokenized inputs pairs output = tokenizer.encode_plus( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.encode_plus( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) # Test batch_encode_plus for pretokenized inputs pairs sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [ (sequence.strip() + " " + sequence.strip(), sequence.strip()) ] token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch] sequence_pair_batch_cleaned_up_spaces = [ tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch ] output = tokenizer.batch_encode_plus( token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.batch_encode_plus( sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.batch_encode_plus( token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.batch_encode_plus( sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) def test_prepare_for_model(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): string_sequence = "Testing the prepare_for_model method." ids = tokenizer.encode(string_sequence, add_special_tokens=False) prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True) input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True) self.assertEqual(input_dict, prepared_input_dict) def test_batch_encode_plus_overflowing_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: string_sequences = ["Testing the prepare_for_model method.", "Test"] if tokenizer.pad_token is None: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) tokenizer.batch_encode_plus( string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3 ) @is_pt_tf_cross_test def test_batch_encode_plus_tensors(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] # A Tensor cannot be build by sequences which are not the same size self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt") self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf") if tokenizer.pad_token_id is None: self.assertRaises( ValueError, tokenizer.batch_encode_plus, sequences, padding=True, return_tensors="pt", ) self.assertRaises( ValueError, tokenizer.batch_encode_plus, sequences, padding="longest", return_tensors="tf", ) else: pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt") tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf") encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True) for key in encoded_sequences.keys(): pytorch_value = pytorch_tensor[key].tolist() tensorflow_value = tensorflow_tensor[key].numpy().tolist() encoded_value = encoded_sequences[key] self.assertEqual(pytorch_value, tensorflow_value, encoded_value) def _check_no_pad_token_padding(self, tokenizer, sequences): # if tokenizer does not have pad_token_id, an error should be thrown if tokenizer.pad_token_id is None: with self.assertRaises(ValueError): if isinstance(sequences, list): tokenizer.batch_encode_plus(sequences, padding="longest") else: tokenizer.encode_plus(sequences, padding=True) # add pad_token_id to pass subsequent tests tokenizer.add_special_tokens({"pad_token": "<PAD>"}) @require_torch @slow def test_torch_encode_plus_sent_to_model(self): import torch from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight") if is_using_common_embeddings: self.assertGreaterEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer)) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt") # Ensure that the BatchEncoding.to() method works. encoded_sequence.to(model.device) batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") # This should not fail with torch.no_grad(): # saves some time model(**encoded_sequence) model(**batch_encoded_sequence) # if self.test_rust_tokenizer: # fast_tokenizer = self.get_rust_tokenizer() # encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt") # batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") # # This should not fail # model(**encoded_sequence_fast) # model(**batch_encoded_sequence_fast) @require_tf @slow def test_tf_encode_plus_sent_to_model(self): from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix self.assertGreaterEqual(model.config.vocab_size, len(tokenizer)) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf") batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf") # This should not fail model(encoded_sequence) model(batch_encoded_sequence) # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available @require_torch @slow def test_np_encode_plus_sent_to_model(self): from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np") batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np") # TODO: add forward through JAX/Flax when PR is merged # This is currently here to make ruff happy ! if encoded_sequence is None: raise ValueError("Cannot convert list to numpy tensor on encode_plus()") if batch_encoded_sequence is None: raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus()") if self.test_rust_tokenizer: fast_tokenizer = self.get_rust_tokenizer() encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np") batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus( [sequence, sequence], return_tensors="np" ) # TODO: add forward through JAX/Flax when PR is merged # This is currently here to make ruff happy ! if encoded_sequence_fast is None: raise ValueError("Cannot convert list to numpy tensor on encode_plus() (fast)") if batch_encoded_sequence_fast is None: raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus() (fast)") @require_torch def test_prepare_seq2seq_batch(self): if not self.test_seq2seq: return tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. src_text = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: batch = tokenizer.prepare_seq2seq_batch( src_texts=src_text, tgt_texts=tgt_text, max_length=3, max_target_length=10, return_tensors="pt", src_lang="en_XX", # this should be ignored (for all but mbart) but not cause an error ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # max_target_length will default to max_length if not specified batch = tokenizer.prepare_seq2seq_batch( src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 3) batch_encoder_only = tokenizer.prepare_seq2seq_batch( src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) self.assertNotIn("decoder_input_ids", batch_encoder_only) def test_is_fast(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Check is_fast is set correctly self.assertTrue(tokenizer_r.is_fast) if self.test_slow_tokenizer: tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertFalse(tokenizer_p.is_fast) def test_fast_only_inputs(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Ensure None raise an error self.assertRaises(TypeError, tokenizer_r.tokenize, None) self.assertRaises(TypeError, tokenizer_r.encode, None) self.assertRaises(TypeError, tokenizer_r.encode_plus, None) self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None) def test_alignement_methods(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] text = " ".join(words) batch_size = 3 encoding = tokenizer_r.encode_plus(text, add_special_tokens=False) batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False) num_tokens = len(encoding["input_ids"]) last_word_index = len(words) - 1 last_token_index = num_tokens - 1 last_batch_index = batch_size - 1 last_char_index = len(text) - 1 # words, tokens self.assertEqual(len(encoding.words(0)), num_tokens) self.assertEqual(max(encoding.words(0)), last_word_index) self.assertEqual(min(encoding.words(0)), 0) self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens) self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index) self.assertEqual(min(batch_encoding.words(last_batch_index)), 0) self.assertEqual(len(encoding.tokens(0)), num_tokens) # Assert token_to_word self.assertEqual(encoding.token_to_word(0), 0) self.assertEqual(encoding.token_to_word(0, 0), 0) self.assertEqual(encoding.token_to_word(last_token_index), last_word_index) self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index) self.assertEqual(batch_encoding.token_to_word(1, 0), 0) self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index) self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index) # Assert word_to_tokens self.assertEqual(encoding.word_to_tokens(0).start, 0) self.assertEqual(encoding.word_to_tokens(0, 0).start, 0) self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1) self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0) self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) self.assertEqual( batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1 ) # Assert token_to_chars self.assertEqual(encoding.token_to_chars(0).start, 0) self.assertEqual(encoding.token_to_chars(0, 0).start, 0) self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1) self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0) self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) self.assertEqual( batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1 ) # Assert char_to_token self.assertEqual(encoding.char_to_token(0), 0) self.assertEqual(encoding.char_to_token(0, 0), 0) self.assertEqual(encoding.char_to_token(last_char_index), last_token_index) self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index) self.assertEqual(batch_encoding.char_to_token(1, 0), 0) self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index) self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index) # Assert char_to_word self.assertEqual(encoding.char_to_word(0), 0) self.assertEqual(encoding.char_to_word(0, 0), 0) self.assertEqual(encoding.char_to_word(last_char_index), last_word_index) self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index) self.assertEqual(batch_encoding.char_to_word(1, 0), 0) self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index) self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index) # Assert word_to_chars self.assertEqual(encoding.word_to_chars(0).start, 0) self.assertEqual(encoding.word_to_chars(0, 0).start, 0) self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1) self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0) self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) self.assertEqual( batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1 ) # Assert token_to_sequence self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0) self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0) self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0) self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0) self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0) # Pair of input sequences words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] text = " ".join(words) pair_words = ["Amazing", "example", "full", "of", "inspiration"] pair_text = " ".join(pair_words) batch_size = 3 index_word_in_first_seq = words.index("inspiration") index_word_in_pair_seq = pair_words.index("inspiration") index_char_in_first_seq = text.find("inspiration") index_char_in_pair_seq = pair_text.find("inspiration") pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False) pair_batch_encoding = tokenizer_r.batch_encode_plus( [(text, pair_text)] * batch_size, add_special_tokens=False ) num_tokens = len(encoding["input_ids"]) last_word_index = len(words) - 1 last_token_index = num_tokens - 1 last_batch_index = batch_size - 1 last_char_index = len(text) - 1 # Assert word_to_tokens self.assertNotEqual( pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start, pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( pair_encoding["input_ids"][ pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start ], pair_encoding["input_ids"][ pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start ], ) self.assertNotEqual( pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start, pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( pair_batch_encoding["input_ids"][1][ pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start ], pair_batch_encoding["input_ids"][1][ pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start ], ) # Assert char_to_token self.assertNotEqual( pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0), pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)], pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)], ) self.assertNotEqual( pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0), pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( pair_batch_encoding["input_ids"][1][ pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0) ], pair_batch_encoding["input_ids"][1][ pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1) ], ) # Assert char_to_word self.assertNotEqual( pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0), pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)], pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)], ) self.assertNotEqual( pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0), pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)], pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)], ) # Assert word_to_chars self.assertNotEqual( pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start, pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start], pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start], ) self.assertNotEqual( pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start, pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start], pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start], ) # Assert token_to_sequence pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True) pair_sequence_ids = [ pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"])) ] self.assertIn(0, pair_sequence_ids) self.assertIn(1, pair_sequence_ids) if tokenizer_r.num_special_tokens_to_add(pair=True): self.assertIn(None, pair_sequence_ids) pair_batch_encoding = tokenizer_r.batch_encode_plus( [(text, pair_text)] * batch_size, add_special_tokens=True ) pair_batch_sequence_ids = [ pair_batch_encoding.token_to_sequence(1, i) for i in range(len(pair_batch_encoding["input_ids"][0])) ] self.assertIn(0, pair_batch_sequence_ids) self.assertIn(1, pair_batch_sequence_ids) if tokenizer_r.num_special_tokens_to_add(pair=True): self.assertIn(None, pair_batch_sequence_ids) def test_tokenization_python_rust_equals(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Ensure basic input match input_p = tokenizer_p.encode_plus(self._data) input_r = tokenizer_r.encode_plus(self._data) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key]) input_pairs_p = tokenizer_p.encode_plus(self._data, self._data) input_pairs_r = tokenizer_r.encode_plus(self._data, self._data) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key]) # Ensure truncation match input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True) input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key]) # Ensure truncation with stride match input_p = tokenizer_p.encode_plus( self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) input_r = tokenizer_r.encode_plus( self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key][0]) def test_num_special_tokens_to_add_equal(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual( tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False) ) self.assertEqual( tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True) ) def test_max_length_equal(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence) self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair) def test_special_tokens_map_equal(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): # sometimes the tokenizer saved online is not the same tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Assert the set of special tokens match. self.assertSequenceEqual( tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(), ) def test_add_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) vocab_size = len(tokenizer_r) self.assertEqual(tokenizer_r.add_tokens(""), 0) self.assertEqual(tokenizer_r.add_tokens("testoken"), 1) self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2) self.assertEqual(len(tokenizer_r), vocab_size + 3) self.assertEqual(tokenizer_r.add_special_tokens({}), 0) self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2) self.assertRaises( AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"} ) self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1) self.assertEqual( tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2 ) self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"]) self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list) self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2) self.assertEqual(len(tokenizer_r), vocab_size + 8) def test_offsets_mapping(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) text = "Wonderful no inspiration example with subtoken" pair = "Along with an awesome pair" # No pair tokens_with_offsets = tokenizer_r.encode_plus( text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True ) added_tokens = tokenizer_r.num_special_tokens_to_add(False) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) # Pairs tokens_with_offsets = tokenizer_r.encode_plus( text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True ) added_tokens = tokenizer_r.num_special_tokens_to_add(True) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) def test_batch_encode_dynamic_overflowing(self): """ When calling batch_encode with multiple sequence it can returns different number of overflowing encoding for each sequence: [ Sequence 1: [Encoding 1, Encoding 2], Sequence 2: [Encoding 1], Sequence 3: [Encoding 1, Encoding 2, ... Encoding N] ] This needs to be padded so that it can represented as a tensor """ for tokenizer, pretrained_name, kwargs in self.tokenizers_list: tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"): if is_torch_available(): returned_tensor = "pt" elif is_tf_available(): returned_tensor = "tf" elif is_flax_available(): returned_tensor = "jax" else: return if not tokenizer.pad_token or tokenizer.pad_token_id < 0: return tokens = tokenizer.encode_plus( "HuggingFace is solving NLP one commit at a time", max_length=6, padding=True, truncation=True, return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) # Mono sample tokens = tokenizer.batch_encode_plus( ["HuggingFace is solving NLP one commit at a time"], max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) # Multi sample tokens = tokenizer.batch_encode_plus( ["HuggingFace is solving NLP one commit at a time", "Very tiny input"], max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) def test_compare_pretokenized_inputs(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space: continue # Too hard to test for now # Input string pretokenized_input_simple = "This is a sample input".split() pretokenized_input_pair = "This is a sample pair".split() # Test encode for pretokenized inputs output_r = tokenizer_r.encode( pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False ) output_p = tokenizer_p.encode( pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False ) self.assertEqual(output_p, output_r) kwargs = { "is_split_into_words": True, # "return_token_type_ids": True, # Use the defaults for each tokenizers # "return_attention_mask": True, # Use the defaults for each tokenizers "return_overflowing_tokens": False, "return_special_tokens_mask": True, "return_offsets_mapping": False, # Not implemented in python tokenizers # "add_special_tokens": False, } batch_kwargs = { "is_split_into_words": True, # "return_token_type_ids": True, # Use the defaults for each tokenizers # "return_attention_mask": True, # Use the defaults for each tokenizers "return_overflowing_tokens": False, "return_special_tokens_mask": True, "return_offsets_mapping": False, # Not implemented in python tokenizers # "add_special_tokens": False, } # Test encode_plus for pretokenized inputs output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs) output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test batch_encode_plus for pretokenized inputs input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair] output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs) output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test encode for pretokenized inputs pairs output_r = tokenizer_r.encode( pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True ) output_p = tokenizer_p.encode( pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True ) self.assertEqual(output_p, output_r) # Test encode_plus for pretokenized inputs output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test batch_encode_plus for pretokenized inputs input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [ pretokenized_input_simple + pretokenized_input_pair, pretokenized_input_pair, ] output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs) output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) def test_create_token_type_ids(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) input_simple = [1, 2, 3] input_pair = [1, 2, 3] # Generate output output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple) output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair) output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair) self.assertEqual(output_p, output_r) def test_build_inputs_with_special_tokens(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # # Input string # input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False) # input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False) # # Generate output # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) # self.assertEqual(output_p, output_r) # # Generate pair output # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) # self.assertEqual(output_p, output_r) input_pairs = [ ("", ""), ("", "This is a sample pair"), ("This is a sample input", ""), ("This is a sample input", "This is a sample pair"), ] for sample_input, sample_pair in input_pairs: # Input tokens id input_simple = tokenizer_p.encode(sample_input, add_special_tokens=False) input_pair = tokenizer_p.encode(sample_pair, add_special_tokens=False) # Generate output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) self.assertEqual(output_p, output_r) def test_padding(self, max_length=50): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) pad_token_id = tokenizer_p.pad_token_id # Encode - Simple input input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length") input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode("This is a simple input", padding="longest") input_p = tokenizer_p.encode("This is a simple input", padding=True) self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) # Encode - Pair input input_r = tokenizer_r.encode( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True) input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest") self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) # Encode_plus - Simple input input_r = tokenizer_r.encode_plus( "This is a simple input", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode_plus( "This is a simple input", max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus( "This is a simple input", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode_plus( "This is a simple input", max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest") input_p = tokenizer_p.encode_plus("This is a simple input", padding=True) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Encode_plus - Pair input input_r = tokenizer_r.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest") input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Batch_encode_plus - Simple input input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True, ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True, ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length", ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="longest", ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding=True, ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], padding="longest" ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], padding=True ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Batch_encode_plus - Pair input input_r = tokenizer_r.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], max_length=max_length, truncation=True, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], max_length=max_length, truncation=True, padding="max_length", ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], padding=True, ) input_p = tokenizer_p.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], padding="longest", ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus("This is a input 1") input_r = tokenizer_r.pad(input_r) input_p = tokenizer_p.encode_plus("This is a input 1") input_p = tokenizer_p.pad(input_p) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus("This is a input 1") input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_p.encode_plus("This is a input 1") input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) # Using pad after tokenization input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_r = tokenizer_r.pad(input_r) input_p = tokenizer_p.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_p.pad(input_p) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Using pad after tokenization input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_p.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length") self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) # Test padding nested empty lists (in some use-cases, there is no any token id in the `input_ids` list). input_r = tokenizer_r.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length") input_p = tokenizer_p.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length") self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) def test_padding_different_model_input_name(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) pad_token_id = tokenizer_p.pad_token_id input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) # rename encoded batch to "inputs" input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]] del input_r[tokenizer_r.model_input_names[0]] input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]] del input_p[tokenizer_p.model_input_names[0]] # Renaming `input_ids` to `inputs` tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:] tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:] input_r = tokenizer_r.pad(input_r, padding="longest") input_p = tokenizer_r.pad(input_p, padding="longest") max_length = len(input_p["inputs"][0]) self.assert_batch_padded_input_match( input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs" ) def test_save_pretrained(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # make sure that all ".json" files are saved in the correct format for file_path in tokenizer_r_files + tokenizer_p_files: if os.path.exists(file_path) and file_path.endswith(".json"): check_json_file_has_correct_format(file_path) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=True tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=False tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) def test_embeded_special_tokens(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus( sentence, add_special_tokens=True, ) tokens_p = tokenizer_p.encode_plus( sentence, add_special_tokens=True, ) for key in tokens_p.keys(): self.assertEqual(tokens_r[key], tokens_p[key]) if "token_type_ids" in tokens_r: self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_r, tokens_p) def test_compare_add_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False) # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True) for text in ["", " "]: # tokenize() no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False) with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True) self.assertEqual( len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add ) # encode() no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False) with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True) self.assertEqual( len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add ) # encode_plus() no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False) with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True) for key in no_special_tokens.keys(): self.assertEqual( len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add, ) # # batch_encode_plus no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False) with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True) for key in no_special_tokens.keys(): for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]): self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add) def test_compare_prepare_for_model(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) string_sequence = "Asserting that both tokenizers are equal" python_output = tokenizer_p.prepare_for_model( tokenizer_p.encode(string_sequence, add_special_tokens=False) ) rust_output = tokenizer_r.prepare_for_model( tokenizer_r.encode(string_sequence, add_special_tokens=False) ) for key in python_output: self.assertEqual(python_output[key], rust_output[key]) def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) r_output = tokenizer_r.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: # in rust fast, you lose the information of the AddedToken when initializing with `additional_special_tokens` tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a <special> token") cr_output = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): # This test no longer support rust tokenizers, because the only file that should be looked # at by the fast tokenizer with the new saving format is `tokenizer_config.json`. # The previous behaviour is very strange too. Fast tokenizer should not save 3 files, but just one. Can never do slow from fast. tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) # only legacy save will check this tokenizer_path = "tokenizer_config.json" with open(os.path.join(tmp_dir, tokenizer_path), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) tokenizer_config["additional_special_tokens"] = ["an_additional_special_token"] with open(os.path.join(tmp_dir, tokenizer_path), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files # TODO ArthurZ ... Ok so for legacy we have to support this I guess..... (special_tokens_map + additional) tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) self.assertIn("an_additional_special_token", tokenizer_without_change_in_init.get_vocab()) self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = [AddedToken("a_new_additional_special_token", lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) ), ) def test_training_new_tokenizer(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) # We check that the parameters of the tokenizer remained the same # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False)) self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True)) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence) self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair) # Assert the set of special tokens match as we didn't ask to change them self.assertSequenceEqual( tokenizer.all_special_tokens_extended, new_tokenizer.all_special_tokens_extended, ) self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map) def test_training_new_tokenizer_with_special_tokens_change(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() # Test with a special tokens map class_signature = inspect.signature(tokenizer.__class__) if "cls_token" in class_signature.parameters: new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"} ) cls_id = new_tokenizer.get_vocab()["<cls>"] self.assertEqual(new_tokenizer.cls_token, "<cls>") self.assertEqual(new_tokenizer.cls_token_id, cls_id) # Create a new mapping from the special tokens defined in the original tokenizer special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy() special_tokens_list.remove("additional_special_tokens") special_tokens_map = {} for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, f"_{token}") is not None: special_token = getattr(tokenizer, token) special_tokens_map[special_token] = f"{special_token}a" # Train new tokenizer new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map ) # Check the changes for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, f"_{token}") is None: continue special_token = getattr(tokenizer, token) if special_token in special_tokens_map: new_special_token = getattr(new_tokenizer, token) self.assertEqual(special_tokens_map[special_token], new_special_token) new_id = new_tokenizer.get_vocab()[new_special_token] self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id) # Check if the AddedToken / string format has been kept for special_token in tokenizer.all_special_tokens_extended: if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", ) elif isinstance(special_token, AddedToken): # The special token must appear in the list of the new tokenizer as an object of type AddedToken with # the same parameters as the old AddedToken except the content that the user has requested to change. special_token_str = special_token.content new_special_token_str = special_tokens_map[special_token_str] find = False for candidate in new_tokenizer.all_special_tokens_extended: if ( isinstance(candidate, AddedToken) and candidate.content == new_special_token_str and candidate.lstrip == special_token.lstrip and candidate.rstrip == special_token.rstrip and candidate.normalized == special_token.normalized and candidate.single_word == special_token.single_word ): find = True break special_token.content = new_special_token_str self.assertTrue( find, f"'{special_token.