text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel from diffusers.utils import load_image from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_numpy, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class ControlNetImg2ImgPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"}) image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(4, 8), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, norm_num_groups=1, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(4, 8), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), norm_num_groups=1, ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[4, 8], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, norm_num_groups=2, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ) image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class StableDiffusionMultiControlNetPipelineFastTests( PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionControlNetImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(4, 8), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, norm_num_groups=1, ) torch.manual_seed(0) def init_weights(m): if isinstance(m, torch.nn.Conv2d): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) controlnet1 = ControlNetModel( block_out_channels=(4, 8), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), norm_num_groups=1, ) controlnet1.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) controlnet2 = ControlNetModel( block_out_channels=(4, 8), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), norm_num_groups=1, ) controlnet2.controlnet_down_blocks.apply(init_weights) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[4, 8], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, norm_num_groups=2, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") controlnet = MultiControlNetModel([controlnet1, controlnet2]) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) controlnet_embedder_scale_factor = 2 control_image = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=generator, device=torch.device(device), ), ] image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def test_control_guidance_switch(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) scale = 10.0 steps = 4 inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_1 = pipe(**inputs)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] inputs = self.get_dummy_inputs(torch_device) inputs["num_inference_steps"] = steps inputs["controlnet_conditioning_scale"] = scale output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_1 - output_2)) > 1e-3 assert np.sum(np.abs(output_1 - output_3)) > 1e-3 assert np.sum(np.abs(output_1 - output_4)) > 1e-3 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def test_save_pretrained_raise_not_implemented_exception(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(tmpdir) except NotImplementedError: pass @slow @require_torch_gpu class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "evil space-punk bird" control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) image = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512)) output = pipe( prompt, image, control_image=control_image, generator=generator, output_type="np", num_inference_steps=50, strength=0.6, ) image = output.images[0] assert image.shape == (512, 512, 3) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image).max() < 9e-2 def test_load_local(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet ) pipe.unet.set_default_attn_processor() pipe.enable_model_cpu_offload() controlnet = ControlNetModel.from_single_file( "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" ) pipe_sf = StableDiffusionControlNetImg2ImgPipeline.from_single_file( "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", safety_checker=None, controlnet=controlnet, scheduler_type="pndm", ) pipe_sf.unet.set_default_attn_processor() pipe_sf.enable_model_cpu_offload() control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) image = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512)) prompt = "bird" generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( prompt, image=image, control_image=control_image, strength=0.9, generator=generator, output_type="np", num_inference_steps=3, ).images[0] generator = torch.Generator(device="cpu").manual_seed(0) output_sf = pipe_sf( prompt, image=image, control_image=control_image, strength=0.9, generator=generator, output_type="np", num_inference_steps=3, ).images[0] max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten()) assert max_diff < 1e-3
diffusers/tests/pipelines/controlnet/test_controlnet_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/controlnet/test_controlnet_img2img.py", "repo_id": "diffusers", "token_count": 8247 }
131
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusion2InpaintPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionInpaintPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"}) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = PNDMScheduler(skip_prk_steps=True) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def test_stable_diffusion_inpaint(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionInpaintPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_inpaint_pipeline(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) model_id = "stabilityai/stable-diffusion-2-inpainting" pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "Face of a yellow cat, high resolution, sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def test_stable_diffusion_inpaint_pipeline_fp16(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) model_id = "stabilityai/stable-diffusion-2-inpainting" pipe = StableDiffusionInpaintPipeline.from_pretrained( model_id, torch_dtype=torch.float16, safety_checker=None, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() prompt = "Face of a yellow cat, high resolution, sitting on a park bench" generator = torch.manual_seed(0) output = pipe( prompt=prompt, image=init_image, mask_image=mask_image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) model_id = "stabilityai/stable-diffusion-2-inpainting" pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionInpaintPipeline.from_pretrained( model_id, safety_checker=None, scheduler=pndm, torch_dtype=torch.float16, ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() prompt = "Face of a yellow cat, high resolution, sitting on a park bench" generator = torch.manual_seed(0) _ = pipe( prompt=prompt, image=init_image, mask_image=mask_image, generator=generator, num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_inpaint.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_inpaint.py", "repo_id": "diffusers", "token_count": 4790 }
132
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device, ) from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = UnCLIPImageVariationPipeline params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} batch_params = IMAGE_VARIATION_BATCH_PARAMS required_optional_params = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] test_xformers_attention = False @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) return CLIPVisionModelWithProjection(config) @property def dummy_text_proj(self): torch.manual_seed(0) model_kwargs = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } model = UnCLIPTextProjModel(**model_kwargs) return model @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_super_res_kwargs(self): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "in_channels": 6, "out_channels": 3, } @property def dummy_super_res_first(self): torch.manual_seed(0) model = UNet2DModel(**self.dummy_super_res_kwargs) return model @property def dummy_super_res_last(self): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1) model = UNet2DModel(**self.dummy_super_res_kwargs) return model def get_dummy_components(self): decoder = self.dummy_decoder text_proj = self.dummy_text_proj text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer super_res_first = self.dummy_super_res_first super_res_last = self.dummy_super_res_last decoder_scheduler = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) super_res_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) feature_extractor = CLIPImageProcessor(crop_size=32, size=32) image_encoder = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def get_dummy_inputs(self, device, seed=0, pil_image=True): input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) if pil_image: input_image = input_image * 0.5 + 0.5 input_image = input_image.clamp(0, 1) input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def test_unclip_image_variation_input_tensor(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) output = pipe(**pipeline_inputs) image = output.images tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) image_from_tuple = pipe( **tuple_pipeline_inputs, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_image_variation_input_image(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) output = pipe(**pipeline_inputs) image = output.images tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) image_from_tuple = pipe( **tuple_pipeline_inputs, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_image_variation_input_list_images(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) pipeline_inputs["image"] = [ pipeline_inputs["image"], pipeline_inputs["image"], ] output = pipe(**pipeline_inputs) image = output.images tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) tuple_pipeline_inputs["image"] = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] image_from_tuple = pipe( **tuple_pipeline_inputs, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) expected_slice = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_passed_image_embed(self): device = torch.device("cpu") class DummyScheduler: init_noise_sigma = 1 components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) dtype = pipe.decoder.dtype batch_size = 1 shape = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) decoder_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) shape = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) super_res_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) img_out_1 = pipe( **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents ).images pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) # Don't pass image, instead pass embedding image = pipeline_inputs.pop("image") image_embeddings = pipe.image_encoder(image).image_embeds img_out_2 = pipe( **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents, image_embeddings=image_embeddings, ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_1 - img_out_2).max() < 1e-4 # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass # because UnCLIP GPU undeterminism requires a looser check. @skip_mps def test_attention_slicing_forward_pass(self): test_max_difference = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor expected_max_diff = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=test_max_difference, expected_max_diff=expected_max_diff ) # Overriding PipelineTesterMixin::test_inference_batch_single_identical # because UnCLIP undeterminism requires a looser check. @unittest.skip("UnCLIP produces very large differences. Test is not useful.") @skip_mps def test_inference_batch_single_identical(self): additional_params_copy_to_batched_inputs = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3 ) def test_inference_batch_consistent(self): additional_params_copy_to_batched_inputs = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes batch_sizes = [2, 3] self._test_inference_batch_consistent( batch_sizes=batch_sizes, additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs ) @skip_mps def test_dict_tuple_outputs_equivalent(self): return super().test_dict_tuple_outputs_equivalent() @unittest.skip("UnCLIP produces very large difference. Test is not useful.") @skip_mps def test_save_load_local(self): return super().test_save_load_local(expected_max_difference=4e-3) @skip_mps def test_save_load_optional_components(self): return super().test_save_load_optional_components() @unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.") def test_float16_inference(self): super().test_float16_inference(expected_max_diff=1.0) @nightly @require_torch_gpu class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_image_variation_karlo(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) pipeline = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) output = pipeline( input_image, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(image, expected_image, 15)
diffusers/tests/pipelines/unclip/test_unclip_image_variation.py/0
{ "file_path": "diffusers/tests/pipelines/unclip/test_unclip_image_variation.py", "repo_id": "diffusers", "token_count": 8162 }
133
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UniPCMultistepSchedulerTest(SchedulerCommonTest): scheduler_classes = (UniPCMultistepScheduler,) forward_default_kwargs = (("num_inference_steps", 25),) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**kwargs) return config def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] output, new_output = sample, sample for t in range(time_step, time_step + scheduler.config.solver_order + 1): t = scheduler.timesteps[t] output = scheduler.step(residual, t, output, **kwargs).prev_sample new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals (must be after setting timesteps) scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) # copy over dummy past residuals new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residual (must be after setting timesteps) new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def full_loop(self, scheduler=None, **config): if scheduler is None: scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample return sample def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] time_step_0 = scheduler.timesteps[5] time_step_1 = scheduler.timesteps[6] output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_switch(self): # make sure that iterating over schedulers with same config names gives same results # for defaults scheduler = UniPCMultistepScheduler(**self.get_scheduler_config()) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2464) < 1e-3 scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) scheduler = DEISMultistepScheduler.from_config(scheduler.config) scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) scheduler = UniPCMultistepScheduler.from_config(scheduler.config) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2464) < 1e-3 def test_timesteps(self): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_thresholding(self): self.check_over_configs(thresholding=False) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=True, prediction_type=prediction_type, sample_max_value=threshold, solver_order=order, solver_type=solver_type, ) def test_prediction_type(self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=prediction_type) def test_solver_order_and_type(self): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=order, solver_type=solver_type, prediction_type=prediction_type, ) sample = self.full_loop( solver_order=order, solver_type=solver_type, prediction_type=prediction_type, ) assert not torch.isnan(sample).any(), "Samples have nan numbers" def test_lower_order_final(self): self.check_over_configs(lower_order_final=True) self.check_over_configs(lower_order_final=False) def test_inference_steps(self): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) def test_full_loop_no_noise(self): sample = self.full_loop() result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2464) < 1e-3 def test_full_loop_with_karras(self): sample = self.full_loop(use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2925) < 1e-3 def test_full_loop_with_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction") result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.1014) < 1e-3 def test_full_loop_with_karras_and_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.1966) < 1e-3 def test_fp16_support(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter.half() scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample assert sample.dtype == torch.float16 def test_full_loop_with_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 t_start = 8 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) # add noise noise = self.dummy_noise_deter timesteps = scheduler.timesteps[t_start * scheduler.order :] sample = scheduler.add_noise(sample, noise, timesteps[:1]) for i, t in enumerate(timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 315.5757) < 1e-2, f" expected result sum 315.5757, but get {result_sum}" assert abs(result_mean.item() - 0.4109) < 1e-3, f" expected result mean 0.4109, but get {result_mean}" class UniPCMultistepScheduler1DTest(UniPCMultistepSchedulerTest): @property def dummy_sample(self): batch_size = 4 num_channels = 3 width = 8 sample = torch.rand((batch_size, num_channels, width)) return sample @property def dummy_noise_deter(self): batch_size = 4 num_channels = 3 width = 8 num_elems = batch_size * num_channels * width sample = torch.arange(num_elems).flip(-1) sample = sample.reshape(num_channels, width, batch_size) sample = sample / num_elems sample = sample.permute(2, 0, 1) return sample @property def dummy_sample_deter(self): batch_size = 4 num_channels = 3 width = 8 num_elems = batch_size * num_channels * width sample = torch.arange(num_elems) sample = sample.reshape(num_channels, width, batch_size) sample = sample / num_elems sample = sample.permute(2, 0, 1) return sample def test_switch(self): # make sure that iterating over schedulers with same config names gives same results # for defaults scheduler = UniPCMultistepScheduler(**self.get_scheduler_config()) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2441) < 1e-3 scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) scheduler = DEISMultistepScheduler.from_config(scheduler.config) scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) scheduler = UniPCMultistepScheduler.from_config(scheduler.config) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2441) < 1e-3 def test_full_loop_no_noise(self): sample = self.full_loop() result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2441) < 1e-3 def test_full_loop_with_karras(self): sample = self.full_loop(use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2898) < 1e-3 def test_full_loop_with_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction") result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.1014) < 1e-3 def test_full_loop_with_karras_and_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.1944) < 1e-3 def test_full_loop_with_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 t_start = 8 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) # add noise noise = self.dummy_noise_deter timesteps = scheduler.timesteps[t_start * scheduler.order :] sample = scheduler.add_noise(sample, noise, timesteps[:1]) for i, t in enumerate(timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 39.0870) < 1e-2, f" expected result sum 39.0870, but get {result_sum}" assert abs(result_mean.item() - 0.4072) < 1e-3, f" expected result mean 0.4072, but get {result_mean}"
diffusers/tests/schedulers/test_scheduler_unipc.py/0
{ "file_path": "diffusers/tests/schedulers/test_scheduler_unipc.py", "repo_id": "diffusers", "token_count": 6988 }
134
# Copyright 2023 The HuggingFace Team, the AllenNLP library authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script to close stale issue. Taken in part from the AllenNLP repository. https://github.com/allenai/allennlp. """ import os from datetime import datetime as dt from datetime import timezone from github import Github LABELS_TO_EXEMPT = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("huggingface/diffusers") open_issues = repo.get_issues(state="open") for issue in open_issues: comments = sorted(issue.get_comments(), key=lambda i: i.created_at, reverse=True) last_comment = comments[0] if len(comments) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.now(timezone.utc) - issue.updated_at).days > 7 and (dt.now(timezone.utc) - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed") elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open") issue.remove_from_labels("stale") elif ( (dt.now(timezone.utc) - issue.updated_at).days > 23 and (dt.now(timezone.utc) - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale") if __name__ == "__main__": main()
diffusers/utils/stale.py/0
{ "file_path": "diffusers/utils/stale.py", "repo_id": "diffusers", "token_count": 1222 }
135
<jupyter_start><jupyter_text>Implรฉmentation ร  partir de 0Il est parfois utile de considรฉrer la version la plus simple possible d'une chose pour mieux en comprendre le fonctionnement. C'est ce que nous allons essayer de faire dans ce *notebook*, en commenรงant par un modรจle de diffusion "jouet" pour voir comment les diffรฉrents รฉlรฉments fonctionnent, puis en examinant en quoi ils diffรจrent d'une mise en ล“uvre plus complexe.Nous examinerons :- Le processus de corruption (ajouter du bruit aux donnรฉes)- Ce qu'est un UNet, et comment en implรฉmenter un extrรชmement minimal ร  partir de zรฉro- L'entraรฎnement au modรจle de diffusion- La thรฉorie de l'รฉchantillonnageEnsuite, nous comparerons nos versions avec l'implรฉmentation DDPM des diffuseurs, en explorant :- Les amรฉliorations par rapport ร  notre mini UNet- Le schรฉma de bruit du DDPM- Les diffรฉrences dans l'objectif d'entraรฎnement- Le conditionnement du pas de temps- Les approches d'รฉchantillonnageCe *notebook* est assez approfondi, et peut รชtre sautรฉ en toute sรฉcuritรฉ si vous n'รชtes pas enthousiaste ร  l'idรฉe d'une plongรฉe en profondeur ร  partir de zรฉro !Il convient รฉgalement de noter que la plupart du code ici est utilisรฉ ร  des fins d'illustration, et nous ne recommandons pas de l'adopter directement pour votre propre travail (ร  moins que vous n'essayiez d'amรฉliorer les exemples montrรฉs ici ร  des fins d'apprentissage). Configuration et importations<jupyter_code>!pip install -q diffusers import torch import torchvision from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader from diffusers import DDPMScheduler, UNet2DModel from matplotlib import pyplot as plt device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f'Using device: {device}')<jupyter_output>Using device: cuda<jupyter_text>Les donnรฉesNous allons tester les choses avec un trรจs petit jeu de donnรฉes : MNIST. Si vous souhaitez donner au modรจle un dรฉfi un peu plus difficile ร  relever sans rien changer d'autre, `torchvision.datasets.FashionMNIST` devrait faire l'affaire.<jupyter_code>dataset = torchvision.datasets.MNIST(root="mnist/", train=True, download=True, transform=torchvision.transforms.ToTensor()) train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True) x, y = next(iter(train_dataloader)) print('Input shape:', x.shape) print('Labels:', y) plt.imshow(torchvision.utils.make_grid(x)[0], cmap='Greys');<jupyter_output>Input shape: torch.Size([8, 1, 28, 28]) Labels: tensor([1, 9, 7, 3, 5, 2, 1, 4])<jupyter_text>Chaque image est un dessin en niveaux de gris de 28 par 28 pixels d'un chiffre, avec des valeurs allant de 0 ร  1. Le processus de corruptionSupposons que vous n'ayez lu aucun papier sur les modรจles de diffusion, mais que vous sachiez que le processus implique l'ajout de bruit. Comment feriez-vous ?Nous souhaitons probablement disposer d'un moyen simple de contrรดler le degrรฉ de corruption. Et si nous prenions un paramรจtre pour la quantitรฉ de bruit ร  ajouter, et que nous le faisions :```noise = torch.rand_like(x)``````noisy_x = (1-amount)*x + amount*noise```Si `amount = 0`, nous rรฉcupรฉrons l'entrรฉe sans aucun changement. Si le montant atteint 1, nous rรฉcupรฉrons du bruit sans aucune trace de l'entrรฉe x. En mรฉlangeant l'entrรฉe avec du bruit de cette faรงon, nous gardons la sortie dans la mรชme plage (0 ร  1).Nous pouvons mettre cela en ล“uvre assez facilement (il suffit de surveiller les formes pour ne pas se faire piรฉger par les rรจgles de diffusion) :<jupyter_code>def corrupt(x, amount): """Corrompre l'entrรฉe `x` en la mรฉlangeant avec du bruit selon `amount`""" noise = torch.rand_like(x) amount = amount.view(-1, 1, 1, 1) # Trier les formes pour que la transmission fonctionne return x*(1-amount) + noise*amount<jupyter_output><empty_output><jupyter_text>Et regarder les rรฉsultats visuellement pour voir que cela fonctionne comme prรฉvu :<jupyter_code># Tracer les donnรฉes d'entrรฉe fig, axs = plt.subplots(2, 1, figsize=(12, 5)) axs[0].set_title('Input data') axs[0].imshow(torchvision.utils.make_grid(x)[0], cmap='Greys') # Ajouter du bruit amount = torch.linspace(0, 1, x.shape[0]) # De gauche ร  droite -> plus de corruption noised_x = corrupt(x, amount) # Tracรฉ de la version bruitรฉe axs[1].set_title('Corrupted data (-- amount increases -->)') axs[1].imshow(torchvision.utils.make_grid(noised_x)[0], cmap='Greys')<jupyter_output><empty_output><jupyter_text>Lorsque la quantitรฉ de bruit s'approche de 1, nos donnรฉes commencent ร  ressembler ร  du bruit alรฉatoire pur. Mais pour la plupart des `noise_amounts`, vous pouvez deviner le chiffre assez bien. Pensez-vous que cela soit optimal ? Le modรจleNous aimerions un modรจle qui prenne en compte des images bruitรฉes de 28px et qui produise une prรฉdiction de la mรชme forme. Un choix populaire ici est une architecture appelรฉe UNet. Inventรฉ ร  l'origine pour les tรขches de [segmentation en imagerie mรฉdicale](https://arxiv.org/abs/1505.04597), un UNet se compose d'un "chemin de compression" par lequel les donnรฉes sont comprimรฉes et d'un "chemin d'expansion" par lequel elles s'รฉtendent ร  nouveau jusqu'ร  la dimension d'origine (similaire ร  un autoencodeur), mais il comporte รฉgalement des connexions de saut qui permettent aux informations et aux gradients de circuler ร  diffรฉrents niveaux.Certains UNets comportent des blocs complexes ร  chaque รฉtape, mais pour cette petite dรฉmonstration, nous construirons un exemple minimal qui prend une image ร  un canal et la fait passer par trois couches convolutives sur le chemin descendant (les down_layers dans le diagramme et le code) et trois sur le chemin ascendant, avec des sauts de connexion entre les couches descendantes et ascendantes. Nous utiliserons max pooling pour le downsampling et `nn.Upsample` pour le upsampling plutรดt que de nous appuyer sur des couches apprenantes comme les UNets plus complexes. Voici l'architecture approximative montrant le nombre de canaux dans la sortie de chaque couche : Voici ร  quoi cela ressemble dans le code :<jupyter_code>class BasicUNet(nn.Module): """Une mise en ล“uvre minimale du UNet""" def __init__(self, in_channels=1, out_channels=1): super().__init__() self.down_layers = torch.nn.ModuleList([ nn.Conv2d(in_channels, 32, kernel_size=5, padding=2), nn.Conv2d(32, 64, kernel_size=5, padding=2), nn.Conv2d(64, 64, kernel_size=5, padding=2), ]) self.up_layers = torch.nn.ModuleList([ nn.Conv2d(64, 64, kernel_size=5, padding=2), nn.Conv2d(64, 32, kernel_size=5, padding=2), nn.Conv2d(32, out_channels, kernel_size=5, padding=2), ]) self.act = nn.SiLU() # La fonction d'activation self.downscale = nn.MaxPool2d(2) self.upscale = nn.Upsample(scale_factor=2) def forward(self, x): h = [] for i, l in enumerate(self.down_layers): x = self.act(l(x)) # ร€ travers la couche et la fonction d'activation if i < 2: # Pour toutes les couches sauf la troisiรจme (derniรจre) : h.append(x) # Stockage de la sortie pour la skip connexion x = self.downscale(x) # Rรฉduction d'รฉchelle pour la couche suivante for i, l in enumerate(self.up_layers): if i > 0: x = self.upscale(x) # Upscale x += h.pop() # Rรฉcupรฉration d'un rรฉsultat stockรฉ (skip connection) x = self.act(l(x)) # Par le biais de la couche et de la fonction d'activation return x<jupyter_output><empty_output><jupyter_text>Nous pouvons vรฉrifier que la forme de la sortie est la mรชme que celle de l'entrรฉe, comme nous nous y attendions :<jupyter_code>net = BasicUNet() x = torch.rand(8, 1, 28, 28) net(x).shape<jupyter_output><empty_output><jupyter_text>Ce rรฉseau compte un peu plus de 300 000 paramรจtres :<jupyter_code>sum([p.numel() for p in net.parameters()])<jupyter_output><empty_output><jupyter_text>Vous pouvez envisager de modifier le nombre de canaux dans chaque couche ou d'intervertir les architectures si vous le souhaitez. Entraรฎner le rรฉseauQue doit faire exactement le modรจle ? Lร  encore, il y a plusieurs faรงons de procรฉder, mais pour cette dรฉmonstration, choisissons un cadre simple : รฉtant donnรฉ une entrรฉe corrompue noisy_x, le modรจle doit produire sa meilleure estimation de ce ร  quoi ressemble l'original x. Nous comparerons cette valeur ร  la valeur rรฉelle par le biais de l'erreur quadratique moyenne. Nous comparerons cette estimation ร  la valeur rรฉelle par le biais de l'erreur quadratique moyenne.Nous pouvons maintenant entraรฎner le rรฉseau.- Obtenir un batch de donnรฉes- Corrompre les donnรฉes de maniรจre alรฉatoire- Nourrir le modรจle avec ces donnรฉes- Comparer les prรฉdictions du modรจle avec les images propres pour calculer notre perte- Mettre ร  jour les paramรจtres du modรจle en consรฉquence.N'hรฉsitez pas ร  modifier ce modรจle et ร  voir si vous pouvez l'amรฉliorer !<jupyter_code># Chargeur de donnรฉes (vous pouvez modifier la taille des batchs) batch_size = 128 train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # Combien de fois devrions-nous passer les donnรฉes en revue ? n_epochs = 3 # Crรฉer le rรฉseau net = BasicUNet() net.to(device) # Notre fonction de perte loss_fn = nn.MSELoss() # L'optimiseur opt = torch.optim.Adam(net.parameters(), lr=1e-3) # Conserver une trace des pertes pour les consulter ultรฉrieurement losses = [] # La boucle d'entraรฎnement for epoch in range(n_epochs): for x, y in train_dataloader: # Obtenir des donnรฉes et prรฉparer la version corrompue x = x.to(device) # Data on the GPU noise_amount = torch.rand(x.shape[0]).to(device) # Pick random noise amounts noisy_x = corrupt(x, noise_amount) # Create our noisy x # Obtenir la prรฉdiction du modรจle pred = net(noisy_x) # Calculer la perte loss = loss_fn(pred, x) # Dans quelle mesure la sortie est-elle proche du vรฉritable x "propre" ? # Rรฉtropropager et mettre ร  jour les paramรจtres opt.zero_grad() loss.backward() opt.step() # Stocker la perte pour plus tard losses.append(loss.item()) # Afficher la moyenne des valeurs de perte pour cette รฉpoque : avg_loss = sum(losses[-len(train_dataloader):])/len(train_dataloader) print(f'Finished epoch {epoch}. Average loss for this epoch: {avg_loss:05f}') # Visualiser la courbe des pertes plt.plot(losses) plt.ylim(0, 0.1)<jupyter_output>Finished epoch 0. Average loss for this epoch: 0.026736 Finished epoch 1. Average loss for this epoch: 0.020692 Finished epoch 2. Average loss for this epoch: 0.018887<jupyter_text>Nous pouvons essayer de voir ร  quoi ressemblent les prรฉdictions du modรจle en saisissant un batch de donnรฉes, en les corrompant ร  diffรฉrents degrรฉs et en visualisant ensuite les prรฉdictions du modรจle :<jupyter_code># Rรฉcupรฉrer des donnรฉes x, y = next(iter(train_dataloader)) x = x[:8] # Seuls les 8 premiers sont utilisรฉs pour faciliter le graphique # Corruption avec une รฉchelle de montants amount = torch.linspace(0, 1, x.shape[0]) # De gauche ร  droite -> plus de corruption noised_x = corrupt(x, amount) # Obtenir les prรฉdictions du modรจle with torch.no_grad(): preds = net(noised_x.to(device)).detach().cpu() # Graphique fig, axs = plt.subplots(3, 1, figsize=(12, 7)) axs[0].set_title('Input data') axs[0].imshow(torchvision.utils.make_grid(x)[0].clip(0, 1), cmap='Greys') axs[1].set_title('Corrupted data') axs[1].imshow(torchvision.utils.make_grid(noised_x)[0].clip(0, 1), cmap='Greys') axs[2].set_title('Network Predictions') axs[2].imshow(torchvision.utils.make_grid(preds)[0].clip(0, 1), cmap='Greys');<jupyter_output><empty_output><jupyter_text>Vous pouvez constater que pour les montants les plus faibles, les prรฉdictions sont plutรดt bonnes ! Mais lorsque le niveau devient trรจs รฉlevรฉ, le modรจle a moins d'รฉlรฉments pour travailler, et lorsque nous arrivons ร  amount=1, il produit un dรฉsordre flou proche de la moyenne du jeu de donnรฉes pour essayer de couvrir ses paris sur ce ร  quoi la sortie pourrait ressembler... ร‰chantillonnageSi nos prรฉdictions ร  des niveaux de bruit รฉlevรฉs ne sont pas trรจs bonnes, comment gรฉnรฉrer des images ?Et si nous partions d'un bruit alรฉatoire, que nous regardions les prรฉdictions du modรจle, mais que nous ne nous rapprochions que trรจs peu de cette prรฉdiction (disons, 20 % du chemin). Nous disposons alors d'une image trรจs bruyante dans laquelle il y a peut-รชtre un soupรงon de structure, que nous pouvons introduire dans le modรจle pour obtenir une nouvelle prรฉdiction. Nous espรฉrons que cette nouvelle prรฉdiction est lรฉgรจrement meilleure que la premiรจre (puisque notre point de dรฉpart est lรฉgรจrement moins bruitรฉ) et que nous pouvons donc faire un autre petit pas avec cette nouvelle et meilleure prรฉdiction.Nous rรฉpรฉtons l'opรฉration plusieurs fois et (si tout se passe bien) nous obtenons une image ! Voici ce processus illustrรฉ en seulement 5 รฉtapes, en visualisant l'entrรฉe du modรจle (ร  gauche) et les images dรฉbruitรฉes prรฉdites (ร  droite) ร  chaque รฉtape. Notez que mรชme si le modรจle prรฉdit l'image dรฉbruitรฉe dรจs l'รฉtape 1, nous ne faisons qu'une partie du chemin. Au fil des รฉtapes, les structures apparaissent et sont affinรฉes, jusqu'ร  ce que nous obtenions nos rรฉsultats finaux.<jupyter_code>n_steps = 5 x = torch.rand(8, 1, 28, 28).to(device) # Commencer au hasard step_history = [x.detach().cpu()] pred_output_history = [] for i in range(n_steps): with torch.no_grad(): # Pas besoin de suivre les gradients pendant l'infรฉrence pred = net(x) # Prรฉdire le x0 dรฉbruitรฉ pred_output_history.append(pred.detach().cpu()) # Stocker les rรฉsultats du modรจle pour les tracer mix_factor = 1/(n_steps - i) # Dans quelle mesure nous nous rapprochons de la prรฉdiction x = x*(1-mix_factor) + pred*mix_factor # Dรฉplacer une partie du chemin step_history.append(x.detach().cpu()) # Stocker l'รฉtape pour le graphique fig, axs = plt.subplots(n_steps, 2, figsize=(9, 4), sharex=True) axs[0,0].set_title('x (model input)') axs[0,1].set_title('model prediction') for i in range(n_steps): axs[i, 0].imshow(torchvision.utils.make_grid(step_history[i])[0].clip(0, 1), cmap='Greys') axs[i, 1].imshow(torchvision.utils.make_grid(pred_output_history[i])[0].clip(0, 1), cmap='Greys')<jupyter_output><empty_output><jupyter_text>Nous pouvons diviser le processus en plusieurs รฉtapes et espรฉrer ainsi obtenir de meilleures images :<jupyter_code>n_steps = 40 x = torch.rand(64, 1, 28, 28).to(device) for i in range(n_steps): noise_amount = torch.ones((x.shape[0], )).to(device) * (1-(i/n_steps)) # Starting high going low with torch.no_grad(): pred = net(x) mix_factor = 1/(n_steps - i) x = x*(1-mix_factor) + pred*mix_factor fig, ax = plt.subplots(1, 1, figsize=(12, 12)) ax.imshow(torchvision.utils.make_grid(x.detach().cpu(), nrow=8)[0].clip(0, 1), cmap='Greys')<jupyter_output><empty_output><jupyter_text>Ce n'est pas gรฉnial, mais il y a des chiffres reconnaissables ! Vous pouvez expรฉrimenter en entraรฎnant plus longtemps (disons, 10 ou 20 รฉpoques) et en modifiant la configuration du modรจle, le taux d'apprentissage, l'optimiseur, etc. N'oubliez pas non plus que fashionMNIST peut รชtre remplacรฉ en une ligne si vous voulez essayer un jeu de donnรฉes un peu plus difficile. Comparaison avec DDPMDans cette section, nous allons voir comment notre implรฉmentation diffรจre de l'approche utilisรฉe dans l'autre *notebook* ([Introduction ร  *Diffusers*]()), qui est basรฉ sur l'article de DDPM.Nous verrons que- Le diffuseur `UNet2DModel` est un peu plus avancรฉ que notre BasicUNet- Le processus de corruption est traitรฉ diffรฉremment- L'objectif d'entraรฎnement est diffรฉrent, puisqu'il s'agit de prรฉdire le bruit plutรดt que l'image dรฉbruitรฉe.- Le modรจle est conditionnรฉ sur la quantitรฉ de bruit prรฉsent via un conditionnement par pas de temps, oรน t est transmis comme un argument supplรฉmentaire ร  la mรฉthode forward.- Il existe un certain nombre de stratรฉgies d'รฉchantillonnage diffรฉrentes, qui devraient fonctionner mieux que notre version simpliste ci-dessus.Un certain nombre d'amรฉliorations ont รฉtรฉ suggรฉrรฉes depuis la publication de l'article sur le DDPM, mais nous espรฉrons que cet exemple est instructif en ce qui concerne les diffรฉrentes dรฉcisions de conception possibles. Une fois que vous aurez lu cet article, vous pourrez vous plonger dans le document intitulรฉ [*Elucidating the Design Space of Diffusion-Based Generative Models*](https://arxiv.org/abs/2206.00364) qui examine tous ces composants en dรฉtail et formule de nouvelles recommandations sur la maniรจre d'obtenir les meilleures performances.Si tout cela est trop technique ou intimidant, ne vous inquiรฉtez pas ! N'hรฉsitez pas ร  sauter le reste de ce *notebook* ou ร  le garder pour un jour de pluie. L'UNetLe modรจle UNet2DModel de *Diffusers* comporte un certain nombre d'amรฉliorations par rapport ร  notre UNet de base ci-dessus :- GroupNorm applique une normalisation par groupe aux entrรฉes de chaque bloc- Couches de *dropout* pour un entraรฎnement plus doux- Plusieurs couches de ResNet par bloc (si layers_per_block n'est pas fixรฉ ร  1)- Attention (gรฉnรฉralement utilisรฉ uniquement pour les blocs ร  faible rรฉsolution)- Conditionnement sur le pas de temps- Blocs de sous-รฉchantillonnage et de surรฉchantillonnage avec des paramรจtres pouvant รชtre apprisCrรฉons et inspectons un modรจle UNet2DModel :<jupyter_code>model = UNet2DModel( sample_size=28, # la rรฉsolution de l'image cible in_channels=1, # le nombre de canaux d'entrรฉe, 3 pour les images RVB out_channels=1, # le nombre de canaux de sortie layers_per_block=2, # le nombre de couches ResNet ร  utiliser par bloc UNet block_out_channels=(32, 64, 64), # Correspondant ร  peu prรจs ร  notre exemple UNet de base down_block_types=( "DownBlock2D", # un bloc de sous-รฉchantillonnage ResNet normal "AttnDownBlock2D", # un bloc de sous-รฉchantillonnage ResNet avec auto-attention spatiale "AttnDownBlock2D", ), up_block_types=( "AttnUpBlock2D", "AttnUpBlock2D", # un bloc de surรฉchantillonnage ResNet avec auto-attention spatiale "UpBlock2D", # un bloc de surรฉchantillonnage ResNet standard ), ) print(model)<jupyter_output>UNet2DModel( (conv_in): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_proj): Timesteps() (time_embedding): TimestepEmbedding( (linear_1): Linear(in_features=32, out_features=128, bias=True) (act): SiLU() (linear_2): Linear(in_features=128, out_features=128, bias=True) ) (down_blocks): ModuleList( (0): DownBlock2D( (resnets): ModuleList( (0): ResnetBlock2D( (norm1): GroupNorm(32, 32, eps=1e-05, affine=True) (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (time_emb_proj): Linear(in_features=128, out_features=32, bias=True) (norm2): GroupNorm(32, 32, eps=1e-05, affine=True) (dropout): Dropout(p=0.0, inplace=False) (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (nonlinearity): SiLU() ) (1): ResnetBlock2D( (norm1): GroupNorm(32, 32, eps=1e-05, affine=True) (conv1): Con[...]<jupyter_text>Comme vous pouvez le constater, il y a un peu plus de choses qui se passent ! Il a รฉgalement beaucoup plus de paramรจtres que notre BasicUNet :<jupyter_code>sum([p.numel() for p in model.parameters()]) # 1,7M contre les ~309k paramรจtres du BasicUNet<jupyter_output><empty_output><jupyter_text>Nous pouvons reproduire l'entraรฎnement prรฉsentรฉ ci-dessus en utilisant ce modรจle ร  la place de notre modรจle original. Nous devons passer x et le pas de temps au modรจle (ici, nous passons toujours t=0 pour montrer qu'il fonctionne sans ce conditionnement de pas de temps et pour faciliter le code d'รฉchantillonnage, mais vous pouvez รฉgalement essayer d'introduire `(amount*1000)` pour obtenir un รฉquivalent de pas de temps ร  partir du montant de la corruption). Les lignes modifiรฉes sont indiquรฉes par `<<<` si vous souhaitez inspecter le code.<jupyter_code># Dataloader (vous pouvez modifier la taille du batch) batch_size = 128 train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # Combien de fois devrions-nous passer les donnรฉes en revue ? n_epochs = 3 # Crรฉer le rรฉseau net = UNet2DModel( sample_size=28, # la rรฉsolution de l'image cible in_channels=1, # le nombre de canaux d'entrรฉe, 3 pour les images RVB out_channels=1, # le nombre de canaux de sortie layers_per_block=2, # le nombre de couches ResNet ร  utiliser par bloc UNet block_out_channels=(32, 64, 64), # Correspondant ร  peu prรจs ร  notre exemple UNet de base down_block_types=( "DownBlock2D", # un bloc de sous-รฉchantillonnage ResNet normal "AttnDownBlock2D", # un bloc de sous-รฉchantillonnage ResNet avec auto-attention spatiale "AttnDownBlock2D", ), up_block_types=( "AttnUpBlock2D", "AttnUpBlock2D", # un bloc de surรฉchantillonnage ResNet avec auto-attention spatiale "UpBlock2D", # un bloc de surรฉchantillonnage ResNet standard ), ) net.to(device) # Notre protection contre la perte loss_fn = nn.MSELoss() # L'optimiseur opt = torch.optim.Adam(net.parameters(), lr=1e-3) # Conserver une trace des pertes pour les visualiser plus tard losses = [] # La boucle d'entraรฎnement for epoch in range(n_epochs): for x, y in train_dataloader: # Obtenir des donnรฉes et prรฉparer la version corrompue x = x.to(device) # Data on the GPU noise_amount = torch.rand(x.shape[0]).to(device) # Choisir des quantitรฉs de bruit alรฉatoires noisy_x = corrupt(x, noise_amount) # Crรฉer notre bruit x # Obtenir la prรฉdiction du modรจle pred = net(noisy_x, 0).sample #<<< En utilisant toujours le pas de temps 0, en ajoutant .sample # Calculer la perte loss = loss_fn(pred, x) # Dans quelle mesure la sortie est-elle proche du vรฉritable x "propre" ? # Rรฉtropropager et mettre ร  jour les paramรจtres opt.zero_grad() loss.backward() opt.step() # Stocker la perte pour plus tard losses.append(loss.item()) # Afficher la moyenne des valeurs de perte pour cette รฉpoque : avg_loss = sum(losses[-len(train_dataloader):])/len(train_dataloader) print(f'Finished epoch {epoch}. Average loss for this epoch: {avg_loss:05f}') # Graphique fig, axs = plt.subplots(1, 2, figsize=(12, 5)) # Perte axs[0].plot(losses) axs[0].set_ylim(0, 0.1) axs[0].set_title('Loss over time') # ร‰chantillons n_steps = 40 x = torch.rand(64, 1, 28, 28).to(device) for i in range(n_steps): noise_amount = torch.ones((x.shape[0], )).to(device) * (1-(i/n_steps)) # De haut en bas with torch.no_grad(): pred = net(x, 0).sample mix_factor = 1/(n_steps - i) x = x*(1-mix_factor) + pred*mix_factor axs[1].imshow(torchvision.utils.make_grid(x.detach().cpu(), nrow=8)[0].clip(0, 1), cmap='Greys') axs[1].set_title('Generated Samples')<jupyter_output>Finished epoch 0. Average loss for this epoch: 0.018925 Finished epoch 1. Average loss for this epoch: 0.012785 Finished epoch 2. Average loss for this epoch: 0.011694<jupyter_text>Ces rรฉsultats sont bien meilleurs que notre premiรจre sรฉrie de rรฉsultats ! Vous pouvez envisager de modifier la configuration du Unet ou de prolonger l'entraรฎnement afin d'obtenir des performances encore meilleures. Le processus de corruptionLe papier DDPM dรฉcrit un processus de corruption qui ajoute une petite quantitรฉ de bruit ร  chaque "pas de temps". Etant donnรฉ $x_{t-1}$ pour un certain pas de temps, nous pouvons obtenir la version suivante (lรฉgรจrement plus bruitรฉe) $x_t$ avec :$q(\mathbf{x}_t \vert \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t\mathbf{I}) \quadq(\mathbf{x}_{1:T} \vert \mathbf{x}_0) = \prod^T_{t=1} q(\mathbf{x}_t \vert \mathbf{x}_{t-1})$Nous prenons $x_{t-1}$, l'รฉchelonnons de $\sqrt{1 - \beta_t}$ et ajoutons du bruit รฉchelonnรฉ de $\beta_t$. Ce $\beta$ est dรฉfini pour chaque t en fonction d'un certain plannificateur, et dรฉtermine la quantitรฉ de bruit ajoutรฉe par pas de temps.Nous ne voulons pas nรฉcessairement faire cette opรฉration 500 fois pour obtenir $x_{500}$, nous avons donc une autre formule pour obtenir $x_t$ pour n'importe quel t รฉtant donnรฉ $x_0$ :<jupyter_code>#??noise_scheduler.add_noise noise_scheduler = DDPMScheduler(num_train_timesteps=1000) plt.plot(noise_scheduler.alphas_cumprod.cpu() ** 0.5, label=r"${\sqrt{\bar{\alpha}_t}}$") plt.plot((1 - noise_scheduler.alphas_cumprod.cpu()) ** 0.5, label=r"$\sqrt{(1 - \bar{\alpha}_t)}$") plt.legend(fontsize="x-large");<jupyter_output><empty_output><jupyter_text>Au dรฉpart, le x bruitรฉ est principalement x (sqrt_alpha_prod ~= 1), mais au fil du temps, la contribution de x diminue et la composante bruit augmente. Contrairement ร  notre mรฉlange linรฉaire de x et de bruit en fonction de la quantitรฉ, celui-ci devient bruyant relativement rapidement. Nous pouvons visualiser cela sur quelques donnรฉes :<jupyter_code># Bruit d'un batch d'images pour visualiser l'effet fig, axs = plt.subplots(3, 1, figsize=(16, 10)) xb, yb = next(iter(train_dataloader)) xb = xb.to(device)[:8] xb = xb * 2. - 1. # Pour aller dans (-1, 1) print('X shape', xb.shape) # Afficher les entrรฉes propres axs[0].imshow(torchvision.utils.make_grid(xb[:8])[0].detach().cpu(), cmap='Greys') axs[0].set_title('Clean X') # Ajouter du bruit avec le plannificateur timesteps = torch.linspace(0, 999, 8).long().to(device) noise = torch.randn_like(xb) # << NB: randn et non rand noisy_xb = noise_scheduler.add_noise(xb, noise, timesteps) print('Noisy X shape', noisy_xb.shape) # Afficher la version bruyante (avec et sans coupure) axs[1].imshow(torchvision.utils.make_grid(noisy_xb[:8])[0].detach().cpu().clip(-1, 1), cmap='Greys') axs[1].set_title('Noisy X (clipped to (-1, 1)') axs[2].imshow(torchvision.utils.make_grid(noisy_xb[:8])[0].detach().cpu(), cmap='Greys') axs[2].set_title('Noisy X')<jupyter_output>X shape torch.Size([8, 1, 28, 28]) Noisy X shape torch.Size([8, 1, 28, 28])
diffusion-models-class/units/fr/unit1/diffusion_models_from_scratch.ipynb/0
{ "file_path": "diffusion-models-class/units/fr/unit1/diffusion_models_from_scratch.ipynb", "repo_id": "diffusion-models-class", "token_count": 10500 }
136
<jupyter_start><jupyter_text>Stable Diffusion : plongรฉe en profondeurStable Diffusion est un puissant modรจle de texte ร  image. Il existe plusieurs sites web et outils pour rendre son utilisation aussi simple que possible. Il est รฉgalement intรฉgrรฉ ร  la bibliothรจque de Diffusers d'Huggingface, ce qui permet de gรฉnรฉrer des images en toute simplicitรฉ :```pyfrom diffusers import StableDiffusionPipelinepipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=True).to("cuda")image = pipe("An astronaught scuba diving").images[0]```Dans ce *notebook*, nous allons nous plonger dans le code qui se cache derriรจre ces interfaces faciles ร  utiliser, pour voir ce qui se passe sous le capot. Nous commencerons par recrรฉer la fonctionnalitรฉ ci-dessus sous la forme d'un morceau de code effrayant, puis, un par un, nous inspecterons les diffรฉrents composants et comprendrons ce qu'ils font. ร€ la fin de ce *notebook*, cette mรชme boucle d'รฉchantillonnage devrait ressembler ร  quelque chose que vous pouvez peaufiner et modifier ร  votre guise. Configuration et importationsVous devrez vous connecter ร  Hugging Face et accepter les termes de la licence pour ce modรจle (voir la [carte de modรจle](https://huggingface.co/CompVis/stable-diffusion-v1-4) pour plus de dรฉtails). Lorsque vous exรฉcuterez ce *notebook* pour la premiรจre fois, vous devrez dรฉcommenter les deux cellules suivantes pour installer les prรฉrequis et vous connecter au Hub avec un *token* d'accรจs.<jupyter_code># !pip install -q --upgrade transformers diffusers ftfy from base64 import b64encode import numpy import torch from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel from huggingface_hub import notebook_login # Pour l'affichage vidรฉo from IPython.display import HTML from matplotlib import pyplot as plt from pathlib import Path from PIL import Image from torch import autocast from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, logging torch.manual_seed(1) if not (Path.home()/'.huggingface'/'token').exists(): notebook_login() # Suppression de certains avertissements inutiles lors du chargement de CLIPTextModel logging.set_verbosity_error() # Dรฉfinir l'appareil torch_device = "cuda" if torch.cuda.is_available() else "cpu"<jupyter_output><empty_output><jupyter_text>Chargement des modรจlesCe code (et celui de la section suivante) provient du [*notebook* illustratif d'Huggingface](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb).Il tรฉlรฉcharge et configure les modรจles et les composants que nous utiliserons. Exรฉcutons-le pour l'instant et passons ร  la section suivante pour vรฉrifier que tout fonctionne avant d'aller plus loin.Si vous avez chargรฉ un pipeline, vous pouvez aussi accรฉder ร  ces composants en utilisant `pipe.unet`, `pipe.vae` et ainsi de suite.**Dans ce *notebook*, nous ne faisons pas d'รฉconomies de mรฉmoire. Si vous vous retrouvez ร  court de RAM GPU, regardez le code du pipeline pour vous inspirer avec des choses comme le dรฉcoupage de l'attention, le passage ร  la demi-prรฉcision (fp16), le maintien du VAE sur le CPU et d'autres modifications.**<jupyter_code># Charger le modรจle auto-encodeur qui sera utilisรฉ pour dรฉcoder les latents dans l'espace de l'image vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") # Charger le tokenizer et l'encodeur tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # Le modรจle UNet pour gรฉnรฉrer les latents unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") # Le planificateur de bruit scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) # Nous allons au GPU ! vae = vae.to(torch_device) text_encoder = text_encoder.to(torch_device) unet = unet.to(torch_device);<jupyter_output><empty_output><jupyter_text>Une boucle de diffusionSi tout ce que vous voulez, c'est crรฉer une image avec du texte, vous pouvez ignorer ce notebook et utiliser l'un des outils existants (comme [DreamStudio](https://beta.dreamstudio.ai/generate)) ou utiliser le pipeline simplifiรฉ d'Hugging Face comme documentรฉ [ici](https://huggingface.co/blog/stable_diffusion).Ce que nous voulons faire ici, c'est approfondir un peu plus la faรงon dont cela fonctionne. Nous allons donc commencer par vรฉrifier que le code de l'exemple s'exรฉcute. Il ressemble beaucoup ร  ce que vous trouverez si vous inspectez la mรฉthode [__call__()](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.pyL200) du pipeline de Stable Diffusion.<jupyter_code># Quelques paramรจtres prompt = ["A watercolor painting of an otter"] height = 512 # hauteur par dรฉfaut de Stable Diffusion width = 512 # largeur par dรฉfaut de Stable Diffusion num_inference_steps = 30 # Nombre d'รฉtapes de dรฉbruitage guidance_scale = 7.5 # ร‰chelle pour un guidage sans classifieur generator = torch.manual_seed(32) # Gรฉnรฉrateur de la graine pour crรฉer le bruit latent initial batch_size = 1 # Preparation du texte text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Preparation du planificateur scheduler.set_timesteps(num_inference_steps) # Preparation des latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Mise ร  l'รฉchelle (versions prรฉcรฉdentes) latents = latents * self.scheduler.sigmas[0] # Boucle with autocast("cuda"): for i, t in tqdm(enumerate(scheduler.timesteps)): # รฉtendre les latents si nous procรฉdons ร  un guidage sans classifieur afin d'รฉviter de faire deux passages en avant latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] # mettre ร  l'รฉchelle les latents (prรฉconditionnement) # latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) # Diffusers 0.3 et moins latent_model_input = scheduler.scale_model_input(latent_model_input, t) # prรฉdire le bruit rรฉsiduel with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # effectuer le guidage noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # calculer l'รฉchantillon bruitรฉ prรฉcรฉdent x_t -> x_t-1 # latents = scheduler.step(noise_pred, i, latents)["prev_sample"] # Diffusers 0.3 et moins latents = scheduler.step(noise_pred, t, latents).prev_sample # mettre ร  l'รฉchelle et dรฉcoder les latents de l'image ร  l'aide du vae latents = 1 / 0.18215 * latents with torch.no_grad(): image = vae.decode(latents).sample # Affichage image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] pil_images[0]<jupyter_output><empty_output><jupyter_text>Cela fonctionne, mais cela fait beaucoup de code ! Examinons les composants un par un. L'auto-encodeur (AE)L'AE peut encoder une image dans une sorte de reprรฉsentation latente, et la dรฉcoder ร  nouveau en une image. Nous avons regroupรฉ le code dans quelques fonctions pour que nous puissions voir ร  quoi cela ressemble en action :<jupyter_code>def pil_to_latent(input_im): # Une seule image -> un seul latent dans un batch (donc taille 1, 4, 64, 64) with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(latents): # bain de latents -> liste d'images latents = (1 / 0.18215) * latents with torch.no_grad(): image = vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images<jupyter_output><empty_output><jupyter_text>Nous utiliserons ici une image provenant du web, mais vous pouvez charger la vรดtre en la tรฉlรฉchargeant et en modifiant le nom du fichier dans la cellule suivante.<jupyter_code># Tรฉlรฉcharger une image de dรฉmonstration !curl --output macaw.jpg 'https://lafeber.com/pet-birds/wp-content/uploads/2018/06/Scarlet-Macaw-2.jpg' # Charger l'image avec PIL input_image = Image.open('macaw.jpg').resize((512, 512)) input_image<jupyter_output><empty_output><jupyter_text>L'encodage dans l'espace latent de l'AE ร  l'aide de la fonction dรฉfinie ci-dessus se prรฉsente comme suit :<jupyter_code># Encoder dans l'espace latent encoded = pil_to_latent(input_image) encoded.shape # Visualisons les quatre canaux de cette reprรฉsentation latente : fig, axs = plt.subplots(1, 4, figsize=(16, 4)) for c in range(4): axs[c].imshow(encoded[0][c].cpu(), cmap='Greys')<jupyter_output><empty_output><jupyter_text>Ce tenseur 4x64x64 capture de nombreuses informations sur l'image, suffisamment, espรฉrons-le, pour que lorsque nous l'introduisons dans le dรฉcodeur, nous obtenions en retour quelque chose de trรจs proche de notre image d'entrรฉe :<jupyter_code># Dรฉcoder cette reprรฉsentation latente en une image decoded = latents_to_pil(encoded)[0] decoded<jupyter_output><empty_output><jupyter_text>Vous verrez de petites diffรฉrences si vous plissez les yeux ! Concentrez-vous sur l'ล“il si vous ne voyez rien d'รฉvident. C'est assez impressionnant : cette image latente de 4x64x64 semble contenir beaucoup plus d'informations qu'une image de 64px.Cet auto-encodeur a รฉtรฉ entraรฎnรฉ ร  rรฉduire une image ร  une reprรฉsentation plus petite, puis ร  recrรฉer l'image ร  partir de cette version compressรฉe.Dans ce cas particulier, le facteur de compression est de 48, nous partons d'une image 3x512x512(cannaux x hauteur x largeur) et elle est compressรฉe en un vecteur latent 4x64x64. Chaque volume de 3x8x8 pixels dans l'image d'entrรฉe est compressรฉ en seulement 4 nombres (4x1x1). Il est possible de trouver des AEs avec un taux de compression plus รฉlevรฉ (par exemple f16 comme certains modรจles populaires de VQGAN) mais ร  un moment donnรฉ, ils commencent ร  introduire des artefacts que nous ne voulons pas.Pourquoi utiliser un auto-encodeur ? Nous pouvons faire de la diffusion dans l'espace des pixels oรน le modรจle reรงoit toutes les donnรฉes de l'image comme entrรฉes et produit une prรฉdiction de sortie de la mรชme forme. Mais cela implique le traitement d'un grand nombre de donnรฉes et rend la gรฉnรฉration d'images ร  haute rรฉsolution trรจs coรปteuse sur le plan informatique. Certaines solutions consistent ร  effectuer la diffusion ร  basse rรฉsolution (64 px par exemple), puis ร  entraรฎner un modรจle distinct pour augmenter l'รฉchelle de maniรจre rรฉpรฉtรฉe (comme avec D2/Imagen). La diffusion latente, quant ร  elle, effectue le processus de diffusion dans cet espace latent, en utilisant les reprรฉsentations compressรฉes de notre AE plutรดt que des images brutes. Ces reprรฉsentations sont riches en informations et peuvent รชtre suffisamment petites pour รชtre gรฉrรฉes par du matรฉriel grand public. Une fois que nous avons gรฉnรฉrรฉ une nouvelle image en tant que reprรฉsentation latente, l'auto-encodeur peut prendre ces sorties latentes finales et les transformer en pixels rรฉels. The SchedulerNous devons maintenant parler de l'ajout de bruit.Pendant l'entraรฎnement, nous ajoutons du bruit ร  une image, puis nous demandons au modรจle d'essayer de prรฉdire le bruit. Si nous ajoutons toujours beaucoup de bruit, le modรจle risque de ne pas avoir grand-chose ร  faire. Si nous n'en ajoutons qu'une infime quantitรฉ, le modรจle ne pourra pas faire grand-chose avec les points de dรฉpart alรฉatoires que nous utilisons pour l'รฉchantillonnage. Au cours de l'entraรฎnement, la quantitรฉ de bruit varie donc en fonction d'une certaine distribution.Pendant l'รฉchantillonnage, nous voulons "dรฉbruiter" sur un certain nombre d'รฉtapes. Le nombre d'รฉtapes et la quantitรฉ de bruit que nous devons viser ร  chaque รฉtape affecteront le rรฉsultat final.Le planificateur est chargรฉ de gรฉrer tous ces dรฉtails. Par exemple : `scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)` met en place un scheduler qui correspond ร  celui utilisรฉ pour entraรฎner ce modรจle. Lorsque nous voulons รฉchantillonner sur un plus petit nombre de pas, nous le faisons avec scheduler.set_timesteps :<jupyter_code># Rรฉglage du nombre de pas d'รฉchantillonnage : scheduler.set_timesteps(15)<jupyter_output><empty_output><jupyter_text>Vous pouvez voir comment notre nouvel ensemble d'รฉtapes correspond ร  celles utilisรฉes dans l'entraรฎnement :<jupyter_code># Voyez รงa en termes de 1000 รฉtapes originales utilisรฉes pour l'entraรฎnement : print(scheduler.timesteps)<jupyter_output>tensor([999.0000, 927.6429, 856.2857, 784.9286, 713.5714, 642.2143, 570.8571, 499.5000, 428.1429, 356.7857, 285.4286, 214.0714, 142.7143, 71.3571, 0.0000], dtype=torch.float64)<jupyter_text>Et quelle est la quantitรฉ de bruit prรฉsente ร  chaque endroit :<jupyter_code># Examinez les niveaux de bruit รฉquivalents : print(scheduler.sigmas)<jupyter_output>tensor([14.6146, 9.6826, 6.6780, 4.7746, 3.5221, 2.6666, 2.0606, 1.6156, 1.2768, 1.0097, 0.7913, 0.6056, 0.4397, 0.2780, 0.0292, 0.0000])<jupyter_text>Pendant l'รฉchantillonnage, nous partons d'un niveau de bruit รฉlevรฉ (en fait, notre entrรฉe sera du bruit pur) et nous "dรฉbruitons" progressivement jusqu'ร  obtenir une image, selon ce calendrier.<jupyter_code># Affichage du planificateur de bruit : plt.plot(scheduler.sigmas) plt.title('Noise Schedule') plt.xlabel('Sampling step') plt.ylabel('sigma') plt.show()<jupyter_output><empty_output><jupyter_text>Ce "sigma" est la quantitรฉ de bruit ajoutรฉe ร  la reprรฉsentation latente. Voyons ce que cela donne en ajoutant un peu de bruit ร  notre image codรฉe, puis en dรฉcodant cette version bruitรฉe :<jupyter_code>noise = torch.randn_like(encoded) # Bruit alรฉatoire sampling_step = 10 # Equivalent ร  une รฉtape 10 sur 15 dans la grille ci-dessus # encoded_and_noised = scheduler.add_noise(encoded, noise, timestep) # Diffusers 0.3 et en dessous encoded_and_noised = scheduler.add_noise(encoded, noise, timesteps=torch.tensor([scheduler.timesteps[sampling_step]])) latents_to_pil(encoded_and_noised.float())[0] # Affichage<jupyter_output><empty_output><jupyter_text>ร€ quoi cela ressemble-t-il ร  diffรฉrents pas de temps ? Faites l'expรฉrience et voyez par vous-mรชme !Si vous dรฉcommentez la cellule ci-dessous, vous verrez que dans ce cas, la fonction `scheduler.add_noise` ne fait qu'ajouter du bruit ร  l'รฉchelle sigma : `noisy_samples = original_samples + noise * sigmas`<jupyter_code># ??scheduler.add_noise<jupyter_output><empty_output><jupyter_text>D'autres modรจles de diffusion peuvent รชtre entraรฎnรฉs avec diffรฉrentes approches de bruits et d'ordonnancement, dont certaines maintiennent la variance relativement constante entre les niveaux de bruit ("prรฉservation de la variance") avec diffรฉrentes astuces de mise ร  l'รฉchelle et de mรฉlange au lieu d'avoir des latents bruitรฉs avec une variance de plus en plus รฉlevรฉe au fur et ร  mesure que l'on ajoute du bruit ("explosion de la variance").Si nous voulons partir d'un bruit alรฉatoire au lieu d'une image bruitรฉe, nous devons la mettre ร  l'รฉchelle de la plus grande valeur sigma utilisรฉe pendant l'entraรฎnement, soit ~14 dans ce cas. Et avant que ces latents bruitรฉs ne soient introduits dans le modรจle, ils sont ร  nouveau mis ร  l'รฉchelle dans l'รฉtape dite de prรฉ-conditionnement : `latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)` (maintenant gรฉrรฉ par `latent_model_input = scheduler.scale_model_input(latent_model_input, t)`).Encore une fois, cette mise ร  l'รฉchelle/prรฉ-conditionnement diffรจre entre les articles et les implรฉmentations, alors gardez un ล“il sur ce point si vous travaillez avec un type diffรฉrent de modรจle de diffusion. Boucle ร  partir de la version bruitรฉe de l'entrรฉe (AKA image2image)Voyons ce qui se passe lorsque nous utilisons notre image comme point de dรฉpart, en ajoutant un peu de bruit et en effectuant les derniรจres รฉtapes de dรฉbruitage dans la boucle avec un nouveau prompt.Nous allons utiliser une boucle similaire ร  celle de la premiรจre dรฉmonstration, mais nous allons sauter les premiรจres รฉtapes `start_step`.Pour bruiter notre image, nous utiliserons un code comme celui montrรฉ ci-dessus, en utilisant le planificateur pour la bruiter ร  un niveau รฉquivalent ร  l'รฉtape 10 (`start_step`).<jupyter_code># Paramรจtres (les mรชmes que prรฉcรฉdemment, ร  l'exception du nouveau prompt) prompt = ["A colorful dancer, nat geo photo"] height = 512 # hauteur par dรฉfaut de Stable Diffusion width = 512 # largeur par dรฉfaut de Stable Diffusion num_inference_steps = 30 # Nombre d'รฉtapes de dรฉbruitage guidance_scale = 7.5 # ร‰chelle pour un guidage sans classifieur generator = torch.manual_seed(32) # Gรฉnรฉrateur de la graine pour crรฉer le bruit latent initial batch_size = 1 # Preparation du texte (comme prรฉcรฉdemment) text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Preparation du planificateur (dรฉfinition du nombre d'รฉtapes de l'infรฉrence) scheduler.set_timesteps(num_inference_steps) # Preparation des latents (bruitage appropriรฉ pour start_step) start_step = 10 start_sigma = scheduler.sigmas[start_step] noise = torch.randn_like(encoded) latents = scheduler.add_noise(encoded, noise, timesteps=torch.tensor([scheduler.timesteps[start_step]])) latents = latents.to(torch_device).float() # Boucle for i, t in tqdm(enumerate(scheduler.timesteps)): if i >= start_step: # << C'est la seule modification que nous apportons ร  la boucle. # รฉtendre les latents si nous procรฉdons ร  un guidage sans classifieur afin d'รฉviter de faire deux passages en avant latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # prรฉdire le bruit rรฉsiduel with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # effectuer le guidage noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # calculer l'รฉchantillon bruitรฉ prรฉcรฉdent x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample latents_to_pil(latents)[0]<jupyter_output><empty_output><jupyter_text>Vous pouvez voir que certaines couleurs et structures de l'image sont conservรฉes, mais nous avons maintenant une nouvelle image ! Plus vous ajoutez de bruit et plus vous effectuez d'รฉtapes, plus l'image s'รฉloigne de l'image d'entrรฉe.C'est ainsi que fonctionne le cรฉlรจbre pipeline img2img. Encore une fois, si c'est votre objectif final, il existe des outils qui facilitent la tรขche !Mais vous pouvez voir que sous le capot, c'est la mรชme chose que la boucle de gรฉnรฉration, en sautant les premiรจres รฉtapes et en partant d'une image bruitรฉe plutรดt que d'une image purement bruitรฉe.Essayez de changer le nombre d'รฉtapes sautรฉes et de voir comment cela affecte la quantitรฉ de changement de l'image par rapport ร  l'entrรฉe. Exploration du pipeline texte -> enchรขssementNous utilisons un modรจle d'encodage de texte pour transformer notre texte en un ensemble d'enchรขssements qui sont transmis au modรจle de diffusion en tant que conditionnement. Suivons un morceau de texte tout au long de ce processus et voyons comment il fonctionne.<jupyter_code># Notre prompt textuel prompt = 'A picture of a puppy'<jupyter_output><empty_output><jupyter_text>Nous commenรงons par la tokenisation :<jupyter_code># Transformer le texte en une sรฉquence de tokens : text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") text_input['input_ids'][0] # Voir les tokens # Voir les tokens individuels for t in text_input['input_ids'][0][:8]: # Nous nous contenterons d'examiner les 7 premiers pour vous รฉviter un mur d'<|endoftext|>' print(t, tokenizer.decoder.get(int(t)))<jupyter_output>tensor(49406) <|startoftext|> tensor(320) a</w> tensor(1674) picture</w> tensor(539) of</w> tensor(320) a</w> tensor(6829) puppy</w> tensor(49407) <|endoftext|> tensor(49407) <|endoftext|><jupyter_text>Nous pouvons passer directement aux enchรขssements finaux (de sortie) de la maniรจre suivante :<jupyter_code># Rรฉcupรฉrer les enchรขssements de sortie output_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] print('Shape:', output_embeddings.shape) output_embeddings<jupyter_output>Shape: torch.Size([1, 77, 768])<jupyter_text>Nous passons nos *tokens* ร  travers text_encoder et nous obtenons comme par magie des nombres que nous pouvons introduire dans le modรจle.Comment ces chiffres sont-ils gรฉnรฉrรฉs ? Les tokens sont transformรฉs en un ensemble d'enchรขssements d'entrรฉe, qui sont ensuite introduits dans le transformer pour obtenir les enchรขssements de sortie finaux.Pour obtenir ces enchรขssements d'entrรฉe, il y a en fait deux รฉtapes comme le rรฉvรจle l'inspection de `text_encoder.text_model.embeddings` :<jupyter_code>text_encoder.text_model.embeddings<jupyter_output><empty_output><jupyter_text>Enchรขssement de tokensLe *token* est envoyรฉ ร  la fonction `token_embedding` pour le transformer en vecteur. Le nom de la fonction `get_input_embeddings` est trompeur puisque ces enchรขssements de *tokens* doivent รชtre combinรฉs avec les enchรขssements de positions avant d'รชtre utilisรฉs comme entrรฉes dans le modรจle ! Quoi qu'il en soit, examinons d'abord la partie relative ร  l'enchรขssements des *tokens*.Nous pouvons regarder la couche d'enchรขssement :<jupyter_code># Accรฉder ร  la couche enchรขssement token_emb_layer = text_encoder.text_model.embeddings.token_embedding token_emb_layer # Taille du vocabulaire 49408, emb_dim 768<jupyter_output><empty_output><jupyter_text>Et enchรขsser un *token* comme suit :<jupyter_code># Enchรขsser un *token*, dans ce cas, celui du "chiot" embedding = token_emb_layer(torch.tensor(6829, device=torch_device)) embedding.shape # reprรฉsentation en 768-dim<jupyter_output><empty_output><jupyter_text>Cet unique *tokens* a รฉtรฉ associรฉ avec un vecteur ร  768 dimensions.Nous pouvons faire la mรชme chose avec tous les *tokens* du prompt pour obtenir tous les enchรขssements de *tokens* :<jupyter_code>token_embeddings = token_emb_layer(text_input.input_ids.to(torch_device)) print(token_embeddings.shape) # taille du batch 1, 77 *tokens*, 768 valeurs pour chaque token_embeddings<jupyter_output>torch.Size([1, 77, 768])<jupyter_text>Enchรขssements positionnelsLes enchรขssements positionnels indiquent au modรจle ร  quel endroit d'une sรฉquence se trouve un *token*. Tout comme l'enchรขssement de * tokens*, il s'agit d'un ensemble de paramรจtres (qui peuvent รฉventuellement รชtre appris). Mais maintenant, au lieu de traiter ~50k *tokens* nous avons juste besoin d'un pour chaque position (77 au total) :<jupyter_code>pos_emb_layer = text_encoder.text_model.embeddings.position_embedding pos_emb_layer<jupyter_output><empty_output><jupyter_text>Nous pouvons obtenir l'enchรขssement positionnel pour chaque position :<jupyter_code>position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] position_embeddings = pos_emb_layer(position_ids) print(position_embeddings.shape) position_embeddings<jupyter_output>torch.Size([1, 77, 768])<jupyter_text>Combiner les enchรขssements de *tokens* et de positionsIl est temps de combiner les deux. Comment faire ? Il suffit de les additionner ! D'autres approches sont possibles, mais pour ce modรจle, c'est ainsi que nous procรฉdons.En les combinant de cette maniรจre, nous obtenons les enchรขssements d'entrรฉe finaux, prรชts ร  รชtre introduits dans le *transformer* :<jupyter_code># En les combinant, nous obtenons les enchรขssements d'entrรฉe finaux input_embeddings = token_embeddings + position_embeddings print(input_embeddings.shape) input_embeddings<jupyter_output>torch.Size([1, 77, 768])<jupyter_text>Nous pouvons vรฉrifier que ces rรฉsultats sont les mรชmes que ceux obtenus avec `text_encoder.text_model.embeddings` :<jupyter_code># La procรฉdure suivante combine toutes les รฉtapes ci-dessus (mais ne nous permet pas de les modifier !) text_encoder.text_model.embeddings(text_input.input_ids.to(torch_device))<jupyter_output><empty_output><jupyter_text>Passage dans le *transformer* Nous voulons modifier les enchรขssements d'entrรฉe (en particulier les enchรขssements de tokens) avant de les envoyer dans le reste du modรจle, mais nous devons d'abord nous assurer que nous savons comment le faire. Nous avons lu le code de la mรฉthode `forward` du text_encoder, et nous nous sommes basรฉs sur ce code pour la mรฉthode `forward` du text_model que le text_encoder englobe. Pour l'inspecter vous-mรชme, tapez `??text_encoder.text_model.forward` et vous obtiendrez les informations sur la fonction et le code source, une astuce de dรฉbogage utile !Quoi qu'il en soit, nous pouvons copier les bits dont nous avons besoin pour obtenir ce que l'on appelle le "dernier รฉtat cachรฉ" et ainsi gรฉnรฉrer nos enchรขssements finaux :<jupyter_code>def get_output_embeds(input_embeddings): # Le modรจle de texte de CLIP utilise le masquage causal, c'est pourquoi nous le prรฉparons ici : bsz, seq_len = input_embeddings.shape[:2] causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Obtenir les enchรขssements de sortie implique d'appeler le modรจle en passant output_hidden_states=True # afin qu'il ne renvoie pas uniquement les prรฉdictions finales regroupรฉes : encoder_outputs = text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # Nous n'utilisons pas de masque d'attention, cela peut donc รชtre None. causal_attention_mask=causal_attention_mask.to(torch_device), output_attentions=None, output_hidden_states=True, # Nous voulons le rรฉsultat des enchรขssements et non le rรฉsultat final. return_dict=None, ) # Seul l'รฉtat cachรฉ de sortie nous intรฉresse output = encoder_outputs[0] # Il existe une normalisation de couche finale par laquelle nous devons passer output = text_encoder.text_model.final_layer_norm(output) # Et maintenant, elles sont prรชtes ! return output out_embs_test = get_output_embeds(input_embeddings) # Alimenter le modรจle ร  l'aide de notre nouvelle fonction print(out_embs_test.shape) # Vรฉrifier la forme de la sortie out_embs_test # Inspecter la sortie<jupyter_output>torch.Size([1, 77, 768])<jupyter_text>Notez que cela correspond aux `output_embeddings` que nous avons vu au dรฉbut. Nous avons trouvรฉ comment diviser cette รฉtape ("obtenir les enchรขssements") en plusieurs sous-รฉtapes prรชtes ร  รชtre modifiรฉes.Maintenant que nous avons mis en place ce processus, nous pouvons remplacer l'encodage d'entrรฉe d'un *token* par un nouvel encodage de notre choix, ce qui dans notre cas d'utilisation final, sera quelque chose que nous apprendrons. Pour dรฉmontrer le concept, remplaรงons l'encodage d'entrรฉe de "*puppy*" dans le prompt avec lequel nous avons jouรฉ avec l'enchรขssement du *token* 2368, obtenons un nouvel ensemble d'enchรขssement de sortie basรฉs sur celui-ci et utilisons-les pour gรฉnรฉrer une image afin de voir ce que nous obtenons :<jupyter_code>prompt = 'A picture of a puppy' # Tokeniser text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) # Obtenir les enchรขssements des tokens token_embeddings = token_emb_layer(input_ids) # Le nouvel enchรขssement. Dans ce cas, il s'agit simplement de l'enchรขssement d'entrรฉe du token 2368 replacement_token_embedding = text_encoder.get_input_embeddings()(torch.tensor(2368, device=torch_device)) # Insรฉrer ceci dans les enchรขssements de token token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device) # Combiner avec le'enchรขssement positionnel input_embeddings = token_embeddings + position_embeddings # Passage dans le transformer pour obtenir les enchรขssements finaux modified_output_embeddings = get_output_embeds(input_embeddings) print(modified_output_embeddings.shape) modified_output_embeddings<jupyter_output>torch.Size([1, 77, 768])<jupyter_text>Les premiers sont identiques, les derniers ne le sont pas. Tout ce qui se trouve ร  la position du *token* que nous remplaรงons et aprรจs sera affectรฉ.Si tout s'est bien passรฉ, nous devrions voir autre chose qu'un chiot lorsque nous les utiliserons pour gรฉnรฉrer une image. Et bien sรปr, c'est le cas !