__repr__()}' should appear as an `AddedToken` in the all_special_tokens_extended = " f"{[k for k in new_tokenizer.all_special_tokens_extended if str(k)==new_special_token_str]} but it is missing" ", this means that the new tokenizers did not keep the `rstrip`, `lstrip`, `normalized` etc attributes.", ) elif special_token not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token.__repr__()}' should be in {new_tokenizer.all_special_tokens_extended}", ) else: # The special token must appear in the list of the new tokenizer as an object of type string. self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) def test_tokenizer_mismatch_warning(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): with self.assertLogs("transformers", level="WARNING") as cm: try: if self.tokenizer_class == BertTokenizer: AlbertTokenizer.from_pretrained(pretrained_name) else: BertTokenizer.from_pretrained(pretrained_name) except EnvironmentError as e: # Some tokenizer will raised an error before reaching the logged warning because there are no # corresponding files to load error_message = str(e) except (TypeError, AttributeError): # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned, # here we just check that the warning has been logged before the error is raised pass finally: logged_msg_target = ( "The tokenizer class you load from this checkpoint is not the same type as the class " "this function is called from." ) raised_error_msg_target = "Can't load tokenizer for" self.assertTrue( cm.records[0].message.startswith(logged_msg_target) if len(cm.records) > 0 else False or raised_error_msg_target in error_message ) try: if self.rust_tokenizer_class == BertTokenizerFast: AlbertTokenizerFast.from_pretrained(pretrained_name) else: BertTokenizerFast.from_pretrained(pretrained_name) except (TypeError, AttributeError): # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned, # here we just check that the warning has been logged before the error is raised pass finally: self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class" " this function is called from." ) ) @require_torch def test_saving_tokenizer_trainer(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): with tempfile.TemporaryDirectory() as tmp_dir: # Save the fast tokenizer files in a temporary directory tokenizer_old = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs, use_fast=True) tokenizer_old.save_pretrained(tmp_dir, legacy_format=False) # save only fast version # Initialize toy model for the trainer model = nn.Module() # Load tokenizer from a folder without legacy files tokenizer = self.rust_tokenizer_class.from_pretrained(tmp_dir) training_args = TrainingArguments(output_dir=tmp_dir, do_train=True, no_cuda=True) trainer = Trainer(model=model, args=training_args, tokenizer=tokenizer) # Should not raise an error trainer.save_model(os.path.join(tmp_dir, "checkpoint")) self.assertIn("tokenizer.json", os.listdir(os.path.join(tmp_dir, "checkpoint"))) def test_convert_tokens_to_string_format(self): tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokens = ["this", "is", "a", "test"] string = tokenizer.convert_tokens_to_string(tokens) self.assertIsInstance(string, str) def test_save_slow_from_fast_and_reload_fast(self): if not self.test_slow_tokenizer or not self.test_rust_tokenizer: # we need both slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): with tempfile.TemporaryDirectory() as tmp_dir_1: # Here we check that even if we have initialized a fast tokenizer with a tokenizer_file we can # still save only the slow version and use these saved files to rebuild a tokenizer tokenizer_fast_old_1 = self.rust_tokenizer_class.from_pretrained( pretrained_name, **kwargs, use_fast=True ) tokenizer_file = os.path.join(tmp_dir_1, "tokenizer.json") tokenizer_fast_old_1.backend_tokenizer.save(tokenizer_file) tokenizer_fast_old_2 = self.rust_tokenizer_class.from_pretrained( pretrained_name, **kwargs, use_fast=True, tokenizer_file=tokenizer_file ) tokenizer_fast_old_2.save_pretrained(tmp_dir_1, legacy_format=True) # save only slow version tokenizer_slow = self.tokenizer_class.from_pretrained(tmp_dir_1) with tempfile.TemporaryDirectory() as tmp_dir_2: tokenizer_slow.save_pretrained(tmp_dir_2) # Should not raise an error self.rust_tokenizer_class.from_pretrained(tmp_dir_2) # TODO This is ran for all models but only tests bert... def test_clean_up_tokenization_spaces(self): tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") assert tokenizer.clean_up_tokenization_spaces is True tokens = tokenizer.encode("This shouldn't be! He'll go.") decoded = tokenizer.decode(tokens) assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]" tokenizer.clean_up_tokenization_spaces = False decoded = tokenizer.decode(tokens) assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]" assert decoded == tokenizer.decode(tokens, clean_up_tokenization_spaces=False) # Fast from slow with tempfile.TemporaryDirectory() as tmp_dir_2: tokenizer.save_pretrained(tmp_dir_2) tokenizer_fast = BertTokenizerFast.from_pretrained(tmp_dir_2) del tokenizer assert tokenizer_fast.clean_up_tokenization_spaces is False decoded = tokenizer_fast.decode(tokens) # fast and slow don't have the same output when we don't cleanup # tokenization space. Here `be!` vs `be !` and `go.` vs `go .` assert decoded == "[CLS] this shouldn ' t be! he ' ll go. [SEP]" tokenizer_fast.clean_up_tokenization_spaces = True assert tokenizer_fast.clean_up_tokenization_spaces is True decoded = tokenizer_fast.decode(tokens) assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]" # Slow from fast with tempfile.TemporaryDirectory() as tmp_dir_2: tokenizer_fast.clean_up_tokenization_spaces = False tokenizer_fast.save_pretrained(tmp_dir_2) tokenizer = BertTokenizer.from_pretrained(tmp_dir_2) assert tokenizer.clean_up_tokenization_spaces is False decoded = tokenizer.decode(tokens) assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]" tokenizer.clean_up_tokenization_spaces = True decoded = tokenizer.decode(tokens) assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]" def test_split_special_tokens(self): if not self.test_slow_tokenizer: return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: special_token = "[SPECIAL_TOKEN]" with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) if not tokenizer.is_fast: # bloom, gptneox etc only have a fast tokenizer.add_special_tokens( { "additional_special_tokens": [ AddedToken(special_token, rstrip=True, lstrip=True, normalized=True, special=True) ] } ) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) encoded_split_special_token = tokenizer.encode( special_token, add_special_tokens=False, split_special_tokens=True ) if len(encoded_split_special_token) == 1: # if we have subword tokenization or special vocab self.assertTrue( encoded_split_special_token[0] != tokenizer.convert_tokens_to_ids(special_token) ) else: self.assertTrue(len(encoded_split_special_token) > 1) def test_added_tokens_serialization(self): # Utility to test the added vocab def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir): tokenizer = tokenizer_class.from_pretrained(temp_dir) self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens) self.assertIn(new_eos, tokenizer.added_tokens_decoder.values()) self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos) self.assertDictEqual(expected, tokenizer.added_tokens_decoder) return tokenizer new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False, special=True) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): # Load a slow tokenizer from the hub, init with the new token for fast to also include it tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos) EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"): self.assertEqual(tokenizer._eos_token, new_eos) self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values())) with tempfile.TemporaryDirectory() as tmp_dir_2: tokenizer.save_pretrained(tmp_dir_2) with self.subTest( "Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class" ): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2 ) if self.rust_tokenizer_class is not None: with self.subTest( "Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class" ): tokenizer_fast = _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2 ) with tempfile.TemporaryDirectory() as tmp_dir_3: tokenizer_fast.save_pretrained(tmp_dir_3) with self.subTest( "Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class" ): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 ) with self.subTest( "Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class" ): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 ) with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"): if self.rust_tokenizer_class is not None: tokenizer_fast = self.rust_tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos) self.assertEqual(tokenizer_fast._eos_token, new_eos) self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values())) # We can't test the following because for BC we kept the default rstrip lstrip in slow not fast. Will comment once normalization is alright with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"): self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder) EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder with tempfile.TemporaryDirectory() as tmp_dir_4: tokenizer_fast.save_pretrained(tmp_dir_4) with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4 ) with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"): _test_added_vocab_and_eos( EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4 ) def test_special_token_addition(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): # Create tokenizer and add an additional special token tokenizer_1 = tokenizer.from_pretrained(pretrained_name) tokenizer_1.add_special_tokens({"additional_special_tokens": ["<tok>"]}) self.assertEqual(tokenizer_1.additional_special_tokens, ["<tok>"]) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_1.save_pretrained(tmp_dir) # Load the above tokenizer and add the same special token a second time tokenizer_2 = tokenizer.from_pretrained(pretrained_name) tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>"]}) self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>"]) tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>", "<other>"]}) self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>", "<other>"]) tokenizer_2.add_special_tokens({"additional_special_tokens": ["<other>", "<another>"]}) self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>"]) tokenizer_2.add_special_tokens( {"additional_special_tokens": ["<tok>"]}, replace_additional_special_tokens=False, ) self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>", "<tok>"])
transformers/tests/test_tokenization_common.py/0
{ "file_path": "transformers/tests/test_tokenization_common.py", "repo_id": "transformers", "token_count": 106722 }
389
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class TextToSpeechToolTester(unittest.TestCase, ToolTesterMixin): def setUp(self): self.tool = load_tool("text-to-speech") self.tool.setup() def test_exact_match_arg(self): # SpeechT5 isn't deterministic torch.manual_seed(0) result = self.tool("hey") resulting_tensor = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485]), ) ) def test_exact_match_kwarg(self): # SpeechT5 isn't deterministic torch.manual_seed(0) result = self.tool("hey") resulting_tensor = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485]), ) )
transformers/tests/tools/test_text_to_speech.py/0
{ "file_path": "transformers/tests/tools/test_text_to_speech.py", "repo_id": "transformers", "token_count": 745 }
390
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pytest from transformers import DetrConfig, MaskFormerConfig from transformers.testing_utils import require_torch, slow from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, load_backbone, verify_out_features_out_indices, ) from transformers.utils.import_utils import is_torch_available if is_torch_available(): import torch from transformers import BertPreTrainedModel class BackboneUtilsTester(unittest.TestCase): def test_get_aligned_output_features_output_indices(self): stage_names = ["a", "b", "c"] # Defaults to last layer if both are None out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names) self.assertEqual(out_features, ["c"]) self.assertEqual(out_indices, [2]) # Out indices set to match out features out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names) self.assertEqual(out_features, ["a", "c"]) self.assertEqual(out_indices, [0, 2]) # Out features set to match out indices out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names) self.assertEqual(out_features, ["a", "c"]) self.assertEqual(out_indices, [0, 2]) # Out features selected from negative indices out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names) self.assertEqual(out_features, ["a", "c"]) self.assertEqual(out_indices, [-3, -1]) def test_verify_out_features_out_indices(self): # Stage names must be set with pytest.raises(ValueError, match="Stage_names must be set for transformers backbones"): verify_out_features_out_indices(["a", "b"], (0, 1), None) # Out features must be a list with pytest.raises(ValueError, match="out_features must be a list got <class 'tuple'>"): verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"]) # Out features must be a subset of stage names with pytest.raises( ValueError, match=r"out_features must be a subset of stage_names: \['a'\] got \['a', 'b'\]" ): verify_out_features_out_indices(["a", "b"], (0, 1), ["a"]) # Out features must contain no duplicates with pytest.raises(ValueError, match=r"out_features must not contain any duplicates, got \['a', 'a'\]"): verify_out_features_out_indices(["a", "a"], None, ["a"]) # Out indices must be a list or tuple with pytest.raises(ValueError, match="out_indices must be a list or tuple, got <class 'int'>"): verify_out_features_out_indices(None, 0, ["a", "b"]) # Out indices must be a subset of stage names with pytest.raises( ValueError, match=r"out_indices must be valid indices for stage_names \['a'\], got \(0, 1\)" ): verify_out_features_out_indices(None, (0, 1), ["a"]) # Out indices must contain no duplicates with pytest.raises(ValueError, match=r"out_indices must not contain any duplicates, got \(0, 0\)"): verify_out_features_out_indices(None, (0, 0), ["a"]) # Out features and out indices must be the same length with pytest.raises( ValueError, match="out_features and out_indices should have the same length if both are set" ): verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"]) # Out features should match out indices with pytest.raises( ValueError, match="out_features and out_indices should correspond to the same stages if both are set" ): verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"]) # Out features and out indices should be in order with pytest.raises( ValueError, match=r"out_features must be in the same order as stage_names, expected \['a', 'b'\] got \['b', 'a'\]", ): verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"]) with pytest.raises( ValueError, match=r"out_indices must be in the same order as stage_names, expected \(-2, 1\) got \(1, -2\)" ): verify_out_features_out_indices(["a", "b"], (1, -2), ["a", "b"]) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"]) def test_backbone_mixin(self): backbone = BackboneMixin() backbone.stage_names = ["a", "b", "c"] backbone._out_features = ["a", "c"] backbone._out_indices = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features, ["a", "c"]) self.assertEqual(backbone.out_indices, [0, 2]) # Check out features and indices are updated correctly backbone.out_features = ["a", "b"] self.assertEqual(backbone.out_features, ["a", "b"]) self.assertEqual(backbone.out_indices, [0, 1]) backbone.out_indices = [-3, -1] self.assertEqual(backbone.out_features, ["a", "c"]) self.assertEqual(backbone.out_indices, [-3, -1]) @slow @require_torch def test_load_backbone_in_new_model(self): """ Tests that new model can be created, with its weights instantiated and pretrained backbone weights loaded. """ # Inherit from PreTrainedModel to ensure that the weights are initialized class NewModel(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.backbone = load_backbone(config) self.layer_0 = torch.nn.Linear(config.hidden_size, config.hidden_size) self.layer_1 = torch.nn.Linear(config.hidden_size, config.hidden_size) def get_equal_not_equal_weights(model_0, model_1): equal_weights = [] not_equal_weights = [] for (k0, v0), (k1, v1) in zip(model_0.named_parameters(), model_1.named_parameters()): self.assertEqual(k0, k1) weights_are_equal = torch.allclose(v0, v1) if weights_are_equal: equal_weights.append(k0) else: not_equal_weights.append(k0) return equal_weights, not_equal_weights config = MaskFormerConfig(use_pretrained_backbone=False, backbone="microsoft/resnet-18") model_0 = NewModel(config) model_1 = NewModel(config) equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) # Norm layers are always initialized with the same weights equal_weights = [w for w in equal_weights if "normalization" not in w] self.assertEqual(len(equal_weights), 0) self.assertEqual(len(not_equal_weights), 24) # Now we create a new model with backbone weights that are pretrained config.use_pretrained_backbone = True model_0 = NewModel(config) model_1 = NewModel(config) equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) # Norm layers are always initialized with the same weights equal_weights = [w for w in equal_weights if "normalization" not in w] self.assertEqual(len(equal_weights), 20) # Linear layers are still initialized randomly self.assertEqual(len(not_equal_weights), 4) # Check loading in timm backbone config = DetrConfig(use_pretrained_backbone=False, backbone="resnet18", use_timm_backbone=True) model_0 = NewModel(config) model_1 = NewModel(config) equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) # Norm layers are always initialized with the same weights equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] self.assertEqual(len(equal_weights), 0) self.assertEqual(len(not_equal_weights), 24) # Now we create a new model with backbone weights that are pretrained config.use_pretrained_backbone = True model_0 = NewModel(config) model_1 = NewModel(config) equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) # Norm layers are always initialized with the same weights equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] self.assertEqual(len(equal_weights), 20) # Linear layers are still initialized randomly self.assertEqual(len(not_equal_weights), 4)
transformers/tests/utils/test_backbone_utils.py/0
{ "file_path": "transformers/tests/utils/test_backbone_utils.py", "repo_id": "transformers", "token_count": 3852 }
391
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # # this test validates that we can stack skip decorators in groups and whether # they work correctly with other decorators # # since the decorators have already built their decision params (like checking # env[], we can't mock the env and test each of the combinations), so ideally # the following 4 should be run. But since we have different CI jobs running # different configs, all combinations should get covered # # RUN_SLOW=1 pytest -rA tests/test_skip_decorators.py # RUN_SLOW=1 CUDA_VISIBLE_DEVICES="" pytest -rA tests/test_skip_decorators.py # RUN_SLOW=0 pytest -rA tests/test_skip_decorators.py # RUN_SLOW=0 CUDA_VISIBLE_DEVICES="" pytest -rA tests/test_skip_decorators.py import os import unittest import pytest from parameterized import parameterized from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device # skipping in unittest tests params = [(1,)] # test that we can stack our skip decorators with 3rd party decorators def check_slow(): run_slow = bool(os.getenv("RUN_SLOW", 0)) if run_slow: assert True else: assert False, "should have been skipped" # test that we can stack our skip decorators def check_slow_torch_cuda(): run_slow = bool(os.getenv("RUN_SLOW", 0)) if run_slow and torch_device == "cuda": assert True else: assert False, "should have been skipped" @require_torch class SkipTester(unittest.TestCase): @slow @require_torch_gpu def test_2_skips_slow_first(self): check_slow_torch_cuda() @require_torch_gpu @slow def test_2_skips_slow_last(self): check_slow_torch_cuda() # The combination of any skip decorator, followed by parameterized fails to skip the tests # 1. @slow manages to correctly skip `test_param_slow_first` # 2. but then `parameterized` creates new tests, with a unique name for each parameter groups. # It has no idea that they are to be skipped and so they all run, ignoring @slow # Therefore skip decorators must come after `parameterized` # # @slow # @parameterized.expand(params) # def test_param_slow_first(self, param=None): # check_slow() # This works as expected: # 1. `parameterized` creates new tests with unique names # 2. each of them gets an opportunity to be skipped @parameterized.expand(params) @slow def test_param_slow_last(self, param=None): check_slow() # skipping in non-unittest tests # no problem at all here @slow @require_torch_gpu def test_pytest_2_skips_slow_first(): check_slow_torch_cuda() @require_torch_gpu @slow def test_pytest_2_skips_slow_last(): check_slow_torch_cuda() @slow @pytest.mark.parametrize("param", [1]) def test_pytest_param_slow_first(param): check_slow() @pytest.mark.parametrize("param", [1]) @slow def test_pytest_param_slow_last(param): check_slow()
transformers/tests/utils/test_skip_decorators.py/0
{ "file_path": "transformers/tests/utils/test_skip_decorators.py", "repo_id": "transformers", "token_count": 1214 }
392
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility that checks the supports of 3rd party libraries are listed in the documentation file. Currently, this includes: - flash attention support - SDPA support Use from the root of the repo with (as used in `make repo-consistency`): ```bash python utils/check_support_list.py ``` It has no auto-fix mode. """ import os from glob import glob # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py REPO_PATH = "." def check_flash_support_list(): with open(os.path.join(REPO_PATH, "docs/source/en/perf_infer_gpu_one.md"), "r") as f: doctext = f.read() doctext = doctext.split("FlashAttention-2 is currently supported for the following architectures:")[1] doctext = doctext.split("You can request to add FlashAttention-2 support")[0] patterns = glob(os.path.join(REPO_PATH, "src/transformers/models/**/modeling_*.py")) patterns_tf = glob(os.path.join(REPO_PATH, "src/transformers/models/**/modeling_tf_*.py")) patterns_flax = glob(os.path.join(REPO_PATH, "src/transformers/models/**/modeling_flax_*.py")) patterns = list(set(patterns) - set(patterns_tf) - set(patterns_flax)) archs_supporting_fa2 = [] for filename in patterns: with open(filename, "r") as f: text = f.read() if "_supports_flash_attn_2 = True" in text: model_name = os.path.basename(filename).replace(".py", "").replace("modeling_", "") archs_supporting_fa2.append(model_name) for arch in archs_supporting_fa2: if arch not in doctext: raise ValueError( f"{arch} should be in listed in the flash attention documentation but is not. Please update the documentation." ) def check_sdpa_support_list(): with open(os.path.join(REPO_PATH, "docs/source/en/perf_infer_gpu_one.md"), "r") as f: doctext = f.read() doctext = doctext.split( "For now, Transformers supports SDPA inference and training for the following architectures:" )[1] doctext = doctext.split("Note that FlashAttention can only be used for models using the")[0] patterns = glob(os.path.join(REPO_PATH, "src/transformers/models/**/modeling_*.py")) patterns_tf = glob(os.path.join(REPO_PATH, "src/transformers/models/**/modeling_tf_*.py")) patterns_flax = glob(os.path.join(REPO_PATH, "src/transformers/models/**/modeling_flax_*.py")) patterns = list(set(patterns) - set(patterns_tf) - set(patterns_flax)) archs_supporting_sdpa = [] for filename in patterns: with open(filename, "r") as f: text = f.read() if "_supports_sdpa = True" in text: model_name = os.path.basename(filename).replace(".py", "").replace("modeling_", "") archs_supporting_sdpa.append(model_name) for arch in archs_supporting_sdpa: if arch not in doctext: raise ValueError( f"{arch} should be in listed in the SDPA documentation but is not. Please update the documentation." ) if __name__ == "__main__": check_flash_support_list() check_sdpa_support_list()
transformers/utils/check_support_list.py/0
{ "file_path": "transformers/utils/check_support_list.py", "repo_id": "transformers", "token_count": 1443 }
393
import argparse import os past_versions_testing = { "pytorch": { "1.13": { "torch": "1.13.1", "torchvision": "0.14.1", "torchaudio": "0.13.1", "python": 3.9, "cuda": "cu116", "install": ( "python3 -m pip install --no-cache-dir -U torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1" " --extra-index-url https://download.pytorch.org/whl/cu116" ), "base_image": "nvidia/cuda:11.6.2-cudnn8-devel-ubuntu20.04", }, "1.12": { "torch": "1.12.1", "torchvision": "0.13.1", "torchaudio": "0.12.1", "python": 3.9, "cuda": "cu113", "install": ( "python3 -m pip install --no-cache-dir -U torch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1" " --extra-index-url https://download.pytorch.org/whl/cu113" ), "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "1.11": { "torch": "1.11.0", "torchvision": "0.12.0", "torchaudio": "0.11.0", "python": 3.9, "cuda": "cu113", "install": ( "python3 -m pip install --no-cache-dir -U torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0" " --extra-index-url https://download.pytorch.org/whl/cu113" ), "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "1.10": { "torch": "1.10.2", "torchvision": "0.11.3", "torchaudio": "0.10.2", "python": 3.9, "cuda": "cu113", "install": ( "python3 -m pip install --no-cache-dir -U torch==1.10.2 torchvision==0.11.3 torchaudio==0.10.2" " --extra-index-url https://download.pytorch.org/whl/cu113" ), "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, # torchaudio < 0.10 has no CUDA-enabled binary distributions "1.9": { "torch": "1.9.1", "torchvision": "0.10.1", "torchaudio": "0.9.1", "python": 3.9, "cuda": "cu111", "install": ( "python3 -m pip install --no-cache-dir -U torch==1.9.1 torchvision==0.10.1 torchaudio==0.9.1" " --extra-index-url https://download.pytorch.org/whl/cu111" ), "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, }, "tensorflow": { "2.11": { "tensorflow": "2.11.1", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.11.1", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "2.10": { "tensorflow": "2.10.1", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.10.1", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "2.9": { "tensorflow": "2.9.3", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.9.3", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "2.8": { "tensorflow": "2.8.2", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.8.2", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "2.7": { "tensorflow": "2.7.3", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.7.3", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "2.6": { "tensorflow": "2.6.5", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.6.5", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, "2.5": { "tensorflow": "2.5.3", "install": "python3 -m pip install --no-cache-dir -U tensorflow==2.5.3", "base_image": "nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04", }, }, } if __name__ == "__main__": parser = argparse.ArgumentParser("Choose the framework and version to install") parser.add_argument( "--framework", help="The framework to install. Should be `torch` or `tensorflow`", type=str, required=True ) parser.add_argument("--version", help="The version of the framework to install.", type=str, required=True) args = parser.parse_args() info = past_versions_testing[args.framework][args.version] os.system(f'echo "export INSTALL_CMD=\'{info["install"]}\'" >> ~/.profile') print(f'echo "export INSTALL_CMD=\'{info["install"]}\'" >> ~/.profile') cuda = "" if args.framework == "pytorch": cuda = info["cuda"] os.system(f"echo \"export CUDA='{cuda}'\" >> ~/.profile") print(f"echo \"export CUDA='{cuda}'\" >> ~/.profile")
transformers/utils/past_ci_versions.py/0
{ "file_path": "transformers/utils/past_ci_versions.py", "repo_id": "transformers", "token_count": 2774 }
394
{ "opsets": { "1": [ "Abs", "Add", "AddV2", "ArgMax", "ArgMin", "AvgPool", "AvgPool3D", "BatchMatMul", "BatchMatMulV2", "BatchToSpaceND", "BiasAdd", "BiasAddV1", "Cast", "Ceil", "CheckNumerics", "ComplexAbs", "Concat", "ConcatV2", "Const", "ConstV2", "Conv1D", "Conv2D", "Conv2DBackpropInput", "Conv3D", "Conv3DBackpropInputV2", "DepthToSpace", "DepthwiseConv2d", "DepthwiseConv2dNative", "Div", "Dropout", "Elu", "Equal", "Erf", "Exp", "ExpandDims", "Flatten", "Floor", "Gather", "GatherNd", "GatherV2", "Greater", "Identity", "IdentityN", "If", "LRN", "LSTMBlockCell", "LeakyRelu", "Less", "Log", "LogSoftmax", "LogicalAnd", "LogicalNot", "LogicalOr", "LookupTableSizeV2", "MatMul", "Max", "MaxPool", "MaxPool3D", "MaxPoolV2", "Maximum", "Mean", "Min", "Minimum", "MirrorPad", "Mul", "Neg", "NoOp", "NotEqual", "OneHot", "Pack", "Pad", "PadV2", "Placeholder", "PlaceholderV2", "PlaceholderWithDefault", "Pow", "Prod", "RFFT", "RandomNormal", "RandomNormalLike", "RandomUniform", "RandomUniformLike", "RealDiv", "Reciprocal", "Relu", "Relu6", "Reshape", "Rsqrt", "Selu", "Shape", "Sigmoid", "Sign", "Size", "Slice", "Softmax", "Softplus", "Softsign", "SpaceToBatchND", "SpaceToDepth", "Split", "SplitV", "Sqrt", "Square", "SquaredDifference", "Squeeze", "StatelessIf", "StopGradient", "StridedSlice", "StringJoin", "Sub", "Sum", "Tanh", "Tile", "TopKV2", "Transpose", "TruncateDiv", "Unpack", "ZerosLike" ], "2": [], "3": [], "4": [], "5": [], "6": [ "AddN", "All", "Any", "FloorDiv", "FusedBatchNorm", "FusedBatchNormV2", "FusedBatchNormV3" ], "7": [ "Acos", "Asin", "Atan", "Cos", "Fill", "FloorMod", "GreaterEqual", "LessEqual", "Loop", "MatrixBandPart", "Multinomial", "Range", "ResizeBilinear", "ResizeNearestNeighbor", "Scan", "Select", "SelectV2", "Sin", "SoftmaxCrossEntropyWithLogits", "SparseSoftmaxCrossEntropyWithLogits", "StatelessWhile", "Tan", "TensorListFromTensor", "TensorListGetItem", "TensorListLength", "TensorListReserve", "TensorListResize", "TensorListSetItem", "TensorListStack", "While" ], "8": [ "BroadcastTo", "ClipByValue", "FIFOQueueV2", "HashTableV2", "IteratorGetNext", "IteratorV2", "LookupTableFindV2", "MaxPoolWithArgmax", "QueueDequeueManyV2", "QueueDequeueUpToV2", "QueueDequeueV2", "ReverseSequence" ], "9": [ "SegmentMax", "SegmentMean", "SegmentMin", "SegmentProd", "SegmentSum", "Sinh", "SparseSegmentMean", "SparseSegmentMeanWithNumSegments", "SparseSegmentSqrtN", "SparseSegmentSqrtNWithNumSegments", "SparseSegmentSum", "SparseSegmentSumWithNumSegments", "UnsortedSegmentMax", "UnsortedSegmentMin", "UnsortedSegmentProd", "UnsortedSegmentSum", "Where" ], "10": [ "CropAndResize", "CudnnRNN", "DynamicStitch", "FakeQuantWithMinMaxArgs", "IsFinite", "IsInf", "NonMaxSuppressionV2", "NonMaxSuppressionV3", "NonMaxSuppressionV4", "NonMaxSuppressionV5", "ParallelDynamicStitch", "ReverseV2", "Roll" ], "11": [ "Bincount", "Cumsum", "InvertPermutation", "LeftShift", "MatrixDeterminant", "MatrixDiagPart", "MatrixDiagPartV2", "MatrixDiagPartV3", "RaggedRange", "RightShift", "Round", "ScatterNd", "SparseFillEmptyRows", "SparseReshape", "SparseToDense", "TensorScatterUpdate", "Unique" ], "12": [ "Einsum", "MatrixDiag", "MatrixDiagV2", "MatrixDiagV3", "MatrixSetDiagV3", "SquaredDistance" ], "13": [] } }
transformers/utils/tf_ops/onnx.json/0
{ "file_path": "transformers/utils/tf_ops/onnx.json", "repo_id": "transformers", "token_count": 4081 }
395
# pip install openrlbenchmark==0.2.1a5 # see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation echo "we deal with $TAGS_STRING" python -m openrlbenchmark.rlops_multi_metrics \ --filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \ "ppo$TAGS_STRING" \ --env-ids sentiment-analysis:lvwerra/distilbert-imdb \ --no-check-empty-runs \ --pc.ncols 2 \ --pc.ncols-legend 1 \ --output-filename benchmark/trl/$FOLDER_STRING/ppo \ --scan-history python -m openrlbenchmark.rlops_multi_metrics \ --filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/rewards/accuracies&metrics=train/loss' \ "gpt2$TAGS_STRING" \ --env-ids dpo_anthropic_hh \ --no-check-empty-runs \ --pc.ncols 2 \ --pc.ncols-legend 1 \ --output-filename benchmark/trl/$FOLDER_STRING/dpo \ --scan-history python -m openrlbenchmark.rlops_multi_metrics \ --filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/loss&metrics=eval/accuracy&metrics=eval/loss' \ "facebook/opt-350m$TAGS_STRING" \ --env-ids reward_modeling_anthropic_hh \ --no-check-empty-runs \ --pc.ncols 2 \ --pc.ncols-legend 1 \ --output-filename benchmark/trl/$FOLDER_STRING/reward_modeling \ --scan-history python -m openrlbenchmark.rlops_multi_metrics \ --filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/loss' \ "facebook/opt-350m$TAGS_STRING" \ --env-ids sft_openassistant-guanaco \ --no-check-empty-runs \ --pc.ncols 2 \ --pc.ncols-legend 1 \ --output-filename benchmark/trl/$FOLDER_STRING/sft \ --scan-history python benchmark/upload_benchmark.py \ --folder_path="benchmark/trl/$FOLDER_STRING" \ --path_in_repo="images/benchmark/$FOLDER_STRING" \ --repo_id="trl-internal-testing/example-images" \ --repo_type="dataset"
trl/benchmark/benchmark_level1_plot.sh/0
{ "file_path": "trl/benchmark/benchmark_level1_plot.sh", "repo_id": "trl", "token_count": 927 }
396
# Training customization TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques. ## Train on multiple GPUs / nodes The trainers in TRL use 🤗 Accelerate to enable distributed training across multiple GPUs or nodes. To do so, first create an 🤗 Accelerate config file by running ```bash accelerate config ``` and answering the questions according to your multi-gpu / multi-node setup. You can then launch distributed training by running: ```bash accelerate launch your_script.py ``` We also provide config files in the [examples folder](https://github.com/huggingface/trl/tree/main/examples/accelerate_configs) that can be used as templates. To use these templates, simply pass the path to the config file when launching a job, e.g.: ```shell accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml --num_processes {NUM_GPUS} path_to_script.py --all_arguments_of_the_script ``` Refer to the [examples page](https://github.com/huggingface/trl/tree/main/examples) for more details. ### Distributed training with DeepSpeed All of the trainers in TRL can be run on multiple GPUs together with DeepSpeed ZeRO-{1,2,3} for efficient sharding of the optimizer states, gradients, and model weights. To do so, run: ```shell accelerate launch --config_file=examples/accelerate_configs/deepspeed_zero{1,2,3}.yaml --num_processes {NUM_GPUS} path_to_your_script.py --all_arguments_of_the_script ``` Note that for ZeRO-3, a small tweak is needed to initialize your reward model on the correct device via the `zero3_init_context_manager()` context manager. In particular, this is needed to avoid DeepSpeed hanging after a fixed number of training steps. Here is a snippet of what is involved from the [`sentiment_tuning`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) example: ```python ds_plugin = ppo_trainer.accelerator.state.deepspeed_plugin if ds_plugin is not None and ds_plugin.is_zero3_init_enabled(): with ds_plugin.zero3_init_context_manager(enable=False): sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device) else: sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device) ``` Consult the 🤗 Accelerate [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more information about the DeepSpeed plugin. ## Use different optimizers By default, the `PPOTrainer` creates a `torch.optim.Adam` optimizer. You can create and define a different optimizer and pass it to `PPOTrainer`: ```python import torch from transformers import GPT2Tokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead # 1. load a pretrained model model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # 2. define config ppo_config = {'batch_size': 1, 'learning_rate':1e-5} config = PPOConfig(**ppo_config) # 2. Create optimizer optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate) # 3. initialize trainer ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer) ``` For memory efficient fine-tuning, you can also pass `Adam8bit` optimizer from `bitsandbytes`: ```python import torch import bitsandbytes as bnb from transformers import GPT2Tokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead # 1. load a pretrained model model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # 2. define config ppo_config = {'batch_size': 1, 'learning_rate':1e-5} config = PPOConfig(**ppo_config) # 2. Create optimizer optimizer = bnb.optim.Adam8bit(model.parameters(), lr=config.learning_rate) # 3. initialize trainer ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer) ``` ### Use LION optimizer You can use the new [LION optimizer from Google](https://arxiv.org/abs/2302.06675) as well, first take the source code of the optimizer definition [here](https://github.com/lucidrains/lion-pytorch/blob/main/lion_pytorch/lion_pytorch.py), and copy it so that you can import the optimizer. Make sure to initialize the optimizer by considering the trainable parameters only for a more memory efficient training: ```python optimizer = Lion(filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.config.learning_rate) ... ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer) ``` We advise you to use the learning rate that you would use for `Adam` divided by 3 as pointed out [here](https://github.com/lucidrains/lion-pytorch#lion---pytorch). We observed an improvement when using this optimizer compared to classic Adam (check the full logs [here](https://wandb.ai/distill-bloom/trl/runs/lj4bheke?workspace=user-younesbelkada)): <div style="text-align: center"> <img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-lion.png"> </div> ## Add a learning rate scheduler You can also play with your training by adding learning rate schedulers! ```python import torch from transformers import GPT2Tokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead # 1. load a pretrained model model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # 2. define config ppo_config = {'batch_size': 1, 'learning_rate':1e-5} config = PPOConfig(**ppo_config) # 2. Create optimizer optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) # 3. initialize trainer ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer, lr_scheduler=lr_scheduler) ``` ## Memory efficient fine-tuning by sharing layers Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train. ```python import torch from transformers import AutoTokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model # 1. load a pretrained model model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m') model_ref = create_reference_model(model, num_shared_layers=6) tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m') # 2. initialize trainer ppo_config = {'batch_size': 1} config = PPOConfig(**ppo_config) ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer) ``` ## Pass 8-bit reference models <div> Since `trl` supports all key word arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning. Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#bitsandbytes-integration-for-int8-mixedprecision-matrix-decomposition). </div> ```python # 0. imports # pip install bitsandbytes import torch from transformers import AutoTokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead # 1. load a pretrained model model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m') model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m', device_map="auto", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m') # 2. initialize trainer ppo_config = {'batch_size': 1} config = PPOConfig(**ppo_config) ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer) ``` ## Use the CUDA cache optimizer When training large models, you should better handle the CUDA cache by iteratively clearing it. Do do so, simply pass `optimize_cuda_cache=True` to `PPOConfig`: ```python config = PPOConfig(..., optimize_cuda_cache=True) ``` ## Use score scaling/normalization/clipping As suggested by [Secrets of RLHF in Large Language Models Part I: PPO](https://arxiv.org/abs/2307.04964), we support score (aka reward) scaling/normalization/clipping to improve training stability via `PPOConfig`: ```python from trl import PPOConfig ppo_config = { use_score_scaling=True, use_score_norm=True, score_clip=0.5, } config = PPOConfig(**ppo_config) ``` To run `ppo.py`, you can use the following command: ``` python examples/scripts/ppo.py --log_with wandb --use_score_scaling --use_score_norm --score_clip 0.5 ```
trl/docs/source/customization.mdx/0
{ "file_path": "trl/docs/source/customization.mdx", "repo_id": "trl", "token_count": 2835 }
397
# Reward Modeling TRL supports custom reward modeling for anyone to perform reward modeling on their dataset and model. Check out a complete flexible example at [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/reward_modeling.py). ## Expected dataset format The [`RewardTrainer`] expects a very specific format for the dataset since the model will be trained on pairs of examples to predict which of the two is preferred. We provide an example from the [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset below: <div style="text-align: center"> <img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/rlhf-antropic-example.png", width="50%"> </div> Therefore the final dataset object should contain two 4 entries at least if you use the default [`RewardDataCollatorWithPadding`] data collator. The entries should be named: - `input_ids_chosen` - `attention_mask_chosen` - `input_ids_rejected` - `attention_mask_rejected` ## Using the `RewardTrainer` After preparing your dataset, you can use the [`RewardTrainer`] in the same way as the `Trainer` class from 🤗 Transformers. You should pass an `AutoModelForSequenceClassification` model to the [`RewardTrainer`], along with a [`RewardConfig`] which configures the hyperparameters of the training. ### Leveraging 🤗 PEFT to train a reward model Just pass a `peft_config` in the keyword arguments of [`RewardTrainer`], and the trainer should automatically take care of converting the model into a PEFT model! ```python from peft import LoraConfig, TaskType from transformers import AutoModelForSequenceClassification, AutoTokenizer from trl import RewardTrainer, RewardConfig model = AutoModelForSequenceClassification.from_pretrained("gpt2") peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) ... trainer = RewardTrainer( model=model, args=training_args, tokenizer=tokenizer, train_dataset=dataset, peft_config=peft_config, ) trainer.train() ``` ### Adding a margin to the loss As in the [Llama 2 paper](https://huggingface.co/papers/2307.09288), you can add a margin to the loss by adding a `margin` column to the dataset. The reward collator will automatically pass it through and the loss will be computed accordingly. ```python def add_margin(row): # Assume you have a score_chosen and score_rejected columns that you want to use to compute the margin return {'margin': row['score_chosen'] - row['score_rejected']} dataset = dataset.map(add_margin) ``` ## RewardConfig [[autodoc]] RewardConfig ## RewardTrainer [[autodoc]] RewardTrainer
trl/docs/source/reward_trainer.mdx/0
{ "file_path": "trl/docs/source/reward_trainer.mdx", "repo_id": "trl", "token_count": 877 }
398
<jupyter_start><jupyter_text>Tune GPT2 to generate controlled sentiment reviews> Optimise GPT2 to produce IMDB movie reviews with controlled sentiment using a BERT sentiment classifier for rewards.**WARNING:** We often experienced loss spikes in this examples which caused model training to fail or slow down. There is a [GitHub issue](https://github.com/lvwerra/trl/issues/101) to track the issue. Figure: Experiment setup to tune GPT2. The yellow arrows are outside the scope of this notebook, but the trained models are available through Hugging Face. The experiment setup is very similar to the positive sentiment notebook. However, in this notebook we fine-tune GPT2 (small) to generate **controlled** movie reviews based on the IMDB dataset. The model gets the target sentiment and 5 tokens from a real review and is tasked to produce continuations with the targeted sentiment. The reward for the continuations is calculated with the logits of a BERT sentiment classifier. That reward is then used for PPO training. Setup experiment Import dependencies<jupyter_code>%load_ext autoreload %autoreload 2 import random import torch import wandb import time import os from tqdm import tqdm import numpy as np import pandas as pd from random import choices import matplotlib.pyplot as plt tqdm.pandas() from datasets import load_dataset from transformers import AutoTokenizer, pipeline from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model<jupyter_output>/home/leandro_huggingface_co/miniconda3/envs/trl/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm<jupyter_text>Configuration<jupyter_code>sentiment_pipe_kwargs = {"top_k": None, "function_to_apply": "none"} config = PPOConfig( model_name="lvwerra/gpt2-imdb", steps=51200, learning_rate=1.41e-5, remove_unused_columns=False, log_with="wandb" ) txt_in_len = 5 txt_out_len = 20 seed = 1 np.random.seed(seed)<jupyter_output><empty_output><jupyter_text>You can see that we load a GPT2 model called `gpt2_imdb`. This model was additionally fine-tuned on the IMDB dataset for 1 epoch with the huggingface [script](https://github.com/huggingface/transformers/blob/master/examples/run_language_modeling.py) (no special settings). The other parameters are mostly taken from the original paper ["Fine-Tuning Language Models from Human Preferences"](https://arxiv.org/pdf/1909.08593.pdf). This model as well as the BERT model is available in the Huggingface model zoo [here](https://huggingface.co/models). The following code should automatically download the models. Load data and models Load pre-trained GPT2 language models We load the GPT2 model with a value head and the tokenizer. We load the model twice; the first model is optimized while the second model serves as a reference to calculate the KL-divergence from the starting point. This serves as an additional reward signal in the PPO training to make sure the optimized model does not deviate too much from the original language model.<jupyter_code>gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name) gpt2_model_ref = create_reference_model(gpt2_model) gpt2_tokenizer = AutoTokenizer.from_pretrained(config.model_name) gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token<jupyter_output><empty_output><jupyter_text>Load IMDB datasetThe IMDB dataset contains 50k movie review annotated with "positive"/"negative" feedback indicating the sentiment. We load the IMDB dataset into a DataFrame and filter for comments that are at least 500 characters long and take the first 1000 characters of each comment. The first filter we apply to avoid comments that are less than `txt_in_len` token long and the second to avoid tokenizing way more text than we actually need.<jupyter_code># create the dataset # dataset = load_dataset("imdb", split="train") dataset = dataset.rename_columns({"text": "review", "label": "sentiment"}) # make sure the comments are are at least 500 and trim to 1000 dataset = dataset.filter(lambda x: len(x["review"]) > 500, batched=False) dataset = dataset.map(lambda x: {"review": x["review"][:1000]}, batched=False) dataset<jupyter_output>Found cached dataset imdb (/home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1) Loading cached processed dataset at /home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1/cache-d314b4c14499bf03.arrow Loading cached processed dataset at /home/leandro_huggingface_co/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1/cache-0d5fcb05c95b1186.arrow<jupyter_text>Tokenize IMDB reviews We tokenize all IMDB in advance to avoid tokenizing twice. In the first step we encode the queries and slice the first `txt_in_len` tokens. In a second step we decode these tokens back to text for later display.<jupyter_code>dataset = dataset.map( lambda x: {"input_ids": gpt2_tokenizer.encode(" " + x["review"], return_tensors="pt")[0, :txt_in_len]}, batched=False, ) dataset = dataset.map(lambda x: {"query": gpt2_tokenizer.decode(x["input_ids"])}, batched=False) dataset = dataset[:20480] from datasets import Dataset dataset = Dataset.from_dict(dataset) dataset.set_format("pytorch") dataset[3]["input_ids"] def collator(data): return dict((key, [d[key] for d in data]) for key in data[0]) ppo_trainer = PPOTrainer(config, gpt2_model, gpt2_model_ref, gpt2_tokenizer, dataset, data_collator=collator)<jupyter_output>Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving. wandb: Currently logged in as: lvwerra. Use `wandb login --relogin` to force relogin<jupyter_text>Load BERT classifierWe load a BERT classifier fine-tuned on the IMDB dataset.<jupyter_code>if ppo_trainer.accelerator.num_processes == 1: device = 0 if torch.cuda.is_available() else "cpu" # to avoid a `pipeline` bug else: device = ppo_trainer.accelerator.device sentiment_pipe = pipeline("sentiment-analysis", "lvwerra/distilbert-imdb", device=device)<jupyter_output><empty_output><jupyter_text>The model outputs are the logits for the negative and positive class. We will use the logits for positive class as a reward signal for the language model.<jupyter_code>text = "this movie was really bad!!" output = sentiment_pipe(text, **sentiment_pipe_kwargs) output text = "this movie was really good!!" output = sentiment_pipe(text, **sentiment_pipe_kwargs) output text = "this movie was a documentary" output = sentiment_pipe(text, **sentiment_pipe_kwargs) output<jupyter_output><empty_output><jupyter_text>The resulting reward signal:<jupyter_code>def extract_pipe_output(outputs): positive_logits = [] for out in outputs: for element in out: if element["label"] == "POSITIVE": positive_logits.append(torch.tensor(element["score"])) return positive_logits output[1]["score"]<jupyter_output><empty_output><jupyter_text>Control token dictWe will append the control token at the beginning of each query to signal the model what the target sentiment is. Each control sequence consists of three tokens:<jupyter_code>ctrl_str = ["[negative]", "[neutral]", "[positive]"] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # this should be handled by accelerate ctrl_tokens = dict((s, gpt2_tokenizer.encode(s, return_tensors="pt").squeeze().to(device)) for s in ctrl_str) ctrl_tokens<jupyter_output><empty_output><jupyter_text>Reward function<jupyter_code>def pos_logit_to_reward(logit, task): """ Take the positive sentiment logit and scale it for the task. task [negative]: reward = -logit task [neutral]: reward = -2*abs(logit)+4 task [positive]: reward = logit """ for i in range(len(logit)): if task[i] == "[negative]": logit[i] = -logit[i] elif task[i] == "[neutral]": logit[i] = -2 * torch.abs(logit[i]) + 4 elif task[i] == "[positive]": pass else: raise ValueError("task has to be in [0, 1, 2]!") return logit<jupyter_output><empty_output><jupyter_text>The following examples show the rewards for the cases where the classifier logit is 4, -4 and 0 for the three targets `['negative]`, `['neutral]` and `['positive']`. The scaling is not perfect as it differs between neutral and the other two classes. This is something to further investigate in the future. Ideally, one would use the logit output for each class individually, but since there is no dedicated class for neutral this is a workaround.<jupyter_code>print(ctrl_str) pos_logit_to_reward(torch.Tensor([4, 4, 4]), ctrl_str) pos_logit_to_reward(torch.Tensor([-4, -4, -4]), ctrl_str) pos_logit_to_reward(torch.Tensor([0, 0, 0]), ctrl_str)<jupyter_output><empty_output><jupyter_text>Generation settings<jupyter_code>generation_kwargs = { "min_length": -1, "top_k": 0.0, "top_p": 1.0, "do_sample": True, "pad_token_id": gpt2_tokenizer.eos_token_id, "max_new_tokens": txt_out_len, "eos_token_id": -1, }<jupyter_output><empty_output><jupyter_text>Optimize model **Steps**The training loop consists of the following steps:1. Get a batch of queries and create random controls2. Get the query responses from the policy3. Join query and responses and tokenize for BERT analysis4. Get sentiments for query/responses from BERT5. Optimize policy with PPO using the (query, response, reward) triplet6. Log all the training statistics**Training time**This step takes **~2h** on a P6000 GPU with the above specified settings.<jupyter_code>for epoch in range(2): for batch in tqdm(ppo_trainer.dataloader): (logs, game_data,) = ( dict(), dict(), ) #### prepend a random control token task_list = choices(ctrl_str, k=config.batch_size) game_data["query"] = [t + q for t, q in zip(task_list, batch["query"])] query_tensors = [torch.cat((ctrl_tokens[t], input_ids)) for t, input_ids in zip(task_list, batch["input_ids"])] #### get response from gpt2 response_tensors = [] for query in query_tensors: response = ppo_trainer.generate(query, **generation_kwargs) response_tensors.append(response.squeeze()[-txt_out_len:]) game_data["response"] = [gpt2_tokenizer.decode(r.squeeze()) for r in response_tensors] #### sentiment analysis texts = [q + r for q, r in zip(batch["query"], game_data["response"])] logits = extract_pipe_output(sentiment_pipe(texts, **sentiment_pipe_kwargs)) rewards = pos_logit_to_reward(logits, task_list) #### Run PPO training t = time.time() stats = ppo_trainer.step(query_tensors, response_tensors, rewards) for cs in ctrl_str: key = "env/reward_" + cs.strip("[]") stats[key] = np.mean([r.cpu().numpy() for r, t in zip(rewards, task_list) if t == cs]) ppo_trainer.log_stats(stats, game_data, rewards)<jupyter_output>8%|▊ | 6/80 [12:44<2:37:54, 128.03s/it]/home/leandro_huggingface_co/miniconda3/envs/trl/lib/python3.9/site-packages/transformers/pipelines/base.py:1045: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset warnings.warn( 100%|██████████| 80/80 [2:46:39<00:00, 124.99s/it] 91%|█████████▏| 73/80 [2:30:39<14:35, 125.03s/it]<jupyter_text>Training progressIf you are tracking the training progress with Weights&Biases you should see a plot similar to the following: Figure: Reward mean and distribution evolution during training. One can observe how the model starts to generate more positive outputs after a few optimisation steps.> Note: Investigating the KL-divergence will probably show that at this point the model has not converged to the target KL-divergence, yet. To get there would require longer training or starting with a higher inital coefficient. Model inspection Reward distributionFirst, we can have a look at the reward distribution. Both the negative and positive rewards are clearly shifted to high rewards. The neutral rewards, however, are still centered around zero. There are a few possible explanations for this. There could be a bug in the code and the way the neutral rewards are calculated. Another problem could be that sentence sometimes start with a strong sentiment and it is hard for the model shift the sentiment towards neutral.<jupyter_code>for ctrl_s in ctrl_str: plt.hist( [r for r, t in zip(logs["env/reward_dist"], task_list) if t == ctrl_s], density=True, alpha=0.5, label=ctrl_s ) plt.legend(loc="best") plt.title("reward distribution") plt.grid(True) plt.show()<jupyter_output><empty_output><jupyter_text>Save modelFinally, we save the model to disk for later usage.<jupyter_code>gpt2_model.save_pretrained("gpt2-imdb-ctrl") gpt2_tokenizer.save_pretrained("gpt2-imdb-ctrl")<jupyter_output><empty_output>
trl/examples/notebooks/gpt2-sentiment-control.ipynb/0
{ "file_path": "trl/examples/notebooks/gpt2-sentiment-control.ipynb", "repo_id": "trl", "token_count": 4606 }
399
import argparse import csv import evaluate import numpy as np import torch from datasets import load_dataset from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer from trl.import_utils import is_npu_available, is_xpu_available toxicity = evaluate.load("ybelkada/toxicity", "DaNLP/da-electra-hatespeech-detection", module_type="measurement") ds = load_dataset("OxAISH-AL-LLM/wiki_toxic", split="test") parser = argparse.ArgumentParser(description="Evaluate de-toxified models") parser.add_argument("--model_type", default="all", type=str, help="Relative path to the source model folder") parser.add_argument("--output_file", default="toxicity.csv", type=str, help="Relative path to the source model folder") parser.add_argument("--batch_size", default=64, type=int, help="Batch size") parser.add_argument("--num_samples", default=400, type=int, help="Number of samples") parser.add_argument("--context_length", default=2000, type=int, help="Number of samples") parser.add_argument("--max_new_tokens", default=30, type=int, help="Max new tokens for generation") args = parser.parse_args() if args.model_type == "all": MODELS_TO_TEST = [ "ybelkada/gpt-neo-125m-detox", "EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-2.7B", "ybelkada/gpt-neo-2.7B-detox", "ybelkada/gpt-j-6b-sharded-bf16", "ybelkada/gpt-j-6b-detoxs", ] elif args.model_type == "gpt-neo": MODELS_TO_TEST = [ "ybelkada/gpt-neo-125m-detox", "EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-2.7B", "ybelkada/gpt-neo-2.7B-detox", ] elif args.model_type == "gpt-j": MODELS_TO_TEST = [ "ybelkada/gpt-j-6b-sharded-bf16", "ybelkada/gpt-j-6b-detox", ] else: MODELS_TO_TEST = [args.model_type] NUM_SAMPLES = args.num_samples BATCH_SIZE = args.batch_size output_file = args.output_file max_new_tokens = args.max_new_tokens context_length = args.context_length if is_xpu_available(): device = torch.xpu.current_device() elif is_npu_available(): device = torch.npu.current_device() else: device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu" # consider only toxic prompts ds = ds.filter(lambda x: x["label"] == 1) toxicities = {} # open a csv file file = open(f"{output_file}", "w", newline="") writer = csv.writer(file) # add first rows writer.writerow(["model_id", "mean_toxicity", "std_toxicity"]) for model_id in tqdm(MODELS_TO_TEST): model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": device}, torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" input_texts = [] for i, example in enumerate(ds): # set seed torch.manual_seed(42) input_text = example["comment_text"] input_texts.append(input_text[:2000]) if i > NUM_SAMPLES: break if (i + 1) % BATCH_SIZE == 0: inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device) inputs.input_ids = inputs.input_ids[:context_length] inputs.attention_mask = inputs.attention_mask[:context_length] outputs = model.generate(**inputs, do_sample=True, max_new_tokens=max_new_tokens, use_cache=True) generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True) generated_texts = [ generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts) ] toxicity_score = toxicity.compute(predictions=generated_texts) input_texts = [] if model_id not in toxicities: toxicities[model_id] = [] toxicities[model_id].extend(toxicity_score["toxicity"]) # last batch inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device) outputs = model.generate(**inputs, do_sample=True, max_new_tokens=30) generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True) generated_texts = [generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)] toxicity_score = toxicity.compute(predictions=generated_texts) toxicities[model_id].extend(toxicity_score["toxicity"]) # compute mean & std using np mean = np.mean(toxicities[model_id]) std = np.std(toxicities[model_id]) # save to file writer.writerow([model_id, mean, std]) # print print(f"Model: {model_id} - Mean: {mean} - Std: {std}") model = None if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() # close file file.close()
trl/examples/research_projects/toxicity/scripts/evaluate-toxicity.py/0
{ "file_path": "trl/examples/research_projects/toxicity/scripts/evaluate-toxicity.py", "repo_id": "trl", "token_count": 2056 }
400
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import fnmatch import gc import re import tempfile import unittest import pytest import torch from huggingface_hub import HfApi, HfFolder, delete_repo from parameterized import parameterized from pytest import mark from requests.exceptions import HTTPError from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead, PPOConfig, PPOTrainer, set_seed from trl.core import respond_to_batch from .testing_constants import CI_HUB_ENDPOINT, CI_HUB_USER, CI_HUB_USER_TOKEN from .testing_utils import require_peft, require_torch_multi_gpu EXPECTED_STATS = [ "objective/kl", "objective/kl_dist", "objective/logprobs", "objective/ref_logprobs", "objective/kl_coef", "objective/entropy", "ppo/mean_non_score_reward", "ppo/loss/policy", "ppo/loss/value", "ppo/loss/total", "ppo/policy/entropy", "ppo/policy/approxkl", "ppo/policy/policykl", "ppo/policy/clipfrac", "ppo/policy/advantages", "ppo/policy/advantages_mean", "ppo/policy/ratio", "ppo/returns/mean", "ppo/returns/var", "ppo/val/vpred", "ppo/val/error", "ppo/val/clipfrac", "ppo/val/mean", "ppo/val/var", "ppo/val/var_explained", "time/ppo/forward_pass", "time/ppo/compute_rewards", "time/ppo/optimize_step", "time/ppo/calc_stats", "time/ppo/total", "ppo/learning_rate", ] class DummyDataset(torch.utils.data.Dataset): def __init__(self, query_data, response_data): self.query_data = query_data self.response_data = response_data def __len__(self): return len(self.query_data) def __getitem__(self, idx): return self.query_data[idx], self.response_data[idx] def apply_mask(values, mask): unmasked_values = [] for v, m in zip(values, mask): if m == 1: unmasked_values.append(v) return torch.Tensor(unmasked_values) def abs_diff_masked_tensors(tensor_1, tensor_2, mask_1, mask_2): diffs = [] for l1, l2, m1, m2 in zip(tensor_1, tensor_2, mask_1, mask_2): diff = apply_mask(l1, m1) - apply_mask(l2, m2) diffs.append(diff.sum()) return abs(sum(diffs)) class PPOTrainerTester(unittest.TestCase): """ A wrapper class for testing PPOTrainer """ @classmethod def setUpClass(cls): set_seed(42) cls._token = CI_HUB_USER_TOKEN cls._api = HfApi(endpoint=CI_HUB_ENDPOINT) HfFolder.save_token(CI_HUB_USER_TOKEN) # model_id cls.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab" # get models and tokenizer cls.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(cls.model_id) cls.gpt2_model_ref = AutoModelForCausalLMWithValueHead.from_pretrained(cls.model_id) cls.gpt2_tokenizer = AutoTokenizer.from_pretrained(cls.model_id) cls.gpt2_tokenizer.pad_token = cls.gpt2_tokenizer.eos_token # get bloom as right padding examples: model_id = "trl-internal-testing/tiny-BloomForCausalLM-correct-vocab" cls.bloom_model = AutoModelForCausalLMWithValueHead.from_pretrained(model_id) cls.bloom_tokenizer = AutoTokenizer.from_pretrained(model_id) model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration-correct-vocab" cls.t5_model = AutoModelForSeq2SeqLMWithValueHead.from_pretrained(model_id) cls.t5_tokenizer = AutoTokenizer.from_pretrained(model_id) # initialize trainer cls.ppo_config = PPOConfig(batch_size=2, mini_batch_size=1, log_with=None) @classmethod def tearDownClass(cls): for model in [f"{CI_HUB_USER}/test-ppo-trainer"]: try: delete_repo(token=cls._token, repo_id=model) except HTTPError: pass def setUp(self): # initialize trainer self.ppo_config = PPOConfig(batch_size=2, mini_batch_size=1, log_with=None) self.gpt2_model.train() return super().setUp() def tearDown(self): # free memory gc.collect() def _init_dummy_dataset(self): # encode a query query_txt = "This morning I went to the " query_tensor = self.gpt2_tokenizer.encode(query_txt, return_tensors="pt") assert query_tensor.shape == (1, 7) # get model response response_tensor = respond_to_batch(self.gpt2_model, query_tensor) assert response_tensor.shape == (1, 20) # create a dummy dataset min_length = min(len(query_tensor[0]), len(response_tensor[0])) dummy_dataset = DummyDataset( [query_tensor[:, :min_length].squeeze(0) for _ in range(2)], [response_tensor[:, :min_length].squeeze(0) for _ in range(2)], ) return dummy_dataset def test_drop_last_dataloader(self): self.ppo_config = PPOConfig(batch_size=3, mini_batch_size=1, log_with=None) dummy_dataset = self._init_dummy_dataset() ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=self.gpt2_model_ref, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader assert len(dummy_dataloader) == 0 def test_ppo_step(self): # initialize dataset dummy_dataset = self._init_dummy_dataset() ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=self.gpt2_model_ref, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model train_stats = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break for param in ppo_trainer.model.parameters(): assert param.grad is not None for stat in EXPECTED_STATS: assert stat in train_stats.keys() def test_ppo_step_with_masks(self): # initialize dataset dummy_dataset = self._init_dummy_dataset() ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=self.gpt2_model_ref, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] response_mask = [torch.ones_like(r) for r in response_tensor] # train model train_stats = ppo_trainer.step( [q for q in query_tensor], [r for r in response_tensor], reward, response_mask ) break for param in ppo_trainer.model.parameters(): assert param.grad is not None for stat in EXPECTED_STATS: assert stat in train_stats.keys() def test_ppo_step_with_no_ref_sgd(self): # initialize dataset dummy_dataset = self._init_dummy_dataset() optimizer = torch.optim.SGD(self.gpt2_model.parameters(), lr=0.01) ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, optimizer=optimizer, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader assert isinstance(ppo_trainer.optimizer.optimizer, torch.optim.SGD) # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model train_stats = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break for name, param in ppo_trainer.model.named_parameters(): assert param.grad is not None, f"Parameter {name} has no gradient" # ref model should not be trained for name, param in ppo_trainer.ref_model.named_parameters(): assert param.grad is None, f"Parameter {name} has a gradient" # Finally check stats for stat in EXPECTED_STATS: assert stat in train_stats.keys() def test_ppo_step_with_no_ref_sgd_lr_scheduler(self): # initialize dataset dummy_dataset = self._init_dummy_dataset() optimizer = torch.optim.SGD(self.gpt2_model.parameters(), lr=0.01) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, optimizer=optimizer, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, lr_scheduler=lr_scheduler, ) dummy_dataloader = ppo_trainer.dataloader assert isinstance(ppo_trainer.optimizer.optimizer, torch.optim.SGD) assert isinstance(ppo_trainer.lr_scheduler.scheduler, torch.optim.lr_scheduler.ExponentialLR) # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) train_stats = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break for name, param in ppo_trainer.model.named_parameters(): assert param.grad is not None, f"Parameter {name} has no gradient" # ref model should not be trained for name, param in ppo_trainer.ref_model.named_parameters(): assert param.grad is None, f"Parameter {name} has a gradient" # Finally check stats for stat in EXPECTED_STATS: assert stat in train_stats.keys() # assert that the LR has increased for exponential decay assert train_stats["ppo/learning_rate"] > self.ppo_config.learning_rate def test_ppo_step_with_no_ref(self): # initialize dataset dummy_dataset = self._init_dummy_dataset() self.