<jupyter_code># Gรฉnรฉration d'une image avec ces enchรขssements modifiรฉs def generate_with_embs(text_embeddings): height = 512 # hauteur par dรฉfaut de Stable Diffusion width = 512 # largeur par dรฉfaut de Stable Diffusion num_inference_steps = 30 # Nombre d'รฉtapes de dรฉbruitage guidance_scale = 7.5 # ร‰chelle pour un guidage sans classifieur generator = torch.manual_seed(32) # Gรฉnรฉrateur de la graine pour crรฉer le bruit latent initial batch_size = 1 max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Preparation du planificateur scheduler.set_timesteps(num_inference_steps) # Preparation des latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Boucle for i, t in tqdm(enumerate(scheduler.timesteps)): # รฉtendre les latents si nous procรฉdons ร  un guidage sans classifieur afin d'รฉviter de faire deux passages en avant latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # prรฉdire le bruit rรฉsiduel with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # rรฉaliser un guidage noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # calculer l'รฉchantillon bruitรฉ prรฉcรฉdent x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample return latents_to_pil(latents)[0] generate_with_embs(modified_output_embeddings)<jupyter_output><empty_output><jupyter_text>Surprise ! Vous savez maintenant ce que signifie le *token* 2368. Que pouvons-nous en faire ? Pourquoi nous sommes-nous donnรฉ tout ce mal ? Eh bien, nous verrons bientรดt un cas d'utilisation plus convaincant, mais en rรฉsumรฉ, une fois que nous pouvons accรฉder aux enchรขssements de *tokens* et les modifier, nous pouvons faire des choses comme les remplacer par autre chose. Dans l'exemple que nous venons de faire, il s'agissait simplement d'un autre enchรขssement de *tokens* du vocabulaire du modรจle, ce qui รฉquivaut ร  une simple modification du prompt. Mais nous pouvons รฉgalement mรฉlanger les *tokens*. Par exemple, voici un mi-chiot / mi-mouflette :<jupyter_code># Au cas oรน vous vous demanderiez comment obtenir le *token* d'un mot, ou l'enchรขssement d'un *token* : prompt = 'skunk' print('tokenizer(prompt):', tokenizer(prompt)) print('token_emb_layer([token_id]) shape:', token_emb_layer(torch.tensor([8797], device=torch_device)).shape) prompt = 'A picture of a puppy' # Tokeniser text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) # Obtenir les enchรขssements des tokens token_embeddings = token_emb_layer(input_ids) # Le nouvel enchรขssement. Il s'agit maintenant d'un mรฉlange d'enchรขssement des tokens "puppy" et "skunk" puppy_token_embedding = token_emb_layer(torch.tensor(6829, device=torch_device)) skunk_token_embedding = token_emb_layer(torch.tensor(42194, device=torch_device)) replacement_token_embedding = 0.5*puppy_token_embedding + 0.5*skunk_token_embedding # Insรฉrer ceci dans les enchรขssements de token token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device) # Combiner avec le'enchรขssement positionnel input_embeddings = token_embeddings + position_embeddings # Passage dans le transformer pour obtenir les enchรขssements finaux modified_output_embeddings = get_output_embeds(input_embeddings) # Gรฉnรฉrer une image generate_with_embs(modified_output_embeddings)<jupyter_output><empty_output><jupyter_text>Inversion textuelleNous pouvons donc insรฉrer un enchรขssement de *token* modifiรฉ et l'utiliser pour gรฉnรฉrer une image. Nous avons utilisรฉ l'enchรขssement de *token* pour "chat" dans l'exemple ci-dessus, mais que se passerait-il si nous pouvions "apprendre" un nouvel enchรขssement de *token* pour un concept spรฉcifique ? C'est l'idรฉe qui sous-tend l'"Inversion textuelle", dans laquelle quelques exemples d'images sont utilisรฉs pour crรฉer un nouvel enchรขssement de *token* :_Diagramme tirรฉ de l'[article de blog](https://textual-inversion.github.io/) sur l'inversion textuelle. Notez qu'il ne montre pas l'รฉtape des enchรขssements positionnels pour des raisons de simplicitรฉ._ Nous ne verrons pas comment cet entraรฎnement fonctionne, mais nous pouvons essayer de charger l'un de ces nouveaux "concepts" ร  partir de la [bibliothรจque de concepts SD crรฉรฉe par la communautรฉ](https://huggingface.co/sd-concepts-library) et voir comment il s'intรจgre dans notre exemple ci-dessus. Nous utiliserons [https://huggingface.co/sd-concepts-library/birb-style](https://huggingface.co/sd-concepts-library/birb-style) puisque c'est le premier que nous avons crรฉรฉ. Tรฉlรฉchargez le fichier learned_embeds.bin ร  partir de lร  et tรฉlรฉchargez-le ร  l'endroit oรน se trouve ce *notebook* avant d'exรฉcuter la cellule suivante :<jupyter_code>birb_embed = torch.load('learned_embeds.bin') birb_embed.keys(), birb_embed['<birb-style>'].shape<jupyter_output><empty_output><jupyter_text>Nous obtenons un dictionnaire avec une clรฉ et l'enchรขssement de *token* correspondant. Comme dans l'exemple prรฉcรฉdent, remplaรงons l'enchรขssement de "puppy" par celui-ci et voyons ce qui se passe :<jupyter_code>prompt = 'A mouse in the style of puppy' # Tokeniser text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(torch_device) # Obtenir les enchรขssements des tokens token_embeddings = token_emb_layer(input_ids) # Le nouvel enchรขssement, notre mot d'ordre spรฉcial replacement_token_embedding = birb_embed['<birb-style>'].to(torch_device) # Insรฉrer ceci dans les enchรขssements de token token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device) # Combiner avec le'enchรขssement positionnel input_embeddings = token_embeddings + position_embeddings # Passage dans le transformer pour obtenir les enchรขssements finaux modified_output_embeddings = get_output_embeds(input_embeddings) # Gรฉnรฉrer une image generate_with_embs(modified_output_embeddings)<jupyter_output><empty_output><jupyter_text>Le *token* a รฉtรฉ remplacรฉ par une expression qui reprรฉsente un style particulier de peinture, mais il pourrait tout aussi bien reprรฉsenter un objet ou une classe d'objets spรฉcifique. Encore une fois, il existe un [beau *notebook* d'infรฉrence](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) d'Hugging Face pour faciliter l'utilisation des diffรฉrents concepts, qui gรจre correctement l'utilisation des noms dans les prompts ("*A in the style of *") sans se prรฉoccuper de toutes ces choses manuelles. Mรฉlanger les enchรขssementsOutre le simple remplacement de l'enchรขssement des tokens d'un seul mot, il existe d'autres astuces que nous pouvons essayer. Par exemple, que se passe-t-il si nous crรฉons une "chimรจre" en calculant la moyenne des enchรขssements de deux prompts diffรฉrents ?<jupyter_code># Enchรขsser deux prompts text_input1 = tokenizer(["A mouse"], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") text_input2 = tokenizer(["A leopard"], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings1 = text_encoder(text_input1.input_ids.to(torch_device))[0] text_embeddings2 = text_encoder(text_input2.input_ids.to(torch_device))[0] # Les mixer ensemble mix_factor = 0.35 mixed_embeddings = (text_embeddings1*mix_factor + \ text_embeddings2*(1-mix_factor)) # Generer generate_with_embs(mixed_embeddings)<jupyter_output><empty_output><jupyter_text>L'UNet et le CFG (*Classifier Free Guidance*)Il est maintenant temps d'examiner le modรจle de diffusion proprement dit. Il s'agit gรฉnรฉralement d'un UNet qui prend en compte les latents bruyants (x) et prรฉdit le bruit. Nous utilisons un modรจle conditionnel qui prend รฉgalement en compte le pas de temps (t) et notre enchรขssement de texte (aka encoder_hidden_states) comme conditionnement. L'introduction de tous ces รฉlรฉments dans le modรจle se prรฉsente comme suit : `noise_pred = unet(latents, t, encoder_hidden_states=text_embeddings)["sample"]`Nous pouvons l'essayer et voir ร  quoi ressemble le rรฉsultat :<jupyter_code># Preparation du planificateur scheduler.set_timesteps(num_inference_steps) # Quel est notre pas de temps ? t = scheduler.timesteps[0] sigma = scheduler.sigmas[0] # Un latent bruyant latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # L'enchรขssement du texte text_input = tokenizer(['A macaw'], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] # Passage dans l'UNet pour prรฉdire le bruit rรฉsiduel with torch.no_grad(): noise_pred = unet(latents, t, encoder_hidden_states=text_embeddings)["sample"] latents.shape, noise_pred.shape # Nous obtenons des prรฉdictions de la mรชme forme que l'entrรฉe.<jupyter_output><empty_output><jupyter_text>ร‰tant donnรฉ un ensemble de latents bruyants, le modรจle prรฉdit la composante de bruit. Nous pouvons retirer ce bruit des latents bruyants pour voir ร  quoi ressemble l'image de sortie (`latents_x0 = latents - sigma * noise_pred`). Et nous pouvons ajouter la plus grande partie du bruit ร  cette sortie prรฉdite pour obtenir l'entrรฉe (lรฉgรจrement moins bruitรฉe, espรฉrons-le) pour l'รฉtape de diffusion suivante. Pour visualiser cela, gรฉnรฉrons une autre image, en sauvegardant ร  la fois la sortie prรฉdite (x0) et l'รฉtape suivante (xt-1) aprรจs chaque รฉtape :<jupyter_code>prompt = 'Oil painting of an otter in a top hat' height = 512 width = 512 num_inference_steps = 50 guidance_scale = 8 generator = torch.manual_seed(32) batch_size = 1 # Crรฉer un dossier pour stocker les rรฉsultats !rm -rf steps/ !mkdir -p steps/ # Preparation du texte text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Preparation du planificateur scheduler.set_timesteps(num_inference_steps) # Preparation des latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Boucle for i, t in tqdm(enumerate(scheduler.timesteps)): # รฉtendre les latents si nous procรฉdons ร  un guidage sans classifieur afin d'รฉviter de faire deux passages en avant latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # prรฉdire le bruit rรฉsiduel with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # effectuer le guidage noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # Obtenir la valeur prรฉdite x0 : # latents_x0 = latents - sigma * noise_pred # Calculer nous-mรชmes latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Utilisation du planificateur (Diffuseurs 0.4 et plus) # calculer l'รฉchantillon bruitรฉ prรฉcรฉdent x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample # Vers des images PIL im_t0 = latents_to_pil(latents_x0)[0] im_next = latents_to_pil(latents)[0] # Combinez les deux images et enregistrez-les pour une visualisation ultรฉrieure im = Image.new('RGB', (1024, 512)) im.paste(im_next, (0, 0)) im.paste(im_t0, (512, 0)) im.save(f'steps/{i:04}.jpeg') # Rรฉaliser et diffuser la vidรฉo sur l'รฉtat d'avancement (modifier la largeur ร  1024 pour une pleine rรฉsolution) !ffmpeg -v 1 -y -f image2 -framerate 12 -i steps/%04d.jpeg -c:v libx264 -preset slow -qp 18 -pix_fmt yuv420p out.mp4 mp4 = open('out.mp4','rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() HTML(""" <video width=600 controls> <source src="%s" type="video/mp4"> </video> """ % data_url)<jupyter_output><empty_output><jupyter_text>La version de droite montre la "sortie finale" prรฉdite (x0) ร  chaque รฉtape, et c'est ce qui est gรฉnรฉralement utilisรฉ pour les vidรฉos de progression, etc. La version de gauche reprรฉsente l'รฉtape suivante. Nous trouvons intรฉressant de comparer les deux, en regardant les vidรฉos de progression, on pourrait penser que des changements radicaux se produisent, en particulier aux premiers stades, mais comme les changements apportรฉs ร  chaque รฉtape sont relativement faibles, le processus rรฉel est beaucoup plus progressif. CFG (*Classifier Free Guidance*)Par dรฉfaut, le modรจle ne fait pas souvent ce que nous lui demandons. Si nous voulons qu'il suive mieux le prompt, nous utilisons un hack appelรฉ CFG. Il y a une bonne explication dans cette vidรฉo [video](https://www.youtube.com/watch?v=344w5h24-h8) d'AI Coffee Break with Letitia.Dans le code, cela revient ร  faire :`noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)`Cela fonctionne รฉtonnamment bien :) Essayez de changer le guidance_scale dans le code ci-dessus et voyez comment cela affecte les rรฉsultats. Jusqu'oรน pouvez-vous aller avant que les rรฉsultats n'empirent ? ร‰chantillonnageIl y a encore de la complexitรฉ cachรฉe dans `latents = scheduler.step(noise_pred, i, latents)["prev_sample"]`. Comment l'รฉchantillonneur passe-t-il exactement des latents bruyants actuels ร  une version lรฉgรจrement moins bruyante ? Pourquoi ne pas utiliser le modรจle en une seule รฉtape ? Existe-t-il d'autres faรงons de voir les choses ?Le modรจle tente de prรฉdire le bruit dans une image. Pour des valeurs de bruit faibles, nous supposons qu'il fait un assez bon travail. Pour des niveaux de bruit plus รฉlevรฉs, la tรขche est ardue ! Ainsi, au lieu de produire une image parfaite, les rรฉsultats ont tendance ร  ressembler ร  un dรฉsordre flou. Voir le dรฉbut de la vidรฉo citรฉe ร  l'instant pour une illustration ! Les รฉchantillonneurs utilisent donc les prรฉdictions du modรจle pour s'en rapprocher lรฉgรจrement (en รฉliminant une partie du bruit), puis obtiennent une autre prรฉdiction basรฉe sur cette entrรฉe marginalement moins mauvaise, en espรฉrant que cela amรฉliorera le rรฉsultat de maniรจre itรฉrative.Les diffรฉrents รฉchantillonneurs procรจdent de diffรฉrentes maniรจres. Vous pouvez essayer d'inspecter le code de l'รฉchantillonneur LMS par dรฉfaut avec :<jupyter_code># ??scheduler.step<jupyter_output><empty_output><jupyter_text>GuidageOk, derniรจre astuce ! Comment pouvons-nous ajouter un contrรดle supplรฉmentaire ร  ce processus de gรฉnรฉration ?ร€ chaque รฉtape, nous allons utiliser notre modรจle comme prรฉcรฉdemment pour prรฉdire la composante bruit de $x$. Ensuite, nous allons l'utiliser pour produire une image de sortie prรฉdite, et appliquer une fonction de perte ร  cette image.Cette fonction peut รชtre n'importe quoi, mais nous allons faire une dรฉmonstration avec un exemple trรจs simple. Si nous voulons des images avec beaucoup de bleu, nous pouvons crรฉer une fonction de perte qui donne une perte รฉlevรฉe si les pixels ont une faible composante bleue :<jupyter_code>def blue_loss(images): # Quelle est la distance entre les valeurs du canal bleu et 0,9 ? error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> toutes les images dans le batch, seulement le canal bleu return error<jupyter_output><empty_output><jupyter_text>Lors de chaque รฉtape de mise ร  jour, nous trouvons le gradient de la perte par rapport aux latents bruyants actuels et nous les modifions dans la direction qui rรฉduit cette perte tout en effectuant l'รฉtape de mise ร  jour normale :<jupyter_code>prompt = 'A campfire (oil on canvas)' #@param height = 512 # hauteur par dรฉfaut de Stable Diffusion width = 512 # largeur par dรฉfaut de Stable Diffusion num_inference_steps = 50 #@param # Nombre d'รฉtapes de dรฉbruitage guidance_scale = 8 #@param # ร‰chelle pour un guidage sans classifieur generator = torch.manual_seed(32) # Gรฉnรฉrateur de graines pour crรฉer le bruit latent initial batch_size = 1 blue_loss_scale = 200 #@param # Preparation du texte text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") with torch.no_grad(): text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] # Et l'entrรฉe non conditionnelle comme prรฉcรฉdemment : max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Preparation du planificateur scheduler.set_timesteps(num_inference_steps) # Preparation des latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Boucle for i, t in tqdm(enumerate(scheduler.timesteps)): # รฉtendre les latents si nous procรฉdons ร  un guidage sans classifieur afin d'รฉviter de faire deux passages en avant latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # prรฉdire le bruit rรฉsiduel with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # rรฉaliser le CFG noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) #### GUIDAGES SUPPLร‰MENTAIRES ### if i%5 == 0: # Requires_grad sur les latents latents = latents.detach().requires_grad_() # Obtenir la valeur prรฉdite x0 : # latents_x0 = latents - sigma * noise_pred latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Dรฉcodage vers l'espace d'image denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculer la perte loss = blue_loss(denoised_images) * blue_loss_scale # Imprimer occasionnellement if i%10==0: print(i, 'loss:', loss.item()) # Obtenir le gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modifier les latents en fonction de ce gradient latents = latents.detach() - cond_grad * sigma**2 # Etape avec le planificateur latents = scheduler.step(noise_pred, t, latents).prev_sample latents_to_pil(latents)[0]<jupyter_output><empty_output>
diffusion-models-class/units/fr/unit3/stable_diffusion_deep_dive.ipynb/0
{ "file_path": "diffusion-models-class/units/fr/unit3/stable_diffusion_deep_dive.ipynb", "repo_id": "diffusion-models-class", "token_count": 19297 }
137
<jupyter_start><jupyter_text>Derriรจre le pipeline (TensorFlow) Installez la bibliothรจque ๐Ÿค— *Transformers* pour exรฉcuter ce *notebook*.<jupyter_code>!pip install transformers[sentencepiece] from transformers import pipeline classifier = pipeline("sentiment-analysis", model="tblard/tf-allocine") classifier( ["J'ai attendu un cours d'HuggingFace toute ma vie.", "Je dรฉteste tellement รงa !"] ) from transformers import AutoTokenizer checkpoint = "tblard/tf-allocine" tokenizer = AutoTokenizer.from_pretrained(checkpoint) raw_inputs = [ "J'ai attendu un cours d'HuggingFace toute ma vie.", "Je dรฉteste tellement รงa !", ] inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="tf") print(inputs) from transformers import AutoModel checkpoint = "tblard/tf-allocine" model = AutoModel.from_pretrained(checkpoint, from_tf=True) outputs = model(**inputs) print(outputs.last_hidden_state.shape) from transformers import AutoModelForSequenceClassification checkpoint = "tblard/tf-allocine" model = AutoModelForSequenceClassification.from_pretrained(checkpoint, from_tf=True) outputs = model(**inputs) print(outputs.logits.shape) print(outputs.logits) import tensorflow as tf predictions = tf.math.softmax(outputs.logits, axis=-1) print(predictions) model.config.id2label<jupyter_output><empty_output>
notebooks/course/fr/chapter2/section2_tf.ipynb/0
{ "file_path": "notebooks/course/fr/chapter2/section2_tf.ipynb", "repo_id": "notebooks", "token_count": 473 }
138
<jupyter_start><jupyter_text>Utilisation de modรจles prรฉ-entraรฎnรฉs (PyTorch) Installez la bibliothรจque ๐Ÿค— Transformers pour exรฉcuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert-base") results = camembert_fill_mask("Le camembert est <mask> :)") from transformers import CamembertTokenizer, CamembertForMaskedLM tokenizer = CamembertTokenizer.from_pretrained("camembert-base") model = CamembertForMaskedLM.from_pretrained("camembert-base") from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("camembert-base") model = AutoModelForMaskedLM.from_pretrained("camembert-base")<jupyter_output><empty_output>
notebooks/course/fr/chapter4/section2_pt.ipynb/0
{ "file_path": "notebooks/course/fr/chapter4/section2_pt.ipynb", "repo_id": "notebooks", "token_count": 259 }
139
<jupyter_start><jupyter_text>Normalisation et prรฉtokenization. Installez les bibliothรจques ๐Ÿค— *Transformers* et ๐Ÿค— *Datasets* pour exรฉcuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("camembert-base") print(type(tokenizer.backend_tokenizer)) print(tokenizer.backend_tokenizer.normalizer.normalize_str("Hรฉllรฒ hรดw are รผ?")) # Ne semble pas marcher sur le franรงais tokenizer_fr = AutoTokenizer.from_pretrained("camembert-base") tokenizer_fr.backend_tokenizer.normalizer.normalize_str("Bรถnjoรนr commรจnt vas tรผ ?") tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str("Hello, how are you?") tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str("Hello, how are you?") tokenizer = AutoTokenizer.from_pretrained("t5-small") tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str("Hello, how are you?")<jupyter_output><empty_output>
notebooks/course/fr/chapter6/section4.ipynb/0
{ "file_path": "notebooks/course/fr/chapter6/section4.ipynb", "repo_id": "notebooks", "token_count": 362 }
140
<jupyter_start><jupyter_text>Rรฉponses aux questions (TensorFlow) Installez les bibliothรจques Transformers et Datasets pour exรฉcuter ce *notebook*.<jupyter_code>!pip install datasets transformers[sentencepiece] !apt install git-lfs<jupyter_output><empty_output><jupyter_text>Vous aurez besoin de configurer git, adaptez votre email et votre nom dans la cellule suivante.<jupyter_code>!git config --global user.email "[email protected]" !git config --global user.name "Your Name"<jupyter_output><empty_output><jupyter_text>Vous devrez รฉgalement รชtre connectรฉ au Hub d'Hugging Face. Exรฉcutez ce qui suit et entrez vos informations d'identification.<jupyter_code>from huggingface_hub import notebook_login notebook_login() from datasets import load_dataset raw_datasets = load_dataset("piaf") # piaf n'ayant pas de jeu de donnรฉes de validation, nous en crรฉons un raw_datasets = raw_datasets['train'] raw_datasets = raw_datasets.train_test_split(test_size=0.2, shuffle=True) raw_datasets print("Context: ", raw_datasets["train"][0]["context"]) print("Question: ", raw_datasets["train"][0]["question"]) print("Answer: ", raw_datasets["train"][0]["answers"]) raw_datasets["train"].filter(lambda x: len(x["answers"]["text"]) != 1) print(raw_datasets["test"][0]["answers"]) print(raw_datasets["test"][2]["answers"]) print(raw_datasets["test"][2]["context"]) print(raw_datasets["test"][2]["question"]) from transformers import AutoTokenizer model_checkpoint = "camembert-base" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) tokenizer.is_fast context = raw_datasets["train"][0]["context"] question = raw_datasets["train"][0]["question"] inputs = tokenizer(question, context) tokenizer.decode(inputs["input_ids"]) inputs = tokenizer( question, context, max_length=100, truncation="only_second", stride=50, return_overflowing_tokens=True, ) for ids in inputs["input_ids"]: print(tokenizer.decode(ids)) inputs = tokenizer( question, context, max_length=100, truncation="only_second", stride=50, return_overflowing_tokens=True, return_offsets_mapping=True, ) inputs.keys() inputs["overflow_to_sample_mapping"] inputs = tokenizer( raw_datasets["train"][2:6]["question"], raw_datasets["train"][2:6]["context"], max_length=100, truncation="only_second", stride=50, return_overflowing_tokens=True, return_offsets_mapping=True, ) print(f"The 4 examples gave {len(inputs['input_ids'])} features.") print(f"Here is where each comes from: {inputs['overflow_to_sample_mapping']}.") answers = raw_datasets["train"][2:6]["answers"] start_positions = [] end_positions = [] for i, offset in enumerate(inputs["offset_mapping"]): sample_idx = inputs["overflow_to_sample_mapping"][i] answer = answers[sample_idx] start_char = answer["answer_start"][0] end_char = answer["answer_start"][0] + len(answer["text"][0]) sequence_ids = inputs.sequence_ids(i) # Trouver le dรฉbut et la fin du contexte idx = 0 while sequence_ids[idx] != 1: idx += 1 context_start = idx while sequence_ids[idx] == 1: idx += 1 context_end = idx - 1 # Si la rรฉponse n'est pas entiรจrement dans le contexte, l'รฉtiquette est (0, 0) if offset[context_start][0] > start_char or offset[context_end][1] < end_char: start_positions.append(0) end_positions.append(0) else: # Sinon, ce sont les positions de dรฉbut et de fin du token idx = context_start while idx <= context_end and offset[idx][0] <= start_char: idx += 1 start_positions.append(idx - 1) idx = context_end while idx >= context_start and offset[idx][1] >= end_char: idx -= 1 end_positions.append(idx + 1) start_positions, end_positions idx = 0 sample_idx = inputs["overflow_to_sample_mapping"][idx] answer = answers[sample_idx]["text"][0] start = start_positions[idx] end = end_positions[idx] labeled_answer = tokenizer.decode(inputs["input_ids"][idx][start : end + 1]) print(f"Theoretical answer: {answer}, labels give: {labeled_answer}") idx = 4 sample_idx = inputs["overflow_to_sample_mapping"][idx] answer = answers[sample_idx]["text"][0] decoded_example = tokenizer.decode(inputs["input_ids"][idx]) print(f"Theoretical answer: {answer}, decoded example: {decoded_example}") max_length = 384 stride = 128 def preprocess_training_examples(examples): questions = [q.strip() for q in examples["question"]] inputs = tokenizer( questions, examples["context"], max_length=max_length, truncation="only_second", stride=stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) offset_mapping = inputs.pop("offset_mapping") sample_map = inputs.pop("overflow_to_sample_mapping") answers = examples["answers"] start_positions = [] end_positions = [] for i, offset in enumerate(offset_mapping): sample_idx = sample_map[i] answer = answers[sample_idx] start_char = answer["answer_start"][0] end_char = answer["answer_start"][0] + len(answer["text"][0]) sequence_ids = inputs.sequence_ids(i) # Trouver le dรฉbut et la fin du contexte idx = 0 while sequence_ids[idx] != 1: idx += 1 context_start = idx while sequence_ids[idx] == 1: idx += 1 context_end = idx - 1 # Si la rรฉponse n'est pas entiรจrement dans le contexte, l'รฉtiquette est (0, 0) if offset[context_start][0] > start_char or offset[context_end][1] < end_char: start_positions.append(0) end_positions.append(0) else: # Sinon, ce sont les positions de dรฉbut et de fin du token idx = context_start while idx <= context_end and offset[idx][0] <= start_char: idx += 1 start_positions.append(idx - 1) idx = context_end while idx >= context_start and offset[idx][1] >= end_char: idx -= 1 end_positions.append(idx + 1) inputs["start_positions"] = start_positions inputs["end_positions"] = end_positions return inputs train_dataset = raw_datasets["train"].map( preprocess_training_examples, batched=True, remove_columns=raw_datasets["train"].column_names, ) len(raw_datasets["train"]), len(train_dataset) def preprocess_validation_examples(examples): questions = [q.strip() for q in examples["question"]] inputs = tokenizer( questions, examples["context"], max_length=max_length, truncation="only_second", stride=stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) sample_map = inputs.pop("overflow_to_sample_mapping") example_ids = [] for i in range(len(inputs["input_ids"])): sample_idx = sample_map[i] example_ids.append(examples["id"][sample_idx]) sequence_ids = inputs.sequence_ids(i) offset = inputs["offset_mapping"][i] inputs["offset_mapping"][i] = [ o if sequence_ids[k] == 1 else None for k, o in enumerate(offset) ] inputs["example_id"] = example_ids return inputs validation_dataset = raw_datasets["test"].map( preprocess_validation_examples, batched=True, remove_columns=raw_datasets["test"].column_names, ) len(raw_datasets["test"]), len(validation_dataset) small_eval_set = raw_datasets["test"].select(range(100)) trained_checkpoint = "etalab-ia/camembert-base-squadFR-fquad-piaf" tokenizer = AutoTokenizer.from_pretrained(trained_checkpoint) eval_set = small_eval_set.map( preprocess_validation_examples, batched=True, remove_columns=raw_datasets["test"].column_names, ) import tensorflow as tf from transformers import TFAutoModelForQuestionAnswering eval_set_for_model = eval_set.remove_columns(["example_id", "offset_mapping"]) eval_set_for_model.set_format("numpy") batch = {k: eval_set_for_model[k] for k in eval_set_for_model.column_names} trained_model = TFAutoModelForQuestionAnswering.from_pretrained(trained_checkpoint) outputs = trained_model(**batch) start_logits = outputs.start_logits.numpy() end_logits = outputs.end_logits.numpy() import collections example_to_features = collections.defaultdict(list) for idx, feature in enumerate(eval_set): example_to_features[feature["example_id"]].append(idx) import numpy as np n_best = 20 max_answer_length = 30 predicted_answers = [] for example in small_eval_set: example_id = example["id"] context = example["context"] answers = [] for feature_index in example_to_features[example_id]: start_logit = start_logits[feature_index] end_logit = end_logits[feature_index] offsets = eval_set["offset_mapping"][feature_index] start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist() end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Ignorez les rรฉponses qui ne sont pas entiรจrement dans le contexte if offsets[start_index] is None or offsets[end_index] is None: continue # Ignorer les rรฉponses dont la longueur est soit < 0 soit > max_answer_length if ( end_index < start_index or end_index - start_index + 1 > max_answer_length ): continue answers.append( { "text": context[offsets[start_index][0] : offsets[end_index][1]], "logit_score": start_logit[start_index] + end_logit[end_index], } ) best_answer = max(answers, key=lambda x: x["logit_score"]) predicted_answers.append({"id": example_id, "prediction_text": best_answer["text"]}) from datasets import load_metric metric = load_metric("squad") theoretical_answers = [ {"id": ex["id"], "answers": ex["answers"]} for ex in small_eval_set ] print(predicted_answers[0]) print(theoretical_answers[0]) metric.compute(predictions=predicted_answers, references=theoretical_answers) from tqdm.auto import tqdm def compute_metrics(start_logits, end_logits, features, examples): example_to_features = collections.defaultdict(list) for idx, feature in enumerate(features): example_to_features[feature["example_id"]].append(idx) predicted_answers = [] for example in tqdm(examples): example_id = example["id"] context = example["context"] answers = [] # Parcourir en boucle toutes les fonctionnalitรฉs associรฉes ร  cet exemple for feature_index in example_to_features[example_id]: start_logit = start_logits[feature_index] end_logit = end_logits[feature_index] offsets = features[feature_index]["offset_mapping"] start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist() end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Ignorez les rรฉponses qui ne sont pas entiรจrement dans le contexte if offsets[start_index] is None or offsets[end_index] is None: continue # Sauter les rรฉponses dont la longueur est soit < 0, soit > max_answer_length if ( end_index < start_index or end_index - start_index + 1 > max_answer_length ): continue answer = { "text": context[offsets[start_index][0] : offsets[end_index][1]], "logit_score": start_logit[start_index] + end_logit[end_index], } answers.append(answer) # Sรฉlectionnez la rรฉponse avec le meilleur score if len(answers) > 0: best_answer = max(answers, key=lambda x: x["logit_score"]) predicted_answers.append( {"id": example_id, "prediction_text": best_answer["text"]} ) else: predicted_answers.append({"id": example_id, "prediction_text": ""}) theoretical_answers = [{"id": ex["id"], "answers": ex["answers"]} for ex in examples] return metric.compute(predictions=predicted_answers, references=theoretical_answers) compute_metrics(start_logits, end_logits, eval_set, small_eval_set) model = TFAutoModelForQuestionAnswering.from_pretrained(model_checkpoint) from transformers import DefaultDataCollator data_collator = DefaultDataCollator(return_tensors="tf") tf_train_dataset = model.prepare_tf_dataset( train_dataset, collate_fn=data_collator, shuffle=True, batch_size=16) tf_eval_dataset = model.prepare_tf_dataset( validation_dataset, collate_fn=data_collator, shuffle=False, batch_size=16) from transformers import create_optimizer from transformers.keras_callbacks import PushToHubCallback import tensorflow as tf # Le nombre d'รฉtapes d'entraรฎnement est le nombre d'รฉchantillons dans le jeu de donnรฉes, divisรฉ par la taille du batch puis multipliรฉ # par le nombre total d'รฉpoques. Notez que le jeu de donnรฉes tf_train_dataset est ici un batch de donnรฉes tf.data.Dataset, # pas le jeu de donnรฉes original Hugging Face, donc son len() est dรฉjร  num_samples // batch_size. num_train_epochs = 3 num_train_steps = len(tf_train_dataset) * num_train_epochs optimizer, schedule = create_optimizer( init_lr=2e-5, num_warmup_steps=0, num_train_steps=num_train_steps, weight_decay_rate=0.01, ) model.compile(optimizer=optimizer) # Entraรฎner en mixed-precision float16 tf.keras.mixed_precision.set_global_policy("mixed_float16") from transformers.keras_callbacks import PushToHubCallback callback = PushToHubCallback(output_dir="camembert-base-finetuned-piaf", tokenizer=tokenizer) # Nous allons faire la validation aprรจs, donc pas de validation au milieu de l'entraรฎnement model.fit(tf_train_dataset, callbacks=[callback], epochs=num_train_epochs) predictions = model.predict(tf_eval_dataset) compute_metrics( predictions["start_logits"], predictions["end_logits"], validation_dataset, raw_datasets["test"], ) from transformers import pipeline # Remplacez par votre propre checkpoint model_checkpoint = "huggingface-course/camembert-finetuned-piaf" question_answerer = pipeline("question-answering", model=model_checkpoint) context = """ ๐Ÿค— Transformers est soutenu par les trois bibliothรจques d'apprentissage profond les plus populaires - Jax, PyTorch et TensorFlow - avec une intรฉgration transparente entre elles. Il est simple d'entraรฎner vos modรจles avec l'une avant de les charger pour l'infรฉrence avec l'autre. """ question = "Quelles sont les bibliothรจques d'apprentissage profond derriรจre ๐Ÿค— Transformers ?" question_answerer(question=question, context=context)<jupyter_output><empty_output>
notebooks/course/fr/chapter7/section7_tf.ipynb/0
{ "file_path": "notebooks/course/fr/chapter7/section7_tf.ipynb", "repo_id": "notebooks", "token_count": 6501 }
141
<jupyter_start><jupyter_text>ver since Stable Diffusion took the world by storm, people have been looking for ways to have more control over the results of the generation process. ControlNet provides a minimal interface allowing users to customize the generation process up to a great extent. With [ControlNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/controlnet), users can easily condition the generation with different spatial contexts such as a depth map, a segmentation map, a scribble, keypoints, and so on!We can turn a cartoon drawing into a realistic photo with incredible coherence. Realistic Lofi Girl Or even use it as your interior designer. Before After You can turn your sketch scribble into an artistic drawing. Before After Also, make some of the famous logos coming to life. Before After With ControlNet, the sky is the limit ๐ŸŒ  In this notebook, we first introduce the [`StableDiffusionControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/controlnet) and then show how it can be applied for various control conditionings. Letโ€™s get controlling! ControlNet: TL;DRControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) by Lvmin Zhang and Maneesh Agrawala. It introduces a framework that allows for supporting various spatial contexts that can serve as additional conditionings to Diffusion models such as Stable Diffusion. Training ControlNet is comprised of the following steps:1. Cloning the pre-trained parameters of a Diffusion model, such as Stable Diffusion's latent UNet, (referred to as โ€œtrainable copyโ€) while also maintaining the pre-trained parameters separately (โ€locked copyโ€). It is done so that the locked parameter copy can preserve the vast knowledge learned from a large dataset, whereas the trainable copy is employed to learn task-specific aspects. 2. The trainable and locked copies of the parameters are connected via โ€œzero convolutionโ€ layers (see [here](https://github.com/lllyasviel/ControlNetcontrolnet) for more information) which are optimized as a part of the ControlNet framework. This is a training trick to preserve the semantics already learned by frozen model as the new conditions are trained.Pictorially, training a ControlNet looks like so: The diagram is taken from here.A sample from the training set for ControlNet-like training looks like this (additional conditioning is via edge maps): Prompt Original Image Conditioning "bird" Similarly, if we were to condition ControlNet with semantic segmentation maps, a training sample would be like so: Prompt Original Image Conditioning "big house" Every new type of conditioning requires training a new copy of ControlNet weights. The paper proposed 8 different conditioning models that are all [supported](https://huggingface.co/lllyasviel?search=controlnet) in Diffusers! For inference, both the pre-trained diffusion models weights as well as the trained ControlNet weights are needed. For example, using [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with a ControlNet checkpoint require roughly 700 million more parameters compared to just using the original Stable Diffusion model, which makes ControlNet a bit more memory-expensive for inference.Because the pre-trained diffusion models are looked during training, one only needs to switch out the ControlNet parameters when using a different conditioning. This makes it fairly simple to deploy multiple ControlNet weights in one application as we will see below. The `StableDiffusionControlNetPipeline`Before we begin, we want to give a huge shout-out to the community contributor [Takuma Mori](https://github.com/takuma104) for having led the integration of ControlNet into Diffusers โค๏ธ .To experiment with ControlNet, Diffusers exposes the [`StableDiffusionControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/controlnet) similar tothe [other Diffusers pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview). Central to the [`StableDiffusionControlNetPipeline`] is the `controlnet` argument which lets us provide a particular trained [`ControlNetModel`](https://huggingface.co/docs/diffusers/main/en/api/modelsdiffusers.ControlNetModel) instance while keeping the pre-trained diffusion model weights the same.We will explore different use cases with the `StableDiffusionControlNetPipeline` in this blog post. The first ControlNet model we are going to walk through is the [Canny model](https://huggingface.co/runwayml/stable-diffusion-v1-5) - this is one of the most popular models that generated some of the amazing images you are libely seeing on the internet.We welcome you to run the code snippets shown in the sections below with [this Colab Notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb).Before we begin, let's make sure we have all the necessary libraries installed:<jupyter_code>!pip install -q diffusers==0.14.0 transformers xformers git+https://github.com/huggingface/accelerate.git<jupyter_output><empty_output><jupyter_text>To process different conditionings depending on the chosen ControlNet, we also need to install some additional dependencies:- [OpenCV](https://opencv.org/)- [controlnet-aux](https://github.com/patrickvonplaten/controlnet_auxcontrolnet-auxiliary-models) - a simple collection of pre-processing models for ControlNet<jupyter_code>!pip install -q opencv-contrib-python !pip install -q controlnet_aux<jupyter_output><empty_output><jupyter_text>We will use the famous painting ["Girl With A Pearl"](https://en.wikipedia.org/wiki/Girl_with_a_Pearl_Earring) for this example. So, let's download the image and take a look:<jupyter_code>from diffusers import StableDiffusionControlNetPipeline from diffusers.utils import load_image image = load_image( "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" ) image<jupyter_output>WARNING:xformers:A matching Triton is not available, some optimizations will not be enabled. Error caught was: No module named 'triton'<jupyter_text>Next, we will put the image through the canny pre-processor:<jupyter_code>import cv2 from PIL import Image import numpy as np image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) canny_image<jupyter_output><empty_output><jupyter_text>As we can see, it is essentially edge detection.Now, we load [runwaylml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as well as the [ControlNet model for canny edges](https://huggingface.co/lllyasviel/sd-controlnet-canny). The models are loaded in half-precision (`torch.dtype`) to allow for fast and memory-efficient inference.<jupyter_code>from diffusers import StableDiffusionControlNetPipeline, ControlNetModel import torch controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 )<jupyter_output><empty_output><jupyter_text>Instead of using Stable Diffusion's default [PNDMScheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/pndm), we use one of the currently fastest diffusion model schedulers, called [UniPCMultistepScheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/unipc).Choosing an improved scheduler can drastically reduce inference time - in our case we are able to reduce the number of inference steps from 50 to 20 while more or less keeping the same image generation quality. More information regarding schedulers can be found [here](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers).<jupyter_code>from diffusers import UniPCMultistepScheduler pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)<jupyter_output><empty_output><jupyter_text>Instead of loading our pipeline directly to GPU, we instead enable smart CPU offloading which can be achieved with the [`enable_model_cpu_offload` function](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/controlnetdiffusers.StableDiffusionControlNetPipeline.enable_model_cpu_offload).Remember that during inference diffusion models, such as Stable Diffusion require not just one but multiple model components that are run sequentially.In the case of Stable Diffusion with ControlNet, we first use the CLIP text encoder, then the diffusion model unet and control net, then the VAE decoder and finally run a safety checker.Most components are only run once during the diffusion process and are thus not required to occupy GPU memory all the time. By enabling smart model offloading, we make sure that each component is only loaded into GPU when it's needed so that we can significantly save memory consumption without significantly slowing down infenence.**Note**: When running `enable_model_cpu_offload`, do not manually move the pipeline to GPU with `.to("cuda")` - once CPU offloading is enabled, the pipeline automatically takes care of GPU memory management.<jupyter_code>pipe.enable_model_cpu_offload()<jupyter_output><empty_output><jupyter_text>Finally, we want to take full advantage of the amazing [FlashAttention/xformers](https://github.com/facebookresearch/xformers) attention layer acceleration, so let's enable this! If this command does not work for you, you might not have `xformers` correctly installed.In this case, you can just skip the following line of code.<jupyter_code>pipe.enable_xformers_memory_efficient_attention()<jupyter_output><empty_output><jupyter_text>Now we are ready to run the ControlNet pipeline!We still provide a prompt to guide the image generation process, just like what we would normally do with a Stable Diffusion image-to-image pipeline. However, ControlNet will allow a lot more control over the generated image because we will be able to control the exact composition in generated image with the canny edge image we just created.It will be fun to see some images where contemporary celebrities posing for this exact same painting from the 17th century. And it's really easy to do that with ControlNet, all we have to do is to include the names of these celebrities in the prompt!<jupyter_code>def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid prompt = ", best quality, extremely detailed" prompt = [t + prompt for t in ["Sandra Oh", "Kim Kardashian", "rihanna", "taylor swift"]] generator = [torch.Generator(device="cpu").manual_seed(2) for i in range(len(prompt))] output = pipe( prompt, canny_image, negative_prompt=["monochrome, lowres, bad anatomy, worst quality, low quality"] * len(prompt), generator=generator, num_inference_steps=20, ) image_grid(output.images, 2, 2)<jupyter_output><empty_output><jupyter_text>We can effortlessly combine ControlNet combines with fine-tuning too! For example, we can fine-tune a model with [DreamBooth](https://huggingface.co/docs/diffusers/main/en/training/dreambooth), and use it to render ourselves into different scenes.In this post, we are going to use our beloved Mr Potato Head as an example to show how to use ControlNet with DreamBooth.We can use the same ContrlNet, however instead of using the Stable Diffusion 1.5, we are going to load the [Mr Potato Head model](https://huggingface.co/sd-dreambooth-library/mr-potato-head) into our pipeline - Mr Potato Head is a Stable Diffusion model fine-tuned with Mr Potato Head concept using Dreambooth ๐Ÿฅ”Let's run the above commands again, keeping the same `controlnet` though!<jupyter_code>model_id = "sd-dreambooth-library/mr-potato-head" pipe = StableDiffusionControlNetPipeline.from_pretrained( model_id, controlnet=controlnet, torch_dtype=torch.float16, ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.enable_xformers_memory_efficient_attention()<jupyter_output><empty_output><jupyter_text>Now let's make Mr Potato posing for [Johannes Vermeer](https://en.wikipedia.org/wiki/Johannes_Vermeer)!<jupyter_code>generator = torch.manual_seed(2) prompt = "a photo of sks mr potato head, best quality, extremely detailed" output = pipe( prompt, canny_image, negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality", generator=generator, num_inference_steps=20, )<jupyter_output><empty_output><jupyter_text>It is noticeable that Mr Potato Head is not the best candidate but he tried his best and did a pretty good job in capture some of the essence ๐ŸŸ<jupyter_code>output.images[0]<jupyter_output><empty_output><jupyter_text>It is noticeable that Mr Potato Head is not the best candidate but he tried his best and did a pretty good job in capture some of the essence ๐ŸŸ Another exclusive application of ControlNet is that we can take a pose from one image and reuse it to generate a different image with the exact same pose. So in this next example, we are going to teach superheroes how to do yoga using [Open Pose ControlNet](https://huggingface.co/lllyasviel/sd-controlnet-openpose)!First, we will need to get some images of people doing yoga:<jupyter_code>urls = "yoga1.jpeg", "yoga2.jpeg", "yoga3.jpeg", "yoga4.jpeg" imgs = [ load_image("https://hf.co/datasets/YiYiXu/controlnet-testing/resolve/main/" + url) for url in urls ] image_grid(imgs, 2, 2)<jupyter_output><empty_output><jupyter_text>Now let's extract yoga poses using the OpenPose pre-processors that are handily available via `controlnet_aux`.<jupyter_code>from controlnet_aux import OpenposeDetector model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") poses = [model(img) for img in imgs] image_grid(poses, 2, 2)<jupyter_output><empty_output><jupyter_text>To use these yoga poses to generate new images, let's create a [Open Pose ControlNet](https://huggingface.co/lllyasviel/sd-controlnet-openpose). We will generate some super-hero images but in the yoga poses shown above. Let's go ๐Ÿš€<jupyter_code>controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-openpose", torch_dtype=torch.float16 ) model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionControlNetPipeline.from_pretrained( model_id, controlnet=controlnet, torch_dtype=torch.float16, ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.enable_xformers_memory_efficient_attention()<jupyter_output><empty_output><jupyter_text>Now it's yoga time!<jupyter_code>generator = [torch.Generator(device="cpu").manual_seed(2) for i in range(4)] prompt = "super-hero character, best quality, extremely detailed" output = pipe( [prompt] * 4, poses, negative_prompt=["monochrome, lowres, bad anatomy, worst quality, low quality"] * 4, generator=generator, num_inference_steps=20, ) image_grid(output.images, 2, 2)<jupyter_output><empty_output>
notebooks/diffusers/controlnet.ipynb/0
{ "file_path": "notebooks/diffusers/controlnet.ipynb", "repo_id": "notebooks", "token_count": 4606 }
142
<jupyter_start><jupyter_text>๐Ÿงจ Fast Stable Diffusion in free Colab with JAX / Flax on TPU!๐Ÿค— Hugging Face [Diffusers](https://github.com/huggingface/diffusers) supports Flax since version `0.5.1`! This allows for snappy inference on Google TPUs, such as those available in Colab, Kaggle or through Google Cloud Platform.If you want more details about how Stable Diffusion works using JAX please refer to [our blog](https://huggingface.co/blog/stable_diffusion_jax) or [this Colab notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb). Initial Steps<jupyter_code>#@title Install required libraries !pip install huggingface_hub==0.10.0 gradio #@title Login to the Hugging Face Hub #@markdown Make sure you also have read and accept the LICENSE of the [Stable Diffusion model](https://huggingface.co/CompVis/stable-diffusion-v1-4), otherwise you may find an error from huggingface_hub import notebook_login !git config --global credential.helper store notebook_login()<jupyter_output><empty_output><jupyter_text>SetupRun all cells for setting up JAX and the model<jupyter_code>#@title Set up JAX #@markdown If you see an error, make sure you are using a TPU backend. Select `Runtime` in the menu above, then select the option "Change runtime type" and then select `TPU` under the `Hardware accelerator` setting. !pip install --upgrade jax jaxlib import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu('tpu_driver_20221011') !pip install flax diffusers transformers ftfy jax.devices() #@title Import required libraries import numpy as np import jax import jax.numpy as jnp from pathlib import Path from jax import pmap from flax.jax_utils import replicate from flax.training.common_utils import shard from PIL import Image from huggingface_hub import notebook_login from diffusers import FlaxStableDiffusionPipeline import torch def image_grid(imgs, rows, cols): w,h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid #@title Load the model #@markdown It's safe to ignore the warning messages, everything is okay pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16) p_params = replicate(params)<jupyter_output><empty_output><jupyter_text>Run!<jupyter_code>#@title Set and go! #@markdown First run takes ~50s as it compiles stuff. Then, it should take around ~8s per prompt! prompt = "the spirit of a tamagotchi wandering in the city of Vienna" #@param {type:"string"} num_inference_steps = 50 #@param {type:"integer"} seed = -1 #@param {type:"integer"} #@markdown `-1` will set a random seed. You can replace that to any integer for reproducible results if(seed == -1): import random random_int = random.randint(0, 2147483647) real_seed = random_int else: real_seed = seed prng_seed = jax.random.PRNGKey(real_seed) prng_seed = jax.random.split(prng_seed, jax.device_count()) num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, p_params, prng_seed, num_inference_steps, jit=True).images images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) if(seed == -1): print(f"Seed used {real_seed}") image_grid(images_pil, 2, 4) #@title Easy to use and shareble UI with Gradio #@markdown Run your demo using a Gradio UI like on this screenshot #@markdown <img src="https://i.imgur.com/H6MtbI5.png" width="900" /> import gradio as gr def inference(prompt, seed): all_images = [] print(seed) prng_seed = jax.random.PRNGKey(int(seed)) prng_seed = jax.random.split(prng_seed, jax.device_count()) num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, p_params, prng_seed, num_inference_steps, jit=True).images images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) return images_pil import random random_int = random.randint(0, 2147483647) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="prompt") seed = gr.Number(label="seed", value=random_int) run = gr.Button(value="Run") with gr.Column(): gallery = gr.Gallery(show_label=False).style(grid=[2]) run.click(inference, inputs=[prompt, seed], outputs=gallery) gr.Examples([["the spirit of a tamagotchi wandering in the city of Vienna", 1,1]], [prompt], gallery, inference, cache_examples=False) demo.launch(debug=True)<jupyter_output>Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch(). Running on public URL: https://28004.gradio.app This share link expires in 72 hours. For free permanent hosting, check out Spaces: https://huggingface.co/spaces
notebooks/diffusers/stable_diffusion_fast_jax.ipynb/0
{ "file_path": "notebooks/diffusers/stable_diffusion_fast_jax.ipynb", "repo_id": "notebooks", "token_count": 1808 }
143
<jupyter_start><jupyter_text>Before we can browse the rest of the notebook, we need to install the dependencies: this example uses `datasets` and `transformers`. To use TPUs on colab, we need to install `torch_xla` and the last line install `accelerate` from source since we the features we are using are very recent and not released yet.<jupyter_code>! pip install datasets transformers evaluate ! pip install cloud-tpu-client==0.10 torch==2.0.0 ! pip install https://storage.googleapis.com/tpu-pytorch/wheels/colab/torch_xla-2.0-cp310-cp310-linux_x86_64.whl ! pip install git+https://github.com/huggingface/accelerate<jupyter_output><empty_output><jupyter_text>Here are all the imports we will need for this notebook.<jupyter_code>import torch from torch.utils.data import DataLoader from accelerate import Accelerator, DistributedType from datasets import load_dataset, load_metric from transformers import ( AdamW, AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed, ) from tqdm.auto import tqdm import datasets import transformers<jupyter_output>WARNING:root:TPU has started up successfully with version pytorch-1.8<jupyter_text>This notebook can run with any model checkpoint on the [model hub](https://huggingface.co/models) that has a version with a classification head. Here we select [`bert-base-cased`](https://huggingface.co/bert-base-cased).<jupyter_code>model_checkpoint = "bert-base-cased"<jupyter_output><empty_output><jupyter_text>The next two sections explain how we load and prepare our data for our model, If you are only interested on seeing how ๐Ÿค— Accelerate works, feel free to skip them (but make sure to execute all cells!) Load the data To load the dataset, we use the `load_dataset` function from ๐Ÿค— Datasets. It will download and cache it (so the download won't happen if we restart the notebook).<jupyter_code>raw_datasets = load_dataset("glue", "mrpc")<jupyter_output>WARNING:datasets.builder:Reusing dataset glue (/root/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)<jupyter_text>The `raw_datasets` object itself is [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.htmldatasetdict), which contains one key for the training, validation and test set (with more keys for the mismatched validation and test set in the special case of `mnli`).<jupyter_code>raw_datasets<jupyter_output><empty_output><jupyter_text>To access an actual element, you need to select a split first, then give an index:<jupyter_code>raw_datasets["train"][0]<jupyter_output><empty_output><jupyter_text>To get a sense of what the data looks like, the following function will show some examples picked randomly in the dataset.<jupyter_code>import datasets import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset)-1) while pick in picks: pick = random.randint(0, len(dataset)-1) picks.append(pick) df = pd.DataFrame(dataset[picks]) for column, typ in dataset.features.items(): if isinstance(typ, datasets.ClassLabel): df[column] = df[column].transform(lambda i: typ.names[i]) display(HTML(df.to_html())) show_random_elements(raw_datasets["train"])<jupyter_output><empty_output><jupyter_text>Preprocess the data Before we can feed those texts to our model, we need to preprocess them. This is done by a ๐Ÿค— Transformers `Tokenizer` which will (as the name indicates) tokenize the inputs (including converting the tokens to their corresponding IDs in the pretrained vocabulary) and put it in a format the model expects, as well as generate the other inputs that model requires.To do all of this, we instantiate our tokenizer with the `AutoTokenizer.from_pretrained` method, which will ensure:we get a tokenizer that corresponds to the model architecture we want to use,we download the vocabulary used when pretraining this specific checkpoint.That vocabulary will be cached, so it's not downloaded again the next time we run the cell.<jupyter_code>from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)<jupyter_output><empty_output><jupyter_text>By default (unless you pass `use_fast=Fast` to the call above) it will use one of the fast tokenizers (backed by Rust) from the ๐Ÿค— Tokenizers library. Those fast tokenizers are available for almost all models, but if you got an error with the previous call, remove that argument.You can directly call this tokenizer on one sentence or a pair of sentences:<jupyter_code>tokenizer("Hello, this one sentence!", "And this sentence goes with it.")<jupyter_output><empty_output><jupyter_text>Depending on the model you selected, you will see different keys in the dictionary returned by the cell above. They don't matter much for what we're doing here (just know they are required by the model we will instantiate later), you can learn more about them in [this tutorial](https://huggingface.co/transformers/preprocessing.html) if you're interested. We can them write the function that will preprocess our samples. We just feed them to the `tokenizer` with the argument `truncation=True`. We also need all of our samples to have the same length (we will train on TPU and they need fixed shapes so we won't pad to the maximum length of a batch) which is done with `padding=True`. The `max_length` argument is used both for the truncation and padding (short inputs are padded to that length and long inputs are truncated to it).<jupyter_code>def tokenize_function(examples): outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, padding="max_length", max_length=128) return outputs<jupyter_output><empty_output><jupyter_text>This function works with one or several examples. In the case of several examples, the tokenizer will return a list of lists for each key:<jupyter_code>tokenize_function(raw_datasets['train'][:5])<jupyter_output><empty_output><jupyter_text>To apply this function on all the sentences (or pairs of sentences) in our dataset, we just use the `map` method of our `dataset` object we created earlier. This will apply the function on all the elements of all the splits in `dataset`, so our training, validation and testing data will be preprocessed in one single command.<jupyter_code>tokenized_datasets = raw_datasets.map(tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"])<jupyter_output><empty_output><jupyter_text>Even better, the results are automatically cached by the ๐Ÿค— Datasets library to avoid spending time on this step the next time you run your notebook. The ๐Ÿค— Datasets library is normally smart enough to detect when the function you pass to map has changed (and thus requires to not use the cache data). For instance, it will properly detect if you change the task in the first cell and rerun the notebook. ๐Ÿค— Datasets warns you when it uses cached files, you can pass `load_from_cache_file=False` in the call to `map` to not use the cached files and force the preprocessing to be applied again.Note that we passed `batched=True` to encode the texts by batches together. This is to leverage the full benefit of the fast tokenizer we loaded earlier, which will use multi-threading to treat the texts in a batch concurrently.Lastly, we remove the columns that our model will not use. We also need to rename the `label` column to `labels` as this is what our model will expect.<jupyter_code>tokenized_datasets = tokenized_datasets.rename_column("label", "labels")<jupyter_output><empty_output><jupyter_text>To double-check we only have columns that are accepted as arguments for the model we will instantiate, we can look at them here.<jupyter_code>tokenized_datasets["train"].features<jupyter_output><empty_output><jupyter_text>The model we will be using is a `BertModelForSequenceClassification`. We can check its signature in the [Transformers documentation](https://huggingface.co/transformers/model_doc/bert.htmltransformers.BertForSequenceClassification) and all seems to be right! The last step is to set our datasets in the `"torch"` format, so that each item in it is now a dictionary with tensor values.<jupyter_code>tokenized_datasets.set_format("torch")<jupyter_output><empty_output><jupyter_text>A first look at the model Now that our data is ready, we can download the pretrained model and fine-tune it. Since all our tasks are about sentence classification, we use the `AutoModelForSequenceClassification` class. Like with the tokenizer, the from_pretrained method will download and cache the model for us. The only thing we have to specify is the number of labels for our problem (which is 2 here):<jupyter_code>from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)<jupyter_output>Some weights of the model checkpoint at bert-base-cased were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias'] - This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of BertForSequenceClassification were not initialized from the model checkpoint at b[...]<jupyter_text>The warning is telling us we are throwing away some weights (the vocab_transform and vocab_layer_norm layers) and randomly initializing some other (the pre_classifier and classifier layers). This is absolutely normal in this case, because we are removing the head used to pretrain the model on a masked language modeling objective and replacing it with a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do.Note that we will are only creating the model here to look at it and debug problems. We will create the model we will train inside our training function: to train on TPU in colab, we have to create a big training function that will be executed on each code of the TPU. It's fine to do use the datasets defined before (they will be copied to each TPU core) but the model itself will need to be re-instantiated and placed on each device for it to work.Now to get the data we need to define our training and evaluation dataloaders. Again, we only create them here for debugging purposes, they will be re-instantiated in our training function, which is why we define a function that builds them.<jupyter_code>def create_dataloaders(train_batch_size=8, eval_batch_size=32): train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, batch_size=train_batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, batch_size=eval_batch_size ) return train_dataloader, eval_dataloader<jupyter_output><empty_output><jupyter_text>Let's have a look at our train and evaluation dataloaders to check a batch can go through the model.<jupyter_code>train_dataloader, eval_dataloader = create_dataloaders()<jupyter_output><empty_output><jupyter_text>We just loop through one batch. Since our datasets elements are dictionaries of tensors, it's the same for our batch and we can have a quick look at all the shapes. Note that this cell takes a bit of time to execute since we run a batch of our data through the model on the CPU (if you changed the checkpoint to a bigger model, it might take too much time so comment it out).โš  **WARNING: Running this cell will cause training_function to malfunction, as model will be used before notebook_launcher**<jupyter_code>for batch in train_dataloader: print({k: v.shape for k, v in batch.items()}) outputs = model(**batch) break<jupyter_output>{'attention_mask': torch.Size([8, 128]), 'input_ids': torch.Size([8, 128]), 'labels': torch.Size([8]), 'token_type_ids': torch.Size([8, 128])}<jupyter_text>The output of our model is a `SequenceClassifierOutput`, with the `loss` (since we provided labels) and `logits` (of shape 8, our batch size, by 2, the number of labels).<jupyter_code>outputs<jupyter_output><empty_output><jupyter_text>The last piece we will need for the model evaluation is the metric. The `datasets` library provides a function `load_metric` that allows us to easily create a `datasets.Metric` object we can use.<jupyter_code>metric = load_metric("glue", "mrpc")<jupyter_output><empty_output><jupyter_text>To use this object on some predictions we call the `compute` methode to get our metric results:<jupyter_code>predictions = outputs.logits.detach().argmax(dim=-1) metric.compute(predictions=predictions, references=batch["labels"])<jupyter_output><empty_output><jupyter_text>Unsurpringly, our model with its random head does not perform well, which is why we need to fine-tune it! Fine-tuning the model We are now ready to fine-tune this model on our dataset. As mentioned before, everything related to training needs to be in one big training function that will be executed on each TPU core, thanks to our `notebook_launcher`.It will use this dictionary of hyperparameters, so tweak anything you like in here!<jupyter_code>hyperparameters = { "learning_rate": 2e-5, "num_epochs": 3, "train_batch_size": 8, # Actual batch size will this x 8 "eval_batch_size": 32, # Actual batch size will this x 8 "seed": 42, }<jupyter_output><empty_output><jupyter_text>The two most important things to remember for training on TPUs is that your accelerator object has to be defined inside your training function, and your model should be created outside the training function. If you define your Accelerator in another cell that gets executed before the final launch (for debugging), you will need to restart your notebook as the line `accelerator = Accelerator()` needs to be executed for the first time inside the training function spwaned on each TPU core.This is because that line will look for a TPU device, and if you set it outside of the distributed training launched by `notebook_launcher`, it will perform setup that cannot be undone in your runtime and you will only have access to one TPU core until you restart the notebook.The reason we declare the model outside the loop is because on a TPU when launched from a notebook the same singular model object is used, and it is passed back and forth between all the cores automatically. Since we can't explore each piece in separate cells, comments have been left in the code. This is all pretty standard and you will notice how little the code changes from a regular training loop! The main lines added are:- `accelerator = Accelerator()` to initalize the distributed setup,- sending all objects to `accelerator.prepare`,- replace `loss.backward()` with `accelerator.backward(loss)`,- use `accelerator.gather` to gather all predictions and labels before storing them in our list of predictions/labels,- truncate predictions and labels as the prepared evaluation dataloader has a few more samples to make batches of the same size on each process.The first three are for distributed training, the last two for distributed evaluation. If you don't care about distributed evaluation, you can also just replace that part by your standard evaluation loop launched on the main process only.Other changes (which are purely cosmetic to make the output of the training readable) are:- some logging behavior behind a `if accelerator.is_main_process:`,- disable the progress bar if `accelerator.is_main_process` is `False`,- use `accelerator.print` instead of `print`.<jupyter_code>def training_function(model): # Initialize accelerator accelerator = Accelerator() # To have only one message (and not 8) per logs of Transformers or Datasets, we set the logging verbosity # to INFO for the main process only. if accelerator.is_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() train_dataloader, eval_dataloader = create_dataloaders( train_batch_size=hyperparameters["train_batch_size"], eval_batch_size=hyperparameters["eval_batch_size"] ) # The seed need to be set before we instantiate the model, as it will determine the random head. set_seed(hyperparameters["seed"]) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=hyperparameters["learning_rate"]) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) num_epochs = hyperparameters["num_epochs"] # Instantiate learning rate scheduler after preparing the training dataloader as the prepare method # may change its length. lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=len(train_dataloader) * num_epochs, ) # Instantiate a progress bar to keep track of training. Note that we only enable it on the main # process to avoid having 8 progress bars. progress_bar = tqdm(range(num_epochs * len(train_dataloader)), disable=not accelerator.is_main_process) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) model.eval() all_predictions = [] all_labels = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) # We gather predictions and labels from the 8 TPUs to have them all. all_predictions.append(accelerator.gather(predictions)) all_labels.append(accelerator.gather(batch["labels"])) # Concatenate all predictions and labels. # The last thing we need to do is to truncate the predictions and labels we concatenated # together as the prepared evaluation dataloader has a little bit more elements to make # batches of the same size on each process. all_predictions = torch.cat(all_predictions)[:len(tokenized_datasets["validation"])] all_labels = torch.cat(all_labels)[:len(tokenized_datasets["validation"])] eval_metric = metric.compute(predictions=all_predictions, references=all_labels) # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric)<jupyter_output><empty_output><jupyter_text>And we're ready for launch! It's super easy with the `notebook_launcher` from the Accelerate library.<jupyter_code>from accelerate import notebook_launcher notebook_launcher(training_function, (model,))<jupyter_output>loading configuration file https://huggingface.co/bert-base-cased/resolve/main/config.json from cache at /root/.cache/huggingface/transformers/a803e0468a8fe090683bdc453f4fac622804f49de86d7cecaee92365d4a0f829.a64a22196690e0e82ead56f388a3ef3a50de93335926ccfa20610217db589307 Model config BertConfig { "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.5.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 28996 } loading weights file https://huggingface.co/bert-base-cased/resolve/main/pytorch_model.bin from cache at /root/.cache/huggingface/transfo[...]
notebooks/examples/accelerate_examples/simple_nlp_example.ipynb/0
{ "file_path": "notebooks/examples/accelerate_examples/simple_nlp_example.ipynb", "repo_id": "notebooks", "token_count": 6454 }
144
<jupyter_start><jupyter_text>Fine-tune Pix2Struct using Hugging Face `transformers` and `datasets` ๐Ÿค—This tutorial is largely based from the [GiT tutorial](https://colab.research.google.com/drive/1HLxgrG7xZJ9FvXckNG61J72FkyrbqKAA?usp=sharing) on how to fine-tune GiT on a custom image captioning dataset. Here we will use a dummy dataset of [football players](https://huggingface.co/datasets/ybelkada/football-dataset) โšฝ that is uploaded on the Hub. The images have been manually selected together with the captions. Check the ๐Ÿค— [documentation](https://huggingface.co/docs/datasets/image_dataset) on how to create and upload your own image-text dataset. Model overviewIn this tutorial, we will load an architecture called Pix2Struct recently released by Google and made them available on ๐Ÿค— Hub! This architecture differs from other models from its pretraining procedure and the way the model extract patches from the image by using the aspect-ratio preserving patch extraction method.The release came with no more than 20 checkpoints! As each checkpoint has been finetuned on specific domain, let's finetune our own Pix2Struct to our target domain: Football players! For that we will use the [`google/pix2struct-base`](https://huggingface.co/ybelkada/pix2struct-base) which corresponds to a general usecase model that you can load to fine-tune your model. Set-up environment Run the cells below to setup the environment<jupyter_code>!pip install -q git+https://github.com/huggingface/transformers.git !pip install -q datasets<jupyter_output> โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 469.0/469.0 KB 20.1 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1.0/1.0 MB 63.8 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 132.9/132.9 KB 17.4 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 212.2/212.2 KB 23.2 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 110.5/110.5 KB 12.9 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 264.6/264.6 KB 24.1 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 199.2/199.2 KB 18.9 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 114.2/114.2 KB 14.9 MB/s eta 0:00:00  โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”[...]<jupyter_text>Load the image captioning datasetLet's load the image captioning dataset, you just need few lines of code for that. The dataset only consists of 6 images that we have manually labeled for the sake of the tutorial.<jupyter_code>from datasets import load_dataset dataset = load_dataset("ybelkada/football-dataset", split="train")<jupyter_output><empty_output><jupyter_text>Let's retrieve the caption of the first example:<jupyter_code>dataset[0]["text"]<jupyter_output><empty_output><jupyter_text>And the corresponding image<jupyter_code>dataset[0]["image"]<jupyter_output><empty_output><jupyter_text>Create PyTorch Dataset Understanding `max_patches` argumentThe paper introduces a new paradigm for processing the input image. It takes the image and create `n_patches` aspect-ratio preserving patches, and concatenates the remaining sequence with padding tokens to finally get `max_patches` patches. It appears that this argument is quite crucial for training and evaluation, as the model becomes very sensitive to this parameter.For the sake of our example, we will fine-tune a model with `max_patches=1024`.Note that most of the `-base` models have been fine-tuned with `max_patches=2048`, and `4096` for `-large` models.<jupyter_code>from torch.utils.data import Dataset, DataLoader MAX_PATCHES = 1024 class ImageCaptioningDataset(Dataset): def __init__(self, dataset, processor): self.dataset = dataset self.processor = processor def __len__(self): return len(self.dataset) def __getitem__(self, idx): item = self.dataset[idx] encoding = self.processor(images=item["image"], return_tensors="pt", add_special_tokens=True, max_patches=MAX_PATCHES) encoding = {k:v.squeeze() for k,v in encoding.items()} encoding["text"] = item["text"] return encoding<jupyter_output><empty_output><jupyter_text>Load model and processor<jupyter_code>from transformers import AutoProcessor, Pix2StructForConditionalGeneration processor = AutoProcessor.from_pretrained("ybelkada/pix2struct-base") model = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")<jupyter_output><empty_output><jupyter_text>Now that we have loaded the processor, let's load the dataset and the dataloader:<jupyter_code>def collator(batch): new_batch = {"flattened_patches":[], "attention_mask":[]} texts = [item["text"] for item in batch] text_inputs = processor(text=texts, padding="max_length", return_tensors="pt", add_special_tokens=True, max_length=20) new_batch["labels"] = text_inputs.input_ids for item in batch: new_batch["flattened_patches"].append(item["flattened_patches"]) new_batch["attention_mask"].append(item["attention_mask"]) new_batch["flattened_patches"] = torch.stack(new_batch["flattened_patches"]) new_batch["attention_mask"] = torch.stack(new_batch["attention_mask"]) return new_batch train_dataset = ImageCaptioningDataset(dataset, processor) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=2, collate_fn=collator)<jupyter_output><empty_output><jupyter_text>Train the model Let's train the model! Run the simply the cell below for training the model. We have observed that finding the best hyper-parameters was quite challenging and required a lot of trials and errors, as the model can easily enter in "collapse-model" (always predicting the same output, no matter the input) if the HP are not chosen correctly. In this example, we found out that using `AdamW` optimizer with `lr=1e-5` seemed to be the best approach.Let's also print the generation output of the model each 20 epochs!Bear in mind that the model took some time to converge, for instance to get decent results we had to let the script run for ~1hour.<jupyter_code>import torch EPOCHS = 5000 optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.train() for epoch in range(EPOCHS): print("Epoch:", epoch) for idx, batch in enumerate(train_dataloader): labels = batch.pop("labels").to(device) flattened_patches = batch.pop("flattened_patches").to(device) attention_mask = batch.pop("attention_mask").to(device) outputs = model(flattened_patches=flattened_patches, attention_mask=attention_mask, labels=labels) loss = outputs.loss print("Loss:", loss.item()) loss.backward() optimizer.step() optimizer.zero_grad() if (epoch + 1) % 20 == 0: model.eval() predictions = model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask) print("Predictions:", processor.batch_decode(predictions, skip_special_tokens=True)) model.train()<jupyter_output><empty_output><jupyter_text>Inference Let's check the results on our train dataset<jupyter_code># load image example = dataset[0] image = example["image"] image # prepare image for the model model.eval() inputs = processor(images=image, return_tensors="pt", max_patches=512).to(device) flattened_patches = inputs.flattened_patches attention_mask = inputs.attention_mask generated_ids = model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_caption)<jupyter_output><empty_output><jupyter_text>Load from the Hub Once trained you can push the model and processor on the Hub to use them later. Meanwhile you can play with the model that we have fine-tuned!<jupyter_code>import torch from transformers import Pix2StructForConditionalGeneration, AutoProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base-football").to(device) processor = AutoProcessor.from_pretrained("ybelkada/pix2struct-base-football")<jupyter_output><empty_output><jupyter_text>Let's check the results on our train dataset!<jupyter_code>from matplotlib import pyplot as plt fig = plt.figure(figsize=(18, 14)) # prepare image for the model for i, example in enumerate(dataset): image = example["image"] inputs = processor(images=image, return_tensors="pt", max_patches=1024).to(device) flattened_patches = inputs.flattened_patches attention_mask = inputs.attention_mask generated_ids = model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] fig.add_subplot(2, 3, i+1) plt.imshow(image) plt.axis("off") plt.title(f"Generated caption: {generated_caption}")<jupyter_output>A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set `padding_side='left'` when initializing the tokenizer. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set `padding_side='left'` when initializing the tokenizer. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set `padding_side='left'` when initializing the tokenizer. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set `padding_side='left'` when initializing the tokenizer. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set `padding_side='left'` when initializing the tokenizer. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set `padding_side='le[...]