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id) ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model train_stats = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break for name, param in ppo_trainer.model.named_parameters(): assert param.grad is not None, f"Parameter {name} has no gradient" # ref model should not be trained for name, param in ppo_trainer.ref_model.named_parameters(): assert param.grad is None, f"Parameter {name} has a gradient" # initialize a new gpt2 model: model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id) for name, param in ppo_trainer.ref_model.named_parameters(): if "v_head" not in name: name = name.replace("pretrained_model.", "") assert torch.allclose( param.cpu(), model.state_dict()[name].cpu() ), f"Parameter {name} has changed from the original model" # Finally check stats for stat in EXPECTED_STATS: assert stat in train_stats.keys() def test_ppo_step_with_no_ref_custom_layers(self): """ Test PPO step with no reference model and custom layers For shared layers configuration, all the layers after the `num_shared_layers` are considered as custom layers therefore the gradients should be computed for these layers only. """ # initialize dataset dummy_dataset = self._init_dummy_dataset() self.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id) num_shared_layers = 1 ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, num_shared_layers=num_shared_layers, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model train_stats = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break pattern = r".*transformer\.h\.(\d+)\..*" final_layers = ["ln_f", "v_head", "lm_head"] for name, param in ppo_trainer.model.named_parameters(): if re.match(pattern, name): layer_number = int(re.match(pattern, name).groups(0)[0]) if layer_number < num_shared_layers: assert param.grad is None, f"Parameter {name} has a gradient" else: assert param.grad is not None, f"Parameter {name} has no gradient" elif any([layer in name for layer in final_layers]): assert param.grad is not None, f"Parameter {name} has no gradient" # ref model should not be trained for name, param in ppo_trainer.ref_model.named_parameters(): assert param.grad is None, f"Parameter {name} has a gradient" for stat in EXPECTED_STATS: assert stat in train_stats.keys() def test_ppo_step_with_ref_and_custom_layers_warning(self): """ Test PPO step with a reference model and custom layers The trainer should raise a warning if the argument `num_shared_layers` is set together with a reference model. """ # initialize dataset dummy_dataset = self._init_dummy_dataset() num_shared_layers = 6 with self.assertWarns(UserWarning): _ = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=self.gpt2_model_ref, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, num_shared_layers=num_shared_layers, ) def test_ppo_step_rewards_shape(self): """ Test if the rewards shape is correct by asserting that if a wrong reward shape is passed, we get a value error. """ # initialize dataset dummy_dataset = self._init_dummy_dataset() ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor([[1.0]]), torch.tensor([[0.0]])] # train model - this should raise an error with pytest.raises(ValueError): _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) reward = [torch.tensor([1.0]), torch.tensor([0.0])] # train model - this should work _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break # check if the gradients are computed for the model for name, param in ppo_trainer.model.named_parameters(): assert param.grad is not None, f"Parameter {name} has no gradient" # ref model should not be trained for name, param in ppo_trainer.ref_model.named_parameters(): assert param.grad is None, f"Parameter {name} has a gradient" def test_ppo_step_input_shape(self): """ Test if the shape of the expected inputs are correct """ # initialize dataset dummy_dataset = self._init_dummy_dataset() ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor([1.0]), torch.tensor([0.0])] # train model - this should raise an error bs = ppo_trainer.config.batch_size queries, responses, _, _ = ppo_trainer._step_safety_checker( bs, [q for q in query_tensor], [r for r in response_tensor], reward ) assert isinstance(queries, list), f"queries should be a list, got {type(queries)}" assert isinstance(responses, list), f"responses should be a list, got {type(responses)}" # check the shapes for i in range(bs): assert queries[i].shape == torch.Size([7]) assert responses[i].size() == torch.Size([7]) break def test_ppo_step_no_dataset(self): """ Test if the training loop works fine without passing a dataset """ query_txt = "This morning I went to the " query_tensor = self.gpt2_tokenizer.encode(query_txt, return_tensors="pt") self.ppo_config.batch_size = 1 response_tensor = respond_to_batch(self.gpt2_model, query_tensor) # Check that this warns the user about batch size with self.assertWarns(UserWarning): ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=self.gpt2_model_ref, tokenizer=self.gpt2_tokenizer, ) # train model with ppo reward = [torch.tensor([1.0])] # train model - this should work fine train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward) # check gradients for name, param in ppo_trainer.model.named_parameters(): assert param.grad is not None, f"Parameter {name} has no gradient" # ref model should not be trained for name, param in ppo_trainer.ref_model.named_parameters(): assert param.grad is None, f"Parameter {name} has a gradient" # check train stats for stat in EXPECTED_STATS: assert stat in train_stats, f"Train stats should contain {stat}" def test_loss_trainer(self): """ Test if the loss trainer works fine """ # initialize dataset dummy_dataset = self._init_dummy_dataset() self.gpt2_model.eval() ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_queries = [torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 3, 4, 5, 6, 7])] dummy_responses = [torch.tensor([5, 6, 7, 8, 9]), torch.tensor([8, 9, 10, 11, 12, 13])] dummy_scores = torch.Tensor([1, 2]) ppo_trainer.config.mini_batch_size = 1 ppo_trainer.config.batch_size = 1 model_inputs = ppo_trainer.prepare_model_inputs(dummy_queries, dummy_responses) all_logprobs, _, values, mask = ppo_trainer.batched_forward_pass( self.gpt2_model, dummy_queries, dummy_responses, model_inputs ) # dummy values ref_logprobs = all_logprobs + 1 logits = torch.exp(all_logprobs) vpreds = values + 0.1 score, non_score, kls = ppo_trainer.compute_rewards(dummy_scores, all_logprobs, ref_logprobs, mask) values, advantages, returns = ppo_trainer.compute_advantages(values, score, mask) # just make sure a dummy loss is computed idx = 0 pg_loss, v_loss, _ = ppo_trainer.loss( all_logprobs[idx].unsqueeze(0), values[idx].unsqueeze(0), logits[idx].unsqueeze(0), vpreds[idx].unsqueeze(0), ref_logprobs[idx].unsqueeze(0), mask[idx].unsqueeze(0), advantages[idx].unsqueeze(0), returns[idx].unsqueeze(0), ) assert abs(pg_loss.item() - 2.0494) < 0.0001 assert abs(v_loss.item() - 0.0711) < 0.0001 # check if we get same results with masked parts removed pg_loss_unmasked, v_loss_unmasked, _ = ppo_trainer.loss( apply_mask(all_logprobs[idx], mask[idx]).unsqueeze(0), apply_mask(values[idx], mask[idx]).unsqueeze(0), apply_mask(logits[idx], mask[idx]).unsqueeze(0), apply_mask(vpreds[idx], mask[idx]).unsqueeze(0), apply_mask(ref_logprobs[idx], mask[idx]).unsqueeze(0), apply_mask(mask[idx], mask[idx]).unsqueeze(0), apply_mask(advantages[idx], mask[idx]).unsqueeze(0), apply_mask(returns[idx], mask[idx]).unsqueeze(0), ) assert abs(pg_loss_unmasked.item() - 2.0494) < 0.0001 assert abs(v_loss_unmasked.item() - 0.0711) < 0.0001 @parameterized.expand( [ ["gpt2"], ["bloom"], ["t5"], ] ) def test_batched_forward_pass(self, name): """ Test if the loss trainer works fine """ # initialize dataset dummy_dataset = self._init_dummy_dataset() dummy_queries = [torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 3, 4, 5, 6, 7])] dummy_responses = [torch.tensor([5, 6, 7, 8, 9]), torch.tensor([8, 9, 10, 11, 12, 13])] if name == "gpt2": model = self.gpt2_model tokenizer = self.gpt2_tokenizer elif name == "bloom": model = self.bloom_model tokenizer = self.bloom_tokenizer elif name == "t5": model = self.t5_model tokenizer = self.t5_tokenizer model.eval() ppo_trainer = PPOTrainer( config=self.ppo_config, model=model, ref_model=None, tokenizer=tokenizer, dataset=dummy_dataset, ) # we test all combinations of fwd_bs and bs: # if fwd_bs=bs=1: no padding is applied and only one forward pass # if fwd_bs=1/bs=2: padding is applied and results computed in two fwd passes # if fwd_bs=bs=2: padding is applied and results computed in one fwd pass ppo_trainer.config.mini_batch_size = 1 ppo_trainer.config.batch_size = 1 model_inputs = ppo_trainer.prepare_model_inputs([dummy_queries[0]], [dummy_responses[0]]) logprobs_0, logits_0, values_0, mask_0 = ppo_trainer.batched_forward_pass( model, [dummy_queries[0]], [dummy_responses[0]], model_inputs ) ppo_trainer.config.batch_size = 2 model_inputs = ppo_trainer.prepare_model_inputs(dummy_queries, dummy_responses) logprobs_1, logits_1, values_1, mask_1 = ppo_trainer.batched_forward_pass( model, dummy_queries, dummy_responses, model_inputs ) ppo_trainer.config.mini_batch_size = 2 model_inputs = ppo_trainer.prepare_model_inputs(dummy_queries, dummy_responses) logprobs_2, logits_2, values_2, mask_2 = ppo_trainer.batched_forward_pass( model, dummy_queries, dummy_responses, model_inputs ) assert abs_diff_masked_tensors(logprobs_1, logprobs_2, mask_1, mask_2) <= 0.0001 assert abs_diff_masked_tensors(values_1, values_2, mask_1, mask_2) <= 0.0001 assert abs_diff_masked_tensors(logprobs_0, logprobs_2[:1], mask_0, mask_2[:1]) <= 0.0001 assert abs_diff_masked_tensors(values_0, values_2[:1], mask_0, mask_2[:1]) <= 0.0001 def test_ppo_trainer_max_grad_norm(self): """ Test if the `max_grad_norm` feature works as expected """ # initialize dataset dummy_dataset = self._init_dummy_dataset() self.ppo_config.max_grad_norm = 0.00001 ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break # check gradients for name, param in ppo_trainer.model.named_parameters(): assert param.grad is not None, f"Parameter {name} has no gradient" assert torch.all( param.grad.abs() <= self.ppo_config.max_grad_norm ), f"Parameter {name} has a gradient larger than max_grad_norm" def test_ppo_trainer_kl_penalty(self): dummy_dataset = self._init_dummy_dataset() log_probs = torch.Tensor([[0.5, 0.2, 0.1], [0.6, 0.2, 0.1]]) ref_log_probs = torch.Tensor([[0.4, 0.3, 0.0], [0.7, 0.1, 0.3]]) ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) expected_output = torch.Tensor([[0.1000, -0.1000, 0.1000], [-0.1000, 0.1000, -0.2000]]) assert torch.allclose(ppo_trainer._kl_penalty(log_probs, ref_log_probs), expected_output) self.ppo_config.kl_penalty = "abs" ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) expected_output = torch.Tensor([[0.1000, 0.1000, 0.1000], [0.1000, 0.1000, 0.2000]]) assert torch.allclose(ppo_trainer._kl_penalty(log_probs, ref_log_probs), expected_output) self.ppo_config.kl_penalty = "mse" ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) expected_output = torch.Tensor([[0.0050, 0.0050, 0.0050], [0.0050, 0.0050, 0.0200]]) assert torch.allclose(ppo_trainer._kl_penalty(log_probs, ref_log_probs), expected_output) def test_ppo_trainer_full_kl_penalty(self): # a few more extensive tests for the full kl option as it is more involved dummy_dataset = self._init_dummy_dataset() self.ppo_config.kl_penalty = "full" ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) # Test on tensors for size B,S,T = (1,2,3) # test for when the two dists are the same log_probs = torch.Tensor( [ [ [0.1, 0.2, 0.7], [0.3, 0.4, 0.3], ] ] ).exp() ref_log_probs = torch.Tensor( [ [ [0.1, 0.2, 0.7], [0.3, 0.4, 0.3], ] ] ).exp() expected_output = torch.Tensor( [[0.0, 0.0]], ) output = ppo_trainer._kl_penalty(log_probs, ref_log_probs) assert output.shape == (1, 2) assert torch.allclose(output, expected_output) # test for when the two dists are almost not overlapping log_probs = torch.Tensor( [ [ [0.98, 0.01, 0.01], [0.01, 0.98, 0.01], ] ] ).log() ref_log_probs = torch.Tensor( [ [ [0.01, 0.01, 0.98], [0.01, 0.01, 0.98], ] ] ).log() expected_output = torch.Tensor( [[4.4474, 4.4474]], ) output = ppo_trainer._kl_penalty(log_probs, ref_log_probs) assert output.shape == (1, 2) assert torch.allclose(output, expected_output) # test for when the two dists are almost not overlapping log_probs = torch.Tensor( [ [ [0.49, 0.02, 0.49], [0.49, 0.02, 0.49], ] ] ).log() ref_log_probs = torch.Tensor( [ [ [0.01, 0.98, 0.01], [0.49, 0.02, 0.49], ] ] ).log() expected_output = torch.Tensor( [[3.7361, 0.0]], ) output = ppo_trainer._kl_penalty(log_probs, ref_log_probs) assert output.shape == (1, 2) assert torch.allclose(output, expected_output, atol=0.0001) @require_peft @mark.peft_test def test_peft_model_ppo_trainer(self): from peft import LoraConfig, get_peft_model from transformers import AutoModelForCausalLM lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) gpt2_model = AutoModelForCausalLM.from_pretrained(self.model_id) # this line is very important def make_inputs_require_grad(module, input, output): output.requires_grad_(True) gpt2_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) peft_model = get_peft_model(gpt2_model, lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained(peft_model) dummy_dataset = self._init_dummy_dataset() self.ppo_config.batch_size = 2 self.ppo_config.mini_batch_size = 1 ppo_trainer = PPOTrainer( config=self.ppo_config, model=model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) assert ppo_trainer.ref_model is None dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model by running a step twice _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) ppo_trainer.model.train() ppo_trainer.model.gradient_checkpointing_enable() _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break # check gradients for name, param in model.named_parameters(): if "lora" in name or "v_head" in name: assert param.grad is not None, f"Parameter {name} has a no gradient" else: assert param.grad is None, f"Parameter {name} has a gradient" @require_peft @mark.peft_test def test_peft_model_ppo_adapter_rm_trainer(self): from peft import LoraConfig, get_peft_model from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification dummy_inputs = torch.LongTensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]) rm_lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="SEQ_CLS", ) reward_model = AutoModelForSequenceClassification.from_pretrained(self.model_id) reward_model = get_peft_model(reward_model, rm_lora_config) dummy_optim = torch.optim.Adam(filter(lambda p: p.requires_grad, reward_model.parameters()), lr=1e-3) previous_rm_logits = reward_model(dummy_inputs).logits loss = previous_rm_logits.mean() loss.backward() dummy_optim.step() reward_model.eval() original_rm_logits = reward_model(dummy_inputs).logits with tempfile.TemporaryDirectory() as tmpdirname: reward_model.save_pretrained(tmpdirname) lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) gpt2_model = AutoModelForCausalLM.from_pretrained(self.model_id) # this line is very important def make_inputs_require_grad(module, input, output): output.requires_grad_(True) gpt2_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) peft_model = get_peft_model(gpt2_model, lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained( peft_model, reward_adapter=tmpdirname, ) dummy_dataset = self._init_dummy_dataset() self.ppo_config.batch_size = 2 self.ppo_config.mini_batch_size = 1 ppo_trainer = PPOTrainer( config=self.ppo_config, model=model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) assert ppo_trainer.ref_model is None dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model by running a step twice _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) ppo_trainer.model.train() ppo_trainer.model.gradient_checkpointing_enable() _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break new_logits = ppo_trainer.model.compute_reward_score(dummy_inputs) assert not torch.allclose(previous_rm_logits, new_logits[:, -1, :]) assert torch.allclose(original_rm_logits, new_logits[:, -1, :]) # check gradients for name, param in model.named_parameters(): if ("lora" in name or "v_head" in name) and ("reward" not in name): assert param.grad is not None, f"Parameter {name} has a no gradient" else: assert param.grad is None, f"Parameter {name} has a gradient" @unittest.skip("Fix by either patching `whomai()` to work in the staging endpoint or use a dummy prod user.") def test_push_to_hub(self): REPO_NAME = "test-ppo-trainer" repo_id = f"{CI_HUB_USER}/{REPO_NAME}" ppo_trainer = PPOTrainer( config=self.ppo_config, model=self.gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=self._init_dummy_dataset(), ) with tempfile.TemporaryDirectory(): url = ppo_trainer.push_to_hub(repo_id=repo_id, token=self._token, api_endpoint=CI_HUB_ENDPOINT) # Extract repo_name from the url re_search = re.search(CI_HUB_ENDPOINT + r"/([^/]+/[^/]+)/", url) assert re_search is not None hub_repo_id = re_search.groups()[0] # Check we created a Hub repo assert hub_repo_id == repo_id # Ensure all files are present files = sorted(self._api.list_repo_files(hub_repo_id)) assert all( fnmatch.fnmatch(file, expected_file) for file, expected_file in zip( files, [ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json", ], ) ) @require_peft @require_torch_multi_gpu @mark.peft_test def test_peft_model_ppo_trainer_multi_gpu(self): from peft import LoraConfig, get_peft_model from transformers import AutoModelForCausalLM lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) gpt2_model = AutoModelForCausalLM.from_pretrained( "gpt2", device_map="balanced", max_memory={0: "500MB", 1: "500MB"} ) assert set(gpt2_model.hf_device_map.values()) == {0, 1} # this line is very important def make_inputs_require_grad(module, input, output): output.requires_grad_(True) gpt2_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) peft_model = get_peft_model(gpt2_model, lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained(peft_model) assert model.is_sequential_parallel dummy_dataset = self._init_dummy_dataset() self.ppo_config.batch_size = 2 self.ppo_config.mini_batch_size = 1 ppo_trainer = PPOTrainer( config=self.ppo_config, model=model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) assert ppo_trainer.ref_model is None dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model by running a step twice _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) ppo_trainer.model.train() ppo_trainer.model.gradient_checkpointing_enable() _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break # check gradients for name, param in model.named_parameters(): if "lora" in name or "v_head" in name: assert param.grad is not None, f"Parameter {name} has a no gradient" else: assert param.grad is None, f"Parameter {name} has a gradient" def test_generation(self): dummy_dataset = self._init_dummy_dataset() model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") ppo_trainer = PPOTrainer( config=self.ppo_config, model=model, ref_model=None, tokenizer=tokenizer, dataset=dummy_dataset, ) input_texts = ["this is a test", "this is another, longer test"] generation_kwargs = {"do_sample": False, "max_new_tokens": 4, "pad_token_id": tokenizer.eos_token_id} tokenizer.pad_token = tokenizer.eos_token model_inputs = [tokenizer(txt, return_tensors="pt").input_ids.squeeze() for txt in input_texts] generations_batched = ppo_trainer.generate(model_inputs, batch_size=2, **generation_kwargs) generations_batched = tokenizer.batch_decode(generations_batched) generations_single = [ppo_trainer.generate(inputs, **generation_kwargs).squeeze() for inputs in model_inputs] generations_single = tokenizer.batch_decode(generations_single) assert generations_single == generations_batched def test_grad_accumulation(self): dummy_dataset = self._init_dummy_dataset() torch.manual_seed(0) gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id, summary_dropout_prob=0.0) gpt2_model_clone = copy.deepcopy(gpt2_model) self.ppo_config.mini_batch_size = 2 self.ppo_config.ppo_epochs = 1 ppo_trainer = PPOTrainer( config=self.ppo_config, model=gpt2_model, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(1.0)] # train model by running a step twice _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break model_grad = gpt2_model.v_head.summary.weight self.ppo_config.mini_batch_size = 1 self.ppo_config.gradient_accumulation_steps = 2 ppo_trainer = PPOTrainer( config=self.ppo_config, model=gpt2_model_clone, ref_model=None, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(1.0)] # train model by running a step twice _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break model_grad_acc = gpt2_model_clone.v_head.summary.weight assert torch.allclose(model_grad_acc, model_grad, rtol=0.001, atol=0.001) @unittest.skip("Fix by either patching `whomai()` to work in the staging endpoint or use a dummy prod user.") def test_push_to_hub_if_best_reward(self): REPO_NAME = "test-ppo-trainer" repo_id = f"{CI_HUB_USER}/{REPO_NAME}" dummy_dataset = self._init_dummy_dataset() push_to_hub_if_best_kwargs = {"repo_id": repo_id} ppo_config = PPOConfig( batch_size=2, mini_batch_size=1, log_with=None, push_to_hub_if_best_kwargs=push_to_hub_if_best_kwargs, compare_steps=1, ) ppo_trainer = PPOTrainer( config=ppo_config, model=self.gpt2_model, ref_model=self.gpt2_model_ref, tokenizer=self.gpt2_tokenizer, dataset=dummy_dataset, ) dummy_dataloader = ppo_trainer.dataloader # train model with ppo for query_tensor, response_tensor in dummy_dataloader: # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0), torch.tensor(0.0)] # train model _ = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward) break def test_batch_size_check(self): with pytest.raises(ValueError): PPOConfig(batch_size=2, mini_batch_size=2, gradient_accumulation_steps=2)
trl/tests/test_ppo_trainer.py/0
{ "file_path": "trl/tests/test_ppo_trainer.py", "repo_id": "trl", "token_count": 22494 }
401
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM from .modeling_base import PreTrainedModelWrapper class ValueHead(nn.Module): r""" The ValueHead class implements a head for GPT2 that returns a scalar for each output token. """ def __init__(self, config, **kwargs): super().__init__() if not hasattr(config, "summary_dropout_prob"): summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1) else: summary_dropout_prob = config.summary_dropout_prob self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity() # some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m if hasattr(config, "hidden_size"): hidden_size = config.hidden_size if hasattr(config, "word_embed_proj_dim"): hidden_size = config.word_embed_proj_dim elif hasattr(config, "is_encoder_decoder"): if config.is_encoder_decoder and hasattr(config, "decoder"): if hasattr(config.decoder, "hidden_size"): hidden_size = config.decoder.hidden_size self.summary = nn.Linear(hidden_size, 1) self.flatten = nn.Flatten() def forward(self, hidden_states): output = self.dropout(hidden_states) # For now force upcast in fp32 if needed. Let's keep the # output in fp32 for numerical stability. if output.dtype != self.summary.weight.dtype: output = output.to(self.summary.weight.dtype) output = self.summary(output) return output class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper): r""" An autoregressive model with a value head in addition to the language model head. This class inherits from `~trl.PreTrainedModelWrapper` and wraps a `transformers.PreTrainedModel` class. The wrapper class supports classic functions such as `from_pretrained`, `push_to_hub` and `generate`. To call a method of the wrapped model, simply manipulate the `pretrained_model` attribute of this class. Class attributes: - **transformers_parent_class** (`transformers.PreTrainedModel`) -- The parent class of the wrapped model. This should be set to `transformers.AutoModelForCausalLM` for this class. - **lm_head_namings** (`tuple`) -- A tuple of strings that are used to identify the language model head of the wrapped model. This is set to `("lm_head", "embed_out")` for this class but can be changed for other models in the future - **supported_args** (`tuple`) -- A tuple of strings that are used to identify the arguments that are supported by the `ValueHead` class. Currently, the supported args are: - **summary_dropout_prob** (`float`, `optional`, defaults to `None`) -- The dropout probability for the `ValueHead` class. - **v_head_initializer_range** (`float`, `optional`, defaults to `0.2`) -- The initializer range for the `ValueHead` if a specific initialization strategy is selected. - **v_head_init_strategy** (`str`, `optional`, defaults to `None`) -- The initialization strategy for the `ValueHead`. Currently, the supported strategies are: - **`None`** -- Initializes the weights of the `ValueHead` with a random distribution. This is the default strategy. - **"normal"** -- Initializes the weights of the `ValueHead` with a normal distribution. """ transformers_parent_class = AutoModelForCausalLM lm_head_namings = ["lm_head", "embed_out"] supported_args = ( "summary_dropout_prob", "v_head_initializer_range", "v_head_init_strategy", ) def __init__(self, pretrained_model, **kwargs): r""" Initializes the model. Args: pretrained_model (`transformers.PreTrainedModel`): The model to wrap. It should be a causal language model such as GPT2. or any model mapped inside the `AutoModelForCausalLM` class. kwargs (`dict`, `optional`): Additional keyword arguments, that are passed to the `ValueHead` class. """ super().__init__(pretrained_model, **kwargs) v_head_kwargs, _, _ = self._split_kwargs(kwargs) if not any(hasattr(self.pretrained_model, attribute) for attribute in self.lm_head_namings): raise ValueError("The model does not have a language model head, please use a model that has one.") self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs) self._init_weights(**v_head_kwargs) def _init_weights(self, **kwargs): r""" Initializes the weights of the value head. The default initialization strategy is random. Users can pass a different initialization strategy by passing the `v_head_init_strategy` argument when calling `.from_pretrained`. Supported strategies are: - `normal`: initializes the weights with a normal distribution. Args: **kwargs (`dict`, `optional`): Additional keyword arguments, that are passed to the `ValueHead` class. These arguments can contain the `v_head_init_strategy` argument as well as the `v_head_initializer_range` argument. """ initializer_range = kwargs.pop("v_head_initializer_range", 0.2) # random init by default init_strategy = kwargs.pop("v_head_init_strategy", None) if init_strategy is None: # do nothing pass elif init_strategy == "normal": self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range) self.v_head.summary.bias.data.zero_() def forward( self, input_ids=None, past_key_values=None, attention_mask=None, **kwargs, ): r""" Applies a forward pass to the wrapped model and returns the logits of the value head. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. past_key_values (`tuple(tuple(torch.FloatTensor))`, `optional`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` input) to speed up sequential decoding. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. kwargs (`dict`, `optional`): Additional keyword arguments, that are passed to the wrapped model. """ kwargs["output_hidden_states"] = True # this had already been set in the LORA / PEFT examples kwargs["past_key_values"] = past_key_values if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING": kwargs.pop("past_key_values") base_model_output = self.pretrained_model( input_ids=input_ids, attention_mask=attention_mask, **kwargs, ) last_hidden_state = base_model_output.hidden_states[-1] lm_logits = base_model_output.logits loss = base_model_output.loss if last_hidden_state.device != self.v_head.summary.weight.device: last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device) value = self.v_head(last_hidden_state).squeeze(-1) # force upcast in fp32 if logits are in half-precision if lm_logits.dtype != torch.float32: lm_logits = lm_logits.float() return (lm_logits, loss, value) def generate(self, *args, **kwargs): r""" A simple wrapper around the `generate` method of the wrapped model. Please refer to the [`generate`](https://huggingface.co/docs/transformers/internal/generation_utils) method of the wrapped model for more information about the supported arguments. Args: *args (`list`, *optional*): Positional arguments passed to the `generate` method of the wrapped model. **kwargs (`dict`, *optional*): Keyword arguments passed to the `generate` method of the wrapped model. """ return self.pretrained_model.generate(*args, **kwargs) def state_dict(self, *args, **kwargs): r""" Returns the state dictionary of the model. We add the state dictionary of the value head to the state dictionary of the wrapped model by prepending the key with `v_head.`. """ if not self.is_peft_model: pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs) else: # if it is a peft model, only save the v_head pretrained_model_state_dict = {} v_head_state_dict = self.v_head.state_dict(*args, **kwargs) for k, v in v_head_state_dict.items(): pretrained_model_state_dict[f"v_head.{k}"] = v return pretrained_model_state_dict def push_to_hub(self, *args, **kwargs): setattr(self.pretrained_model, "v_head", self.v_head) return self.pretrained_model.push_to_hub(*args, **kwargs) def post_init(self, state_dict): r""" We add the state dictionary of the value head to the state dictionary of the wrapped model by prepending the key with `v_head.`. This function removes the `v_head.` prefix from the keys of the value head state dictionary. """ for k in list(state_dict.keys()): if "v_head." in k: state_dict[k.replace("v_head.", "")] = state_dict.pop(k) self.v_head.load_state_dict(state_dict, strict=False) del state_dict if hasattr(self.pretrained_model, "hf_device_map"): if ( "cpu" in self.pretrained_model.hf_device_map.values() or "disk" in self.pretrained_model.hf_device_map.values() ): raise ValueError( "The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models." ) first_device = list(set(self.pretrained_model.hf_device_map.values()))[0] self.v_head = self.v_head.to(first_device) def set_device_hook(module, input, outputs): new_output = () for output in outputs: if isinstance(output, torch.Tensor): new_output += (output.to(first_device),) else: new_output += (output,) return new_output self.register_forward_hook(set_device_hook) self.is_sequential_parallel = True class AutoModelForSeq2SeqLMWithValueHead(PreTrainedModelWrapper): r""" A seq2seq model with a value head in addition to the language model head. This class inherits from `~trl.PreTrainedModelWrapper` and wraps a `transformers.PreTrainedModel` class. The wrapper class supports classic functions such as `from_pretrained` and `push_to_hub` and also provides some additional functionalities such as `generate`. Args: pretrained_model (`transformers.PreTrainedModel`): The model to wrap. It should be a causal language model such as GPT2. or any model mapped inside the `AutoModelForSeq2SeqLM` class. kwargs: Additional keyword arguments passed along to the `ValueHead` class. """ transformers_parent_class = AutoModelForSeq2SeqLM lm_head_namings = ["lm_head", "embed_out", "output_projection"] supported_args = ( "summary_dropout_prob", "v_head_initializer_range", "v_head_init_strategy", ) def __init__(self, pretrained_model, **kwargs): super().__init__(pretrained_model, **kwargs) v_head_kwargs, _, _ = self._split_kwargs(kwargs) self.is_encoder_decoder = True if not self._has_lm_head(): raise ValueError("The model does not have a language model head, please use a model that has one.") self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs) self._init_weights(**v_head_kwargs) def _has_lm_head(self): # check module names of all modules inside `pretrained_model` to find the language model head for name, module in self.pretrained_model.named_modules(): if any(attribute in name for attribute in self.lm_head_namings): return True return False def post_init(self, state_dict): r""" We add the state dictionary of the value head to the state dictionary of the wrapped model by prepending the key with `v_head.`. This function removes the `v_head.` prefix from the keys of the value head state dictionary. """ for k in list(state_dict.keys()): if "v_head." in k: state_dict[k.replace("v_head.", "")] = state_dict.pop(k) self.v_head.load_state_dict(state_dict, strict=False) del state_dict if hasattr(self.pretrained_model, "hf_device_map"): if ( "cpu" in self.pretrained_model.hf_device_map.values() or "disk" in self.pretrained_model.hf_device_map.values() ): raise ValueError( "The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models." ) # get the lm_head device for name, module in self.pretrained_model.named_modules(): if any(attribute in name for attribute in self.lm_head_namings): lm_head_device = module.weight.device break # put v_head on the same device as the lm_head to avoid issues self.v_head = self.v_head.to(lm_head_device) def set_device_hook(module, input, outputs): r""" A hook that sets the device of the output of the model to the device of the first parameter of the model. Args: module (`nn.Module`): The module to which the hook is attached. input (`tuple`): The input to the module. outputs (`tuple`): The output of the module. """ new_output = () for output in outputs: if isinstance(output, torch.Tensor): new_output += (output.to(lm_head_device),) else: new_output += (output,) return new_output self.register_forward_hook(set_device_hook) self.is_sequential_parallel = True def state_dict(self, *args, **kwargs): r""" Returns the state dictionary of the model. We add the state dictionary of the value head to the state dictionary of the wrapped model by prepending the key with `v_head.`. """ if not self.is_peft_model: pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs) else: # if it is a peft model, only save the v_head pretrained_model_state_dict = {} v_head_state_dict = self.v_head.state_dict(*args, **kwargs) for k, v in v_head_state_dict.items(): pretrained_model_state_dict[f"v_head.{k}"] = v return pretrained_model_state_dict def push_to_hub(self, *args, **kwargs): setattr(self.pretrained_model, "v_head", self.v_head) return self.pretrained_model.push_to_hub(*args, **kwargs) def _init_weights(self, **kwargs): r""" We initialize the weights of the value head. """ initializer_range = kwargs.pop("v_head_initializer_range", 0.2) # random init by default init_strategy = kwargs.pop("v_head_init_strategy", None) if init_strategy is None: # do nothing pass elif init_strategy == "normal": self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range) self.v_head.summary.bias.data.zero_() def forward( self, input_ids=None, past_key_values=None, attention_mask=None, **kwargs, ): kwargs["past_key_values"] = past_key_values if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING": kwargs.pop("past_key_values") base_model_output = self.pretrained_model( input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, # We force the model to output hidden states **kwargs, ) last_hidden_state = base_model_output.decoder_hidden_states[-1] lm_logits = base_model_output.logits loss = base_model_output.loss value = self.v_head(last_hidden_state).squeeze(-1) # force upcast in fp32 if logits are in half-precision if lm_logits.dtype != torch.float32: lm_logits = lm_logits.float() return (lm_logits, loss, value) def generate(self, *args, **kwargs): r""" We call `generate` on the wrapped model. """ return self.pretrained_model.generate(*args, **kwargs)
trl/trl/models/modeling_value_head.py/0
{ "file_path": "trl/trl/models/modeling_value_head.py", "repo_id": "trl", "token_count": 7984 }
402
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Handling big models for inference One of the biggest advancements 🤗 Accelerate provides is the concept of [large model inference](../concept_guides/big_model_inference) wherein you can perform *inference* on models that cannot fully fit on your graphics card. This tutorial will be broken down into two parts showcasing how to use both 🤗 Accelerate and 🤗 Transformers (a higher API-level) to make use of this idea. ## Using 🤗 Accelerate For these tutorials, we'll assume a typical workflow for loading your model in such that: ```py import torch my_model = ModelClass(...) state_dict = torch.load(checkpoint_file) my_model.load_state_dict(state_dict) ``` Note that here we assume that `ModelClass` is a model that takes up more video-card memory than what can fit on your device (be it `mps` or `cuda`). The first step is to init an empty skeleton of the model which won't take up any RAM using the [`init_empty_weights`] context manager: ```py from accelerate import init_empty_weights with init_empty_weights(): my_model = ModelClass(...) ``` With this `my_model` currently is "parameterless", hence leaving the smaller footprint than what one would normally get loading this onto the CPU directly. Next we need to load in the weights to our model so we can perform inference. For this we will use [`load_checkpoint_and_dispatch`], which as the name implies will load a checkpoint inside your empty model and dispatch the weights for each layer across all the devices you have available (GPU/MPS and CPU RAM). To determine how this `dispatch` can be performed, generally specifying `device_map="auto"` will be good enough as 🤗 Accelerate will attempt to fill all the space in your GPU(s), then loading them to the CPU, and finally if there is not enough RAM it will be loaded to the disk (the absolute slowest option). <Tip> For more details on designing your own device map, see this section of the [concept guide](../concept_guide/big_model_inference#designing-a-device-map) </Tip> See an example below: ```py from accelerate import load_checkpoint_and_dispatch model = load_checkpoint_and_dispatch( model, checkpoint=checkpoint_file, device_map="auto" ) ``` <Tip> If there are certain "chunks" of layers that shouldn't be split, you can pass them in as `no_split_module_classes`. Read more about it [here](../concept_guides/big_model_inference#loading-weights) </Tip> <Tip> Also to save on memory (such as if the `state_dict` will not fit in RAM), a model's weights can be divided and split into multiple checkpoint files. Read more about it [here](../concept_guides/big_model_inference#sharded-checkpoints) </Tip> Now that the model is dispatched fully, you can perform inference as normal with the model: ```py input = torch.randn(2,3) input = input.to("cuda") output = model(input) ``` What will happen now is each time the input gets passed through a layer, it will be sent from the CPU to the GPU (or disk to CPU to GPU), the output is calculated, and then the layer is pulled back off the GPU going back down the line. While this adds some overhead to the inference being performed, through this method it is possible to run **any size model** on your system, as long as the largest layer is capable of fitting on your GPU. <Tip> Multiple GPUs can be utilized, however this is considered "model parallelism" and as a result only one GPU will be active at a given moment, waiting for the prior one to send it the output. You should launch your script normally with `python` and not need `torchrun`, `accelerate launch`, etc. </Tip> For a visual representation of this, check out the animation below: <Youtube id="MWCSGj9jEAo" /> ### Complete Example Below is the full example showcasing what we performed above: ```py import torch from accelerate import init_empty_weights, load_checkpoint_and_dispatch with init_empty_weights(): model = MyModel(...) model = load_checkpoint_and_dispatch( model, checkpoint=checkpoint_file, device_map="auto" ) input = torch.randn(2,3) input = input.to("cuda") output = model(input) ``` ## Using 🤗 Transformers, 🤗 Diffusers, and other 🤗 Open Source Libraries Libraries that support 🤗 Accelerate big model inference include all of the earlier logic in their `from_pretrained` constructors. These operate by specifying a string representing the model to download from the [🤗 Hub](https://hf.co/models) and then denoting `device_map="auto"` along with a few extra parameters. As a brief example, we will look at using `transformers` and loading in Big Science's T0pp model. ```py from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto") ``` After loading the model in, the initial steps from before to prepare a model have all been done and the model is fully ready to make use of all the resources in your machine. Through these constructors, you can also save *more* memory by specifying the precision the model is loaded into as well, through the `torch_dtype` parameter, such as: ```py from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto", torch_dtype=torch.float16) ``` To learn more about this, check out the 🤗 Transformers documentation available [here](https://huggingface.co/docs/transformers/main/en/main_classes/model#large-model-loading). ## Where to go from here For a much more detailed look at big model inference, be sure to check out the [Conceptual Guide on it](../concept_guides/big_model_inference)
accelerate/docs/source/usage_guides/big_modeling.md/0
{ "file_path": "accelerate/docs/source/usage_guides/big_modeling.md", "repo_id": "accelerate", "token_count": 1765 }
0
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Example Zoo Below contains a non-exhaustive list of tutorials and scripts showcasing 🤗 Accelerate ## Official Accelerate Examples: ### Basic Examples These examples showcase the base features of Accelerate and are a great starting point - [Barebones NLP example](https://github.com/huggingface/accelerate/blob/main/examples/nlp_example.py) - [Barebones distributed NLP example in a Jupyter Notebook](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) - [Barebones computer vision example](https://github.com/huggingface/accelerate/blob/main/examples/cv_example.py) - [Barebones distributed computer vision example in a Jupyter Notebook](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_cv_example.ipynb) - [Using Accelerate in Kaggle](https://www.kaggle.com/code/muellerzr/multi-gpu-and-accelerate) ### Feature Specific Examples These examples showcase specific features that the Accelerate framework offers - [Automatic memory-aware gradient accumulation](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/automatic_gradient_accumulation.py) - [Checkpointing states](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/checkpointing.py) - [Cross validation](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/cross_validation.py) - [DeepSpeed](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/deepspeed_with_config_support.py) - [Fully Sharded Data Parallelism](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/fsdp_with_peak_mem_tracking.py) - [Gradient accumulation](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/gradient_accumulation.py) - [Memory-aware batch size finder](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/memory.py) - [Metric Computation](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/multi_process_metrics.py) - [Using Trackers](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/tracking.py) - [Using Megatron-LM](https://github.com/huggingface/accelerate/blob/main/examples/by_feature/megatron_lm_gpt_pretraining.py) ### Full Examples These examples showcase every feature in Accelerate at once that was shown in "Feature Specific Examples" - [Complete NLP example](https://github.com/huggingface/accelerate/blob/main/examples/complete_nlp_example.py) - [Complete computer vision example](https://github.com/huggingface/accelerate/blob/main/examples/complete_cv_example.py) - [Very complete and extensible vision example showcasing SLURM, hydra, and a very extensible usage of the framework](https://github.com/yuvalkirstain/PickScore) - [Causal language model fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm_no_trainer.py) - [Masked language model fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_no_trainer.py) - [Speech pretraining example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py) - [Translation fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/translation/run_translation_no_trainer.py) - [Text classification fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py) - [Semantic segmentation fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py) - [Question answering fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa_no_trainer.py) - [Beam search question answering fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa_beam_search_no_trainer.py) - [Multiple choice question answering fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/multiple-choice/run_swag_no_trainer.py) - [Named entity recognition fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_ner_no_trainer.py) - [Image classification fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification_no_trainer.py) - [Summarization fine-tuning example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/run_summarization_no_trainer.py) - [End-to-end examples on how to use AWS SageMaker integration of Accelerate](https://github.com/huggingface/notebooks/blob/main/sagemaker/22_accelerate_sagemaker_examples/README.md) - [Megatron-LM examples for various NLp tasks](https://github.com/pacman100/accelerate-megatron-test) ## Integration Examples These are tutorials from libraries that integrate with 🤗 Accelerate: > Don't find your integration here? Make a PR to include it! ### Amphion - [Training Text-to-Speech Models with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/tts/README.md) - [Training Singing Voice Conversion Models with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/svc/README.md) - [Training Vocoders with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/vocoder/README.md) ### Catalyst - [Distributed training tutorial with Catalyst](https://catalyst-team.github.io/catalyst/tutorials/ddp.html) ### DALLE2-pytorch - [Fine-tuning DALLE2](https://github.com/lucidrains/DALLE2-pytorch#usage) ### 🤗 diffusers - [Performing textual inversion with diffusers](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) - [Training DreamBooth with diffusers](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) ### fastai - [Distributed training from Jupyter Notebooks with fastai](https://docs.fast.ai/tutorial.distributed.html) - [Basic distributed training examples with fastai](https://docs.fast.ai/examples/distributed_app_examples.html) ### GradsFlow - [Auto Image Classification with GradsFlow](https://docs.gradsflow.com/en/latest/examples/nbs/01-ImageClassification/) ### imagen-pytorch - [Fine-tuning Imagen](https://github.com/lucidrains/imagen-pytorch#usage) ### Kornia - [Fine-tuning vision models with Kornia's Trainer](https://kornia.readthedocs.io/en/latest/get-started/training.html) ### PyTorch Accelerated - [Quickstart distributed training tutorial with PyTorch Accelerated](https://pytorch-accelerated.readthedocs.io/en/latest/quickstart.html) ### PyTorch3D - [Perform Deep Learning with 3D data](https://pytorch3d.org/tutorials/) ### Stable-Dreamfusion - [Training with Stable-Dreamfusion to convert text to a 3D model](https://colab.research.google.com/drive/1MXT3yfOFvO0ooKEfiUUvTKwUkrrlCHpF?usp=sharing) ### Tez - [Leaf disease detection with Tez and Accelerate](https://www.kaggle.com/code/abhishek/tez-faster-and-easier-training-for-leaf-detection/notebook) ### trlx - [How to implement a sentiment learning task with trlx](https://github.com/CarperAI/trlx#example-how-to-add-a-task) ### Comfy-UI - [Enabling using large Stable Diffusion Models in low-vram settings using Accelerate](https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py#L291-L296) ## In Science Below contains a non-exhaustive list of papers utilizing 🤗 Accelerate. > Don't find your paper here? Make a PR to include it! * Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, Omer Levy: “Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation”, 2023; [arXiv:2305.01569](http://arxiv.org/abs/2305.01569). * Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, Ee-Peng Lim: “Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models”, 2023; [arXiv:2305.04091](http://arxiv.org/abs/2305.04091). * Arthur Câmara, Claudia Hauff: “Moving Stuff Around: A study on efficiency of moving documents into memory for Neural IR models”, 2022; [arXiv:2205.08343](http://arxiv.org/abs/2205.08343). * Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, Ce Zhang: “High-throughput Generative Inference of Large Language Models with a Single GPU”, 2023; [arXiv:2303.06865](http://arxiv.org/abs/2303.06865). * Peter Melchior, Yan Liang, ChangHoon Hahn, Andy Goulding: “Autoencoding Galaxy Spectra I: Architecture”, 2022; [arXiv:2211.07890](http://arxiv.org/abs/2211.07890). * Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, Diyi Yang: “A Cheaper and Better Diffusion Language Model with Soft-Masked Noise”, 2023; [arXiv:2304.04746](http://arxiv.org/abs/2304.04746). * Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, Angjoo Kanazawa: “Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions”, 2023; [arXiv:2303.12789](http://arxiv.org/abs/2303.12789). * Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, Andrea Vedaldi: “RealFusion: 360° Reconstruction of Any Object from a Single Image”, 2023; [arXiv:2302.10663](http://arxiv.org/abs/2302.10663). * Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, Hongsheng Li: “Better Aligning Text-to-Image Models with Human Preference”, 2023; [arXiv:2303.14420](http://arxiv.org/abs/2303.14420). * Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang: “HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace”, 2023; [arXiv:2303.17580](http://arxiv.org/abs/2303.17580). * Yue Yang, Wenlin Yao, Hongming Zhang, Xiaoyang Wang, Dong Yu, Jianshu Chen: “Z-LaVI: Zero-Shot Language Solver Fueled by Visual Imagination”, 2022; [arXiv:2210.12261](http://arxiv.org/abs/2210.12261). * Sheng-Yen Chou, Pin-Yu Chen, Tsung-Yi Ho: “How to Backdoor Diffusion Models?”, 2022; [arXiv:2212.05400](http://arxiv.org/abs/2212.05400). * Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Jaehoon Ko, Hyeonsu Kim, Junho Kim, Jin-Hwa Kim, Jiyoung Lee, Seungryong Kim: “Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation”, 2023; [arXiv:2303.07937](http://arxiv.org/abs/2303.07937). * Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-Elor, Daniel Cohen-Or: “Localizing Object-level Shape Variations with Text-to-Image Diffusion Models”, 2023; [arXiv:2303.11306](http://arxiv.org/abs/2303.11306). * Dídac Surís, Sachit Menon, Carl Vondrick: “ViperGPT: Visual Inference via Python Execution for Reasoning”, 2023; [arXiv:2303.08128](http://arxiv.org/abs/2303.08128). * Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, Qifeng Chen: “FateZero: Fusing Attentions for Zero-shot Text-based Video Editing”, 2023; [arXiv:2303.09535](http://arxiv.org/abs/2303.09535). * Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi: “NaturalProver: Grounded Mathematical Proof Generation with Language Models”, 2022; [arXiv:2205.12910](http://arxiv.org/abs/2205.12910). * Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: “TEXTure: Text-Guided Texturing of 3D Shapes”, 2023; [arXiv:2302.01721](http://arxiv.org/abs/2302.01721). * Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang: “Learning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancement”, 2023; [arXiv:2303.04603](http://arxiv.org/abs/2303.04603). * Shun Shao, Yftah Ziser, Shay Cohen: “Erasure of Unaligned Attributes from Neural Representations”, 2023; [arXiv:2302.02997](http://arxiv.org/abs/2302.02997). * Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo: “In-Context Instruction Learning”, 2023; [arXiv:2302.14691](http://arxiv.org/abs/2302.14691). * Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: “Prismer: A Vision-Language Model with An Ensemble of Experts”, 2023; [arXiv:2303.02506](http://arxiv.org/abs/2303.02506). * Haoyu Chen, Zhihua Wang, Yang Yang, Qilin Sun, Kede Ma: “Learning a Deep Color Difference Metric for Photographic Images”, 2023; [arXiv:2303.14964](http://arxiv.org/abs/2303.14964). * Van-Hoang Le, Hongyu Zhang: “Log Parsing with Prompt-based Few-shot Learning”, 2023; [arXiv:2302.07435](http://arxiv.org/abs/2302.07435). * Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui: “Do Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?”, 2023; [arXiv:2302.07866](http://arxiv.org/abs/2302.07866). * Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, Prithviraj Ammanabrolu: “Behavior Cloned Transformers are Neurosymbolic Reasoners”, 2022; [arXiv:2210.07382](http://arxiv.org/abs/2210.07382). * Martin Wessel, Tomáš Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: “Introducing MBIB -- the first Media Bias Identification Benchmark Task and Dataset Collection”, 2023; [arXiv:2304.13148](http://arxiv.org/abs/2304.13148). DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882]. * Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, Daniel Cohen-Or: “Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models”, 2023; [arXiv:2301.13826](http://arxiv.org/abs/2301.13826). * Marcio Fonseca, Yftah Ziser, Shay B. Cohen: “Factorizing Content and Budget Decisions in Abstractive Summarization of Long Documents”, 2022; [arXiv:2205.12486](http://arxiv.org/abs/2205.12486). * Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: “TEXTure: Text-Guided Texturing of 3D Shapes”, 2023; [arXiv:2302.01721](http://arxiv.org/abs/2302.01721). * Tianxing He, Jingyu Zhang, Tianle Wang, Sachin Kumar, Kyunghyun Cho, James Glass, Yulia Tsvetkov: “On the Blind Spots of Model-Based Evaluation Metrics for Text Generation”, 2022; [arXiv:2212.10020](http://arxiv.org/abs/2212.10020). * Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham: “In-Context Retrieval-Augmented Language Models”, 2023; [arXiv:2302.00083](http://arxiv.org/abs/2302.00083). * Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, Hao Zhang: “MPCFormer: fast, performant and private Transformer inference with MPC”, 2022; [arXiv:2211.01452](http://arxiv.org/abs/2211.01452). * Baolin Peng, Michel Galley, Pengcheng He, Chris Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill Dolan, Jianfeng Gao: “GODEL: Large-Scale Pre-Training for Goal-Directed Dialog”, 2022; [arXiv:2206.11309](http://arxiv.org/abs/2206.11309). * Egil Rønningstad, Erik Velldal, Lilja Øvrelid: “Entity-Level Sentiment Analysis (ELSA): An exploratory task survey”, 2023, Proceedings of the 29th International Conference on Computational Linguistics, 2022, pages 6773-6783; [arXiv:2304.14241](http://arxiv.org/abs/2304.14241). * Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, Sergey Levine: “Offline RL for Natural Language Generation with Implicit Language Q Learning”, 2022; [arXiv:2206.11871](http://arxiv.org/abs/2206.11871). * Zhiruo Wang, Shuyan Zhou, Daniel Fried, Graham Neubig: “Execution-Based Evaluation for Open-Domain Code Generation”, 2022; [arXiv:2212.10481](http://arxiv.org/abs/2212.10481). * Minh-Long Luu, Zeyi Huang, Eric P. Xing, Yong Jae Lee, Haohan Wang: “Expeditious Saliency-guided Mix-up through Random Gradient Thresholding”, 2022; [arXiv:2212.04875](http://arxiv.org/abs/2212.04875). * Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng: “MagicMix: Semantic Mixing with Diffusion Models”, 2022; [arXiv:2210.16056](http://arxiv.org/abs/2210.16056). * Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: “LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners”, 2021; [arXiv:2110.06274](http://arxiv.org/abs/2110.06274).
accelerate/docs/source/usage_guides/training_zoo.md/0
{ "file_path": "accelerate/docs/source/usage_guides/training_zoo.md", "repo_id": "accelerate", "token_count": 5980 }
1
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # This example also demonstrates the checkpointing and sharding capabilities # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def training_function(config, args): # Initialize accelerator if args.with_tracking: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run, config) tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") metric = evaluate.load("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # Now we train the model for epoch in range(starting_epoch, num_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, }, step=epoch, ) if checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--project_dir", type=str, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/complete_nlp_example.py/0
{ "file_path": "accelerate/examples/complete_nlp_example.py", "repo_id": "accelerate", "token_count": 5053 }
2
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from manim import * class Stage5(Scene): def construct(self): mem = Rectangle(height=0.5,width=0.5) fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0) meta_mem = Rectangle(height=0.25,width=0.25) cpu_left_col_base = [mem.copy() for i in range(6)] cpu_right_col_base = [mem.copy() for i in range(6)] cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0) cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0) cpu_rects = VGroup(cpu_left_col,cpu_right_col).arrange(RIGHT, buff=0) cpu_text = Text("CPU", font_size=24) cpu = Group(cpu_rects,cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) cpu.move_to([-2.5,-.5,0]) self.add(cpu) gpu_base = [mem.copy() for i in range(4)] gpu_rect = VGroup(*gpu_base).arrange(UP,buff=0) gpu_text = Text("GPU", font_size=24) gpu = Group(gpu_rect,gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) gpu.move_to([-1,-1,0]) self.add(gpu) model_base = [mem.copy() for i in range(6)] model_rect = VGroup(*model_base).arrange(RIGHT,buff=0) model_text = Text("Model", font_size=24) model = Group(model_rect,model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) model.move_to([3, -1., 0]) self.add(model) model_arr = [] model_cpu_arr = [] for i,rect in enumerate(model_base): target = fill.copy().set_fill(BLUE, opacity=0.8) target.move_to(rect) model_arr.append(target) cpu_target = Rectangle(height=0.46,width=0.46).set_stroke(width=0.).set_fill(BLUE, opacity=0.8) cpu_target.move_to(cpu_left_col_base[i]) model_cpu_arr.append(cpu_target) self.add(*model_arr, *model_cpu_arr) disk_left_col_base = [meta_mem.copy() for i in range(6)] disk_right_col_base = [meta_mem.copy() for i in range(6)] disk_left_col = VGroup(*disk_left_col_base).arrange(UP, buff=0) disk_right_col = VGroup(*disk_right_col_base).arrange(UP, buff=0) disk_rects = VGroup(disk_left_col,disk_right_col).arrange(RIGHT, buff=0) disk_text = Text("Disk", font_size=24) disk = Group(disk_rects,disk_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) disk.move_to([-4,-1.25,0]) self.add(disk_text, disk_rects) key = Square(side_length=2.2) key.move_to([-5, 2, 0]) key_text = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(key_text, key) blue_text = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint", font_size=18, ) blue_text.next_to(key_text, DOWN*2.4, aligned_edge=key_text.get_left()) self.add(blue_text) step_6 = MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.', font_size=24 ) step_6.move_to([2, 2, 0]) self.play(Write(step_6)) input = Square(0.3) input.set_fill(RED, opacity=1.) input.set_stroke(width=0.) input.next_to(model_base[0], LEFT, buff=.5) self.play(Write(input)) input.generate_target() input.target.next_to(model_arr[0], direction=LEFT, buff=0.02) self.play(MoveToTarget(input)) self.play(FadeOut(step_6)) a = Arrow(start=UP, end=DOWN, color=RED, buff=.5) a.next_to(model_arr[0].get_left(), UP, buff=0.2) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0]) step_7 = MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.', font_size=24 ) step_7.move_to([2, 2, 0]) self.play(Write(step_7, run_time=3)) circ_kwargs = {"run_time":1, "fade_in":True, "fade_out":True, "buff":0.02} self.play( Write(a), Circumscribe(model_arr[0], color=ORANGE, **circ_kwargs), Circumscribe(model_cpu_arr[0], color=ORANGE, **circ_kwargs), Circumscribe(gpu_rect[0], color=ORANGE, **circ_kwargs), ) self.play( MoveToTarget(model_cpu_arr[0]) ) a_c = a.copy() for i in range(6): a_c.next_to(model_arr[i].get_right()+0.02, UP, buff=0.2) input.generate_target() input.target.move_to(model_arr[i].get_right()+0.02) grp = AnimationGroup( FadeOut(a, run_time=.5), MoveToTarget(input, run_time=.5), FadeIn(a_c, run_time=.5), lag_ratio=0.2 ) self.play(grp) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i]) if i < 5: model_cpu_arr[i+1].generate_target() model_cpu_arr[i+1].target.move_to(gpu_rect[0]) if i >= 1: circ_kwargs["run_time"] = .7 self.play( Circumscribe(model_arr[i], **circ_kwargs), Circumscribe(cpu_left_col_base[i], **circ_kwargs), Circumscribe(cpu_left_col_base[i+1], color=ORANGE, **circ_kwargs), Circumscribe(gpu_rect[0], color=ORANGE, **circ_kwargs), Circumscribe(model_arr[i+1], color=ORANGE, **circ_kwargs), ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i]), MoveToTarget(model_cpu_arr[i+1]), ) else: self.play( MoveToTarget(model_cpu_arr[i], run_time=.7), MoveToTarget(model_cpu_arr[i+1], run_time=.7), ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1]) input.generate_target() input.target.next_to(model_arr[-1].get_right(), RIGHT+0.02, buff=0.2) self.play( Circumscribe(model_arr[-1], color=ORANGE, **circ_kwargs), Circumscribe(cpu_left_col_base[-1], color=ORANGE, **circ_kwargs), Circumscribe(gpu_rect[0], color=ORANGE, **circ_kwargs), ) self.play( MoveToTarget(model_cpu_arr[i]) ) a = a_c a_c = a_c.copy() input.generate_target() input.target.next_to(model_base[-1], RIGHT+0.02, buff=.5) self.play( FadeOut(step_7), FadeOut(a, run_time=.5), ) step_8 = MarkupText( f'Inference on a model too large for GPU memory\nis successfully completed.', font_size=24 ) step_8.move_to([2, 2, 0]) self.play( Write(step_8, run_time=3), MoveToTarget(input) ) self.wait()
accelerate/manim_animations/big_model_inference/stage_5.py/0
{ "file_path": "accelerate/manim_animations/big_model_inference/stage_5.py", "repo_id": "accelerate", "token_count": 4175 }
3
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_boto3_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_boto3_available(): import boto3 # noqa: F401 def _create_iam_role_for_sagemaker(role_name): iam_client = boto3.client("iam") sagemaker_trust_policy = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2) ) policy_document = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=role_name, PolicyName=f"{role_name}_policy_permission", PolicyDocument=json.dumps(policy_document, indent=2), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one") def _get_iam_role_arn(role_name): iam_client = boto3.client("iam") return iam_client.get_role(RoleName=role_name)["Role"]["Arn"] def get_sagemaker_input(): credentials_configuration = _ask_options( "How do you want to authorize?", ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "], int, ) aws_profile = None if credentials_configuration == 0: aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default") os.environ["AWS_PROFILE"] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) aws_access_key_id = _ask_field("AWS Access Key ID: ") os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id aws_secret_access_key = _ask_field("AWS Secret Access Key: ") os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1") os.environ["AWS_DEFAULT_REGION"] = aws_region role_management = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?", ["Provide IAM Role name", "Create new IAM role using credentials"], int, ) if role_management == 0: iam_role_name = _ask_field("Enter your IAM role name: ") else: iam_role_name = "accelerate_sagemaker_execution_role" print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials') _create_iam_role_for_sagemaker(iam_role_name) is_custom_docker_image = _ask_field( "Do you want to use custom Docker image? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) docker_image = None if is_custom_docker_image: docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower()) is_sagemaker_inputs_enabled = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) sagemaker_inputs_file = None if is_sagemaker_inputs_enabled: sagemaker_inputs_file = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ", lambda x: str(x).lower(), ) is_sagemaker_metrics_enabled = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) sagemaker_metrics_file = None if is_sagemaker_metrics_enabled: sagemaker_metrics_file = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ", lambda x: str(x).lower(), ) distributed_type = _ask_options( "What is the distributed mode?", ["No distributed training", "Data parallelism"], _convert_sagemaker_distributed_mode, ) dynamo_config = {} use_dynamo = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_dynamo: prefix = "dynamo_" dynamo_config[prefix + "backend"] = _ask_options( "Which dynamo backend would you like to use?", [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) use_custom_options = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) if use_custom_options: dynamo_config[prefix + "mode"] = _ask_options( "Which mode do you want to use?", TORCH_DYNAMO_MODES, lambda x: TORCH_DYNAMO_MODES[int(x)], default="default", ) dynamo_config[prefix + "use_fullgraph"] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) dynamo_config[prefix + "use_dynamic"] = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) ec2_instance_query = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: ec2_instance_type = _ask_options( ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)] ) else: ec2_instance_query += "? [ml.p3.2xlarge]:" ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge") debug = False if distributed_type != SageMakerDistributedType.NO: debug = _ask_field( "Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ", _convert_yes_no_to_bool, default=False, error_message="Please enter yes or no.", ) num_machines = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): num_machines = _ask_field( "How many machines do you want use? [1]: ", int, default=1, ) mixed_precision = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?", ["no", "fp16", "bf16", "fp8"], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=docker_image, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=distributed_type, use_cpu=False, dynamo_config=dynamo_config, ec2_instance_type=ec2_instance_type, profile=aws_profile, region=aws_region, iam_role_name=iam_role_name, mixed_precision=mixed_precision, num_machines=num_machines, sagemaker_inputs_file=sagemaker_inputs_file, sagemaker_metrics_file=sagemaker_metrics_file, debug=debug, )
accelerate/src/accelerate/commands/config/sagemaker.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/sagemaker.py", "repo_id": "accelerate", "token_count": 4784 }
4