notebooks/examples/image_captioning_pix2struct.ipynb/0
{ "file_path": "notebooks/examples/image_captioning_pix2struct.ipynb", "repo_id": "notebooks", "token_count": 3848 }
145
<jupyter_start><jupyter_text>If you're opening this Notebook on colab, you will probably need to install ๐Ÿค— Transformers and ๐Ÿค— Datasets. Uncomment the following cell and run it.<jupyter_code>#! pip install transformers datasets huggingface_hub<jupyter_output><empty_output><jupyter_text>If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.To be able to share your model with the community and generate results like the one shown in the picture below via the inference API, there are a few more steps to follow.First you have to store your authentication token from the Hugging Face website (sign up [here](https://huggingface.co/join) if you haven't already!) then uncomment the following cell and input your token:<jupyter_code>from huggingface_hub import notebook_login notebook_login()<jupyter_output><empty_output><jupyter_text>Then you need to install Git-LFS and setup Git if you haven't already. On Linux, uncomment the following instructions and adapt with your name and email. On Windows, please download git-lfs at https://git-lfs.github.com/<jupyter_code># !apt install git-lfs # !git config --global user.email "[email protected]" # !git config --global user.name "Your Name"<jupyter_output><empty_output><jupyter_text>Make sure your version of Transformers is at least 4.16.0 since some of the functionality we use was introduced in that version:<jupyter_code>import transformers print(transformers.__version__)<jupyter_output>4.16.0.dev0<jupyter_text>You can find a script version of this notebook to fine-tune your model in a distributed fashion using multiple GPUs or TPUs [here](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling). We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely.<jupyter_code>from transformers.utils import send_example_telemetry send_example_telemetry("language_modeling_from_scratch_notebook", framework="tensorflow")<jupyter_output><empty_output><jupyter_text>Train a language model In this notebook, we'll see how to train a [๐Ÿค— Transformers](https://github.com/huggingface/transformers) model on a language modeling task. We will cover two types of language modeling tasks which are:- Causal language modeling: the model has to predict the next token in the sentence (so the labels are the same as the inputs shifted to the right). To make sure the model does not cheat, its attention computations are masked so that tokens cannot attend to tokens to their right, as this would result in label leakage.- Masked language modeling: the model has to predict some tokens that are masked in the input. It still has access to the whole sentence, so it can use the tokens before and after the tokens masked to predict their value.We will see how to easily load and preprocess the dataset for each one of those tasks, and how to use the `Trainer` API to train a model on it.This notebooks assumes you have trained a tokenizer on the corpus you are using, see the [How to train a tokenizer](https://github.com/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb) notebook ([open in colab](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)).A script version of this notebook you can directly run on a distributed environment or on TPU is available in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples). Preparing the dataset For each of those tasks, we will use the [Wikitext 2]() dataset as an example. You can load it very easily with the ๐Ÿค— Datasets library.<jupyter_code>from datasets import load_dataset datasets = load_dataset("wikitext", "wikitext-2-raw-v1")<jupyter_output>Reusing dataset wikitext (/home/matt/.cache/huggingface/datasets/wikitext/wikitext-2-raw-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126)<jupyter_text>You can replace the dataset above with any dataset hosted on [the hub](https://huggingface.co/datasets) or use your own files. Just uncomment the following cell and replace the paths with your own input files:<jupyter_code># datasets = load_dataset("text", data_files={"train": path_to_train.txt, "validation": path_to_validation.txt}<jupyter_output><empty_output><jupyter_text>You can also load datasets from a csv or a JSON file, see the [full documentation](https://huggingface.co/docs/datasets/loading_datasets.htmlfrom-local-files) for more information. To access an actual element, you need to select a split first, then give an index:<jupyter_code>datasets["train"][10]<jupyter_output><empty_output><jupyter_text>To get a sense of what the data looks like, the following function will show some examples picked randomly in the dataset.<jupyter_code>from datasets import ClassLabel import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len( dataset ), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset) - 1) while pick in picks: pick = random.randint(0, len(dataset) - 1) picks.append(pick) df = pd.DataFrame(dataset[picks]) for column, typ in dataset.features.items(): if isinstance(typ, ClassLabel): df[column] = df[column].transform(lambda i: typ.names[i]) display(HTML(df.to_html())) show_random_elements(datasets["train"])<jupyter_output><empty_output><jupyter_text>As we can see, some of the texts are a full paragraph of a Wikipedia article while others are just titles or empty lines. Causal Language modeling For causal language modeling (CLM) we are going to take all the texts in our dataset, tokenize them and concatenate them. Then we will split them into examples of a fixed sequence length. This way the model will receive chunks of contiguous text that may look like:```part of text 1```or ```end of text 1 [BOS_TOKEN] beginning of text 2```depending on whether they span multiple original texts or not. The labels will be the same as the inputs, shifted to the right.We will use the [`gpt2`](https://huggingface.co/gpt2) architecture for this example. You can pick any of the checkpoints listed [here](https://huggingface.co/models?filter=causal-lm) instead. For the tokenizer, you can optionally replace the checkpoint with one that you trained yourself.<jupyter_code>model_checkpoint = "gpt2" tokenizer_checkpoint = "sgugger/gpt2-like-tokenizer" from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(tokenizer_checkpoint)<jupyter_output><empty_output><jupyter_text>We can now call the tokenizer on all our texts. This is very simple, using the [`map`](https://huggingface.co/docs/datasets/package_reference/main_classes.htmldatasets.Dataset.map) method from the Datasets library. First we define a function that calls the tokenizer on our texts:<jupyter_code>def tokenize_function(examples): return tokenizer(examples["text"])<jupyter_output><empty_output><jupyter_text>Then we apply it to all the splits in our `datasets` object, using `batched=True` and 4 processes to speed up the preprocessing. We won't need the `text` column afterward, so we discard it.<jupyter_code>tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=4, remove_columns=["text"] )<jupyter_output><empty_output><jupyter_text>If we now look at an element of our datasets, we will see the text have been replaced by the `input_ids` the model will need:<jupyter_code>tokenized_datasets["train"][1]<jupyter_output><empty_output><jupyter_text>Now for the harder part: We need to concatenate all our texts together, and then split the result into chunks of a fixed size, which we will call `block_size`. To do this, we will use the `map` method again, with the option `batched=True`. When we use `batched=True`, the function we pass to `map()` will be passed multiple inputs at once, allowing us to group them into more or fewer examples than we had in the input. This allows us to create our new fixed-length samples.We can use any `block_size`, but high values might be too big to fit in your GPU RAM, so let's use something a bit smaller: 128.<jupyter_code># block_size = tokenizer.model_max_length block_size = 128<jupyter_output><empty_output><jupyter_text>Then we write the preprocessing function that will group our texts:<jupyter_code>def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result<jupyter_output><empty_output><jupyter_text>Note that we duplicate the inputs for our labels, without shifting them, even though we told you the labels need to be shifted! This is because CausalLM models in the ๐Ÿค— Transformers library automatically apply right-shifting to the inputs, so we don't need to do it manually.Also note that by default, the `map` method will send a batch of 1,000 examples to be treated by the preprocessing function. So here, we will drop the remainder to make the concatenated tokenized texts a multiple of `block_size` every 1,000 examples. You can adjust this behavior by passing a higher batch size (which will also be processed slower). You can also speed-up the preprocessing by using multiprocessing:<jupyter_code>lm_datasets = tokenized_datasets.map( group_texts, batched=True, batch_size=1000, num_proc=4, )<jupyter_output><empty_output><jupyter_text>And we can check our datasets have changed: now the samples contain chunks of `block_size` contiguous tokens, potentially spanning several of our original texts.<jupyter_code>tokenizer.decode(lm_datasets["train"][1]["input_ids"])<jupyter_output><empty_output><jupyter_text>Now that the data has been cleaned, we're ready to initialize our `Model`. First we create the model using the same config as our checkpoint, but initialized with random weights:<jupyter_code>from transformers import AutoConfig, TFAutoModelForCausalLM config = AutoConfig.from_pretrained(model_checkpoint) model = TFAutoModelForCausalLM.from_config(config)<jupyter_output>2022-01-28 14:15:22.987842: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2022-01-28 14:15:22.992329: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2022-01-28 14:15:22.993015: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2022-01-28 14:15:22.994216: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags[...]<jupyter_text>Now let's set some hyperparameters like the learning rate and weight decay, as well as the model ID, if we want to upload our model to the Hub afterwards.<jupyter_code>learning_rate = 2e-5 weight_decay = 0.01 push_to_hub_model_id = f"{model_checkpoint}-wikitext2"<jupyter_output><empty_output><jupyter_text>Now we initialize our optimizer.<jupyter_code>from transformers import AdamWeightDecay optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)<jupyter_output><empty_output><jupyter_text>Next, we compile our model. Note that most Transformers models compute loss internally, so we actually don't have to specify anything for that argument! You can of course set your own loss function if you want, but by default our models will choose the 'obvious' loss that matches their task, such as cross-entropy in the case of language modelling. The built-in loss will also correctly handle things like masking the loss on padding tokens, or unlabelled tokens in the case of masked language modelling, so we recommend using it unless you're an advanced user!We also use the `jit_compile` argument to compile the model with [XLA](https://www.tensorflow.org/xla). XLA compilation adds a delay at the start of training, but this is quickly repaid by faster training iterations after that. It has one downside, though - if the shape of your input changes at all, then it will need to rerun the compilation again! This isn't a problem for us in this notebook, because all of our examples are exactly the same length. Be careful with it when that isn't true, though - if you have a variable sequence length in your batches, then you might spend more time compiling your model than actually training, especially for small datasets!If you encounter difficulties when training with XLA, it's a good idea to remove the `jit_compile` argument and see if that fixes things. In fact, when debugging, it can be helpful to skip graph compilation entirely with the `run_eagerly=True` argument to [`compile()`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelcompile). This will let you identify the exact line of code where problems arise, but it will significantly reduce your performance, so make sure to remove it again when you've fixed the problem!<jupyter_code>import tensorflow as tf model.compile(optimizer=optimizer, jit_compile=True)<jupyter_output><empty_output><jupyter_text>Next, we convert our datasets to `tf.data.Dataset`, which Keras understands natively. There are two ways to do this - we can use the slightly more low-level [`Dataset.to_tf_dataset()`](https://huggingface.co/docs/datasets/package_reference/main_classesdatasets.Dataset.to_tf_dataset) method, or we can use [`Model.prepare_tf_dataset()`](https://huggingface.co/docs/transformers/main_classes/modeltransformers.TFPreTrainedModel.prepare_tf_dataset). The main difference between these two is that the `Model` method can inspect the model to determine which column names it can use as input, which means you don't need to specify them yourself. It also supplies a data collator by default which is appropriate for most tasks.<jupyter_code>train_set = model.prepare_tf_dataset( lm_datasets["train"], shuffle=True, batch_size=16, ) validation_set = model.prepare_tf_dataset( lm_datasets["validation"], shuffle=False, batch_size=16, )<jupyter_output><empty_output><jupyter_text>Now we can train our model. We can also add a callback to sync up our model with the Hub - this allows us to resume training from other machines and even test the model's inference quality midway through training! Make sure to change the `username` if you do. If you don't want to do this, simply remove the callbacks argument in the call to `fit()`.<jupyter_code>from transformers.keras_callbacks import PushToHubCallback model_name = model_checkpoint.split("/")[-1] push_to_hub_model_id = f"{model_name}-finetuned-wikitext2" callback = PushToHubCallback( output_dir="./clm_from_scratch_model_save", tokenizer=tokenizer, hub_model_id=push_to_hub_model_id, ) model.fit(train_set, validation_data=validation_set, epochs=2, callbacks=[callback])<jupyter_output>/home/matt/PycharmProjects/notebooks/examples/clm_from_scratch_model_save is already a clone of https://huggingface.co/Rocketknight1/gpt2-finetuned-wikitext2. Make sure you pull the latest changes with `repo.git_pull()`.<jupyter_text>Once the training is completed, we can evaluate our model and get its loss on the validation set like this:<jupyter_code>eval_loss = model.evaluate(validation_set)<jupyter_output>121/121 [==============================] - 6s 51ms/step - loss: 6.3490<jupyter_text>The quality of language models is often measured in 'perplexity' rather than cross-entropy. To convert to perplexity, we simply raise e to the power of the cross-entropy loss.<jupyter_code>import math print(f"Perplexity: {math.exp(eval_loss):.2f}")<jupyter_output>Perplexity: 571.92<jupyter_text>The perplexity is still quite high since for this demo we trained on a small dataset for a small number of epochs. For a real LM training, you would need a larger dataset and more epochs. If you used the callback above, you can now share this model with all your friends, family or favorite pets: they can all load it with the identifier `"your-username/the-name-you-picked"` so for instance:```pythonfrom transformers import TFAutoModelForCausalLMmodel = TFAutoModelForCausalLM.from_pretrained("your-username/my-awesome-model")``` Inference Models trained from scratch on small amounts of data will generally not output useful text - you'll need a much bigger dataset and a much longer training time before it starts writing text that you'd want to read! If you want to see an example of inference with causal language models, see the `language_modeling-tf` notebook, where we start with a pre-trained model and get higher-quality output much sooner as a result. Masked language modeling For masked language modeling (MLM) we are going to use the same preprocessing as before for our dataset with one additional step: we will randomly mask some tokens (by replacing them by `[MASK]`) and the labels will be adjusted to only include the masked tokens (we don't have to predict the non-masked tokens). If you use a tokenizer you trained yourself, make sure the `[MASK]` token is among the special tokens you passed during training!We will use the [`bert-base-cased`](https://huggingface.co/bert-based-cased) model for this example. You can pick any of the checkpoints listed [here](https://huggingface.co/models?filter=masked-lm) instead. For the tokenizer, replace the checkpoint by the one you trained.<jupyter_code>model_checkpoint = "bert-base-cased"<jupyter_output><empty_output><jupyter_text>We can apply the same tokenization function as before, we just need to update our tokenizer to use the checkpoint we just picked:<jupyter_code>tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=4, remove_columns=["text"] )<jupyter_output>Token indices sequence length is longer than the specified maximum sequence length for this model (571 > 512). Running this sequence through the model will result in indexing errors Token indices sequence length is longer than the specified maximum sequence length for this model (554 > 512). Running this sequence through the model will result in indexing errors Token indices sequence length is longer than the specified maximum sequence length for this model (522 > 512). Running this sequence through the model will result in indexing errors Token indices sequence length is longer than the specified maximum sequence length for this model (657 > 512). Running this sequence through the model will result in indexing errors Token indices sequence length is longer than the specified maximum sequence length for this model (514 > 512). Running this sequence through the model will result in indexing errors<jupyter_text>And like before, we group texts together and chunk them in samples of length `block_size`. You can skip that step if your dataset is composed of individual sentences.<jupyter_code>lm_datasets = tokenized_datasets.map( group_texts, batched=True, batch_size=1000, num_proc=4, )<jupyter_output><empty_output><jupyter_text>The rest is very similar to what we used before, with two exceptions. First we use a model suitable for masked LM:<jupyter_code>from transformers import AutoConfig, TFAutoModelForMaskedLM config = AutoConfig.from_pretrained(model_checkpoint) model = TFAutoModelForMaskedLM.from_config(config)<jupyter_output><empty_output><jupyter_text>We redefine our hyperparameters and choose a new name:<jupyter_code>learning_rate = 2e-5 weight_decay = 0.01 push_to_hub_model_id = f"{model_checkpoint}-wikitext2"<jupyter_output><empty_output><jupyter_text>Now we initialize our optimizer.<jupyter_code>from transformers import AdamWeightDecay optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)<jupyter_output><empty_output><jupyter_text>And as before, we leave the `loss` argument blank to use the internal loss, and use `jit_compile` to enable XLA.<jupyter_code>import tensorflow as tf model.compile(optimizer=optimizer, jit_compile=True)<jupyter_output>No loss specified in compile() - the model's internal loss computation will be used as the loss. Don't panic - this is a common way to train TensorFlow models in Transformers! Please ensure your labels are passed as keys in the input dict so that they are accessible to the model during the forward pass. To disable this behaviour, please pass a loss argument, or explicitly pass loss=None if you do not want your model to compute a loss.<jupyter_text>Finally, we use a special `data_collator`. The `data_collator` is a function that is responsible for taking the samples and batching them in tensors. In the previous example, we had nothing special to do, so we just used the default for this argument. Here we want to randomly mask tokens. We could do it as a pre-processing step (like the tokenization) but then the tokens would always be masked the same way at each epoch. By doing this step inside the `data_collator`, we ensure this random masking is done in a new way each time we go over the data.To do this masking for us, the library provides a `DataCollatorForLanguageModeling`. We can adjust the probability of the masking. Note that our data collators are designed to work for multiple frameworks, so ensure you set the `return_tensors='np'` argument to get NumPy arrays out - you don't want to accidentally get a load of `torch.Tensor` objects in the middle of your nice TF code! You could also use `return_tensors='tf'` to get TensorFlow tensors, but our TF dataset pipeline actually uses a NumPy loader internally, which is wrapped at the end with a `tf.data.Dataset`. As a result, `np` is usually more reliable and performant when you're using it!<jupyter_code>from transformers import DataCollatorForLanguageModeling data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=0.15, return_tensors="np" )<jupyter_output><empty_output><jupyter_text>Now we pass our data collator to the `prepare_tf_dataset()` argument.<jupyter_code>train_set = model.prepare_tf_dataset( lm_datasets["train"], shuffle=True, batch_size=16, collate_fn=data_collator, ) validation_set = model.prepare_tf_dataset( lm_datasets["validation"], shuffle=False, batch_size=16, collate_fn=data_collator, )<jupyter_output><empty_output><jupyter_text>And now we can train our model:<jupyter_code>from transformers.keras_callbacks import PushToHubCallback from tensorflow.keras.callbacks import TensorBoard model_name = model_checkpoint.split("/")[-1] push_to_hub_model_id = f"{model_name}-finetuned-wikitext2" tensorboard_callback = TensorBoard(log_dir="./mlm_from_scratch_model_save/logs") push_to_hub_callback = PushToHubCallback( output_dir="./mlm_from_scratch_model_save", tokenizer=tokenizer, hub_model_id=push_to_hub_model_id, ) callbacks = [tensorboard_callback, push_to_hub_callback] model.fit(train_set, validation_data=validation_set, epochs=2, callbacks=callbacks)<jupyter_output>/home/matt/PycharmProjects/notebooks/examples/mlm_from_scratch_model_save is already a clone of https://huggingface.co/Rocketknight1/bert-base-cased-finetuned-wikitext2. Make sure you pull the latest changes with `repo.git_pull()`.<jupyter_text>Like before, we can evaluate our model on the validation set. As training progresses, the perplexity will be much lower for MLM than for the CLM objective because for the MLM objective, we only have to make predictions for the masked tokens (which represent 15% of the total here) while having access to the rest of the tokens. It's thus an easier task for the model.<jupyter_code>eval_loss = model.evaluate(validation_set) print(f"Perplexity: {math.exp(eval_loss):.2f}")<jupyter_output>126/126 [==============================] - 6s 44ms/step - loss: 6.2834 Perplexity: 535.62
notebooks/examples/language_modeling_from_scratch-tf.ipynb/0
{ "file_path": "notebooks/examples/language_modeling_from_scratch-tf.ipynb", "repo_id": "notebooks", "token_count": 7396 }
146
<jupyter_start><jupyter_text>If you're opening this Notebook on colab, you will probably need to install ๐Ÿค— Transformers and ๐Ÿค— Datasets. Uncomment the following cell and run it.<jupyter_code>#! pip install datasets transformers<jupyter_output><empty_output><jupyter_text>If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.To be able to share your model with the community and generate results like the one shown in the picture below via the inference API, there are a few more steps to follow.First you have to store your authentication token from the Hugging Face website (sign up [here](https://huggingface.co/join) if you haven't already!) then execute the following cell and input your username and password:<jupyter_code>from huggingface_hub import notebook_login notebook_login()<jupyter_output><empty_output><jupyter_text>Then you need to install Git-LFS. Uncomment the following instructions:<jupyter_code># !apt install git-lfs<jupyter_output><empty_output><jupyter_text>Make sure your version of Transformers is at least 4.11.0 since the functionality was introduced in that version:<jupyter_code>import transformers print(transformers.__version__)<jupyter_output><empty_output><jupyter_text>You can find a script version of this notebook to fine-tune your model in a distributed fashion using multiple GPUs or TPUs [here](https://github.com/huggingface/transformers/tree/master/examples/question-answering). We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely.<jupyter_code>from transformers.utils import send_example_telemetry send_example_telemetry("question_answering_notebook", framework="pytorch")<jupyter_output><empty_output><jupyter_text>Fine-tuning a model on a question-answering task In this notebook, we will see how to fine-tune one of the [๐Ÿค— Transformers](https://github.com/huggingface/transformers) model to a question answering task, which is the task of extracting the answer to a question from a given context. We will see how to easily load a dataset for these kinds of tasks and use the `Trainer` API to fine-tune a model on it.**Note:** This notebook finetunes models that answer question by taking a substring of a context, not by generating new text. This notebook is built to run on any question answering task with the same format as SQUAD (version 1 or 2), with any model checkpoint from the [Model Hub](https://huggingface.co/models) as long as that model has a version with a token classification head and a fast tokenizer (check on [this table](https://huggingface.co/transformers/index.htmlbigtable) if this is the case). It might just need some small adjustments if you decide to use a different dataset than the one used here. Depending on you model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those three parameters, then the rest of the notebook should run smoothly:<jupyter_code># This flag is the difference between SQUAD v1 or 2 (if you're using another dataset, it indicates if impossible # answers are allowed or not). squad_v2 = False model_checkpoint = "distilbert-base-uncased" batch_size = 16<jupyter_output><empty_output><jupyter_text>Loading the dataset We will use the [๐Ÿค— Datasets](https://github.com/huggingface/datasets) library to download the data and get the metric we need to use for evaluation (to compare our model to the benchmark). This can be easily done with the functions `load_dataset` and `load_metric`.<jupyter_code>from datasets import load_dataset, load_metric<jupyter_output><empty_output><jupyter_text>For our example here, we'll use the [SQUAD dataset](https://rajpurkar.github.io/SQuAD-explorer/). The notebook should work with any question answering dataset provided by the ๐Ÿค— Datasets library. If you're using your own dataset defined from a JSON or csv file (see the [Datasets documentation](https://huggingface.co/docs/datasets/loading_datasets.htmlfrom-local-files) on how to load them), it might need some adjustments in the names of the columns used.<jupyter_code>datasets = load_dataset("squad_v2" if squad_v2 else "squad")<jupyter_output>Reusing dataset squad (/home/sgugger/.cache/huggingface/datasets/squad/plain_text/1.0.0/4c81550d83a2ac7c7ce23783bd8ff36642800e6633c1f18417fb58c3ff50cdd7)<jupyter_text>The `datasets` object itself is [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.htmldatasetdict), which contains one key for the training, validation and test set.<jupyter_code>datasets<jupyter_output><empty_output><jupyter_text>We can see the training, validation and test sets all have a column for the context, the question and the answers to those questions. To access an actual element, you need to select a split first, then give an index:<jupyter_code>datasets["train"][0]<jupyter_output><empty_output><jupyter_text>We can see the answers are indicated by their start position in the text (here at character 515) and their full text, which is a substring of the context as we mentioned above. To get a sense of what the data looks like, the following function will show some examples picked randomly in the dataset (automatically decoding the labels in passing).<jupyter_code>from datasets import ClassLabel, Sequence import random import pandas as pd from IPython.display import display, HTML def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset)-1) while pick in picks: pick = random.randint(0, len(dataset)-1) picks.append(pick) df = pd.DataFrame(dataset[picks]) for column, typ in dataset.features.items(): if isinstance(typ, ClassLabel): df[column] = df[column].transform(lambda i: typ.names[i]) elif isinstance(typ, Sequence) and isinstance(typ.feature, ClassLabel): df[column] = df[column].transform(lambda x: [typ.feature.names[i] for i in x]) display(HTML(df.to_html())) show_random_elements(datasets["train"])<jupyter_output><empty_output><jupyter_text>Preprocessing the training data Before we can feed those texts to our model, we need to preprocess them. This is done by a ๐Ÿค— Transformers `Tokenizer` which will (as the name indicates) tokenize the inputs (including converting the tokens to their corresponding IDs in the pretrained vocabulary) and put it in a format the model expects, as well as generate the other inputs that model requires.To do all of this, we instantiate our tokenizer with the `AutoTokenizer.from_pretrained` method, which will ensure:- we get a tokenizer that corresponds to the model architecture we want to use,- we download the vocabulary used when pretraining this specific checkpoint.That vocabulary will be cached, so it's not downloaded again the next time we run the cell.<jupyter_code>from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)<jupyter_output><empty_output><jupyter_text>The following assertion ensures that our tokenizer is a fast tokenizers (backed by Rust) from the ๐Ÿค— Tokenizers library. Those fast tokenizers are available for almost all models, and we will need some of the special features they have for our preprocessing.<jupyter_code>import transformers assert isinstance(tokenizer, transformers.PreTrainedTokenizerFast)<jupyter_output><empty_output><jupyter_text>You can check which type of models have a fast tokenizer available and which don't on the [big table of models](https://huggingface.co/transformers/index.htmlbigtable). You can directly call this tokenizer on two sentences (one for the answer, one for the context):<jupyter_code>tokenizer("What is your name?", "My name is Sylvain.")<jupyter_output><empty_output><jupyter_text>Depending on the model you selected, you will see different keys in the dictionary returned by the cell above. They don't matter much for what we're doing here (just know they are required by the model we will instantiate later), you can learn more about them in [this tutorial](https://huggingface.co/transformers/preprocessing.html) if you're interested.Now one specific thing for the preprocessing in question answering is how to deal with very long documents. We usually truncate them in other tasks, when they are longer than the model maximum sentence length, but here, removing part of the the context might result in losing the answer we are looking for. To deal with this, we will allow one (long) example in our dataset to give several input features, each of length shorter than the maximum length of the model (or the one we set as a hyper-parameter). Also, just in case the answer lies at the point we split a long context, we allow some overlap between the features we generate controlled by the hyper-parameter `doc_stride`:<jupyter_code>max_length = 384 # The maximum length of a feature (question and context) doc_stride = 128 # The authorized overlap between two part of the context when splitting it is needed.<jupyter_output><empty_output><jupyter_text>Let's find one long example in our dataset:<jupyter_code>for i, example in enumerate(datasets["train"]): if len(tokenizer(example["question"], example["context"])["input_ids"]) > 384: break example = datasets["train"][i]<jupyter_output><empty_output><jupyter_text>Without any truncation, we get the following length for the input IDs:<jupyter_code>len(tokenizer(example["question"], example["context"])["input_ids"])<jupyter_output><empty_output><jupyter_text>Now, if we just truncate, we will lose information (and possibly the answer to our question):<jupyter_code>len(tokenizer(example["question"], example["context"], max_length=max_length, truncation="only_second")["input_ids"])<jupyter_output><empty_output><jupyter_text>Note that we never want to truncate the question, only the context, else the `only_second` truncation picked. Now, our tokenizer can automatically return us a list of features capped by a certain maximum length, with the overlap we talked above, we just have to tell it with `return_overflowing_tokens=True` and by passing the stride:<jupyter_code>tokenized_example = tokenizer( example["question"], example["context"], max_length=max_length, truncation="only_second", return_overflowing_tokens=True, stride=doc_stride )<jupyter_output><empty_output><jupyter_text>Now we don't have one list of `input_ids`, but several:<jupyter_code>[len(x) for x in tokenized_example["input_ids"]]<jupyter_output><empty_output><jupyter_text>And if we decode them, we can see the overlap:<jupyter_code>for x in tokenized_example["input_ids"][:2]: print(tokenizer.decode(x))<jupyter_output>[CLS] how many wins does the notre dame men's basketball team have? [SEP] the men's basketball team has over 1, 600 wins, one of only 12 schools who have reached that mark, and have appeared in 28 ncaa tournaments. former player austin carr holds the record for most points scored in a single game of the tournament with 61. although the team has never won the ncaa tournament, they were named by the helms athletic foundation as national champions twice. the team has orchestrated a number of upsets of number one ranked teams, the most notable of which was ending ucla's record 88 - game winning streak in 1974. the team has beaten an additional eight number - one teams, and those nine wins rank second, to ucla's 10, all - time in wins against the top team. the team plays in newly renovated purcell pavilion ( within the edmund p. joyce center ), which reopened for the beginning of the 2009 โ€“ 2010 season. the team is coached by mike brey, who, as of the 2014 โ€“ 15 season, his fifteenth at notr[...]<jupyter_text>Now this will give us some work to properly treat the answers: we need to find in which of those features the answer actually is, and where exactly in that feature. The models we will use require the start and end positions of these answers in the tokens, so we will also need to to map parts of the original context to some tokens. Thankfully, the tokenizer we're using can help us with that by returning an `offset_mapping`:<jupyter_code>tokenized_example = tokenizer( example["question"], example["context"], max_length=max_length, truncation="only_second", return_overflowing_tokens=True, return_offsets_mapping=True, stride=doc_stride ) print(tokenized_example["offset_mapping"][0][:100])<jupyter_output>[(0, 0), (0, 3), (4, 8), (9, 13), (14, 18), (19, 22), (23, 28), (29, 33), (34, 37), (37, 38), (38, 39), (40, 50), (51, 55), (56, 60), (60, 61), (0, 0), (0, 3), (4, 7), (7, 8), (8, 9), (10, 20), (21, 25), (26, 29), (30, 34), (35, 36), (36, 37), (37, 40), (41, 45), (45, 46), (47, 50), (51, 53), (54, 58), (59, 61), (62, 69), (70, 73), (74, 78), (79, 86), (87, 91), (92, 96), (96, 97), (98, 101), (102, 106), (107, 115), (116, 118), (119, 121), (122, 126), (127, 138), (138, 139), (140, 146), (147, 153), (154, 160), (161, 165), (166, 171), (172, 175), (176, 182), (183, 186), (187, 191), (192, 198), (199, 205), (206, 208), (209, 210), (211, 217), (218, 222), (223, 225), (226, 229), (230, 240), (241, 245), (246, 248), (248, 249), (250, 258), (259, 262), (263, 267), (268, 271), (272, 277), (278, 281), (282, 285), (286, 290), (291, 301), (301, 302), (303, 307), (308, 312), (313, 318), (319, 321), (322, 325), (326, 330), (330, 331), (332, 340), (341, 351), (352, 354), (355, 363), (364, 373), (374,[...]<jupyter_text>This gives, for each index of our input IDS, the corresponding start and end character in the original text that gave our token. The very first token (`[CLS]`) has (0, 0) because it doesn't correspond to any part of the question/answer, then the second token is the same as the characters 0 to 3 of the question:<jupyter_code>first_token_id = tokenized_example["input_ids"][0][1] offsets = tokenized_example["offset_mapping"][0][1] print(tokenizer.convert_ids_to_tokens([first_token_id])[0], example["question"][offsets[0]:offsets[1]])<jupyter_output>how How<jupyter_text>So we can use this mapping to find the position of the start and end tokens of our answer in a given feature. We just have to distinguish which parts of the offsets correspond to the question and which part correspond to the context, this is where the `sequence_ids` method of our `tokenized_example` can be useful:<jupyter_code>sequence_ids = tokenized_example.sequence_ids() print(sequence_ids)<jupyter_output>[None, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, None, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [...]<jupyter_text>It returns `None` for the special tokens, then 0 or 1 depending on whether the corresponding token comes from the first sentence past (the question) or the second (the context). Now with all of this, we can find the first and last token of the answer in one of our input feature (or if the answer is not in this feature):<jupyter_code>answers = example["answers"] start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != 1: token_start_index += 1 # End token index of the current span in the text. token_end_index = len(tokenized_example["input_ids"][0]) - 1 while sequence_ids[token_end_index] != 1: token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). offsets = tokenized_example["offset_mapping"][0] if (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): # Move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 start_position = token_start_index - 1 while offsets[token_end_index][1] >= end_char: token_end_index -= 1 end_position = token_end_index + 1 print(start_position, end_position) else: print("The answer is not in this feature.")<jupyter_output>23 26<jupyter_text>And we can double check that it is indeed the theoretical answer:<jupyter_code>print(tokenizer.decode(tokenized_example["input_ids"][0][start_position: end_position+1])) print(answers["text"][0])<jupyter_output>over 1, 600 over 1,600<jupyter_text>For this notebook to work with any kind of models, we need to account for the special case where the model expects padding on the left (in which case we switch the order of the question and the context):<jupyter_code>pad_on_right = tokenizer.padding_side == "right"<jupyter_output><empty_output><jupyter_text>Now let's put everything together in one function we will apply to our training set. In the case of impossible answers (the answer is in another feature given by an example with a long context), we set the cls index for both the start and end position. We could also simply discard those examples from the training set if the flag `allow_impossible_answers` is `False`. Since the preprocessing is already complex enough as it is, we've kept is simple for this part.<jupyter_code>def prepare_train_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples["question"] = [q.lstrip() for q in examples["question"]] # Tokenize our examples with truncation and padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples["question" if pad_on_right else "context"], examples["context" if pad_on_right else "question"], truncation="only_second" if pad_on_right else "only_first", max_length=max_length, stride=doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples["answers"][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != (1 if pad_on_right else 0): token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != (1 if pad_on_right else 0): token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples<jupyter_output><empty_output><jupyter_text>This function works with one or several examples. In the case of several examples, the tokenizer will return a list of lists for each key:<jupyter_code>features = prepare_train_features(datasets['train'][:5])<jupyter_output><empty_output><jupyter_text>To apply this function on all the sentences (or pairs of sentences) in our dataset, we just use the `map` method of our `dataset` object we created earlier. This will apply the function on all the elements of all the splits in `dataset`, so our training, validation and testing data will be preprocessed in one single command. Since our preprocessing changes the number of samples, we need to remove the old columns when applying it.<jupyter_code>tokenized_datasets = datasets.map(prepare_train_features, batched=True, remove_columns=datasets["train"].column_names)<jupyter_output>Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/squad/plain_text/1.0.0/4c81550d83a2ac7c7ce23783bd8ff36642800e6633c1f18417fb58c3ff50cdd7/cache-a5c71e98733887b0.arrow Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/squad/plain_text/1.0.0/4c81550d83a2ac7c7ce23783bd8ff36642800e6633c1f18417fb58c3ff50cdd7/cache-14932a8c6aecc96d.arrow<jupyter_text>Even better, the results are automatically cached by the ๐Ÿค— Datasets library to avoid spending time on this step the next time you run your notebook. The ๐Ÿค— Datasets library is normally smart enough to detect when the function you pass to map has changed (and thus requires to not use the cache data). For instance, it will properly detect if you change the task in the first cell and rerun the notebook. ๐Ÿค— Datasets warns you when it uses cached files, you can pass `load_from_cache_file=False` in the call to `map` to not use the cached files and force the preprocessing to be applied again.Note that we passed `batched=True` to encode the texts by batches together. This is to leverage the full benefit of the fast tokenizer we loaded earlier, which will use multi-threading to treat the texts in a batch concurrently. Fine-tuning the model Now that our data is ready for training, we can download the pretrained model and fine-tune it. Since our task is question answering, we use the `AutoModelForQuestionAnswering` class. Like with the tokenizer, the `from_pretrained` method will download and cache the model for us:<jupyter_code>from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)<jupyter_output>Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForQuestionAnswering: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_layer_norm.weight', 'vocab_layer_norm.bias', 'vocab_projector.weight', 'vocab_projector.bias'] - This IS expected if you are initializing DistilBertForQuestionAnswering from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing DistilBertForQuestionAnswering from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of DistilBertForQuestionAnswering were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['qa_outputs.weight', 'qa_outputs.bias'] You should probably TRAIN this mode[...]<jupyter_text>The warning is telling us we are throwing away some weights (the `vocab_transform` and `vocab_layer_norm` layers) and randomly initializing some other (the `pre_classifier` and `classifier` layers). This is absolutely normal in this case, because we are removing the head used to pretrain the model on a masked language modeling objective and replacing it with a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do. To instantiate a `Trainer`, we will need to define three more things. The most important is the [`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.htmltransformers.TrainingArguments), which is a class that contains all the attributes to customize the training. It requires one folder name, which will be used to save the checkpoints of the model, and all other arguments are optional:<jupyter_code>model_name = model_checkpoint.split("/")[-1] args = TrainingArguments( f"{model_name}-finetuned-squad", evaluation_strategy = "epoch", learning_rate=2e-5, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=3, weight_decay=0.01, push_to_hub=True, )<jupyter_output><empty_output><jupyter_text>Here we set the evaluation to be done at the end of each epoch, tweak the learning rate, use the `batch_size` defined at the top of the notebook and customize the number of epochs for training, as well as the weight decay.The last argument to setup everything so we can push the model to the [Hub](https://huggingface.co/models) regularly during training. Remove it if you didn't follow the installation steps at the top of the notebook. If you want to save your model locally in a name that is different than the name of the repository it will be pushed, or if you want to push your model under an organization and not your name space, use the `hub_model_id` argument to set the repo name (it needs to be the full name, including your namespace: for instance `"sgugger/bert-finetuned-squad"` or `"huggingface/bert-finetuned-squad"`). Then we will need a data collator that will batch our processed examples together, here the default one will work:<jupyter_code>from transformers import default_data_collator data_collator = default_data_collator<jupyter_output><empty_output><jupyter_text>We will evaluate our model and compute metrics in the next section (this is a very long operation, so we will only compute the evaluation loss during training).Then we just need to pass all of this along with our datasets to the `Trainer`:<jupyter_code>trainer = Trainer( model, args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, tokenizer=tokenizer, )<jupyter_output><empty_output><jupyter_text>We can now finetune our model by just calling the `train` method:<jupyter_code>trainer.train()<jupyter_output><empty_output><jupyter_text>Since this training is particularly long, let's save the model just in case we need to restart.<jupyter_code>trainer.save_model("test-squad-trained")<jupyter_output><empty_output><jupyter_text>Evaluation Evaluating our model will require a bit more work, as we will need to map the predictions of our model back to parts of the context. The model itself predicts logits for the start and en position of our answers: if we take a batch from our validation datalaoder, here is the output our model gives us:<jupyter_code>import torch for batch in trainer.get_eval_dataloader(): break batch = {k: v.to(trainer.args.device) for k, v in batch.items()} with torch.no_grad(): output = trainer.model(**batch) output.keys()<jupyter_output><empty_output><jupyter_text>The output of the model is a dict-like object that contains the loss (since we provided labels), the start and end logits. We won't need the loss for our predictions, let's have a look a the logits:<jupyter_code>output.start_logits.shape, output.end_logits.shape<jupyter_output><empty_output><jupyter_text>We have one logit for each feature and each token. The most obvious thing to predict an answer for each featyre is to take the index for the maximum of the start logits as a start position and the index of the maximum of the end logits as an end position.<jupyter_code>output.start_logits.argmax(dim=-1), output.end_logits.argmax(dim=-1)<jupyter_output><empty_output><jupyter_text>This will work great in a lot of cases, but what if this prediction gives us something impossible: the start position could be greater than the end position, or point to a span of text in the question instead of the answer. In that case, we might want to look at the second best prediction to see if it gives a possible answer and select that instead.However, picking the second best answer is not as easy as picking the best one: is it the second best index in the start logits with the best index in the end logits? Or the best index in the start logits with the second best index in the end logits? And if that second best answer is not possible either, it gets even trickier for the third best answer.To classify our answers, we will use the score obtained by adding the start and end logits. We won't try to order all the possible answers and limit ourselves to with a hyper-parameter we call `n_best_size`. We'll pick the best indices in the start and end logits and gather all the answers this predicts. After checking if each one is valid, we will sort them by their score and keep the best one. Here is how we would do this on the first feature in the batch:<jupyter_code>n_best_size = 20 import numpy as np start_logits = output.start_logits[0].cpu().numpy() end_logits = output.end_logits[0].cpu().numpy() # Gather the indices the best start/end logits: start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() valid_answers = [] for start_index in start_indexes: for end_index in end_indexes: if start_index <= end_index: # We need to refine that test to check the answer is inside the context valid_answers.append( { "score": start_logits[start_index] + end_logits[end_index], "text": "" # We need to find a way to get back the original substring corresponding to the answer in the context } )<jupyter_output><empty_output><jupyter_text>And then we can sort the `valid_answers` according to their `score` and only keep the best one. The only point left is how to check a given span is inside the context (and not the question) and how to get back the text inside. To do this, we need to add two things to our validation features:- the ID of the example that generated the feature (since each example can generate several features, as seen before);- the offset mapping that will give us a map from token indices to character positions in the context.That's why we will re-process the validation set with the following function, slightly different from `prepare_train_features`:<jupyter_code>def prepare_validation_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples["question"] = [q.lstrip() for q in examples["question"]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples["question" if pad_on_right else "context"], examples["context" if pad_on_right else "question"], truncation="only_second" if pad_on_right else "only_first", max_length=max_length, stride=doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # We keep the example_id that gave us this feature and we will store the offset mappings. tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples<jupyter_output><empty_output><jupyter_text>And like before, we can apply that function to our validation set easily:<jupyter_code>validation_features = datasets["validation"].map( prepare_validation_features, batched=True, remove_columns=datasets["validation"].column_names )<jupyter_output><empty_output><jupyter_text>Now we can grab the predictions for all features by using the `Trainer.predict` method:<jupyter_code>raw_predictions = trainer.predict(validation_features)<jupyter_output><empty_output><jupyter_text>The `Trainer` *hides* the columns that are not used by the model (here `example_id` and `offset_mapping` which we will need for our post-processing), so we set them back:<jupyter_code>validation_features.set_format(type=validation_features.format["type"], columns=list(validation_features.features.keys()))<jupyter_output><empty_output><jupyter_text>We can now refine the test we had before: since we set `None` in the offset mappings when it corresponds to a part of the question, it's easy to check if an answer is fully inside the context. We also eliminate very long answers from our considerations (with an hyper-parameter we can tune)<jupyter_code>max_answer_length = 30 start_logits = output.start_logits[0].cpu().numpy() end_logits = output.end_logits[0].cpu().numpy() offset_mapping = validation_features[0]["offset_mapping"] # The first feature comes from the first example. For the more general case, we will need to be match the example_id to # an example index context = datasets["validation"][0]["context"] # Gather the indices the best start/end logits: start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() valid_answers = [] for start_index in start_indexes: for end_index in end_indexes: # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond # to part of the input_ids that are not in the context. if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or offset_mapping[end_index] is None ): continue # Don't consider answers with a length that is either < 0 or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue if start_index <= end_index: # We need to refine that test to check the answer is inside the context start_char = offset_mapping[start_index][0] end_char = offset_mapping[end_index][1] valid_answers.append( { "score": start_logits[start_index] + end_logits[end_index], "text": context[start_char: end_char] } ) valid_answers = sorted(valid_answers, key=lambda x: x["score"], reverse=True)[:n_best_size] valid_answers<jupyter_output><empty_output><jupyter_text>We can compare to the actual ground-truth answer:<jupyter_code>datasets["validation"][0]["answers"]<jupyter_output><empty_output><jupyter_text>Our model picked the right as the most likely answer!As we mentioned in the code above, this was easy on the first feature because we knew it comes from the first example. For the other features, we will need a map between examples and their corresponding features. Also, since one example can give several features, we will need to gather together all the answers in all the features generated by a given example, then pick the best one. The following code builds a map from example index to its corresponding features indices:<jupyter_code>import collections examples = datasets["validation"] features = validation_features example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i)<jupyter_output><empty_output><jupyter_text>We're almost ready for our post-processing function. The last bit to deal with is the impossible answer (when `squad_v2 = True`). The code above only keeps answers that are inside the context, we need to also grab the score for the impossible answer (which has start and end indices corresponding to the index of the CLS token). When one example gives several features, we have to predict the impossible answer when all the features give a high score to the impossible answer (since one feature could predict the impossible answer just because the answer isn't in the part of the context it has access too), which is why the score of the impossible answer for one example is the *minimum* of the scores for the impossible answer in each feature generated by the example.We then predict the impossible answer when that score is greater than the score of the best non-impossible answer. All combined together, this gives us this post-processing function:<jupyter_code>from tqdm.auto import tqdm def postprocess_qa_predictions(examples, features, raw_predictions, n_best_size = 20, max_answer_length = 30): all_start_logits, all_end_logits = raw_predictions # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. predictions = collections.OrderedDict() # Logging. print(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_score = None # Only used if squad_v2 is True. valid_answers = [] context = example["context"] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_logits = all_start_logits[feature_index] end_logits = all_end_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Update minimum null prediction. cls_index = features[feature_index]["input_ids"].index(tokenizer.cls_token_id) feature_null_score = start_logits[cls_index] + end_logits[cls_index] if min_null_score is None or min_null_score < feature_null_score: min_null_score = feature_null_score # Go through all possibilities for the `n_best_size` greater start and end logits. start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond # to part of the input_ids that are not in the context. if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or offset_mapping[end_index] is None ): continue # Don't consider answers with a length that is either < 0 or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue start_char = offset_mapping[start_index][0] end_char = offset_mapping[end_index][1] valid_answers.append( { "score": start_logits[start_index] + end_logits[end_index], "text": context[start_char: end_char] } ) if len(valid_answers) > 0: best_answer = sorted(valid_answers, key=lambda x: x["score"], reverse=True)[0] else: # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. best_answer = {"text": "", "score": 0.0} # Let's pick our final answer: the best one or the null answer (only for squad_v2) if not squad_v2: predictions[example["id"]] = best_answer["text"] else: answer = best_answer["text"] if best_answer["score"] > min_null_score else "" predictions[example["id"]] = answer return predictions<jupyter_output><empty_output><jupyter_text>And we can apply our post-processing function to our raw predictions:<jupyter_code>final_predictions = postprocess_qa_predictions(datasets["validation"], validation_features, raw_predictions.predictions)<jupyter_output>Post-processing 10570 example predictions split into 10784 features.<jupyter_text>Then we can load the metric from the datasets library.<jupyter_code>metric = load_metric("squad_v2" if squad_v2 else "squad")<jupyter_output><empty_output><jupyter_text>Then we can call compute on it. We just need to format predictions and labels a bit as it expects a list of dictionaries and not one big dictionary. In the case of squad_v2, we also have to set a `no_answer_probability` argument (which we set to 0.0 here as we have already set the answer to empty if we picked it).<jupyter_code>if squad_v2: formatted_predictions = [{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in final_predictions.items()] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in final_predictions.items()] references = [{"id": ex["id"], "answers": ex["answers"]} for ex in datasets["validation"]] metric.compute(predictions=formatted_predictions, references=references)<jupyter_output><empty_output><jupyter_text>You can now upload the result of the training to the Hub, just execute this instruction:<jupyter_code>trainer.push_to_hub()<jupyter_output><empty_output>
notebooks/examples/question_answering.ipynb/0
{ "file_path": "notebooks/examples/question_answering.ipynb", "repo_id": "notebooks", "token_count": 15331 }
147
<jupyter_start><jupyter_text>Time Series DatasetsThis notebook shows how to create a time series dataset from some csv file in order to then share it on the [๐Ÿค— hub](https://huggingface.co/docs/datasets/index). We will use the GluonTS library to read the csv into the appropriate format. We start by installing the libraries<jupyter_code>! pip install -q datasets gluonts orjson<jupyter_output><empty_output><jupyter_text>GluonTS comes with a pandas DataFrame based dataset so our strategy will be to read the csv file, and process it as a `PandasDataset`. We will then iterate over it and convert it to a ๐Ÿค— dataset with the appropriate schema for time series. So lets get started! `PandasDataset`Suppose we are given multiple (10) time series stacked on top of each other in a dataframe with an `item_id` column that distinguishes different series:<jupyter_code>import pandas as pd url = ( "https://gist.githubusercontent.com/rsnirwan/a8b424085c9f44ef2598da74ce43e7a3" "/raw/b6fdef21fe1f654787fa0493846c546b7f9c4df2/ts_long.csv" ) df = pd.read_csv(url, index_col=0, parse_dates=True) df.head()<jupyter_output><empty_output><jupyter_text>After converting it into a `pd.Dataframe` we can then convert it into GluonTS's `PandasDataset`:<jupyter_code>from gluonts.dataset.pandas import PandasDataset ds = PandasDataset.from_long_dataframe(df, target="target", item_id="item_id")<jupyter_output><empty_output><jupyter_text>๐Ÿค— DatasetsFrom here we have to map the pandas dataset's `start` field into a time stamp instead of a `pd.Period`. We do this by defining the following class:<jupyter_code>class ProcessStartField(): ts_id = 0 def __call__(self, data): data["start"] = data["start"].to_timestamp() data["feat_static_cat"] = [self.ts_id] self.ts_id += 1 return data from gluonts.itertools import Map process_start = ProcessStartField() list_ds = list(Map(process_start, ds))<jupyter_output><empty_output><jupyter_text>Next we need to define our schema features and create our dataset from this list via the `from_list` function:<jupyter_code>from datasets import Dataset, Features, Value, Sequence features = Features( { "start": Value("timestamp[s]"), "target": Sequence(Value("float32")), "feat_static_cat": Sequence(Value("uint64")), # "feat_static_real": Sequence(Value("float32")), # "feat_dynamic_real": Sequence(Sequence(Value("uint64"))), # "feat_dynamic_cat": Sequence(Sequence(Value("uint64"))), "item_id": Value("string"), } ) dataset = Dataset.from_list(list_ds, features=features)<jupyter_output><empty_output>
notebooks/examples/time_series_datasets.ipynb/0
{ "file_path": "notebooks/examples/time_series_datasets.ipynb", "repo_id": "notebooks", "token_count": 975 }
148
import argparse import logging import os import sys import tensorflow as tf from datasets import load_dataset from transformers import AutoTokenizer, TFAutoModelForSequenceClassification, DataCollatorWithPadding, create_optimizer if __name__ == "__main__": parser = argparse.ArgumentParser() # Hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=3) parser.add_argument("--train_batch_size", type=int, default=16) parser.add_argument("--eval_batch_size", type=int, default=8) parser.add_argument("--model_id", type=str) parser.add_argument("--learning_rate", type=str, default=3e-5) # Data, model, and output directories parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"]) parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"]) args, _ = parser.parse_known_args() # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_id) # Load DatasetDict dataset = load_dataset("imdb") # Preprocess train dataset def preprocess_function(examples): return tokenizer(examples["text"], truncation=True) encoded_dataset = dataset.map(preprocess_function, batched=True) # define tokenizer_columns # tokenizer_columns is the list of keys from the dataset that get passed to the TensorFlow model tokenizer_columns = ["attention_mask", "input_ids"] # convert to TF datasets data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") encoded_dataset["train"] = encoded_dataset["train"].rename_column("label", "labels") tf_train_dataset = encoded_dataset["train"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=True, batch_size=8, collate_fn=data_collator, ) encoded_dataset["test"] = encoded_dataset["test"].rename_column("label", "labels") tf_validation_dataset = encoded_dataset["test"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=False, batch_size=8, collate_fn=data_collator, ) # Prepare model labels - useful in inference API labels = encoded_dataset["train"].features["labels"].names num_labels = len(labels) label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # download model from model hub model = TFAutoModelForSequenceClassification.from_pretrained( args.model_id, num_labels=num_labels, label2id=label2id, id2label=id2label ) # create Adam optimizer with learning rate scheduling batches_per_epoch = len(encoded_dataset["train"]) // args.train_batch_size total_train_steps = int(batches_per_epoch * args.epochs) optimizer, _ = create_optimizer(init_lr=args.learning_rate, num_warmup_steps=0, num_train_steps=total_train_steps) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # define metric and compile model metrics = [tf.keras.metrics.SparseCategoricalAccuracy()] model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # Training logger.info("*** Train ***") train_results = model.fit( tf_train_dataset, epochs=args.epochs, validation_data=tf_validation_dataset, ) output_eval_file = os.path.join(args.output_data_dir, "train_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Train results *****") logger.info(train_results) for key, value in train_results.history.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) # Save result model.save_pretrained(args.model_dir) tokenizer.save_pretrained(args.model_dir)
notebooks/sagemaker/02_getting_started_tensorflow/scripts/train.py/0
{ "file_path": "notebooks/sagemaker/02_getting_started_tensorflow/scripts/train.py", "repo_id": "notebooks", "token_count": 1677 }
149
base_job_name: accelerate-sagemaker-1 compute_environment: AMAZON_SAGEMAKER distributed_type: DATA_PARALLEL ec2_instance_type: ml.p3.16xlarge iam_role_name: xxxxx image_uri: null mixed_precision: fp16 num_machines: 1 profile: xxxxx py_version: py38 pytorch_version: 1.10.2 region: us-east-1 transformers_version: 4.17.0 use_cpu: false
notebooks/sagemaker/22_accelerate_sagemaker_examples/src/seq2seq/accelerate_config.yaml/0
{ "file_path": "notebooks/sagemaker/22_accelerate_sagemaker_examples/src/seq2seq/accelerate_config.yaml", "repo_id": "notebooks", "token_count": 138 }
150
<jupyter_start><jupyter_text>Efficient Large Language Model training with LoRA and Hugging FaceIn this sagemaker example, we are going to learn how to apply [Low-Rank Adaptation of Large Language Models (LoRA)](https://arxiv.org/abs/2106.09685) to fine-tune BLOOMZ (7 billion parameter version instruction tuned version of BLOOM) on a single GPU. We are going to leverage Hugging Face [Transformers](https://huggingface.co/docs/transformers/index), [Accelerate](https://huggingface.co/docs/accelerate/index), and [PEFT](https://github.com/huggingface/peft). You will learn how to:1. Setup Development Environment2. Load and prepare the dataset3. Fine-Tune BLOOM with LoRA and bnb int-8 on Amazon SageMaker4. Deploy the model to Amazon SageMaker Endpoint Quick intro: PEFT or Parameter Efficient Fine-tuning[PEFT](https://github.com/huggingface/peft), or Parameter Efficient Fine-tuning, is a new open-source library from Hugging Face to enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. PEFT currently includes techniques for:- LoRA:ย [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/pdf/2106.09685.pdf)- Prefix Tuning:ย [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.org/pdf/2110.07602.pdf)- P-Tuning:ย [GPT Understands, Too](https://arxiv.org/pdf/2103.10385.pdf)- Prompt Tuning:ย [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/pdf/2104.08691.pdf)<jupyter_code>!pip install "transformers==4.26.0" "datasets[s3]==2.9.0" sagemaker py7zr --upgrade --quiet<jupyter_output><empty_output><jupyter_text>If you are going to use Sagemaker in a local environment. You need access to an IAM Role with the required permissions for Sagemaker. You can find [here](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) more about it.<jupyter_code>import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker bucket: {sess.default_bucket()}") print(f"sagemaker session region: {sess.boto_region_name}")<jupyter_output><empty_output><jupyter_text>2. Load and prepare the datasetWe will use theย [samsum](https://huggingface.co/datasets/samsum)ย dataset, a collection of about 16k messenger-like conversations with summaries. Conversations were created and written down by linguists fluent in English.```python{ "id": "13818513", "summary": "Amanda baked cookies and will bring Jerry some tomorrow.", "dialogue": "Amanda: I baked cookies. Do you want some?\r\nJerry: Sure!\r\nAmanda: I'll bring you tomorrow :-)"}```To load theย `samsum`ย dataset, we use theย `load_dataset()`ย method from the ๐Ÿค— Datasets library.<jupyter_code>from datasets import load_dataset # Load dataset from the hub dataset = load_dataset("samsum", split="train") print(f"Train dataset size: {len(dataset)}") # Train dataset size: 14732<jupyter_output><empty_output><jupyter_text>To train our model, we need to convert our inputs (text) to token IDs. This is done by a ๐Ÿค— Transformers Tokenizer. If you are not sure what this means, check outย **[chapter 6](https://huggingface.co/course/chapter6/1?fw=tf)**ย of the Hugging Face Course.<jupyter_code>from transformers import AutoTokenizer model_id="bigscience/bloomz-7b1" # Load tokenizer of BLOOMZ tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.model_max_length = 2048 # overwrite wrong value<jupyter_output><empty_output><jupyter_text>Before we can start training, we need to preprocess our data. Abstractive Summarization is a text-generation task. Our model will take a text as input and generate a summary as output. We want to understand how long our input and output will take to batch our data efficiently.We defined a `prompt_template` which we will use to construct an instruct prompt for better performance of our model. Our `prompt_template` has a โ€œfixedโ€ start and end, and our document is in the middle. This means we need to ensure that the โ€œfixedโ€ template parts + document are not exceeding the max length of the model. We preprocess our dataset before training and save it to disk to then upload it to S3. You could run this step on your local machine or a CPU and upload it to the [Hugging Face Hub](https://huggingface.co/docs/hub/datasets-overview).<jupyter_code>from random import randint from itertools import chain from functools import partial # custom instruct prompt start prompt_template = f"Summarize the chat dialogue:\n{{dialogue}}\n---\nSummary:\n{{summary}}{{eos_token}}" # template dataset to add prompt to each sample def template_dataset(sample): sample["text"] = prompt_template.format(dialogue=sample["dialogue"], summary=sample["summary"], eos_token=tokenizer.eos_token) return sample # apply prompt template per sample dataset = dataset.map(template_dataset, remove_columns=list(dataset.features)) print(dataset[randint(0, len(dataset))]["text"]) # empty list to save remainder from batches to use in next batch remainder = {"input_ids": [], "attention_mask": []} def chunk(sample, chunk_length=2048): # define global remainder variable to save remainder from batches to use in next batch global remainder # Concatenate all texts and add remainder from previous batch concatenated_examples = {k: list(chain(*sample[k])) for k in sample.keys()} concatenated_examples = {k: remainder[k] + concatenated_examples[k] for k in concatenated_examples.keys()} # get total number of tokens for batch batch_total_length = len(concatenated_examples[list(sample.keys())[0]]) # get max number of chunks for batch if batch_total_length >= chunk_length: batch_chunk_length = (batch_total_length // chunk_length) * chunk_length # Split by chunks of max_len. result = { k: [t[i : i + chunk_length] for i in range(0, batch_chunk_length, chunk_length)] for k, t in concatenated_examples.items() } # add remainder to global variable for next batch remainder = {k: concatenated_examples[k][batch_chunk_length:] for k in concatenated_examples.keys()} # prepare labels result["labels"] = result["input_ids"].copy() return result # tokenize and chunk dataset lm_dataset = dataset.map( lambda sample: tokenizer(sample["text"]), batched=True, remove_columns=list(dataset.features) ).map( partial(chunk, chunk_length=1536), batched=True, ) # Print total number of samples print(f"Total number of samples: {len(lm_dataset)}")<jupyter_output><empty_output><jupyter_text>After we processed the datasets we are going to use the new [FileSystem integration](https://huggingface.co/docs/datasets/filesystems) to upload our dataset to S3. We are using the `sess.default_bucket()`, adjust this if you want to store the dataset in a different S3 bucket. We will use the S3 path later in our training script.<jupyter_code># save train_dataset to s3 training_input_path = f's3://{sess.default_bucket()}/processed/samsum-sagemaker/train' lm_dataset.save_to_disk(training_input_path) print("uploaded data to:") print(f"training dataset to: {training_input_path}")<jupyter_output><empty_output><jupyter_text>3. Fine-Tune BLOOM with LoRA and bnb int-8 on Amazon SageMakerIn addition to the LoRA technique, we will use [bitsanbytes LLM.int8()](https://huggingface.co/blog/hf-bitsandbytes-integration) to quantize out frozen LLM to int8. This allows us to reduce the needed memory for BLOOMZ ~4x. We prepared a [run_clm.py](./scripts/run_clm.py), which implements uses PEFT to train our model. If you are interested in how this works check-out [Efficient Large Language Model training with LoRA and Hugging Face](https://www.philschmid.de/fine-tune-flan-t5-peft) blog, where we explain the training script in detail.In order to create a sagemaker training job we need an `HuggingFace` Estimator. The Estimator handles end-to-end Amazon SageMaker training and deployment tasks. The Estimator manages the infrastructure use. SagMaker takes care of starting and managing all the required ec2 instances for us, provides the correct huggingface container, uploads the provided scripts and downloads the data from our S3 bucket into the container at `/opt/ml/input/data`. Then, it starts the training job by running.<jupyter_code>import time # define Training Job Name job_name = f'huggingface-peft-{time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())}' from sagemaker.huggingface import HuggingFace # hyperparameters, which are passed into the training job hyperparameters ={ 'model_id': model_id, # pre-trained model 'dataset_path': '/opt/ml/input/data/training', # path where sagemaker will save training dataset 'epochs': 3, # number of training epochs 'per_device_train_batch_size': 1, # batch size for training 'lr': 2e-4, # learning rate used during training } # create the Estimator huggingface_estimator = HuggingFace( entry_point = 'run_clm.py', # train script source_dir = 'scripts', # directory which includes all the files needed for training instance_type = 'ml.g5.2xlarge', # instances type used for the training job instance_count = 1, # the number of instances used for training base_job_name = job_name, # the name of the training job role = role, # Iam role used in training job to access AWS ressources, e.g. S3 volume_size = 300, # the size of the EBS volume in GB transformers_version = '4.26', # the transformers version used in the training job pytorch_version = '1.13', # the pytorch_version version used in the training job py_version = 'py39', # the python version used in the training job hyperparameters = hyperparameters )<jupyter_output><empty_output><jupyter_text>We can now start our training job, with the `.fit()` method passing our S3 path to the training script.<jupyter_code># define a data input dictonary with our uploaded s3 uris data = {'training': training_input_path} # starting the train job with our uploaded datasets as input huggingface_estimator.fit(data, wait=True)<jupyter_output><empty_output><jupyter_text>In our example, the SageMaker training job took `20632 seconds`, which is about `5.7 hours`. The ml.g5.2xlarge instance we used costs `$1.515 per hour` for on-demand usage. As a result, the total cost for training our fine-tuned BLOOMZ-7B model was only `$8.63`.We could further reduce the training costs by using spot instances. However, there is a possibility this would result in the total training time increasing due to spot instance interruptions. See the SageMaker pricing page for instance pricing details." 4. Deploy the model to Amazon SageMaker EndpointWhen using `peft` for training, you normally end up with adapter weights. We added the `merge_and_unload()` method to merge the base model with the adatper to make it easier to deploy the model. Since we can now use the `pipelines` feature of the `transformers` library. SageMaker starts the deployment process by creating a SageMaker Endpoint Configuration and a SageMaker Endpoint. The Endpoint Configuration defines the model and the instance type.<jupyter_code>from sagemaker.huggingface import HuggingFaceModel # create Hugging Face Model Class huggingface_model = HuggingFaceModel( model_data=huggingface_estimator.model_data, #model_data="s3://hf-sagemaker-inference/model.tar.gz", # Change to your model path role=role, transformers_version="4.26", pytorch_version="1.13", py_version="py39", model_server_workers=1 )<jupyter_output><empty_output><jupyter_text>We can now deploy our model using the `deploy()` on our HuggingFace estimator object, passing in our desired number of instances and instance type.<jupyter_code># deploy model to SageMaker Inference predictor = huggingface_model.deploy( initial_instance_count=1, instance_type= "ml.g5.4xlarge" )<jupyter_output><empty_output><jupyter_text>Note: it may take 5-10 min for the SageMaker endpoint to bring your instance online and download your model in order to be ready to accept inference requests. Lets test by using a example from the `test` split.<jupyter_code>from random import randint from datasets import load_dataset # Load dataset from the hub test_dataset = load_dataset("samsum", split="test") # select a random test sample sample = test_dataset[randint(0,len(test_dataset))] # format sample prompt_template = f"Summarize the chat dialogue:\n{{dialogue}}\n---\nSummary:\n" fomatted_sample = { "inputs": prompt_template.format(dialogue=sample["dialogue"]), "parameters": { "do_sample": True, # sample output predicted probabilities "top_p": 0.9, # sampling technique Fan et. al (2018) "temperature": 0.1, # increasing the likelihood of high probability words and decreasing the likelihood of low probability words "max_new_tokens": 100, # The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt } } # predict res = predictor.predict(fomatted_sample) print(res[0]["generated_text"].split("Summary:")[-1]) # Sample model output: Kirsten and Alex are going bowling this Friday at 7 pm. They will meet up and then go together.<jupyter_output><empty_output><jupyter_text>Now let's compare the model summarized dialog output to the test sample summary.<jupyter_code>print(sample["summary"]) # Test sample summary: Kirsten reminds Alex that the youth group meets this Friday at 7 pm to go bowling.<jupyter_output><empty_output><jupyter_text>Finally, we delete the endpoint again.<jupyter_code>predictor.delete_model() predictor.delete_endpoint()<jupyter_output><empty_output>
notebooks/sagemaker/24_train_bloom_peft_lora/sagemaker-notebook.ipynb/0
{ "file_path": "notebooks/sagemaker/24_train_bloom_peft_lora/sagemaker-notebook.ipynb", "repo_id": "notebooks", "token_count": 4824 }
151
<jupyter_start><jupyter_text>Deploy Zephyr 7B on AWS Inferentia2 using Amazon SageMakerThis tutorial will show how easy it is to deploy Zephyr 7B on AWS Infernetia2 using Amazon SageMaker. Zephyr is a 7B parameter LLM fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). More details are in the [technical report](https://arxiv.org/abs/2310.16944). The model is released under the Apache 2.0 license, ensuring wide accessibility and use. We are going to show you how to:1. Setup development environment2. Retrieve the TGI Neuronx Image3. Deploy Zephyr 7B to Amazon SageMaker4. Run inference and chat with the modelLetโ€™s get started. 1. Setup development environmentWe are going to use the `sagemaker` python SDK to deploy Mixtral to Amazon SageMaker. We need to make sure to have an AWS account configured and the `sagemaker` python SDK installed.<jupyter_code>!pip install transformers "sagemaker>=2.206.0" --upgrade --quiet<jupyter_output>/bin/pip:6: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html from pkg_resources import load_entry_point ERROR: sagemaker 2.206.0 has requirement PyYAML~=6.0, but you'll have pyyaml 5.3.1 which is incompatible.<jupyter_text>If you are going to use Sagemaker in a local environment. You need access to an IAM Role with the required permissions for Sagemaker. You can find [here](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html) more about it.<jupyter_code>import sagemaker import boto3 sess = sagemaker.Session() # sagemaker session bucket -> used for uploading data, models and logs # sagemaker will automatically create this bucket if it not exists sagemaker_session_bucket=None if sagemaker_session_bucket is None and sess is not None: # set to default bucket if a bucket name is not given sagemaker_session_bucket = sess.default_bucket() try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] sess = sagemaker.Session(default_bucket=sagemaker_session_bucket) print(f"sagemaker role arn: {role}") print(f"sagemaker session region: {sess.boto_region_name}")<jupyter_output>sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml sagemaker.config INFO - Not applying SDK defaults from location: /home/ubuntu/.config/sagemaker/config.yaml<jupyter_text>2. Retrieve TGI Neuronx ImageThe new Hugging Face TGI Neuronx DLC can be used to run inference on AWS Inferentia2. To retrieve the URI for the desired Hugging Face TGI Neuronx DLC we can use the `get_huggingface_tgi_neuronx_image_uri` method provided by the `sagemaker` SDK. This method allows us to retrieve the URI for the desired Hugging Face TGI Neuronx DLC based on the specified `backend`, `session`, `region`, and `version`. You can find the available versions [here](https://github.com/aws/deep-learning-containers/releases?q=tgi+AND+neuronx&expanded=true)_Note: At the time of writing this blog post the latest version of the Hugging Face LLM DLC is not yet available via the `get_huggingface_llm_image_uri` method. We are going to use the raw container uri instead._<jupyter_code>from sagemaker.huggingface import get_huggingface_llm_image_uri # retrieve the llm image uri llm_image = get_huggingface_llm_image_uri( "huggingface-neuronx", version="0.0.17" ) # print ecr image uri print(f"llm image uri: {llm_image}")<jupyter_output>llm image uri: 763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-tgi-inference:1.13.1-optimum0.0.17-neuronx-py310-ubuntu22.04<jupyter_text>4. Deploy Zephyr 7B to Amazon SageMakerText Generation Inference (TGI) on Inferentia2 supports popular open LLMs, including Llama, Mistral, and more. You can check the full list of supported models (text-generation) [here](https://huggingface.co/docs/optimum-neuron/package_reference/exportsupported-architectures). In this example, we will deploy [Hugging Face Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) to Amazon SageMaker. Zephyr is a 7B parameter LLM fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). You can find more details in the [technical report](https://arxiv.org/abs/2310.16944). Compiling LLMs for Inferenetia2At the time of writing, [AWS Inferentia2 does not support dynamic shapes for inference](https://awsdocs-neuron.readthedocs-hosted.com/en/v2.6.0/general/arch/neuron-features/dynamic-shapes.htmlneuron-dynamic-shapes), which means that we need to specify our sequence length and batch size in advanced. To make it easier for customers to utilize the full power of Inferentia2, we created a [neuron model cache](https://huggingface.co/docs/optimum-neuron/guides/cache_system), which contains pre-compiled configurations for the most popular LLMs. A cached configuration is defined through a model architecture (Mistral), model size (7B), neuron version (2.16), number of inferentia cores (2), batch size (2), and sequence length (2048). This means compiling fine-tuned checkpoints for Mistral 7B with the same configuration will take only a few minutes. Examples of this are [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)._**Note:** Currently, TGI can only load compiled checkpoints and models. We are working on an on-the-fly compilation based on the cache. This means that you can pass any model ID from the Hugging face Hub, e.g., `HuggingFaceH4/zephyr-7b-beta` if there is a cached configuration. This should be added in the next release. We update the blog here once released._For the blog we compiled `HuggingFaceH4/zephyr-7b-beta` using the following command and parameters on a `inf2.8xlarge` instance and pushed it to the hub at []():```bash compile model with optimum for batch size 4 and sequence length 2048optimum-cli export neuron -m HuggingFaceH4/zephyr-7b-beta --batch_size 4 --sequence_length 2048 --num_cores 2 --auto_cast_type bf16 ./zephyr-7b-beta-neuron push model to hub [repo_id] [local_path] [path_in_repo]huggingface-cli upload aws-neuron/zephyr-7b-seqlen-2048-bs-4 ./zephyr-7b-beta-neuron ./ --exclude "checkpoint/**" Move tokenizer to neuron model repositorypython -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta').push_to_hub('aws-neuron/zephyr-7b-seqlen-2048-bs-4')"```If you are trying to compile an LLM with a configuration that is not yet cached, it can take up to 45 minutes. Deploying TGI Neuronx EndpointBefore deploying the model to Amazon SageMaker, we must define the TGI Neuronx endpoint configuration. Due to the current boundaries of Inferentia2, we need to make sure that the following parameters are set to the same value:* `MAX_CONCURRENT_REQUESTS`: Equals to the batch size, which was used to compile the model.* `MAX_INPUT_LENGTH`: Equals or lower than the sequence length, which was used to compile the model.* `MAX_TOTAL_TOKENS`: Equals to the sequence length, which was used to compile the model.* `MAX_BATCH_PREFILL_TOKENS`: half of the max tokens [batch_size * sequence_length] / 2* `MAX_BATCH_TOTAL_TOKENS`: Equals to the max tokens [batch_size * sequence_length]In addition, we need to set the `HF_MODEL_ID` pointing to the Hugging Face model ID.<jupyter_code>import json from sagemaker.huggingface import HuggingFaceModel # sagemaker config & model config instance_type = "ml.inf2.8xlarge" health_check_timeout = 900 batch_size = 4 sequence_length = 2048 # Define Model and Endpoint configuration parameter config = { 'HF_MODEL_ID': "aws-neuron/zephyr-7b-seqlen-2048-bs-4-cores-2", 'MAX_CONCURRENT_REQUESTS': json.dumps(batch_size), 'MAX_INPUT_LENGTH': json.dumps(1512), 'MAX_TOTAL_TOKENS': json.dumps(sequence_length), 'MAX_BATCH_PREFILL_TOKENS': json.dumps(int(sequence_length*batch_size / 2)), 'MAX_BATCH_TOTAL_TOKENS': json.dumps(sequence_length*batch_size), } # create HuggingFaceModel with the image uri llm_model = HuggingFaceModel( role=role, image_uri=llm_image, env=config )<jupyter_output><empty_output><jupyter_text>After we have created the `HuggingFaceModel` we can deploy it to Amazon SageMaker using the `deploy` method. We will deploy the model with the `ml.inf2.8xlarge` instance type.<jupyter_code># Deploy model to an endpoint # https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.model.Model.deploy llm = llm_model.deploy( initial_instance_count=1, instance_type=instance_type, container_startup_health_check_timeout=health_check_timeout, # 10 minutes to be able to load the model )<jupyter_output>Your model is not compiled. Please compile your model before using Inferentia.<jupyter_text>SageMaker will create our endpoint and deploy the model to it. This can takes a 10-15 minutes. 5. Run inference and chat with the modelAfter our endpoint is deployed, we can run inference on it. We will use the `predict` method from the `predictor` to run inference on our endpoint. We can inference with different parameters to impact the generation. Parameters can be defined in the `parameters` attribute of the payload. You can find supported parameters in the [here](https://www.philschmid.de/sagemaker-llama-llm5-run-inference-and-chat-with-the-model) or in the open API specification of the TGI in the [swagger documentation](https://huggingface.github.io/text-generation-inference/)The `HuggingFaceH4/zephyr-7b-beta` is a conversational chat model, meaning we can chat with it using the following prompt: ```\nYou are a friendly.\n\nInstruction\n\n```To avoid drafting the prompt, we can use the `apply_chat_template` method from the tokenizer, which expects a `messages` dictionary with the known OpenAI format and converts it into the correct format for the model. Let's see if Zephyr knows some facts about AWS.<jupyter_code>from transformers import AutoTokenizer # load the tokenizer tokenizer = AutoTokenizer.from_pretrained("aws-neuron/zephyr-7b-seqlen-2048-bs-4-cores-2") # Prompt to generate messages = [ {"role": "system", "content": "You are the AWS expert"}, {"role": "user", "content": "Can you tell me an interesting fact abou AWS?"}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generation arguments payload = { "do_sample": True, "top_p": 0.6, "temperature": 0.9, "top_k": 50, "max_new_tokens": 256, "repetition_penalty": 1.03, "return_full_text": False, "stop": ["</s>"] } chat = llm.predict({"inputs":prompt, "parameters":payload}) print(chat[0]["generated_text"][len(prompt):]) # Sure, here's an interesting fact about AWS: As of 2021, AWS has more than 200 services in its portfolio, ranging from compute power and storage to databases,<jupyter_output>Sure, here's an interesting fact about AWS: As of 2021, AWS has more than 200 services in its portfolio, ranging from compute power and storage to databases, analytics, and machine learning. This vast array of services allows developers and businesses to build and deploy complex applications and workflows with flexibility and agility, without having to manage the underlying infrastructure. In fact, AWS's extensive service offerings have contributed to its dominance in the cloud computing market, with a market share of over 30% as of 2021.</s><jupyter_text>Awesome, we have successfully deployed Zephyr to Amazon SageMaker on Inferentia2 and chatted with it. 6. Clean upTo clean up, we can delete the model and endpoint.<jupyter_code>llm.delete_model() llm.delete_endpoint()<jupyter_output><empty_output>
notebooks/sagemaker/29_deploy_llms_on_inferentia2/sagemaker-notebook.ipynb/0
{ "file_path": "notebooks/sagemaker/29_deploy_llms_on_inferentia2/sagemaker-notebook.ipynb", "repo_id": "notebooks", "token_count": 3797 }
152
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Working with mixed adapter types Normally, it is not possible to mix different adapter types in ๐Ÿค— PEFT. For example, even though it is possible to create a PEFT model that has two different LoRA adapters (that can have different config options), it is not possible to combine a LoRA adapter with a LoHa adapter. However, by using a mixed model, this works as long as the adapter types are compatible. ## Loading different adapter types into a PEFT model To load different adapter types into a PEFT model, proceed the same as if you were loading two adapters of the same type, but use `PeftMixedModel` instead of `PeftModel`: ```py from peft import PeftMixedModel base_model = ... # load the base model, e.g. from transformers # load first adapter, which will be called "default" peft_model = PeftMixedModel.from_pretrained(base_model, <path_to_adapter1>) peft_model.load_adapter(<path_to_adapter2>, adapter_name="other") peft_model.set_adapter(["default", "other"]) ``` The last line is necessary if you want to activate both adapters, otherwise, only the first adapter would be active. Of course, you can add more different adapters by calling `add_adapter` repeatedly. Currently, the main purpose of mixed adapter types is to combine trained adapters for inference. Although it is technically also possible to train a mixed adapter model, this has not been tested and is not recommended. ## Tips - Not all adapter types can be combined. See `peft.tuners.mixed.COMPATIBLE_TUNER_TYPES` for a list of compatible types. An error will be raised if you are trying to combine incompatible adapter types. - It is possible to mix multiple adapters of the same type. This can be useful to combine adapters with very different configs. - If you want to combine a lot of different adapters, it is most performant to add the same types of adapters consecutively. E.g., add LoRA1, LoRA2, LoHa1, LoHa2 in this order, instead of LoRA1, LoHa1, LoRA2, LoHa2. The order will make a difference for the outcome in most cases, but since no order is better a priori, it is best to choose the order that is most performant.