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import Accelerator, DistributedType class LocalSGD: """ A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently on each device, and averages model weights every K synchronization step. It should be used only in the multi-GPU (or multi-CPU) setup without extensions such as DeepSpeed. In particular, this is a simple implementation that cannot support scenarios such as model parallelism. Although we are not aware of the true origins of this simple approach, the idea of local SGD is quite old and goes back to at least: Zhang, J., De Sa, C., Mitliagkas, I., & Ré, C. (2016). [Parallel SGD: When does averaging help?. arXiv preprint arXiv:1606.07365.](https://arxiv.org/abs/1606.07365) We credit the term Local SGD to the following paper (but there might be earlier references we are not aware of). Stich, Sebastian Urban. ["Local SGD Converges Fast and Communicates Little." ICLR 2019-International Conference on Learning Representations. No. CONF. 2019.](https://arxiv.org/abs/1805.09767) """ def __enter__(self): if self.enabled: self.model_sync_obj = self.model.no_sync() self.model_sync_obj.__enter__() return self def __exit__(self, type, value, tb): if self.enabled: # Average all models on exit self._sync_and_avg_model_params() self.model_sync_obj.__exit__(type, value, tb) def __init__(self, accelerator: Accelerator, model: torch.nn.Module, local_sgd_steps: int, enabled: bool = True): """ Constructor. Args: model (`torch.nn.Module): The model whose parameters we need to average. accelerator (`Accelerator`): Accelerator object. local_sgd_steps (`int`): A number of local SGD steps (before model parameters are synchronized). enabled (`bool): Local SGD is disabled if this parameter set to `False`. """ if accelerator.distributed_type not in [ DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU, ]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)") self.enabled = enabled and accelerator.distributed_type != DistributedType.NO self.num_steps = 0 if self.enabled: self.accelerator = accelerator self.model = model self.local_sgd_steps = local_sgd_steps def step(self): """ This function makes a "step" and synchronizes model parameters if necessary. """ self.num_steps += 1 if not self.enabled: return if self.num_steps % self.local_sgd_steps == 0: self._sync_and_avg_model_params() def _sync_and_avg_model_params(self): """ Synchronize + Average model parameters across all GPUs """ self.accelerator.wait_for_everyone() with self.accelerator.autocast(): for param in self.model.parameters(): param.data = self.accelerator.reduce(param.data, reduction="mean")
accelerate/src/accelerate/local_sgd.py/0
{ "file_path": "accelerate/src/accelerate/local_sgd.py", "repo_id": "accelerate", "token_count": 1485 }
5
# Test file to ensure that in general certain situational setups for notebooks work. import os from pytest import raises from accelerate import PartialState, notebook_launcher from accelerate.test_utils import require_bnb from accelerate.utils import is_bnb_available def basic_function(): # Just prints the PartialState print(f"PartialState:\n{PartialState()}") NUM_PROCESSES = int(os.environ.get("ACCELERATE_NUM_PROCESSES", 1)) def test_can_initialize(): notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES) @require_bnb def test_problematic_imports(): with raises(RuntimeError, match="Please keep these imports"): import bitsandbytes as bnb # noqa: F401 notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES) def main(): print("Test basic notebook can be ran") test_can_initialize() if is_bnb_available(): print("Test problematic imports (bnb)") test_problematic_imports() if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_notebook.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_notebook.py", "repo_id": "accelerate", "token_count": 342 }
6
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import math from abc import ABC from functools import partial import torch import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler from .imports import is_megatron_lm_available, is_transformers_available from .operations import recursively_apply, send_to_device if is_transformers_available(): from transformers.modeling_outputs import ( CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, SequenceClassifierOutput, ) if is_megatron_lm_available(): from megatron import ( get_args, get_num_microbatches, get_tensorboard_writer, get_timers, get_tokenizer, mpu, print_rank_0, print_rank_last, ) from megatron.arguments import _add_data_args, _add_validation_args, parse_args, validate_args from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint, save_checkpoint from megatron.data.data_samplers import MegatronPretrainingRandomSampler, MegatronPretrainingSampler from megatron.global_vars import set_global_variables from megatron.initialize import ( _compile_dependencies, _init_autoresume, _set_random_seed, set_jit_fusion_options, write_args_to_tensorboard, ) from megatron.model import BertModel, Float16Module, GPTModel, ModelType, T5Model from megatron.model import DistributedDataParallel as LocalDDP from megatron.model.classification import Classification from megatron.optimizer import get_megatron_optimizer from megatron.schedules import get_forward_backward_func from megatron.text_generation.communication import broadcast_int_list, broadcast_tensor from megatron.text_generation.generation import ( beam_search_and_return_on_first_stage, generate_tokens_probs_and_return_on_first_stage, ) from megatron.tokenizer.tokenizer import _vocab_size_with_padding from megatron.training import get_model, get_optimizer_param_scheduler, training_log from megatron.utils import ( average_losses_across_data_parallel_group, calc_params_l2_norm, get_ltor_masks_and_position_ids, unwrap_model, ) # model utilities def model_provider_func(pre_process=True, post_process=True, add_encoder=True, add_decoder=True): """Build the model.""" args = get_args() mode = "pre-training" if args.pretraining_flag else "fine-tuning" if args.rank == 0: print(f"Building {args.model_type_name} model in the {mode} mode.") print( "The Megatron LM model weights are initialized at random in `accelerator.prepare`. " "Please use `accelerator.load_checkpoint` to load a pre-trained checkpoint matching the distributed setup." ) if args.model_type_name == "bert": if args.pretraining_flag: num_tokentypes = 2 if args.bert_binary_head else 0 model = BertModel( num_tokentypes=num_tokentypes, add_binary_head=args.bert_binary_head, parallel_output=True, pre_process=pre_process, post_process=post_process, ) else: model = Classification( num_classes=args.num_labels, num_tokentypes=2, pre_process=pre_process, post_process=post_process ) elif args.model_type_name == "gpt": model = GPTModel(num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process) elif args.model_type_name == "t5": model = T5Model( num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process, add_encoder=add_encoder, add_decoder=add_decoder, ) else: raise ValueError(f"Unsupported model type: {args.model_type_name}") return model def prepare_model(accelerator): accelerator.print("Preparing model") args = get_args() if accelerator.state.megatron_lm_plugin.custom_prepare_model_function is not None: if accelerator.state.megatron_lm_plugin.custom_model_provider_function is None: raise ValueError( "You must provide a `custom_model_provider_function` when using a `custom_prepare_model_function`." ) custom_model_provider_func = accelerator.state.megatron_lm_plugin.custom_model_provider_function model = accelerator.state.megatron_lm_plugin.custom_prepare_model_function(custom_model_provider_func) else: if args.model_type_name in ("bert", "gpt"): model_type = ModelType.encoder_or_decoder elif args.model_type_name == "t5": model_type = ModelType.encoder_and_decoder if args.pipeline_model_parallel_split_rank is None and args.pipeline_model_parallel_size > 1: args.pipeline_model_parallel_split_rank = args.pipeline_model_parallel_size // 2 model = get_model(model_provider_func, model_type) return model # dataloader utilities class MegatronLMDummyDataLoader: """ Dummy dataloader presents model parameters or param groups, this is primarily used to follow conventional training Args: **dataset_kwargs: Megatron data arguments. """ def __init__(self, **dataset_kwargs): parser = argparse.ArgumentParser() parser = _add_data_args(parser) parser = _add_validation_args(parser) data_args = parser.parse_known_args() self.dataset_args = vars(data_args[0]) self.dataset_args.update(dataset_kwargs) self.dataset_args["megatron_dataset_flag"] = True def set_megatron_data_args(self): args = get_args() for key, value in self.dataset_args.items(): setattr(args, key, value) def get_train_valid_test_datasets_provider(self): def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() dataset_args = { "data_prefix": args.data_path, "data_impl": args.data_impl, "splits_string": args.split, "train_valid_test_num_samples": train_val_test_num_samples, "skip_warmup": (not args.mmap_warmup), "seed": args.seed, } if args.model_type_name == "bert": dataset_args.update( { "max_seq_length": args.seq_length, "masked_lm_prob": args.mask_prob, "short_seq_prob": args.short_seq_prob, "binary_head": args.bert_binary_head, } ) elif args.model_type_name == "gpt": dataset_args.update( { "seq_length": args.seq_length, } ) elif args.model_type_name == "t5": dataset_args.update( { "max_seq_length": args.encoder_seq_length, "max_seq_length_dec": args.decoder_seq_length, "masked_lm_prob": args.mask_prob, "short_seq_prob": args.short_seq_prob, "dataset_type": "t5", } ) else: raise ValueError(f"Unsupported model type: {args.model_type_name}") if args.model_type_name == "gpt": from megatron.data.gpt_dataset import build_train_valid_test_datasets else: from megatron.data.dataset_utils import build_train_valid_test_datasets train_ds, valid_ds, test_ds = build_train_valid_test_datasets(**dataset_args) return train_ds, valid_ds, test_ds return train_valid_test_datasets_provider def build_pretraining_data_loader(self, dataset, consumed_samples): if dataset is None: return None args = get_args() micro_batch_size = args.micro_batch_size * args.num_micro_batches # Megatron sampler if args.dataloader_type == "single": batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, data_parallel_rank=mpu.get_data_parallel_rank(), data_parallel_size=mpu.get_data_parallel_world_size(), ) elif args.dataloader_type == "cyclic": batch_sampler = MegatronPretrainingRandomSampler( dataset, total_samples=len(dataset), consumed_samples=consumed_samples, micro_batch_size=micro_batch_size, data_parallel_rank=mpu.get_data_parallel_rank(), data_parallel_size=mpu.get_data_parallel_world_size(), data_sharding=args.data_sharding, ) else: raise Exception("{} dataloader type is not supported.".format(args.dataloader_type)) # Torch dataloader. return torch.utils.data.DataLoader( dataset, batch_sampler=batch_sampler, num_workers=args.num_workers, pin_memory=True ) def build_train_valid_test_data_iterators(self): def cyclic_iter(iter): while True: for x in iter: yield x args = get_args() (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None) print_rank_0("> building train, validation, and test datasets ...") # Backward compatibility, assume fixed batch size. if args.iteration > 0 and args.consumed_train_samples == 0: assert args.train_samples is None, "only backward compatiblity support for iteration-based training" args.consumed_train_samples = args.iteration * args.global_batch_size if args.iteration > 0 and args.consumed_valid_samples == 0: if args.train_samples is None: args.consumed_valid_samples = ( (args.iteration // args.eval_interval) * args.eval_iters * args.global_batch_size ) # Data loader only on rank 0 of each model parallel group. if mpu.get_tensor_model_parallel_rank() == 0: # Number of train/valid/test samples. if args.train_samples: train_samples = args.train_samples else: train_samples = args.train_iters * args.global_batch_size eval_iters = (args.train_iters // args.eval_interval + 1) * args.eval_iters test_iters = args.eval_iters train_val_test_num_samples = [ train_samples, eval_iters * args.global_batch_size, test_iters * args.global_batch_size, ] print_rank_0(" > datasets target sizes (minimum size):") print_rank_0(" train: {}".format(train_val_test_num_samples[0])) print_rank_0(" validation: {}".format(train_val_test_num_samples[1])) print_rank_0(" test: {}".format(train_val_test_num_samples[2])) # Build the datasets. train_valid_test_datasets_provider = self.get_train_valid_test_datasets_provider() train_ds, valid_ds, test_ds = train_valid_test_datasets_provider(train_val_test_num_samples) # Build dataloders. train_dataloader = self.build_pretraining_data_loader(train_ds, args.consumed_train_samples) valid_dataloader = self.build_pretraining_data_loader(valid_ds, args.consumed_valid_samples) test_dataloader = self.build_pretraining_data_loader(test_ds, 0) # Flags to know if we need to do training/validation/testing. do_train = train_dataloader is not None and args.train_iters > 0 do_valid = valid_dataloader is not None and args.eval_iters > 0 do_test = test_dataloader is not None and args.eval_iters > 0 # Need to broadcast num_tokens and num_type_tokens. flags = torch.cuda.LongTensor([int(do_train), int(do_valid), int(do_test)]) else: flags = torch.cuda.LongTensor([0, 0, 0]) # Broadcast num tokens. torch.distributed.broadcast( flags, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group() ) args.do_train = flags[0].item() args.do_valid = flags[1].item() args.do_test = flags[2].item() # Build iterators. dl_type = args.dataloader_type assert dl_type in ["single", "cyclic"] if train_dataloader is not None: train_data_iterator = ( iter(train_dataloader) if dl_type == "single" else iter(cyclic_iter(train_dataloader)) ) else: train_data_iterator = None if valid_dataloader is not None: valid_data_iterator = ( iter(valid_dataloader) if dl_type == "single" else iter(cyclic_iter(valid_dataloader)) ) else: valid_data_iterator = None if test_dataloader is not None: test_data_iterator = iter(test_dataloader) if dl_type == "single" else iter(cyclic_iter(test_dataloader)) else: test_data_iterator = None return train_data_iterator, valid_data_iterator, test_data_iterator def prepare_data_loader(accelerator, dataloader): accelerator.print("Preparing dataloader") args = get_args() if not args.megatron_dataset_flag: from ..data_loader import _PYTORCH_DATALOADER_KWARGS, prepare_data_loader args = get_args() micro_batch_size = args.micro_batch_size * args.num_micro_batches kwargs = {k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k]) for k in _PYTORCH_DATALOADER_KWARGS} if kwargs["batch_size"] is None: if isinstance(kwargs["sampler"], torch.utils.data.BatchSampler): kwargs["sampler"].batch_size = micro_batch_size else: del kwargs["sampler"] del kwargs["shuffle"] del kwargs["batch_size"] kwargs["batch_sampler"].batch_size = micro_batch_size else: del kwargs["batch_sampler"] kwargs["batch_size"] = micro_batch_size dataloader = torch.utils.data.DataLoader(dataloader.dataset, **kwargs) return prepare_data_loader( dataloader, accelerator.device, num_processes=mpu.get_data_parallel_world_size(), process_index=mpu.get_data_parallel_rank(), split_batches=accelerator.split_batches, put_on_device=True, rng_types=accelerator.rng_types.copy(), dispatch_batches=accelerator.dispatch_batches, ) else: if args.consumed_samples is not None: ( args.consumed_train_samples, args.consumed_valid_samples, args.consumed_test_samples, ) = args.consumed_samples else: args.consumed_train_samples, args.consumed_valid_samples, args.consumed_test_samples = 0, 0, 0 ( train_data_iterator, valid_data_iterator, test_data_iterator, ) = dataloader.build_train_valid_test_data_iterators() return train_data_iterator, valid_data_iterator, test_data_iterator # optimizer utilities class MegatronLMOptimizerWrapper(AcceleratedOptimizer): def __init__(self, optimizer): super().__init__(optimizer, device_placement=False, scaler=None) def zero_grad(self, set_to_none=None): pass # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed def step(self): pass # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed @property def step_was_skipped(self): """Whether or not the optimizer step was done, or skipped because of gradient overflow.""" return self.optimizer.skipped_iter def prepare_optimizer(accelerator, model): accelerator.print("Preparing optimizer") args = get_args() optimizer = get_megatron_optimizer(model, args.no_wd_decay_cond, args.scale_lr_cond, args.lr_mult) return optimizer # scheduler utilities class MegatronLMDummyScheduler: """ Dummy scheduler presents model parameters or param groups, this is primarily used to follow conventional training loop when scheduler config is specified in the deepspeed config file. Args: optimizer (`torch.optim.optimizer.Optimizer`): The optimizer to wrap. total_num_steps (int): Total number of steps. warmup_num_steps (int): Number of steps for warmup. **kwargs: Other arguments. """ def __init__(self, optimizer, total_num_steps=None, warmup_num_steps=0, **kwargs): self.optimizer = optimizer self.total_num_steps = total_num_steps self.warmup_num_steps = warmup_num_steps self.kwargs = kwargs class MegatronLMSchedulerWrapper(AcceleratedScheduler): def __init__(self, scheduler, optimizers): super().__init__(scheduler, optimizers) def step(self, *args, **kwargs): return # `model(**batch)` is doing that automatically. Therefore, it's implementation is not needed def prepare_scheduler(accelerator, optimizer, scheduler): accelerator.print("Preparing scheduler") scheduler = get_optimizer_param_scheduler(optimizer) return scheduler class AbstractTrainStep(ABC): """Abstract class for batching, forward pass and loss handler.""" def __init__(self, name): super().__init__() self.name = name def get_batch_func(self): pass def get_forward_step_func(self): pass def get_loss_func(self): pass class BertTrainStep(AbstractTrainStep): """ Bert train step class. Args: args (`argparse.Namespace`): Megatron-LM arguments. """ def __init__(self, args): super().__init__("BertTrainStep") self.get_batch = self.get_batch_func(args.megatron_dataset_flag) self.loss_func = self.get_loss_func(args.pretraining_flag, args.num_labels) self.forward_step = self.get_forward_step_func(args.pretraining_flag, args.bert_binary_head) if not args.model_return_dict: self.model_output_class = None else: self.model_output_class = SequenceClassifierOutput def get_batch_func(self, megatron_dataset_flag): def get_batch_megatron(data_iterator): """Build the batch.""" # Items and their type. keys = ["text", "types", "labels", "is_random", "loss_mask", "padding_mask"] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens = data_b["text"].long() types = data_b["types"].long() sentence_order = data_b["is_random"].long() loss_mask = data_b["loss_mask"].float() lm_labels = data_b["labels"].long() padding_mask = data_b["padding_mask"].long() return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask def get_batch_transformer(data_iterator): """Build the batch.""" data = next(data_iterator) data = send_to_device(data, torch.cuda.current_device()) # Unpack. tokens = data["input_ids"].long() padding_mask = data["attention_mask"].long() if "token_type_ids" in data: types = data["token_type_ids"].long() else: types = None if "labels" in data: lm_labels = data["labels"].long() loss_mask = (data["labels"] != -100).to(torch.float) else: lm_labels = None loss_mask = None if "next_sentence_label" in data: sentence_order = data["next_sentence_label"].long() else: sentence_order = None return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask if megatron_dataset_flag: return get_batch_megatron else: return get_batch_transformer def get_loss_func(self, pretraining_flag, num_labels): def loss_func_pretrain(loss_mask, sentence_order, output_tensor): lm_loss_, sop_logits = output_tensor lm_loss_ = lm_loss_.float() loss_mask = loss_mask.float() lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() if sop_logits is not None: sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(), sentence_order.view(-1), ignore_index=-1) sop_loss = sop_loss.float() loss = lm_loss + sop_loss averaged_losses = average_losses_across_data_parallel_group([lm_loss, sop_loss]) return loss, {"lm loss": averaged_losses[0], "sop loss": averaged_losses[1]} else: loss = lm_loss averaged_losses = average_losses_across_data_parallel_group([lm_loss]) return loss, {"lm loss": averaged_losses[0]} def loss_func_finetune(labels, logits): if num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)): loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, num_labels), labels.view(-1)) else: loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) averaged_losses = average_losses_across_data_parallel_group([loss]) return loss, {"loss": averaged_losses[0]} if pretraining_flag: return loss_func_pretrain else: return loss_func_finetune def get_forward_step_func(self, pretraining_flag, bert_binary_head): def forward_step(data_iterator, model): """Forward step.""" tokens, types, sentence_order, loss_mask, labels, padding_mask = self.get_batch(data_iterator) if not bert_binary_head: types = None # Forward pass through the model. if pretraining_flag: output_tensor = model(tokens, padding_mask, tokentype_ids=types, lm_labels=labels) return output_tensor, partial(self.loss_func, loss_mask, sentence_order) else: logits = model(tokens, padding_mask, tokentype_ids=types) return logits, partial(self.loss_func, labels) return forward_step class GPTTrainStep(AbstractTrainStep): """ GPT train step class. Args: args (`argparse.Namespace`): Megatron-LM arguments. """ def __init__(self, args): super().__init__("GPTTrainStep") self.get_batch = self.get_batch_func(args.megatron_dataset_flag) self.loss_func = self.get_loss_func() self.forward_step = self.get_forward_step_func() self.eod_token = args.padded_vocab_size - 1 if args.vocab_file is not None: tokenizer = get_tokenizer() self.eod_token = tokenizer.eod self.reset_position_ids = args.reset_position_ids self.reset_attention_mask = args.reset_attention_mask self.eod_mask_loss = args.eod_mask_loss if not args.model_return_dict: self.model_output_class = None else: self.model_output_class = CausalLMOutputWithCrossAttentions def get_batch_func(self, megatron_dataset_flag): def get_batch_megatron(data_iterator): """Generate a batch""" # Items and their type. keys = ["text"] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b["text"].long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, self.eod_token, self.reset_position_ids, self.reset_attention_mask, self.eod_mask_loss ) return tokens, labels, loss_mask, attention_mask, position_ids def get_batch_transformer(data_iterator): data = next(data_iterator) data = {"input_ids": data["input_ids"]} data = send_to_device(data, torch.cuda.current_device()) tokens_ = data["input_ids"].long() padding = torch.zeros((tokens_.shape[0], 1), dtype=tokens_.dtype, device=tokens_.device) + self.eod_token tokens_ = torch.concat([tokens_, padding], dim=1) labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, self.eod_token, self.reset_position_ids, self.reset_attention_mask, True ) return tokens, labels, loss_mask, attention_mask, position_ids if megatron_dataset_flag: return get_batch_megatron else: return get_batch_transformer def get_loss_func(self): args = get_args() def loss_func(loss_mask, output_tensor): if args.return_logits: losses, logits = output_tensor else: losses = output_tensor losses = losses.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # Reduce loss for logging. averaged_loss = average_losses_across_data_parallel_group([loss]) output_dict = {"lm loss": averaged_loss[0]} if args.return_logits: output_dict.update({"logits": logits}) return loss, output_dict return loss_func def get_forward_step_func(self): def forward_step(data_iterator, model): """Forward step.""" # Get the batch. tokens, labels, loss_mask, attention_mask, position_ids = self.get_batch(data_iterator) output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(self.loss_func, loss_mask) return forward_step class T5TrainStep(AbstractTrainStep): """ T5 train step class. Args: args (`argparse.Namespace`): Megatron-LM arguments. """ def __init__(self, args): super().__init__("T5TrainStep") self.get_batch = self.get_batch_func(args.megatron_dataset_flag) self.loss_func = self.get_loss_func() self.forward_step = self.get_forward_step_func() if not args.model_return_dict: self.model_output_class = None else: self.model_output_class = Seq2SeqLMOutput @staticmethod def attn_mask_postprocess(attention_mask): # We create a 3D attention mask from a 2D tensor mask. # [b, 1, s] attention_mask_b1s = attention_mask.unsqueeze(1) # [b, s, 1] attention_mask_bs1 = attention_mask.unsqueeze(2) # [b, s, s] attention_mask_bss = attention_mask_b1s * attention_mask_bs1 # Convert attention mask to binary: extended_attention_mask = attention_mask_bss < 0.5 return extended_attention_mask @staticmethod def get_decoder_mask(seq_length, device): attention_mask = torch.tril(torch.ones((1, seq_length, seq_length), device=device)) attention_mask = attention_mask < 0.5 return attention_mask @staticmethod def get_enc_dec_mask(attention_mask, dec_seq_length, device): batch_size, _ = attention_mask.shape # We create a 3D attention mask from a 2D tensor mask. # [b, 1, s] attention_mask_b1s = attention_mask.unsqueeze(1) # [b, s, 1] attention_mask_bs1 = torch.ones((batch_size, dec_seq_length, 1), device=device) attention_mask_bss = attention_mask_bs1 * attention_mask_b1s extended_attention_mask = attention_mask_bss < 0.5 return extended_attention_mask def get_batch_func(self, megatron_dataset_flag): def get_batch_megatron(data_iterator): """Build the batch.""" keys = ["text_enc", "text_dec", "labels", "loss_mask", "enc_mask", "dec_mask", "enc_dec_mask"] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_enc = data_b["text_enc"].long() tokens_dec = data_b["text_dec"].long() labels = data_b["labels"].long() loss_mask = data_b["loss_mask"].float() enc_mask = data_b["enc_mask"] < 0.5 dec_mask = data_b["dec_mask"] < 0.5 enc_dec_mask = data_b["enc_dec_mask"] < 0.5 return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask def get_batch_transformer(data_iterator): """Build the batch.""" data = next(data_iterator) data = send_to_device(data, torch.cuda.current_device()) tokens_enc = data["input_ids"].long() labels = data["labels"].long() loss_mask = (labels != -100).to(torch.float) if "decoder_input_ids" in data: tokens_dec = data["decoder_input_ids"].long() else: tokens_dec = labels.new_zeros(labels.shape, device=labels.device, dtype=torch.long) tokens_dec[..., 1:] = labels[..., :-1].clone() tokens_dec[..., 0] = 0 tokens_dec.masked_fill_(tokens_dec == -100, 0) enc_mask = T5TrainStep.attn_mask_postprocess(data["attention_mask"].long()) dec_mask = T5TrainStep.get_decoder_mask(tokens_dec.shape[1], tokens_dec.device) enc_dec_mask = T5TrainStep.get_enc_dec_mask( data["attention_mask"].long(), tokens_dec.shape[1], tokens_dec.device ) return tokens_enc, tokens_dec, loss_mask, labels, enc_mask, dec_mask, enc_dec_mask if megatron_dataset_flag: return get_batch_megatron else: return get_batch_transformer def get_loss_func(self): def loss_func(loss_mask, output_tensor): lm_loss_ = output_tensor.float() lm_loss = torch.sum(lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum() loss = lm_loss averaged_losses = average_losses_across_data_parallel_group([lm_loss]) return loss, {"lm loss": averaged_losses[0]} return loss_func def get_forward_step_func(self): def forward_step(data_iterator, model): """Forward step.""" # Get the batch. tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask = self.get_batch( data_iterator ) # Forward model lm_labels output_tensor = model( tokens_enc, tokens_dec, enc_mask, dec_mask, enc_dec_mask, tokentype_ids=None, lm_labels=lm_labels ) return output_tensor, partial(self.loss_func, loss_mask) return forward_step # intialize megatron setup def initialize(accelerator, extra_args_provider=None, args_defaults={}): accelerator.print("Initializing Megatron-LM") assert torch.cuda.is_available(), "Megatron requires CUDA." # Parse arguments args = parse_args(extra_args_provider, ignore_unknown_args=True) # Set defaults for key, value in args_defaults.items(): if getattr(args, key, None) is not None: if args.rank == 0: print( "WARNING: overriding default arguments for {key}:{v} \ with {key}:{v2}".format( key=key, v=getattr(args, key), v2=value ), flush=True, ) setattr(args, key, value) if args.use_checkpoint_args or args_defaults.get("use_checkpoint_args", False): assert args.load is not None, "--use-checkpoints-args requires --load argument" load_args_from_checkpoint(args) validate_args(args) # set global args, build tokenizer, and set adlr-autoresume, # tensorboard-writer, and timers. set_global_variables(args) # torch.distributed initialization def finish_mpu_init(): args = get_args() # Pytorch distributed. device_count = torch.cuda.device_count() args.rank = torch.distributed.get_rank() args.world_size = torch.distributed.get_world_size() if device_count > 0: device = args.rank % device_count if args.local_rank is not None: assert args.local_rank == device, "expected local-rank to be the same as rank % device-count." else: args.local_rank = device # Set the tensor model-parallel, pipeline model-parallel, and # data-parallel communicators. if mpu.model_parallel_is_initialized(): print("model parallel is already initialized") else: mpu.initialize_model_parallel( args.tensor_model_parallel_size, args.pipeline_model_parallel_size, args.virtual_pipeline_model_parallel_size, args.pipeline_model_parallel_split_rank, ) # Random seeds for reproducibility. if args.rank == 0: print("> setting random seeds to {} ...".format(args.seed)) _set_random_seed(args.seed, args.data_parallel_random_init) args = get_args() # Megatron's MPU is the master. Complete initialization right away. finish_mpu_init() # Autoresume. _init_autoresume() # Compile dependencies. _compile_dependencies() # Set pytorch JIT layer fusion options and warmup JIT functions. set_jit_fusion_options() args = get_args() args.padded_vocab_size = _vocab_size_with_padding(args.orig_vocab_size, args) if args.model_type_name == "bert" and args.pretraining_flag and args.num_labels == 2: args.bert_binary_head = True else: args.bert_binary_head = False args.iteration = 0 class MegatronEngine(torch.nn.Module): """ Megatron-LM model wrapper Args: accelerator (:class:`~accelerate.Accelerator`): The accelerator object to use. model: Megatron-LM model optimizer: Megatron-LM optimizer lr_scheduler: Megatron-LM lr scheduler """ def __init__(self, accelerator, model, optimizer, scheduler): super(MegatronEngine, self).