peft/docs/source/developer_guides/mixed_models.md/0
{ "file_path": "peft/docs/source/developer_guides/mixed_models.md", "repo_id": "peft", "token_count": 697 }
153
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # P-tuning [P-tuning](https://hf.co/papers/2103.10385) adds trainable prompt embeddings to the input that is optimized by a prompt encoder to find a better prompt, eliminating the need to manually design prompts. The prompt tokens can be added anywhere in the input sequence, and p-tuning also introduces anchor tokens for improving performance. The abstract from the paper is: *While GPTs with traditional fine-tuning fail to achieve strong results on natural language understanding (NLU), we show that GPTs can be better than or comparable to similar-sized BERTs on NLU tasks with a novel method P-tuning -- which employs trainable continuous prompt embeddings. On the knowledge probing (LAMA) benchmark, the best GPT recovers 64\% (P@1) of world knowledge without any additional text provided during test time, which substantially improves the previous best by 20+ percentage points. On the SuperGlue benchmark, GPTs achieve comparable and sometimes better performance to similar-sized BERTs in supervised learning. Importantly, we find that P-tuning also improves BERTs' performance in both few-shot and supervised settings while largely reducing the need for prompt engineering. Consequently, P-tuning outperforms the state-of-the-art approaches on the few-shot SuperGlue benchmark.*. ## PromptEncoderConfig [[autodoc]] tuners.p_tuning.config.PromptEncoderConfig ## PromptEncoder [[autodoc]] tuners.p_tuning.model.PromptEncoder
peft/docs/source/package_reference/p_tuning.md/0
{ "file_path": "peft/docs/source/package_reference/p_tuning.md", "repo_id": "peft", "token_count": 540 }
154
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # PEFT configurations and models The sheer size of today's large pretrained models - which commonly have billions of parameters - present a significant training challenge because they require more storage space and more computational power to crunch all those calculations. You'll need access to powerful GPUs or TPUs to train these large pretrained models which is expensive, not widely accessible to everyone, not environmentally friendly, and not very practical. PEFT methods address many of these challenges. There are several types of PEFT methods (soft prompting, matrix decomposition, adapters), but they all focus on the same thing, reduce the number of trainable parameters. This makes it more accessible to train and store large models on consumer hardware. The PEFT library is designed to help you quickly train large models on free or low-cost GPUs, and in this tutorial, you'll learn how to setup a configuration to apply a PEFT method to a pretrained base model for training. Once the PEFT configuration is setup, you can use any training framework you like (Transformer's [`~transformers.Trainer`] class, [Accelerate](https://hf.co/docs/accelerate), a custom PyTorch training loop). ## PEFT configurations <Tip> Learn more about the parameters you can configure for each PEFT method in their respective API reference page. </Tip> A configuration stores important parameters that specify how a particular PEFT method should be applied. For example, take a look at the following [`LoraConfig`](https://huggingface.co/ybelkada/opt-350m-lora/blob/main/adapter_config.json) for applying LoRA and [`PromptEncoderConfig`](https://huggingface.co/smangrul/roberta-large-peft-p-tuning/blob/main/adapter_config.json) for applying p-tuning (these configuration files are already JSON-serialized). Whenever you load a PEFT adapter, it is a good idea to check whether it has an associated adapter_config.json file which is required. <hfoptions id="config"> <hfoption id="LoraConfig"> ```json { "base_model_name_or_path": "facebook/opt-350m", #base model to apply LoRA to "bias": "none", "fan_in_fan_out": false, "inference_mode": true, "init_lora_weights": true, "layers_pattern": null, "layers_to_transform": null, "lora_alpha": 32, "lora_dropout": 0.05, "modules_to_save": null, "peft_type": "LORA", #PEFT method type "r": 16, "revision": null, "target_modules": [ "q_proj", #model modules to apply LoRA to (query and value projection layers) "v_proj" ], "task_type": "CAUSAL_LM" #type of task to train model on } ``` You can create your own configuration for training by initializing a [`LoraConfig`]. ```py from peft import LoraConfig, TaskType lora_config = LoraConfig( r=16, target_modules=["q_proj", "v_proj"], task_type=TaskType.CAUSAL_LM, lora_alpha=32, lora_dropout=0.05 ) ``` </hfoption> <hfoption id="PromptEncoderConfig"> ```json { "base_model_name_or_path": "roberta-large", #base model to apply p-tuning to "encoder_dropout": 0.0, "encoder_hidden_size": 128, "encoder_num_layers": 2, "encoder_reparameterization_type": "MLP", "inference_mode": true, "num_attention_heads": 16, "num_layers": 24, "num_transformer_submodules": 1, "num_virtual_tokens": 20, "peft_type": "P_TUNING", #PEFT method type "task_type": "SEQ_CLS", #type of task to train model on "token_dim": 1024 } ``` You can create your own configuration for training by initializing a [`PromptEncoderConfig`]. ```py from peft import PromptEncoderConfig, TaskType p_tuning_config = PromptEncoderConfig( encoder_reprameterization_type="MLP", encoder_hidden_size=128, num_attention_heads=16, num_layers=24, num_transformer_submodules=1, num_virtual_tokens=20, token_dim=1024, task_type=TaskType.SEQ_CLS ) ``` </hfoption> </hfoptions> ## PEFT models With a PEFT configuration in hand, you can now apply it to any pretrained model to create a [`PeftModel`]. Choose from any of the state-of-the-art models from the [Transformers](https://hf.co/docs/transformers) library, a custom model, and even new and unsupported transformer architectures. For this tutorial, load a base [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) model to finetune. ```py from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") ``` Use the [`get_peft_model`] function to create a [`PeftModel`] from the base facebook/opt-350m model and the `lora_config` you created earlier. ```py from peft import get_peft_model lora_model = get_peft_model(model, lora_config) lora_model.print_trainable_parameters() "trainable params: 1,572,864 || all params: 332,769,280 || trainable%: 0.472659014678278" ``` Now you can train the [`PeftModel`] with your preferred training framework! After training, you can save your model locally with [`~PeftModel.save_pretrained`] or upload it to the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] method. ```py # save locally lora_model.save_pretrained("your-name/opt-350m-lora") # push to Hub lora_model.push_to_hub("your-name/opt-350m-lora") ``` To load a [`PeftModel`] for inference, you'll need to provide the [`PeftConfig`] used to create it and the base model it was trained from. ```py from peft import PeftModel, PeftConfig config = PeftConfig.from_pretrained("ybelkada/opt-350m-lora") model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) lora_model = PeftModel.from_pretrained(model, "ybelkada/opt-350m-lora") ``` <Tip> By default, the [`PeftModel`] is set for inference, but if you'd like to train the adapter some more you can set `is_trainable=True`. ```py lora_model = PeftModel.from_pretrained(model, "ybelkada/opt-350m-lora", is_trainable=True) ``` </Tip> The [`PeftModel.from_pretrained`] method is the most flexible way to load a [`PeftModel`] because it doesn't matter what model framework was used (Transformers, timm, a generic PyTorch model). Other classes, like [`AutoPeftModel`], are just a convenient wrapper around the base [`PeftModel`], and makes it easier to load PEFT models directly from the Hub or locally where the PEFT weights are stored. ```py from peft import AutoPeftModelForCausalLM lora_model = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora") ``` Take a look at the [AutoPeftModel](package_reference/auto_class) API reference to learn more about the [`AutoPeftModel`] classes. ## Next steps With the appropriate [`PeftConfig`], you can apply it to any pretrained model to create a [`PeftModel`] and train large powerful models faster on freely available GPUs! To learn more about PEFT configurations and models, the following guide may be helpful: * Learn how to configure a PEFT method for models that aren't from Transformers in the [Working with custom models](../developer_guides/custom_models) guide.
peft/docs/source/tutorial/peft_model_config.md/0
{ "file_path": "peft/docs/source/tutorial/peft_model_config.md", "repo_id": "peft", "token_count": 2415 }
155
<jupyter_start><jupyter_code>from transformers import AutoModelForSeq2SeqLM from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType import torch from datasets import load_dataset import os os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_VISIBLE_DEVICES"] = "3" from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset device = "cuda" model_name_or_path = "t5-large" tokenizer_name_or_path = "t5-large" checkpoint_name = "financial_sentiment_analysis_prefix_tuning_v1.pt" text_column = "sentence" label_column = "text_label" max_length = 128 lr = 1e-2 num_epochs = 5 batch_size = 8 # creating model peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model # loading dataset dataset = load_dataset("financial_phrasebank", "sentences_allagree") dataset = dataset["train"].train_test_split(test_size=0.1) dataset["validation"] = dataset["test"] del dataset["test"] classes = dataset["train"].features["label"].names dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["label"]]}, batched=True, num_proc=1, ) dataset["train"][0] # data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def preprocess_function(examples): inputs = examples[text_column] targets = examples[label_column] model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt") labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt") labels = labels["input_ids"] labels[labels == tokenizer.pad_token_id] = -100 model_inputs["labels"] = labels return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) # optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) # training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") # print accuracy correct = 0 total = 0 for pred, true in zip(eval_preds, dataset["validation"]["text_label"]): if pred.strip() == true.strip(): correct += 1 total += 1 accuracy = correct / total * 100 print(f"{accuracy=} % on the evaluation dataset") print(f"{eval_preds[:10]=}") print(f"{dataset['validation']['text_label'][:10]=}") # saving model peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" model.save_pretrained(peft_model_id) ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckpt from peft import PeftModel, PeftConfig peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) model.eval() i = 107 inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt") print(dataset["validation"][text_column][i]) print(inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))<jupyter_output>Acando AB ( ACANB SS ) fell 8.9 percent to 13.35 kronor , the lowest close since Dec. 11 . {'input_ids': tensor([[ 4292, 232, 32, 3, 5359, 41, 3, 22029, 14972, 3, 4256, 3, 61, 4728, 4848, 1298, 1093, 12, 8808, 2469, 3, 22318, 29, 127, 3, 6, 8, 7402, 885, 437, 4451, 5, 850, 3, 5, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])} tensor([[ 0, 2841, 1]]) ['negative']
peft/examples/conditional_generation/peft_prefix_tuning_seq2seq.ipynb/0
{ "file_path": "peft/examples/conditional_generation/peft_prefix_tuning_seq2seq.ipynb", "repo_id": "peft", "token_count": 2479 }
156
accelerate launch --config_file config.yaml peft_adalora_whisper_large_training.py \ --model_name_or_path "openai/whisper-large-v2" \ --language "Marathi" \ --language_abbr "mr" \ --task "transcribe" \ --dataset_name "mozilla-foundation/common_voice_11_0" \ --push_to_hub \ --preprocessing_num_workers 2 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --dataloader_pin_memory \ --dataloader_num_workers 2 \ --learning_rate 1e-3 \ --weight_decay 1e-4 \ --num_train_epochs 3 \ --gradient_accumulation_steps 1 \ --lr_scheduler_type "linear" \ --num_warmup_steps 50 \ --output_dir "adalora_whisper_large_marathi_multi_adapter" \ --seed 42 \ --load_best_model \ --with_tracking \ --report_to "wandb" \ --hub_token $HUB_TOKEN \ --checkpointing_steps 2000 \ --evaluation_steps 2000 \ --logging_steps 25 \ --use_peft \ --use_adalora \ --init_r 12 \ --target_r 8 \ --tinit 100 \ --tfinal 800 \ --delta_t 10 \ --lora_alpha 32 \ --lora_dropout 0.1 \ --orth_reg_weight 0.5
peft/examples/int8_training/run_adalora_whisper_int8.sh/0
{ "file_path": "peft/examples/int8_training/run_adalora_whisper_int8.sh", "repo_id": "peft", "token_count": 509 }
157
import json, os import argparse from pathlib import Path from datetime import date from tabulate import tabulate MAX_LEN_MESSAGE = 2900 # slack endpoint has a limit of 3001 characters parser = argparse.ArgumentParser() parser.add_argument( "--slack_channel_name", default="peft-ci-daily" ) def main(slack_channel_name=None): failed = [] passed = [] group_info = [] total_num_failed = 0 empty_file = False or len(list(Path().glob("*.log"))) == 0 total_empty_files = [] for log in Path().glob("*.log"): section_num_failed = 0 i = 0 with open(log, "r") as f: for line in f: line = json.loads(line) i += 1 if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 else: passed.append([test, duration, log.name.split('_')[0]]) empty_file = i == 0 group_info.append([str(log), section_num_failed, failed]) total_empty_files.append(empty_file) os.remove(log) failed = [] no_error_payload = { "type": "section", "text": { "type": "plain_text", "text": "๐ŸŒž There were no failures!" if not any(total_empty_files) else "Something went wrong there is at least one empty file - please check GH action results.", "emoji": True } } message = "" payload = [ { "type": "header", "text": { "type": "plain_text", "text": "๐Ÿค— Results of the {} PEFT scheduled tests.".format(os.environ.get("TEST_TYPE", "")), } }, ] if total_num_failed > 0: for i, (name, num_failed, failed_tests) in enumerate(group_info): if num_failed > 0: if num_failed == 1: message += f"*{name}: {num_failed} failed test*\n" else: message += f"*{name}: {num_failed} failed tests*\n" failed_table = [] for test in failed_tests: failed_table.append(test[0].split("::")) failed_table = tabulate(failed_table, headers=["Test Location", "Test Case", "Test Name"], showindex="always", tablefmt="grid", maxcolwidths=[12, 12, 12]) message += '\n```\n' +failed_table + '\n```' if total_empty_files[i]: message += f"\n*{name}: Warning! Empty file - please check the GitHub action job *\n" print(f'### {message}') else: payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient if len(message) > MAX_LEN_MESSAGE: print(f"Truncating long message from {len(message)} to {MAX_LEN_MESSAGE}") message = message[:MAX_LEN_MESSAGE] + "..." if len(message) != 0: md_report = { "type": "section", "text": { "type": "mrkdwn", "text": message }, } payload.append(md_report) action_button = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*" }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/peft/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", }, ], } payload.append(date_report) print(payload) client = WebClient(token=os.environ.get("SLACK_API_TOKEN")) client.chat_postMessage(channel=f"#{slack_channel_name}", text=message, blocks=payload) if __name__ == "__main__": args = parser.parse_args() main(args.slack_channel_name)
peft/scripts/log_reports.py/0
{ "file_path": "peft/scripts/log_reports.py", "repo_id": "peft", "token_count": 2483 }
158
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .layer import AdaLoraLayer class SVDQuantLinear(torch.nn.Module, AdaLoraLayer): def __init__( self, base_layer, adapter_name, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: bool = True, **kwargs, ) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) # self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter # for backwards compatibility self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def forward(self, x: torch.Tensor) -> torch.Tensor: result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-5 requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype if x.dtype != torch.float32: x = x.float() output = (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum # TODO: here, the dtype conversion is applied on the *whole expression*, # not the intermediate result, unlike for SVDLinear8bitLT and # SVDLinear4bit, is that correct? if requires_conversion: output = output.to(expected_dtype) result += output return result def __repr__(self) -> str: rep = super().__repr__() return "adalora." + rep
peft/src/peft/tuners/adalora/gptq.py/0
{ "file_path": "peft/src/peft/tuners/adalora/gptq.py", "repo_id": "peft", "token_count": 1180 }
159
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from dataclasses import dataclass, field from typing import Optional, Union from peft.tuners.prompt_tuning import PromptTuningConfig from peft.utils import PeftType class MultitaskPromptTuningInit(str, enum.Enum): # initialize prompt with text TEXT = "TEXT" # initialize prompt with random matrix RANDOM = "RANDOM" # average the prefix and column matrices obtained during source training AVERAGE_SOURCE_TASKS = "AVERAGE_SOURCE_TASKS" # pick prefix and column matrices for a particular task obtained during source training EXACT_SOURCE_TASK = "EXACT_SOURCE_TASK" # only use the prompt embeddings trained during source training ONLY_SOURCE_SHARED = "ONLY_SOURCE_SHARED" @dataclass class MultitaskPromptTuningConfig(PromptTuningConfig): prompt_tuning_init: Union[MultitaskPromptTuningInit, str] = field( default=MultitaskPromptTuningInit.RANDOM, metadata={ "help": ( "How to initialize the prompt tuning parameters. Can be one of TEXT, RANDOM, AVERAGE_SOURCE_TASKS, " "EXACT_SOURCE_TASK, ONLY_SOURCE_SHARED." ), }, ) prompt_tuning_init_state_dict_path: Optional[str] = field( default=None, metadata={ "help": ( "The path of source state dict. This is required when training the downstream target prompt from " "the pretrained source prompt" ), }, ) prompt_tuning_init_task: Optional[int] = field(default=0, metadata={"help": "source task id for initialization"}) num_ranks: Optional[int] = field(default=1, metadata={"help": "ranks"}) num_tasks: Optional[int] = field(default=1, metadata={"help": "number of tasks"}) def __post_init__(self): self.peft_type = PeftType.MULTITASK_PROMPT_TUNING
peft/src/peft/tuners/multitask_prompt_tuning/config.py/0
{ "file_path": "peft/src/peft/tuners/multitask_prompt_tuning/config.py", "repo_id": "peft", "token_count": 890 }
160
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Based on https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py # with some refactor import torch class PrefixEncoder(torch.nn.Module): r""" The `torch.nn` model to encode the prefix. Args: config ([`PrefixTuningConfig`]): The configuration of the prefix encoder. Example: ```py >>> from peft import PrefixEncoder, PrefixTuningConfig >>> config = PrefixTuningConfig( ... peft_type="PREFIX_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_hidden_size=768, ... ) >>> prefix_encoder = PrefixEncoder(config) ``` **Attributes**: - **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prefix encoder. - **transform** (`torch.nn.Sequential`) -- The two-layer MLP to transform the prefix embeddings if `prefix_projection` is `True`. - **prefix_projection** (`bool`) -- Whether to project the prefix embeddings. Input shape: (`batch_size`, `num_virtual_tokens`) Output shape: (`batch_size`, `num_virtual_tokens`, `2*layers*hidden`) """ def __init__(self, config): super().__init__() self.prefix_projection = config.prefix_projection token_dim = config.token_dim num_layers = config.num_layers encoder_hidden_size = config.encoder_hidden_size num_virtual_tokens = config.num_virtual_tokens if self.prefix_projection and not config.inference_mode: # Use a two-layer MLP to encode the prefix self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim) self.transform = torch.nn.Sequential( torch.nn.Linear(token_dim, encoder_hidden_size), torch.nn.Tanh(), torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim), ) else: self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim) def forward(self, prefix: torch.Tensor): if self.prefix_projection: prefix_tokens = self.embedding(prefix) past_key_values = self.transform(prefix_tokens) else: past_key_values = self.embedding(prefix) return past_key_values
peft/src/peft/tuners/prefix_tuning/model.py/0
{ "file_path": "peft/src/peft/tuners/prefix_tuning/model.py", "repo_id": "peft", "token_count": 1235 }
161
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import pytest import torch import torch.nn.functional as F from parameterized import parameterized from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoTokenizer, BitsAndBytesConfig, LlamaForCausalLM, WhisperForConditionalGeneration, ) from peft import ( AdaLoraConfig, AdaptionPromptConfig, IA3Config, LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training, ) from peft.import_utils import is_bnb_4bit_available, is_bnb_available from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu if is_bnb_available(): import bitsandbytes as bnb from peft.tuners.ia3 import Linear8bitLt as IA3Linear8bitLt from peft.tuners.lora import Linear8bitLt as LoraLinear8bitLt if is_bnb_4bit_available(): from peft.tuners.ia3 import Linear4bit as IA3Linear4bit from peft.tuners.lora import Linear4bit as LoraLinear4bit @require_torch_gpu class PeftGPUCommonTests(unittest.TestCase): r""" A common tester to run common operations that are performed on GPU such as generation, loading in 8bit, etc. """ def setUp(self): self.seq2seq_model_id = "google/flan-t5-base" self.causal_lm_model_id = "facebook/opt-350m" self.audio_model_id = "openai/whisper-large" if torch.cuda.is_available(): self.device = torch.device("cuda:0") def tearDown(self): r""" Efficient mechanism to free GPU memory after each test. Based on https://github.com/huggingface/transformers/issues/21094 """ gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using LoRA works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", load_in_8bit=True, ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", load_in_8bit=True, ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", load_in_8bit=True, ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_8bit = get_peft_model(flan_8bit, flan_lora_config) self.assertTrue( isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear8bitLt) ) opt_8bit = get_peft_model(opt_8bit, opt_lora_config) self.assertTrue( isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) ) whisper_8bit = get_peft_model(whisper_8bit, config) self.assertTrue( isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt) ) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_ia3_bnb_8bit_quantization(self): r""" Test that tests if the 8bit quantization using IA3 works as expected """ whisper_8bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", load_in_8bit=True, ) opt_8bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", load_in_8bit=True, ) flan_8bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", load_in_8bit=True, ) flan_ia3_config = IA3Config(target_modules=["q", "v"], task_type="SEQ_2_SEQ_LM") opt_ia3_config = IA3Config( target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"], task_type="CAUSAL_LM", ) config = IA3Config(target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"]) flan_8bit = get_peft_model(flan_8bit, flan_ia3_config) self.assertTrue( isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, IA3Linear8bitLt) ) opt_8bit = get_peft_model(opt_8bit, opt_ia3_config) self.assertTrue( isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear8bitLt) ) whisper_8bit = get_peft_model(whisper_8bit, config) self.assertTrue( isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear8bitLt) ) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_lora_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using LoRA works as expected with safetensors weights. """ model_id = "facebook/opt-350m" peft_model_id = "ybelkada/test-st-lora" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["load_in_4bit"] = True else: kwargs["load_in_8bit"] = True model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, peft_model_id) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(peft_model_id, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer self.assertIn("default", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A) self.assertIn("adapter2", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_adalora_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using AdaLora works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["load_in_4bit"] = True else: kwargs["load_in_8bit"] = True model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = AdaLoraConfig(task_type=TaskType.CAUSAL_LM) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(peft_model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer self.assertIn("default", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A) self.assertIn("adapter2", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests @parameterized.expand(["4bit", "8bit"]) def test_ia3_bnb_quantization_from_pretrained_safetensors(self, quantization): r""" Tests that the bnb quantization using IAยณ works as expected with safetensors weights. """ model_id = "facebook/opt-350m" kwargs = {"device_map": "auto"} if quantization == "4bit": kwargs["load_in_4bit"] = True else: kwargs["load_in_8bit"] = True model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) config = IA3Config(task_type=TaskType.CAUSAL_LM) peft_model = get_peft_model(model, config) peft_model = prepare_model_for_kbit_training(peft_model) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer self.assertIn("default", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.ia3_l) self.assertIn("adapter2", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.ia3_l) @pytest.mark.single_gpu_tests def test_lora_gptq_quantization_from_pretrained_safetensors(self): r""" Tests that the autogptq quantization using LoRA works as expected with safetensors weights. """ from transformers import GPTQConfig model_id = "marcsun13/opt-350m-gptq-4bit" quantization_config = GPTQConfig(bits=4, use_exllama=False) kwargs = { "pretrained_model_name_or_path": model_id, "torch_dtype": torch.float16, "device_map": "auto", "quantization_config": quantization_config, } model = AutoModelForCausalLM.from_pretrained(**kwargs) model = prepare_model_for_kbit_training(model) config = LoraConfig(task_type="CAUSAL_LM") peft_model = get_peft_model(model, config) peft_model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) with tempfile.TemporaryDirectory() as tmp_dir: peft_model.save_pretrained(tmp_dir) model = AutoModelForCausalLM.from_pretrained(**kwargs) model = PeftModel.from_pretrained(model, tmp_dir) model = prepare_model_for_kbit_training(model) model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # loading a 2nd adapter works, #1239 model.load_adapter(tmp_dir, "adapter2") model.set_adapter("adapter2") model.generate(input_ids=torch.LongTensor([[0, 2, 3, 1]]).to(0)) # check that both adapters are in the same layer self.assertIn("default", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A) self.assertIn("adapter2", model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_lora_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using LoRA works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", load_in_4bit=True, ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", load_in_4bit=True, ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", load_in_4bit=True, ) flan_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) opt_lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") flan_4bit = get_peft_model(flan_4bit, flan_lora_config) self.assertTrue( isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear4bit) ) opt_4bit = get_peft_model(opt_4bit, opt_lora_config) self.assertTrue(isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit)) whisper_4bit = get_peft_model(whisper_4bit, config) self.assertTrue( isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit) ) @require_bitsandbytes @pytest.mark.multi_gpu_tests @pytest.mark.single_gpu_tests def test_ia3_bnb_4bit_quantization(self): r""" Test that tests if the 4bit quantization using IA3 works as expected """ whisper_4bit = WhisperForConditionalGeneration.from_pretrained( self.audio_model_id, device_map="auto", load_in_4bit=True, ) opt_4bit = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, device_map="auto", load_in_4bit=True, ) flan_4bit = AutoModelForSeq2SeqLM.from_pretrained( self.seq2seq_model_id, device_map="auto", load_in_4bit=True, ) flan_ia3_config = IA3Config(target_modules=["q", "v"], task_type="SEQ_2_SEQ_LM") opt_ia3_config = IA3Config( target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"], task_type="CAUSAL_LM", ) config = IA3Config(target_modules=["q_proj", "v_proj", "fc2"], feedforward_modules=["fc2"]) flan_4bit = get_peft_model(flan_4bit, flan_ia3_config) self.assertTrue( isinstance(flan_4bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, IA3Linear4bit) ) opt_4bit = get_peft_model(opt_4bit, opt_ia3_config) self.assertTrue(isinstance(opt_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear4bit)) whisper_4bit = get_peft_model(whisper_4bit, config) self.assertTrue( isinstance(whisper_4bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, IA3Linear4bit) ) @pytest.mark.multi_gpu_tests @require_torch_multi_gpu def test_lora_causal_lm_multi_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="balanced") tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) self.assertEqual(set(model.hf_device_map.values()), set(range(torch.cuda.device_count()))) model = get_peft_model(model, lora_config) self.assertTrue(isinstance(model, PeftModel)) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_lora_seq2seq_lm_multi_gpu_inference(self): r""" Test if LORA can be used for inference on multiple GPUs - 8bit version. """ lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM" ) model = AutoModelForSeq2SeqLM.from_pretrained(self.seq2seq_model_id, device_map="balanced", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id) self.assertEqual(set(model.hf_device_map.values()), set(range(torch.cuda.device_count()))) model = get_peft_model(model, lora_config) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue(isinstance(model.base_model.model.encoder.block[0].layer[0].SelfAttention.q, LoraLinear8bitLt)) dummy_input = "This is a dummy input:" input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device) # this should work without any problem _ = model.generate(input_ids=input_ids) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_8bit(self): model = LlamaForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(0) _ = model(random_input) @require_torch_multi_gpu @pytest.mark.multi_gpu_tests @require_bitsandbytes def test_adaption_prompt_4bit(self): model = LlamaForCausalLM.from_pretrained( "HuggingFaceM4/tiny-random-LlamaForCausalLM", load_in_4bit=True, torch_dtype=torch.float16, device_map="auto", ) model = prepare_model_for_kbit_training(model) config = AdaptionPromptConfig( adapter_len=10, adapter_layers=2, task_type="CAUSAL_LM", ) model = get_peft_model(model, config) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(0) _ = model(random_input) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_print_4bit_expected(self): EXPECTED_TRAINABLE_PARAMS = 294912 EXPECTED_ALL_PARAMS = 125534208 model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_4bit=True, ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() self.assertEqual(trainable_params, EXPECTED_TRAINABLE_PARAMS) self.assertEqual(all_params, EXPECTED_ALL_PARAMS) # test with double quant bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, ) config = LoraConfig( r=8, ) model = get_peft_model(model, config) trainable_params, all_params = model.get_nb_trainable_parameters() self.assertEqual(trainable_params, EXPECTED_TRAINABLE_PARAMS) self.assertEqual(all_params, EXPECTED_ALL_PARAMS) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_modules_to_save_grad(self): model_id = "bigscience/bloomz-560m" load_in_4bit = True model = AutoModelForSequenceClassification.from_pretrained( model_id, load_in_4bit=load_in_4bit, torch_dtype=torch.float32, ) model = prepare_model_for_kbit_training(model) config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="SEQ_CLS", ) peft_model = get_peft_model(model, config) lm_head = peft_model.base_model.model.score original_module = lm_head.original_module modules_to_save = lm_head.modules_to_save.default inputs = torch.randn((1024)) o1 = lm_head(inputs) o1.mean().backward() self.assertTrue(modules_to_save.weight.requires_grad is True) self.assertTrue(original_module.weight.grad is None) self.assertTrue(modules_to_save.weight.grad is not None) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_lora(self): torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_8bit=True, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 self.assertFalse(torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol)) self.assertTrue(torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol)) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue( isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, bnb.nn.Linear8bitLt) ) self.assertTrue( isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, bnb.nn.Linear8bitLt) ) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_8bit_merge_and_disable_lora(self): torch.manual_seed(1000) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", load_in_8bit=True, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() with model.disable_adapter(): with torch.inference_mode(): out_after = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 self.assertFalse(torch.allclose(out_base, out_before, atol=atol, rtol=rtol)) self.assertTrue(torch.allclose(out_base, out_after, atol=atol, rtol=rtol)) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue(isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear8bitLt)) self.assertTrue(isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear8bitLt)) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_lora(self): torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before_merge = F.softmax(model(random_input).logits, dim=-1) model.merge_and_unload() with torch.inference_mode(): out_after_merge = F.softmax(model(random_input).logits, dim=-1) # tolerances are pretty high because some deviations are expected with quantization atol = 0.01 rtol = 10 self.assertFalse(torch.allclose(out_base, out_before_merge, atol=atol, rtol=rtol)) self.assertTrue(torch.allclose(out_before_merge, out_after_merge, atol=atol, rtol=rtol)) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue(isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, bnb.nn.Linear4bit)) self.assertTrue(isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, bnb.nn.Linear4bit)) @require_torch_gpu @pytest.mark.single_gpu_tests @require_bitsandbytes def test_4bit_merge_and_disable_lora(self): torch.manual_seed(3000) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_compute_type=torch.float32, ) model = AutoModelForCausalLM.from_pretrained( "facebook/opt-125m", quantization_config=bnb_config, torch_dtype=torch.float32, ) random_input = torch.LongTensor([[1, 0, 1, 0, 1, 0]]).to(model.device) # compare outputs in probability space, because logits can have outliers # and token ids are not precise enough out_base = F.softmax(model(random_input).logits, dim=-1) config = LoraConfig( r=8, init_lora_weights=False, ) model = get_peft_model(model, config) with torch.inference_mode(): out_before = F.softmax(model(random_input).logits, dim=-1) model.merge_adapter() with model.disable_adapter(): with torch.inference_mode(): out_after = F.softmax(model(random_input).logits, dim=-1) atol = 0.01 rtol = 10 self.assertFalse(torch.allclose(out_base, out_before, atol=atol, rtol=rtol)) self.assertTrue(torch.allclose(out_base, out_after, atol=atol, rtol=rtol)) self.assertTrue(isinstance(model, PeftModel)) self.assertTrue(isinstance(model.base_model.model.model.decoder.layers[0].self_attn.q_proj, LoraLinear4bit)) self.assertTrue(isinstance(model.base_model.model.model.decoder.layers[0].self_attn.v_proj, LoraLinear4bit)) @require_torch_gpu @pytest.mark.single_gpu_tests def test_serialization_shared_tensors(self): model_checkpoint = "roberta-base" peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=11).to("cuda") model = get_peft_model(model, peft_config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True)
peft/tests/test_common_gpu.py/0
{ "file_path": "peft/tests/test_common_gpu.py", "repo_id": "peft", "token_count": 14065 }
162
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import pickle import re import tempfile from collections import OrderedDict from dataclasses import replace import torch import yaml from diffusers import StableDiffusionPipeline from peft import ( AdaLoraConfig, IA3Config, LoraConfig, PeftModel, PeftType, PrefixTuningConfig, PromptEncoderConfig, PromptLearningConfig, PromptTuningConfig, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, ) from peft.tuners.lora import LoraLayer from peft.utils import _get_submodules, infer_device from .testing_utils import get_state_dict CONFIG_TESTING_KWARGS = ( # IAยณ { "target_modules": None, "feedforward_modules": None, }, # LoRA { "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.05, "bias": "none", }, # prefix tuning { "num_virtual_tokens": 10, }, # prompt encoder { "num_virtual_tokens": 10, "encoder_hidden_size": 32, }, # prompt tuning { "num_virtual_tokens": 10, }, # AdaLoRA { "target_modules": None, }, ) CLASSES_MAPPING = { "ia3": (IA3Config, CONFIG_TESTING_KWARGS[0]), "lora": (LoraConfig, CONFIG_TESTING_KWARGS[1]), "prefix_tuning": (PrefixTuningConfig, CONFIG_TESTING_KWARGS[2]), "prompt_encoder": (PromptEncoderConfig, CONFIG_TESTING_KWARGS[3]), "prompt_tuning": (PromptTuningConfig, CONFIG_TESTING_KWARGS[4]), "adalora": (AdaLoraConfig, CONFIG_TESTING_KWARGS[5]), } # Adapted from https://github.com/huggingface/transformers/blob/48327c57182fdade7f7797d1eaad2d166de5c55b/src/transformers/activations.py#LL166C7-L166C22 class ClassInstantier(OrderedDict): def __getitem__(self, key, *args, **kwargs): # check if any of the kwargs is inside the config class kwargs if any(kwarg in self[key][1] for kwarg in kwargs): new_config_kwargs = self[key][1].copy() new_config_kwargs.update(kwargs) return (self[key][0], new_config_kwargs) return super().__getitem__(key, *args, **kwargs) def get_grid_parameters(self, grid_parameters, filter_params_func=None): r""" Returns a list of all possible combinations of the parameters in the config classes. Args: grid_parameters (`dict`): A dictionary containing the parameters to be tested. There should be at least the key "model_ids" which contains a list of model ids to be tested. The other keys should be the name of the config class post-fixed with "_kwargs" and the value should be a dictionary containing the parameters to be tested for that config class. filter_params_func (`callable`, `optional`): A function that takes a list of tuples and returns a list of tuples. This function is used to filter out the tests that needs for example to be skipped. Returns: generated_tests (`list`): A list of tuples containing the name of the test, the model id, the config class and the config class kwargs. """ generated_tests = [] model_list = grid_parameters["model_ids"] task_type = grid_parameters["task_type"] if "task_type" in grid_parameters else None for model_id in model_list: for key, value in self.items(): if "{}_kwargs".format(key) in grid_parameters: peft_configs = [] current_peft_config = value[1].copy() for current_key, current_value in grid_parameters[f"{key}_kwargs"].items(): for kwarg in current_value: current_peft_config.update({current_key: kwarg}) if task_type is not None: current_peft_config.update({"task_type": task_type}) peft_configs.append(current_peft_config.copy()) else: current_peft_config = value[1].copy() if task_type is not None: current_peft_config.update({"task_type": task_type}) peft_configs = [current_peft_config] for peft_config in peft_configs: generated_tests.append((f"test_{model_id}_{key}", model_id, value[0], peft_config)) if filter_params_func is not None: generated_tests = filter_params_func(generated_tests) return generated_tests PeftTestConfigManager = ClassInstantier(CLASSES_MAPPING) class PeftCommonTester: r""" A large testing suite for testing common functionality of the PEFT models. Attributes: torch_device (`torch.device`): The device on which the tests will be run. transformers_class (`transformers.PreTrainedModel`): The transformers class that is being tested. """ torch_device = infer_device() transformers_class = None def prepare_inputs_for_common(self): raise NotImplementedError def check_modelcard(self, tmp_dirname, model): # check the generated README.md filename = os.path.join(tmp_dirname, "README.md") self.assertTrue(os.path.exists(filename)) with open(filename, "r", encoding="utf-8") as f: readme = f.read() metainfo = re.search(r"---\n(.*?)\n---", readme, re.DOTALL).group(1) dct = yaml.safe_load(metainfo) self.assertEqual(dct["library_name"], "peft") if hasattr(model, "config"): self.assertEqual(dct["base_model"], model.config.to_dict()["_name_or_path"]) else: # a custom model self.assertTrue("base_model" not in dct) def check_config_json(self, tmp_dirname, model): # check the generated config.json filename = os.path.join(tmp_dirname, "adapter_config.json") self.assertTrue(os.path.exists(filename)) with open(filename, "r", encoding="utf-8") as f: config = json.load(f) if hasattr(model, "config"): # custom models don't have a config attribute self.assertEqual(config["base_model_name_or_path"], model.config.to_dict()["_name_or_path"]) def _test_model_attr(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) self.assertTrue(hasattr(model, "save_pretrained")) self.assertTrue(hasattr(model, "from_pretrained")) self.assertTrue(hasattr(model, "push_to_hub")) def _test_adapter_name(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config, adapter_name="test-adapter") correctly_converted = False for n, _ in model.named_parameters(): if "test-adapter" in n: correctly_converted = True break self.assertTrue(correctly_converted) def _test_prepare_for_training(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) dummy_input = self.prepare_inputs_for_testing() dummy_output = model.get_input_embeddings()(dummy_input["input_ids"]) self.assertFalse(dummy_output.requires_grad) # load with `prepare_model_for_int8_training` model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) model = prepare_model_for_int8_training(model) for param in model.parameters(): self.assertFalse(param.requires_grad) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) # For backward compatibility if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) dummy_input = self.prepare_inputs_for_testing() dummy_output = model.get_input_embeddings()(dummy_input["input_ids"]) self.assertTrue(dummy_output.requires_grad) def _test_save_pretrained(self, model_id, config_cls, config_kwargs, safe_serialization=True): # ensure that the weights are randomly initialized if issubclass(config_cls, LoraConfig): config_kwargs = config_kwargs.copy() config_kwargs["init_lora_weights"] = False if issubclass(config_cls, IA3Config): config_kwargs = config_kwargs.copy() config_kwargs["init_ia3_weights"] = False model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: if safe_serialization: model.save_pretrained(tmp_dirname) else: model.save_pretrained(tmp_dirname, safe_serialization=False) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) # check if the state dicts are equal if issubclass(config_cls, PromptEncoderConfig): # For prompt encoding, when loading the whole state_dict, there are differences, therefore, only load # adapter-specific weights for comparison. # TODO: is this expected? state_dict = get_peft_model_state_dict(model, unwrap_compiled=True) state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained, unwrap_compiled=True) else: state_dict = get_state_dict(model, unwrap_compiled=True) state_dict_from_pretrained = get_state_dict(model_from_pretrained, unwrap_compiled=True) # check if tensors equal for key in state_dict.keys(): self.assertTrue( torch.allclose( state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device) ) ) target_adapter_filename = "adapter_model.safetensors" if safe_serialization else "adapter_model.bin" # check if `adapter_model.safetensors` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, target_adapter_filename))) # check if `adapter_config.json` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))) # check if `model.safetensors` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))) # check if `config.json` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "config.json"))) self.check_modelcard(tmp_dirname, model) self.check_config_json(tmp_dirname, model) def _test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs, safe_serialization=True): if issubclass(config_cls, AdaLoraConfig): # AdaLora does not support adding more than 1 adapter return # ensure that the weights are randomly initialized if issubclass(config_cls, LoraConfig): config_kwargs = config_kwargs.copy() config_kwargs["init_lora_weights"] = False if issubclass(config_cls, IA3Config): config_kwargs = config_kwargs.copy() config_kwargs["init_ia3_weights"] = False model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) new_adapter_config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model.add_adapter("new_adapter", new_adapter_config) with tempfile.TemporaryDirectory() as tmp_dirname: if safe_serialization: model.save_pretrained(tmp_dirname) else: model.save_pretrained(tmp_dirname, safe_serialization=False) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) new_adapter_dir = os.path.join(tmp_dirname, "new_adapter") model_from_pretrained.load_adapter(new_adapter_dir, "new_adapter") # check if the state dicts are equal if issubclass(config_cls, PromptEncoderConfig): # For prompt encoding, when loading the whole state_dict, there are differences, therefore, only load # adapter-specific weights for comparison. # TODO: is this expected? state_dict = get_peft_model_state_dict(model, unwrap_compiled=True) state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained, unwrap_compiled=True) else: state_dict = get_state_dict(model, unwrap_compiled=True) state_dict_from_pretrained = get_state_dict(model_from_pretrained, unwrap_compiled=True) # check if same keys self.assertEqual(state_dict.keys(), state_dict_from_pretrained.keys()) # check if tensors equal for key in state_dict.keys(): self.assertTrue( torch.allclose( state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device) ) ) target_adapter_filename = "adapter_model.safetensors" if safe_serialization else "adapter_model.bin" # check if `adapter_model.safetensors` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, target_adapter_filename))) self.assertTrue(os.path.exists(os.path.join(new_adapter_dir, target_adapter_filename))) # check if `adapter_config.json` is present self.assertTrue(os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))) self.assertTrue(os.path.exists(os.path.join(new_adapter_dir, "adapter_config.json"))) # check if `model.safetensors` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "model.safetensors"))) self.assertFalse(os.path.exists(os.path.join(new_adapter_dir, "model.safetensors"))) # check if `config.json` is not present self.assertFalse(os.path.exists(os.path.join(tmp_dirname, "config.json"))) self.assertFalse(os.path.exists(os.path.join(new_adapter_dir, "config.json"))) self.check_modelcard(tmp_dirname, model) self.check_config_json(tmp_dirname, model) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname, selected_adapters=["default"]) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname) self.assertTrue("default" in model_from_pretrained.peft_config.keys()) self.assertTrue("new_adapter" not in model_from_pretrained.peft_config.keys()) def _test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls(base_model_name_or_path=model_id, **config_kwargs) model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained( model_from_pretrained, tmp_dirname, is_trainable=False, config=config ) self.assertTrue(model_from_pretrained.peft_config["default"].inference_mode) self.assertIs(model_from_pretrained.peft_config["default"], config) def _test_merge_layers_fp16(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig, IA3Config): # Merge layers only supported for LoRA and IAยณ return if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig): self.skipTest("Merging GPT2 adapters not supported for IAยณ (yet)") model = self.transformers_class.from_pretrained(model_id, torch_dtype=torch.float16) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(device="cpu", dtype=torch.float16) model.eval() # This should simply work _ = model.merge_and_unload() def _test_merge_layers_nan(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig, IA3Config, AdaLoraConfig): # Merge layers only supported for LoRA and IAยณ return if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig): self.skipTest("Merging GPT2 adapters not supported for IAยณ (yet)") model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) dummy_input = self.prepare_inputs_for_testing() model.eval() # This should work logits_unmerged = model(**dummy_input)[0] model = model.merge_and_unload() logits_merged = model(**dummy_input)[0] self.assertTrue(torch.allclose(logits_unmerged, logits_merged, atol=1e-3, rtol=1e-3)) model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) for name, module in model.named_parameters(): if "lora_A" in name or "ia3" in name or "lora_E" in name or "lora_B" in name: module.data[0] = torch.nan with self.assertRaises(ValueError) as error_context: model = model.merge_and_unload(safe_merge=True) self.assertEqual( str(error_context.exception), "NaNs detected in the merged weights. The adapter default seems to be broken", ) for name, module in model.named_parameters(): if "lora_A" in name or "ia3" in name or "lora_E" in name or "lora_B" in name: module.data[0] = torch.inf with self.assertRaises(ValueError) as error_context: model = model.merge_and_unload(safe_merge=True) self.assertEqual( str(error_context.exception), "NaNs detected in the merged weights. The adapter default seems to be broken", ) def _test_merge_layers(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig, IA3Config): # Merge layers only supported for LoRA and IAยณ return if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig): self.skipTest("Merging GPT2 adapters not supported for IAยณ (yet)") model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) if config.peft_type not in ("IA3", "LORA"): with self.assertRaises(AttributeError): model = model.merge_and_unload() dummy_input = self.prepare_inputs_for_testing() model.eval() logits = model(**dummy_input)[0] model.merge_adapter() logits_merged = model(**dummy_input)[0] model.unmerge_adapter() logits_unmerged = model(**dummy_input)[0] model = model.merge_and_unload() logits_merged_unloaded = model(**dummy_input)[0] atol, rtol = 1e-4, 1e-4 if (config.peft_type == "IA3") and (model_id == "Conv2d"): # for some reason, the IAยณ Conv2d introduces a larger error atol, rtol = 0.3, 0.01 self.assertTrue(torch.allclose(logits, logits_merged, atol=atol, rtol=rtol)) self.assertTrue(torch.allclose(logits, logits_unmerged, atol=atol, rtol=rtol)) self.assertTrue(torch.allclose(logits, logits_merged_unloaded, atol=atol, rtol=rtol)) # For this test to work, weights should not be initialized to identity transform (e.g. # init_lora_weights should be False). transformers_model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) logits_transformers = transformers_model(**dummy_input)[0] self.assertFalse(torch.allclose(logits_merged, logits_transformers, atol=1e-10, rtol=1e-10)) # test that the logits are identical after a save-load-roundtrip if hasattr(model, "save_pretrained"): # model is a transformers model with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(tmp_dirname).to(self.torch_device) else: # model is not a transformers model model_from_pretrained = pickle.loads(pickle.dumps(model)) logits_merged_from_pretrained = model_from_pretrained(**dummy_input)[0] self.assertTrue(torch.allclose(logits_merged, logits_merged_from_pretrained, atol=atol, rtol=rtol)) def _test_merge_layers_multi(self, model_id, config_cls, config_kwargs): supported_peft_types = [PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.IA3, PeftType.OFT] if ("gpt2" in model_id.lower()) and (config_cls == IA3Config): self.skipTest("Merging GPT2 adapters not supported for IAยณ (yet)") config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) if config.peft_type not in supported_peft_types: return model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) dummy_input = self.prepare_inputs_for_testing() model.eval() with torch.inference_mode(): logits_adapter_1 = model(**dummy_input)[0] model.add_adapter("adapter-2", config) model.set_adapter("adapter-2") model.eval() with torch.inference_mode(): logits_adapter_2 = model(**dummy_input)[0] self.assertFalse(torch.allclose(logits_adapter_1, logits_adapter_2, atol=1e-3, rtol=1e-3)) model.set_adapter("default") with torch.inference_mode(): logits_adapter_1_after_set = model(**dummy_input)[0] self.assertTrue(torch.allclose(logits_adapter_1_after_set, logits_adapter_1, atol=1e-3, rtol=1e-3)) model_copy = copy.deepcopy(model) model_copy_2 = copy.deepcopy(model) model_merged_all = model.merge_and_unload(adapter_names=["adapter-2", "default"]) with torch.inference_mode(): logits_merged_all = model_merged_all(**dummy_input)[0] self.assertFalse(torch.allclose(logits_merged_all, logits_adapter_2, atol=1e-3, rtol=1e-3)) self.assertFalse(torch.allclose(logits_merged_all, logits_adapter_1, atol=1e-3, rtol=1e-3)) model_merged_adapter_2 = model_copy.merge_and_unload(adapter_names=["adapter-2"]) with torch.inference_mode(): logits_merged_adapter_2 = model_merged_adapter_2(**dummy_input)[0] self.assertTrue(torch.allclose(logits_merged_adapter_2, logits_adapter_2, atol=1e-3, rtol=1e-3)) model_merged_adapter_default = model_copy_2.merge_and_unload(adapter_names=["default"]) with torch.inference_mode(): logits_merged_adapter_default = model_merged_adapter_default(**dummy_input)[0] self.assertTrue(torch.allclose(logits_merged_adapter_default, logits_adapter_1, atol=1e-3, rtol=1e-3)) def _test_merge_layers_is_idempotent(self, model_id, config_cls, config_kwargs): if ("gpt2" in model_id.lower()) and (config_cls != LoraConfig): self.skipTest("Merging GPT2 adapters not supported for IAยณ (yet)") model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) model.eval() torch.manual_seed(0) model.merge_adapter() logits_0 = model(**self.prepare_inputs_for_testing())[0] # merging again should not change anything # also check warning: with self.assertWarnsRegex(UserWarning, "All adapters are already merged, nothing to do"): model.merge_adapter() logits_1 = model(**self.prepare_inputs_for_testing())[0] self.assertTrue(torch.allclose(logits_0, logits_1, atol=1e-6, rtol=1e-6)) def _test_generate(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `generate` works _ = model.generate(**inputs) def _test_generate_pos_args(self, model_id, config_cls, config_kwargs, raises_err: bool): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() if raises_err: with self.assertRaises(TypeError): # check if `generate` raises an error if positional arguments are passed _ = model.generate(inputs["input_ids"]) else: # check if `generate` works if positional arguments are passed _ = model.generate(inputs["input_ids"]) def _test_generate_half_prec(self, model_id, config_cls, config_kwargs): if config_cls not in (IA3Config, LoraConfig, PrefixTuningConfig): return model = self.transformers_class.from_pretrained(model_id, torch_dtype=torch.bfloat16) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device) attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) # check if `generate` works _ = model.generate(input_ids=input_ids, attention_mask=attention_mask) def _test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs): if config_cls not in (PrefixTuningConfig,): return config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.half() self.assertEqual(model.base_model_torch_dtype, torch.float16) def _test_training(self, model_id, config_cls, config_kwargs): if config_cls not in (IA3Config, LoraConfig): return model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] loss = output.sum() loss.backward() parameter_prefix = "ia3" if config_cls == IA3Config else "lora" for n, param in model.named_parameters(): if (parameter_prefix in n) or ("modules_to_save" in n): self.assertIsNotNone(param.grad) else: self.assertIsNone(param.grad) def _test_inference_safetensors(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig,): return config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] logits = output[0] loss = output.sum() loss.backward() # set to eval mode, since things like dropout can affect the output otherwise model.eval() logits = model(**inputs)[0][0] with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname, safe_serialization=True) self.assertTrue("adapter_model.safetensors" in os.listdir(tmp_dirname)) self.assertTrue("adapter_model.bin" not in os.listdir(tmp_dirname)) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname).to(self.torch_device) logits_from_pretrained = model_from_pretrained(**inputs)[0][0] self.assertTrue(torch.allclose(logits, logits_from_pretrained, atol=1e-4, rtol=1e-4)) def _test_training_layer_indexing(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig,): return config = config_cls( base_model_name_or_path=model_id, layers_to_transform=[0], **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] logits = output[0] loss = output.sum() loss.backward() nb_trainable = 0 for n, param in model.named_parameters(): if "lora" in n: self.assertIsNotNone(param.grad) nb_trainable += 1 else: self.assertIsNone(param.grad) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname).to(self.torch_device) logits_from_pretrained = model_from_pretrained(**inputs)[0][0] self.assertTrue(torch.allclose(logits, logits_from_pretrained, atol=1e-4, rtol=1e-4)) model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) nb_trainable_all = 0 for n, param in model.named_parameters(): if "lora" in n: nb_trainable_all += 1 self.assertLess(nb_trainable, nb_trainable_all) def _test_training_gradient_checkpointing(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig, IA3Config): return model = self.transformers_class.from_pretrained(model_id) if not getattr(model, "supports_gradient_checkpointing", False): return model.gradient_checkpointing_enable() config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] loss = output.sum() loss.backward() parameter_prefix = "ia3" if config_cls == IA3Config else "lora" for n, param in model.named_parameters(): if parameter_prefix in n: self.assertIsNotNone(param.grad) else: self.assertIsNone(param.grad) def _test_peft_model_device_map(self, model_id, config_cls, config_kwargs): if config_cls not in (LoraConfig,): return config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config) model = model.to(self.torch_device) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model_from_pretrained = self.transformers_class.from_pretrained(model_id) _ = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname, device_map={"": "cpu"}).to( self.torch_device ) def _test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs): if not issubclass(config_cls, PromptLearningConfig): return model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) inputs = self.prepare_inputs_for_testing() # check if `training` works output = model(**inputs)[0] loss = output.sum() loss.backward() # check that prompt encoder has grads for param in model.prompt_encoder.parameters(): self.assertIsNotNone(param.grad) def _test_delete_adapter(self, model_id, config_cls, config_kwargs): supported_peft_types = [PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.IA3, PeftType.OFT] # IA3 does not support deleting adapters yet, but it just needs to be added # AdaLora does not support multiple adapters config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) if config.peft_type not in supported_peft_types: return model = self.transformers_class.from_pretrained(model_id) adapter_to_delete = "delete_me" model = get_peft_model(model, config) model.add_adapter(adapter_to_delete, config) model.set_adapter(adapter_to_delete) model = model.to(self.torch_device) model.delete_adapter(adapter_to_delete) self.assertFalse(adapter_to_delete in model.peft_config) self.assertEqual(model.active_adapters, ["default"]) key_list = [key for key, _ in model.named_modules()] for key in key_list: _, target, _ = _get_submodules(model, key) attributes_to_check = getattr(target, "adapter_layer_names", []) + getattr(target, "other_param_names", []) for attr in attributes_to_check: self.assertFalse(adapter_to_delete in getattr(target, attr)) # check that we can also delete the last remaining adapter model.delete_adapter("default") self.assertFalse("default" in model.peft_config) self.assertEqual(model.active_adapters, []) input = self.prepare_inputs_for_testing() # note: we cannot call model(**input) because PeftModel always expects there to be at least one adapter model.base_model(**input) # should not raise an error def _test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs): # same as test_delete_adapter, but this time an inactive adapter is deleted supported_peft_types = [PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.IA3, PeftType.OFT] # IA3 does not support deleting adapters yet, but it just needs to be added # AdaLora does not support multiple adapters config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) if config.peft_type not in supported_peft_types: return model = self.transformers_class.from_pretrained(model_id) adapter_to_delete = "delete_me" model = get_peft_model(model, config) model.add_adapter(adapter_to_delete, config) # "delete_me" is added but not activated model = model.to(self.torch_device) model.delete_adapter(adapter_to_delete) self.assertFalse(adapter_to_delete in model.peft_config) self.assertEqual(model.active_adapters, ["default"]) key_list = [key for key, _ in model.named_modules()] for key in key_list: _, target, _ = _get_submodules(model, key) attributes_to_check = getattr(target, "adapter_layer_names", []) + getattr(target, "other_param_names", []) for attr in attributes_to_check: self.assertFalse(adapter_to_delete in getattr(target, attr)) # check that we can also delete the last remaining adapter model.delete_adapter("default") self.assertFalse("default" in model.peft_config) self.assertEqual(model.active_adapters, []) input = self.prepare_inputs_for_testing() # note: we cannot call model(**input) because PeftModel always expects there to be at least one adapter model.base_model(**input) # should not raise an error def _test_unload_adapter(self, model_id, config_cls, config_kwargs): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) model = model.to(self.torch_device) if config.peft_type not in ("LORA", "ADALORA", "IA3"): with self.assertRaises(AttributeError): model = model.unload() else: dummy_input = self.prepare_inputs_for_testing() logits_with_adapter = model(**dummy_input)[0] transformers_model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) logits_transformers = transformers_model(**dummy_input)[0] model.eval() model = model.unload() logits_unload = model(**dummy_input)[0] self.assertFalse(torch.allclose(logits_with_adapter, logits_unload, atol=1e-10, rtol=1e-10)) self.assertTrue(torch.allclose(logits_transformers, logits_unload, atol=1e-4, rtol=1e-4)) def _test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs): if issubclass(config_cls, AdaLoraConfig): # AdaLora does not support adding more than 1 adapter return adapter_list = ["adapter1", "adapter_2", "adapter_3"] weight_list = [0.5, 1.5, 1.5] config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) if not isinstance(config, (LoraConfig)): return model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config, adapter_list[0]) model.add_adapter(adapter_list[1], config) model.add_adapter(adapter_list[2], replace(config, r=20)) model = model.to(self.torch_device) # test re-weighting single adapter model.add_weighted_adapter([adapter_list[0]], [weight_list[0]], "single_adapter_reweighting") # test svd re-weighting with multiple adapters model.add_weighted_adapter(adapter_list[1:], weight_list[1:], "multi_adapter_svd_reweighting") # test cat re-weighting with multiple adapters model.add_weighted_adapter( adapter_list[1:], weight_list[1:], "multi_adapter_cat_reweighting", combination_type="cat" ) # test linear re-weighting with multiple adapters model.add_weighted_adapter( adapter_list[:2], weight_list[:2], "multi_adapter_linear_reweighting", combination_type="linear" ) # test linear re-weighting with multiple adapters with only first adapter having non zero weight model.add_weighted_adapter( adapter_list[:2], [weight_list[0], 0], "multi_adapter_linear_reweighting_single_enabled", combination_type="linear", ) with self.assertRaises(ValueError): model.add_weighted_adapter( adapter_list[1:], weight_list[1:], "multi_adapter_linear_reweighting_uneven_r", combination_type="linear", ) new_adapters = [ "single_adapter_reweighting", "multi_adapter_svd_reweighting", "multi_adapter_cat_reweighting", "multi_adapter_linear_reweighting", "multi_adapter_linear_reweighting_single_enabled", ] for new_adapter in new_adapters: self.assertTrue(new_adapter in model.peft_config) key_list = [key for key, _ in model.named_modules()] for key in key_list: _, target, _ = _get_submodules(model, key) if isinstance(target, LoraLayer): for adapter_name in new_adapters: if "single" in adapter_name: new_delta_weight = target.get_delta_weight(adapter_name) weighted_original_delta_weights = target.get_delta_weight(adapter_list[0]) * weight_list[0] self.assertTrue( torch.allclose(new_delta_weight, weighted_original_delta_weights, atol=1e-4, rtol=1e-4) ) elif "svd" in adapter_name: self.assertTrue(target.r[adapter_name] == 20) elif "linear" in adapter_name: self.assertTrue(target.r[adapter_name] == 8) elif "cat" in adapter_name: self.assertTrue(target.r[adapter_name] == 28) dummy_input = self.prepare_inputs_for_testing() model.eval() for adapter_name in new_adapters: # ensuring new adapters pass the forward loop model.set_adapter(adapter_name) self.assertTrue(model.active_adapter == adapter_name) self.assertTrue(model.active_adapters == [adapter_name]) model(**dummy_input)[0] def _test_disable_adapter(self, model_id, config_cls, config_kwargs): task_type = config_kwargs.get("task_type") if (task_type == "SEQ_2_SEQ_LM") and (config_cls in (PromptTuningConfig, PromptEncoderConfig)): self.skipTest("Seq2Seq + prompt tuning/prompt encoder does not work with disabling adapters") def get_output(model): # helper function that works with different model types torch.manual_seed(0) if hasattr(model, "generate"): # let's check the scores, not the output ids, since the latter can easily be identical even if the # weights are slightly changed output = model.generate(**input, return_dict_in_generate=True, output_scores=True).scores[0] # take element 0, as output is a tuple else: output = model(**input) if hasattr(output, "images"): # for SD import numpy as np img = output.images[0] return torch.from_numpy(np.array(img)) return output # initialize model model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) # output from BASE MODEL input = self.prepare_inputs_for_testing() output_before = get_output(model) # output from PEFT MODEL if hasattr(self, "instantiate_sd_peft"): # SD models are instantiated differently peft_model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs) else: config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) peft_model = get_peft_model(model, config) output_peft = get_output(peft_model) # first check trivial case is not true that peft does not affect the output; for this to work, init_lora_weight # must be False if isinstance(peft_model, StableDiffusionPipeline): # for SD, check that most pixels have different values self.assertTrue((output_before != output_peft).float().mean() > 0.8) else: self.assertFalse(torch.allclose(output_before, output_peft)) # output with DISABLED ADAPTER if isinstance(peft_model, StableDiffusionPipeline): with peft_model.unet.disable_adapter(): with peft_model.text_encoder.disable_adapter(): output_peft_disabled = get_output(peft_model) # for SD, very rarely, a pixel can differ self.assertTrue((output_before != output_peft_disabled).float().mean() < 1e-4) else: with peft_model.disable_adapter(): output_peft_disabled = get_output(peft_model) self.assertTrue(torch.allclose(output_before, output_peft_disabled, atol=1e-6, rtol=1e-6)) # TODO: add tests to check if disabling adapters works after calling merge_adapter def _test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs): # When trying to add multiple adapters with bias in Lora or AdaLora, an error should be # raised. Also, the peft model should not be left in a half-initialized state. if not issubclass(config_cls, (LoraConfig, AdaLoraConfig)): return config_kwargs = config_kwargs.copy() config_kwargs["bias"] = "all" config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = self.transformers_class.from_pretrained(model_id) model = get_peft_model(model, config, "adapter0") with self.assertRaises(ValueError): model.add_adapter("adapter1", replace(config, r=20)) # (superficial) test that the model is not left in a half-initialized state when adding an adapter fails self.assertFalse("adapter1" in model.peft_config) self.assertFalse("adapter1" in model.base_model.peft_config) def _test_passing_input_embeds_works(self, test_name, model_id, config_cls, config_kwargs): # https://github.com/huggingface/peft/issues/727 model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config, adapter_name="test-adapter").to(self.torch_device) dummy_input = self.prepare_inputs_for_testing() inputs_embeds = model.get_input_embeddings()(dummy_input["input_ids"]) # just check that no error is raised model.forward(inputs_embeds=inputs_embeds)
peft/tests/testing_common.py/0
{ "file_path": "peft/tests/testing_common.py", "repo_id": "peft", "token_count": 22859 }
163