__init__() self.module = model self.base_model = model[0] self.optimizer = optimizer self.scheduler = scheduler args = get_args() if accelerator.state.megatron_lm_plugin.custom_train_step_class is not None: self.train_step_handler = accelerator.state.megatron_lm_plugin.custom_train_step_class( args, **accelerator.state.megatron_lm_plugin.custom_train_step_kwargs ) elif args.model_type_name == "bert": self.train_step_handler = BertTrainStep(args) elif args.model_type_name == "gpt": self.train_step_handler = GPTTrainStep(args) elif args.model_type_name == "t5": self.train_step_handler = T5TrainStep(args) else: raise ValueError(f"Unsupported model type: {args.model_type_name}") self.optimizer.skipped_iter = False # Tracking loss. self.total_loss_dict = {} self.eval_total_loss_dict = {} self.iteration = 0 self.report_memory_flag = True if args.tensorboard_dir is not None: write_args_to_tensorboard() def train(self): for model_module in self.module: model_module.train() self.log_eval_results() def eval(self): for model_module in self.module: model_module.eval() def train_step(self, **batch_data): """ Training step for Megatron-LM Args: batch_data (:obj:`dict`): The batch data to train on. """ args = get_args() timers = get_timers() if len(batch_data) > 0: data_chunks = [] if args.num_micro_batches > 1: for i in range(0, args.num_micro_batches): data_chunks.append( { k: v[i * args.micro_batch_size : (i + 1) * args.micro_batch_size] for k, v in batch_data.items() } ) else: data_chunks = [batch_data] if len(self.module) > 1: batch_data_iterator = ( [iter(data_chunks) for _ in range(len(self.module))] if len(batch_data) > 0 else [None] * len(self.module) ) else: batch_data_iterator = iter(data_chunks) if len(batch_data) > 0 else None # Set grad to zero. if args.DDP_impl == "local" and args.use_contiguous_buffers_in_local_ddp: for partition in self.module: partition.zero_grad_buffer() self.optimizer.zero_grad() # Forward pass. forward_backward_func = get_forward_backward_func() losses_reduced = forward_backward_func( self.train_step_handler.forward_step, batch_data_iterator, self.module, self.optimizer, None, forward_only=False, ) # Empty unused memory. if args.empty_unused_memory_level >= 1: torch.cuda.empty_cache() # Reduce gradients. timers("backward-reduce-model-grads").start() self.optimizer.reduce_model_grads(args, timers) timers("backward-reduce-model-grads").stop() # Update parameters. timers("optimizer").start() update_successful, grad_norm, num_zeros_in_grad = self.optimizer.step(args, timers) timers("optimizer").stop() # Gather params. if update_successful: timers("backward-gather-model-params").start() self.optimizer.gather_model_params(args, timers) timers("backward-gather-model-params").stop() # Update learning rate. if update_successful: if self.scheduler is not None: increment = get_num_microbatches() * args.micro_batch_size * args.data_parallel_size self.scheduler.step(increment=increment) skipped_iter = 0 else: skipped_iter = 1 self.optimizer.skipped_iter = not update_successful # Empty unused memory. if args.empty_unused_memory_level >= 2: torch.cuda.empty_cache() args.consumed_train_samples += ( mpu.get_data_parallel_world_size() * args.micro_batch_size * get_num_microbatches() ) if mpu.is_pipeline_last_stage(ignore_virtual=True): # Average loss across microbatches. loss_reduced = {} for key in losses_reduced[0]: losses_reduced_for_key = [x[key] for x in losses_reduced] if len(losses_reduced_for_key[0].shape) == 0: loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key) else: loss_reduced[key] = torch.concat(losses_reduced_for_key) return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad return {}, skipped_iter, grad_norm, num_zeros_in_grad def eval_step(self, **batch_data): """ Evaluation step for Megatron-LM Args: batch_data (:obj:`dict`): The batch data to evaluate on. """ args = get_args() data_chunks = [] if args.num_micro_batches > 1: for i in range(0, args.num_micro_batches): data_chunks.append( {k: v[i * args.micro_batch_size : (i + 1) * args.micro_batch_size] for k, v in batch_data.items()} ) else: data_chunks = [batch_data] if len(self.module) > 1: batch_data_iterator = [iter(data_chunks) for _ in range(len(self.module))] else: batch_data_iterator = iter(data_chunks) forward_backward_func = get_forward_backward_func() loss_dicts = forward_backward_func( self.train_step_handler.forward_step, batch_data_iterator, self.module, optimizer=None, timers=None, forward_only=True, ) # Empty unused memory if args.empty_unused_memory_level >= 1: torch.cuda.empty_cache() args.consumed_valid_samples += ( mpu.get_data_parallel_world_size() * args.micro_batch_size * get_num_microbatches() ) if mpu.is_pipeline_last_stage(ignore_virtual=True): # Average loss across microbatches. loss_reduced = {} for key in loss_dicts[0]: losses_reduced_for_key = [x[key] for x in loss_dicts] if len(losses_reduced_for_key[0].shape) == 0: loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key) else: loss_reduced[key] = torch.concat(losses_reduced_for_key) return loss_reduced else: return {} def forward(self, **batch_data): # During training, we use train_step() # model(**batch_data) performs following operations by delegating it to `self.train_step`: # 1. Prepare **batch_data for Tendor, Pipeline and Model Parallelism # 2. Set grad to zero. # 3. forward pass and backward pass using Pipeline Parallelism # 4. Empty unused memory. # 5. Reduce gradients. # 6. Update parameters. # 7. Gather params when using Distributed Optimizer (Data Parallelism). # 8. Update learning rate if scheduler is specified. # 9. Empty unused memory. # 10. Average loss across microbatches and across DP ranks. # # During evaluation, we use eval_step() args = get_args() if self.module[0].training: loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = self.train_step(**batch_data) self.iteration += 1 if args.tensorboard_dir is not None: # Logging. loss_scale = self.optimizer.get_loss_scale().item() params_norm = None if args.log_params_norm: params_norm = calc_params_l2_norm(self.model) self.report_memory_flag = training_log( loss_dict, self.total_loss_dict, self.optimizer.param_groups[0]["lr"], self.iteration, loss_scale, self.report_memory_flag, skipped_iter, grad_norm, params_norm, num_zeros_in_grad, ) else: loss_dict = self.eval_step(**batch_data) if args.tensorboard_dir is not None: for key in loss_dict: self.eval_total_loss_dict[key] = ( self.eval_total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + loss_dict[key] ) self.eval_total_loss_dict[key + "_num_iters"] = self.eval_total_loss_dict.get( key + "_num_iters", torch.cuda.FloatTensor([0.0]) ) + torch.cuda.FloatTensor([1.0]) loss = torch.tensor(0.0, device=args.local_rank) for key in loss_dict: if len(loss_dict[key].shape) == 0: loss += loss_dict[key] logits = None if "logits" in loss_dict: logits = loss_dict["logits"] # loss = reduce(loss) if self.train_step_handler.model_output_class is not None: return self.train_step_handler.model_output_class(loss=loss, logits=logits) return loss def log_eval_results(self): args = get_args() if args.tensorboard_dir is None or self.iteration == 0: return args = get_args() writer = get_tensorboard_writer() string = f"validation loss at iteration {self.iteration} | " for key in self.eval_total_loss_dict: if key.endswith("_num_iters"): continue value = self.eval_total_loss_dict[key] / self.eval_total_loss_dict[key + "_num_iters"] string += f"{key} value: {value} | " ppl = math.exp(min(20, value.item())) if args.pretraining_flag: string += f"{key} PPL: {ppl} | " if writer: writer.add_scalar(f"{key} validation", value.item(), self.iteration) if args.pretraining_flag: writer.add_scalar(f"{key} validation ppl", ppl, self.iteration) length = len(string) + 1 print_rank_last("-" * length) print_rank_last(string) print_rank_last("-" * length) self.eval_total_loss_dict = {} def save_checkpoint(self, output_dir): self.log_eval_results() args = get_args() args.save = output_dir torch.distributed.barrier() save_checkpoint(self.iteration, self.module, self.optimizer, self.scheduler) torch.distributed.barrier() def load_checkpoint(self, input_dir): args = get_args() args.load = input_dir args.consumed_train_samples = 0 args.consumed_valid_samples = 0 torch.distributed.barrier() iteration = load_checkpoint(self.module, self.optimizer, self.scheduler) torch.distributed.barrier() self.iteration = iteration if args.fp16 and self.iteration == 0: self.optimizer.reload_model_params() def megatron_generate( self, inputs, attention_mask=None, max_length=None, max_new_tokens=None, num_beams=None, temperature=None, top_k=None, top_p=None, length_penalty=None, **kwargs, ): """ Generate method for GPT2 model. This method is used for inference. Supports both greedy and beam search along with sampling. Refer the Megatron-LM repo for more details Args: inputs (torch.Tensor): input ids attention_mask (torch.Tensor, optional): attention mask. Defaults to None. max_length (int, optional): max length of the generated sequence. Defaults to None. Either this or max_new_tokens should be provided. max_new_tokens (int, optional): max number of tokens to be generated. Defaults to None. Either this or max_length should be provided. num_beams (int, optional): number of beams to use for beam search. Defaults to None. temperature (float, optional): temperature for sampling. Defaults to 1.0. top_k (int, optional): top k tokens to consider for sampling. Defaults to 0.0. top_p (float, optional): tokens in top p probability are considered for sampling. Defaults to 0.0. length_penalty (float, optional): length penalty for beam search. Defaults to None. kwargs: additional key-value arguments """ # checking if required arguments are passed args = get_args() if args.model_type_name != "gpt": raise NotImplementedError("Generate method is not implemented for this model") if args.data_parallel_size > 1: raise ValueError("Generate method requires data parallelism to be 1") if args.sequence_parallel: raise ValueError("Generate method requires sequence parallelism to be False") if args.recompute_granularity is not None: raise ValueError("Checkpoint activations cannot be set for inference") if args.vocab_file is None: raise ValueError("Vocab file is required for inference") # Prepare inputs if max_length is None and max_new_tokens is None: raise ValueError("`max_length` or `max_new_tokens` are required for inference") if temperature is None: temperature = 1.0 elif not (0.0 < temperature <= 100.0): raise ValueError("temperature must be a positive number less than or equal to 100.0") if top_k is None: top_k = 0 elif not (0 <= top_k <= 1000): raise ValueError("top_k must be a positive number less than or equal to 1000") if top_p is None: top_p = 0.0 elif top_p > 0.0 and top_k > 0.0: raise ValueError("top_p and top_k sampling cannot be set together") else: if not (0.0 <= top_p <= 1.0): raise ValueError("top_p must be less than or equal to 1.0") top_p_decay = kwargs.get("top_p_decay", 0.0) if not (0.0 <= top_p_decay <= 1.0): raise ValueError("top_p_decay must be less than or equal to 1.0") top_p_bound = kwargs.get("top_p_bound", 0.0) if not (0.0 <= top_p_bound <= 1.0): raise ValueError("top_p_bound must be less than or equal to 1.0") add_BOS = kwargs.get("add_BOS", False) if not (isinstance(add_BOS, bool)): raise ValueError("add_BOS must be a boolean") beam_width = num_beams if beam_width is not None: if not isinstance(beam_width, int): raise ValueError("beam_width must be an integer") if beam_width < 1: raise ValueError("beam_width must be greater than 0") if inputs.shape[0] > 1: return "When doing beam_search, batch size must be 1" tokenizer = get_tokenizer() stop_token = kwargs.get("stop_token", tokenizer.eod) if stop_token is not None: if not isinstance(stop_token, int): raise ValueError("stop_token must be an integer") if length_penalty is None: length_penalty = 1.0 sizes_list = None prompts_tokens_tensor = None prompts_length_tensor = None if torch.distributed.get_rank() == 0: # Get the prompts length. if attention_mask is None: prompts_length_tensor = torch.cuda.LongTensor([inputs.shape[1]] * inputs.shape[0]) else: prompts_length_tensor = attention_mask.sum(axis=-1).cuda() if max_new_tokens is None: max_new_tokens = max_length - inputs.shape[1] if max_new_tokens <= 0: raise ValueError("max_new_tokens must be greater than 0") if add_BOS: max_length = max_new_tokens + inputs.shape[1] + 1 # making sure that `max_length` is a multiple of 4 to leverage fused kernels max_length = 4 * math.ceil(max_length / 4) max_new_tokens = max_length - (inputs.shape[1] + 1) padding = torch.cuda.LongTensor([[tokenizer.eod] * max_new_tokens] * inputs.shape[0]) prompts_tokens_tensor = torch.concat( [torch.unsqueeze(padding[:, 0], axis=-1), inputs.cuda(), padding], axis=-1 ) else: # making sure that `max_length` is a multiple of 4 to leverage fused kernels max_length = max_new_tokens + inputs.shape[1] max_length = 4 * math.ceil(max_length / 4) max_new_tokens = max_length - inputs.shape[1] padding = torch.cuda.LongTensor([[tokenizer.eod] * max_new_tokens] * inputs.shape[0]) prompts_tokens_tensor = torch.concat([inputs.cuda(), padding], axis=-1) # We need the sizes of these tensors for the boradcast sizes_list = [ prompts_tokens_tensor.size(0), # Batch size prompts_tokens_tensor.size(1), ] # Sequence lenght # First, broadcast the sizes. sizes_tensor = broadcast_int_list(2, int_list=sizes_list, rank=0) # Now that we have the sizes, we can boradcast the tokens # and length tensors. sizes = sizes_tensor.tolist() context_tokens_tensor = broadcast_tensor(sizes, torch.int64, tensor=prompts_tokens_tensor, rank=0) context_length_tensor = broadcast_tensor(sizes[0], torch.int64, tensor=prompts_length_tensor, rank=0) # Run the inference random_seed = kwargs.get("random_seed", 0) torch.random.manual_seed(random_seed) unwrapped_model = unwrap_model(self.base_model, (torchDDP, LocalDDP, Float16Module)) if beam_width is not None: tokens, _ = beam_search_and_return_on_first_stage( unwrapped_model, context_tokens_tensor, context_length_tensor, beam_width, stop_token=stop_token, num_return_gen=1, length_penalty=length_penalty, ) else: tokens, _, _ = generate_tokens_probs_and_return_on_first_stage( unwrapped_model, context_tokens_tensor, context_length_tensor, return_output_log_probs=False, top_k=top_k, top_p=top_p, top_p_decay=top_p_decay, top_p_bound=top_p_bound, temperature=temperature, use_eod_token_for_early_termination=True, ) return tokens # other utilities def avg_losses_across_data_parallel_group(losses): """ Average losses across data parallel group. Args: losses (List[Tensor]): List of losses to average across data parallel group. """ return average_losses_across_data_parallel_group(losses) def gather_across_data_parallel_groups(tensor): """ Recursively gather tensor in a nested list/tuple/dictionary of tensors from data parallel ranks. Args: tensor (nested list/tuple/dictionary of `torch.Tensor`): The data to gather across data parallel ranks. """ def _gpu_gather_one(tensor): if tensor.ndim == 0: tensor = tensor.clone()[None] output_tensors = [ torch.empty_like(tensor) for _ in range(torch.distributed.get_world_size(group=mpu.get_data_parallel_group())) ] torch.distributed.all_gather(output_tensors, tensor, group=mpu.get_data_parallel_group()) return torch.cat(output_tensors, dim=0) return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
accelerate/src/accelerate/utils/megatron_lm.py/0
{ "file_path": "accelerate/src/accelerate/utils/megatron_lm.py", "repo_id": "accelerate", "token_count": 27066 }
7
import json import os import pickle import tempfile from unittest.mock import patch import torch from parameterized import parameterized from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights, load_checkpoint_and_dispatch from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_device, require_non_cpu, slow, torch_device from accelerate.test_utils.testing import AccelerateTestCase from accelerate.utils import patch_environment from accelerate.utils.modeling import load_checkpoint_in_model def create_components(): model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=1.0) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=2, epochs=1) train_dl = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) valid_dl = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl class ModelForTest(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(3, 4) self.batchnorm = torch.nn.BatchNorm1d(4) self.linear2 = torch.nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) def get_signature(model): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def load_random_weights(model): state = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(state) def parameterized_custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = "use_safetensors" if param.args[0] is True else "use_pytorch" return f"{func.__name__}_{param_based_name}" class AcceleratorTester(AccelerateTestCase): @require_non_cpu def test_accelerator_can_be_reinstantiated(self): _ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type in ["cuda", "mps", "npu", "xpu"] with self.assertRaises(ValueError): _ = Accelerator(cpu=True) def test_mutable_states(self): accelerator = Accelerator() state = GradientState() assert state.num_steps == 1 accelerator.gradient_accumulation_steps = 4 assert state.num_steps == 4 assert state.sync_gradients is True accelerator.sync_gradients = False assert state.sync_gradients is False GradientState._reset_state() def test_prepared_objects_are_referenced(self): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() ( prepared_model, prepared_optimizer, prepared_scheduler, prepared_train_dl, prepared_valid_dl, ) = accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def test_free_memory_dereferences_prepared_components(self): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def test_env_var_device(self): """Tests that setting the torch device with ACCELERATE_TORCH_DEVICE overrides default device.""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*args, **kwargs): pass with patch("torch.cuda.set_device", noop), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): accelerator = Accelerator() self.assertEqual(str(accelerator.state.device), "cuda:64") @parameterized.expand((True, False), name_func=parameterized_custom_name_func) def test_save_load_model(self, use_safetensors): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) model_signature = get_signature(model) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(tmpdirname, safe_serialization=use_safetensors) # make sure random weights don't match load_random_weights(model) self.assertTrue(abs(model_signature - get_signature(model)) > 1e-3) # make sure loaded weights match accelerator.load_state(tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) @parameterized.expand([True, False], name_func=parameterized_custom_name_func) def test_save_model(self, use_safetensors): accelerator = Accelerator() model = torch.nn.Linear(10, 10) model_signature = get_signature(model) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_model(model, tmpdirname, safe_serialization=use_safetensors) # make sure loaded weights match load_checkpoint_in_model(model, tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) @parameterized.expand([True, False], name_func=parameterized_custom_name_func) def test_save_model_offload(self, use_safetensors): accelerator = Accelerator() device_map = {"linear1": "cpu", "batchnorm": "disk", "linear2": "cpu"} inputs = torch.randn(3, 3) model = ModelForTest() expected = model(inputs) with tempfile.TemporaryDirectory() as tmp_dir: accelerator.save_model(model, tmp_dir, safe_serialization=use_safetensors) # load and save offloaded model load_checkpoint_and_dispatch(model, tmp_dir, device_map=device_map, offload_folder=tmp_dir) accelerator.save_model(model, tmp_dir, safe_serialization=use_safetensors) # load weights that were saved from the offloaded model load_checkpoint_and_dispatch(model, tmp_dir) output = model(inputs) self.assertTrue(torch.allclose(expected, output, atol=1e-5)) @parameterized.expand([True, False], name_func=parameterized_custom_name_func) def test_save_load_model_with_hooks(self, use_safetensors): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) model_signature = get_signature(model) # saving hook def save_config(models, weights, output_dir): config = {"class_name": models[0].__class__.__name__} with open(os.path.join(output_dir, "data.json"), "w") as f: json.dump(config, f) # loading hook def load_config(models, input_dir): with open(os.path.join(input_dir, "data.json"), "r") as f: config = json.load(f) models[0].class_name = config["class_name"] save_hook = accelerator.register_save_state_pre_hook(save_config) load_hook = accelerator.register_load_state_pre_hook(load_config) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(tmpdirname, safe_serialization=use_safetensors) # make sure random weights don't match with hooks load_random_weights(model) self.assertTrue(abs(model_signature - get_signature(model)) > 1e-3) # random class name to verify correct one is loaded model.class_name = "random" # make sure loaded weights match with hooks accelerator.load_state(tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(tmpdirname, safe_serialization=use_safetensors) # make sure random weights don't match with hooks removed load_random_weights(model) self.assertTrue(abs(model_signature - get_signature(model)) > 1e-3) # random class name to verify correct one is loaded model.class_name = "random" # make sure loaded weights match with hooks removed accelerator.load_state(tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def test_accelerator_none(self): """Just test that passing None to accelerator.prepare() works.""" accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() dummy_obj = None # This should work model, optimizer, scheduler, train_dl, valid_dl, dummy_obj = accelerator.prepare( model, optimizer, scheduler, train_dl, valid_dl, dummy_obj ) self.assertTrue(dummy_obj is None) def test_is_accelerator_prepared(self): """Checks that `_is_accelerator_prepared` is set properly""" accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() dummy_obj = [1, 2, 3] # This should work model, optimizer, scheduler, train_dl, valid_dl, dummy_obj = accelerator.prepare( model, optimizer, scheduler, train_dl, valid_dl, dummy_obj ) self.assertEqual( getattr(dummy_obj, "_is_accelerate_prepared", False), False, "Dummy object should have `_is_accelerate_prepared` set to `True`", ) self.assertEqual( getattr(model, "_is_accelerate_prepared", False), True, "Model is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(optimizer, "_is_accelerate_prepared", False), True, "Optimizer is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(scheduler, "_is_accelerate_prepared", False), True, "Scheduler is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(train_dl, "_is_accelerate_prepared", False), True, "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(valid_dl, "_is_accelerate_prepared", False), True, "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`", ) @slow @require_bnb def test_accelerator_bnb(self): """Tests that the accelerator can be used with the BNB library.""" from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_8bit=True, device_map={"": 0}, ) accelerator = Accelerator() # This should work model = accelerator.prepare(model) @slow @require_bnb def test_accelerator_bnb_cpu_error(self): """Tests that the accelerator can be used with the BNB library. This should fail as we are trying to load a model that is loaded between cpu and gpu""" from transformers import AutoModelForCausalLM accelerator = Accelerator() with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) model.tie_weights() device_map = infer_auto_device_map(model) device_map["lm_head"] = "cpu" model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", device_map=device_map, load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True ) # This should not work and get value error with self.assertRaises(ValueError): model = accelerator.prepare(model) @slow @require_bnb @require_multi_device def test_accelerator_bnb_multi_device(self): """Tests that the accelerator can be used with the BNB library.""" from transformers import AutoModelForCausalLM if torch_device == "cuda": PartialState._shared_state = {"distributed_type": DistributedType.MULTI_GPU} elif torch_device == "npu": PartialState._shared_state = {"distributed_type": DistributedType.MULTI_NPU} else: raise ValueError(f"{torch_device} is not supported in test_accelerator_bnb_multi_device.") with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) model.tie_weights() device_map = infer_auto_device_map(model) device_map["lm_head"] = 1 model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_8bit=True, device_map=device_map, ) accelerator = Accelerator() # This should not work and get value error with self.assertRaises(ValueError): _ = accelerator.prepare(model) PartialState._reset_state() @slow @require_bnb @require_multi_device def test_accelerator_bnb_multi_device_no_distributed(self): """Tests that the accelerator can be used with the BNB library.""" from transformers import AutoModelForCausalLM with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) device_map = infer_auto_device_map(model) device_map["lm_head"] = 1 model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_8bit=True, device_map=device_map, ) accelerator = Accelerator() # This should work _ = accelerator.prepare(model) @require_non_cpu def test_accelerator_cpu_flag_prepare(self): model = torch.nn.Linear(10, 10) sgd = torch.optim.SGD(model.parameters(), lr=0.01) accelerator = Accelerator(cpu=True) _ = accelerator.prepare(sgd) @require_non_cpu def test_can_unwrap_model_fp16(self): # test for a regression introduced in #872 # before the fix, after unwrapping with keep_fp32_wrapper=False, there would be the following error: # Linear.forward() missing 1 required positional argument: 'input' model = create_components()[0] accelerator = Accelerator(mixed_precision="fp16") inputs = torch.randn(10, 2).to(torch_device) model = accelerator.prepare(model) model(inputs) # sanity check that this works model = accelerator.unwrap_model(model, keep_fp32_wrapper=False) model(inputs) # check that this still works # check that pickle roundtrip works model_loaded = pickle.loads(pickle.dumps(model)) model_loaded(inputs) def test_can_unwrap_model(self): model = create_components()[0] accelerator = Accelerator(mixed_precision="no", cpu=True) inputs = torch.randn(10, 2) model = accelerator.prepare(model) model(inputs) # sanity check that this works model = accelerator.unwrap_model(model, keep_fp32_wrapper=False) model(inputs) # check that this still works # check that pickle roundtrip works model_loaded = pickle.loads(pickle.dumps(model)) model_loaded(inputs)
accelerate/tests/test_accelerator.py/0
{ "file_path": "accelerate/tests/test_accelerator.py", "repo_id": "accelerate", "token_count": 7098 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from collections import OrderedDict import torch import torch.nn as nn from safetensors.torch import save_file from accelerate import init_empty_weights from accelerate.test_utils import require_cuda, require_huggingface_suite, require_multi_gpu from accelerate.utils.modeling import ( check_device_map, clean_device_map, compute_module_sizes, convert_file_size_to_int, find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, ) class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class LinearWithNonPersistentBuffers(nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.register_buffer("bias", torch.empty(out_features, **factory_kwargs), persistent=False) else: self.register_buffer("bias", None) def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.nn.functional.linear(input, self.weight, self.bias) class ModelSeveralDtypes(nn.Module): def __init__(self): super().__init__() self.register_buffer("int_param", torch.randint(high=10, size=(15, 30))) self.register_parameter("float_param", torch.nn.Parameter(torch.rand(10, 5))) def forward(self, x): return x + 2 def sequential_model(num_layers): layers = OrderedDict([(f"linear{i}", nn.Linear(1000, 1000)) for i in range(1, num_layers + 1)]) return nn.Sequential(layers) class ModelingUtilsTester(unittest.TestCase): def check_set_module_tensor_for_device(self, model, device1, device2): self.assertEqual(model.linear1.weight.device, torch.device(device1)) with self.subTest("Access by submodule and direct name for a parameter"): set_module_tensor_to_device(model.linear1, "weight", device2) self.assertEqual(model.linear1.weight.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on device1 set_module_tensor_to_device(model.linear1, "weight", device1) set_module_tensor_to_device(model.linear1, "weight", device1, value=torch.randn(4, 3)) else: set_module_tensor_to_device(model.linear1, "weight", device1) self.assertEqual(model.linear1.weight.device, torch.device(device1)) with self.subTest("Access by module and full name for a parameter"): set_module_tensor_to_device(model, "linear1.weight", device2) self.assertEqual(model.linear1.weight.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on device1 set_module_tensor_to_device(model, "linear1.weight", device1) set_module_tensor_to_device(model, "linear1.weight", device1, value=torch.randn(4, 3)) else: set_module_tensor_to_device(model, "linear1.weight", device1) self.assertEqual(model.linear1.weight.device, torch.device(device1)) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device1)) with self.subTest("Access by submodule and direct name for a buffer"): set_module_tensor_to_device(model.batchnorm, "running_mean", device2) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on device1 set_module_tensor_to_device(model.batchnorm, "running_mean", device1) set_module_tensor_to_device(model.batchnorm, "running_mean", device1, value=torch.randn(4)) else: set_module_tensor_to_device(model.batchnorm, "running_mean", device1) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device1)) with self.subTest("Access by module and full name for a parameter"): set_module_tensor_to_device(model, "batchnorm.running_mean", device2) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on CPU set_module_tensor_to_device(model, "batchnorm.running_mean", device1) set_module_tensor_to_device(model, "batchnorm.running_mean", device1, value=torch.randn(4)) else: set_module_tensor_to_device(model, "batchnorm.running_mean", device1) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device1)) def test_set_module_tensor_to_meta_and_cpu(self): model = ModelForTest() self.check_set_module_tensor_for_device(model, "cpu", "meta") @require_cuda def test_set_module_tensor_to_cpu_and_gpu(self): model = ModelForTest() self.check_set_module_tensor_for_device(model, "cpu", 0) @require_cuda def test_set_module_tensor_to_meta_and_gpu(self): model = ModelForTest().to(0) self.check_set_module_tensor_for_device(model, 0, "meta") @require_multi_gpu def test_set_module_tensor_between_gpus(self): model = ModelForTest().to(0) self.check_set_module_tensor_for_device(model, 0, 1) def test_set_module_tensor_sets_dtype(self): model = ModelForTest() set_module_tensor_to_device(model, "linear1.weight", "cpu", value=model.linear1.weight, dtype=torch.float16) self.assertEqual(model.linear1.weight.dtype, torch.float16) def test_set_module_tensor_checks_shape(self): model = ModelForTest() tensor = torch.zeros((2, 2)) with self.assertRaises(ValueError) as cm: set_module_tensor_to_device(model, "linear1.weight", "cpu", value=tensor) self.assertEqual( str(cm.exception), 'Trying to set a tensor of shape torch.Size([2, 2]) in "weight" (which has shape torch.Size([4, 3])), this look incorrect.', ) def test_named_tensors(self): model = nn.BatchNorm1d(4) named_tensors = named_module_tensors(model) self.assertListEqual( [name for name, _ in named_tensors], ["weight", "bias", "running_mean", "running_var", "num_batches_tracked"], ) named_tensors = named_module_tensors(model, include_buffers=False) self.assertListEqual([name for name, _ in named_tensors], ["weight", "bias"]) model = ModelForTest() named_tensors = named_module_tensors(model) self.assertListEqual([name for name, _ in named_tensors], []) named_tensors = named_module_tensors(model, recurse=True) self.assertListEqual( [name for name, _ in named_tensors], [ "linear1.weight", "linear1.bias", "batchnorm.weight", "batchnorm.bias", "linear2.weight", "linear2.bias", "batchnorm.running_mean", "batchnorm.running_var", "batchnorm.num_batches_tracked", ], ) named_tensors = named_module_tensors(model, include_buffers=False, recurse=True) self.assertListEqual( [name for name, _ in named_tensors], ["linear1.weight", "linear1.bias", "batchnorm.weight", "batchnorm.bias", "linear2.weight", "linear2.bias"], ) model = LinearWithNonPersistentBuffers(10, 10) named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=False) self.assertListEqual([name for name, _ in named_tensors], ["weight", "bias"]) named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=True) self.assertListEqual([name for name, _ in named_tensors], ["weight"]) def test_find_tied_parameters(self): model = sequential_model(4) self.assertListEqual(find_tied_parameters(model), []) model.linear2.weight = model.linear1.weight self.assertListEqual(find_tied_parameters(model), [["linear1.weight", "linear2.weight"]]) model.linear4.weight = model.linear1.weight self.assertListEqual(find_tied_parameters(model), [["linear1.weight", "linear2.weight", "linear4.weight"]]) model = sequential_model(5) model.linear1.weight = model.linear4.weight model.linear2.weight = model.linear3.weight model.linear5.weight = model.linear2.weight tied_params = sorted(find_tied_parameters(model), key=lambda x: len(x)) self.assertListEqual( tied_params, [["linear1.weight", "linear4.weight"], ["linear2.weight", "linear3.weight", "linear5.weight"]] ) model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))])) model.block1.linear1.weight = model.block2.linear1.weight self.assertListEqual(find_tied_parameters(model), [["block1.linear1.weight", "block2.linear1.weight"]]) def test_retie_parameters(self): model = sequential_model(2) retie_parameters(model, [["linear1.weight", "linear2.weight"]]) self.assertIs(model.linear1.weight, model.linear2.weight) model = sequential_model(3) retie_parameters(model, [["linear1.weight", "linear2.weight", "linear3.weight"]]) self.assertIs(model.linear1.weight, model.linear2.weight) self.assertIs(model.linear1.weight, model.linear3.weight) model = sequential_model(5) retie_parameters( model, [["linear1.weight", "linear4.weight"], ["linear2.weight", "linear3.weight", "linear5.weight"]] ) self.assertIs(model.linear1.weight, model.linear4.weight) self.assertIs(model.linear2.weight, model.linear3.weight) self.assertIs(model.linear2.weight, model.linear5.weight) model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))])) retie_parameters(model, [["block1.linear1.weight", "block2.linear1.weight"]]) self.assertIs(model.block1.linear1.weight, model.block2.linear1.weight) def test_compute_module_sizes(self): model = ModelForTest() expected_sizes = {"": 236, "linear1": 64, "linear1.weight": 48, "linear1.bias": 16} expected_sizes.update({"linear2": 100, "linear2.weight": 80, "linear2.bias": 20}) expected_sizes.update({"batchnorm": 72, "batchnorm.weight": 16, "batchnorm.bias": 16}) expected_sizes.update( {"batchnorm.running_mean": 16, "batchnorm.running_var": 16, "batchnorm.num_batches_tracked": 8} ) module_sizes = compute_module_sizes(model) self.assertDictEqual(module_sizes, expected_sizes) model.half() expected_sizes = {k: s // 2 for k, s in expected_sizes.items()} # This one is not converted to half. expected_sizes["batchnorm.num_batches_tracked"] = 8 # This impacts batchnorm and total expected_sizes["batchnorm"] += 4 expected_sizes[""] += 4 module_sizes = compute_module_sizes(model) self.assertDictEqual(module_sizes, expected_sizes) def test_check_device_map(self): model = ModelForTest() check_device_map(model, {"": 0}) with self.assertRaises(ValueError): check_device_map(model, {"linear1": 0, "linear2": 1}) check_device_map(model, {"linear1": 0, "linear2": 1, "batchnorm": 1}) def shard_test_model(self, model, tmp_dir): module_index = { "linear1": "checkpoint_part1.bin", "batchnorm": "checkpoint_part2.bin", "linear2": "checkpoint_part3.bin", } index = {} for name, _ in model.state_dict().items(): module = name.split(".")