# Archived Changes ### Nov 22, 2021 * A number of updated weights anew new model defs * `eca_halonext26ts` - 79.5 @ 256 * `resnet50_gn` (new) - 80.1 @ 224, 81.3 @ 288 * `resnet50` - 80.7 @ 224, 80.9 @ 288 (trained at 176, not replacing current a1 weights as default since these don't scale as well to higher res, [weights](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth)) * `resnext50_32x4d` - 81.1 @ 224, 82.0 @ 288 * `sebotnet33ts_256` (new) - 81.2 @ 224 * `lamhalobotnet50ts_256` - 81.5 @ 256 * `halonet50ts` - 81.7 @ 256 * `halo2botnet50ts_256` - 82.0 @ 256 * `resnet101` - 82.0 @ 224, 82.8 @ 288 * `resnetv2_101` (new) - 82.1 @ 224, 83.0 @ 288 * `resnet152` - 82.8 @ 224, 83.5 @ 288 * `regnetz_d8` (new) - 83.5 @ 256, 84.0 @ 320 * `regnetz_e8` (new) - 84.5 @ 256, 85.0 @ 320 * `vit_base_patch8_224` (85.8 top-1) & `in21k` variant weights added thanks [Martins Bruveris](https://github.com/martinsbruveris) * Groundwork in for FX feature extraction thanks to [Alexander Soare](https://github.com/alexander-soare) * models updated for tracing compatibility (almost full support with some distlled transformer exceptions) ### Oct 19, 2021 * ResNet strikes back (https://arxiv.org/abs/2110.00476) weights added, plus any extra training components used. Model weights and some more details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights) * BCE loss and Repeated Augmentation support for RSB paper * 4 series of ResNet based attention model experiments being added (implemented across byobnet.py/byoanet.py). These include all sorts of attention, from channel attn like SE, ECA to 2D QKV self-attention layers such as Halo, Bottlneck, Lambda. Details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights) * Working implementations of the following 2D self-attention modules (likely to be differences from paper or eventual official impl): * Halo (https://arxiv.org/abs/2103.12731) * Bottleneck Transformer (https://arxiv.org/abs/2101.11605) * LambdaNetworks (https://arxiv.org/abs/2102.08602) * A RegNetZ series of models with some attention experiments (being added to). These do not follow the paper (https://arxiv.org/abs/2103.06877) in any way other than block architecture, details of official models are not available. See more here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights) * ConvMixer (https://openreview.net/forum?id=TVHS5Y4dNvM), CrossVit (https://arxiv.org/abs/2103.14899), and BeiT (https://arxiv.org/abs/2106.08254) architectures + weights added * freeze/unfreeze helpers by [Alexander Soare](https://github.com/alexander-soare) ### Aug 18, 2021 * Optimizer bonanza! * Add LAMB and LARS optimizers, incl trust ratio clipping options. Tweaked to work properly in PyTorch XLA (tested on TPUs w/ `timm bits` [branch](https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu/timm/bits)) * Add MADGRAD from FB research w/ a few tweaks (decoupled decay option, step handling that works with PyTorch XLA) * Some cleanup on all optimizers and factory. No more `.data`, a bit more consistency, unit tests for all! * SGDP and AdamP still won't work with PyTorch XLA but others should (have yet to test Adabelief, Adafactor, Adahessian myself). * EfficientNet-V2 XL TF ported weights added, but they don't validate well in PyTorch (L is better). The pre-processing for the V2 TF training is a bit diff and the fine-tuned 21k -> 1k weights are very sensitive and less robust than the 1k weights. * Added PyTorch trained EfficientNet-V2 'Tiny' w/ GlobalContext attn weights. Only .1-.2 top-1 better than the SE so more of a curiosity for those interested. ### July 12, 2021 * Add XCiT models from [official facebook impl](https://github.com/facebookresearch/xcit). Contributed by [Alexander Soare](https://github.com/alexander-soare) ### July 5-9, 2021 * Add `efficientnetv2_rw_t` weights, a custom 'tiny' 13.6M param variant that is a bit better than (non NoisyStudent) B3 models. Both faster and better accuracy (at same or lower res) * top-1 82.34 @ 288x288 and 82.54 @ 320x320 * Add [SAM pretrained](https://arxiv.org/abs/2106.01548) in1k weight for ViT B/16 (`vit_base_patch16_sam_224`) and B/32 (`vit_base_patch32_sam_224`) models. * Add 'Aggregating Nested Transformer' (NesT) w/ weights converted from official [Flax impl](https://github.com/google-research/nested-transformer). Contributed by [Alexander Soare](https://github.com/alexander-soare). * `jx_nest_base` - 83.534, `jx_nest_small` - 83.120, `jx_nest_tiny` - 81.426 ### June 23, 2021 * Reproduce gMLP model training, `gmlp_s16_224` trained to 79.6 top-1, matching [paper](https://arxiv.org/abs/2105.08050). Hparams for this and other recent MLP training [here](https://gist.github.com/rwightman/d6c264a9001f9167e06c209f630b2cc6) ### June 20, 2021 * Release Vision Transformer 'AugReg' weights from [How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers](https://arxiv.org/abs/2106.10270) * .npz weight loading support added, can load any of the 50K+ weights from the [AugReg series](https://console.cloud.google.com/storage/browser/vit_models/augreg) * See [example notebook](https://colab.research.google.com/github/google-research/vision_transformer/blob/master/vit_jax_augreg.ipynb) from [official impl](https://github.com/google-research/vision_transformer/) for navigating the augreg weights * Replaced all default weights w/ best AugReg variant (if possible). All AugReg 21k classifiers work. * Highlights: `vit_large_patch16_384` (87.1 top-1), `vit_large_r50_s32_384` (86.2 top-1), `vit_base_patch16_384` (86.0 top-1) * `vit_deit_*` renamed to just `deit_*` * Remove my old small model, replace with DeiT compatible small w/ AugReg weights * Add 1st training of my `gmixer_24_224` MLP /w GLU, 78.1 top-1 w/ 25M params. * Add weights from official ResMLP release (https://github.com/facebookresearch/deit) * Add `eca_nfnet_l2` weights from my 'lightweight' series. 84.7 top-1 at 384x384. * Add distilled BiT 50x1 student and 152x2 Teacher weights from [Knowledge distillation: A good teacher is patient and consistent](https://arxiv.org/abs/2106.05237) * NFNets and ResNetV2-BiT models work w/ Pytorch XLA now * weight standardization uses F.batch_norm instead of std_mean (std_mean wasn't lowered) * eps values adjusted, will be slight differences but should be quite close * Improve test coverage and classifier interface of non-conv (vision transformer and mlp) models * Cleanup a few classifier / flatten details for models w/ conv classifiers or early global pool * Please report any regressions, this PR touched quite a few models. ### June 8, 2021 * Add first ResMLP weights, trained in PyTorch XLA on TPU-VM w/ my XLA branch. 24 block variant, 79.2 top-1. * Add ResNet51-Q model w/ pretrained weights at 82.36 top-1. * NFNet inspired block layout with quad layer stem and no maxpool * Same param count (35.7M) and throughput as ResNetRS-50 but +1.5 top-1 @ 224x224 and +2.5 top-1 at 288x288 ### May 25, 2021 * Add LeViT, Visformer, Convit (PR by Aman Arora), Twins (PR by paper authors) transformer models * Cleanup input_size/img_size override handling and testing for all vision transformer models * Add `efficientnetv2_rw_m` model and weights (started training before official code). 84.8 top-1, 53M params. ### May 14, 2021 * Add EfficientNet-V2 official model defs w/ ported weights from official [Tensorflow/Keras](https://github.com/google/automl/tree/master/efficientnetv2) impl. * 1k trained variants: `tf_efficientnetv2_s/m/l` * 21k trained variants: `tf_efficientnetv2_s/m/l_in21k` * 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_in21ft1k` * v2 models w/ v1 scaling: `tf_efficientnetv2_b0` through `b3` * Rename my prev V2 guess `efficientnet_v2s` -> `efficientnetv2_rw_s` * Some blank `efficientnetv2_*` models in-place for future native PyTorch training ### May 5, 2021 * Add MLP-Mixer models and port pretrained weights from [Google JAX impl](https://github.com/google-research/vision_transformer/tree/linen) * Add CaiT models and pretrained weights from [FB](https://github.com/facebookresearch/deit) * Add ResNet-RS models and weights from [TF](https://github.com/tensorflow/tpu/tree/master/models/official/resnet/resnet_rs). Thanks [Aman Arora](https://github.com/amaarora) * Add CoaT models and weights. Thanks [Mohammed Rizin](https://github.com/morizin) * Add new ImageNet-21k weights & finetuned weights for TResNet, MobileNet-V3, ViT models. Thanks [mrT](https://github.com/mrT23) * Add GhostNet models and weights. Thanks [Kai Han](https://github.com/iamhankai) * Update ByoaNet attention modles * Improve SA module inits * Hack together experimental stand-alone Swin based attn module and `swinnet` * Consistent '26t' model defs for experiments. * Add improved Efficientnet-V2S (prelim model def) weights. 83.8 top-1. * WandB logging support ### April 13, 2021 * Add Swin Transformer models and weights from https://github.com/microsoft/Swin-Transformer ### April 12, 2021 * Add ECA-NFNet-L1 (slimmed down F1 w/ SiLU, 41M params) trained with this code. 84% top-1 @ 320x320. Trained at 256x256. * Add EfficientNet-V2S model (unverified model definition) weights. 83.3 top-1 @ 288x288. Only trained single res 224. Working on progressive training. * Add ByoaNet model definition (Bring-your-own-attention) w/ SelfAttention block and corresponding SA/SA-like modules and model defs * Lambda Networks - https://arxiv.org/abs/2102.08602 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * Halo Nets - https://arxiv.org/abs/2103.12731 * Adabelief optimizer contributed by Juntang Zhuang ### April 1, 2021 * Add snazzy `benchmark.py` script for bulk `timm` model benchmarking of train and/or inference * Add Pooling-based Vision Transformer (PiT) models (from https://github.com/naver-ai/pit) * Merged distilled variant into main for torchscript compatibility * Some `timm` cleanup/style tweaks and weights have hub download support * Cleanup Vision Transformer (ViT) models * Merge distilled (DeiT) model into main so that torchscript can work * Support updated weight init (defaults to old still) that closer matches original JAX impl (possibly better training from scratch) * Separate hybrid model defs into different file and add several new model defs to fiddle with, support patch_size != 1 for hybrids * Fix fine-tuning num_class changes (PiT and ViT) and pos_embed resizing (Vit) with distilled variants * nn.Sequential for block stack (does not break downstream compat) * TnT (Transformer-in-Transformer) models contributed by author (from https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT) * Add RegNetY-160 weights from DeiT teacher model * Add new NFNet-L0 w/ SE attn (rename `nfnet_l0b`->`nfnet_l0`) weights 82.75 top-1 @ 288x288 * Some fixes/improvements for TFDS dataset wrapper ### March 7, 2021 * First 0.4.x PyPi release w/ NFNets (& related), ByoB (GPU-Efficient, RepVGG, etc). * Change feature extraction for pre-activation nets (NFNets, ResNetV2) to return features before activation. ### Feb 18, 2021 * Add pretrained weights and model variants for NFNet-F* models from [DeepMind Haiku impl](https://github.com/deepmind/deepmind-research/tree/master/nfnets). * Models are prefixed with `dm_`. They require SAME padding conv, skipinit enabled, and activation gains applied in act fn. * These models are big, expect to run out of GPU memory. With the GELU activiation + other options, they are roughly 1/2 the inference speed of my SiLU PyTorch optimized `s` variants. * Original model results are based on pre-processing that is not the same as all other models so you'll see different results in the results csv (once updated). * Matching the original pre-processing as closely as possible I get these results: * `dm_nfnet_f6` - 86.352 * `dm_nfnet_f5` - 86.100 * `dm_nfnet_f4` - 85.834 * `dm_nfnet_f3` - 85.676 * `dm_nfnet_f2` - 85.178 * `dm_nfnet_f1` - 84.696 * `dm_nfnet_f0` - 83.464 ### Feb 16, 2021 * Add Adaptive Gradient Clipping (AGC) as per https://arxiv.org/abs/2102.06171. Integrated w/ PyTorch gradient clipping via mode arg that defaults to prev 'norm' mode. For backward arg compat, clip-grad arg must be specified to enable when using train.py. * AGC w/ default clipping factor `--clip-grad .01 --clip-mode agc` * PyTorch global norm of 1.0 (old behaviour, always norm), `--clip-grad 1.0` * PyTorch value clipping of 10, `--clip-grad 10. --clip-mode value` * AGC performance is definitely sensitive to the clipping factor. More experimentation needed to determine good values for smaller batch sizes and optimizers besides those in paper. So far I've found .001-.005 is necessary for stable RMSProp training w/ NFNet/NF-ResNet. ### Feb 12, 2021 * Update Normalization-Free nets to include new NFNet-F (https://arxiv.org/abs/2102.06171) model defs ### Feb 10, 2021 * More model archs, incl a flexible ByobNet backbone ('Bring-your-own-blocks') * GPU-Efficient-Networks (https://github.com/idstcv/GPU-Efficient-Networks), impl in `byobnet.py` * RepVGG (https://github.com/DingXiaoH/RepVGG), impl in `byobnet.py` * classic VGG (from torchvision, impl in `vgg`) * Refinements to normalizer layer arg handling and normalizer+act layer handling in some models * Default AMP mode changed to native PyTorch AMP instead of APEX. Issues not being fixed with APEX. Native works with `--channels-last` and `--torchscript` model training, APEX does not. * Fix a few bugs introduced since last pypi release ### Feb 8, 2021 * Add several ResNet weights with ECA attention. 26t & 50t trained @ 256, test @ 320. 269d train @ 256, fine-tune @320, test @ 352. * `ecaresnet26t` - 79.88 top-1 @ 320x320, 79.08 @ 256x256 * `ecaresnet50t` - 82.35 top-1 @ 320x320, 81.52 @ 256x256 * `ecaresnet269d` - 84.93 top-1 @ 352x352, 84.87 @ 320x320 * Remove separate tiered (`t`) vs tiered_narrow (`tn`) ResNet model defs, all `tn` changed to `t` and `t` models removed (`seresnext26t_32x4d` only model w/ weights that was removed). * Support model default_cfgs with separate train vs test resolution `test_input_size` and remove extra `_320` suffix ResNet model defs that were just for test. ### Jan 30, 2021 * Add initial "Normalization Free" NF-RegNet-B* and NF-ResNet model definitions based on [paper](https://arxiv.org/abs/2101.08692) ### Jan 25, 2021 * Add ResNetV2 Big Transfer (BiT) models w/ ImageNet-1k and 21k weights from https://github.com/google-research/big_transfer * Add official R50+ViT-B/16 hybrid models + weights from https://github.com/google-research/vision_transformer * ImageNet-21k ViT weights are added w/ model defs and representation layer (pre logits) support * NOTE: ImageNet-21k classifier heads were zero'd in original weights, they are only useful for transfer learning * Add model defs and weights for DeiT Vision Transformer models from https://github.com/facebookresearch/deit * Refactor dataset classes into ImageDataset/IterableImageDataset + dataset specific parser classes * Add Tensorflow-Datasets (TFDS) wrapper to allow use of TFDS image classification sets with train script * Ex: `train.py /data/tfds --dataset tfds/oxford_iiit_pet --val-split test --model resnet50 -b 256 --amp --num-classes 37 --opt adamw --lr 3e-4 --weight-decay .001 --pretrained -j 2` * Add improved .tar dataset parser that reads images from .tar, folder of .tar files, or .tar within .tar * Run validation on full ImageNet-21k directly from tar w/ BiT model: `validate.py /data/fall11_whole.tar --model resnetv2_50x1_bitm_in21k --amp` * Models in this update should be stable w/ possible exception of ViT/BiT, possibility of some regressions with train/val scripts and dataset handling ### Jan 3, 2021 * Add SE-ResNet-152D weights * 256x256 val, 0.94 crop top-1 - 83.75 * 320x320 val, 1.0 crop - 84.36 * Update results files ### Dec 18, 2020 * Add ResNet-101D, ResNet-152D, and ResNet-200D weights trained @ 256x256 * 256x256 val, 0.94 crop (top-1) - 101D (82.33), 152D (83.08), 200D (83.25) * 288x288 val, 1.0 crop - 101D (82.64), 152D (83.48), 200D (83.76) * 320x320 val, 1.0 crop - 101D (83.00), 152D (83.66), 200D (84.01) ### Dec 7, 2020 * Simplify EMA module (ModelEmaV2), compatible with fully torchscripted models * Misc fixes for SiLU ONNX export, default_cfg missing from Feature extraction models, Linear layer w/ AMP + torchscript * PyPi release @ 0.3.2 (needed by EfficientDet) ### Oct 30, 2020 * Test with PyTorch 1.7 and fix a small top-n metric view vs reshape issue. * Convert newly added 224x224 Vision Transformer weights from official JAX repo. 81.8 top-1 for B/16, 83.1 L/16. * Support PyTorch 1.7 optimized, native SiLU (aka Swish) activation. Add mapping to 'silu' name, custom swish will eventually be deprecated. * Fix regression for loading pretrained classifier via direct model entrypoint functions. Didn't impact create_model() factory usage. * PyPi release @ 0.3.0 version! ### Oct 26, 2020 * Update Vision Transformer models to be compatible with official code release at https://github.com/google-research/vision_transformer * Add Vision Transformer weights (ImageNet-21k pretrain) for 384x384 base and large models converted from official jax impl * ViT-B/16 - 84.2 * ViT-B/32 - 81.7 * ViT-L/16 - 85.2 * ViT-L/32 - 81.5 ### Oct 21, 2020 * Weights added for Vision Transformer (ViT) models. 77.86 top-1 for 'small' and 79.35 for 'base'. Thanks to [Christof](https://www.kaggle.com/christofhenkel) for training the base model w/ lots of GPUs. ### Oct 13, 2020 * Initial impl of Vision Transformer models. Both patch and hybrid (CNN backbone) variants. Currently trying to train... * Adafactor and AdaHessian (FP32 only, no AMP) optimizers * EdgeTPU-M (`efficientnet_em`) model trained in PyTorch, 79.3 top-1 * Pip release, doc updates pending a few more changes... ### Sept 18, 2020 * New ResNet 'D' weights. 72.7 (top-1) ResNet-18-D, 77.1 ResNet-34-D, 80.5 ResNet-50-D * Added a few untrained defs for other ResNet models (66D, 101D, 152D, 200/200D) ### Sept 3, 2020 * New weights * Wide-ResNet50 - 81.5 top-1 (vs 78.5 torchvision) * SEResNeXt50-32x4d - 81.3 top-1 (vs 79.1 cadene) * Support for native Torch AMP and channels_last memory format added to train/validate scripts (`--channels-last`, `--native-amp` vs `--apex-amp`) * Models tested with channels_last on latest NGC 20.08 container. AdaptiveAvgPool in attn layers changed to mean((2,3)) to work around bug with NHWC kernel. ### Aug 12, 2020 * New/updated weights from training experiments * EfficientNet-B3 - 82.1 top-1 (vs 81.6 for official with AA and 81.9 for AdvProp) * RegNetY-3.2GF - 82.0 top-1 (78.9 from official ver) * CSPResNet50 - 79.6 top-1 (76.6 from official ver) * Add CutMix integrated w/ Mixup. See [pull request](https://github.com/rwightman/pytorch-image-models/pull/218) for some usage examples * Some fixes for using pretrained weights with `in_chans` != 3 on several models. ### Aug 5, 2020 Universal feature extraction, new models, new weights, new test sets. * All models support the `features_only=True` argument for `create_model` call to return a network that extracts feature maps from the deepest layer at each stride. * New models * CSPResNet, CSPResNeXt, CSPDarkNet, DarkNet * ReXNet * (Modified Aligned) Xception41/65/71 (a proper port of TF models) * New trained weights * SEResNet50 - 80.3 top-1 * CSPDarkNet53 - 80.1 top-1 * CSPResNeXt50 - 80.0 top-1 * DPN68b - 79.2 top-1 * EfficientNet-Lite0 (non-TF ver) - 75.5 (submitted by [@hal-314](https://github.com/hal-314)) * Add 'real' labels for ImageNet and ImageNet-Renditions test set, see [`results/README.md`](results/README.md) * Test set ranking/top-n diff script by [@KushajveerSingh](https://github.com/KushajveerSingh) * Train script and loader/transform tweaks to punch through more aug arguments * README and documentation overhaul. See initial (WIP) documentation at https://rwightman.github.io/pytorch-image-models/ * adamp and sgdp optimizers added by [@hellbell](https://github.com/hellbell) ### June 11, 2020 Bunch of changes: * DenseNet models updated with memory efficient addition from torchvision (fixed a bug), blur pooling and deep stem additions * VoVNet V1 and V2 models added, 39 V2 variant (ese_vovnet_39b) trained to 79.3 top-1 * Activation factory added along with new activations: * select act at model creation time for more flexibility in using activations compatible with scripting or tracing (ONNX export) * hard_mish (experimental) added with memory-efficient grad, along with ME hard_swish * context mgr for setting exportable/scriptable/no_jit states * Norm + Activation combo layers added with initial trial support in DenseNet and VoVNet along with impl of EvoNorm and InplaceAbn wrapper that fit the interface * Torchscript works for all but two of the model types as long as using Pytorch 1.5+, tests added for this * Some import cleanup and classifier reset changes, all models will have classifier reset to nn.Identity on reset_classifer(0) call * Prep for 0.1.28 pip release ### May 12, 2020 * Add ResNeSt models (code adapted from https://github.com/zhanghang1989/ResNeSt, paper https://arxiv.org/abs/2004.08955)) ### May 3, 2020 * Pruned EfficientNet B1, B2, and B3 (https://arxiv.org/abs/2002.08258) contributed by [Yonathan Aflalo](https://github.com/yoniaflalo) ### May 1, 2020 * Merged a number of execellent contributions in the ResNet model family over the past month * BlurPool2D and resnetblur models initiated by [Chris Ha](https://github.com/VRandme), I trained resnetblur50 to 79.3. * TResNet models and SpaceToDepth, AntiAliasDownsampleLayer layers by [mrT23](https://github.com/mrT23) * ecaresnet (50d, 101d, light) models and two pruned variants using pruning as per (https://arxiv.org/abs/2002.08258) by [Yonathan Aflalo](https://github.com/yoniaflalo) * 200 pretrained models in total now with updated results csv in results folder ### April 5, 2020 * Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite * 3.5M param MobileNet-V2 100 @ 73% * 4.5M param MobileNet-V2 110d @ 75% * 6.1M param MobileNet-V2 140 @ 76.5% * 5.8M param MobileNet-V2 120d @ 77.3% ### March 18, 2020 * Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite) * Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams) ### April 5, 2020 * Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite * 3.5M param MobileNet-V2 100 @ 73% * 4.5M param MobileNet-V2 110d @ 75% * 6.1M param MobileNet-V2 140 @ 76.5% * 5.8M param MobileNet-V2 120d @ 77.3% ### March 18, 2020 * Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite) * Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams) ### Feb 29, 2020 * New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1 * IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models * overall results similar to a bit better training from scratch on a few smaller models tried * performance early in training seems consistently improved but less difference by end * set `fix_group_fanout=False` in `_init_weight_goog` fn if you need to reproducte past behaviour * Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training ### Feb 18, 2020 * Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268): * Move layer/module impl into `layers` subfolder/module of `models` and organize in a more granular fashion * ResNet downsample paths now properly support dilation (output stride != 32) for avg_pool ('D' variant) and 3x3 (SENets) networks * Add Selective Kernel Nets on top of ResNet base, pretrained weights * skresnet18 - 73% top-1 * skresnet34 - 76.9% top-1 * skresnext50_32x4d (equiv to SKNet50) - 80.2% top-1 * ECA and CECA (circular padding) attention layer contributed by [Chris Ha](https://github.com/VRandme) * CBAM attention experiment (not the best results so far, may remove) * Attention factory to allow dynamically selecting one of SE, ECA, CBAM in the `.se` position for all ResNets * Add DropBlock and DropPath (formerly DropConnect for EfficientNet/MobileNetv3) support to all ResNet variants * Full dataset results updated that incl NoisyStudent weights and 2 of the 3 SK weights ### Feb 12, 2020 * Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) ### Feb 6, 2020 * Add RandAugment trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams) ### Feb 1/2, 2020 * Port new EfficientNet-B8 (RandAugment) weights, these are different than the B8 AdvProp, different input normalization. * Update results csv files on all models for ImageNet validation and three other test sets * Push PyPi package update ### Jan 31, 2020 * Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below. ### Jan 11/12, 2020 * Master may be a bit unstable wrt to training, these changes have been tested but not all combos * Implementations of AugMix added to existing RA and AA. Including numerous supporting pieces like JSD loss (Jensen-Shannon divergence + CE), and AugMixDataset * SplitBatchNorm adaptation layer added for implementing Auxiliary BN as per AdvProp paper * ResNet-50 AugMix trained model w/ 79% top-1 added * `seresnext26tn_32x4d` - 77.99 top-1, 93.75 top-5 added to tiered experiment, higher img/s than 't' and 'd' ### Jan 3, 2020 * Add RandAugment trained EfficientNet-B0 weight with 77.7 top-1. Trained by [Michael Klachko](https://github.com/michaelklachko) with this code and recent hparams (see Training section) * Add `avg_checkpoints.py` script for post training weight averaging and update all scripts with header docstrings and shebangs. ### Dec 30, 2019 * Merge [Dushyant Mehta's](https://github.com/mehtadushy) PR for SelecSLS (Selective Short and Long Range Skip Connections) networks. Good GPU memory consumption and throughput. Original: https://github.com/mehtadushy/SelecSLS-Pytorch ### Dec 28, 2019 * Add new model weights and training hparams (see Training Hparams section) * `efficientnet_b3` - 81.5 top-1, 95.7 top-5 at default res/crop, 81.9, 95.8 at 320x320 1.0 crop-pct * trained with RandAugment, ended up with an interesting but less than perfect result (see training section) * `seresnext26d_32x4d`- 77.6 top-1, 93.6 top-5 * deep stem (32, 32, 64), avgpool downsample * stem/dowsample from bag-of-tricks paper * `seresnext26t_32x4d`- 78.0 top-1, 93.7 top-5 * deep tiered stem (24, 48, 64), avgpool downsample (a modified 'D' variant) * stem sizing mods from Jeremy Howard and fastai devs discussing ResNet architecture experiments ### Dec 23, 2019 * Add RandAugment trained MixNet-XL weights with 80.48 top-1. * `--dist-bn` argument added to train.py, will distribute BN stats between nodes after each train epoch, before eval ### Dec 4, 2019 * Added weights from the first training from scratch of an EfficientNet (B2) with my new RandAugment implementation. Much better than my previous B2 and very close to the official AdvProp ones (80.4 top-1, 95.08 top-5). ### Nov 29, 2019 * Brought EfficientNet and MobileNetV3 up to date with my https://github.com/rwightman/gen-efficientnet-pytorch code. Torchscript and ONNX export compat excluded. * AdvProp weights added * Official TF MobileNetv3 weights added * EfficientNet and MobileNetV3 hook based 'feature extraction' classes added. Will serve as basis for using models as backbones in obj detection/segmentation tasks. Lots more to be done here... * HRNet classification models and weights added from https://github.com/HRNet/HRNet-Image-Classification * Consistency in global pooling, `reset_classifer`, and `forward_features` across models * `forward_features` always returns unpooled feature maps now * Reasonable chance I broke something... let me know ### Nov 22, 2019 * Add ImageNet training RandAugment implementation alongside AutoAugment. PyTorch Transform compatible format, using PIL. Currently training two EfficientNet models from scratch with promising results... will update. * `drop-connect` cmd line arg finally added to `train.py`, no need to hack model fns. Works for efficientnet/mobilenetv3 based models, ignored otherwise.
pytorch-image-models/docs/archived_changes.md/0
{ "file_path": "pytorch-image-models/docs/archived_changes.md", "repo_id": "pytorch-image-models", "token_count": 9335 }
164
# Deep Layer Aggregation Extending โ€œshallowโ€ skip connections, **Dense Layer Aggregation (DLA)** incorporates more depth and sharing. The authors introduce two structures for deep layer aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA). These structures are expressed through an architectural framework, independent of the choice of backbone, for compatibility with current and future networks. IDA focuses on fusing resolutions and scales while HDA focuses on merging features from all modules and channels. IDA follows the base hierarchy to refine resolution and aggregate scale stage-bystage. HDA assembles its own hierarchy of tree-structured connections that cross and merge stages to aggregate different levels of representation. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{yu2019deep, title={Deep Layer Aggregation}, author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell}, year={2019}, eprint={1707.06484}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: DLA Paper: Title: Deep Layer Aggregation URL: https://paperswithcode.com/paper/deep-layer-aggregation Models: - Name: dla102 In Collection: DLA Metadata: FLOPs: 7192952808 Parameters: 33270000 File Size: 135290579 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102 LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L410 Weights: http://dl.yf.io/dla/models/imagenet/dla102-d94d9790.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.03% Top 5 Accuracy: 93.95% - Name: dla102x In Collection: DLA Metadata: FLOPs: 5886821352 Parameters: 26310000 File Size: 107552695 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102x LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L418 Weights: http://dl.yf.io/dla/models/imagenet/dla102x-ad62be81.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.51% Top 5 Accuracy: 94.23% - Name: dla102x2 In Collection: DLA Metadata: FLOPs: 9343847400 Parameters: 41280000 File Size: 167645295 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102x2 LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L426 Weights: http://dl.yf.io/dla/models/imagenet/dla102x2-262837b6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.44% Top 5 Accuracy: 94.65% - Name: dla169 In Collection: DLA Metadata: FLOPs: 11598004200 Parameters: 53390000 File Size: 216547113 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla169 LR: 0.1 Epochs: 120 Layers: 169 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L434 Weights: http://dl.yf.io/dla/models/imagenet/dla169-0914e092.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.69% Top 5 Accuracy: 94.33% - Name: dla34 In Collection: DLA Metadata: FLOPs: 3070105576 Parameters: 15740000 File Size: 63228658 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla34 LR: 0.1 Epochs: 120 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L362 Weights: http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.62% Top 5 Accuracy: 92.06% - Name: dla46_c In Collection: DLA Metadata: FLOPs: 583277288 Parameters: 1300000 File Size: 5307963 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla46_c LR: 0.1 Epochs: 120 Layers: 46 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L369 Weights: http://dl.yf.io/dla/models/imagenet/dla46_c-2bfd52c3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 64.87% Top 5 Accuracy: 86.29% - Name: dla46x_c In Collection: DLA Metadata: FLOPs: 544052200 Parameters: 1070000 File Size: 4387641 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla46x_c LR: 0.1 Epochs: 120 Layers: 46 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L378 Weights: http://dl.yf.io/dla/models/imagenet/dla46x_c-d761bae7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 65.98% Top 5 Accuracy: 86.99% - Name: dla60 In Collection: DLA Metadata: FLOPs: 4256251880 Parameters: 22040000 File Size: 89560235 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60 LR: 0.1 Epochs: 120 Layers: 60 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L394 Weights: http://dl.yf.io/dla/models/imagenet/dla60-24839fc4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.04% Top 5 Accuracy: 93.32% - Name: dla60_res2net In Collection: DLA Metadata: FLOPs: 4147578504 Parameters: 20850000 File Size: 84886593 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60_res2net Layers: 60 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L346 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.46% Top 5 Accuracy: 94.21% - Name: dla60_res2next In Collection: DLA Metadata: FLOPs: 3485335272 Parameters: 17030000 File Size: 69639245 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60_res2next Layers: 60 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L354 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.44% Top 5 Accuracy: 94.16% - Name: dla60x In Collection: DLA Metadata: FLOPs: 3544204264 Parameters: 17350000 File Size: 70883139 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60x LR: 0.1 Epochs: 120 Layers: 60 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L402 Weights: http://dl.yf.io/dla/models/imagenet/dla60x-d15cacda.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 94.02% - Name: dla60x_c In Collection: DLA Metadata: FLOPs: 593325032 Parameters: 1320000 File Size: 5454396 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60x_c LR: 0.1 Epochs: 120 Layers: 60 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L386 Weights: http://dl.yf.io/dla/models/imagenet/dla60x_c-b870c45c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 67.91% Top 5 Accuracy: 88.42% -->
pytorch-image-models/docs/models/.templates/models/dla.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/dla.md", "repo_id": "pytorch-image-models", "token_count": 5955 }
165
# Inception ResNet v2 **Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{szegedy2016inceptionv4, title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, year={2016}, eprint={1602.07261}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Inception ResNet v2 Paper: Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact Models: - Name: inception_resnet_v2 In Collection: Inception ResNet v2 Metadata: FLOPs: 16959133120 Parameters: 55850000 File Size: 223774238 Architecture: - Average Pooling - Dropout - Inception-ResNet-v2 Reduction-B - Inception-ResNet-v2-A - Inception-ResNet-v2-B - Inception-ResNet-v2-C - Reduction-A - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 20x NVIDIA Kepler GPUs ID: inception_resnet_v2 LR: 0.045 Dropout: 0.2 Crop Pct: '0.897' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/inception_resnet_v2-940b1cd6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 0.95% Top 5 Accuracy: 17.29% -->
pytorch-image-models/docs/models/.templates/models/inception-resnet-v2.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/inception-resnet-v2.md", "repo_id": "pytorch-image-models", "token_count": 864 }
166
# Res2NeXt **Res2NeXt** is an image model that employs a variation on [ResNeXt](https://paperswithcode.com/method/resnext) bottleneck residual blocks. The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{Gao_2021, title={Res2Net: A New Multi-Scale Backbone Architecture}, volume={43}, ISSN={1939-3539}, url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, DOI={10.1109/tpami.2019.2938758}, number={2}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, year={2021}, month={Feb}, pages={652โ€“662} } ``` <!-- Type: model-index Collections: - Name: Res2NeXt Paper: Title: 'Res2Net: A New Multi-scale Backbone Architecture' URL: https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone Models: - Name: res2next50 In Collection: Res2NeXt Metadata: FLOPs: 5396798208 Parameters: 24670000 File Size: 99019592 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2NeXt Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2next50 LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L207 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.24% Top 5 Accuracy: 93.91% -->
pytorch-image-models/docs/models/.templates/models/res2next.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/res2next.md", "repo_id": "pytorch-image-models", "token_count": 905 }
167
# (Tensorflow) EfficientNet CondConv **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to squeeze-and-excitation blocks. This collection of models amends EfficientNet by adding [CondConv](https://paperswithcode.com/method/condconv) convolutions. The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). {% include 'code_snippets.md' %} ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1904-04971, author = {Brandon Yang and Gabriel Bender and Quoc V. Le and Jiquan Ngiam}, title = {Soft Conditional Computation}, journal = {CoRR}, volume = {abs/1904.04971}, year = {2019}, url = {http://arxiv.org/abs/1904.04971}, archivePrefix = {arXiv}, eprint = {1904.04971}, timestamp = {Thu, 25 Apr 2019 13:55:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1904-04971.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet CondConv Paper: Title: 'CondConv: Conditionally Parameterized Convolutions for Efficient Inference' URL: https://paperswithcode.com/paper/soft-conditional-computation Models: - Name: tf_efficientnet_cc_b0_4e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 224153788 Parameters: 13310000 File Size: 53490940 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b0_4e LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1561 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.32% Top 5 Accuracy: 93.32% - Name: tf_efficientnet_cc_b0_8e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 224158524 Parameters: 24010000 File Size: 96287616 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b0_8e LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1572 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.91% Top 5 Accuracy: 93.65% - Name: tf_efficientnet_cc_b1_8e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 370427824 Parameters: 39720000 File Size: 159206198 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b1_8e LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1584 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.33% Top 5 Accuracy: 94.37% -->
pytorch-image-models/docs/models/.templates/models/tf-efficientnet-condconv.md/0
{ "file_path": "pytorch-image-models/docs/models/.templates/models/tf-efficientnet-condconv.md", "repo_id": "pytorch-image-models", "token_count": 2457 }
168
""" ONNX-runtime validation script This script was created to verify accuracy and performance of exported ONNX models running with the onnxruntime. It utilizes the PyTorch dataloader/processing pipeline for a fair comparison against the originals. Copyright 2020 Ross Wightman """ import argparse import numpy as np import onnxruntime from timm.data import create_loader, resolve_data_config, create_dataset from timm.utils import AverageMeter import time parser = argparse.ArgumentParser(description='ONNX Validation') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--onnx-input', default='', type=str, metavar='PATH', help='path to onnx model/weights file') parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH', help='path to output optimized onnx graph') parser.add_argument('--profile', action='store_true', default=False, help='Enable profiler output.') parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', help='Override default crop pct of 0.875') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') def main(): args = parser.parse_args() args.gpu_id = 0 # Set graph optimization level sess_options = onnxruntime.SessionOptions() sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL if args.profile: sess_options.enable_profiling = True if args.onnx_output_opt: sess_options.optimized_model_filepath = args.onnx_output_opt session = onnxruntime.InferenceSession(args.onnx_input, sess_options) data_config = resolve_data_config(vars(args)) loader = create_loader( create_dataset('', args.data), input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=data_config['crop_pct'] ) input_name = session.get_inputs()[0].name batch_time = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() for i, (input, target) in enumerate(loader): # run the net and return prediction output = session.run([], {input_name: input.data.numpy()}) output = output[0] # measure accuracy and record loss prec1, prec5 = accuracy_np(output, target.numpy()) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print( f'Test: [{i}/{len(loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {input.size(0) / batch_time.avg:.3f}/s, ' f'{100 * batch_time.avg / input.size(0):.3f} ms/sample) \t' f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' ) print(f' * Prec@1 {top1.avg:.3f} ({100-top1.avg:.3f}) Prec@5 {top5.avg:.3f} ({100.-top5.avg:.3f})') def accuracy_np(output, target): max_indices = np.argsort(output, axis=1)[:, ::-1] top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() top1 = 100 * np.equal(max_indices[:, 0], target).mean() return top1, top5 if __name__ == '__main__': main()
pytorch-image-models/onnx_validate.py/0
{ "file_path": "pytorch-image-models/onnx_validate.py", "repo_id": "pytorch-image-models", "token_count": 1960 }
169
"""Run tests for all models Tests that run on CI should have a specific marker, e.g. @pytest.mark.base. This marker is used to parallelize the CI runs, with one runner for each marker. If new tests are added, ensure that they use one of the existing markers (documented in pyproject.toml > pytest > markers) or that a new marker is added for this set of tests. If using a new marker, adjust the test matrix in .github/workflows/tests.yml to run tests with this new marker, otherwise the tests will be skipped on CI. """ import pytest import torch import platform import os import fnmatch _IS_MAC = platform.system() == 'Darwin' try: from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer has_fx_feature_extraction = True except ImportError: has_fx_feature_extraction = False import timm from timm import list_models, create_model, set_scriptable, get_pretrained_cfg_value from timm.layers import Format, get_spatial_dim, get_channel_dim from timm.models import get_notrace_modules, get_notrace_functions import importlib import os torch_backend = os.environ.get('TORCH_BACKEND') if torch_backend is not None: importlib.import_module(torch_backend) torch_device = os.environ.get('TORCH_DEVICE', 'cpu') timeout = os.environ.get('TIMEOUT') timeout120 = int(timeout) if timeout else 120 timeout300 = int(timeout) if timeout else 300 if hasattr(torch._C, '_jit_set_profiling_executor'): # legacy executor is too slow to compile large models for unit tests # no need for the fusion performance here torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(False) # transformer models don't support many of the spatial / feature based model functionalities NON_STD_FILTERS = [ 'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*', 'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit*', 'poolformer_*', 'volo_*', 'sequencer2d_*', 'pvt_v2*', 'mvitv2*', 'gcvit*', 'efficientformer*', 'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*' ] NUM_NON_STD = len(NON_STD_FILTERS) # exclude models that cause specific test failures if 'GITHUB_ACTIONS' in os.environ: # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models EXCLUDE_FILTERS = [ '*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm', '*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*', '*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', '*huge*', '*giant*', '*gigantic*', '*enormous*', 'maxvit_xlarge*', 'regnet*1280', 'regnet*2560'] NON_STD_EXCLUDE_FILTERS = ['*huge*', '*giant*', '*gigantic*', '*enormous*'] else: EXCLUDE_FILTERS = ['*enormous*'] NON_STD_EXCLUDE_FILTERS = ['*gigantic*', '*enormous*'] EXCLUDE_JIT_FILTERS = [] TARGET_FWD_SIZE = MAX_FWD_SIZE = 384 TARGET_BWD_SIZE = 128 MAX_BWD_SIZE = 320 MAX_FWD_OUT_SIZE = 448 TARGET_JIT_SIZE = 128 MAX_JIT_SIZE = 320 TARGET_FFEAT_SIZE = 96 MAX_FFEAT_SIZE = 256 TARGET_FWD_FX_SIZE = 128 MAX_FWD_FX_SIZE = 256 TARGET_BWD_FX_SIZE = 128 MAX_BWD_FX_SIZE = 224 def _get_input_size(model=None, model_name='', target=None): if model is None: assert model_name, "One of model or model_name must be provided" input_size = get_pretrained_cfg_value(model_name, 'input_size') fixed_input_size = get_pretrained_cfg_value(model_name, 'fixed_input_size') min_input_size = get_pretrained_cfg_value(model_name, 'min_input_size') else: default_cfg = model.default_cfg input_size = default_cfg['input_size'] fixed_input_size = default_cfg.get('fixed_input_size', None) min_input_size = default_cfg.get('min_input_size', None) assert input_size is not None if fixed_input_size: return input_size if min_input_size: if target and max(input_size) > target: input_size = min_input_size else: if target and max(input_size) > target: input_size = tuple([min(x, target) for x in input_size]) return input_size @pytest.mark.base @pytest.mark.timeout(timeout120) @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS)) @pytest.mark.parametrize('batch_size', [1]) def test_model_forward(model_name, batch_size): """Run a single forward pass with each model""" model = create_model(model_name, pretrained=False) model.eval() input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE) if max(input_size) > MAX_FWD_SIZE: pytest.skip("Fixed input size model > limit.") inputs = torch.randn((batch_size, *input_size)) inputs = inputs.to(torch_device) model.to(torch_device) outputs = model(inputs) assert outputs.shape[0] == batch_size assert not torch.isnan(outputs).any(), 'Output included NaNs' @pytest.mark.base @pytest.mark.timeout(timeout120) @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True)) @pytest.mark.parametrize('batch_size', [2]) def test_model_backward(model_name, batch_size): """Run a single forward pass with each model""" input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE) if max(input_size) > MAX_BWD_SIZE: pytest.skip("Fixed input size model > limit.") model = create_model(model_name, pretrained=False, num_classes=42) num_params = sum([x.numel() for x in model.parameters()]) model.train() inputs = torch.randn((batch_size, *input_size)) inputs = inputs.to(torch_device) model.to(torch_device) outputs = model(inputs) if isinstance(outputs, tuple): outputs = torch.cat(outputs) outputs.mean().backward() for n, x in model.named_parameters(): assert x.grad is not None, f'No gradient for {n}' num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None]) assert outputs.shape[-1] == 42 assert num_params == num_grad, 'Some parameters are missing gradients' assert not torch.isnan(outputs).any(), 'Output included NaNs' @pytest.mark.cfg @pytest.mark.timeout(timeout300) @pytest.mark.parametrize('model_name', list_models( exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True)) @pytest.mark.parametrize('batch_size', [1]) def test_model_default_cfgs(model_name, batch_size): """Run a single forward pass with each model""" model = create_model(model_name, pretrained=False) model.eval() model.to(torch_device) state_dict = model.state_dict() cfg = model.default_cfg pool_size = cfg['pool_size'] input_size = model.default_cfg['input_size'] output_fmt = getattr(model, 'output_fmt', 'NCHW') spatial_axis = get_spatial_dim(output_fmt) assert len(spatial_axis) == 2 # TODO add 1D sequence support feat_axis = get_channel_dim(output_fmt) if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \ not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]): # output sizes only checked if default res <= 448 * 448 to keep resource down input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size]) input_tensor = torch.randn((batch_size, *input_size), device=torch_device) # test forward_features (always unpooled) outputs = model.forward_features(input_tensor) assert outputs.shape[spatial_axis[0]] == pool_size[0], 'unpooled feature shape != config' assert outputs.shape[spatial_axis[1]] == pool_size[1], 'unpooled feature shape != config' if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)): assert outputs.shape[feat_axis] == model.num_features # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features model.reset_classifier(0) model.to(torch_device) outputs = model.forward(input_tensor) assert len(outputs.shape) == 2 assert outputs.shape[1] == model.num_features # test model forward without pooling and classifier model.reset_classifier(0, '') # reset classifier and set global pooling to pass-through model.to(torch_device) outputs = model.forward(input_tensor) assert len(outputs.shape) == 4 if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)): # mobilenetv3/ghostnet/repghostnet/vgg forward_features vs removed pooling differ due to location or lack of GAP assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1] if 'pruned' not in model_name: # FIXME better pruned model handling # test classifier + global pool deletion via __init__ model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval() model.to(torch_device) outputs = model.forward(input_tensor) assert len(outputs.shape) == 4 if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)): assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1] # check classifier name matches default_cfg if cfg.get('num_classes', None): classifier = cfg['classifier'] if not isinstance(classifier, (tuple, list)): classifier = classifier, for c in classifier: assert c + ".weight" in state_dict.keys(), f'{c} not in model params' # check first conv(s) names match default_cfg first_conv = cfg['first_conv'] if isinstance(first_conv, str): first_conv = (first_conv,) assert isinstance(first_conv, (tuple, list)) for fc in first_conv: assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params' @pytest.mark.cfg @pytest.mark.timeout(timeout300) @pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS, include_tags=True)) @pytest.mark.parametrize('batch_size', [1]) def test_model_default_cfgs_non_std(model_name, batch_size): """Run a single forward pass with each model""" model = create_model(model_name, pretrained=False) model.eval() model.to(torch_device) state_dict = model.state_dict() cfg = model.default_cfg input_size = _get_input_size(model=model) if max(input_size) > 320: # FIXME const pytest.skip("Fixed input size model > limit.") input_tensor = torch.randn((batch_size, *input_size), device=torch_device) feat_dim = getattr(model, 'feature_dim', None) outputs = model.forward_features(input_tensor) if isinstance(outputs, (tuple, list)): # cannot currently verify multi-tensor output. pass else: if feat_dim is None: feat_dim = -1 if outputs.ndim == 3 else 1 assert outputs.shape[feat_dim] == model.num_features # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features model.reset_classifier(0) model.to(torch_device) outputs = model.forward(input_tensor) if isinstance(outputs, (tuple, list)): outputs = outputs[0] if feat_dim is None: feat_dim = -1 if outputs.ndim == 3 else 1 assert outputs.shape[feat_dim] == model.num_features, 'pooled num_features != config' model = create_model(model_name, pretrained=False, num_classes=0).eval() model.to(torch_device) outputs = model.forward(input_tensor) if isinstance(outputs, (tuple, list)): outputs = outputs[0] if feat_dim is None: feat_dim = -1 if outputs.ndim == 3 else 1 assert outputs.shape[feat_dim] == model.num_features # check classifier name matches default_cfg if cfg.get('num_classes', None): classifier = cfg['classifier'] if not isinstance(classifier, (tuple, list)): classifier = classifier, for c in classifier: assert c + ".weight" in state_dict.keys(), f'{c} not in model params' # check first conv(s) names match default_cfg first_conv = cfg['first_conv'] if isinstance(first_conv, str): first_conv = (first_conv,) assert isinstance(first_conv, (tuple, list)) for fc in first_conv: assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params' if 'GITHUB_ACTIONS' not in os.environ: @pytest.mark.timeout(240) @pytest.mark.parametrize('model_name', list_models(pretrained=True)) @pytest.mark.parametrize('batch_size', [1]) def test_model_load_pretrained(model_name, batch_size): """Create that pretrained weights load, verify support for in_chans != 3 while doing so.""" in_chans = 3 if 'pruned' in model_name else 1 # pruning not currently supported with in_chans change create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5) create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0) @pytest.mark.timeout(240) @pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS)) @pytest.mark.parametrize('batch_size', [1]) def test_model_features_pretrained(model_name, batch_size): """Create that pretrained weights load when features_only==True.""" create_model(model_name, pretrained=True, features_only=True) @pytest.mark.torchscript @pytest.mark.timeout(timeout120) @pytest.mark.parametrize( 'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True)) @pytest.mark.parametrize('batch_size', [1]) def test_model_forward_torchscript(model_name, batch_size): """Run a single forward pass with each model""" input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) if max(input_size) > MAX_JIT_SIZE: pytest.skip("Fixed input size model > limit.") with set_scriptable(True): model = create_model(model_name, pretrained=False) model.eval() model = torch.jit.script(model) model.to(torch_device) outputs = model(torch.randn((batch_size, *input_size))) assert outputs.shape[0] == batch_size assert not torch.isnan(outputs).any(), 'Output included NaNs' EXCLUDE_FEAT_FILTERS = [ '*pruned*', # hopefully fix at some point ] + NON_STD_FILTERS if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system(): # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d'] @pytest.mark.features @pytest.mark.timeout(120) @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS, include_tags=True)) @pytest.mark.parametrize('batch_size', [1]) def test_model_forward_features(model_name, batch_size): """Run a single forward pass with each model in feature extraction mode""" model = create_model(model_name, pretrained=False, features_only=True) model.eval() expected_channels = model.feature_info.channels() expected_reduction = model.feature_info.reduction() assert len(expected_channels) >= 4 # all models here should have at least 4 feature levels by default, some 5 or 6 input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE) if max(input_size) > MAX_FFEAT_SIZE: pytest.skip("Fixed input size model > limit.") output_fmt = getattr(model, 'output_fmt', 'NCHW') feat_axis = get_channel_dim(output_fmt) spatial_axis = get_spatial_dim(output_fmt) import math outputs = model(torch.randn((batch_size, *input_size))) assert len(expected_channels) == len(outputs) spatial_size = input_size[-2:] for e, r, o in zip(expected_channels, expected_reduction, outputs): assert e == o.shape[feat_axis] assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1 assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1 assert o.shape[0] == batch_size assert not torch.isnan(o).any() def _create_fx_model(model, train=False): # This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode # So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output # node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names tracer_kwargs = dict( leaf_modules=get_notrace_modules(), autowrap_functions=get_notrace_functions(), #enable_cpatching=True, param_shapes_constant=True ) train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs) eval_return_nodes = [eval_nodes[-1]] train_return_nodes = [train_nodes[-1]] if train: tracer = NodePathTracer(**tracer_kwargs) graph = tracer.trace(model) graph_nodes = list(reversed(graph.nodes)) output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()] graph_node_names = [n.name for n in graph_nodes] output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names] train_return_nodes = [train_nodes[ix] for ix in output_node_indices] fx_model = create_feature_extractor( model, train_return_nodes=train_return_nodes, eval_return_nodes=eval_return_nodes, tracer_kwargs=tracer_kwargs, ) return fx_model EXCLUDE_FX_FILTERS = ['vit_gi*'] # not enough memory to run fx on more models than other tests if 'GITHUB_ACTIONS' in os.environ: EXCLUDE_FX_FILTERS += [ 'beit_large*', 'mixer_l*', '*nfnet_f2*', '*resnext101_32x32d', 'resnetv2_152x2*', 'resmlp_big*', 'resnetrs270', 'swin_large*', 'vgg*', 'vit_large*', 'vit_base_patch8*', 'xcit_large*', ] @pytest.mark.fxforward @pytest.mark.timeout(120) @pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS)) @pytest.mark.parametrize('batch_size', [1]) def test_model_forward_fx(model_name, batch_size): """ Symbolically trace each model and run single forward pass through the resulting GraphModule Also check that the output of a forward pass through the GraphModule is the same as that from the original Module """ if not has_fx_feature_extraction: pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") model = create_model(model_name, pretrained=False) model.eval() input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE) if max(input_size) > MAX_FWD_FX_SIZE: pytest.skip("Fixed input size model > limit.") with torch.no_grad(): inputs = torch.randn((batch_size, *input_size)) outputs = model(inputs) if isinstance(outputs, tuple): outputs = torch.cat(outputs) model = _create_fx_model(model) fx_outputs = tuple(model(inputs).values()) if isinstance(fx_outputs, tuple): fx_outputs = torch.cat(fx_outputs) assert torch.all(fx_outputs == outputs) assert outputs.shape[0] == batch_size assert not torch.isnan(outputs).any(), 'Output included NaNs' @pytest.mark.fxbackward @pytest.mark.timeout(120) @pytest.mark.parametrize('model_name', list_models( exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True)) @pytest.mark.parametrize('batch_size', [2]) def test_model_backward_fx(model_name, batch_size): """Symbolically trace each model and run single backward pass through the resulting GraphModule""" if not has_fx_feature_extraction: pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE) if max(input_size) > MAX_BWD_FX_SIZE: pytest.skip("Fixed input size model > limit.") model = create_model(model_name, pretrained=False, num_classes=42) model.train() num_params = sum([x.numel() for x in model.parameters()]) if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6: pytest.skip("Skipping FX backward test on model with more than 100M params.") model = _create_fx_model(model, train=True) outputs = tuple(model(torch.randn((batch_size, *input_size))).values()) if isinstance(outputs, tuple): outputs = torch.cat(outputs) outputs.mean().backward() for n, x in model.named_parameters(): assert x.grad is not None, f'No gradient for {n}' num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None]) assert outputs.shape[-1] == 42 assert num_params == num_grad, 'Some parameters are missing gradients' assert not torch.isnan(outputs).any(), 'Output included NaNs' if 'GITHUB_ACTIONS' not in os.environ: # FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process # reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow EXCLUDE_FX_JIT_FILTERS = [ 'deit_*_distilled_patch16_224', 'levit*', 'pit_*_distilled_224', ] + EXCLUDE_FX_FILTERS @pytest.mark.timeout(120) @pytest.mark.parametrize( 'model_name', list_models( exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True)) @pytest.mark.parametrize('batch_size', [1]) def test_model_forward_fx_torchscript(model_name, batch_size): """Symbolically trace each model, script it, and run single forward pass""" if not has_fx_feature_extraction: pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.") input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE) if max(input_size) > MAX_JIT_SIZE: pytest.skip("Fixed input size model > limit.") with set_scriptable(True): model = create_model(model_name, pretrained=False) model.eval() model = torch.jit.script(_create_fx_model(model)) with torch.no_grad(): outputs = tuple(model(torch.randn((batch_size, *input_size))).values()) if isinstance(outputs, tuple): outputs = torch.cat(outputs) assert outputs.shape[0] == batch_size assert not torch.isnan(outputs).any(), 'Output included NaNs'
pytorch-image-models/tests/test_models.py/0
{ "file_path": "pytorch-image-models/tests/test_models.py", "repo_id": "pytorch-image-models", "token_count": 9191 }
170
""" Loader Factory, Fast Collate, CUDA Prefetcher Prefetcher and Fast Collate inspired by NVIDIA APEX example at https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf Hacked together by / Copyright 2019, Ross Wightman """ import logging import random from contextlib import suppress from functools import partial from itertools import repeat from typing import Callable, Optional, Tuple, Union import torch import torch.utils.data import numpy as np from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .dataset import IterableImageDataset, ImageDataset from .distributed_sampler import OrderedDistributedSampler, RepeatAugSampler from .random_erasing import RandomErasing from .mixup import FastCollateMixup from .transforms_factory import create_transform _logger = logging.getLogger(__name__) def fast_collate(batch): """ A fast collation function optimized for uint8 images (np array or torch) and int64 targets (labels)""" assert isinstance(batch[0], tuple) batch_size = len(batch) if isinstance(batch[0][0], tuple): # This branch 'deinterleaves' and flattens tuples of input tensors into one tensor ordered by position # such that all tuple of position n will end up in a torch.split(tensor, batch_size) in nth position inner_tuple_size = len(batch[0][0]) flattened_batch_size = batch_size * inner_tuple_size targets = torch.zeros(flattened_batch_size, dtype=torch.int64) tensor = torch.zeros((flattened_batch_size, *batch[0][0][0].shape), dtype=torch.uint8) for i in range(batch_size): assert len(batch[i][0]) == inner_tuple_size # all input tensor tuples must be same length for j in range(inner_tuple_size): targets[i + j * batch_size] = batch[i][1] tensor[i + j * batch_size] += torch.from_numpy(batch[i][0][j]) return tensor, targets elif isinstance(batch[0][0], np.ndarray): targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) assert len(targets) == batch_size tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) for i in range(batch_size): tensor[i] += torch.from_numpy(batch[i][0]) return tensor, targets elif isinstance(batch[0][0], torch.Tensor): targets = torch.tensor([b[1] for b in batch], dtype=torch.int64) assert len(targets) == batch_size tensor = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) for i in range(batch_size): tensor[i].copy_(batch[i][0]) return tensor, targets else: assert False def adapt_to_chs(x, n): if not isinstance(x, (tuple, list)): x = tuple(repeat(x, n)) elif len(x) != n: x_mean = np.mean(x).item() x = (x_mean,) * n _logger.warning(f'Pretrained mean/std different shape than model, using avg value {x}.') else: assert len(x) == n, 'normalization stats must match image channels' return x class PrefetchLoader: def __init__( self, loader, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, channels=3, device=torch.device('cuda'), img_dtype=torch.float32, fp16=False, re_prob=0., re_mode='const', re_count=1, re_num_splits=0): mean = adapt_to_chs(mean, channels) std = adapt_to_chs(std, channels) normalization_shape = (1, channels, 1, 1) self.loader = loader self.device = device if fp16: # fp16 arg is deprecated, but will override dtype arg if set for bwd compat img_dtype = torch.float16 self.img_dtype = img_dtype self.mean = torch.tensor( [x * 255 for x in mean], device=device, dtype=img_dtype).view(normalization_shape) self.std = torch.tensor( [x * 255 for x in std], device=device, dtype=img_dtype).view(normalization_shape) if re_prob > 0.: self.random_erasing = RandomErasing( probability=re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device=device, ) else: self.random_erasing = None self.is_cuda = torch.cuda.is_available() and device.type == 'cuda' def __iter__(self): first = True if self.is_cuda: stream = torch.cuda.Stream() stream_context = partial(torch.cuda.stream, stream=stream) else: stream = None stream_context = suppress for next_input, next_target in self.loader: with stream_context(): next_input = next_input.to(device=self.device, non_blocking=True) next_target = next_target.to(device=self.device, non_blocking=True) next_input = next_input.to(self.img_dtype).sub_(self.mean).div_(self.std) if self.random_erasing is not None: next_input = self.random_erasing(next_input) if not first: yield input, target else: first = False if stream is not None: torch.cuda.current_stream().wait_stream(stream) input = next_input target = next_target yield input, target def __len__(self): return len(self.loader) @property def sampler(self): return self.loader.sampler @property def dataset(self): return self.loader.dataset @property def mixup_enabled(self): if isinstance(self.loader.collate_fn, FastCollateMixup): return self.loader.collate_fn.mixup_enabled else: return False @mixup_enabled.setter def mixup_enabled(self, x): if isinstance(self.loader.collate_fn, FastCollateMixup): self.loader.collate_fn.mixup_enabled = x def _worker_init(worker_id, worker_seeding='all'): worker_info = torch.utils.data.get_worker_info() assert worker_info.id == worker_id if isinstance(worker_seeding, Callable): seed = worker_seeding(worker_info) random.seed(seed) torch.manual_seed(seed) np.random.seed(seed % (2 ** 32 - 1)) else: assert worker_seeding in ('all', 'part') # random / torch seed already called in dataloader iter class w/ worker_info.seed # to reproduce some old results (same seed + hparam combo), partial seeding is required (skip numpy re-seed) if worker_seeding == 'all': np.random.seed(worker_info.seed % (2 ** 32 - 1)) def create_loader( dataset: Union[ImageDataset, IterableImageDataset], input_size: Union[int, Tuple[int, int], Tuple[int, int, int]], batch_size: int, is_training: bool = False, no_aug: bool = False, re_prob: float = 0., re_mode: str = 'const', re_count: int = 1, re_split: bool = False, train_crop_mode: Optional[str] = None, scale: Optional[Tuple[float, float]] = None, ratio: Optional[Tuple[float, float]] = None, hflip: float = 0.5, vflip: float = 0., color_jitter: float = 0.4, color_jitter_prob: Optional[float] = None, grayscale_prob: float = 0., gaussian_blur_prob: float = 0., auto_augment: Optional[str] = None, num_aug_repeats: int = 0, num_aug_splits: int = 0, interpolation: str = 'bilinear', mean: Tuple[float, ...] = IMAGENET_DEFAULT_MEAN, std: Tuple[float, ...] = IMAGENET_DEFAULT_STD, num_workers: int = 1, distributed: bool = False, crop_pct: Optional[float] = None, crop_mode: Optional[str] = None, crop_border_pixels: Optional[int] = None, collate_fn: Optional[Callable] = None, pin_memory: bool = False, fp16: bool = False, # deprecated, use img_dtype img_dtype: torch.dtype = torch.float32, device: torch.device = torch.device('cuda'), use_prefetcher: bool = True, use_multi_epochs_loader: bool = False, persistent_workers: bool = True, worker_seeding: str = 'all', tf_preprocessing: bool = False, ): """ Args: dataset: The image dataset to load. input_size: Target input size (channels, height, width) tuple or size scalar. batch_size: Number of samples in a batch. is_training: Return training (random) transforms. no_aug: Disable augmentation for training (useful for debug). re_prob: Random erasing probability. re_mode: Random erasing fill mode. re_count: Number of random erasing regions. re_split: Control split of random erasing across batch size. scale: Random resize scale range (crop area, < 1.0 => zoom in). ratio: Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR). hflip: Horizontal flip probability. vflip: Vertical flip probability. color_jitter: Random color jitter component factors (brightness, contrast, saturation, hue). Scalar is applied as (scalar,) * 3 (no hue). color_jitter_prob: Apply color jitter with this probability if not None (for SimlCLR-like aug grayscale_prob: Probability of converting image to grayscale (for SimCLR-like aug). gaussian_blur_prob: Probability of applying gaussian blur (for SimCLR-like aug). auto_augment: Auto augment configuration string (see auto_augment.py). num_aug_repeats: Enable special sampler to repeat same augmentation across distributed GPUs. num_aug_splits: Enable mode where augmentations can be split across the batch. interpolation: Image interpolation mode. mean: Image normalization mean. std: Image normalization standard deviation. num_workers: Num worker processes per DataLoader. distributed: Enable dataloading for distributed training. crop_pct: Inference crop percentage (output size / resize size). crop_mode: Inference crop mode. One of ['squash', 'border', 'center']. Defaults to 'center' when None. crop_border_pixels: Inference crop border of specified # pixels around edge of original image. collate_fn: Override default collate_fn. pin_memory: Pin memory for device transfer. fp16: Deprecated argument for half-precision input dtype. Use img_dtype. img_dtype: Data type for input image. device: Device to transfer inputs and targets to. use_prefetcher: Use efficient pre-fetcher to load samples onto device. use_multi_epochs_loader: persistent_workers: Enable persistent worker processes. worker_seeding: Control worker random seeding at init. tf_preprocessing: Use TF 1.0 inference preprocessing for testing model ports. Returns: DataLoader """ re_num_splits = 0 if re_split: # apply RE to second half of batch if no aug split otherwise line up with aug split re_num_splits = num_aug_splits or 2 dataset.transform = create_transform( input_size, is_training=is_training, no_aug=no_aug, train_crop_mode=train_crop_mode, scale=scale, ratio=ratio, hflip=hflip, vflip=vflip, color_jitter=color_jitter, color_jitter_prob=color_jitter_prob, grayscale_prob=grayscale_prob, gaussian_blur_prob=gaussian_blur_prob, auto_augment=auto_augment, interpolation=interpolation, mean=mean, std=std, crop_pct=crop_pct, crop_mode=crop_mode, crop_border_pixels=crop_border_pixels, re_prob=re_prob, re_mode=re_mode, re_count=re_count, re_num_splits=re_num_splits, tf_preprocessing=tf_preprocessing, use_prefetcher=use_prefetcher, separate=num_aug_splits > 0, ) if isinstance(dataset, IterableImageDataset): # give Iterable datasets early knowledge of num_workers so that sample estimates # are correct before worker processes are launched dataset.set_loader_cfg(num_workers=num_workers) sampler = None if distributed and not isinstance(dataset, torch.utils.data.IterableDataset): if is_training: if num_aug_repeats: sampler = RepeatAugSampler(dataset, num_repeats=num_aug_repeats) else: sampler = torch.utils.data.distributed.DistributedSampler(dataset) else: # This will add extra duplicate entries to result in equal num # of samples per-process, will slightly alter validation results sampler = OrderedDistributedSampler(dataset) else: assert num_aug_repeats == 0, "RepeatAugment not currently supported in non-distributed or IterableDataset use" if collate_fn is None: collate_fn = fast_collate if use_prefetcher else torch.utils.data.dataloader.default_collate loader_class = torch.utils.data.DataLoader if use_multi_epochs_loader: loader_class = MultiEpochsDataLoader loader_args = dict( batch_size=batch_size, shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training, num_workers=num_workers, sampler=sampler, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=is_training, worker_init_fn=partial(_worker_init, worker_seeding=worker_seeding), persistent_workers=persistent_workers ) try: loader = loader_class(dataset, **loader_args) except TypeError as e: loader_args.pop('persistent_workers') # only in Pytorch 1.7+ loader = loader_class(dataset, **loader_args) if use_prefetcher: prefetch_re_prob = re_prob if is_training and not no_aug else 0. loader = PrefetchLoader( loader, mean=mean, std=std, channels=input_size[0], device=device, fp16=fp16, # deprecated, use img_dtype img_dtype=img_dtype, re_prob=prefetch_re_prob, re_mode=re_mode, re_count=re_count, re_num_splits=re_num_splits ) return loader class MultiEpochsDataLoader(torch.utils.data.DataLoader): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._DataLoader__initialized = False if self.batch_sampler is None: self.sampler = _RepeatSampler(self.sampler) else: self.batch_sampler = _RepeatSampler(self.batch_sampler) self._DataLoader__initialized = True self.iterator = super().__iter__() def __len__(self): return len(self.sampler) if self.batch_sampler is None else len(self.batch_sampler.sampler) def __iter__(self): for i in range(len(self)): yield next(self.iterator) class _RepeatSampler(object): """ Sampler that repeats forever. Args: sampler (Sampler) """ def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: yield from iter(self.sampler)
pytorch-image-models/timm/data/loader.py/0
{ "file_path": "pytorch-image-models/timm/data/loader.py", "repo_id": "pytorch-image-models", "token_count": 6793 }
171
""" Real labels evaluator for ImageNet Paper: `Are we done with ImageNet?` - https://arxiv.org/abs/2006.07159 Based on Numpy example at https://github.com/google-research/reassessed-imagenet Hacked together by / Copyright 2020 Ross Wightman """ import os import json import numpy as np import pkgutil class RealLabelsImagenet: def __init__(self, filenames, real_json=None, topk=(1, 5)): if real_json is not None: with open(real_json) as real_labels: real_labels = json.load(real_labels) else: real_labels = json.loads( pkgutil.get_data(__name__, os.path.join('_info', 'imagenet_real_labels.json')).decode('utf-8')) real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for i, labels in enumerate(real_labels)} self.real_labels = real_labels self.filenames = filenames assert len(self.filenames) == len(self.real_labels) self.topk = topk self.is_correct = {k: [] for k in topk} self.sample_idx = 0 def add_result(self, output): maxk = max(self.topk) _, pred_batch = output.topk(maxk, 1, True, True) pred_batch = pred_batch.cpu().numpy() for pred in pred_batch: filename = self.filenames[self.sample_idx] filename = os.path.basename(filename) if self.real_labels[filename]: for k in self.topk: self.is_correct[k].append( any([p in self.real_labels[filename] for p in pred[:k]])) self.sample_idx += 1 def get_accuracy(self, k=None): if k is None: return {k: float(np.mean(self.is_correct[k])) * 100 for k in self.topk} else: return float(np.mean(self.is_correct[k])) * 100
pytorch-image-models/timm/data/real_labels.py/0
{ "file_path": "pytorch-image-models/timm/data/real_labels.py", "repo_id": "pytorch-image-models", "token_count": 854 }
172
""" Model / Layer Config singleton state """ import os import warnings from typing import Any, Optional import torch __all__ = [ 'is_exportable', 'is_scriptable', 'is_no_jit', 'use_fused_attn', 'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config', 'set_fused_attn' ] # Set to True if prefer to have layers with no jit optimization (includes activations) _NO_JIT = False # Set to True if prefer to have activation layers with no jit optimization # NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying # the jit flags so far are activations. This will change as more layers are updated and/or added. _NO_ACTIVATION_JIT = False # Set to True if exporting a model with Same padding via ONNX _EXPORTABLE = False # Set to True if wanting to use torch.jit.script on a model _SCRIPTABLE = False # use torch.scaled_dot_product_attention where possible _HAS_FUSED_ATTN = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if 'TIMM_FUSED_ATTN' in os.environ: _USE_FUSED_ATTN = int(os.environ['TIMM_FUSED_ATTN']) else: _USE_FUSED_ATTN = 1 # 0 == off, 1 == on (for tested use), 2 == on (for experimental use) def is_no_jit(): return _NO_JIT class set_no_jit: def __init__(self, mode: bool) -> None: global _NO_JIT self.prev = _NO_JIT _NO_JIT = mode def __enter__(self) -> None: pass def __exit__(self, *args: Any) -> bool: global _NO_JIT _NO_JIT = self.prev return False def is_exportable(): return _EXPORTABLE class set_exportable: def __init__(self, mode: bool) -> None: global _EXPORTABLE self.prev = _EXPORTABLE _EXPORTABLE = mode def __enter__(self) -> None: pass def __exit__(self, *args: Any) -> bool: global _EXPORTABLE _EXPORTABLE = self.prev return False def is_scriptable(): return _SCRIPTABLE class set_scriptable: def __init__(self, mode: bool) -> None: global _SCRIPTABLE self.prev = _SCRIPTABLE _SCRIPTABLE = mode def __enter__(self) -> None: pass def __exit__(self, *args: Any) -> bool: global _SCRIPTABLE _SCRIPTABLE = self.prev return False class set_layer_config: """ Layer config context manager that allows setting all layer config flags at once. If a flag arg is None, it will not change the current value. """ def __init__( self, scriptable: Optional[bool] = None, exportable: Optional[bool] = None, no_jit: Optional[bool] = None, no_activation_jit: Optional[bool] = None): global _SCRIPTABLE global _EXPORTABLE global _NO_JIT global _NO_ACTIVATION_JIT self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT if scriptable is not None: _SCRIPTABLE = scriptable if exportable is not None: _EXPORTABLE = exportable if no_jit is not None: _NO_JIT = no_jit if no_activation_jit is not None: _NO_ACTIVATION_JIT = no_activation_jit def __enter__(self) -> None: pass def __exit__(self, *args: Any) -> bool: global _SCRIPTABLE global _EXPORTABLE global _NO_JIT global _NO_ACTIVATION_JIT _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev return False def use_fused_attn(experimental: bool = False) -> bool: # NOTE: ONNX export cannot handle F.scaled_dot_product_attention as of pytorch 2.0 if not _HAS_FUSED_ATTN or _EXPORTABLE: return False if experimental: return _USE_FUSED_ATTN > 1 return _USE_FUSED_ATTN > 0 def set_fused_attn(enable: bool = True, experimental: bool = False): global _USE_FUSED_ATTN if not _HAS_FUSED_ATTN: warnings.warn('This version of pytorch does not have F.scaled_dot_product_attention, fused_attn flag ignored.') return if experimental and enable: _USE_FUSED_ATTN = 2 elif enable: _USE_FUSED_ATTN = 1 else: _USE_FUSED_ATTN = 0
pytorch-image-models/timm/layers/config.py/0
{ "file_path": "pytorch-image-models/timm/layers/config.py", "repo_id": "pytorch-image-models", "token_count": 1787 }
173
from typing import Tuple import torch def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]: """generate N-D grid in dimension order. The ndgrid function is like meshgrid except that the order of the first two input arguments are switched. That is, the statement [X1,X2,X3] = ndgrid(x1,x2,x3) produces the same result as [X2,X1,X3] = meshgrid(x2,x1,x3) This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy'). """ try: return torch.meshgrid(*tensors, indexing='ij') except TypeError: # old PyTorch < 1.10 will follow this path as it does not have indexing arg, # the old behaviour of meshgrid was 'ij' return torch.meshgrid(*tensors) def meshgrid(*tensors) -> Tuple[torch.Tensor, ...]: """generate N-D grid in spatial dim order. The meshgrid function is similar to ndgrid except that the order of the first two input and output arguments is switched. That is, the statement [X,Y,Z] = meshgrid(x,y,z) produces the same result as [Y,X,Z] = ndgrid(y,x,z) Because of this, meshgrid is better suited to problems in two- or three-dimensional Cartesian space, while ndgrid is better suited to multidimensional problems that aren't spatially based. """ # NOTE: this will throw in PyTorch < 1.10 as meshgrid did not support indexing arg or have # capability of generating grid in xy order before then. return torch.meshgrid(*tensors, indexing='xy')
pytorch-image-models/timm/layers/grid.py/0
{ "file_path": "pytorch-image-models/timm/layers/grid.py", "repo_id": "pytorch-image-models", "token_count": 565 }
174
from typing import Optional, Tuple, Union import torch import torch.nn as nn class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 """ return_indices: torch.jit.Final[bool] def __init__( self, prob: float = 0.5, num_prefix_tokens: int = 1, ordered: bool = False, return_indices: bool = False, ): super().__init__() assert 0 <= prob < 1. self.prob = prob self.num_prefix_tokens = num_prefix_tokens # exclude CLS token (or other prefix tokens) self.ordered = ordered self.return_indices = return_indices def forward(self, x) -> Union[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]: if not self.training or self.prob == 0.: if self.return_indices: return x, None return x if self.num_prefix_tokens: prefix_tokens, x = x[:, :self.num_prefix_tokens], x[:, self.num_prefix_tokens:] else: prefix_tokens = None B = x.shape[0] L = x.shape[1] num_keep = max(1, int(L * (1. - self.prob))) keep_indices = torch.argsort(torch.randn(B, L, device=x.device), dim=-1)[:, :num_keep] if self.ordered: # NOTE does not need to maintain patch order in typical transformer use, # but possibly useful for debug / visualization keep_indices = keep_indices.sort(dim=-1)[0] x = x.gather(1, keep_indices.unsqueeze(-1).expand((-1, -1) + x.shape[2:])) if prefix_tokens is not None: x = torch.cat((prefix_tokens, x), dim=1) if self.return_indices: return x, keep_indices return x
pytorch-image-models/timm/layers/patch_dropout.py/0
{ "file_path": "pytorch-image-models/timm/layers/patch_dropout.py", "repo_id": "pytorch-image-models", "token_count": 842 }
175
import torch import math import warnings from torch.nn.init import _calculate_fan_in_and_fan_out def _trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are applied while sampling the normal with mean/std applied, therefore a, b args should be adjusted to match the range of mean, std args. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ with torch.no_grad(): return _trunc_normal_(tensor, mean, std, a, b) def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 and the result is subsquently scaled and shifted by the mean and std args. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ with torch.no_grad(): _trunc_normal_(tensor, 0, 1.0, a, b) tensor.mul_(std).add_(mean) return tensor def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'): fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) if mode == 'fan_in': denom = fan_in elif mode == 'fan_out': denom = fan_out elif mode == 'fan_avg': denom = (fan_in + fan_out) / 2 variance = scale / denom if distribution == "truncated_normal": # constant is stddev of standard normal truncated to (-2, 2) trunc_normal_tf_(tensor, std=math.sqrt(variance) / .87962566103423978) elif distribution == "normal": with torch.no_grad(): tensor.normal_(std=math.sqrt(variance)) elif distribution == "uniform": bound = math.sqrt(3 * variance) with torch.no_grad(): tensor.uniform_(-bound, bound) else: raise ValueError(f"invalid distribution {distribution}") def lecun_normal_(tensor): variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
pytorch-image-models/timm/layers/weight_init.py/0
{ "file_path": "pytorch-image-models/timm/layers/weight_init.py", "repo_id": "pytorch-image-models", "token_count": 1838 }
176
import copy from collections import deque, defaultdict from dataclasses import dataclass, field, replace, asdict from typing import Any, Deque, Dict, Tuple, Optional, Union __all__ = ['PretrainedCfg', 'filter_pretrained_cfg', 'DefaultCfg'] @dataclass class PretrainedCfg: """ """ # weight source locations url: Optional[Union[str, Tuple[str, str]]] = None # remote URL file: Optional[str] = None # local / shared filesystem path state_dict: Optional[Dict[str, Any]] = None # in-memory state dict hf_hub_id: Optional[str] = None # Hugging Face Hub model id ('organization/model') hf_hub_filename: Optional[str] = None # Hugging Face Hub filename (overrides default) source: Optional[str] = None # source of cfg / weight location used (url, file, hf-hub) architecture: Optional[str] = None # architecture variant can be set when not implicit tag: Optional[str] = None # pretrained tag of source custom_load: bool = False # use custom model specific model.load_pretrained() (ie for npz files) # input / data config input_size: Tuple[int, int, int] = (3, 224, 224) test_input_size: Optional[Tuple[int, int, int]] = None min_input_size: Optional[Tuple[int, int, int]] = None fixed_input_size: bool = False interpolation: str = 'bicubic' crop_pct: float = 0.875 test_crop_pct: Optional[float] = None crop_mode: str = 'center' mean: Tuple[float, ...] = (0.485, 0.456, 0.406) std: Tuple[float, ...] = (0.229, 0.224, 0.225) # head / classifier config and meta-data num_classes: int = 1000 label_offset: Optional[int] = None label_names: Optional[Tuple[str]] = None label_descriptions: Optional[Dict[str, str]] = None # model attributes that vary with above or required for pretrained adaptation pool_size: Optional[Tuple[int, ...]] = None test_pool_size: Optional[Tuple[int, ...]] = None first_conv: Optional[str] = None classifier: Optional[str] = None license: Optional[str] = None description: Optional[str] = None origin_url: Optional[str] = None paper_name: Optional[str] = None paper_ids: Optional[Union[str, Tuple[str]]] = None notes: Optional[Tuple[str]] = None @property def has_weights(self): return self.url or self.file or self.hf_hub_id def to_dict(self, remove_source=False, remove_null=True): return filter_pretrained_cfg( asdict(self), remove_source=remove_source, remove_null=remove_null ) def filter_pretrained_cfg(cfg, remove_source=False, remove_null=True): filtered_cfg = {} keep_null = {'pool_size', 'first_conv', 'classifier'} # always keep these keys, even if none for k, v in cfg.items(): if remove_source and k in {'url', 'file', 'hf_hub_id', 'hf_hub_id', 'hf_hub_filename', 'source'}: continue if remove_null and v is None and k not in keep_null: continue filtered_cfg[k] = v return filtered_cfg @dataclass class DefaultCfg: tags: Deque[str] = field(default_factory=deque) # priority queue of tags (first is default) cfgs: Dict[str, PretrainedCfg] = field(default_factory=dict) # pretrained cfgs by tag is_pretrained: bool = False # at least one of the configs has a pretrained source set @property def default(self): return self.cfgs[self.tags[0]] @property def default_with_tag(self): tag = self.tags[0] return tag, self.cfgs[tag]
pytorch-image-models/timm/models/_pretrained.py/0
{ "file_path": "pytorch-image-models/timm/models/_pretrained.py", "repo_id": "pytorch-image-models", "token_count": 1341 }
177
""" CrossViT Model @inproceedings{ chen2021crossvit, title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}}, author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda}, booktitle={International Conference on Computer Vision (ICCV)}, year={2021} } Paper link: https://arxiv.org/abs/2103.14899 Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408 Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright IBM All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Modifed from Timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ from functools import partial from typing import List from typing import Tuple import torch import torch.hub import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, to_2tuple, trunc_normal_, _assert from ._builder import build_model_with_cfg from ._features_fx import register_notrace_function from ._registry import register_model, generate_default_cfgs from .vision_transformer import Block __all__ = ['CrossVit'] # model_registry will add each entrypoint fn to this class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches if multi_conv: if patch_size[0] == 12: self.proj = nn.Sequential( nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1), ) elif patch_size[0] == 16: self.proj = nn.Sequential( nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1), ) else: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints _assert(H == self.img_size[0], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") _assert(W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).") x = self.proj(x).flatten(2).transpose(1, 2) return x class CrossAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = head_dim ** -0.5 self.wq = nn.Linear(dim, dim, bias=qkv_bias) self.wk = nn.Linear(dim, dim, bias=qkv_bias) self.wv = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape # B1C -> B1H(C/H) -> BH1(C/H) q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H) k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H) v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, 1, C) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C x = self.proj(x) x = self.proj_drop(x) return x class CrossAttentionBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = CrossAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x))) return x class MultiScaleBlock(nn.Module): def __init__( self, dim, patches, depth, num_heads, mlp_ratio, qkv_bias=False, proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() num_branches = len(dim) self.num_branches = num_branches # different branch could have different embedding size, the first one is the base self.blocks = nn.ModuleList() for d in range(num_branches): tmp = [] for i in range(depth[d]): tmp.append(Block( dim=dim[d], num_heads=num_heads[d], mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i], norm_layer=norm_layer, )) if len(tmp) != 0: self.blocks.append(nn.Sequential(*tmp)) if len(self.blocks) == 0: self.blocks = None self.projs = nn.ModuleList() for d in range(num_branches): if dim[d] == dim[(d + 1) % num_branches] and False: tmp = [nn.Identity()] else: tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])] self.projs.append(nn.Sequential(*tmp)) self.fusion = nn.ModuleList() for d in range(num_branches): d_ = (d + 1) % num_branches nh = num_heads[d_] if depth[-1] == 0: # backward capability: self.fusion.append( CrossAttentionBlock( dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer, )) else: tmp = [] for _ in range(depth[-1]): tmp.append(CrossAttentionBlock( dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer, )) self.fusion.append(nn.Sequential(*tmp)) self.revert_projs = nn.ModuleList() for d in range(num_branches): if dim[(d + 1) % num_branches] == dim[d] and False: tmp = [nn.Identity()] else: tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(), nn.Linear(dim[(d + 1) % num_branches], dim[d])] self.revert_projs.append(nn.Sequential(*tmp)) def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: outs_b = [] for i, block in enumerate(self.blocks): outs_b.append(block(x[i])) # only take the cls token out proj_cls_token = torch.jit.annotate(List[torch.Tensor], []) for i, proj in enumerate(self.projs): proj_cls_token.append(proj(outs_b[i][:, 0:1, ...])) # cross attention outs = [] for i, (fusion, revert_proj) in enumerate(zip(self.fusion, self.revert_projs)): tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1) tmp = fusion(tmp) reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...]) tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1) outs.append(tmp) return outs def _compute_num_patches(img_size, patches): return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)] @register_notrace_function def scale_image(x, ss: Tuple[int, int], crop_scale: bool = False): # annotations for torchscript """ Pulled out of CrossViT.forward_features to bury conditional logic in a leaf node for FX tracing. Args: x (Tensor): input image ss (tuple[int, int]): height and width to scale to crop_scale (bool): whether to crop instead of interpolate to achieve the desired scale. Defaults to False Returns: Tensor: the "scaled" image batch tensor """ H, W = x.shape[-2:] if H != ss[0] or W != ss[1]: if crop_scale and ss[0] <= H and ss[1] <= W: cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.)) x = x[:, :, cu:cu + ss[0], cl:cl + ss[1]] else: x = torch.nn.functional.interpolate(x, size=ss, mode='bicubic', align_corners=False) return x class CrossVit(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__( self, img_size=224, img_scale=(1.0, 1.0), patch_size=(8, 16), in_chans=3, num_classes=1000, embed_dim=(192, 384), depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)), num_heads=(6, 12), mlp_ratio=(2., 2., 4.), multi_conv=False, crop_scale=False, qkv_bias=True, drop_rate=0., pos_drop_rate=0., proj_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), global_pool='token', ): super().__init__() assert global_pool in ('token', 'avg') self.num_classes = num_classes self.global_pool = global_pool self.img_size = to_2tuple(img_size) img_scale = to_2tuple(img_scale) self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale] self.crop_scale = crop_scale # crop instead of interpolate for scale num_patches = _compute_num_patches(self.img_size_scaled, patch_size) self.num_branches = len(patch_size) self.embed_dim = embed_dim self.num_features = sum(embed_dim) self.patch_embed = nn.ModuleList() # hard-coded for torch jit script for i in range(self.num_branches): setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i]))) setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i]))) for im_s, p, d in zip(self.img_size_scaled, patch_size, embed_dim): self.patch_embed.append( PatchEmbed( img_size=im_s, patch_size=p, in_chans=in_chans, embed_dim=d, multi_conv=multi_conv, )) self.pos_drop = nn.Dropout(p=pos_drop_rate) total_depth = sum([sum(x[-2:]) for x in depth]) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] # stochastic depth decay rule dpr_ptr = 0 self.blocks = nn.ModuleList() for idx, block_cfg in enumerate(depth): curr_depth = max(block_cfg[:-1]) + block_cfg[-1] dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth] blk = MultiScaleBlock( embed_dim, num_patches, block_cfg, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr_, norm_layer=norm_layer, ) dpr_ptr += curr_depth self.blocks.append(blk) self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)]) self.head_drop = nn.Dropout(drop_rate) self.head = nn.ModuleList([ nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in range(self.num_branches)]) for i in range(self.num_branches): trunc_normal_(getattr(self, f'pos_embed_{i}'), std=.02) trunc_normal_(getattr(self, f'cls_token_{i}'), std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): out = set() for i in range(self.num_branches): out.add(f'cls_token_{i}') pe = getattr(self, f'pos_embed_{i}', None) if pe is not None and pe.requires_grad: out.add(f'pos_embed_{i}') return out @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('token', 'avg') self.global_pool = global_pool self.head = nn.ModuleList( [nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in range(self.num_branches)]) def forward_features(self, x) -> List[torch.Tensor]: B = x.shape[0] xs = [] for i, patch_embed in enumerate(self.patch_embed): x_ = x ss = self.img_size_scaled[i] x_ = scale_image(x_, ss, self.crop_scale) x_ = patch_embed(x_) cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script cls_tokens = cls_tokens.expand(B, -1, -1) x_ = torch.cat((cls_tokens, x_), dim=1) pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1 # hard-coded for torch jit script x_ = x_ + pos_embed x_ = self.pos_drop(x_) xs.append(x_) for i, blk in enumerate(self.blocks): xs = blk(xs) # NOTE: was before branch token section, move to here to assure all branch token are before layer norm xs = [norm(xs[i]) for i, norm in enumerate(self.norm)] return xs def forward_head(self, xs: List[torch.Tensor], pre_logits: bool = False) -> torch.Tensor: xs = [x[:, 1:].mean(dim=1) for x in xs] if self.global_pool == 'avg' else [x[:, 0] for x in xs] xs = [self.head_drop(x) for x in xs] if pre_logits or isinstance(self.head[0], nn.Identity): return torch.cat([x for x in xs], dim=1) return torch.mean(torch.stack([head(xs[i]) for i, head in enumerate(self.head)], dim=0), dim=0) def forward(self, x): xs = self.forward_features(x) x = self.forward_head(xs) return x def _create_crossvit(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') def pretrained_filter_fn(state_dict): new_state_dict = {} for key in state_dict.keys(): if 'pos_embed' in key or 'cls_token' in key: new_key = key.replace(".", "_") else: new_key = key new_state_dict[new_key] = state_dict[key] return new_state_dict return build_model_with_cfg( CrossVit, variant, pretrained, pretrained_filter_fn=pretrained_filter_fn, **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, 'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'), 'classifier': ('head.0', 'head.1'), **kwargs } default_cfgs = generate_default_cfgs({ 'crossvit_15_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_15_dagger_240.in1k': _cfg( hf_hub_id='timm/', first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), ), 'crossvit_15_dagger_408.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, ), 'crossvit_18_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_18_dagger_240.in1k': _cfg( hf_hub_id='timm/', first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), ), 'crossvit_18_dagger_408.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0, ), 'crossvit_9_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_9_dagger_240.in1k': _cfg( hf_hub_id='timm/', first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), ), 'crossvit_base_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_small_240.in1k': _cfg(hf_hub_id='timm/'), 'crossvit_tiny_240.in1k': _cfg(hf_hub_id='timm/'), }) @register_model def crossvit_tiny_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], num_heads=[3, 3], mlp_ratio=[4, 4, 1]) model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_small_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], num_heads=[6, 6], mlp_ratio=[4, 4, 1]) model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_base_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]], num_heads=[12, 12], mlp_ratio=[4, 4, 1]) model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_9_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], num_heads=[4, 4], mlp_ratio=[3, 3, 1]) model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_15_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], num_heads=[6, 6], mlp_ratio=[3, 3, 1]) model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_18_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs) model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_9_dagger_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]], num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True) model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_15_dagger_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_15_dagger_408(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]], num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True) model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_18_dagger_240(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def crossvit_18_dagger_408(pretrained=False, **kwargs) -> CrossVit: model_args = dict( img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]], num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True) model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **dict(model_args, **kwargs)) return model
pytorch-image-models/timm/models/crossvit.py/0
{ "file_path": "pytorch-image-models/timm/models/crossvit.py", "repo_id": "pytorch-image-models", "token_count": 12463 }
178
""" Poolformer from MetaFormer is Actually What You Need for Vision https://arxiv.org/abs/2111.11418 IdentityFormer, RandFormer, PoolFormerV2, ConvFormer, and CAFormer from MetaFormer Baselines for Vision https://arxiv.org/abs/2210.13452 All implemented models support feature extraction and variable input resolution. Original implementation by Weihao Yu et al., adapted for timm by Fredo Guan and Ross Wightman. Adapted from https://github.com/sail-sg/metaformer, original copyright below """ # Copyright 2022 Garena Online Private Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.jit import Final from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import trunc_normal_, DropPath, SelectAdaptivePool2d, GroupNorm1, LayerNorm, LayerNorm2d, Mlp, \ use_fused_attn from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['MetaFormer'] class Stem(nn.Module): """ Stem implemented by a layer of convolution. Conv2d params constant across all models. """ def __init__( self, in_channels, out_channels, norm_layer=None, ): super().__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=7, stride=4, padding=2 ) self.norm = norm_layer(out_channels) if norm_layer else nn.Identity() def forward(self, x): x = self.conv(x) x = self.norm(x) return x class Downsampling(nn.Module): """ Downsampling implemented by a layer of convolution. """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, norm_layer=None, ): super().__init__() self.norm = norm_layer(in_channels) if norm_layer else nn.Identity() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding ) def forward(self, x): x = self.norm(x) x = self.conv(x) return x class Scale(nn.Module): """ Scale vector by element multiplications. """ def __init__(self, dim, init_value=1.0, trainable=True, use_nchw=True): super().__init__() self.shape = (dim, 1, 1) if use_nchw else (dim,) self.scale = nn.Parameter(init_value * torch.ones(dim), requires_grad=trainable) def forward(self, x): return x * self.scale.view(self.shape) class SquaredReLU(nn.Module): """ Squared ReLU: https://arxiv.org/abs/2109.08668 """ def __init__(self, inplace=False): super().__init__() self.relu = nn.ReLU(inplace=inplace) def forward(self, x): return torch.square(self.relu(x)) class StarReLU(nn.Module): """ StarReLU: s * relu(x) ** 2 + b """ def __init__( self, scale_value=1.0, bias_value=0.0, scale_learnable=True, bias_learnable=True, mode=None, inplace=False ): super().__init__() self.inplace = inplace self.relu = nn.ReLU(inplace=inplace) self.scale = nn.Parameter(scale_value * torch.ones(1), requires_grad=scale_learnable) self.bias = nn.Parameter(bias_value * torch.ones(1), requires_grad=bias_learnable) def forward(self, x): return self.scale * self.relu(x) ** 2 + self.bias class Attention(nn.Module): """ Vanilla self-attention from Transformer: https://arxiv.org/abs/1706.03762. Modified from timm. """ fused_attn: Final[bool] def __init__( self, dim, head_dim=32, num_heads=None, qkv_bias=False, attn_drop=0., proj_drop=0., proj_bias=False, **kwargs ): super().__init__() self.head_dim = head_dim self.scale = head_dim ** -0.5 self.fused_attn = use_fused_attn() self.num_heads = num_heads if num_heads else dim // head_dim if self.num_heads == 0: self.num_heads = 1 self.attention_dim = self.num_heads * self.head_dim self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0., ) else: attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x # custom norm modules that disable the bias term, since the original models defs # used a custom norm with a weight term but no bias term. class GroupNorm1NoBias(GroupNorm1): def __init__(self, num_channels, **kwargs): super().__init__(num_channels, **kwargs) self.eps = kwargs.get('eps', 1e-6) self.bias = None class LayerNorm2dNoBias(LayerNorm2d): def __init__(self, num_channels, **kwargs): super().__init__(num_channels, **kwargs) self.eps = kwargs.get('eps', 1e-6) self.bias = None class LayerNormNoBias(nn.LayerNorm): def __init__(self, num_channels, **kwargs): super().__init__(num_channels, **kwargs) self.eps = kwargs.get('eps', 1e-6) self.bias = None class SepConv(nn.Module): r""" Inverted separable convolution from MobileNetV2: https://arxiv.org/abs/1801.04381. """ def __init__( self, dim, expansion_ratio=2, act1_layer=StarReLU, act2_layer=nn.Identity, bias=False, kernel_size=7, padding=3, **kwargs ): super().__init__() mid_channels = int(expansion_ratio * dim) self.pwconv1 = nn.Conv2d(dim, mid_channels, kernel_size=1, bias=bias) self.act1 = act1_layer() self.dwconv = nn.Conv2d( mid_channels, mid_channels, kernel_size=kernel_size, padding=padding, groups=mid_channels, bias=bias) # depthwise conv self.act2 = act2_layer() self.pwconv2 = nn.Conv2d(mid_channels, dim, kernel_size=1, bias=bias) def forward(self, x): x = self.pwconv1(x) x = self.act1(x) x = self.dwconv(x) x = self.act2(x) x = self.pwconv2(x) return x class Pooling(nn.Module): """ Implementation of pooling for PoolFormer: https://arxiv.org/abs/2111.11418 """ def __init__(self, pool_size=3, **kwargs): super().__init__() self.pool = nn.AvgPool2d( pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): y = self.pool(x) return y - x class MlpHead(nn.Module): """ MLP classification head """ def __init__( self, dim, num_classes=1000, mlp_ratio=4, act_layer=SquaredReLU, norm_layer=LayerNorm, drop_rate=0., bias=True ): super().__init__() hidden_features = int(mlp_ratio * dim) self.fc1 = nn.Linear(dim, hidden_features, bias=bias) self.act = act_layer() self.norm = norm_layer(hidden_features) self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias) self.head_drop = nn.Dropout(drop_rate) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.norm(x) x = self.head_drop(x) x = self.fc2(x) return x class MetaFormerBlock(nn.Module): """ Implementation of one MetaFormer block. """ def __init__( self, dim, token_mixer=Pooling, mlp_act=StarReLU, mlp_bias=False, norm_layer=LayerNorm2d, proj_drop=0., drop_path=0., use_nchw=True, layer_scale_init_value=None, res_scale_init_value=None, **kwargs ): super().__init__() ls_layer = partial(Scale, dim=dim, init_value=layer_scale_init_value, use_nchw=use_nchw) rs_layer = partial(Scale, dim=dim, init_value=res_scale_init_value, use_nchw=use_nchw) self.norm1 = norm_layer(dim) self.token_mixer = token_mixer(dim=dim, proj_drop=proj_drop, **kwargs) self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.layer_scale1 = ls_layer() if layer_scale_init_value is not None else nn.Identity() self.res_scale1 = rs_layer() if res_scale_init_value is not None else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp( dim, int(4 * dim), act_layer=mlp_act, bias=mlp_bias, drop=proj_drop, use_conv=use_nchw, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.layer_scale2 = ls_layer() if layer_scale_init_value is not None else nn.Identity() self.res_scale2 = rs_layer() if res_scale_init_value is not None else nn.Identity() def forward(self, x): x = self.res_scale1(x) + \ self.layer_scale1( self.drop_path1( self.token_mixer(self.norm1(x)) ) ) x = self.res_scale2(x) + \ self.layer_scale2( self.drop_path2( self.mlp(self.norm2(x)) ) ) return x class MetaFormerStage(nn.Module): def __init__( self, in_chs, out_chs, depth=2, token_mixer=nn.Identity, mlp_act=StarReLU, mlp_bias=False, downsample_norm=LayerNorm2d, norm_layer=LayerNorm2d, proj_drop=0., dp_rates=[0.] * 2, layer_scale_init_value=None, res_scale_init_value=None, **kwargs, ): super().__init__() self.grad_checkpointing = False self.use_nchw = not issubclass(token_mixer, Attention) # don't downsample if in_chs and out_chs are the same self.downsample = nn.Identity() if in_chs == out_chs else Downsampling( in_chs, out_chs, kernel_size=3, stride=2, padding=1, norm_layer=downsample_norm, ) self.blocks = nn.Sequential(*[MetaFormerBlock( dim=out_chs, token_mixer=token_mixer, mlp_act=mlp_act, mlp_bias=mlp_bias, norm_layer=norm_layer, proj_drop=proj_drop, drop_path=dp_rates[i], layer_scale_init_value=layer_scale_init_value, res_scale_init_value=res_scale_init_value, use_nchw=self.use_nchw, **kwargs, ) for i in range(depth)]) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable def forward(self, x: Tensor): x = self.downsample(x) B, C, H, W = x.shape if not self.use_nchw: x = x.reshape(B, C, -1).transpose(1, 2) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) if not self.use_nchw: x = x.transpose(1, 2).reshape(B, C, H, W) return x class MetaFormer(nn.Module): r""" MetaFormer A PyTorch impl of : `MetaFormer Baselines for Vision` - https://arxiv.org/abs/2210.13452 Args: in_chans (int): Number of input image channels. num_classes (int): Number of classes for classification head. global_pool: Pooling for classifier head. depths (list or tuple): Number of blocks at each stage. dims (list or tuple): Feature dimension at each stage. token_mixers (list, tuple or token_fcn): Token mixer for each stage. mlp_act: Activation layer for MLP. mlp_bias (boolean): Enable or disable mlp bias term. drop_path_rate (float): Stochastic depth rate. drop_rate (float): Dropout rate. layer_scale_init_values (list, tuple, float or None): Init value for Layer Scale. None means not use the layer scale. Form: https://arxiv.org/abs/2103.17239. res_scale_init_values (list, tuple, float or None): Init value for res Scale on residual connections. None means not use the res scale. From: https://arxiv.org/abs/2110.09456. downsample_norm (nn.Module): Norm layer used in stem and downsampling layers. norm_layers (list, tuple or norm_fcn): Norm layers for each stage. output_norm: Norm layer before classifier head. use_mlp_head: Use MLP classification head. """ def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', depths=(2, 2, 6, 2), dims=(64, 128, 320, 512), token_mixers=Pooling, mlp_act=StarReLU, mlp_bias=False, drop_path_rate=0., proj_drop_rate=0., drop_rate=0.0, layer_scale_init_values=None, res_scale_init_values=(None, None, 1.0, 1.0), downsample_norm=LayerNorm2dNoBias, norm_layers=LayerNorm2dNoBias, output_norm=LayerNorm2d, use_mlp_head=True, **kwargs, ): super().__init__() self.num_classes = num_classes self.num_features = dims[-1] self.drop_rate = drop_rate self.use_mlp_head = use_mlp_head self.num_stages = len(depths) # convert everything to lists if they aren't indexable if not isinstance(depths, (list, tuple)): depths = [depths] # it means the model has only one stage if not isinstance(dims, (list, tuple)): dims = [dims] if not isinstance(token_mixers, (list, tuple)): token_mixers = [token_mixers] * self.num_stages if not isinstance(norm_layers, (list, tuple)): norm_layers = [norm_layers] * self.num_stages if not isinstance(layer_scale_init_values, (list, tuple)): layer_scale_init_values = [layer_scale_init_values] * self.num_stages if not isinstance(res_scale_init_values, (list, tuple)): res_scale_init_values = [res_scale_init_values] * self.num_stages self.grad_checkpointing = False self.feature_info = [] self.stem = Stem( in_chans, dims[0], norm_layer=downsample_norm ) stages = [] prev_dim = dims[0] dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] for i in range(self.num_stages): stages += [MetaFormerStage( prev_dim, dims[i], depth=depths[i], token_mixer=token_mixers[i], mlp_act=mlp_act, mlp_bias=mlp_bias, proj_drop=proj_drop_rate, dp_rates=dp_rates[i], layer_scale_init_value=layer_scale_init_values[i], res_scale_init_value=res_scale_init_values[i], downsample_norm=downsample_norm, norm_layer=norm_layers[i], **kwargs, )] prev_dim = dims[i] self.feature_info += [dict(num_chs=dims[i], reduction=2, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) # if using MlpHead, dropout is handled by MlpHead if num_classes > 0: if self.use_mlp_head: final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) else: final = nn.Linear(self.num_features, num_classes) else: final = nn.Identity() self.head = nn.Sequential(OrderedDict([ ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)), ('norm', output_norm(self.num_features)), ('flatten', nn.Flatten(1) if global_pool else nn.Identity()), ('drop', nn.Dropout(drop_rate) if self.use_mlp_head else nn.Identity()), ('fc', final) ])) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable for stage in self.stages: stage.set_grad_checkpointing(enable=enable) @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes=0, global_pool=None): if global_pool is not None: self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity() if num_classes > 0: if self.use_mlp_head: final = MlpHead(self.num_features, num_classes, drop_rate=self.drop_rate) else: final = nn.Linear(self.num_features, num_classes) else: final = nn.Identity() self.head.fc = final def forward_head(self, x: Tensor, pre_logits: bool = False): # NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :( x = self.head.global_pool(x) x = self.head.norm(x) x = self.head.flatten(x) x = self.head.drop(x) return x if pre_logits else self.head.fc(x) def forward_features(self, x: Tensor): x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) return x def forward(self, x: Tensor): x = self.forward_features(x) x = self.forward_head(x) return x # this works but it's long and breaks backwards compatability with weights from the poolformer-only impl def checkpoint_filter_fn(state_dict, model): if 'stem.conv.weight' in state_dict: return state_dict import re out_dict = {} is_poolformerv1 = 'network.0.0.mlp.fc1.weight' in state_dict model_state_dict = model.state_dict() for k, v in state_dict.items(): if is_poolformerv1: k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k) k = k.replace('network.1', 'downsample_layers.1') k = k.replace('network.3', 'downsample_layers.2') k = k.replace('network.5', 'downsample_layers.3') k = k.replace('network.2', 'network.1') k = k.replace('network.4', 'network.2') k = k.replace('network.6', 'network.3') k = k.replace('network', 'stages') k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k) k = k.replace('downsample.proj', 'downsample.conv') k = k.replace('patch_embed.proj', 'patch_embed.conv') k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k) k = k.replace('stages.0.downsample', 'patch_embed') k = k.replace('patch_embed', 'stem') k = k.replace('post_norm', 'norm') k = k.replace('pre_norm', 'norm') k = re.sub(r'^head', 'head.fc', k) k = re.sub(r'^norm', 'head.norm', k) if v.shape != model_state_dict[k] and v.numel() == model_state_dict[k].numel(): v = v.reshape(model_state_dict[k].shape) out_dict[k] = v return out_dict def _create_metaformer(variant, pretrained=False, **kwargs): default_out_indices = tuple(i for i, _ in enumerate(kwargs.get('depths', (2, 2, 6, 2)))) out_indices = kwargs.pop('out_indices', default_out_indices) model = build_model_with_cfg( MetaFormer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 1.0, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head.fc', 'first_conv': 'stem.conv', **kwargs } default_cfgs = generate_default_cfgs({ 'poolformer_s12.sail_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9), 'poolformer_s24.sail_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9), 'poolformer_s36.sail_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9), 'poolformer_m36.sail_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95), 'poolformer_m48.sail_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.95), 'poolformerv2_s12.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_s24.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_s36.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_m36.sail_in1k': _cfg(hf_hub_id='timm/'), 'poolformerv2_m48.sail_in1k': _cfg(hf_hub_id='timm/'), 'convformer_s18.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s18.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s18.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s18.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s18.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'convformer_s36.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s36.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s36.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_s36.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_s36.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'convformer_m36.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_m36.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_m36.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_m36.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_m36.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'convformer_b36.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_b36.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_b36.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'convformer_b36.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'convformer_b36.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_s18.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s18.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s18.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s18.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s18.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_s36.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s36.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s36.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_s36.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_s36.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_m36.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_m36.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_m36.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_m36.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_m36.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), 'caformer_b36.sail_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_b36.sail_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_b36.sail_in22k_ft_in1k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2'), 'caformer_b36.sail_in22k_ft_in1k_384': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', input_size=(3, 384, 384), pool_size=(12, 12)), 'caformer_b36.sail_in22k': _cfg( hf_hub_id='timm/', classifier='head.fc.fc2', num_classes=21841), }) @register_model def poolformer_s12(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[2, 2, 6, 2], dims=[64, 128, 320, 512], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-5, res_scale_init_values=None, use_mlp_head=False, **kwargs) return _create_metaformer('poolformer_s12', pretrained=pretrained, **model_kwargs) @register_model def poolformer_s24(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[4, 4, 12, 4], dims=[64, 128, 320, 512], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-5, res_scale_init_values=None, use_mlp_head=False, **kwargs) return _create_metaformer('poolformer_s24', pretrained=pretrained, **model_kwargs) @register_model def poolformer_s36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[6, 6, 18, 6], dims=[64, 128, 320, 512], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-6, res_scale_init_values=None, use_mlp_head=False, **kwargs) return _create_metaformer('poolformer_s36', pretrained=pretrained, **model_kwargs) @register_model def poolformer_m36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[6, 6, 18, 6], dims=[96, 192, 384, 768], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-6, res_scale_init_values=None, use_mlp_head=False, **kwargs) return _create_metaformer('poolformer_m36', pretrained=pretrained, **model_kwargs) @register_model def poolformer_m48(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[8, 8, 24, 8], dims=[96, 192, 384, 768], downsample_norm=None, mlp_act=nn.GELU, mlp_bias=True, norm_layers=GroupNorm1, layer_scale_init_values=1e-6, res_scale_init_values=None, use_mlp_head=False, **kwargs) return _create_metaformer('poolformer_m48', pretrained=pretrained, **model_kwargs) @register_model def poolformerv2_s12(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[2, 2, 6, 2], dims=[64, 128, 320, 512], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) return _create_metaformer('poolformerv2_s12', pretrained=pretrained, **model_kwargs) @register_model def poolformerv2_s24(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[4, 4, 12, 4], dims=[64, 128, 320, 512], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) return _create_metaformer('poolformerv2_s24', pretrained=pretrained, **model_kwargs) @register_model def poolformerv2_s36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[6, 6, 18, 6], dims=[64, 128, 320, 512], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) return _create_metaformer('poolformerv2_s36', pretrained=pretrained, **model_kwargs) @register_model def poolformerv2_m36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[6, 6, 18, 6], dims=[96, 192, 384, 768], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) return _create_metaformer('poolformerv2_m36', pretrained=pretrained, **model_kwargs) @register_model def poolformerv2_m48(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[8, 8, 24, 8], dims=[96, 192, 384, 768], norm_layers=GroupNorm1NoBias, use_mlp_head=False, **kwargs) return _create_metaformer('poolformerv2_m48', pretrained=pretrained, **model_kwargs) @register_model def convformer_s18(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 3, 9, 3], dims=[64, 128, 320, 512], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) return _create_metaformer('convformer_s18', pretrained=pretrained, **model_kwargs) @register_model def convformer_s36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 12, 18, 3], dims=[64, 128, 320, 512], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) return _create_metaformer('convformer_s36', pretrained=pretrained, **model_kwargs) @register_model def convformer_m36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 12, 18, 3], dims=[96, 192, 384, 576], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) return _create_metaformer('convformer_m36', pretrained=pretrained, **model_kwargs) @register_model def convformer_b36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 12, 18, 3], dims=[128, 256, 512, 768], token_mixers=SepConv, norm_layers=LayerNorm2dNoBias, **kwargs) return _create_metaformer('convformer_b36', pretrained=pretrained, **model_kwargs) @register_model def caformer_s18(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 3, 9, 3], dims=[64, 128, 320, 512], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) return _create_metaformer('caformer_s18', pretrained=pretrained, **model_kwargs) @register_model def caformer_s36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 12, 18, 3], dims=[64, 128, 320, 512], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) return _create_metaformer('caformer_s36', pretrained=pretrained, **model_kwargs) @register_model def caformer_m36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 12, 18, 3], dims=[96, 192, 384, 576], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) return _create_metaformer('caformer_m36', pretrained=pretrained, **model_kwargs) @register_model def caformer_b36(pretrained=False, **kwargs) -> MetaFormer: model_kwargs = dict( depths=[3, 12, 18, 3], dims=[128, 256, 512, 768], token_mixers=[SepConv, SepConv, Attention, Attention], norm_layers=[LayerNorm2dNoBias] * 2 + [LayerNormNoBias] * 2, **kwargs) return _create_metaformer('caformer_b36', pretrained=pretrained, **model_kwargs)
pytorch-image-models/timm/models/metaformer.py/0
{ "file_path": "pytorch-image-models/timm/models/metaformer.py", "repo_id": "pytorch-image-models", "token_count": 17521 }
179
""" ResNeSt Models Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang Modified for torchscript compat, and consistency with timm by Ross Wightman """ from torch import nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SplitAttn from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs from .resnet import ResNet class ResNestBottleneck(nn.Module): """ResNet Bottleneck """ # pylint: disable=unused-argument expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, radix=1, cardinality=1, base_width=64, avd=False, avd_first=False, is_first=False, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None, ): super(ResNestBottleneck, self).__init__() assert reduce_first == 1 # not supported assert attn_layer is None # not supported assert aa_layer is None # TODO not yet supported assert drop_path is None # TODO not yet supported group_width = int(planes * (base_width / 64.)) * cardinality first_dilation = first_dilation or dilation if avd and (stride > 1 or is_first): avd_stride = stride stride = 1 else: avd_stride = 0 self.radix = radix self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) self.bn1 = norm_layer(group_width) self.act1 = act_layer(inplace=True) self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None if self.radix >= 1: self.conv2 = SplitAttn( group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_layer=drop_block) self.bn2 = nn.Identity() self.drop_block = nn.Identity() self.act2 = nn.Identity() else: self.conv2 = nn.Conv2d( group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, dilation=first_dilation, groups=cardinality, bias=False) self.bn2 = norm_layer(group_width) self.drop_block = drop_block() if drop_block is not None else nn.Identity() self.act2 = act_layer(inplace=True) self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and not avd_first else None self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) self.bn3 = norm_layer(planes*4) self.act3 = act_layer(inplace=True) self.downsample = downsample def zero_init_last(self): if getattr(self.bn3, 'weight', None) is not None: nn.init.zeros_(self.bn3.weight) def forward(self, x): shortcut = x out = self.conv1(x) out = self.bn1(out) out = self.act1(out) if self.avd_first is not None: out = self.avd_first(out) out = self.conv2(out) out = self.bn2(out) out = self.drop_block(out) out = self.act2(out) if self.avd_last is not None: out = self.avd_last(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: shortcut = self.downsample(x) out += shortcut out = self.act3(out) return out def _create_resnest(variant, pretrained=False, **kwargs): return build_model_with_cfg( ResNet, variant, pretrained, **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv1.0', 'classifier': 'fc', **kwargs } default_cfgs = generate_default_cfgs({ 'resnest14d.gluon_in1k': _cfg(hf_hub_id='timm/'), 'resnest26d.gluon_in1k': _cfg(hf_hub_id='timm/'), 'resnest50d.in1k': _cfg(hf_hub_id='timm/'), 'resnest101e.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), 'resnest200e.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'), 'resnest269e.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'), 'resnest50d_4s2x40d.in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic'), 'resnest50d_1s4x24d.in1k': _cfg( hf_hub_id='timm/', interpolation='bicubic') }) @register_model def resnest14d(pretrained=False, **kwargs) -> ResNet: """ ResNeSt-14d model. Weights ported from GluonCV. """ model_kwargs = dict( block=ResNestBottleneck, layers=[1, 1, 1, 1], stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) return _create_resnest('resnest14d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest26d(pretrained=False, **kwargs) -> ResNet: """ ResNeSt-26d model. Weights ported from GluonCV. """ model_kwargs = dict( block=ResNestBottleneck, layers=[2, 2, 2, 2], stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) return _create_resnest('resnest26d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest50d(pretrained=False, **kwargs) -> ResNet: """ ResNeSt-50d model. Matches paper ResNeSt-50 model, https://arxiv.org/abs/2004.08955 Since this codebase supports all possible variations, 'd' for deep stem, stem_width 32, avg in downsample. """ model_kwargs = dict( block=ResNestBottleneck, layers=[3, 4, 6, 3], stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) return _create_resnest('resnest50d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest101e(pretrained=False, **kwargs) -> ResNet: """ ResNeSt-101e model. Matches paper ResNeSt-101 model, https://arxiv.org/abs/2004.08955 Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. """ model_kwargs = dict( block=ResNestBottleneck, layers=[3, 4, 23, 3], stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) return _create_resnest('resnest101e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest200e(pretrained=False, **kwargs) -> ResNet: """ ResNeSt-200e model. Matches paper ResNeSt-200 model, https://arxiv.org/abs/2004.08955 Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. """ model_kwargs = dict( block=ResNestBottleneck, layers=[3, 24, 36, 3], stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) return _create_resnest('resnest200e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest269e(pretrained=False, **kwargs) -> ResNet: """ ResNeSt-269e model. Matches paper ResNeSt-269 model, https://arxiv.org/abs/2004.08955 Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. """ model_kwargs = dict( block=ResNestBottleneck, layers=[3, 30, 48, 8], stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, block_args=dict(radix=2, avd=True, avd_first=False)) return _create_resnest('resnest269e', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest50d_4s2x40d(pretrained=False, **kwargs) -> ResNet: """ResNeSt-50 4s2x40d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md """ model_kwargs = dict( block=ResNestBottleneck, layers=[3, 4, 6, 3], stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2, block_args=dict(radix=4, avd=True, avd_first=True)) return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **dict(model_kwargs, **kwargs)) @register_model def resnest50d_1s4x24d(pretrained=False, **kwargs) -> ResNet: """ResNeSt-50 1s4x24d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md """ model_kwargs = dict( block=ResNestBottleneck, layers=[3, 4, 6, 3], stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, block_args=dict(radix=1, avd=True, avd_first=True)) return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **dict(model_kwargs, **kwargs))
pytorch-image-models/timm/models/resnest.py/0
{ "file_path": "pytorch-image-models/timm/models/resnest.py", "repo_id": "pytorch-image-models", "token_count": 4439 }
180
""" Visformer Paper: Visformer: The Vision-friendly Transformer - https://arxiv.org/abs/2104.12533 From original at https://github.com/danczs/Visformer Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import to_2tuple, trunc_normal_, DropPath, PatchEmbed, LayerNorm2d, create_classifier, use_fused_attn from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['Visformer'] class SpatialMlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., group=8, spatial_conv=False, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features drop_probs = to_2tuple(drop) self.in_features = in_features self.out_features = out_features self.spatial_conv = spatial_conv if self.spatial_conv: if group < 2: # net setting hidden_features = in_features * 5 // 6 else: hidden_features = in_features * 2 self.hidden_features = hidden_features self.group = group self.conv1 = nn.Conv2d(in_features, hidden_features, 1, stride=1, padding=0, bias=False) self.act1 = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) if self.spatial_conv: self.conv2 = nn.Conv2d( hidden_features, hidden_features, 3, stride=1, padding=1, groups=self.group, bias=False) self.act2 = act_layer() else: self.conv2 = None self.act2 = None self.conv3 = nn.Conv2d(hidden_features, out_features, 1, stride=1, padding=0, bias=False) self.drop3 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.conv1(x) x = self.act1(x) x = self.drop1(x) if self.conv2 is not None: x = self.conv2(x) x = self.act2(x) x = self.conv3(x) x = self.drop3(x) return x class Attention(nn.Module): fused_attn: torch.jit.Final[bool] def __init__(self, dim, num_heads=8, head_dim_ratio=1., attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.num_heads = num_heads head_dim = round(dim // num_heads * head_dim_ratio) self.head_dim = head_dim self.scale = head_dim ** -0.5 self.fused_attn = use_fused_attn(experimental=True) self.qkv = nn.Conv2d(dim, head_dim * num_heads * 3, 1, stride=1, padding=0, bias=False) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Conv2d(self.head_dim * self.num_heads, dim, 1, stride=1, padding=0, bias=False) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, C, H, W = x.shape x = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, -1).permute(1, 0, 2, 4, 3) q, k, v = x.unbind(0) if self.fused_attn: x = torch.nn.functional.scaled_dot_product_attention( q.contiguous(), k.contiguous(), v.contiguous(), dropout_p=self.attn_drop.p if self.training else 0., ) else: attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.permute(0, 1, 3, 2).reshape(B, -1, H, W) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, head_dim_ratio=1., mlp_ratio=4., proj_drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=LayerNorm2d, group=8, attn_disabled=False, spatial_conv=False, ): super().__init__() self.spatial_conv = spatial_conv self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() if attn_disabled: self.norm1 = None self.attn = None else: self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, head_dim_ratio=head_dim_ratio, attn_drop=attn_drop, proj_drop=proj_drop, ) self.norm2 = norm_layer(dim) self.mlp = SpatialMlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, group=group, spatial_conv=spatial_conv, ) def forward(self, x): if self.attn is not None: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Visformer(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., drop_rate=0., pos_drop_rate=0., proj_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=LayerNorm2d, attn_stage='111', use_pos_embed=True, spatial_conv='111', vit_stem=False, group=8, global_pool='avg', conv_init=False, embed_norm=None, ): super().__init__() img_size = to_2tuple(img_size) self.num_classes = num_classes self.embed_dim = embed_dim self.init_channels = init_channels self.img_size = img_size self.vit_stem = vit_stem self.conv_init = conv_init if isinstance(depth, (list, tuple)): self.stage_num1, self.stage_num2, self.stage_num3 = depth depth = sum(depth) else: self.stage_num1 = self.stage_num3 = depth // 3 self.stage_num2 = depth - self.stage_num1 - self.stage_num3 self.use_pos_embed = use_pos_embed self.grad_checkpointing = False dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stage 1 if self.vit_stem: self.stem = None self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=embed_norm, flatten=False, ) img_size = [x // patch_size for x in img_size] else: if self.init_channels is None: self.stem = None self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=patch_size // 2, in_chans=in_chans, embed_dim=embed_dim // 2, norm_layer=embed_norm, flatten=False, ) img_size = [x // (patch_size // 2) for x in img_size] else: self.stem = nn.Sequential( nn.Conv2d(in_chans, self.init_channels, 7, stride=2, padding=3, bias=False), nn.BatchNorm2d(self.init_channels), nn.ReLU(inplace=True) ) img_size = [x // 2 for x in img_size] self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=patch_size // 4, in_chans=self.init_channels, embed_dim=embed_dim // 2, norm_layer=embed_norm, flatten=False, ) img_size = [x // (patch_size // 4) for x in img_size] if self.use_pos_embed: if self.vit_stem: self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim, *img_size)) else: self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim//2, *img_size)) self.pos_drop = nn.Dropout(p=pos_drop_rate) else: self.pos_embed1 = None self.stage1 = nn.Sequential(*[ Block( dim=embed_dim//2, num_heads=num_heads, head_dim_ratio=0.5, mlp_ratio=mlp_ratio, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, group=group, attn_disabled=(attn_stage[0] == '0'), spatial_conv=(spatial_conv[0] == '1'), ) for i in range(self.stage_num1) ]) # stage2 if not self.vit_stem: self.patch_embed2 = PatchEmbed( img_size=img_size, patch_size=patch_size // 8, in_chans=embed_dim // 2, embed_dim=embed_dim, norm_layer=embed_norm, flatten=False, ) img_size = [x // (patch_size // 8) for x in img_size] if self.use_pos_embed: self.pos_embed2 = nn.Parameter(torch.zeros(1, embed_dim, *img_size)) else: self.pos_embed2 = None else: self.patch_embed2 = None self.stage2 = nn.Sequential(*[ Block( dim=embed_dim, num_heads=num_heads, head_dim_ratio=1.0, mlp_ratio=mlp_ratio, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, group=group, attn_disabled=(attn_stage[1] == '0'), spatial_conv=(spatial_conv[1] == '1'), ) for i in range(self.stage_num1, self.stage_num1+self.stage_num2) ]) # stage 3 if not self.vit_stem: self.patch_embed3 = PatchEmbed( img_size=img_size, patch_size=patch_size // 8, in_chans=embed_dim, embed_dim=embed_dim * 2, norm_layer=embed_norm, flatten=False, ) img_size = [x // (patch_size // 8) for x in img_size] if self.use_pos_embed: self.pos_embed3 = nn.Parameter(torch.zeros(1, embed_dim*2, *img_size)) else: self.pos_embed3 = None else: self.patch_embed3 = None self.stage3 = nn.Sequential(*[ Block( dim=embed_dim * 2, num_heads=num_heads, head_dim_ratio=1.0, mlp_ratio=mlp_ratio, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, group=group, attn_disabled=(attn_stage[2] == '0'), spatial_conv=(spatial_conv[2] == '1'), ) for i in range(self.stage_num1+self.stage_num2, depth) ]) self.num_features = embed_dim if self.vit_stem else embed_dim * 2 self.norm = norm_layer(self.num_features) # head global_pool, head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) self.global_pool = global_pool self.head_drop = nn.Dropout(drop_rate) self.head = head # weights init if self.use_pos_embed: trunc_normal_(self.pos_embed1, std=0.02) if not self.vit_stem: trunc_normal_(self.pos_embed2, std=0.02) trunc_normal_(self.pos_embed3, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): if self.conv_init: nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') else: trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0.) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^patch_embed1|pos_embed1|stem', # stem and embed blocks=[ (r'^stage(\d+)\.(\d+)' if coarse else r'^stage(\d+)\.(\d+)', None), (r'^(?:patch_embed|pos_embed)(\d+)', (0,)), (r'^norm', (99999,)) ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) def forward_features(self, x): if self.stem is not None: x = self.stem(x) # stage 1 x = self.patch_embed1(x) if self.pos_embed1 is not None: x = self.pos_drop(x + self.pos_embed1) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stage1, x) else: x = self.stage1(x) # stage 2 if self.patch_embed2 is not None: x = self.patch_embed2(x) if self.pos_embed2 is not None: x = self.pos_drop(x + self.pos_embed2) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stage2, x) else: x = self.stage2(x) # stage3 if self.patch_embed3 is not None: x = self.patch_embed3(x) if self.pos_embed3 is not None: x = self.pos_drop(x + self.pos_embed3) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stage3, x) else: x = self.stage3(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_visformer(variant, pretrained=False, default_cfg=None, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg(Visformer, variant, pretrained, **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ 'visformer_tiny.in1k': _cfg(hf_hub_id='timm/'), 'visformer_small.in1k': _cfg(hf_hub_id='timm/'), }) @register_model def visformer_tiny(pretrained=False, **kwargs) -> Visformer: model_cfg = dict( init_channels=16, embed_dim=192, depth=(7, 4, 4), num_heads=3, mlp_ratio=4., group=8, attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True, embed_norm=nn.BatchNorm2d) model = _create_visformer('visformer_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model @register_model def visformer_small(pretrained=False, **kwargs) -> Visformer: model_cfg = dict( init_channels=32, embed_dim=384, depth=(7, 4, 4), num_heads=6, mlp_ratio=4., group=8, attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True, embed_norm=nn.BatchNorm2d) model = _create_visformer('visformer_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) return model # @register_model # def visformer_net1(pretrained=False, **kwargs): # model = Visformer( # init_channels=None, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111', # spatial_conv='000', vit_stem=True, conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model # # # @register_model # def visformer_net2(pretrained=False, **kwargs): # model = Visformer( # init_channels=32, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111', # spatial_conv='000', vit_stem=False, conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model # # # @register_model # def visformer_net3(pretrained=False, **kwargs): # model = Visformer( # init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111', # spatial_conv='000', vit_stem=False, conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model # # # @register_model # def visformer_net4(pretrained=False, **kwargs): # model = Visformer( # init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111', # spatial_conv='000', vit_stem=False, conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model # # # @register_model # def visformer_net5(pretrained=False, **kwargs): # model = Visformer( # init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111', # spatial_conv='111', vit_stem=False, conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model # # # @register_model # def visformer_net6(pretrained=False, **kwargs): # model = Visformer( # init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111', # pos_embed=False, spatial_conv='111', conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model # # # @register_model # def visformer_net7(pretrained=False, **kwargs): # model = Visformer( # init_channels=32, embed_dim=384, depth=(6, 7, 7), num_heads=6, group=1, attn_stage='000', # pos_embed=False, spatial_conv='111', conv_init=True, **kwargs) # model.default_cfg = _cfg() # return model
pytorch-image-models/timm/models/visformer.py/0
{ "file_path": "pytorch-image-models/timm/models/visformer.py", "repo_id": "pytorch-image-models", "token_count": 10132 }
181
""" Adan Optimizer Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. https://arxiv.org/abs/2208.06677 Implementation adapted from https://github.com/sail-sg/Adan """ import math import torch from torch.optim import Optimizer class Adan(Optimizer): """ Implements a pytorch variant of Adan Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. https://arxiv.org/abs/2208.06677 Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float, flot], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.98, 0.92, 0.99)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): decoupled weight decay (L2 penalty) (default: 0) no_prox (bool): how to perform the decoupled weight decay (default: False) """ def __init__( self, params, lr=1e-3, betas=(0.98, 0.92, 0.99), eps=1e-8, weight_decay=0.0, no_prox=False, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= betas[2] < 1.0: raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, no_prox=no_prox) super(Adan, self).__init__(params, defaults) @torch.no_grad() def restart_opt(self): for group in self.param_groups: group['step'] = 0 for p in group['params']: if p.requires_grad: state = self.state[p] # State initialization # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) # Exponential moving average of gradient difference state['exp_avg_diff'] = torch.zeros_like(p) @torch.no_grad() def step(self, closure=None): """ Performs a single optimization step. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: beta1, beta2, beta3 = group['betas'] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 bias_correction1 = 1.0 - beta1 ** group['step'] bias_correction2 = 1.0 - beta2 ** group['step'] bias_correction3 = 1.0 - beta3 ** group['step'] for p in group['params']: if p.grad is None: continue grad = p.grad state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_diff'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) state['pre_grad'] = grad.clone() exp_avg, exp_avg_sq, exp_avg_diff = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq'] grad_diff = grad - state['pre_grad'] exp_avg.lerp_(grad, 1. - beta1) # m_t exp_avg_diff.lerp_(grad_diff, 1. - beta2) # diff_t (v) update = grad + beta2 * grad_diff exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1. - beta3) # n_t denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction3)).add_(group['eps']) update = (exp_avg / bias_correction1 + beta2 * exp_avg_diff / bias_correction2).div_(denom) if group['no_prox']: p.data.mul_(1 - group['lr'] * group['weight_decay']) p.add_(update, alpha=-group['lr']) else: p.add_(update, alpha=-group['lr']) p.data.div_(1 + group['lr'] * group['weight_decay']) state['pre_grad'].copy_(grad) return loss
pytorch-image-models/timm/optim/adan.py/0
{ "file_path": "pytorch-image-models/timm/optim/adan.py", "repo_id": "pytorch-image-models", "token_count": 2501 }
182
""" MultiStep LR Scheduler Basic multi step LR schedule with warmup, noise. """ import torch import bisect from timm.scheduler.scheduler import Scheduler from typing import List class MultiStepLRScheduler(Scheduler): """ """ def __init__( self, optimizer: torch.optim.Optimizer, decay_t: List[int], decay_rate: float = 1., warmup_t=0, warmup_lr_init=0, warmup_prefix=True, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize, ) self.decay_t = decay_t self.decay_rate = decay_rate self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.warmup_prefix = warmup_prefix if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def get_curr_decay_steps(self, t): # find where in the array t goes, # assumes self.decay_t is sorted return bisect.bisect_right(self.decay_t, t + 1) def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: if self.warmup_prefix: t = t - self.warmup_t lrs = [v * (self.decay_rate ** self.get_curr_decay_steps(t)) for v in self.base_values] return lrs
pytorch-image-models/timm/scheduler/multistep_lr.py/0
{ "file_path": "pytorch-image-models/timm/scheduler/multistep_lr.py", "repo_id": "pytorch-image-models", "token_count": 1029 }
183
""" Eval metrics and related Hacked together by / Copyright 2020 Ross Wightman """ class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = min(max(topk), output.size()[1]) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk]
pytorch-image-models/timm/utils/metrics.py/0
{ "file_path": "pytorch-image-models/timm/utils/metrics.py", "repo_id": "pytorch-image-models", "token_count": 374 }
184
use std::time::{Duration, Instant}; use text_generation_client::{ Batch, CachedBatch, ClientError, NextTokenChooserParameters, Request, ShardedClient, StoppingCriteriaParameters, }; use tokenizers::{Tokenizer, TruncationDirection}; use tokio::sync::{broadcast, mpsc}; const LOREM_IPSUM: &str = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum."; #[derive(Debug, Clone)] pub(crate) struct Prefill { pub(crate) latency: Duration, pub(crate) throughput: f64, } #[derive(Debug, Clone)] pub(crate) struct Decode { pub(crate) latency: Duration, pub(crate) token_latency: Duration, pub(crate) throughput: f64, } #[derive(Debug)] pub(crate) enum Message { Warmup, Prefill(Prefill), Decode(Decode), EndRun, EndBatch, } /// Benchmarking task #[allow(clippy::too_many_arguments)] pub(crate) async fn generation_task( tokenizer: Tokenizer, batch_size: Vec<u32>, sequence_length: u32, decode_length: u32, top_n_tokens: Option<u32>, n_runs: usize, warmups: usize, parameters: NextTokenChooserParameters, client: ShardedClient, run_sender: mpsc::Sender<Result<Message, ClientError>>, mut shutdown_receiver: broadcast::Receiver<()>, _shutdown_guard_sender: mpsc::Sender<()>, ) { // End task if a message is received on shutdown_receiver // _shutdown_guard_sender will be dropped once the task is finished tokio::select! { res = generate_runs(tokenizer, batch_size, sequence_length, decode_length, top_n_tokens, n_runs, warmups, parameters, client, run_sender.clone()) => { if let Err(err) = res { run_sender.send(Err(err)).await.unwrap_or(()); } }, _ = shutdown_receiver.recv() => {} } } /// Benchmark prefill/decode #[allow(clippy::too_many_arguments)] async fn generate_runs( tokenizer: Tokenizer, batch_size: Vec<u32>, sequence_length: u32, decode_length: u32, top_n_tokens: Option<u32>, n_runs: usize, warmups: usize, parameters: NextTokenChooserParameters, mut client: ShardedClient, run_sender: mpsc::Sender<Result<Message, ClientError>>, ) -> Result<(), ClientError> { // Create a dummy sequence let sequence = create_sequence(sequence_length, tokenizer); for b in batch_size { // Warmups on batch size for _ in 0..warmups { let (_, decode_batch) = prefill( sequence.clone(), sequence_length, b, decode_length, parameters.clone(), top_n_tokens, &mut client, ) .await?; let _ = decode(decode_batch, &mut client).await?; // Send warmup message run_sender.send(Ok(Message::Warmup)).await.unwrap_or(()); } for _ in 0..n_runs { let (prefill, decode_batch) = prefill( sequence.clone(), sequence_length, b, decode_length, parameters.clone(), top_n_tokens, &mut client, ) .await?; // Send prefill message run_sender .send(Ok(Message::Prefill(prefill))) .await .unwrap_or(()); let decode = decode(decode_batch, &mut client).await?; // Send decode message run_sender .send(Ok(Message::Decode(decode))) .await .unwrap_or(()); // Send run ended message run_sender.send(Ok(Message::EndRun)).await.unwrap_or(()); } // Batch ended run_sender.send(Ok(Message::EndBatch)).await.unwrap_or(()); } Ok(()) } // Run a prefill step async fn prefill( sequence: String, sequence_length: u32, batch_size: u32, decode_length: u32, parameters: NextTokenChooserParameters, top_n_tokens: Option<u32>, client: &mut ShardedClient, ) -> Result<(Prefill, CachedBatch), ClientError> { // Create requests let requests = (0..batch_size) .map(|id| Request { id: id.into(), prefill_logprobs: false, inputs: sequence.clone(), truncate: sequence_length, parameters: Some(parameters.clone()), stopping_parameters: Some(StoppingCriteriaParameters { max_new_tokens: decode_length, stop_sequences: vec![], ignore_eos_token: true, // Will not stop even if a eos token is generated }), top_n_tokens: top_n_tokens.unwrap_or(0), }) .collect(); let batch = Batch { id: 0, requests, size: batch_size, max_tokens: batch_size * (sequence_length + decode_length), }; // Run prefill let start_time = Instant::now(); let (_, decode_batch, _) = client.prefill(batch.clone()).await?; // Get latency let latency = start_time.elapsed(); // Compute throughput from latency and batch size let throughput = batch_size as f64 / latency.as_secs_f64(); // Decode batch cannot be empty let decode_batch = decode_batch.expect("decode_batch is None. This is a bug."); let step = Prefill { latency, throughput, }; Ok((step, decode_batch)) } /// Run a full decode async fn decode(batch: CachedBatch, client: &mut ShardedClient) -> Result<Decode, ClientError> { let mut decode_length = 0; let batch_size = batch.size; let start_time = Instant::now(); // Full decode over decode length let mut next_batch = Some(batch); while let Some(batch) = next_batch { let result = client.decode(vec![batch]).await?; next_batch = result.1; decode_length += 1; } // Get latency let latency = start_time.elapsed(); let token_latency = latency / decode_length; // Compute throughput from latency, batch size and decode length let throughput = (batch_size * decode_length) as f64 / latency.as_secs_f64(); let step = Decode { latency, token_latency, throughput, }; Ok(step) } /// Create a dummy sequence of the correct length fn create_sequence(sequence_length: u32, tokenizer: Tokenizer) -> String { let lorem_ipsum_length = tokenizer.encode(LOREM_IPSUM, true).unwrap().len(); // Repeat lorem ipsum to cover sequence length let string_sequence = LOREM_IPSUM.repeat((0..sequence_length).step_by(lorem_ipsum_length).len()); // Encode sequence let mut encoding = tokenizer.encode(string_sequence, true).unwrap(); // Truncate to sequence_length encoding.truncate(sequence_length as usize, 0, TruncationDirection::Left); // Decode tokenizer.decode(encoding.get_ids(), false).unwrap() }
text-generation-inference/benchmark/src/generation.rs/0
{ "file_path": "text-generation-inference/benchmark/src/generation.rs", "repo_id": "text-generation-inference", "token_count": 3201 }
185
import json import requests from aiohttp import ClientSession, ClientTimeout from pydantic import ValidationError from typing import Dict, Optional, List, AsyncIterator, Iterator from text_generation.types import ( StreamResponse, Response, Request, Parameters, ) from text_generation.errors import parse_error class Client: """Client to make calls to a text-generation-inference instance Example: ```python >>> from text_generation import Client >>> client = Client("https://api-inference.huggingface.co/models/bigscience/bloomz") >>> client.generate("Why is the sky blue?").generated_text ' Rayleigh scattering' >>> result = "" >>> for response in client.generate_stream("Why is the sky blue?"): >>> if not response.token.special: >>> result += response.token.text >>> result ' Rayleigh scattering' ``` """ def __init__( self, base_url: str, headers: Optional[Dict[str, str]] = None, cookies: Optional[Dict[str, str]] = None, timeout: int = 10, ): """ Args: base_url (`str`): text-generation-inference instance base url headers (`Optional[Dict[str, str]]`): Additional headers cookies (`Optional[Dict[str, str]]`): Cookies to include in the requests timeout (`int`): Timeout in seconds """ self.base_url = base_url self.headers = headers self.cookies = cookies self.timeout = timeout def generate( self, prompt: str, do_sample: bool = False, max_new_tokens: int = 20, best_of: Optional[int] = None, repetition_penalty: Optional[float] = None, return_full_text: bool = False, seed: Optional[int] = None, stop_sequences: Optional[List[str]] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, truncate: Optional[int] = None, typical_p: Optional[float] = None, watermark: bool = False, decoder_input_details: bool = False, top_n_tokens: Optional[int] = None, ) -> Response: """ Given a prompt, generate the following text Args: prompt (`str`): Input text do_sample (`bool`): Activate logits sampling max_new_tokens (`int`): Maximum number of generated tokens best_of (`int`): Generate best_of sequences and return the one if the highest token logprobs repetition_penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. return_full_text (`bool`): Whether to prepend the prompt to the generated text seed (`int`): Random sampling seed stop_sequences (`List[str]`): Stop generating tokens if a member of `stop_sequences` is generated temperature (`float`): The value used to module the logits distribution. top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. truncate (`int`): Truncate inputs tokens to the given size typical_p (`float`): Typical Decoding mass See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information watermark (`bool`): Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) decoder_input_details (`bool`): Return the decoder input token logprobs and ids top_n_tokens (`int`): Return the `n` most likely tokens at each step Returns: Response: generated response """ # Validate parameters parameters = Parameters( best_of=best_of, details=True, do_sample=do_sample, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, return_full_text=return_full_text, seed=seed, stop=stop_sequences if stop_sequences is not None else [], temperature=temperature, top_k=top_k, top_p=top_p, truncate=truncate, typical_p=typical_p, watermark=watermark, decoder_input_details=decoder_input_details, top_n_tokens=top_n_tokens, ) request = Request(inputs=prompt, stream=False, parameters=parameters) resp = requests.post( self.base_url, json=request.dict(), headers=self.headers, cookies=self.cookies, timeout=self.timeout, ) payload = resp.json() if resp.status_code != 200: raise parse_error(resp.status_code, payload) return Response(**payload[0]) def generate_stream( self, prompt: str, do_sample: bool = False, max_new_tokens: int = 20, repetition_penalty: Optional[float] = None, return_full_text: bool = False, seed: Optional[int] = None, stop_sequences: Optional[List[str]] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, truncate: Optional[int] = None, typical_p: Optional[float] = None, watermark: bool = False, top_n_tokens: Optional[int] = None, ) -> Iterator[StreamResponse]: """ Given a prompt, generate the following stream of tokens Args: prompt (`str`): Input text do_sample (`bool`): Activate logits sampling max_new_tokens (`int`): Maximum number of generated tokens repetition_penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. return_full_text (`bool`): Whether to prepend the prompt to the generated text seed (`int`): Random sampling seed stop_sequences (`List[str]`): Stop generating tokens if a member of `stop_sequences` is generated temperature (`float`): The value used to module the logits distribution. top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. truncate (`int`): Truncate inputs tokens to the given size typical_p (`float`): Typical Decoding mass See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information watermark (`bool`): Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) top_n_tokens (`int`): Return the `n` most likely tokens at each step Returns: Iterator[StreamResponse]: stream of generated tokens """ # Validate parameters parameters = Parameters( best_of=None, details=True, decoder_input_details=False, do_sample=do_sample, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, return_full_text=return_full_text, seed=seed, stop=stop_sequences if stop_sequences is not None else [], temperature=temperature, top_k=top_k, top_p=top_p, truncate=truncate, typical_p=typical_p, watermark=watermark, top_n_tokens=top_n_tokens, ) request = Request(inputs=prompt, stream=True, parameters=parameters) resp = requests.post( self.base_url, json=request.dict(), headers=self.headers, cookies=self.cookies, timeout=self.timeout, stream=True, ) if resp.status_code != 200: raise parse_error(resp.status_code, resp.json()) # Parse ServerSentEvents for byte_payload in resp.iter_lines(): # Skip line if byte_payload == b"\n": continue payload = byte_payload.decode("utf-8") # Event data if payload.startswith("data:"): # Decode payload json_payload = json.loads(payload.lstrip("data:").rstrip("/n")) # Parse payload try: response = StreamResponse(**json_payload) except ValidationError: # If we failed to parse the payload, then it is an error payload raise parse_error(resp.status_code, json_payload) yield response class AsyncClient: """Asynchronous Client to make calls to a text-generation-inference instance Example: ```python >>> from text_generation import AsyncClient >>> client = AsyncClient("https://api-inference.huggingface.co/models/bigscience/bloomz") >>> response = await client.generate("Why is the sky blue?") >>> response.generated_text ' Rayleigh scattering' >>> result = "" >>> async for response in client.generate_stream("Why is the sky blue?"): >>> if not response.token.special: >>> result += response.token.text >>> result ' Rayleigh scattering' ``` """ def __init__( self, base_url: str, headers: Optional[Dict[str, str]] = None, cookies: Optional[Dict[str, str]] = None, timeout: int = 10, ): """ Args: base_url (`str`): text-generation-inference instance base url headers (`Optional[Dict[str, str]]`): Additional headers cookies (`Optional[Dict[str, str]]`): Cookies to include in the requests timeout (`int`): Timeout in seconds """ self.base_url = base_url self.headers = headers self.cookies = cookies self.timeout = ClientTimeout(timeout * 60) async def generate( self, prompt: str, do_sample: bool = False, max_new_tokens: int = 20, best_of: Optional[int] = None, repetition_penalty: Optional[float] = None, return_full_text: bool = False, seed: Optional[int] = None, stop_sequences: Optional[List[str]] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, truncate: Optional[int] = None, typical_p: Optional[float] = None, watermark: bool = False, decoder_input_details: bool = False, top_n_tokens: Optional[int] = None, ) -> Response: """ Given a prompt, generate the following text asynchronously Args: prompt (`str`): Input text do_sample (`bool`): Activate logits sampling max_new_tokens (`int`): Maximum number of generated tokens best_of (`int`): Generate best_of sequences and return the one if the highest token logprobs repetition_penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. return_full_text (`bool`): Whether to prepend the prompt to the generated text seed (`int`): Random sampling seed stop_sequences (`List[str]`): Stop generating tokens if a member of `stop_sequences` is generated temperature (`float`): The value used to module the logits distribution. top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. truncate (`int`): Truncate inputs tokens to the given size typical_p (`float`): Typical Decoding mass See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information watermark (`bool`): Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) decoder_input_details (`bool`): Return the decoder input token logprobs and ids top_n_tokens (`int`): Return the `n` most likely tokens at each step Returns: Response: generated response """ # Validate parameters parameters = Parameters( best_of=best_of, details=True, decoder_input_details=decoder_input_details, do_sample=do_sample, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, return_full_text=return_full_text, seed=seed, stop=stop_sequences if stop_sequences is not None else [], temperature=temperature, top_k=top_k, top_p=top_p, truncate=truncate, typical_p=typical_p, watermark=watermark, top_n_tokens=top_n_tokens, ) request = Request(inputs=prompt, stream=False, parameters=parameters) async with ClientSession( headers=self.headers, cookies=self.cookies, timeout=self.timeout ) as session: async with session.post(self.base_url, json=request.dict()) as resp: payload = await resp.json() if resp.status != 200: raise parse_error(resp.status, payload) return Response(**payload[0]) async def generate_stream( self, prompt: str, do_sample: bool = False, max_new_tokens: int = 20, repetition_penalty: Optional[float] = None, return_full_text: bool = False, seed: Optional[int] = None, stop_sequences: Optional[List[str]] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, truncate: Optional[int] = None, typical_p: Optional[float] = None, watermark: bool = False, top_n_tokens: Optional[int] = None, ) -> AsyncIterator[StreamResponse]: """ Given a prompt, generate the following stream of tokens asynchronously Args: prompt (`str`): Input text do_sample (`bool`): Activate logits sampling max_new_tokens (`int`): Maximum number of generated tokens repetition_penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. return_full_text (`bool`): Whether to prepend the prompt to the generated text seed (`int`): Random sampling seed stop_sequences (`List[str]`): Stop generating tokens if a member of `stop_sequences` is generated temperature (`float`): The value used to module the logits distribution. top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. truncate (`int`): Truncate inputs tokens to the given size typical_p (`float`): Typical Decoding mass See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information watermark (`bool`): Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) top_n_tokens (`int`): Return the `n` most likely tokens at each step Returns: AsyncIterator[StreamResponse]: stream of generated tokens """ # Validate parameters parameters = Parameters( best_of=None, details=True, decoder_input_details=False, do_sample=do_sample, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, return_full_text=return_full_text, seed=seed, stop=stop_sequences if stop_sequences is not None else [], temperature=temperature, top_k=top_k, top_p=top_p, truncate=truncate, typical_p=typical_p, watermark=watermark, top_n_tokens=top_n_tokens, ) request = Request(inputs=prompt, stream=True, parameters=parameters) async with ClientSession( headers=self.headers, cookies=self.cookies, timeout=self.timeout ) as session: async with session.post(self.base_url, json=request.dict()) as resp: if resp.status != 200: raise parse_error(resp.status, await resp.json()) # Parse ServerSentEvents async for byte_payload in resp.content: # Skip line if byte_payload == b"\n": continue payload = byte_payload.decode("utf-8") # Event data if payload.startswith("data:"): # Decode payload json_payload = json.loads(payload.lstrip("data:").rstrip("/n")) # Parse payload try: response = StreamResponse(**json_payload) except ValidationError: # If we failed to parse the payload, then it is an error payload raise parse_error(resp.status, json_payload) yield response
text-generation-inference/clients/python/text_generation/client.py/0
{ "file_path": "text-generation-inference/clients/python/text_generation/client.py", "repo_id": "text-generation-inference", "token_count": 9331 }
186
# Safetensors Safetensors is a model serialization format for deep learning models. It is [faster](https://huggingface.co/docs/safetensors/speed) and safer compared to other serialization formats like pickle (which is used under the hood in many deep learning libraries). TGI depends on safetensors format mainly to enable [tensor parallelism sharding](./tensor_parallelism). For a given model repository during serving, TGI looks for safetensors weights. If there are no safetensors weights, TGI converts the PyTorch weights to safetensors format. You can learn more about safetensors by reading the [safetensors documentation](https://huggingface.co/docs/safetensors/index).