[0] index[name] = module_index[module] with open(os.path.join(tmp_dir, "weight_map.index.json"), "w") as f: json.dump(index, f) for module, fname in module_index.items(): state_dict = {k: v for k, v in model.state_dict().items() if k.startswith(module)} full_fname = os.path.join(tmp_dir, fname) torch.save(state_dict, full_fname) def test_load_checkpoint_in_model(self): # Check with whole checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname) # Check with sharded index model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) index_file = os.path.join(tmp_dir, "weight_map.index.json") load_checkpoint_in_model(model, index_file) # Check with sharded checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) load_checkpoint_in_model(model, tmp_dir) @require_cuda def test_load_checkpoint_in_model_one_gpu(self): device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"} # Check with whole checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Check with sharded index model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) index_file = os.path.join(tmp_dir, "weight_map.index.json") load_checkpoint_in_model(model, index_file, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Check with sharded checkpoint folder model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) load_checkpoint_in_model(model, tmp_dir, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) @require_cuda def test_load_checkpoint_in_model_disk_offload(self): device_map = {"linear1": "cpu", "batchnorm": "disk", "linear2": "cpu"} model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) # Buffers are not offloaded by default self.assertEqual(model.batchnorm.running_mean.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir, offload_buffers=True) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.running_mean.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) @require_multi_gpu def test_load_checkpoint_in_model_two_gpu(self): device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1} # Check with whole checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device(1)) # Check with sharded index model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) index_file = os.path.join(tmp_dir, "weight_map.index.json") load_checkpoint_in_model(model, index_file, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device(1)) # Check with sharded checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) load_checkpoint_in_model(model, tmp_dir, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device(1)) def test_load_checkpoint_in_model_dtype(self): with tempfile.NamedTemporaryFile(suffix=".pt") as tmpfile: model = ModelSeveralDtypes() torch.save(model.state_dict(), tmpfile.name) new_model = ModelSeveralDtypes() load_checkpoint_in_model( new_model, tmpfile.name, offload_state_dict=True, dtype=torch.float16, device_map={"": "cpu"} ) self.assertEqual(new_model.int_param.dtype, torch.int64) self.assertEqual(new_model.float_param.dtype, torch.float16) def test_clean_device_map(self): # Regroup everything if all is on the same device self.assertDictEqual(clean_device_map({"a": 0, "b": 0, "c": 0}), {"": 0}) # Regroups children of level 1 on the same device self.assertDictEqual( clean_device_map({"a.x": 0, "a.y": 0, "b.x": 1, "b.y": 1, "c": 1}), {"a": 0, "b": 1, "c": 1} ) # Regroups children of level 2 on the same device self.assertDictEqual( clean_device_map({"a.x": 0, "a.y": 0, "b.x.0": 1, "b.x.1": 1, "b.y.0": 2, "b.y.1": 2, "c": 2}), {"a": 0, "b.x": 1, "b.y": 2, "c": 2}, ) def test_infer_auto_device_map(self): model = ModelForTest() # model has size 236: linear1 64, batchnorm 72, linear2 100 device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200}) # only linear1 fits on device 0 as we keep memory available for the maximum layer in case of offload self.assertDictEqual(device_map, {"linear1": 0, "batchnorm": 1, "linear2": 1}) device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 172, 2: 200}) # On device 1, we don't care about keeping size available for the max layer, so even if there is just the # size available for batchnorm + linear2, they fit here. self.assertDictEqual(device_map, {"linear1": 0, "batchnorm": 1, "linear2": 1}) model.linear1.weight = model.linear2.weight device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200}) # By tying weights, the whole model fits on device 0 self.assertDictEqual(device_map, {"": 0}) # When splitting a bigger model, the split is done at the layer level model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest()) device_map = infer_auto_device_map(model, max_memory={0: 500, 1: 500}) self.assertDictEqual(device_map, {"0": 0, "1.linear1": 0, "1.batchnorm": 0, "1.linear2": 1, "2": 1}) # With no_split_module_classes, it's done at that module level model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest()) device_map = infer_auto_device_map( model, max_memory={0: 500, 1: 500}, no_split_module_classes=["ModelForTest"] ) self.assertDictEqual(device_map, {"0": 0, "1": 1, "2": 1}) def test_infer_auto_device_map_with_tied_weights(self): model = nn.Sequential( OrderedDict([("layer1", ModelForTest()), ("layer2", ModelForTest()), ("layer3", ModelForTest())]) ) model.layer3.linear2.weight = model.layer1.linear2.weight device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500}) expected = {"layer1": 0, "layer3.linear2": 0, "layer2": 1, "layer3.linear1": 1, "layer3.batchnorm": 1} self.assertDictEqual(device_map, expected) # With three weights tied together model.layer2.linear2.weight = model.layer1.linear2.weight device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500}) expected = { "layer1": 0, "layer2.linear2": 0, "layer3.linear2": 0, "layer2.linear1": 1, "layer2.batchnorm": 1, "layer3.linear1": 1, "layer3.batchnorm": 1, } self.assertDictEqual(device_map, expected) # With two groups of weights tied together model.layer2.linear1.weight = model.layer1.linear1.weight device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500}) expected = { "layer1": 0, "layer2.linear1": 0, "layer2.linear2": 0, "layer3.linear2": 0, "layer2.batchnorm": 1, "layer3.linear1": 1, "layer3.batchnorm": 1, } self.assertDictEqual(device_map, expected) # With weights ties in the same module model = nn.Sequential( OrderedDict( [ ("linear1", nn.Linear(4, 4)), ("linear2", nn.Linear(6, 6)), ("linear3", nn.Linear(4, 4)), ("linear4", nn.Linear(6, 6)), ] ) ) model.linear3.weight = model.linear1.weight model.linear3.bias = model.linear1.bias device_map = infer_auto_device_map(model, max_memory={0: 250, 1: 400}) expected = {"linear1": 0, "linear2": 1, "linear3": 0, "linear4": 1} self.assertDictEqual(device_map, expected) # With tied weights sharing a same prefix name (`compute.weight` vs `compute.weight_submodule.parameter`) class SubModule(torch.nn.Module): def __init__(self, ref_to_parameter): super().__init__() self.parameter = ref_to_parameter def forward(self, x): return self.x + torch.max(self.parameter) class LinearModuleAndSubModule(torch.nn.Linear): def __init__(self, in_features, out_features): super().__init__(in_features, out_features) self.weight_submodule = SubModule(self.weight) def forward(self, x): return torch.nn.functional.linear(self.weight_submodule(x), self.weight) class Model(torch.nn.Module): def __init__(self): super().__init__() self.compute = LinearModuleAndSubModule(3, 8) def forward(self, x): return self.compute(x) model = Model() device_memory = {0: 4, "cpu": 96000} # Low memory device, just to force splitting and trigger the error infer_auto_device_map(model, device_memory) @require_huggingface_suite def test_infer_auto_device_map_on_t0pp(self): from transformers import AutoConfig, AutoModelForSeq2SeqLM config = AutoConfig.from_pretrained("bigscience/T0pp") with init_empty_weights(): model = AutoModelForSeq2SeqLM.from_config(config) model.tie_weights() special_dtypes = {n: torch.float32 for n, _ in model.named_parameters() if "wo" in n} max_memory = {0: 10**10, 1: 10**10, "cpu": 10**10} device_map = infer_auto_device_map( model, no_split_module_classes=["T5Block"], dtype=torch.float16, max_memory=max_memory, special_dtypes=special_dtypes, ) # The 3 tied weights should all be on device 0 self.assertEqual(device_map["shared"], 0) self.assertEqual(device_map["encoder.embed_tokens"], 0) self.assertEqual(device_map["decoder.embed_tokens"], 0) @require_cuda def test_get_balanced_memory(self): model = ModelForTest() # model has size 236: linear1 64, batchnorm 72, linear2 100 max_memory = get_balanced_memory(model, max_memory={0: 200, 1: 200}) self.assertDictEqual({0: 200, 1: 200}, max_memory) # We should be able to set models on a non-contiguous sub-set of max_memory = get_balanced_memory(model, max_memory={0: 200, 2: 200}) self.assertDictEqual({0: 200, 2: 200}, max_memory) max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 300}) self.assertDictEqual({0: 215, 1: 300}, max_memory) # Last device always get max memory to give more buffer and avoid accidental CPU offload max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 500}) self.assertDictEqual({0: 215, 1: 500}, max_memory) # Last device always get max memory to give more buffer, even if CPU is provided max_memory = get_balanced_memory(model, max_memory={0: 300, "cpu": 1000}) self.assertDictEqual({0: 300, "cpu": 1000}, max_memory) # If we set a device to 0, it's not counted. max_memory = get_balanced_memory(model, max_memory={0: 0, 1: 300, 2: 300}) self.assertDictEqual({0: 0, 1: 215, 2: 300}, max_memory) # If we set a device to 0, it's not counted. max_memory = get_balanced_memory(model, max_memory={0: 0, "cpu": 100}) self.assertDictEqual({0: 0, "cpu": 100}, max_memory) @require_cuda def test_load_state_dict(self): state_dict = {k: torch.randn(4, 5) for k in ["a", "b", "c"]} device_maps = [{"a": "cpu", "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": 0}] for device_map in device_maps: with tempfile.TemporaryDirectory() as tmp_dir: checkpoint_file = os.path.join(tmp_dir, "model.safetensors") save_file(state_dict, checkpoint_file, metadata={"format": "pt"}) loaded_state_dict = load_state_dict(checkpoint_file, device_map=device_map) for param, device in device_map.items(): device = device if device != "disk" else "cpu" self.assertEqual(loaded_state_dict[param].device, torch.device(device)) def test_convert_file_size(self): result = convert_file_size_to_int("100MB") self.assertEqual(result, 100 * (10**6)) result = convert_file_size_to_int("2GiB") self.assertEqual(result, 2 * (2**30)) result = convert_file_size_to_int("512KiB") self.assertEqual(result, 512 * (2**10)) result = convert_file_size_to_int("1.5GB") self.assertEqual(result, 1.5 * (10**9)) result = convert_file_size_to_int("100KB") self.assertEqual(result, 100 * (10**3)) result = convert_file_size_to_int(500) self.assertEqual(result, 500) with self.assertRaises(ValueError): convert_file_size_to_int("5MBB") with self.assertRaises(ValueError): convert_file_size_to_int("5k0MB") with self.assertRaises(ValueError): convert_file_size_to_int("-1GB")
accelerate/tests/test_modeling_utils.py/0
{ "file_path": "accelerate/tests/test_modeling_utils.py", "repo_id": "accelerate", "token_count": 13289 }
9
# Copyright 2022 The HuggingFace Team, the AllenNLP library authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script to close stale issue. Taken in part from the AllenNLP repository. https://github.com/allenai/allennlp. """ import os from datetime import datetime as dt from datetime import timezone from github import Github LABELS_TO_EXEMPT = [ "good first issue", "feature request", "wip", ] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("huggingface/accelerate") open_issues = repo.get_issues(state="open") for issue in open_issues: comments = sorted([comment for comment in issue.get_comments()], key=lambda i: i.created_at, reverse=True) last_comment = comments[0] if len(comments) > 0 else None current_time = dt.now(timezone.utc) days_since_updated = (current_time - issue.updated_at).days days_since_creation = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed") elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
accelerate/utils/stale.py/0
{ "file_path": "accelerate/utils/stale.py", "repo_id": "accelerate", "token_count": 1012 }
10
#!/bin/bash # Define an array containing the base configs we wish to fine tune configs=("zephyr" "openhermes") # Define an array of loss types loss_types=("sigmoid" "kto_pair" "ipo") # Define an array of beta values betas=("0.01" "0.1" "0.2" "0.3" "0.4" "0.5" "0.6" "0.7" "0.8" "0.9") # Outer loop for loss types for config in "${configs[@]}"; do for loss_type in "${loss_types[@]}"; do # Inner loop for beta values for beta in "${betas[@]}"; do # Determine the job name and model revision based on loss type job_name="$config_${loss_type}_beta_${beta}" model_revision="${loss_type}-${beta}" # Submit the job sbatch --job-name=${job_name} recipes/launch.slurm pref_align_scan dpo $config deepspeed_zero3 \ "--beta=${beta} --loss_type=${loss_type} --output_dir=data/$config-7b-align-scan-${loss_type}-beta-${beta} --hub_model_revision=${model_revision}" done done done
alignment-handbook/recipes/pref_align_scan/launch_scan.sh/0
{ "file_path": "alignment-handbook/recipes/pref_align_scan/launch_scan.sh", "repo_id": "alignment-handbook", "token_count": 430 }
11
# candle [![discord server](https://dcbadge.vercel.app/api/server/hugging-face-879548962464493619)](https://discord.gg/hugging-face-879548962464493619) [![Latest version](https://img.shields.io/crates/v/candle-core.svg)](https://crates.io/crates/candle-core) [![Documentation](https://docs.rs/candle-core/badge.svg)](https://docs.rs/candle-core) ![License](https://img.shields.io/crates/l/candle-core.svg) Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use. Try our online demos: [whisper](https://huggingface.co/spaces/lmz/candle-whisper), [LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2), [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm), [yolo](https://huggingface.co/spaces/lmz/candle-yolo), [Segment Anything](https://huggingface.co/spaces/radames/candle-segment-anything-wasm). ## Get started Make sure that you have [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) correctly installed as described in [**Installation**](https://huggingface.github.io/candle/guide/installation.html). Let's see how to run a simple matrix multiplication. Write the following to your `myapp/src/main.rs` file: ```rust use candle_core::{Device, Tensor}; fn main() -> Result<(), Box<dyn std::error::Error>> { let device = Device::Cpu; let a = Tensor::randn(0f32, 1., (2, 3), &device)?; let b = Tensor::randn(0f32, 1., (3, 4), &device)?; let c = a.matmul(&b)?; println!("{c}"); Ok(()) } ``` `cargo run` should display a tensor of shape `Tensor[[2, 4], f32]`. Having installed `candle` with Cuda support, simply define the `device` to be on GPU: ```diff - let device = Device::Cpu; + let device = Device::new_cuda(0)?; ``` For more advanced examples, please have a look at the following section. ## Check out our examples These online demos run entirely in your browser: - [yolo](https://huggingface.co/spaces/lmz/candle-yolo): pose estimation and object recognition. - [whisper](https://huggingface.co/spaces/lmz/candle-whisper): speech recognition. - [LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2): text generation. - [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm): text generation. - [Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation. - [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm): Image segmentation. - [BLIP](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning. We also provide a some command line based examples using state of the art models: - [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes the SOLAR-10.7B variant. - [Falcon](./candle-examples/examples/falcon/): general LLM. - [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b. - [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM pre-trained on 1T tokens of English and code datasets. - [Minimal Mamba](./candle-examples/examples/mamba-minimal/): a minimal implementation of the Mamba state space model. - [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with better performance than all publicly available 13b models as of 2023-09-28. - [Mixtral8x7b-v0.1](./candle-examples/examples/mixtral/): a sparse mixture of experts 8x7b general LLM with better performance than a Llama 2 70B model with much faster inference. - [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code generation. - [Replit-code-v1.5](./candle-examples/examples/replit-code/): a 3.3b LLM specialized for code completion. - [Yi-6B / Yi-34B](./candle-examples/examples/yi/): two bilingual (English/Chinese) general LLMs with 6b and 34b parameters. - [Quantized LLaMA](./candle-examples/examples/quantized/): quantized version of the LLaMA model using the same quantization techniques as [llama.cpp](https://github.com/ggerganov/llama.cpp). <img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/quantized/assets/aoc.gif" width="600"> - [Stable Diffusion](./candle-examples/examples/stable-diffusion/): text to image generative model, support for the 1.5, 2.1, SDXL 1.0 and Turbo versions. <img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg" width="200"> - [Wuerstchen](./candle-examples/examples/wuerstchen/): another text to image generative model. <img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/wuerstchen/assets/cat.jpg" width="200"> - [yolo-v3](./candle-examples/examples/yolo-v3/) and [yolo-v8](./candle-examples/examples/yolo-v8/): object detection and pose estimation models. <img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/yolo-v8/assets/bike.od.jpg" width="200"><img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/yolo-v8/assets/bike.pose.jpg" width="200"> - [segment-anything](./candle-examples/examples/segment-anything/): image segmentation model with prompt. <img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200"> - [Whisper](./candle-examples/examples/whisper/): speech recognition model. - [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/), [JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings. - [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained using self-supervision (can be used for imagenet classification, depth evaluation, segmentation). - [VGG](./candle-examples/examples/vgg/), [RepVGG](./candle-examples/examples/repvgg): computer vision models. - [BLIP](./candle-examples/examples/blip/): image to text model, can be used to - [BLIP](./candle-examples/examples/blip/): image to text model, can be used to generate captions for an image. - [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation model, generates the translated text from the input text. Run them using commands like: ``` cargo run --example quantized --release ``` In order to use **CUDA** add `--features cuda` to the example command line. If you have cuDNN installed, use `--features cudnn` for even more speedups. There are also some wasm examples for whisper and [llama2.c](https://github.com/karpathy/llama2.c). You can either build them with `trunk` or try them online: [whisper](https://huggingface.co/spaces/lmz/candle-whisper), [llama2](https://huggingface.co/spaces/lmz/candle-llama2), [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm), [Phi-1.5, and Phi-2](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm), [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm). For LLaMA2, run the following command to retrieve the weight files and start a test server: ```bash cd candle-wasm-examples/llama2-c wget https://huggingface.co/spaces/lmz/candle-llama2/resolve/main/model.bin wget https://huggingface.co/spaces/lmz/candle-llama2/resolve/main/tokenizer.json trunk serve --release --port 8081 ``` And then head over to [http://localhost:8081/](http://localhost:8081/). <!--- ANCHOR: useful_libraries ---> ## Useful External Resources - [`candle-tutorial`](https://github.com/ToluClassics/candle-tutorial): A very detailed tutorial showing how to convert a PyTorch model to Candle. - [`candle-lora`](https://github.com/EricLBuehler/candle-lora): Efficient and ergonomic LoRA implementation for Candle. `candle-lora` has out-of-the-box LoRA support for many models from Candle, which can be found [here](https://github.com/EricLBuehler/candle-lora/tree/master/candle-lora-transformers/examples). - [`optimisers`](https://github.com/KGrewal1/optimisers): A collection of optimisers including SGD with momentum, AdaGrad, AdaDelta, AdaMax, NAdam, RAdam, and RMSprop. - [`candle-vllm`](https://github.com/EricLBuehler/candle-vllm): Efficient platform for inference and serving local LLMs including an OpenAI compatible API server. - [`candle-ext`](https://github.com/mokeyish/candle-ext): An extension library to Candle that provides PyTorch functions not currently available in Candle. - [`kalosm`](https://github.com/floneum/floneum/tree/master/interfaces/kalosm): A multi-modal meta-framework in Rust for interfacing with local pre-trained models with support for controlled generation, custom samplers, in-memory vector databases, audio transcription, and more. - [`candle-sampling`](https://github.com/EricLBuehler/candle-sampling): Sampling techniques for Candle. - [`gpt-from-scratch-rs`](https://github.com/jeroenvlek/gpt-from-scratch-rs): A port of Andrej Karpathy's _Let's build GPT_ tutorial on YouTube showcasing the Candle API on a toy problem. If you have an addition to this list, please submit a pull request. <!--- ANCHOR_END: useful_libraries ---> <!--- ANCHOR: features ---> ## Features - Simple syntax, looks and feels like PyTorch. - Model training. - Embed user-defined ops/kernels, such as [flash-attention v2](https://github.com/huggingface/candle/blob/89ba005962495f2bfbda286e185e9c3c7f5300a3/candle-flash-attn/src/lib.rs#L152). - Backends. - Optimized CPU backend with optional MKL support for x86 and Accelerate for macs. - CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL. - WASM support, run your models in a browser. - Included models. - Language Models. - LLaMA v1 and v2 with variants such as SOLAR-10.7B. - Falcon. - StarCoder. - Phi 1, 1.5, and 2. - Minimal Mamba - Mistral 7b v0.1. - Mixtral 8x7b v0.1. - StableLM-3B-4E1T. - Replit-code-v1.5-3B. - Bert. - Yi-6B and Yi-34B. - Quantized LLMs. - Llama 7b, 13b, 70b, as well as the chat and code variants. - Mistral 7b, and 7b instruct. - Mixtral 8x7b. - Zephyr 7b a and b (Mistral-7b based). - OpenChat 3.5 (Mistral-7b based). - Text to text. - T5 and its variants: FlanT5, UL2, MADLAD400 (translation), CoEdit (Grammar correction). - Marian MT (Machine Translation). - Whisper (multi-lingual support). - Text to image. - Stable Diffusion v1.5, v2.1, XL v1.0. - Wurstchen v2. - Image to text. - BLIP. - Computer Vision Models. - DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG. - yolo-v3, yolo-v8. - Segment-Anything Model (SAM). - File formats: load models from safetensors, npz, ggml, or PyTorch files. - Serverless (on CPU), small and fast deployments. - Quantization support using the llama.cpp quantized types. <!--- ANCHOR_END: features ---> ## How to use <!--- ANCHOR: cheatsheet ---> Cheatsheet: | | Using PyTorch | Using Candle | |------------|------------------------------------------|------------------------------------------------------------------| | Creation | `torch.Tensor([[1, 2], [3, 4]])` | `Tensor::new(&[[1f32, 2.], [3., 4.]], &Device::Cpu)?` | | Creation | `torch.zeros((2, 2))` | `Tensor::zeros((2, 2), DType::F32, &Device::Cpu)?` | | Indexing | `tensor[:, :4]` | `tensor.i((.., ..4))?` | | Operations | `tensor.view((2, 2))` | `tensor.reshape((2, 2))?` | | Operations | `a.matmul(b)` | `a.matmul(&b)?` | | Arithmetic | `a + b` | `&a + &b` | | Device | `tensor.to(device="cuda")` | `tensor.to_device(&Device::new_cuda(0)?)?` | | Dtype | `tensor.to(dtype=torch.float16)` | `tensor.to_dtype(&DType::F16)?` | | Saving | `torch.save({"A": A}, "model.bin")` | `candle::safetensors::save(&HashMap::from([("A", A)]), "model.safetensors")?` | | Loading | `weights = torch.load("model.bin")` | `candle::safetensors::load("model.safetensors", &device)` | <!--- ANCHOR_END: cheatsheet ---> ## Structure - [candle-core](./candle-core): Core ops, devices, and `Tensor` struct definition - [candle-nn](./candle-nn/): Tools to build real models - [candle-examples](./candle-examples/): Examples of using the library in realistic settings - [candle-kernels](./candle-kernels/): CUDA custom kernels - [candle-datasets](./candle-datasets/): Datasets and data loaders. - [candle-transformers](./candle-transformers): transformers-related utilities. - [candle-flash-attn](./candle-flash-attn): Flash attention v2 layer. - [candle-onnx](./candle-onnx/): ONNX model evaluation. ## FAQ ### Why should I use Candle? Candle's core goal is to *make serverless inference possible*. Full machine learning frameworks like PyTorch are very large, which makes creating instances on a cluster slow. Candle allows deployment of lightweight binaries. Secondly, Candle lets you *remove Python* from production workloads. Python overhead can seriously hurt performance, and the [GIL](https://www.backblaze.com/blog/the-python-gil-past-present-and-future/) is a notorious source of headaches. Finally, Rust is cool! A lot of the HF ecosystem already has Rust crates, like [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers). ### Other ML frameworks - [dfdx](https://github.com/coreylowman/dfdx) is a formidable crate, with shapes being included in types. This prevents a lot of headaches by getting the compiler to complain about shape mismatches right off the bat. However, we found that some features still require nightly, and writing code can be a bit daunting for non rust experts. We're leveraging and contributing to other core crates for the runtime so hopefully both crates can benefit from each other. - [burn](https://github.com/burn-rs/burn) is a general crate that can leverage multiple backends so you can choose the best engine for your workload. - [tch-rs](https://github.com/LaurentMazare/tch-rs.git) Bindings to the torch library in Rust. Extremely versatile, but they bring in the entire torch library into the runtime. The main contributor of `tch-rs` is also involved in the development of `candle`. ### Common Errors #### Missing symbols when compiling with the mkl feature. If you get some missing symbols when compiling binaries/tests using the mkl or accelerate features, e.g. for mkl you get: ``` = note: /usr/bin/ld: (....o): in function `blas::sgemm': .../blas-0.22.0/src/lib.rs:1944: undefined reference to `sgemm_' collect2: error: ld returned 1 exit status = note: some `extern` functions couldn't be found; some native libraries may need to be installed or have their path specified = note: use the `-l` flag to specify native libraries to link = note: use the `cargo:rustc-link-lib` directive to specify the native libraries to link with Cargo ``` or for accelerate: ``` Undefined symbols for architecture arm64: "_dgemm_", referenced from: candle_core::accelerate::dgemm::h1b71a038552bcabe in libcandle_core... "_sgemm_", referenced from: candle_core::accelerate::sgemm::h2cf21c592cba3c47 in libcandle_core... ld: symbol(s) not found for architecture arm64 ``` This is likely due to a missing linker flag that was needed to enable the mkl library. You can try adding the following for mkl at the top of your binary: ```rust extern crate intel_mkl_src; ``` or for accelerate: ```rust extern crate accelerate_src; ``` #### Cannot run the LLaMA examples: access to source requires login credentials ``` Error: request error: https://huggingface.co/meta-llama/Llama-2-7b-hf/resolve/main/tokenizer.json: status code 401 ``` This is likely because you're not permissioned for the LLaMA-v2 model. To fix this, you have to register on the huggingface-hub, accept the [LLaMA-v2 model conditions](https://huggingface.co/meta-llama/Llama-2-7b-hf), and set up your authentication token. See issue [#350](https://github.com/huggingface/candle/issues/350) for more details. #### Missing cute/cutlass headers when compiling flash-attn ``` In file included from kernels/flash_fwd_launch_template.h:11:0, from kernels/flash_fwd_hdim224_fp16_sm80.cu:5: kernels/flash_fwd_kernel.h:8:10: fatal error: cute/algorithm/copy.hpp: No such file or directory #include <cute/algorithm/copy.hpp> ^~~~~~~~~~~~~~~~~~~~~~~~~ compilation terminated. Error: nvcc error while compiling: ``` [cutlass](https://github.com/NVIDIA/cutlass) is provided as a git submodule so you may want to run the following command to check it in properly. ```bash git submodule update --init ``` #### Compiling with flash-attention fails ``` /usr/include/c++/11/bits/std_function.h:530:146: error: parameter packs not expanded with ‘...’: ``` This is a bug in gcc-11 triggered by the Cuda compiler. To fix this, install a different, supported gcc version - for example gcc-10, and specify the path to the compiler in the CANDLE_NVCC_CCBIN environment variable. ``` env CANDLE_NVCC_CCBIN=/usr/lib/gcc/x86_64-linux-gnu/10 cargo ... ``` #### Linking error on windows when running rustdoc or mdbook tests ``` Couldn't compile the test. ---- .\candle-book\src\inference\hub.md - Using_the_hub::Using_in_a_real_model_ (line 50) stdout ---- error: linking with `link.exe` failed: exit code: 1181 //very long chain of linking = note: LINK : fatal error LNK1181: cannot open input file 'windows.0.48.5.lib' ``` Make sure you link all native libraries that might be located outside a project target, e.g., to run mdbook tests, you should run: ``` mdbook test candle-book -L .\target\debug\deps\ ` -L native=$env:USERPROFILE\.cargo\registry\src\index.crates.io-6f17d22bba15001f\windows_x86_64_msvc-0.42.2\lib ` -L native=$env:USERPROFILE\.cargo\registry\src\index.crates.io-6f17d22bba15001f\windows_x86_64_msvc-0.48.5\lib ``` #### Extremely slow model load time with WSL This may be caused by the models being loaded from `/mnt/c`, more details on [stackoverflow](https://stackoverflow.com/questions/68972448/why-is-wsl-extremely-slow-when-compared-with-native-windows-npm-yarn-processing). #### Tracking down errors You can set `RUST_BACKTRACE=1` to be provided with backtraces when a candle error is generated.
candle/README.md/0
{ "file_path": "candle/README.md", "repo_id": "candle", "token_count": 7121 }
12
# Pytorch cheatsheet {{#include ../../../README.md:cheatsheet}}
candle/candle-book/src/guide/cheatsheet.md/0
{ "file_path": "candle/candle-book/src/guide/cheatsheet.md", "repo_id": "candle", "token_count": 26 }
13
//! Implement conversion traits for tensors use crate::{DType, Device, Error, Tensor, WithDType}; use half::{bf16, f16, slice::HalfFloatSliceExt}; use std::convert::TryFrom; impl<T: WithDType> TryFrom<&Tensor> for Vec<T> { type Error = Error; fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> { tensor.to_vec1::<T>() } } impl<T: WithDType> TryFrom<&Tensor> for Vec<Vec<T>> { type Error = Error; fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> { tensor.to_vec2::<T>() } } impl<T: WithDType> TryFrom<&Tensor> for Vec<Vec<Vec<T>>> { type Error = Error; fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> { tensor.to_vec3::<T>() } } impl<T: WithDType> TryFrom<Tensor> for Vec<T> { type Error = Error; fn try_from(tensor: Tensor) -> Result<Self, Self::Error> { Vec::<T>::try_from(&tensor) } } impl<T: WithDType> TryFrom<Tensor> for Vec<Vec<T>> { type Error = Error; fn try_from(tensor: Tensor) -> Result<Self, Self::Error> { Vec::<Vec<T>>::try_from(&tensor) } } impl<T: WithDType> TryFrom<Tensor> for Vec<Vec<Vec<T>>> { type Error = Error; fn try_from(tensor: Tensor) -> Result<Self, Self::Error> { Vec::<Vec<Vec<T>>>::try_from(&tensor) } } impl<T: WithDType> TryFrom<&[T]> for Tensor { type Error = Error; fn try_from(v: &[T]) -> Result<Self, Self::Error> { Tensor::from_slice(v, v.len(), &Device::Cpu) } } impl<T: WithDType> TryFrom<Vec<T>> for Tensor { type Error = Error; fn try_from(v: Vec<T>) -> Result<Self, Self::Error> { let len = v.len(); Tensor::from_vec(v, len, &Device::Cpu) } } macro_rules! from_tensor { ($typ:ident) => { impl TryFrom<&Tensor> for $typ { type Error = Error; fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> { tensor.to_scalar::<$typ>() } } impl TryFrom<Tensor> for $typ { type Error = Error; fn try_from(tensor: Tensor) -> Result<Self, Self::Error> { $typ::try_from(&tensor) } } impl TryFrom<$typ> for Tensor { type Error = Error; fn try_from(v: $typ) -> Result<Self, Self::Error> { Tensor::new(v, &Device::Cpu) } } }; } from_tensor!(f64); from_tensor!(f32); from_tensor!(f16); from_tensor!(bf16); from_tensor!(i64); from_tensor!(u32); from_tensor!(u8); impl Tensor { pub fn write_bytes<W: std::io::Write>(&self, f: &mut W) -> crate::Result<()> { use byteorder::{LittleEndian, WriteBytesExt}; let vs = self.flatten_all()?; match self.dtype() { DType::BF16 => { let vs = vs.to_vec1::<bf16>()?; for &v in vs.reinterpret_cast() { f.write_u16::<LittleEndian>(v)? } } DType::F16 => { let vs = vs.to_vec1::<f16>()?; for &v in vs.reinterpret_cast() { f.write_u16::<LittleEndian>(v)? } } DType::F32 => { // TODO: Avoid using a buffer when data is already on the CPU. for v in vs.to_vec1::<f32>()? { f.write_f32::<LittleEndian>(v)? } } DType::F64 => { for v in vs.to_vec1::<f64>()? { f.write_f64::<LittleEndian>(v)? } } DType::U32 => { for v in vs.to_vec1::<u32>()? { f.write_u32::<LittleEndian>(v)? } } DType::I64 => { for v in vs.to_vec1::<i64>()? { f.write_i64::<LittleEndian>(v)? } } DType::U8 => { let vs = vs.to_vec1::<u8>()?; f.write_all(&vs)?; } } Ok(()) } }
candle/candle-core/src/convert.rs/0
{ "file_path": "candle/candle-core/src/convert.rs", "repo_id": "candle", "token_count": 2242 }
14