text-generation-inference/docs/source/conceptual/safetensors.md/0
{ "file_path": "text-generation-inference/docs/source/conceptual/safetensors.md", "repo_id": "text-generation-inference", "token_count": 185 }
187
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 1, "logprob": null, "text": "<s>" }, { "id": 3735, "logprob": -12.9140625, "text": "Test" }, { "id": 2159, "logprob": -10.7578125, "text": "request" } ], "seed": 0, "tokens": [ { "id": 28747, "logprob": 0.0, "special": false, "text": ":" }, { "id": 3169, "logprob": -0.1307373, "special": false, "text": " Let" }, { "id": 332, "logprob": -2.3359375, "special": false, "text": " u" }, { "id": 347, "logprob": 0.0, "special": false, "text": " be" }, { "id": 325, "logprob": -1.0234375, "special": false, "text": " (" }, { "id": 28734, "logprob": -2.0292969, "special": false, "text": "0" }, { "id": 648, "logprob": -1.0439453, "special": false, "text": " +" }, { "id": 28705, "logprob": -0.24499512, "special": false, "text": " " }, { "id": 28770, "logprob": -0.5073242, "special": false, "text": "3" }, { "id": 387, "logprob": -1.5507812, "special": false, "text": " -" } ], "top_tokens": null }, "generated_text": "Test request: Let u be (0 + 3 -" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_mistral/test_flash_mistral_all_params.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_mistral/test_flash_mistral_all_params.json", "repo_id": "text-generation-inference", "token_count": 1041 }
188
[ { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 589, "logprob": null, "text": "def" }, { "id": 3226, "logprob": -9.0234375, "text": " ge" }, { "id": 21017, "logprob": -9.0859375, "text": "ometric" }, { "id": 81, "logprob": -0.25927734, "text": "_" }, { "id": 6009, "logprob": -2.25, "text": "mean" }, { "id": 26, "logprob": -0.30126953, "text": "(" }, { "id": 62, "logprob": -5.7539062, "text": "L" }, { "id": 44, "logprob": -3.0878906, "text": ":" }, { "id": 1682, "logprob": -0.6845703, "text": " List" }, { "id": 77, "logprob": -0.3918457, "text": "[" }, { "id": 1808, "logprob": -0.8798828, "text": "float" }, { "id": 10794, "logprob": -2.4980469, "text": "]):" } ], "seed": null, "tokens": [ { "id": 284, "logprob": -1.1533203, "special": false, "text": "\n " }, { "id": 442, "logprob": -0.91796875, "special": false, "text": " return" }, { "id": 3632, "logprob": -1.3291016, "special": false, "text": " sum" }, { "id": 26, "logprob": -0.08062744, "special": false, "text": "(" }, { "id": 62, "logprob": -0.097717285, "special": false, "text": "L" }, { "id": 27, "logprob": -0.29003906, "special": false, "text": ")" }, { "id": 517, "logprob": -0.34958984, "special": false, "text": " /" }, { "id": 2069, "logprob": -0.03829956, "special": false, "text": " len" }, { "id": 26, "logprob": -0.0011987686, "special": false, "text": "(" }, { "id": 62, "logprob": -0.00050878525, "special": false, "text": "L" } ] }, "generated_text": "\n return sum(L) / len(L" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 589, "logprob": null, "text": "def" }, { "id": 3226, "logprob": -9.0234375, "text": " ge" }, { "id": 21017, "logprob": -9.0859375, "text": "ometric" }, { "id": 81, "logprob": -0.25878906, "text": "_" }, { "id": 6009, "logprob": -2.2109375, "text": "mean" }, { "id": 26, "logprob": -0.30371094, "text": "(" }, { "id": 62, "logprob": -5.6054688, "text": "L" }, { "id": 44, "logprob": -3.0722656, "text": ":" }, { "id": 1682, "logprob": -0.6879883, "text": " List" }, { "id": 77, "logprob": -0.38500977, "text": "[" }, { "id": 1808, "logprob": -0.984375, "text": "float" }, { "id": 10794, "logprob": -2.5351562, "text": "]):" } ], "seed": null, "tokens": [ { "id": 284, "logprob": -1.1738281, "special": false, "text": "\n " }, { "id": 442, "logprob": -0.9584961, "special": false, "text": " return" }, { "id": 3632, "logprob": -1.4169922, "special": false, "text": " sum" }, { "id": 26, "logprob": -0.085876465, "special": false, "text": "(" }, { "id": 62, "logprob": -0.0982666, "special": false, "text": "L" }, { "id": 27, "logprob": -0.3022461, "special": false, "text": ")" }, { "id": 517, "logprob": -0.40504883, "special": false, "text": " /" }, { "id": 2069, "logprob": -0.041656494, "special": false, "text": " len" }, { "id": 26, "logprob": -0.0011844635, "special": false, "text": "(" }, { "id": 62, "logprob": -0.0005264282, "special": false, "text": "L" } ] }, "generated_text": "\n return sum(L) / len(L" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 589, "logprob": null, "text": "def" }, { "id": 3226, "logprob": -9.0234375, "text": " ge" }, { "id": 21017, "logprob": -9.0859375, "text": "ometric" }, { "id": 81, "logprob": -0.25927734, "text": "_" }, { "id": 6009, "logprob": -2.25, "text": "mean" }, { "id": 26, "logprob": -0.30126953, "text": "(" }, { "id": 62, "logprob": -5.7539062, "text": "L" }, { "id": 44, "logprob": -3.0878906, "text": ":" }, { "id": 1682, "logprob": -0.6845703, "text": " List" }, { "id": 77, "logprob": -0.3918457, "text": "[" }, { "id": 1808, "logprob": -0.8798828, "text": "float" }, { "id": 10794, "logprob": -2.4980469, "text": "]):" } ], "seed": null, "tokens": [ { "id": 284, "logprob": -1.1533203, "special": false, "text": "\n " }, { "id": 442, "logprob": -0.9165039, "special": false, "text": " return" }, { "id": 3632, "logprob": -1.328125, "special": false, "text": " sum" }, { "id": 26, "logprob": -0.07946777, "special": false, "text": "(" }, { "id": 62, "logprob": -0.09820557, "special": false, "text": "L" }, { "id": 27, "logprob": -0.28930664, "special": false, "text": ")" }, { "id": 517, "logprob": -0.34592773, "special": false, "text": " /" }, { "id": 2069, "logprob": -0.038330078, "special": false, "text": " len" }, { "id": 26, "logprob": -0.0011940002, "special": false, "text": "(" }, { "id": 62, "logprob": -0.00050878525, "special": false, "text": "L" } ] }, "generated_text": "\n return sum(L) / len(L" }, { "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [ { "id": 589, "logprob": null, "text": "def" }, { "id": 3226, "logprob": -9.0234375, "text": " ge" }, { "id": 21017, "logprob": -9.0859375, "text": "ometric" }, { "id": 81, "logprob": -0.25927734, "text": "_" }, { "id": 6009, "logprob": -2.25, "text": "mean" }, { "id": 26, "logprob": -0.30126953, "text": "(" }, { "id": 62, "logprob": -5.7539062, "text": "L" }, { "id": 44, "logprob": -3.0878906, "text": ":" }, { "id": 1682, "logprob": -0.6845703, "text": " List" }, { "id": 77, "logprob": -0.3918457, "text": "[" }, { "id": 1808, "logprob": -0.8798828, "text": "float" }, { "id": 10794, "logprob": -2.4980469, "text": "]):" } ], "seed": null, "tokens": [ { "id": 284, "logprob": -1.1533203, "special": false, "text": "\n " }, { "id": 442, "logprob": -0.91259766, "special": false, "text": " return" }, { "id": 3632, "logprob": -1.3251953, "special": false, "text": " sum" }, { "id": 26, "logprob": -0.08062744, "special": false, "text": "(" }, { "id": 62, "logprob": -0.09906006, "special": false, "text": "L" }, { "id": 27, "logprob": -0.28979492, "special": false, "text": ")" }, { "id": 517, "logprob": -0.35958984, "special": false, "text": " /" }, { "id": 2069, "logprob": -0.038604736, "special": false, "text": " len" }, { "id": 26, "logprob": -0.0011901855, "special": false, "text": "(" }, { "id": 62, "logprob": -0.0005078316, "special": false, "text": "L" } ] }, "generated_text": "\n return sum(L) / len(L" } ]
text-generation-inference/integration-tests/models/__snapshots__/test_flash_starcoder_gptq/test_flash_starcoder_gptq_load.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_starcoder_gptq/test_flash_starcoder_gptq_load.json", "repo_id": "text-generation-inference", "token_count": 7433 }
189
import pytest @pytest.fixture(scope="module") def flash_llama_awq_handle(launcher): with launcher( "abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq", num_shard=1, quantize="awq", ) as handle: yield handle @pytest.fixture(scope="module") async def flash_llama_awq(flash_llama_awq_handle): await flash_llama_awq_handle.health(300) return flash_llama_awq_handle.client @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_awq(flash_llama_awq, response_snapshot): response = await flash_llama_awq.generate( "What is Deep Learning?", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert ( response.generated_text == "\nWhat is the difference between Deep Learning and Machine" ) assert response == response_snapshot @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_awq_all_params(flash_llama_awq, response_snapshot): response = await flash_llama_awq.generate( "What is Deep Learning?", max_new_tokens=10, repetition_penalty=1.2, return_full_text=True, temperature=0.5, top_p=0.9, top_k=10, truncate=5, typical_p=0.9, watermark=True, decoder_input_details=True, seed=0, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.asyncio @pytest.mark.private async def test_flash_llama_awq_load(flash_llama_awq, generate_load, response_snapshot): responses = await generate_load( flash_llama_awq, "What is Deep Learning?", max_new_tokens=10, n=4 ) assert len(responses) == 4 assert all( [ r.generated_text == "\nWhat is the difference between Deep Learning and Machine" for r in responses ] ) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_awq.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_awq.py", "repo_id": "text-generation-inference", "token_count": 866 }
190
import pytest @pytest.fixture(scope="module") def neox_handle(launcher): with launcher( "stabilityai/stablelm-tuned-alpha-3b", num_shard=1, use_flash_attention=False ) as handle: yield handle @pytest.fixture(scope="module") async def neox(neox_handle): await neox_handle.health(300) return neox_handle.client @pytest.mark.skip @pytest.mark.asyncio async def test_neox(neox, response_snapshot): response = await neox.generate( "<|USER|>What's your mood today?<|ASSISTANT|>", max_new_tokens=10, decoder_input_details=True, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.skip @pytest.mark.asyncio async def test_neox_load(neox, generate_load, response_snapshot): responses = await generate_load( neox, "<|USER|>What's your mood today?<|ASSISTANT|>", max_new_tokens=10, n=4, ) generated_texts = [r.generated_text for r in responses] assert len(generated_texts) == 4 assert generated_texts, all( [text == generated_texts[0] for text in generated_texts] ) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_neox.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_neox.py", "repo_id": "text-generation-inference", "token_count": 499 }
191
[package] name = "text-generation-router" description = "Text Generation Webserver" build = "build.rs" version.workspace = true edition.workspace = true authors.workspace = true homepage.workspace = true [lib] path = "src/lib.rs" [[bin]] name = "text-generation-router" path = "src/main.rs" [dependencies] async-stream = "0.3.5" axum = { version = "0.6.20", features = ["json"] } axum-tracing-opentelemetry = "0.14.1" text-generation-client = { path = "client" } clap = { version = "4.4.5", features = ["derive", "env"] } futures = "0.3.28" hf-hub = { version = "0.3.0", features = ["tokio"] } metrics = "0.21.1" metrics-exporter-prometheus = { version = "0.12.1", features = [] } nohash-hasher = "0.2.0" opentelemetry = { version = "0.20.0", features = ["rt-tokio"] } opentelemetry-otlp = "0.13.0" rand = "0.8.5" reqwest = { version = "0.11.20", features = [] } serde = "1.0.188" serde_json = "1.0.107" thiserror = "1.0.48" tokenizers = { version = "0.15.1", features = ["http"] } tokio = { version = "1.32.0", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync"] } tokio-stream = "0.1.14" tower-http = { version = "0.4.4", features = ["cors"] } tracing = "0.1.37" tracing-opentelemetry = "0.21.0" tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } utoipa = { version = "3.5.0", features = ["axum_extras"] } utoipa-swagger-ui = { version = "3.1.5", features = ["axum"] } ngrok = { version = "0.13.1", features = ["axum"], optional = true } init-tracing-opentelemetry = { version = "0.14.1", features = ["opentelemetry-otlp"] } minijinja = "1.0.10" futures-util = "0.3.30" [build-dependencies] vergen = { version = "8.2.5", features = ["build", "git", "gitcl"] } [features] default = ["ngrok"] ngrok = ["dep:ngrok"]
text-generation-inference/router/Cargo.toml/0
{ "file_path": "text-generation-inference/router/Cargo.toml", "repo_id": "text-generation-inference", "token_count": 739 }
192
/// HTTP Server logic use crate::health::Health; use crate::infer::{InferError, InferResponse, InferStreamResponse}; use crate::validation::ValidationError; use crate::{ BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta, ChatRequest, CompatGenerateRequest, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, HubTokenizerConfig, Infer, Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Validation, }; use axum::extract::Extension; use axum::http::{HeaderMap, Method, StatusCode}; use axum::response::sse::{Event, KeepAlive, Sse}; use axum::response::{IntoResponse, Response}; use axum::routing::{get, post}; use axum::{http, Json, Router}; use axum_tracing_opentelemetry::middleware::OtelAxumLayer; use futures::stream::StreamExt; use futures::Stream; use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle}; use std::convert::Infallible; use std::net::SocketAddr; use std::sync::atomic::AtomicBool; use std::sync::Arc; use text_generation_client::{ShardInfo, ShardedClient}; use tokenizers::Tokenizer; use tokio::signal; use tokio::time::Instant; use tower_http::cors::{AllowOrigin, CorsLayer}; use tracing::{info_span, instrument, Instrument}; use utoipa::OpenApi; use utoipa_swagger_ui::SwaggerUi; /// Generate tokens if `stream == false` or a stream of token if `stream == true` #[utoipa::path( post, tag = "Text Generation Inference", path = "/", request_body = CompatGenerateRequest, responses( (status = 200, description = "Generated Text", content( ("application/json" = GenerateResponse), ("text/event-stream" = StreamResponse), )), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument(skip(infer, req))] async fn compat_generate( Extension(default_return_full_text): Extension<bool>, infer: Extension<Infer>, compute_type: Extension<ComputeType>, Json(mut req): Json<CompatGenerateRequest>, ) -> Result<Response, (StatusCode, Json<ErrorResponse>)> { // default return_full_text given the pipeline_tag if req.parameters.return_full_text.is_none() { req.parameters.return_full_text = Some(default_return_full_text) } // switch on stream if req.stream { Ok(generate_stream(infer, compute_type, Json(req.into())) .await .into_response()) } else { let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?; // wrap generation inside a Vec to match api-inference Ok((headers, Json(vec![generation])).into_response()) } } /// Text Generation Inference endpoint info #[utoipa::path( get, tag = "Text Generation Inference", path = "/info", responses((status = 200, description = "Served model info", body = Info)) )] #[instrument] async fn get_model_info(info: Extension<Info>) -> Json<Info> { Json(info.0) } #[utoipa::path( get, tag = "Text Generation Inference", path = "/health", responses( (status = 200, description = "Everything is working fine"), (status = 503, description = "Text generation inference is down", body = ErrorResponse, example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})), ) )] #[instrument(skip(health))] /// Health check method async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> { match health.check().await { true => Ok(()), false => Err(( StatusCode::SERVICE_UNAVAILABLE, Json(ErrorResponse { error: "unhealthy".to_string(), error_type: "healthcheck".to_string(), }), )), } } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/generate", request_body = GenerateRequest, responses( (status = 200, description = "Generated Text", body = GenerateResponse), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn generate( infer: Extension<Infer>, Extension(ComputeType(compute_type)): Extension<ComputeType>, Json(req): Json<GenerateRequest>, ) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> { let span = tracing::Span::current(); let start_time = Instant::now(); metrics::increment_counter!("tgi_request_count"); tracing::debug!("Input: {}", req.inputs); let compute_characters = req.inputs.chars().count(); let mut add_prompt = None; if req.parameters.return_full_text.unwrap_or(false) { add_prompt = Some(req.inputs.clone()); } let details: bool = req.parameters.details || req.parameters.decoder_input_details; // Inference let (response, best_of_responses) = match req.parameters.best_of { Some(best_of) if best_of > 1 => { let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?; (response, Some(best_of_responses)) } _ => (infer.generate(req).await?, None), }; // Token details let input_length = response._input_length; let details = match details { true => { // convert best_of_responses let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| { responses .into_iter() .map(|response: InferResponse| { // Add prompt if return_full_text let mut output_text = response.generated_text.text; if let Some(prompt) = &add_prompt { output_text = prompt.clone() + &output_text; } BestOfSequence { generated_text: output_text, finish_reason: FinishReason::from( response.generated_text.finish_reason, ), generated_tokens: response.generated_text.generated_tokens, prefill: response.prefill, tokens: response.tokens, top_tokens: response.top_tokens, seed: response.generated_text.seed, } }) .collect() }); Some(Details { finish_reason: FinishReason::from(response.generated_text.finish_reason), generated_tokens: response.generated_text.generated_tokens, prefill: response.prefill, tokens: response.tokens, seed: response.generated_text.seed, best_of_sequences, top_tokens: response.top_tokens, }) } false => None, }; // Timings let total_time = start_time.elapsed(); let validation_time = response.queued - start_time; let queue_time = response.start - response.queued; let inference_time = Instant::now() - response.start; let time_per_token = inference_time / response.generated_text.generated_tokens; // Tracing metadata span.record("total_time", format!("{total_time:?}")); span.record("validation_time", format!("{validation_time:?}")); span.record("queue_time", format!("{queue_time:?}")); span.record("inference_time", format!("{inference_time:?}")); span.record("time_per_token", format!("{time_per_token:?}")); span.record("seed", format!("{:?}", response.generated_text.seed)); // Headers let mut headers = HeaderMap::new(); headers.insert("x-compute-type", compute_type.parse().unwrap()); headers.insert( "x-compute-time", total_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-compute-characters", compute_characters.to_string().parse().unwrap(), ); headers.insert( "x-total-time", total_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-validation-time", validation_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-queue-time", queue_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-inference-time", inference_time.as_millis().to_string().parse().unwrap(), ); headers.insert( "x-time-per-token", time_per_token.as_millis().to_string().parse().unwrap(), ); headers.insert("x-prompt-tokens", input_length.into()); headers.insert( "x-generated-tokens", response.generated_text.generated_tokens.into(), ); // Metrics metrics::increment_counter!("tgi_request_success"); metrics::histogram!("tgi_request_duration", total_time.as_secs_f64()); metrics::histogram!( "tgi_request_validation_duration", validation_time.as_secs_f64() ); metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64()); metrics::histogram!( "tgi_request_inference_duration", inference_time.as_secs_f64() ); metrics::histogram!( "tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64() ); metrics::histogram!( "tgi_request_generated_tokens", response.generated_text.generated_tokens as f64 ); // Send response let mut output_text = response.generated_text.text; if let Some(prompt) = add_prompt { output_text = prompt + &output_text; } tracing::debug!("Output: {}", output_text); tracing::info!("Success"); let response = GenerateResponse { generated_text: output_text, details, }; Ok((headers, Json(response))) } /// Generate a stream of token using Server-Sent Events #[utoipa::path( post, tag = "Text Generation Inference", path = "/generate_stream", request_body = GenerateRequest, responses( (status = 200, description = "Generated Text", body = StreamResponse, content_type = "text/event-stream"), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"}), content_type = "text/event-stream"), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"}), content_type = "text/event-stream"), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"}), content_type = "text/event-stream"), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"}), content_type = "text/event-stream"), ) )] #[instrument( skip_all, fields( parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn generate_stream( Extension(infer): Extension<Infer>, Extension(compute_type): Extension<ComputeType>, Json(req): Json<GenerateRequest>, ) -> ( HeaderMap, Sse<impl Stream<Item = Result<Event, Infallible>>>, ) { let on_message_callback = |stream_token: StreamResponse| { let event = Event::default(); event.json_data(stream_token).unwrap() }; let (headers, response_stream) = generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await; let sse = Sse::new(response_stream).keep_alive(KeepAlive::default()); (headers, sse) } async fn generate_stream_internal( infer: Infer, ComputeType(compute_type): ComputeType, Json(req): Json<GenerateRequest>, on_message_callback: impl Fn(StreamResponse) -> Event, ) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) { let span = tracing::Span::current(); let start_time = Instant::now(); metrics::increment_counter!("tgi_request_count"); tracing::debug!("Input: {}", req.inputs); let compute_characters = req.inputs.chars().count(); let mut headers = HeaderMap::new(); headers.insert("x-compute-type", compute_type.parse().unwrap()); headers.insert( "x-compute-characters", compute_characters.to_string().parse().unwrap(), ); headers.insert("X-Accel-Buffering", "no".parse().unwrap()); let stream = async_stream::stream! { // Inference let mut end_reached = false; let mut error = false; let mut add_prompt = None; if req.parameters.return_full_text.unwrap_or(false) { add_prompt = Some(req.inputs.clone()); } let details = req.parameters.details; let best_of = req.parameters.best_of.unwrap_or(1); if best_of != 1 { let err = InferError::from(ValidationError::BestOfStream); metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); yield Ok(Event::from(err)); } else if req.parameters.decoder_input_details { let err = InferError::from(ValidationError::PrefillDetailsStream); metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); yield Ok(Event::from(err)); } else { match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await { // Keep permit as long as generate_stream lives Ok((_permit, _input_length, mut response_stream)) => { let mut index = 0; // Server-Sent Event stream while let Some(response) = response_stream.next().await { index += 1; match response { Ok(response) => { match response { // Prefill is ignored InferStreamResponse::Prefill(_) => {} // Yield event for every new token InferStreamResponse::Intermediate{ token, top_tokens, } => { tracing::debug!(parent: &span, "Token: {:?}", token); // StreamResponse let stream_token = StreamResponse { index, token, top_tokens, generated_text: None, details: None, }; let event = on_message_callback(stream_token); yield Ok(event); } // Yield event for last token and compute timings InferStreamResponse::End { token, generated_text, start, queued, top_tokens, } => { // Token details let details = match details { true => Some(StreamDetails { finish_reason: FinishReason::from(generated_text.finish_reason), generated_tokens: generated_text.generated_tokens, seed: generated_text.seed, }), false => None, }; // Timings let total_time = start_time.elapsed(); let validation_time = queued - start_time; let queue_time = start - queued; let inference_time = Instant::now() - start; let time_per_token = inference_time / generated_text.generated_tokens; // Tracing metadata span.record("total_time", format!("{total_time:?}")); span.record("validation_time", format!("{validation_time:?}")); span.record("queue_time", format!("{queue_time:?}")); span.record("inference_time", format!("{inference_time:?}")); span.record("time_per_token", format!("{time_per_token:?}")); span.record("seed", format!("{:?}", generated_text.seed)); // Metrics metrics::increment_counter!("tgi_request_success"); metrics::histogram!("tgi_request_duration", total_time.as_secs_f64()); metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64()); metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64()); metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64()); metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64()); metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64); // StreamResponse end_reached = true; let mut output_text = generated_text.text; if let Some(prompt) = add_prompt { output_text = prompt + &output_text; } tracing::debug!(parent: &span, "Output: {}", output_text); tracing::info!(parent: &span, "Success"); let stream_token = StreamResponse { index, token, top_tokens, generated_text: Some(output_text), details }; let event = on_message_callback(stream_token); yield Ok(event); break; } } } // yield error Err(err) => { error = true; yield Ok(Event::from(err)); break; } } } }, // yield error Err(err) => { error = true; yield Ok(Event::from(err)); } } // Check if generation reached the end // Skip if we already sent an error if !end_reached && !error { let err = InferError::IncompleteGeneration; metrics::increment_counter!("tgi_request_failure", "err" => "incomplete"); tracing::error!("{err}"); yield Ok(Event::from(err)); } } }; (headers, stream) } /// Generate tokens #[utoipa::path( post, tag = "Text Generation Inference", path = "/v1/chat/completions", request_body = ChatRequest, responses( (status = 200, description = "Generated Text", body = ChatCompletionChunk), (status = 424, description = "Generation Error", body = ErrorResponse, example = json ! ({"error": "Request failed during generation"})), (status = 429, description = "Model is overloaded", body = ErrorResponse, example = json ! ({"error": "Model is overloaded"})), (status = 422, description = "Input validation error", body = ErrorResponse, example = json ! ({"error": "Input validation error"})), (status = 500, description = "Incomplete generation", body = ErrorResponse, example = json ! ({"error": "Incomplete generation"})), ) )] #[instrument( skip_all, fields( // parameters = ? req.parameters, total_time, validation_time, queue_time, inference_time, time_per_token, seed, ) )] async fn chat_completions( Extension(infer): Extension<Infer>, Extension(compute_type): Extension<ComputeType>, Extension(info): Extension<Info>, Json(req): Json<ChatRequest>, ) -> Result<Response, (StatusCode, Json<ErrorResponse>)> { metrics::increment_counter!("tgi_request_count"); let stream = req.stream; let max_new_tokens = req.max_tokens.or(Some(100)); let repetition_penalty = req .frequency_penalty // rescale frequency_penalty from (-2.0, 2.0) to (0.0, 4.0) .map(|x| x + 2.0); let logprobs = req.logprobs.unwrap_or(false); let seed = req.seed; // apply chat template to flatten the request into a single input let inputs = match infer.apply_chat_template(req.messages) { Ok(inputs) => inputs, Err(err) => { metrics::increment_counter!("tgi_request_failure", "err" => "validation"); tracing::error!("{err}"); return Err(( StatusCode::UNPROCESSABLE_ENTITY, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), )); } }; // build the request passing some parameters let generate_request = GenerateRequest { inputs: inputs.to_string(), parameters: GenerateParameters { best_of: None, temperature: req.temperature, repetition_penalty, top_k: None, top_p: req.top_p, typical_p: None, do_sample: true, max_new_tokens, return_full_text: None, stop: Vec::new(), truncate: None, watermark: false, details: true, decoder_input_details: !stream, seed, top_n_tokens: None, }, }; // static values that will be returned in all cases let model_id = info.model_id.clone(); let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native")); // switch on stream if stream { // pass this callback to the stream generation and build the required event structure let on_message_callback = move |stream_token: StreamResponse| { let event = Event::default(); let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); event .json_data(ChatCompletionChunk::new( model_id.clone(), system_fingerprint.clone(), stream_token.token.text, current_time, stream_token.index, logprobs.then_some(stream_token.token.logprob), stream_token.details.map(|d| d.finish_reason.to_string()), )) .map_or_else( |e| { println!("Failed to serialize ChatCompletionChunk: {:?}", e); Event::default() }, |data| data, ) }; let (headers, response_stream) = generate_stream_internal( infer, compute_type, Json(generate_request), on_message_callback, ) .await; let sse = Sse::new(response_stream).keep_alive(KeepAlive::default()); Ok((headers, sse).into_response()) } else { let (headers, Json(generation)) = generate( Extension(infer), Extension(compute_type), Json(generate_request), ) .await?; let current_time = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap_or_else(|_| std::time::Duration::from_secs(0)) .as_secs(); // build the complete response object with the full text let response = ChatCompletion::new( model_id, system_fingerprint, generation.generated_text, current_time, generation.details.unwrap(), logprobs, ); // wrap generation inside a Vec to match api-inference Ok((headers, Json(response)).into_response()) } } /// Tokenize inputs #[utoipa::path( post, tag = "Text Generation Inference", path = "/tokenize", request_body = GenerateRequest, responses( (status = 200, description = "Tokenized ids", body = TokenizeResponse), (status = 404, description = "No tokenizer found", body = ErrorResponse, example = json ! ({"error": "No fast tokenizer available"})), ) )] #[instrument(skip_all)] async fn tokenize( Extension(infer): Extension<Infer>, Json(req): Json<GenerateRequest>, ) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> { let input = req.inputs.clone(); let encoding = infer.tokenize(req).await?; if let Some(encoding) = encoding { let tokens: Vec<SimpleToken> = encoding .get_ids() .iter() .zip(encoding.get_offsets()) .map(|(&id, &(start, stop))| { let text: String = input.chars().skip(start).take(stop - start).collect(); SimpleToken { id, text, start, stop, } }) .collect(); Ok(Json(TokenizeResponse(tokens))) } else { Err(( StatusCode::NOT_FOUND, Json(ErrorResponse { error: "No fast tokenizer or tokenizer.json for this model".to_string(), error_type: "no fast tokenizer".to_string(), }), )) } } /// Prometheus metrics scrape endpoint #[utoipa::path( get, tag = "Text Generation Inference", path = "/metrics", responses((status = 200, description = "Prometheus Metrics", body = String)) )] async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String { prom_handle.render() } #[derive(Clone, Debug)] pub(crate) struct ComputeType(String); /// Serving method #[allow(clippy::too_many_arguments)] pub async fn run( model_info: HubModelInfo, shard_info: ShardInfo, compat_return_full_text: bool, max_concurrent_requests: usize, max_best_of: usize, max_stop_sequences: usize, max_top_n_tokens: u32, max_input_length: usize, max_total_tokens: usize, waiting_served_ratio: f32, max_batch_prefill_tokens: u32, max_batch_total_tokens: u32, max_waiting_tokens: usize, client: ShardedClient, tokenizer: Option<Tokenizer>, validation_workers: usize, addr: SocketAddr, allow_origin: Option<AllowOrigin>, ngrok: bool, ngrok_authtoken: Option<String>, ngrok_edge: Option<String>, tokenizer_config: HubTokenizerConfig, messages_api_enabled: bool, ) -> Result<(), axum::BoxError> { // OpenAPI documentation #[derive(OpenApi)] #[openapi( paths( health, get_model_info, compat_generate, generate, generate_stream, chat_completions, tokenize, metrics, ), components( schemas( Info, CompatGenerateRequest, GenerateRequest, ChatRequest, Message, ChatCompletionChoice, ChatCompletionDelta, ChatCompletionChunk, ChatCompletion, GenerateParameters, PrefillToken, Token, GenerateResponse, TokenizeResponse, SimpleToken, BestOfSequence, Details, FinishReason, StreamResponse, StreamDetails, ErrorResponse, ) ), tags( (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API") ), info( title = "Text Generation Inference", license( name = "Apache 2.0", url = "https://www.apache.org/licenses/LICENSE-2.0" ) ) )] struct ApiDoc; // Create state let validation = Validation::new( validation_workers, tokenizer, max_best_of, max_stop_sequences, max_top_n_tokens, max_input_length, max_total_tokens, ); let generation_health = Arc::new(AtomicBool::new(false)); let health_ext = Health::new(client.clone(), generation_health.clone()); let infer = Infer::new( client, validation, waiting_served_ratio, max_batch_prefill_tokens, max_batch_total_tokens, max_waiting_tokens, max_concurrent_requests, shard_info.requires_padding, shard_info.window_size, shard_info.speculate, generation_health, tokenizer_config, ); // Duration buckets let duration_matcher = Matcher::Suffix(String::from("duration")); let n_duration_buckets = 35; let mut duration_buckets = Vec::with_capacity(n_duration_buckets); // Minimum duration in seconds let mut value = 0.0001; for _ in 0..n_duration_buckets { // geometric sequence value *= 1.5; duration_buckets.push(value); } // Input Length buckets let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length")); let input_length_buckets: Vec<f64> = (0..100) .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64) .collect(); // Generated tokens buckets let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens")); let generated_tokens_buckets: Vec<f64> = (0..100) .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Input Length buckets let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens")); let max_new_tokens_buckets: Vec<f64> = (0..100) .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64) .collect(); // Batch size buckets let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size")); let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect(); // Speculated tokens buckets let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens")); let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect(); // Prometheus handler let builder = PrometheusBuilder::new() .set_buckets_for_metric(duration_matcher, &duration_buckets) .unwrap() .set_buckets_for_metric(input_length_matcher, &input_length_buckets) .unwrap() .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets) .unwrap() .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets) .unwrap() .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets) .unwrap() .set_buckets_for_metric(skipped_matcher, &skipped_buckets) .unwrap(); let prom_handle = builder .install_recorder() .expect("failed to install metrics recorder"); // CORS layer let allow_origin = allow_origin.unwrap_or(AllowOrigin::any()); let cors_layer = CorsLayer::new() .allow_methods([Method::GET, Method::POST]) .allow_headers([http::header::CONTENT_TYPE]) .allow_origin(allow_origin); // Endpoint info let info = Info { model_id: model_info.model_id, model_sha: model_info.sha, model_dtype: shard_info.dtype, model_device_type: shard_info.device_type, model_pipeline_tag: model_info.pipeline_tag, max_concurrent_requests, max_best_of, max_stop_sequences, max_input_length, max_total_tokens, waiting_served_ratio, max_batch_total_tokens, max_waiting_tokens, validation_workers, version: env!("CARGO_PKG_VERSION"), sha: option_env!("VERGEN_GIT_SHA"), docker_label: option_env!("DOCKER_LABEL"), }; // Configure Swagger UI let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi()); // Define base and health routes let base_routes = Router::new() .route("/", post(compat_generate)) .route("/", get(health)) .route("/info", get(get_model_info)) .route("/generate", post(generate)) .route("/generate_stream", post(generate_stream)) .route("/v1/chat/completions", post(chat_completions)) .route("/tokenize", post(tokenize)) .route("/health", get(health)) .route("/ping", get(health)) .route("/metrics", get(metrics)); // Conditional AWS Sagemaker route let aws_sagemaker_route = if messages_api_enabled { Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED } else { Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise }; let compute_type = ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string())); // Combine routes and layers let app = Router::new() .merge(swagger_ui) .merge(base_routes) .merge(aws_sagemaker_route) .layer(Extension(info)) .layer(Extension(health_ext.clone())) .layer(Extension(compat_return_full_text)) .layer(Extension(infer)) .layer(Extension(compute_type)) .layer(Extension(prom_handle.clone())) .layer(OtelAxumLayer::default()) .layer(cors_layer); if ngrok { #[cfg(feature = "ngrok")] { use ngrok::config::TunnelBuilder; let _ = addr; let authtoken = ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling"); let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling"); let tunnel = ngrok::Session::builder() .authtoken(authtoken) .connect() .await .unwrap() .labeled_tunnel() .label("edge", edge); let listener = tunnel.listen().await.unwrap(); // Run prom metrics and health locally too tokio::spawn( axum::Server::bind(&addr) .serve( Router::new() .route("/health", get(health)) .route("/metrics", get(metrics)) .layer(Extension(health_ext)) .layer(Extension(prom_handle)) .into_make_service(), ) //Wait until all requests are finished to shut down .with_graceful_shutdown(shutdown_signal()), ); // Run server axum::Server::builder(listener) .serve(app.into_make_service()) //Wait until all requests are finished to shut down .with_graceful_shutdown(shutdown_signal()) .await?; } #[cfg(not(feature = "ngrok"))] { let _ngrok_authtoken = ngrok_authtoken; let _ngrok_domain = ngrok_domain; let _ngrok_username = ngrok_username; let _ngrok_password = ngrok_password; panic!("`text-generation-router` was compiled without the `ngrok` feature"); } } else { // Run server axum::Server::bind(&addr) .serve(app.into_make_service()) // Wait until all requests are finished to shut down .with_graceful_shutdown(shutdown_signal()) .await?; } Ok(()) } /// Shutdown signal handler async fn shutdown_signal() { let ctrl_c = async { signal::ctrl_c() .await .expect("failed to install Ctrl+C handler"); }; #[cfg(unix)] let terminate = async { signal::unix::signal(signal::unix::SignalKind::terminate()) .expect("failed to install signal handler") .recv() .await; }; #[cfg(not(unix))] let terminate = std::future::pending::<()>(); tokio::select! { _ = ctrl_c => {}, _ = terminate => {}, } tracing::info!("signal received, starting graceful shutdown"); opentelemetry::global::shutdown_tracer_provider(); } impl From<i32> for FinishReason { fn from(finish_reason: i32) -> Self { let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap(); match finish_reason { text_generation_client::FinishReason::Length => FinishReason::Length, text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken, text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence, } } } /// Convert to Axum supported formats impl From<InferError> for (StatusCode, Json<ErrorResponse>) { fn from(err: InferError) -> Self { let status_code = match err { InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY, InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS, InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY, InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR, InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY, }; ( status_code, Json(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }), ) } } impl From<InferError> for Event { fn from(err: InferError) -> Self { Event::default() .json_data(ErrorResponse { error: err.to_string(), error_type: err.error_type().to_string(), }) .unwrap() } }
text-generation-inference/router/src/server.rs/0
{ "file_path": "text-generation-inference/router/src/server.rs", "repo_id": "text-generation-inference", "token_count": 19443 }
193
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #define _cuda_buffers_cu #include "cuda_buffers.cuh" CudaBuffers* g_buffers[CUDA_MAX_DEVICES] = {NULL}; // __constant__ half2 q4_table[16][256]; // half2 q4_table_host[16][256]; // bool q4_table_init = false; CudaBuffers::CudaBuffers ( int _device, half* _temp_state, half* _temp_dq ) : device(_device), temp_state(_temp_state), temp_dq(_temp_dq) { cudaSetDevice(_device); cudaStreamCreate(&alt_stream_1); cudaStreamCreate(&alt_stream_2); cudaStreamCreate(&alt_stream_3); cudaEventCreate(&alt_stream_1_done); cudaEventCreate(&alt_stream_2_done); cudaEventCreate(&alt_stream_3_done); } CudaBuffers::~CudaBuffers() { cudaStreamDestroy(alt_stream_1); cudaStreamDestroy(alt_stream_2); cudaStreamDestroy(alt_stream_3); cudaEventDestroy(alt_stream_1_done); cudaEventDestroy(alt_stream_2_done); cudaEventDestroy(alt_stream_3_done); } CudaBuffers* get_buffers(const int device_index) { return g_buffers[device_index]; } void prepare_buffers_cuda ( int _device, half* _temp_state, half* _temp_dq ) { CudaBuffers* buffers = new CudaBuffers ( _device, _temp_state, _temp_dq ); g_buffers[_device] = buffers; } void cleanup_buffers_cuda() { for (int i = 0; i < CUDA_MAX_DEVICES; i++) { if (!g_buffers[i]) continue; delete g_buffers[i]; g_buffers[i] = NULL; } }
text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_buffers.cu/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_buffers.cu", "repo_id": "text-generation-inference", "token_count": 680 }
194
#include <torch/extension.h> #include <c10/cuda/CUDAGuard.h> #include <ATen/cuda/CUDAContext.h> #include <cuda_runtime.h> #include <cuda_fp16.h> #include <cstdint> #include <cstdio> #include "config.h" #include "cuda/q_matrix.cuh" #include "cuda/q_gemm.cuh" #include "cpp/util.h" // Some decluttering macros #define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype) #define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype) #define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes") #define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes") // Quant matrix uintptr_t make_q_matrix ( torch::Tensor q_weight, torch::Tensor q_perm, torch::Tensor q_invperm, torch::Tensor q_scale, torch::Tensor q_scale_max, torch::Tensor q_groups, torch::Tensor q_group_map, torch::Tensor gptq_qzeros, torch::Tensor gptq_scales, torch::Tensor gptq_g_idx, torch::Tensor temp_dq ) { TORCH_CHECK_DTYPE(q_weight, kInt); TORCH_CHECK_DTYPE_OPT(q_perm, kShort); TORCH_CHECK_DTYPE_OPT(q_invperm, kShort); TORCH_CHECK_DTYPE_OPT(q_scale, kInt); TORCH_CHECK_DTYPE_OPT(q_scale_max, kHalf); TORCH_CHECK_DTYPE_OPT(q_groups, kShort); TORCH_CHECK_DTYPE_OPT(q_group_map, kShort); TORCH_CHECK_DTYPE_OPT(gptq_qzeros, kInt); TORCH_CHECK_DTYPE_OPT(gptq_scales, kHalf); TORCH_CHECK_DTYPE_OPT(gptq_g_idx, kInt); TORCH_CHECK_SHAPES(q_perm, 0, q_invperm, 0, 1); int device = q_weight.device().index(); int width = q_weight.size(1); int groups; int height; if (!q_scale.device().is_meta()) { TORCH_CHECK_SHAPES(q_weight, 1, q_scale, 1, 8); TORCH_CHECK_SHAPES(q_scale_max, 0, q_scale, 0, 1); groups = q_scale.size(0); height = q_invperm.size(0); } else { TORCH_CHECK_SHAPES(q_weight, 1, gptq_qzeros, 1, 8); TORCH_CHECK_SHAPES(q_weight, 1, gptq_scales, 1, 1); groups = gptq_qzeros.size(0); height = q_weight.size(0) * 8; } TORCH_CHECK(temp_dq.size(0) >= width * height, "Insufficient size of temp_dq buffer") QMatrix* m = new QMatrix ( device, height, width, groups, (uint32_t*) q_weight.data_ptr(), q_perm.device().is_meta() ? NULL : (uint16_t*) q_perm.data_ptr(), q_invperm.device().is_meta() ? NULL : (uint16_t*) q_invperm.data_ptr(), q_scale.device().is_meta() ? NULL : (uint32_t*) q_scale.data_ptr(), q_scale_max.device().is_meta() ? NULL : (half*) q_scale_max.data_ptr(), q_groups.device().is_meta() ? NULL : (uint16_t*) q_groups.data_ptr(), q_group_map.device().is_meta() ? NULL : (uint16_t*) q_group_map.data_ptr(), gptq_qzeros.device().is_meta() ? NULL : (uint32_t*) gptq_qzeros.data_ptr(), gptq_scales.device().is_meta() ? NULL : (half*) gptq_scales.data_ptr(), gptq_g_idx.device().is_meta() ? NULL : (uint32_t*) gptq_g_idx.data_ptr(), (half*) temp_dq.data_ptr() ); if (m->failed) throw std::runtime_error("CUDA out of memory"); return reinterpret_cast<uintptr_t> (m); } void gemm_half_q_half ( torch::Tensor a, uintptr_t b, torch::Tensor c, bool force_cuda ) { QMatrix* qm = reinterpret_cast<QMatrix*> (b); TORCH_CHECK_DTYPE(a, kHalf); TORCH_CHECK_DTYPE(c, kHalf); TORCH_CHECK_SHAPES(a, 0, c, 0, 1); TORCH_CHECK(qm->height == a.size(1), "a and b have incompatible shapes") TORCH_CHECK(qm->width == c.size(1), "b and c have incompatible shapes") const at::cuda::OptionalCUDAGuard device_guard(device_of(a)); gemm_half_q_half_cuda ( at::cuda::getCurrentCUDABlasHandle(), (const half*) a.data_ptr(), qm, (half*) c.data_ptr(), c.size(0), // m c.size(1), // n a.size(1), // k true, NULL, force_cuda ); } // Bindings PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("make_q_matrix", &make_q_matrix, "make_q_matrix"); m.def("gemm_half_q_half", &gemm_half_q_half, "gemm_half_q_half"); }
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/ext.cpp/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/ext.cpp", "repo_id": "text-generation-inference", "token_count": 2184 }
195
import torch from text_generation_server.utils.tokens import ( StopSequenceCriteria, StoppingCriteria, FinishReason, batch_top_tokens, ) def test_stop_sequence_criteria(): criteria = StopSequenceCriteria("/test;") assert not criteria("/") assert not criteria("/test") assert criteria("/test;") assert not criteria("/test; ") def test_stop_sequence_criteria_escape(): criteria = StopSequenceCriteria("<|stop|>") assert not criteria("<") assert not criteria("<|stop") assert criteria("<|stop|>") assert not criteria("<|stop|> ") def test_stopping_criteria(): criteria = StoppingCriteria(0, [StopSequenceCriteria("/test;")], max_new_tokens=5) assert criteria(65827, "/test") == (False, None) assert criteria(30, ";") == (True, FinishReason.FINISH_REASON_STOP_SEQUENCE) def test_stopping_criteria_eos(): criteria = StoppingCriteria(0, [StopSequenceCriteria("/test;")], max_new_tokens=5) assert criteria(1, "") == (False, None) assert criteria(0, "") == (True, FinishReason.FINISH_REASON_EOS_TOKEN) def test_stopping_criteria_max(): criteria = StoppingCriteria(0, [StopSequenceCriteria("/test;")], max_new_tokens=5) assert criteria(1, "") == (False, None) assert criteria(1, "") == (False, None) assert criteria(1, "") == (False, None) assert criteria(1, "") == (False, None) assert criteria(1, "") == (True, FinishReason.FINISH_REASON_LENGTH) def test_batch_top_tokens(): top_n_tokens = [0, 2, 3, 4, 5] top_n_tokens_tensor = torch.tensor(top_n_tokens) inp_logprobs = torch.tensor([[-1.0, -3.0, -4.0, -2.0, -3.0]] * 5) accepted_ids = torch.ones_like(top_n_tokens_tensor) topn_tok_ids, topn_tok_logprobs = batch_top_tokens( top_n_tokens, top_n_tokens_tensor, inp_logprobs, accepted_ids ) assert topn_tok_ids[0] == [[]] assert topn_tok_ids[1] == [[0, 3]] assert topn_tok_ids[2] == [[0, 3, 1, 4]] assert topn_tok_ids[3] == [[0, 3, 1, 4]] assert topn_tok_ids[4] == [[0, 3, 1, 4, 2]] assert topn_tok_logprobs[0] == [[]] assert topn_tok_logprobs[1] == [[-1, -2]] assert topn_tok_logprobs[2] == [[-1, -2, -3, -3]] assert topn_tok_logprobs[3] == [[-1, -2, -3, -3]] assert topn_tok_logprobs[4] == [[-1, -2, -3, -3, -4]] # Now let's make second member of the batch be speculated inp_logprobs = torch.tensor([[-1.0, -3.0, -4.0, -2.0, -3.0]] * 5 * 2) accepted_ids[1] = 2 topn_tok_ids, topn_tok_logprobs = batch_top_tokens( top_n_tokens, top_n_tokens_tensor, inp_logprobs, accepted_ids ) assert topn_tok_ids[0] == [[]] assert topn_tok_ids[1] == [[0, 3], [0, 3]] assert topn_tok_ids[2] == [[0, 3, 1, 4]] assert topn_tok_ids[3] == [[0, 3, 1, 4]] assert topn_tok_ids[4] == [[0, 3, 1, 4, 2]] assert topn_tok_logprobs[0] == [[]] assert topn_tok_logprobs[1] == [[-1, -2], [-1, -2]] assert topn_tok_logprobs[2] == [[-1, -2, -3, -3]] assert topn_tok_logprobs[3] == [[-1, -2, -3, -3]] assert topn_tok_logprobs[4] == [[-1, -2, -3, -3, -4]]
text-generation-inference/server/tests/utils/test_tokens.py/0
{ "file_path": "text-generation-inference/server/tests/utils/test_tokens.py", "repo_id": "text-generation-inference", "token_count": 1428 }
196
import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, PositionRotaryEmbedding, TensorParallelHead, get_linear, FastLayerNorm, ) class PhiConfig(PretrainedConfig): def __init__( self, vocab_size=51200, hidden_size=2560, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="gelu_fast", # llama uses silu layer_norm_eps=1e-05, # rms in llama, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, resid_pdrop=0.1, # llama doesn't have this partial_rotary_factor=0.5, # important difference between llama and phi **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.rope_theta = rope_theta self.resid_pdrop = resid_pdrop self.partial_rotary_factor = partial_rotary_factor super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # this is the same as llama except for Phi uses bias=True def load_attention(config, prefix, weights): if config.num_attention_heads != config.num_key_value_heads: return _load_gqa(config, prefix, weights) else: return TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], dim=0, weights=weights, bias=True, ) def _load_gqa(config, prefix: str, weights): assert config.hidden_size % config.num_attention_heads == 0 assert config.num_attention_heads % weights.process_group.size() == 0 weight = weights.get_multi_weights_col( prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], quantize=config.quantize, dim=0, ) if config.quantize not in ["gptq", "awq"]: weight = weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.hidden_size // config.num_attention_heads num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() assert list(weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" # this is the same as llama except for Phi uses bias=True return TensorParallelColumnLinear( get_linear(weight, bias=True, quantize=config.quantize) ) class FlashPhiAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.num_heads self.softmax_scale = self.head_size**-0.5 self.rotary_dim = int(config.partial_rotary_factor * self.head_size) self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.rotary_dim, base=config.rope_theta, device=weights.device, ) if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.num_key_value_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) # in llama the dense layer is called "o_proj" and has bias=False self.dense = TensorParallelRowLinear.load( config, prefix=f"{prefix}.dense", weights=weights, bias=True, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): # Compute query, key, value and split qkv = self.query_key_value(hidden_states) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) # Reshape query and key for rotary embeddings query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) # NOTE: this is the main difference between Llama and Phi # in llama the rotary embeddings are applied to the whole query and key. # Phi uses PARTIAL rotary embeddings, which are applied to the first 32 dimensions # # Apply partial positional embeddings in place self.rotary_emb( query[:, :, : self.rotary_dim], kv[:, 0, :, : self.rotary_dim], cos, sin ) # Reshape key and value and cache paged_attention.reshape_and_cache( kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots ) # output tensor attn_output = torch.empty_like(query) # Prefill if cu_seqlen_prefill is not None: flash_attn.attention( query, torch.select(kv, dim=1, index=0), torch.select(kv, dim=1, index=1), attn_output, cu_seqlen_prefill, max_s, self.softmax_scale, ) # Decode else: paged_attention.attention( attn_output, query, kv_cache[0], kv_cache[1], self.kv_head_mapping, self.softmax_scale, block_tables, input_lengths, max_s, ) return self.dense(attn_output.view(-1, self.num_heads * self.head_size)) class PhiMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.hidden_act self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate="tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none", ) ) # llama weights are up_proj and down_proj and bias=False self.up_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.fc1", weights=weights, bias=True, ) self.down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.fc2", weights=weights, bias=True, ) def forward(self, hidden_states): # NOTE: Llama requires the gate up states to an intermediate size # Phi does not and we can avoid the `view` operation return self.down_proj(self.act(self.up_proj(hidden_states))) class FlashPhiLayer(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() prefix = f"model.layers.{layer_id}" self.self_attn = FlashPhiAttention( prefix=f"{prefix}.self_attn", config=config, weights=weights ) self.mlp = PhiMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.input_layernorm = FastLayerNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.layer_norm_eps, ) self.resid_dropout = torch.nn.Dropout(config.resid_pdrop) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ): hidden_states, res = self.input_layernorm(hidden_states, residual) # Self Attention attn_output = self.self_attn( hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) hidden_states = self.resid_dropout(attn_output).add( self.resid_dropout(self.mlp(hidden_states)) ) return hidden_states, res class FlashPhiModel(torch.nn.Module): def __init__(self, config, weights): super().__init__() process_group = weights.process_group self.tp_rank = process_group.rank() self.tp_world_size = process_group.size() self.embed_tokens = TensorParallelEmbedding( prefix="model.embed_tokens", weights=weights ) self.layers = nn.ModuleList( [ FlashPhiLayer( layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads self.norm = FastLayerNorm.load( prefix="model.final_layernorm", weights=weights, eps=config.layer_norm_eps, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, input_lengths, max_s, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashPhiForCausalLM(torch.nn.Module): def __init__(self, config, weights): super().__init__() self.model = FlashPhiModel(config, weights) self.lm_head = TensorParallelHead.load( config, prefix="lm_head", weights=weights, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, input_lengths: torch.Tensor, max_s: int, lm_head_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, input_lengths, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] return self.lm_head(hidden_states)
text-generation-inference/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py", "repo_id": "text-generation-inference", "token_count": 6560 }
197
import math import torch import torch.distributed import numpy as np from dataclasses import dataclass from opentelemetry import trace from transformers import PreTrainedTokenizerBase from transformers.models.llama import LlamaTokenizerFast from typing import Optional, Tuple, Type, List from text_generation_server.pb import generate_pb2 from text_generation_server.models import FlashCausalLM from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE from text_generation_server.models.cache_manager import ( get_cache_manager, ) from text_generation_server.models.custom_modeling.flash_mistral_modeling import ( FlashMistralForCausalLM, MistralConfig, ) from text_generation_server.utils.speculate import get_speculate from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, HeterogeneousNextTokenChooser, StoppingCriteria, ) tracer = trace.get_tracer(__name__) # Will be set in init SLIDING_WINDOW: Optional[int] = None SLIDING_WINDOW_BLOCKS: Optional[int] = None # Adds windowing logic to FlashCausalLMBatch @dataclass class FlashMistralBatch(FlashCausalLMBatch): # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers # as we only keep SLIDING_WINDOW values instead of the whole tensor prefill_cache_indices: Optional[torch.Tensor] = None @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "FlashCausalLMBatch": global SLIDING_WINDOW global SLIDING_WINDOW_BLOCKS batch_inputs = [] max_truncation = 0 for r in pb.requests: batch_inputs.append(r.inputs) max_truncation = max(max_truncation, r.truncate) batch_tokenized_inputs = tokenizer( batch_inputs, truncation=True, max_length=max_truncation )["input_ids"] position_ids = [] cu_seqlen_prefill = [0] needed_blocks_slots = [] start_slots = [] slot_indices = [] prefill_cache_indices = [] input_lengths = [] prefix_offsets = [] read_offsets = [] all_input_ids = [] requests_idx_mapping = {} all_prefill_logprobs = True no_prefill_logprobs = True prefill_head_indices = [] prefill_next_token_indices = [] prefill_cu_outlens = [0] next_token_chooser_parameters = [] stopping_criterias = [] top_n_tokens = [] # Cumulative length cumulative_length = 0 cumulative_max_length = 0 prefill_out_cumulative_length = 0 blocks = 0 max_seqlen = 0 max_length = 0 max_blocks = 0 # Parse batch for i, (r, tokenized_input) in enumerate( zip(pb.requests, batch_tokenized_inputs) ): # request id -> idx in list mapping requests_idx_mapping[r.id] = i tokenized_input = tokenized_input[-r.truncate :] input_length = len(tokenized_input) input_lengths.append(input_length) prefix_offsets.append(input_length - 5) read_offsets.append(input_length) all_input_ids.append(tokenized_input) # Position ids request_position_ids = torch.arange(0, input_length, dtype=torch.int32) position_ids.append(request_position_ids) # Add cumulative lengths of all previous inputs cu_seqlen_prefill.append(cumulative_length + input_length) next_token_chooser_parameters.append(r.parameters) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) max_new_tokens = stopping_criteria.max_new_tokens stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) # Paged attention # Remove one as the first token des not have a past speculative_length = get_speculate() total_tokens = input_length + max_new_tokens - 1 + speculative_length # Needed blocks can not go over SLIDING_WINDOW_BLOCKS needed_blocks = math.ceil(total_tokens / BLOCK_SIZE) if SLIDING_WINDOW_BLOCKS is not None: needed_blocks = min(needed_blocks, SLIDING_WINDOW_BLOCKS) blocks += needed_blocks needed_blocks_slots.append((needed_blocks, total_tokens)) start_slots.append(cumulative_max_length) request_slot_indices = torch.arange( cumulative_max_length, cumulative_max_length + input_length, dtype=torch.int64, ) slot_indices.append(request_slot_indices) # Create tensor to slice into the kv tensor in prefill if SLIDING_WINDOW is not None: request_prefill_cache_indices = torch.arange( cumulative_length + max(0, input_length - SLIDING_WINDOW), cumulative_length + input_length, dtype=torch.int64, ) prefill_cache_indices.append(request_prefill_cache_indices) all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs if r.prefill_logprobs: prefill_head_indices.append(request_position_ids + cumulative_length) prefill_next_token_indices.append( prefill_out_cumulative_length + input_length - 1 ) prefill_cu_outlens.append(prefill_out_cumulative_length + input_length) prefill_out_cumulative_length += input_length else: prefill_head_indices.append( torch.tensor( [cumulative_length + input_length - 1], dtype=torch.int32 ) ) prefill_next_token_indices.append(prefill_out_cumulative_length) prefill_cu_outlens.append(prefill_out_cumulative_length + 1) prefill_out_cumulative_length += 1 # Update cumulative_length += input_length cumulative_max_length += total_tokens max_seqlen = max(max_seqlen, input_length) max_blocks = max(max_blocks, needed_blocks) max_length = max( max_length, input_length + max_new_tokens + speculative_length ) next_token_chooser = HeterogeneousNextTokenChooser.from_pb( next_token_chooser_parameters, dtype, device ) start_slots = torch.tensor(start_slots, dtype=torch.int64) # Padded all_input_ids_tensor all_input_ids_tensor = np.zeros( (len(all_input_ids), max_length), dtype=np.int64 ) for i, input_ids in enumerate(all_input_ids): all_input_ids_tensor[i, : len(input_ids)] = input_ids # Create tensors on device all_input_ids_tensor = torch.tensor( all_input_ids_tensor, dtype=torch.int64, device=device ) if len(pb.requests) > 1: input_ids = np.concatenate(all_input_ids, dtype=np.int64) position_ids = torch.cat(position_ids) slot_indices = torch.cat(slot_indices) if SLIDING_WINDOW is not None: prefill_cache_indices = torch.cat(prefill_cache_indices) else: input_ids = all_input_ids[0] position_ids = position_ids[0] slot_indices = slot_indices[0] if SLIDING_WINDOW is not None: prefill_cache_indices = prefill_cache_indices[0] cu_seqlen_prefill = torch.tensor( cu_seqlen_prefill, device=device, dtype=torch.int32 ) position_ids = position_ids.to(device) slot_indices = slot_indices.to(device) prefill_cache_indices = ( prefill_cache_indices.to(device) if SLIDING_WINDOW is not None else None ) input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device) input_lengths_tensor = torch.tensor( input_lengths, dtype=torch.int32, device=device ) if all_prefill_logprobs: prefill_head_indices = None prefill_next_token_indices = cu_seqlen_prefill[1:] - 1 elif no_prefill_logprobs: prefill_head_indices = cu_seqlen_prefill[1:] - 1 prefill_next_token_indices = None else: prefill_head_indices = torch.tensor( torch.cat(prefill_head_indices), dtype=torch.int64, device=device ) prefill_next_token_indices = torch.tensor( prefill_next_token_indices, dtype=torch.int64, device=device ) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, start_slots=start_slots, slot_indices=slot_indices, needed_blocks_slots=needed_blocks_slots, block_tables=None, block_tables_tensor=None, slots=None, max_seqlen=max_seqlen, prefill_head_indices=prefill_head_indices, prefill_next_token_indices=prefill_next_token_indices, prefill_cu_outlens=prefill_cu_outlens, input_lengths=input_lengths, input_lengths_tensor=input_lengths_tensor, prefix_offsets=prefix_offsets, read_offsets=read_offsets, all_input_ids=all_input_ids, all_input_ids_tensor=all_input_ids_tensor, next_token_chooser=next_token_chooser, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, blocks=blocks, max_blocks=max_blocks, prefill_cache_indices=prefill_cache_indices, speculative_ids=None, ) class BaseFlashMistral(FlashCausalLM): def __init__( self, config_cls, model_cls, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): global SLIDING_WINDOW global SLIDING_WINDOW_BLOCKS self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashLlama is only available on GPU") tokenizer = LlamaTokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = config_cls.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize # Set context windows if config.sliding_window is not None: SLIDING_WINDOW = config.sliding_window SLIDING_WINDOW_BLOCKS = math.ceil(config.sliding_window / BLOCK_SIZE) torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq"]: weights._set_gptq_params(model_id, revision) model = model_cls(config, weights) torch.distributed.barrier(group=self.process_group) super(BaseFlashMistral, self).__init__( model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, sliding_window=config.sliding_window, ) @property def batch_type(self) -> Type[FlashMistralBatch]: return FlashMistralBatch def forward(self, batch: FlashMistralBatch) -> Tuple[torch.Tensor, torch.Tensor]: # Model Forward if batch.speculative_ids is not None: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = get_cache_manager().kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices speculative_ids = batch.speculative_ids B, speculative_length = speculative_ids.shape new_length = speculative_length + 1 new_input_ids = torch.cat( [input_ids.unsqueeze(-1), speculative_ids], dim=1 ).reshape(-1) arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) arange_int = arange.to(dtype=torch.int32) new_position_ids = ( position_ids.unsqueeze(-1).expand(B, new_length) + arange ).view(-1) slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) input_lengths = ( input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int ).view(-1) # Add Copy the block tables for all members block_tables = ( block_tables.unsqueeze(1) .expand(B, new_length, -1) .reshape(B * new_length, -1) .contiguous() ) max_s = max_s + speculative_length input_ids = new_input_ids position_ids = new_position_ids else: input_ids = batch.input_ids position_ids = batch.position_ids cu_seqlen_prefill = batch.cu_seqlen_prefill kv_cache = get_cache_manager().kv_cache block_tables = batch.block_tables_tensor slots = batch.slots[batch.slot_indices] input_lengths = batch.input_lengths_tensor max_s = batch.max_seqlen lm_head_indices = batch.prefill_head_indices logits = self.model.forward( input_ids=input_ids, position_ids=position_ids, cu_seqlen_prefill=cu_seqlen_prefill, kv_cache=kv_cache, block_tables=block_tables, slots=slots, input_lengths=input_lengths, max_s=max_s, prefill_cache_indices=batch.prefill_cache_indices, lm_head_indices=lm_head_indices, ) if batch.prefill_cache_indices is not None: batch.prefill_cache_indices = None return logits class FlashMistral(BaseFlashMistral): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): super(FlashMistral, self).__init__( config_cls=MistralConfig, model_cls=FlashMistralForCausalLM, model_id=model_id, revision=revision, quantize=quantize, dtype=dtype, trust_remote_code=trust_remote_code, )
text-generation-inference/server/text_generation_server/models/flash_mistral.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/flash_mistral.py", "repo_id": "text-generation-inference", "token_count": 7970 }
198
import torch import time from dataclasses import dataclass from opentelemetry import trace from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase from typing import Optional, Tuple, List, Type, Dict from text_generation_server.utils.tokens import batch_top_tokens from text_generation_server.models import Model from text_generation_server.models.types import ( GeneratedText, Batch, Generation, Tokens, ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling tracer = trace.get_tracer(__name__) @dataclass class Seq2SeqLMBatch(Batch): batch_id: int requests: List[generate_pb2.Request] requests_idx_mapping: Dict[int, int] # Encoder values input_ids: Optional[torch.Tensor] attention_mask: torch.Tensor # Decoder values decoder_input_ids: torch.Tensor decoder_attention_mask: Optional[torch.Tensor] encoder_last_hidden_state: Optional[torch.Tensor] # All tokens all_decoder_input_ids: List[torch.Tensor] # Seq2SeqLM keeps track of both encoder and decoder attention keys and values past_key_values: Optional[List[Tuple]] # Lengths of all generations present in the batch input_lengths: List[int] decoder_input_lengths: List[int] prefix_offsets: List[int] read_offsets: List[int] # Generation helpers next_token_choosers: List[NextTokenChooser] stopping_criterias: List[StoppingCriteria] top_n_tokens: List[int] top_n_tokens_tensor: torch.Tensor # Metadata used for padding max_input_length: int max_decoder_input_length: int padding_right_offset: int # Maximum number of tokens this batch will grow to max_tokens: int def to_pb(self) -> generate_pb2.CachedBatch: """Convert a Seq2SeqLMBatch to a text_generation_server.v1.CachedBatch protobuf""" return generate_pb2.CachedBatch( id=self.batch_id, request_ids=[r.id for r in self.requests], size=len(self), max_tokens=self.max_tokens, ) @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "Seq2SeqLMBatch": """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch""" inputs = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): inputs.append(r.inputs) requests_idx_mapping[r.id] = i decoder_input_lengths.append(1) next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) # Tokenize batch tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, return_token_type_ids=False, truncation=True, max_length=max_truncation, ).to(device) input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() # Decoder sequence only contains the bos_token decoder_input_ids = ( torch.tensor(tokenizer.bos_token_id, device=device) .repeat(len(pb.requests)) .view(-1, 1) ) for _ in pb.requests: prefix_offsets.append(0) read_offsets.append(1) all_decoder_input_ids = decoder_input_ids.view(-1).split(1) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) max_tokens = len(inputs) * (max_input_length + max_decode_tokens) return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=tokenized_inputs["input_ids"], attention_mask=tokenized_inputs["attention_mask"], decoder_input_ids=decoder_input_ids, all_decoder_input_ids=list(all_decoder_input_ids), decoder_attention_mask=None, encoder_last_hidden_state=None, past_key_values=None, input_lengths=input_lengths.tolist(), decoder_input_lengths=decoder_input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length.item(), max_decoder_input_length=1, padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) @tracer.start_as_current_span("filter") def filter(self, request_ids: List[int]) -> Optional["Seq2SeqLMBatch"]: if len(request_ids) == 0: raise ValueError("Batch must have at least one request") if len(request_ids) == len(self): return self keep_indices = [] # New values after filtering requests_idx_mapping = {} requests = [] input_lengths = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] all_decoder_input_ids = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_input_length = 0 max_decoder_input_length = 0 padding_right_offset = 0 total_remaining_decode_tokens = 0 for i, request_id in enumerate(request_ids): idx = self.requests_idx_mapping[request_id] requests_idx_mapping[request_id] = i keep_indices.append(idx) requests.append(self.requests[idx]) prefix_offsets.append(self.prefix_offsets[idx]) read_offsets.append(self.read_offsets[idx]) all_decoder_input_ids.append(self.all_decoder_input_ids[idx]) request_input_length = self.input_lengths[idx] input_lengths.append(request_input_length) max_input_length = max(max_input_length, request_input_length) request_decoder_input_length = self.decoder_input_lengths[idx] decoder_input_lengths.append(request_decoder_input_length) max_decoder_input_length = max( max_decoder_input_length, request_decoder_input_length ) next_token_choosers.append(self.next_token_choosers[idx]) stopping_criteria = self.stopping_criterias[idx] stopping_criterias.append(stopping_criteria) top_n_tokens.append(self.top_n_tokens[idx]) remaining_decode_tokens = ( stopping_criteria.max_new_tokens - stopping_criteria.current_tokens ) total_remaining_decode_tokens += remaining_decode_tokens padding_right_offset = max(padding_right_offset, remaining_decode_tokens) # Apply indices to input_ids, attention mask, past key values and other items that need to be cached self.decoder_input_ids = self.decoder_input_ids[keep_indices] self.attention_mask = self.attention_mask[keep_indices, -max_input_length:] if self.decoder_attention_mask is not None: self.decoder_attention_mask = self.decoder_attention_mask[ keep_indices, -(self.padding_right_offset + max_decoder_input_length) : ( self.decoder_attention_mask.shape[1] - self.padding_right_offset ) + padding_right_offset, ] self.encoder_last_hidden_state = self.encoder_last_hidden_state[ keep_indices, -max_input_length: ] # Ensure that past_key_values tensors can be updated in-place if type(self.past_key_values[0]) == tuple: self.past_key_values = [ [t for t in layer] for layer in self.past_key_values ] decoder_past_seq_len = max_decoder_input_length - 1 for layer in self.past_key_values: layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:] layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:] layer[2] = layer[2][keep_indices, :, -max_input_length:] layer[3] = layer[3][keep_indices, :, -max_input_length:] top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices] max_tokens = ( len(request_ids) * (max_input_length + max_decoder_input_length) + remaining_decode_tokens ) self.requests = requests self.requests_idx_mapping = requests_idx_mapping self.input_ids = None self.all_decoder_input_ids = all_decoder_input_ids self.input_lengths = input_lengths self.decoder_input_lengths = decoder_input_lengths self.prefix_offsets = prefix_offsets self.read_offsets = read_offsets self.next_token_choosers = next_token_choosers self.stopping_criterias = stopping_criterias self.top_n_tokens = top_n_tokens self.top_n_tokens_tensor = top_n_tokens_tensor self.max_input_length = max_input_length self.max_decoder_input_length = max_decoder_input_length self.padding_right_offset = padding_right_offset self.max_tokens = max_tokens return self @classmethod @tracer.start_as_current_span("concatenate") def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch": """Concatenate multiple batches together by padding internal torch tensors""" # Used for padding total_batch_size = 0 max_input_length = 0 max_decoder_input_length = 0 padding_right_offset = 0 for batch in batches: total_batch_size += len(batch) max_input_length = max(max_input_length, batch.max_input_length) max_decoder_input_length = max( max_decoder_input_length, batch.max_decoder_input_length ) padding_right_offset = max(padding_right_offset, batch.padding_right_offset) # Batch attributes requests = [] requests_idx_mapping = {} all_decoder_input_ids = [] input_lengths = [] decoder_input_lengths = [] prefix_offsets = [] read_offsets = [] next_token_choosers = [] stopping_criterias = [] top_n_tokens = [] max_tokens = 0 # Batch tensors attention_mask = None decoder_input_ids = None decoder_attention_mask = None encoder_last_hidden_state = None top_n_tokens_tensor = None past_key_values = [] # Used for slicing correctly inside the tensors # Equivalent to a cumsum on batch sizes start_index = 0 for i, batch in enumerate(batches): # Extend all list attributes requests.extend(batch.requests) all_decoder_input_ids.extend(batch.all_decoder_input_ids) input_lengths.extend(batch.input_lengths) decoder_input_lengths.extend(batch.decoder_input_lengths) prefix_offsets.extend(batch.prefix_offsets) read_offsets.extend(batch.read_offsets) next_token_choosers.extend(batch.next_token_choosers) stopping_criterias.extend(batch.stopping_criterias) top_n_tokens.extend(batch.top_n_tokens) if i == 0: requests_idx_mapping = batch.requests_idx_mapping else: # We need to offset the mapping for each batch by the cumulative batch size for k, v in batch.requests_idx_mapping.items(): requests_idx_mapping[k] = v + start_index # Slicing end index for this batch end_index = start_index + len(batch) # We only concatenate batches that did at least one step if batch.encoder_last_hidden_state is None: raise ValueError("Batch encoder_last_hidden_state cannot be None") # Create padded tensor if attention_mask is None: attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_input_length), ) # Copy to correct indices attention_mask[ start_index:end_index, -batch.max_input_length : ] = batch.attention_mask[:, -batch.max_input_length :] # Create padded tensor if decoder_input_ids is None: decoder_input_ids = batch.decoder_input_ids.new_zeros( (total_batch_size, 1), ) # Copy to correct indices decoder_input_ids[start_index:end_index] = batch.decoder_input_ids # Create padded tensor if decoder_attention_mask is None: # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here decoder_attention_mask = batch.attention_mask.new_zeros( (total_batch_size, max_decoder_input_length + padding_right_offset), ) # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated # this batch. All generations are of length `batch.max_decoder_input_length`. left_offset = max_decoder_input_length - batch.max_decoder_input_length if batch.decoder_attention_mask is None: decoder_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = 1 # If it exists, we need to index else: batch_left_offset = ( batch.decoder_attention_mask.shape[1] - batch.max_decoder_input_length - batch.padding_right_offset ) decoder_attention_mask[ start_index:end_index, left_offset:-padding_right_offset, ] = batch.decoder_attention_mask[ :, batch_left_offset : -batch.padding_right_offset, ] # Create padded tensor if encoder_last_hidden_state is None: encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros( ( total_batch_size, max_input_length, batch.encoder_last_hidden_state.shape[-1], ), ) if top_n_tokens_tensor is None: top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros( total_batch_size, ) top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor # Copy to correct indices encoder_last_hidden_state[ start_index:end_index, -batch.max_input_length :, : ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :] batch.encoder_last_hidden_state = None # Ensure that we can update tensors in-place if type(batch.past_key_values[0]) == tuple: batch.past_key_values = [ [t for t in layer] for layer in batch.past_key_values ] # Add eventual padding tokens that were added while concatenating max_tokens += batch.max_tokens + ( max_input_length - batch.max_input_length + max_decoder_input_length - batch.max_decoder_input_length ) * len(batch) start_index = end_index # Determine shapes for new past kv tensors first_past_kvs = batches[0].past_key_values _, num_heads, _, head_dim = first_past_kvs[0][0].shape padded_dec_t_shape = ( total_batch_size, num_heads, (max_decoder_input_length - 1), head_dim, ) padded_enc_t_shape = ( total_batch_size, num_heads, max_input_length, head_dim, ) # Iterate over attention layers for j in range(len(first_past_kvs)): past_key_values.append([]) # Decoder past for k in range(0, 2): # Initialize tensors padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape) past_key_values[j].append(padded_past_values) start_index = 0 for batch in batches: t = batch.past_key_values[j][k] # Clear reference to the original tensor batch.past_key_values[j][k] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past keys and values to remove the padding from previous batches past_seq_len = batch.max_decoder_input_length - 1 padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[ :, :, -past_seq_len:, : ] del t start_index = end_index # Encoder past for k in range(2, 4): # Initialize tensors padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape) past_key_values[j].append(padded_past_values) start_index = 0 for batch in batches: t = batch.past_key_values[j][k] # Clear reference to the original tensor batch.past_key_values[j][k] = None # Slicing end index for this batch end_index = start_index + len(batch) # We slice the past keys and values to remove the padding from previous batches padded_past_values[ start_index:end_index, :, -batch.max_input_length :, : ] = t[:, :, -batch.max_input_length :, :] del t start_index = end_index return cls( batch_id=batches[0].batch_id, requests=requests, requests_idx_mapping=requests_idx_mapping, input_ids=None, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, all_decoder_input_ids=all_decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_last_hidden_state=encoder_last_hidden_state, past_key_values=past_key_values, input_lengths=input_lengths, decoder_input_lengths=decoder_input_lengths, prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length, max_decoder_input_length=max_decoder_input_length, padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) def __len__(self): return len(self.requests) class Seq2SeqLM(Model): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): if torch.cuda.is_available(): device = torch.device("cuda") dtype = torch.float16 if dtype is None else dtype else: if quantize: raise ValueError("quantization is not available on CPU") device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype model = AutoModelForSeq2SeqLM.from_pretrained( model_id, revision=revision, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1 else None, load_in_8bit=quantize == "bitsandbytes", trust_remote_code=trust_remote_code, ) if torch.cuda.is_available() and torch.cuda.device_count() == 1: model = model.cuda() tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) tokenizer.bos_token_id = model.config.decoder_start_token_id super(Seq2SeqLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, ) @property def batch_type(self) -> Type[Seq2SeqLMBatch]: return Seq2SeqLMBatch def decode(self, decoder_ids: List[int]) -> str: return self.tokenizer.decode( decoder_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) def forward( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask: Optional, encoder_last_hidden_state: Optional, past_key_values: Optional = None, ) -> Tuple[ torch.Tensor, torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], ]: # Model Forward outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_last_hidden_state, past_key_values=past_key_values, use_cache=True, ) return ( outputs.logits, outputs.encoder_last_hidden_state, outputs.past_key_values, ) @tracer.start_as_current_span("generate_token") def generate_token( self, batch: Seq2SeqLMBatch ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch], Tuple[int, int]]: start = time.time_ns() if batch.decoder_attention_mask is not None: # slice to the correct shape decoder_attention_mask = batch.decoder_attention_mask[ :, : -batch.padding_right_offset ] else: decoder_attention_mask = None # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]` # internally... if batch.encoder_last_hidden_state is not None: encoder_last_hidden_state = [batch.encoder_last_hidden_state] else: encoder_last_hidden_state = None logits, encoder_last_hidden_state, past = self.forward( batch.input_ids, batch.attention_mask, batch.decoder_input_ids, decoder_attention_mask, encoder_last_hidden_state, batch.past_key_values, ) # Speculation is not active for seq2seq accepted_ids = torch.ones_like(batch.decoder_input_ids)[:, 0] batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens( batch.top_n_tokens, batch.top_n_tokens_tensor, torch.log_softmax(logits[:, -1], -1), accepted_ids, ) start_decode = time.time_ns() # Finished requests generations: List[Generation] = [] stopped = True # Zipped iterator iterator = zip( batch.requests, batch.input_lengths, batch.prefix_offsets, batch.read_offsets, batch.decoder_input_lengths, logits, batch.next_token_choosers, batch.stopping_criterias, batch.all_decoder_input_ids, batch.top_n_tokens, batch_top_token_ids, batch_top_token_logprobs, ) # For each member of the batch for i, ( request, input_length, prefix_offset, read_offset, decoder_input_length, logits, next_token_chooser, stopping_criteria, all_decoder_input_ids, top_n_tokens, top_token_ids, top_token_logprobs, ) in enumerate(iterator): # Select next token next_token_id, logprobs = next_token_chooser( all_decoder_input_ids.view(1, -1), logits[-1:, :] ) # Append next token to decoder tokens all_decoder_input_ids = torch.cat( [all_decoder_input_ids, next_token_id.squeeze(1)] ) new_decoder_input_length = decoder_input_length + 1 # Generated token next_token_logprob = logprobs[-1, next_token_id] next_token_id_squeezed = next_token_id.squeeze() next_token_text, prefix_offset, read_offset = self.decode_token( all_decoder_input_ids, prefix_offset, read_offset ) # Evaluate stopping criteria stop, reason = stopping_criteria(next_token_id, next_token_text) if not stop: stopped = False # Shard generations # All generations will be appended in the rust sharded client if i % self.world_size == self.rank: if stop: # Slice with decoder_input_length to remove padding # Decode all tokens output_text, _, _ = self.decode_token( all_decoder_input_ids, prefix_offset=len(all_decoder_input_ids) - decoder_input_length - 1, read_offset=len(all_decoder_input_ids) - decoder_input_length, skip_special_tokens=True, ) # Get seed if isinstance(next_token_chooser.choice, Sampling): seed = next_token_chooser.choice.seed else: seed = None generated_text = GeneratedText( output_text, stopping_criteria.current_tokens, reason, seed ) else: generated_text = None # Prefill if stopping_criteria.current_tokens == 1 and request.prefill_logprobs: prefill_tokens = Tokens( [self.tokenizer.bos_token_id], [float("nan")], [self.tokenizer.bos_token], [False], ) else: prefill_tokens = None if top_n_tokens > 0: all_top_tokens = [] for (top_token_ids, top_token_logprobs) in zip(top_token_ids, top_token_logprobs): toptoken_texts = self.tokenizer.batch_decode( top_token_ids, clean_up_tokenization_spaces=False, skip_special_tokens=False, ) special_toptokens = [ token_id in self.all_special_ids for token_id in top_token_ids ] top_tokens = Tokens( top_token_ids, top_token_logprobs, toptoken_texts, special_toptokens, ) all_top_tokens.append(top_tokens) top_tokens = all_top_tokens else: top_tokens = None generation = Generation( request.id, prefill_tokens, Tokens( [next_token_id_squeezed], [next_token_logprob], [next_token_text], [next_token_id_squeezed.item() in self.all_special_ids], ), generated_text, top_tokens, ) generations.append(generation) # Update values batch.decoder_input_ids[i] = next_token_id batch.all_decoder_input_ids[i] = all_decoder_input_ids batch.input_lengths[i] = input_length batch.decoder_input_lengths[i] = new_decoder_input_length batch.prefix_offsets[i] = prefix_offset batch.read_offsets[i] = read_offset batch.max_input_length = max(batch.max_input_length, input_length) batch.max_decoder_input_length = max( batch.max_decoder_input_length, new_decoder_input_length ) # We finished all generations in the batch; there is no next batch if stopped: forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, None, (forward_ns, decode_ns) # We don't need input_ids after the prefill forward batch.input_ids = None batch.encoder_last_hidden_state = encoder_last_hidden_state batch.past_key_values = past # Update decoder_attention_mask as we added a new token to input_ids if batch.decoder_attention_mask is not None: batch.decoder_attention_mask[:, -batch.padding_right_offset] = 1 batch.padding_right_offset -= 1 forward_ns = start_decode - start decode_ns = time.time_ns() - start_decode return generations, batch, (forward_ns, decode_ns)
text-generation-inference/server/text_generation_server/models/seq2seq_lm.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/seq2seq_lm.py", "repo_id": "text-generation-inference", "token_count": 16012 }
199
import time import os from datetime import timedelta from loguru import logger from pathlib import Path from typing import Optional, List from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from huggingface_hub.utils import ( LocalEntryNotFoundError, EntryNotFoundError, RevisionNotFoundError, # noqa # Import here to ease try/except in other part of the lib ) WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None) HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"] def _cached_weight_files( model_id: str, revision: Optional[str], extension: str ) -> List[str]: """Guess weight files from the cached revision snapshot directory""" d = _get_cached_revision_directory(model_id, revision) if not d: return [] filenames = _weight_files_from_dir(d, extension) return filenames def _weight_hub_files_from_model_info( info: hf_api.ModelInfo, extension: str ) -> List[str]: return [ s.rfilename for s in info.siblings if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1 and "arguments" not in s.rfilename and "args" not in s.rfilename and "training" not in s.rfilename ] def _weight_files_from_dir(d: Path, extension: str) -> List[str]: # os.walk: do not iterate, just scan for depth 1, not recursively # see _weight_hub_files_from_model_info, that's also what is # done there with the len(s.rfilename.split("/")) == 1 condition root, _, files = next(os.walk(str(d))) filenames = [ os.path.join(root, f) for f in files if f.endswith(extension) and "arguments" not in f and "args" not in f and "adapter" not in f and "training" not in f ] return filenames def _get_cached_revision_directory( model_id: str, revision: Optional[str] ) -> Optional[Path]: if revision is None: revision = "main" repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path( file_download.repo_folder_name(repo_id=model_id, repo_type="model") ) if not repo_cache.is_dir(): # No cache for this model return None refs_dir = repo_cache / "refs" snapshots_dir = repo_cache / "snapshots" # Resolve refs (for instance to convert main to the associated commit sha) if refs_dir.is_dir(): revision_file = refs_dir / revision if revision_file.exists(): with revision_file.open() as f: revision = f.read() # Check if revision folder exists if not snapshots_dir.exists(): return None cached_shas = os.listdir(snapshots_dir) if revision not in cached_shas: # No cache for this revision and we won't try to return a random revision return None return snapshots_dir / revision def weight_hub_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[str]: """Get the weights filenames on the hub""" api = HfApi() if HF_HUB_OFFLINE: filenames = _cached_weight_files(model_id, revision, extension) else: # Online case, fetch model info from the Hub info = api.model_info(model_id, revision=revision) filenames = _weight_hub_files_from_model_info(info, extension) if not filenames: raise EntryNotFoundError( f"No {extension} weights found for model {model_id} and revision {revision}.", None, ) return filenames def try_to_load_from_cache( model_id: str, revision: Optional[str], filename: str ) -> Optional[Path]: """Try to load a file from the Hugging Face cache""" d = _get_cached_revision_directory(model_id, revision) if not d: return None # Check if file exists in cache cached_file = d / filename return cached_file if cached_file.is_file() else None def weight_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[Path]: """Get the local files""" # Local model d = Path(model_id) if d.exists() and d.is_dir(): local_files = _weight_files_from_dir(d, extension) if not local_files: raise FileNotFoundError( f"No local weights found in {model_id} with extension {extension}" ) return [Path(f) for f in local_files] try: filenames = weight_hub_files(model_id, revision, extension) except EntryNotFoundError as e: if extension != ".safetensors": raise e # Try to see if there are pytorch weights pt_filenames = weight_hub_files(model_id, revision, extension=".bin") # Change pytorch extension to safetensors extension # It is possible that we have safetensors weights locally even though they are not on the # hub if we converted weights locally without pushing them filenames = [ f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames ] if WEIGHTS_CACHE_OVERRIDE is not None: files = [] for filename in filenames: p = Path(WEIGHTS_CACHE_OVERRIDE) / filename if not p.exists(): raise FileNotFoundError( f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}." ) files.append(p) return files files = [] for filename in filenames: cache_file = try_to_load_from_cache( model_id, revision=revision, filename=filename ) if cache_file is None: raise LocalEntryNotFoundError( f"File {filename} of model {model_id} not found in " f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. " f"Please run `text-generation-server download-weights {model_id}` first." ) files.append(cache_file) return files def download_weights( filenames: List[str], model_id: str, revision: Optional[str] = None ) -> List[Path]: """Download the safetensors files from the hub""" def download_file(fname, tries=5, backoff: int = 5): local_file = try_to_load_from_cache(model_id, revision, fname) if local_file is not None: logger.info(f"File {fname} already present in cache.") return Path(local_file) for idx in range(tries): try: logger.info(f"Download file: {fname}") stime = time.time() local_file = hf_hub_download( filename=fname, repo_id=model_id, revision=revision, local_files_only=HF_HUB_OFFLINE, ) logger.info( f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}." ) return Path(local_file) except Exception as e: if idx + 1 == tries: raise e logger.error(e) logger.info(f"Retrying in {backoff} seconds") time.sleep(backoff) logger.info(f"Retry {idx + 1}/{tries - 1}") # We do this instead of using tqdm because we want to parse the logs with the launcher start_time = time.time() files = [] for i, filename in enumerate(filenames): file = download_file(filename) elapsed = timedelta(seconds=int(time.time() - start_time)) remaining = len(filenames) - (i + 1) eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0 logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}") files.append(file) return files
text-generation-inference/server/text_generation_server/utils/hub.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/hub.py", "repo_id": "text-generation-inference", "token_count": 3435 }
200
{ "name": "tokenizers-darwin-arm64", "version": "0.13.4-rc1", "os": [ "darwin" ], "cpu": [ "arm64" ], "main": "tokenizers.darwin-arm64.node", "files": [ "tokenizers.darwin-arm64.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/darwin-arm64/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/darwin-arm64/package.json", "repo_id": "tokenizers", "token_count": 268 }
201
{ "name": "tokenizers-win32-arm64-msvc", "version": "0.13.4-rc1", "os": [ "win32" ], "cpu": [ "arm64" ], "main": "tokenizers.win32-arm64-msvc.node", "files": [ "tokenizers.win32-arm64-msvc.node" ], "description": "Tokenizers platform specific bindings", "keywords": [ "napi-rs", "NAPI", "N-API", "Rust", "node-addon", "node-addon-api" ], "license": "MIT", "engines": { "node": ">= 10" }, "publishConfig": { "registry": "https://registry.npmjs.org/", "access": "public" }, "repository": "tokenizers" }
tokenizers/bindings/node/npm/win32-arm64-msvc/package.json/0
{ "file_path": "tokenizers/bindings/node/npm/win32-arm64-msvc/package.json", "repo_id": "tokenizers", "token_count": 277 }
202
extern crate tokenizers as tk; use crate::models::Model; use napi::bindgen_prelude::*; use std::sync::{Arc, RwLock}; use tokenizers::models::bpe::{BpeBuilder, BPE}; use tokenizers::models::wordlevel::{WordLevel, WordLevelBuilder}; use tokenizers::models::wordpiece::{WordPiece, WordPieceBuilder}; pub struct BPEFromFilesTask { pub(crate) builder: Option<BpeBuilder>, } impl Task for BPEFromFilesTask { type Output = BPE; type JsValue = Model; fn compute(&mut self) -> Result<Self::Output> { self .builder .take() .ok_or(Error::from_reason("Empty builder".to_string()))? .build() .map_err(|e| Error::from_reason(format!("{}", e))) } fn resolve(&mut self, _env: Env, output: Self::Output) -> Result<Self::JsValue> { Ok(Model { model: Some(Arc::new(RwLock::new(output.into()))), }) } } pub struct WordPieceFromFilesTask { pub(crate) builder: Option<WordPieceBuilder>, } impl Task for WordPieceFromFilesTask { type Output = WordPiece; type JsValue = Model; fn compute(&mut self) -> Result<Self::Output> { self .builder .take() .ok_or(Error::from_reason("Empty builder".to_string()))? .build() .map_err(|e| Error::from_reason(format!("{}", e))) } fn resolve(&mut self, _env: Env, output: Self::Output) -> Result<Self::JsValue> { Ok(Model { model: Some(Arc::new(RwLock::new(output.into()))), }) } } pub struct WordLevelFromFilesTask { pub(crate) builder: Option<WordLevelBuilder>, } impl Task for WordLevelFromFilesTask { type Output = WordLevel; type JsValue = Model; fn compute(&mut self) -> Result<Self::Output> { self .builder .take() .ok_or(Error::from_reason("Empty builder".to_string()))? .build() .map_err(|e| Error::from_reason(format!("{}", e))) } fn resolve(&mut self, _env: Env, output: Self::Output) -> Result<Self::JsValue> { Ok(Model { model: Some(Arc::new(RwLock::new(output.into()))), }) } }
tokenizers/bindings/node/src/tasks/models.rs/0
{ "file_path": "tokenizers/bindings/node/src/tasks/models.rs", "repo_id": "tokenizers", "token_count": 800 }
203
from typing import List import jieba from tokenizers import NormalizedString, PreTokenizedString, Regex, Tokenizer from tokenizers.decoders import Decoder from tokenizers.models import BPE from tokenizers.normalizers import Normalizer from tokenizers.pre_tokenizers import PreTokenizer class JiebaPreTokenizer: def jieba_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]: splits = [] # we need to call `str(normalized_string)` because jieba expects a str, # not a NormalizedString for token, start, stop in jieba.tokenize(str(normalized_string)): splits.append(normalized_string[start:stop]) return splits # We can also easily do it in one line: # return [normalized_string[w[1] : w[2]] for w in jieba.tokenize(str(normalized_string))] def odd_number_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]: # Just an odd example... splits = [] last = 0 for i, char in enumerate(str(normalized_string)): if char.isnumeric() and int(char) % 2 == 1: splits.append(normalized_string[last:i]) last = i # Don't forget the last one splits.append(normalized_string[last:]) return splits def pre_tokenize(self, pretok: PreTokenizedString): # Let's call split on the PreTokenizedString to split using `self.jieba_split` pretok.split(self.jieba_split) # Here we can call `pretok.split` multiple times if we want to apply # different algorithm, but we generally just need to call it once. pretok.split(self.odd_number_split) class CustomDecoder: def decode(self, tokens: List[str]) -> str: return "".join(tokens) class CustomNormalizer: def normalize(self, normalized: NormalizedString): # Most of these can be replaced by a `Sequence` combining some provided Normalizer, # (ie Sequence([ NFKC(), Replace(Regex("\s+"), " "), Lowercase() ]) # and it should be the prefered way. That being said, here is an example of the kind # of things that can be done here: normalized.nfkc() normalized.filter(lambda char: not char.isnumeric()) normalized.replace(Regex("\s+"), " ") normalized.lowercase() # This section shows how to attach these custom components to the Tokenizer tok = Tokenizer(BPE()) tok.normalizer = Normalizer.custom(CustomNormalizer()) tok.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer()) tok.decoder = Decoder.custom(CustomDecoder()) input = "ๆฐธๅ’Œๆœ่ฃ…้ฅฐๅ“ๆœ‰้™ๅ…ฌๅธ" print("PreTokenize:", input) print(tok.pre_tokenizer.pre_tokenize_str(input)) # [('ๆฐธๅ’Œ', (0, 2)), ('ๆœ่ฃ…', (2, 4)), ('้ฅฐๅ“', (4, 6)), ('ๆœ‰้™ๅ…ฌๅธ', (6, 10))] input = "112233" print("PreTokenize:", input) print(tok.pre_tokenizer.pre_tokenize_str(input)) # [('1', (0, 1)), ('122', (1, 4)), ('3', (4, 5)), ('3', (5, 6))] input = "1234 โ„Œ๐”ข๐”ฉ๐”ฉ๐”ฌ ๐”ฑ๐”ฅ๐”ข๐”ฏ๐”ข ๐“‚๐“Ž ๐’นโ„ฏ๐’ถ๐“‡ ๐••๐•–๐•’๐•ฃ ๐•—๐•ฃ๐•š๐•–๐•Ÿ๐••!" print("Normalize:", input) print(tok.normalizer.normalize_str(input)) # " hello there my dear dear friend!"
tokenizers/bindings/python/examples/custom_components.py/0
{ "file_path": "tokenizers/bindings/python/examples/custom_components.py", "repo_id": "tokenizers", "token_count": 1293 }
204
import json import os from typing import Iterator, List, Optional, Union, Tuple from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.models import Unigram from .base_tokenizer import BaseTokenizer class SentencePieceUnigramTokenizer(BaseTokenizer): """SentencePiece Unigram Tokenizer Represents the Unigram algorithm, with the pretokenization used by SentencePiece """ def __init__( self, vocab: Optional[List[Tuple[str, float]]] = None, replacement: str = "โ–", add_prefix_space: bool = True, ): if vocab is not None: # Let Unigram(..) fail if only one of them is None tokenizer = Tokenizer(Unigram(vocab)) else: tokenizer = Tokenizer(Unigram()) tokenizer.normalizer = normalizers.Sequence( [normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " ")] ) tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) parameters = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(tokenizer, parameters) def train( self, files: Union[str, List[str]], vocab_size: int = 8000, show_progress: bool = True, special_tokens: Optional[List[Union[str, AddedToken]]] = None, initial_alphabet: Optional[List[str]] = None, unk_token: Optional[str] = None, ): """ Train the model using the given files Args: files (:obj:`List[str]`): A list of path to the files that we should use for training vocab_size (:obj:`int`): The size of the final vocabulary, including all tokens and alphabet. show_progress (:obj:`bool`): Whether to show progress bars while training. special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): A list of special tokens the model should know of. initial_alphabet (:obj:`List[str]`, `optional`): A list of characters to include in the initial alphabet, even if not seen in the training dataset. If the strings contain more than one character, only the first one is kept. unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. """ if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer( vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token, ) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator( self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int = 8000, show_progress: bool = True, special_tokens: Optional[List[Union[str, AddedToken]]] = None, initial_alphabet: Optional[List[str]] = None, unk_token: Optional[str] = None, length: Optional[int] = None, ): """ Train the model using the given iterator Args: iterator (:obj:`Union[Iterator[str], Iterator[Iterator[str]]]`): Any iterator over strings or list of strings vocab_size (:obj:`int`): The size of the final vocabulary, including all tokens and alphabet. show_progress (:obj:`bool`): Whether to show progress bars while training. special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): A list of special tokens the model should know of. initial_alphabet (:obj:`List[str]`, `optional`): A list of characters to include in the initial alphabet, even if not seen in the training dataset. If the strings contain more than one character, only the first one is kept. unk_token (:obj:`str`, `optional`): The unknown token to be used by the model. length (:obj:`int`, `optional`): The total number of sequences in the iterator. This is used to provide meaningful progress tracking """ if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer( vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token, ) self._tokenizer.train_from_iterator( iterator, trainer=trainer, length=length, ) @staticmethod def from_spm(filename: str): try: import sys sys.path.append(".") import sentencepiece_model_pb2 as model except Exception: raise Exception( "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required." ) m = model.ModelProto() m.ParseFromString(open(filename, "rb").read()) precompiled_charsmap = m.normalizer_spec.precompiled_charsmap vocab = [(piece.piece, piece.score) for piece in m.pieces] unk_id = m.trainer_spec.unk_id model_type = m.trainer_spec.model_type byte_fallback = m.trainer_spec.byte_fallback if model_type != 1: raise Exception( "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" ) replacement = "โ–" add_prefix_space = True tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback)) if precompiled_charsmap: tokenizer.normalizer = normalizers.Sequence( [ normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(" {2,}"), " "), ] ) else: tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")]) tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) parameters = { "model": "SentencePieceUnigram", } obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters) BaseTokenizer.__init__(obj, tokenizer, parameters) return obj
tokenizers/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py", "repo_id": "tokenizers", "token_count": 3351 }
205
import transformers from tokenizers.implementations import SentencePieceUnigramTokenizer, BaseTokenizer from tokenizers.processors import TemplateProcessing from tokenizers.models import Unigram, BPE from tokenizers import decoders from tokenizers import Tokenizer, Regex from tokenizers.normalizers import ( StripAccents, NFKD, Lowercase, Sequence, BertNormalizer, Precompiled, Replace, ) from tokenizers.pre_tokenizers import ( Digits, WhitespaceSplit, Metaspace, Sequence as PSequence, ) import json import unicodedata import sys import os import datetime import argparse sys.path.append(".") from spm_parity_check import check_details from sentencepiece_extractor import SentencePieceExtractor def check_number_comma(piece: str) -> bool: return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit() def get_proto(filename: str): try: import sys sys.path.append(".") import sentencepiece_model_pb2 as model except Exception: raise Exception( "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required." ) m = model.ModelProto() m.ParseFromString(open(filename, "rb").read()) return m class Converter: def __init__(self, original_tokenizer): self.original_tokenizer = original_tokenizer def converted(self) -> Tokenizer: raise NotImplementedError() class SpmConverter(Converter): def __init__(self, *args): super().__init__(*args) self.proto = get_proto(self.original_tokenizer.vocab_file) def vocab(self, proto): return [(piece.piece, piece.score) for piece in proto.pieces] def unk_id(self, proto): return proto.trainer_spec.unk_id def tokenizer(self, proto): model_type = proto.trainer_spec.model_type vocab = self.vocab(proto) unk_id = self.unk_id(proto) if model_type == 1: tokenizer = Tokenizer(Unigram(vocab, unk_id)) elif model_type == 2: vocab, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract() tokenizer = Tokenizer( BPE(vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True) ) else: raise Exception( "You're trying to run a `Unigram` model but you're file was trained with a different algorithm" ) return tokenizer def normalizer(self, proto): precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap return Sequence([Precompiled(precompiled_charsmap), Replace(Regex(" {2,}"), " ")]) def post_processor(self, tokenizer): return None def converted(self): tokenizer = self.tokenizer(self.proto) # Tokenizer assemble tokenizer.normalizer = self.normalizer(self.proto) replacement = "โ–" add_prefix_space = True tokenizer.pre_tokenizer = Metaspace( replacement=replacement, add_prefix_space=add_prefix_space ) tokenizer.decoder = decoders.Metaspace( replacement=replacement, add_prefix_space=add_prefix_space ) post_processor = self.post_processor(tokenizer) if post_processor: tokenizer.post_processor = post_processor # TODO what parameters should we give ? parameters = {} return BaseTokenizer(tokenizer, parameters) class AlbertConverter(SpmConverter): def vocab(self, proto): return [ (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) for piece in proto.pieces ] def normalizer(self, proto): normalizers = [Replace("``", '"'), Replace("''", '"')] if not self.original_tokenizer.keep_accents: normalizers.append(NFKD()) normalizers.append(StripAccents()) if self.original_tokenizer.do_lower_case: normalizers.append(Lowercase()) precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap normalizers.append(Precompiled(precompiled_charsmap)) normalizers.append(Replace(Regex(" {2,}"), " ")) return Sequence(normalizers) def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["[CLS]", "$0", "[SEP]"], seq_b=["$1", "[SEP]"], special_tokens=[ ("[CLS]", tokenizer.get_vocab()["[CLS]"]), ("[SEP]", tokenizer.get_vocab()["[SEP]"]), ], ) class CamembertConverter(SpmConverter): def vocab(self, proto): vocab = [ ("<s>NOTUSED", 0.0), ("<pad>", 0.0), ("</s>NOTUSED", 0.0), ("<unk>", 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces] return vocab def unk_id(self, proto): # See vocab unk position return 3 def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["<s>", "$0", "</s>"], seq_b=["$1", "</s>"], special_tokens=[ ("<s>", tokenizer.get_vocab()["<s>"]), ("</s>", tokenizer.get_vocab()["</s>"]), ], ) class MBartConverter(SpmConverter): def vocab(self, proto): vocab = [ ("<s>", 0.0), ("<pad>", 0.0), ("</s>", 0.0), ("<unk>", 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] vocab += [ ("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ] return vocab def unk_id(self, proto): return 3 def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["$0", "</s>", "en_XX"], seq_b=["$1", "</s>"], special_tokens=[ ("en_XX", tokenizer.get_vocab()["en_XX"]), ("</s>", tokenizer.get_vocab()["</s>"]), ], ) class XLMRobertaConverter(SpmConverter): def vocab(self, proto): vocab = [ ("<s>", 0.0), ("<pad>", 0.0), ("</s>", 0.0), ("<unk>", 0.0), ] vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] return vocab def unk_id(self, proto): unk_id = 3 return unk_id def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["<s>", "$0", "</s>"], seq_b=["$1", "</s>"], special_tokens=[ ("<s>", tokenizer.get_vocab()["<s>"]), ("</s>", tokenizer.get_vocab()["</s>"]), ], ) class XLNetConverter(SpmConverter): def vocab(self, proto): return [ (piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) for piece in proto.pieces ] def normalizer(self, proto): normalizers = [Replace("``", '"'), Replace("''", '"')] if not self.original_tokenizer.keep_accents: normalizers.append(NFKD()) normalizers.append(StripAccents()) if self.original_tokenizer.do_lower_case: normalizers.append(Lowercase()) precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap normalizers.append(Precompiled(precompiled_charsmap)) normalizers.append(Replace(Regex(" {2,}"), " ")) return Sequence(normalizers) def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["$0", "<sep>", "<cls>"], seq_b=["$1", "<sep>"], special_tokens=[ ("<sep>", tokenizer.get_vocab()["<sep>"]), ("<cls>", tokenizer.get_vocab()["<cls>"]), ], ) class ReformerConverter(SpmConverter): pass class PegasusConverter(SpmConverter): offset = 103 def vocab(self, proto): vocab = [ (self.original_tokenizer.pad_token, 0), (self.original_tokenizer.eos_token, 0), ] vocab += [(f"unk_{i}", -100) for i in range(2, 2 + self.offset)] vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]] return vocab def unk_id(self, proto): return proto.trainer_spec.unk_id + self.offset def post_processor(self, tokenizer): eos = self.original_tokenizer.eos_token return TemplateProcessing( seq_a=["$0", eos], seq_b=["$1", eos], special_tokens=[(eos, tokenizer.get_vocab()[eos])], ) class T5Converter(SpmConverter): def post_processor(self, tokenizer): return TemplateProcessing( seq_a=["$0", "</s>"], seq_b=["$1", "</s>"], special_tokens=[("</s>", tokenizer.get_vocab()["</s>"])], ) CONVERTERS = { "AlbertTokenizer": AlbertConverter, "CamembertTokenizer": CamembertConverter, "XLMRobertaTokenizer": XLMRobertaConverter, "MBartTokenizer": MBartConverter, "XLNetTokenizer": XLNetConverter, "ReformerTokenizer": ReformerConverter, "PegasusTokenizer": PegasusConverter, "T5Tokenizer": T5Converter, } def check(pretrained, filename): transformer_tokenizer = transformers.AutoTokenizer.from_pretrained(pretrained) converter_class = CONVERTERS[transformer_tokenizer.__class__.__name__] tokenizer = converter_class(transformer_tokenizer).converted() now = datetime.datetime.now trans_total_time = datetime.timedelta(seconds=0) tok_total_time = datetime.timedelta(seconds=0) with open(filename, "r") as f: for i, line in enumerate(f): line = line.strip() start = now() ids = transformer_tokenizer.encode(line) trans = now() tok_ids = tokenizer.encode(line).ids tok = now() trans_total_time += trans - start tok_total_time += tok - trans if ids != tok_ids: if check_details(line, ids, tok_ids, transformer_tokenizer, tokenizer): continue assert ids == tok_ids, f"Error in line {i}: {line} {ids} != {tok_ids}" tokenizer.save(f"{pretrained.replace('/', '-')}.json") return ("OK", trans_total_time / tok_total_time) def main(): pretraineds = [ "albert-base-v1", "albert-large-v1", "albert-xlarge-v1", "albert-xxlarge-v1", "albert-base-v2", "albert-large-v2", "albert-xlarge-v2", "albert-xxlarge-v2", "camembert-base", "xlm-roberta-base", "xlm-roberta-large", "xlm-roberta-large-finetuned-conll02-dutch", "xlm-roberta-large-finetuned-conll02-spanish", "xlm-roberta-large-finetuned-conll03-english", "xlm-roberta-large-finetuned-conll03-german", "facebook/mbart-large-en-ro", "facebook/mbart-large-cc25", "xlnet-base-cased", "xlnet-large-cased", "google/reformer-crime-and-punishment", "t5-small", "google/pegasus-large", ] parser = argparse.ArgumentParser() parser.add_argument( "--filename", required=True, type=str, help="The filename that we are going to encode in both versions to check that conversion worked", ) parser.add_argument( "--models", type=lambda s: s.split(","), default=pretraineds, help=f"The pretrained tokenizers you want to test agains, (default: {pretraineds})", ) args = parser.parse_args() print(args.filename) model_len = 50 status_len = 6 speedup_len = 8 print(f"|{'Model':^{model_len}}|{'Status':^{status_len}}|{'Speedup':^{speedup_len}}|") print(f"|{'-'*model_len}|{'-'*status_len}|{'-'*speedup_len}|") for pretrained in args.models: status, speedup = check(pretrained, args.filename) print( f"|{pretrained:<{model_len}}|{status:^{status_len}}|{speedup:^{speedup_len - 1}.2f}x|" ) if __name__ == "__main__": main()
tokenizers/bindings/python/scripts/convert.py/0
{ "file_path": "tokenizers/bindings/python/scripts/convert.py", "repo_id": "tokenizers", "token_count": 6438 }
206
use pyo3::exceptions; use pyo3::prelude::*; use pyo3::types::*; use std::marker::PhantomData; use std::sync::{Arc, Mutex}; mod iterators; mod normalization; mod pretokenization; mod regex; pub use iterators::*; pub use normalization::*; pub use pretokenization::*; pub use regex::*; // PyChar // This type is a temporary hack to accept `char` as argument // To be removed once https://github.com/PyO3/pyo3/pull/1282 has been released pub struct PyChar(pub char); impl FromPyObject<'_> for PyChar { fn extract(obj: &PyAny) -> PyResult<Self> { let s = <PyString as PyTryFrom<'_>>::try_from(obj)?.to_str()?; let mut iter = s.chars(); if let (Some(ch), None) = (iter.next(), iter.next()) { Ok(Self(ch)) } else { Err(exceptions::PyValueError::new_err( "expected a string of length 1", )) } } } // RefMut utils pub trait DestroyPtr { fn destroy(&mut self); } pub struct RefMutGuard<'r, T: DestroyPtr + Clone> { content: T, r: PhantomData<&'r mut T>, } impl<T: DestroyPtr + Clone> RefMutGuard<'_, T> { pub fn new(content: T) -> Self { Self { content, r: PhantomData, } } pub fn get(&self) -> T { self.content.clone() } } impl<T: DestroyPtr + Clone> Drop for RefMutGuard<'_, T> { fn drop(&mut self) { self.content.destroy() } } #[derive(Clone)] pub struct RefMutContainer<T> { inner: Arc<Mutex<Option<*mut T>>>, } impl<T> RefMutContainer<T> { pub fn new(content: &mut T) -> Self { Self { inner: Arc::new(Mutex::new(Some(content))), } } pub fn map<F: FnOnce(&T) -> U, U>(&self, f: F) -> Option<U> { let lock = self.inner.lock().unwrap(); let ptr = lock.as_ref()?; Some(f(unsafe { ptr.as_ref().unwrap() })) } pub fn map_mut<F: FnOnce(&mut T) -> U, U>(&mut self, f: F) -> Option<U> { let lock = self.inner.lock().unwrap(); let ptr = lock.as_ref()?; Some(f(unsafe { ptr.as_mut().unwrap() })) } } impl<T> DestroyPtr for RefMutContainer<T> { fn destroy(&mut self) { self.inner.lock().unwrap().take(); } } unsafe impl<T: Send> Send for RefMutContainer<T> {} unsafe impl<T: Sync> Sync for RefMutContainer<T> {}
tokenizers/bindings/python/src/utils/mod.rs/0
{ "file_path": "tokenizers/bindings/python/src/utils/mod.rs", "repo_id": "tokenizers", "token_count": 1057 }
207
# Training from memory In the [Quicktour](quicktour), we saw how to build and train a tokenizer using text files, but we can actually use any Python Iterator. In this section we'll see a few different ways of training our tokenizer. For all the examples listed below, we'll use the same [`~tokenizers.Tokenizer`] and [`~tokenizers.trainers.Trainer`], built as following: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START init_tokenizer_trainer", "end-before": "END init_tokenizer_trainer", "dedent": 8} </literalinclude> This tokenizer is based on the [`~tokenizers.models.Unigram`] model. It takes care of normalizing the input using the NFKC Unicode normalization method, and uses a [`~tokenizers.pre_tokenizers.ByteLevel`] pre-tokenizer with the corresponding decoder. For more information on the components used here, you can check [here](components). ## The most basic way As you probably guessed already, the easiest way to train our tokenizer is by using a `List`{.interpreted-text role="obj"}: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_basic", "end-before": "END train_basic", "dedent": 8} </literalinclude> Easy, right? You can use anything working as an iterator here, be it a `List`{.interpreted-text role="obj"}, `Tuple`{.interpreted-text role="obj"}, or a `np.Array`{.interpreted-text role="obj"}. Anything works as long as it provides strings. ## Using the ๐Ÿค— Datasets library An awesome way to access one of the many datasets that exist out there is by using the ๐Ÿค— Datasets library. For more information about it, you should check [the official documentation here](https://huggingface.co/docs/datasets/). Let's start by loading our dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START load_dataset", "end-before": "END load_dataset", "dedent": 8} </literalinclude> The next step is to build an iterator over this dataset. The easiest way to do this is probably by using a generator: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START def_batch_iterator", "end-before": "END def_batch_iterator", "dedent": 8} </literalinclude> As you can see here, for improved efficiency we can actually provide a batch of examples used to train, instead of iterating over them one by one. By doing so, we can expect performances very similar to those we got while training directly from files. With our iterator ready, we just need to launch the training. In order to improve the look of our progress bars, we can specify the total length of the dataset: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START train_datasets", "end-before": "END train_datasets", "dedent": 8} </literalinclude> And that's it! ## Using gzip files Since gzip files in Python can be used as iterators, it is extremely simple to train on such files: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START single_gzip", "end-before": "END single_gzip", "dedent": 8} </literalinclude> Now if we wanted to train from multiple gzip files, it wouldn't be much harder: <literalinclude> {"path": "../../bindings/python/tests/documentation/test_tutorial_train_from_iterators.py", "language": "python", "start-after": "START multi_gzip", "end-before": "END multi_gzip", "dedent": 8} </literalinclude> And voilร !
tokenizers/docs/source-doc-builder/training_from_memory.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/training_from_memory.mdx", "repo_id": "tokenizers", "token_count": 1199 }
208
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("./_ext")) sys.path.insert(0, os.path.abspath(".")) # -- Project information ----------------------------------------------------- project = "tokenizers" copyright = "2020, huggingface" author = "huggingface" # The full version, including alpha/beta/rc tags release = "" # -- Custom information ------------------------------------------------------ # The possible values for languages (used by `_ext/entities`) languages = ["node", "rust", "python"] # This defines the version used to generate links to docs.rs rust_version = "latest" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon", "entities", "rust_doc", "toctree_tags"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {"analytics_id": "UA-83738774-2"} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] def setup(app): for language in languages: if not tags.has(language): exclude_patterns.append(f"tutorials/{language}/*") app.add_css_file("css/huggingface.css") app.add_css_file("css/code-snippets.css") app.add_js_file("js/custom.js")
tokenizers/docs/source/conf.py/0
{ "file_path": "tokenizers/docs/source/conf.py", "repo_id": "tokenizers", "token_count": 781 }
209
#[macro_use] extern crate criterion; mod common; use std::fs::File; use std::io::{BufRead, BufReader}; use std::path::Path; use criterion::Criterion; use tokenizers::models::wordpiece::{WordPiece, WordPieceTrainerBuilder}; use tokenizers::normalizers::{BertNormalizer, NormalizerWrapper}; use tokenizers::pre_tokenizers::bert::BertPreTokenizer; use tokenizers::processors::bert::BertProcessing; use tokenizers::{decoders, EncodeInput, Model, TokenizerImpl}; use common::{iter_bench_encode, iter_bench_encode_batch, iter_bench_train}; use tokenizers::decoders::DecoderWrapper; use tokenizers::pre_tokenizers::whitespace::Whitespace; use tokenizers::processors::PostProcessorWrapper; static BATCH_SIZE: usize = 1_000; type BertTokenizer = TokenizerImpl< WordPiece, BertNormalizer, BertPreTokenizer, BertProcessing, decoders::wordpiece::WordPiece, >; /// Resembling the BertTokenizer implementation from the Python bindings. fn create_bert_tokenizer(wp: WordPiece) -> BertTokenizer { let sep_id = *wp.get_vocab().get("[SEP]").unwrap(); let cls_id = *wp.get_vocab().get("[CLS]").unwrap(); let mut tokenizer = TokenizerImpl::new(wp); tokenizer.with_pre_tokenizer(BertPreTokenizer); tokenizer.with_normalizer(BertNormalizer::default()); tokenizer.with_decoder(decoders::wordpiece::WordPiece::default()); tokenizer.with_post_processor(BertProcessing::new( ("[SEP]".to_string(), sep_id), ("[CLS]".to_string(), cls_id), )); tokenizer } pub fn bench_bert(c: &mut Criterion) { let wp = WordPiece::from_file("data/bert-base-uncased-vocab.txt") .build() .unwrap(); let tokenizer = create_bert_tokenizer(wp); let mut lines: Vec<EncodeInput> = vec![]; let mut batches: Vec<Vec<EncodeInput>> = vec![vec![]]; for line in BufReader::new(File::open(Path::new("data/big.txt")).unwrap()).lines() { let line: EncodeInput = line.unwrap().into(); lines.push(line.clone()); if batches.last().unwrap().len() >= BATCH_SIZE { batches.push(vec![]); } batches.last_mut().unwrap().push(line); } c.bench_function("WordPiece BERT encode", |b| { b.iter_custom(|iters| iter_bench_encode(iters, &tokenizer, &lines)) }); c.bench_function("WordPiece BERT encode batch", |b| { b.iter_custom(|iters| iter_bench_encode_batch(iters, &tokenizer, &batches)) }); } fn bench_train(c: &mut Criterion) { let mut trainer = WordPieceTrainerBuilder::default() .show_progress(false) .build(); type Tok = TokenizerImpl< WordPiece, NormalizerWrapper, Whitespace, PostProcessorWrapper, DecoderWrapper, >; let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Whitespace {}); c.bench_function("WordPiece Train vocabulary (small)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/small.txt".to_string()], ) }) }); let mut tokenizer = Tok::new(WordPiece::default()); tokenizer.with_pre_tokenizer(Whitespace {}); c.bench_function("WordPiece Train vocabulary (big)", |b| { b.iter_custom(|iters| { iter_bench_train( iters, &mut tokenizer, &mut trainer, vec!["data/big.txt".to_string()], ) }) }); } criterion_group! { name = bert_benches; config = Criterion::default().sample_size(20); targets = bench_bert } criterion_group! { name = benches_train; config = Criterion::default().sample_size(10); targets = bench_train } criterion_main!(bert_benches, benches_train);
tokenizers/tokenizers/benches/bert_benchmark.rs/0
{ "file_path": "tokenizers/tokenizers/benches/bert_benchmark.rs", "repo_id": "tokenizers", "token_count": 1642 }
210
use crate::tokenizer::{Decoder, Result}; use serde::{Deserialize, Serialize}; #[derive(Deserialize, Clone, Debug, Serialize, Default)] /// Strip is a simple trick which converts tokens looking like `<0x61>` /// to pure bytes, and attempts to make them into a string. If the tokens /// cannot be decoded you will get ๏ฟฝ instead for each inconvertable byte token #[serde(tag = "type")] #[non_exhaustive] pub struct Strip { pub content: char, pub start: usize, pub stop: usize, } impl Strip { pub fn new(content: char, start: usize, stop: usize) -> Self { Self { content, start, stop, } } } impl Decoder for Strip { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { Ok(tokens .into_iter() .map(|token| { let chars: Vec<char> = token.chars().collect(); let mut start_cut = 0; for (i, &c) in chars.iter().enumerate().take(self.start) { if c == self.content { start_cut = i + 1; continue; } else { break; } } let mut stop_cut = chars.len(); for i in 0..self.stop { let index = chars.len() - i - 1; if chars[index] == self.content { stop_cut = index; continue; } else { break; } } let new_token: String = chars[start_cut..stop_cut].iter().collect(); new_token }) .collect()) } } #[cfg(test)] mod tests { use super::*; #[test] fn decode() { let decoder = Strip::new('H', 1, 0); let res = decoder .decode_chain(vec!["Hey".into(), " friend!".into(), "HHH".into()]) .unwrap(); assert_eq!(res, vec!["ey", " friend!", "HH"]); let decoder = Strip::new('y', 0, 1); let res = decoder .decode_chain(vec!["Hey".into(), " friend!".into()]) .unwrap(); assert_eq!(res, vec!["He", " friend!"]); } }
tokenizers/tokenizers/src/decoders/strip.rs/0
{ "file_path": "tokenizers/tokenizers/src/decoders/strip.rs", "repo_id": "tokenizers", "token_count": 1217 }
211
use super::{super::OrderedVocabIter, WordLevel, WordLevelBuilder}; use serde::{ de::{MapAccess, Visitor}, ser::SerializeStruct, Deserialize, Deserializer, Serialize, Serializer, }; use std::collections::HashSet; impl Serialize for WordLevel { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { let mut model = serializer.serialize_struct("WordLevel", 3)?; let ordered_vocab = OrderedVocabIter::new(&self.vocab_r); model.serialize_field("type", "WordLevel")?; model.serialize_field("vocab", &ordered_vocab)?; model.serialize_field("unk_token", &self.unk_token)?; model.end() } } impl<'de> Deserialize<'de> for WordLevel { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'de>, { deserializer.deserialize_struct( "WordLevel", &["type", "vocab", "unk_token"], WordLevelVisitor, ) } } struct WordLevelVisitor; impl<'de> Visitor<'de> for WordLevelVisitor { type Value = WordLevel; fn expecting(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result { write!(fmt, "struct WordLevel") } fn visit_map<V>(self, mut map: V) -> std::result::Result<Self::Value, V::Error> where V: MapAccess<'de>, { let mut builder = WordLevelBuilder::new(); let mut missing_fields = vec![ // for retrocompatibility the "type" field is not mandatory "unk_token", "vocab", ] .into_iter() .collect::<HashSet<_>>(); while let Some(key) = map.next_key::<String>()? { match key.as_ref() { "vocab" => builder = builder.vocab(map.next_value()?), "unk_token" => builder = builder.unk_token(map.next_value()?), "type" => match map.next_value()? { "WordLevel" => {} u => { return Err(serde::de::Error::invalid_value( serde::de::Unexpected::Str(u), &"WordLevel", )) } }, _ => {} } missing_fields.remove::<str>(&key); } if !missing_fields.is_empty() { Err(serde::de::Error::missing_field( missing_fields.iter().next().unwrap(), )) } else { Ok(builder.build().map_err(serde::de::Error::custom)?) } } } #[cfg(test)] mod tests { use crate::models::wordlevel::{Vocab, WordLevel, WordLevelBuilder}; #[test] fn serde() { let wl = WordLevel::default(); let wl_s = r#"{"type":"WordLevel","vocab":{},"unk_token":"<unk>"}"#; assert_eq!(serde_json::to_string(&wl).unwrap(), wl_s); assert_eq!(serde_json::from_str::<WordLevel>(wl_s).unwrap(), wl); } #[test] fn incomplete_vocab() { let vocab: Vocab = [("<unk>".into(), 0), ("b".into(), 2)] .iter() .cloned() .collect(); let wordlevel = WordLevelBuilder::default() .vocab(vocab) .unk_token("<unk>".to_string()) .build() .unwrap(); let wl_s = r#"{"type":"WordLevel","vocab":{"<unk>":0,"b":2},"unk_token":"<unk>"}"#; assert_eq!(serde_json::to_string(&wordlevel).unwrap(), wl_s); assert_eq!(serde_json::from_str::<WordLevel>(wl_s).unwrap(), wordlevel); } #[test] fn deserialization_should_fail() { let missing_unk = r#"{"type":"WordLevel","vocab":{}}"#; assert!(serde_json::from_str::<WordLevel>(missing_unk) .unwrap_err() .to_string() .starts_with("missing field `unk_token`")); let wrong_type = r#"{"type":"WordPiece","vocab":{}}"#; assert!(serde_json::from_str::<WordLevel>(wrong_type) .unwrap_err() .to_string() .starts_with("invalid value: string \"WordPiece\", expected WordLevel")); } }
tokenizers/tokenizers/src/models/wordlevel/serialization.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/wordlevel/serialization.rs", "repo_id": "tokenizers", "token_count": 2084 }
212
use serde::{Deserialize, Serialize}; use crate::tokenizer::{PreTokenizedString, PreTokenizer, Result, SplitDelimiterBehavior}; use crate::utils::macro_rules_attribute; #[derive(Clone, Debug, PartialEq, Eq)] /// Pre tokenizes the numbers into single tokens. If individual_digits is set /// to true, then all digits are splitted into individual tokens. #[non_exhaustive] #[macro_rules_attribute(impl_serde_type!)] pub struct Digits { pub individual_digits: bool, } impl Digits { pub fn new(individual_digits: bool) -> Self { Self { individual_digits } } } impl Default for Digits { fn default() -> Self { Self::new(false) } } impl PreTokenizer for Digits { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { if self.individual_digits { pretokenized.split(|_, normalized| { normalized.split(char::is_numeric, SplitDelimiterBehavior::Isolated) }) } else { pretokenized.split(|_, normalized| { normalized.split(char::is_numeric, SplitDelimiterBehavior::Contiguous) }) } } } #[cfg(test)] mod tests { use super::*; use crate::{OffsetReferential, OffsetType}; #[test] fn numbers() { let pretok = Digits::new(false); let mut pretokenized = PreTokenizedString::from("Hey 123 friend!"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("Hey ", (0, 4)), ("123", (4, 7)), (" friend!", (7, 15))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("Hey ", (0, 4)), ("123", (4, 7)), (" friend!", (7, 15))] ); } #[test] fn individual_digits() { let pretok = Digits::new(true); let mut pretokenized = PreTokenizedString::from("Hey 123 friend!"); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hey ", (0, 4)), ("1", (4, 5)), ("2", (5, 6)), ("3", (6, 7)), (" friend!", (7, 15)) ] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hey ", (0, 4)), ("1", (4, 5)), ("2", (5, 6)), ("3", (6, 7)), (" friend!", (7, 15)) ] ); } }
tokenizers/tokenizers/src/pre_tokenizers/digits.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/digits.rs", "repo_id": "tokenizers", "token_count": 1667 }
213
use crate::parallelism::*; use crate::tokenizer::{Offsets, Token}; use crate::utils::padding::PaddingDirection; use crate::utils::truncation::TruncationDirection; use serde::{Deserialize, Serialize}; use std::collections::HashMap; use std::ops::Range; /// Represents the output of a `Tokenizer`. #[derive(Default, PartialEq, Debug, Clone, Serialize, Deserialize)] pub struct Encoding { /// IDs produced by the `Tokenizer` ids: Vec<u32>, /// Type of the IDs type_ids: Vec<u32>, /// Tokens associated to each ID tokens: Vec<String>, /// Indice of the word associated to each token/ID words: Vec<Option<u32>>, /// Offsets of the token/ID from the NormalizedString offsets: Vec<Offsets>, /// Mask identifying special tokens special_tokens_mask: Vec<u32>, /// Mask identifying padding tokens for the attention mechanism attention_mask: Vec<u32>, /// A list of overflowing Encoding generated when we got truncated overflowing: Vec<Encoding>, /// Ranges of tokens covered by each sequence. If this is empty we consider /// there is only one sequence in this Encoding, and that it covers the entire range. sequence_ranges: HashMap<usize, Range<usize>>, } impl Encoding { #[allow(clippy::too_many_arguments)] pub fn new( ids: Vec<u32>, type_ids: Vec<u32>, tokens: Vec<String>, words: Vec<Option<u32>>, offsets: Vec<Offsets>, special_tokens_mask: Vec<u32>, attention_mask: Vec<u32>, overflowing: Vec<Self>, sequence_ranges: HashMap<usize, Range<usize>>, ) -> Self { Self { ids, type_ids, tokens, words, offsets, special_tokens_mask, attention_mask, overflowing, sequence_ranges, } } pub fn with_capacity(len: usize) -> Self { Self { ids: Vec::with_capacity(len), type_ids: Vec::with_capacity(len), tokens: Vec::with_capacity(len), words: Vec::with_capacity(len), offsets: Vec::with_capacity(len), special_tokens_mask: Vec::with_capacity(len), attention_mask: Vec::with_capacity(len), overflowing: vec![], sequence_ranges: HashMap::new(), } } pub fn from_tokens(tokens: Vec<Token>, type_id: u32) -> Self { let length = tokens.len(); let (ids, tokens, offsets) = tokens.into_iter().fold( ( Vec::with_capacity(length), Vec::with_capacity(length), Vec::with_capacity(length), ), |(mut ids, mut tokens, mut offsets), t| { ids.push(t.id); tokens.push(t.value); offsets.push(t.offsets); (ids, tokens, offsets) }, ); Self { ids, tokens, offsets, words: vec![None; length], type_ids: vec![type_id; length], attention_mask: vec![1; length], special_tokens_mask: vec![0; length], overflowing: vec![], sequence_ranges: HashMap::new(), } } /// Whether this Encoding is empty pub fn is_empty(&self) -> bool { self.ids.is_empty() } /// Return the total length of this Encoding pub fn len(&self) -> usize { self.ids.len() } /// Return the number of sequences combined in this Encoding pub fn n_sequences(&self) -> usize { if self.sequence_ranges.is_empty() { 1 } else { self.sequence_ranges.len() } } /// Set the given sequence id for the whole range of tokens contained in this Encoding pub fn set_sequence_id(&mut self, sequence_id: usize) { self.sequence_ranges.insert(sequence_id, 0..self.len()); } pub fn get_tokens(&self) -> &[String] { &self.tokens[..] } pub fn get_word_ids(&self) -> &[Option<u32>] { &self.words } pub fn get_word_ids_mut(&mut self) -> &mut [Option<u32>] { &mut self.words } pub fn get_sequence_ids(&self) -> Vec<Option<usize>> { let mut sequences = vec![None; self.len()]; for seq_id in 0..self.n_sequences() { let range = self.sequence_range(seq_id); let seq_len = range.len(); sequences.splice(range, std::iter::repeat(Some(seq_id)).take(seq_len)); } sequences } pub fn get_ids(&self) -> &[u32] { &self.ids } pub fn get_type_ids(&self) -> &[u32] { &self.type_ids } pub fn set_type_ids(&mut self, type_ids: Vec<u32>) { self.type_ids = type_ids; } pub fn get_offsets(&self) -> &[Offsets] { &self.offsets } pub fn get_offsets_mut(&mut self) -> &mut [Offsets] { &mut self.offsets } pub fn get_special_tokens_mask(&self) -> &[u32] { &self.special_tokens_mask } pub fn get_attention_mask(&self) -> &[u32] { &self.attention_mask } pub fn get_overflowing(&self) -> &Vec<Encoding> { &self.overflowing } pub fn set_overflowing(&mut self, overflowing: Vec<Encoding>) { self.overflowing = overflowing; } pub fn get_overflowing_mut(&mut self) -> &mut Vec<Encoding> { &mut self.overflowing } pub fn take_overflowing(&mut self) -> Vec<Encoding> { std::mem::take(&mut self.overflowing) } pub(crate) fn process_tokens_with_offsets_mut<F>(&mut self, func: F) where F: FnMut((usize, (&String, &mut Offsets))), { self.tokens .iter() .zip(self.offsets.iter_mut()) .enumerate() .for_each(func) } /// Returns the range to target to retrieve something (word_id, offsets, ..) related to the /// given sequence id fn sequence_range(&self, sequence_id: usize) -> Range<usize> { self.sequence_ranges .get(&sequence_id) .cloned() .unwrap_or(0..self.len()) } /// Returns the index of the sequence containing the given token pub fn token_to_sequence(&self, token: usize) -> Option<usize> { if token > self.len() { None } else if self.sequence_ranges.is_empty() { Some(0) } else { self.sequence_ranges.iter().find_map(|(seq_id, range)| { if range.contains(&token) { Some(*seq_id) } else { None } }) } } /// Get the encoded tokens corresponding to the word at the given index in the input sequence, /// with the form (start_token, end_token + 1) pub fn word_to_tokens(&self, word: u32, sequence_id: usize) -> Option<(usize, usize)> { let (mut start, mut end) = (None, None); let sequence_range = self.sequence_range(sequence_id); self.words .get(sequence_range.clone())? .iter() .enumerate() .take_while(|(_, w)| **w <= Some(word)) .filter(|(_, w)| **w == Some(word)) .for_each(|(i, _)| { if start.is_none() || Some(i) < start { start = Some(i); } if end.is_none() || Some(i) >= end { end = Some(i + 1); } }); if let (Some(start), Some(end)) = (start, end) { Some((sequence_range.start + start, sequence_range.start + end)) } else { None } } /// Get the offsets of the word at the given index in the input sequence. pub fn word_to_chars(&self, word: u32, sequence_id: usize) -> Option<Offsets> { self.word_to_tokens(word, sequence_id) .and_then(|(start, end)| { if end == 0 { None } else { Some((self.offsets[start].0, self.offsets[end - 1].1)) } }) } /// Get the offsets of the token at the given index. pub fn token_to_chars(&self, token: usize) -> Option<(usize, Offsets)> { Some(( self.token_to_sequence(token)?, self.offsets.get(token).copied()?, )) } /// Get the word that contains the token at the given index. pub fn token_to_word(&self, token: usize) -> Option<(usize, u32)> { Some(( self.token_to_sequence(token)?, self.words.get(token).copied().flatten()?, )) } /// Get the token that contains the given char. pub fn char_to_token(&self, pos: usize, sequence_id: usize) -> Option<usize> { let sequence_range = self.sequence_range(sequence_id); self.offsets .get(sequence_range.clone())? .iter() .position(|(start, end)| pos >= *start && pos < *end) .map(|pos| sequence_range.start + pos) } /// Get the word that contains the given char. pub fn char_to_word(&self, pos: usize, sequence_id: usize) -> Option<u32> { Some( self.char_to_token(pos, sequence_id) .and_then(|token| self.token_to_word(token))? .1, ) } /// Truncate the current `Encoding`. /// /// Panics if `stride >= max_len` pub fn truncate(&mut self, max_len: usize, stride: usize, direction: TruncationDirection) { let encoding_len = self.ids.len(); if max_len >= encoding_len { return; } if max_len == 0 { let o = std::mem::replace(self, Encoding::with_capacity(0)); self.overflowing.push(o); return; } assert!(stride < max_len, "`stride` must be strictly less than `max_len={}` (note that `max_len` may be shorter than the max length of the original model, as it subtracts the number of special characters", max_len); // When truncating, we lose the `sequence_ranges` information. self.sequence_ranges.clear(); let offset = max_len - stride; let mut end = false; let parts_ranges: Vec<(usize, usize)> = match direction { TruncationDirection::Right => (0..encoding_len) .step_by(offset) .filter_map(|start| { if !end { let stop = std::cmp::min(start + max_len, encoding_len); end = stop == encoding_len; Some((start, stop)) } else { None } }) .collect(), TruncationDirection::Left => (0..encoding_len) .rev() .step_by(offset) .filter_map(|stop| { let stop = stop + 1; let start = if stop < max_len { 0 } else { stop - max_len }; if start < stop && !end { end = start == 0; Some((start, stop)) } else { None } }) .collect(), }; let mut i = 0; let (start, stop) = parts_ranges[i]; let mut new_encoding = Encoding { ids: self.ids[start..stop].to_vec(), type_ids: self.type_ids[start..stop].to_vec(), tokens: self.tokens[start..stop].to_vec(), words: self.words[start..stop].to_vec(), offsets: self.offsets[start..stop].to_vec(), special_tokens_mask: self.special_tokens_mask[start..stop].to_vec(), attention_mask: self.attention_mask[start..stop].to_vec(), overflowing: vec![], sequence_ranges: HashMap::new(), }; loop { if i == parts_ranges.len() - 1 { break; } i += 1; let (start, stop) = parts_ranges[i]; new_encoding.overflowing.push(Encoding { ids: self.ids[start..stop].to_vec(), type_ids: self.type_ids[start..stop].to_vec(), tokens: self.tokens[start..stop].to_vec(), words: self.words[start..stop].to_vec(), offsets: self.offsets[start..stop].to_vec(), special_tokens_mask: self.special_tokens_mask[start..stop].to_vec(), attention_mask: self.attention_mask[start..stop].to_vec(), overflowing: vec![], sequence_ranges: HashMap::new(), }); } *self = new_encoding; } /// Merge all Encodings together pub fn merge<I: IntoIterator<Item = Encoding>>(encodings: I, growing_offsets: bool) -> Self { let mut encoding = Encoding::default(); // TODO this is suboptimal as we're doing this iteratively instead of preallocating // all the encodings sizes all at once and only copying into this preallocated vector // https://github.com/huggingface/tokenizers/pull/1049 // In order to fix, we just need to preallocate all vectors, then copy everything // into it (and deal with overlowings correctly) for sub in encodings { encoding.merge_with(sub, growing_offsets); } encoding } /// Merge ourself with the given `Encoding`. Happens in place. pub fn merge_with(&mut self, pair: Encoding, growing_offsets: bool) { // Handle merging the overflowing parts too: Combine them all // In most of the cases, we expect `pair.overflowing.len() == 0` let mut overflowings = vec![]; // 1. All our overflowings with all the others for self_o in &self.overflowing { // 1. The pair itself let mut n_encoding = self_o.clone(); n_encoding.merge_with(pair.clone(), growing_offsets); overflowings.push(n_encoding); // 2. Its overflowings (this should rarely happen...) for other_o in &pair.overflowing { let mut n_encoding = self_o.clone(); n_encoding.merge_with(other_o.clone(), growing_offsets); overflowings.push(n_encoding); } } // 2. Ourself with all the other overflowings (this should rarely happen too...) for other_o in &pair.overflowing { let mut n_encoding = self.clone(); n_encoding.merge_with(other_o.clone(), growing_offsets); overflowings.push(n_encoding); } // Finish by merging ourself with the other encoding let original_self_len = self.len(); // Must be before any modification to self.ids self.sequence_ranges .extend(pair.sequence_ranges.into_iter().map(|(seq_id, range)| { ( seq_id, original_self_len + range.start..original_self_len + range.end, ) })); self.ids.extend(pair.ids); self.type_ids.extend(pair.type_ids); self.tokens.extend(pair.tokens); self.words.extend(pair.words); let starting_offset = if growing_offsets { self.offsets.last().map_or(0, |o| o.1) } else { 0 }; self.offsets.extend( pair.offsets .into_iter() .map(|(start, end)| (start + starting_offset, end + starting_offset)) .collect::<Vec<_>>(), ); self.special_tokens_mask.extend(pair.special_tokens_mask); self.attention_mask.extend(pair.attention_mask); self.overflowing = overflowings; } pub fn pad( &mut self, target_length: usize, pad_id: u32, pad_type_id: u32, pad_token: &str, direction: PaddingDirection, ) { // Dispatch call to all the overflowings first self.overflowing.maybe_par_iter_mut().for_each(|encoding| { encoding.pad(target_length, pad_id, pad_type_id, pad_token, direction) }); // Then check if we should pad ourself if self.ids.len() >= target_length { // We just do nothing if the wanted padding length is smaller than us return; } let pad_length = target_length - self.ids.len(); match direction { PaddingDirection::Left => { self.ids = (0..pad_length) .map(|_| pad_id) .chain(self.ids.drain(..)) .collect(); self.type_ids = (0..pad_length) .map(|_| pad_type_id) .chain(self.type_ids.drain(..)) .collect(); self.tokens = (0..pad_length) .map(|_| pad_token.to_owned()) .chain(self.tokens.drain(..)) .collect(); self.words = (0..pad_length) .map(|_| None) .chain(self.words.drain(..)) .collect(); self.attention_mask = (0..pad_length) .map(|_| 0) .chain(self.attention_mask.drain(..)) .collect(); self.special_tokens_mask = (0..pad_length) .map(|_| 1) .chain(self.special_tokens_mask.drain(..)) .collect(); self.offsets = (0..pad_length) .map(|_| (0, 0)) .chain(self.offsets.drain(..)) .collect(); self.sequence_ranges .iter_mut() .for_each(|(_seq_id, range)| { *range = (range.start + pad_length)..(range.end + pad_length) }); } PaddingDirection::Right => { self.ids.extend((0..pad_length).map(|_| pad_id)); self.type_ids.extend((0..pad_length).map(|_| pad_type_id)); self.tokens .extend((0..pad_length).map(|_| pad_token.to_owned())); self.words.extend((0..pad_length).map(|_| None)); self.attention_mask.extend((0..pad_length).map(|_| 0)); self.special_tokens_mask.extend((0..pad_length).map(|_| 1)); self.offsets.extend((0..pad_length).map(|_| (0, 0))); } } } } impl std::iter::FromIterator<Encoding> for Encoding { fn from_iter<I: IntoIterator<Item = Encoding>>(iter: I) -> Self { Self::merge(iter, false) } } impl std::iter::FromIterator<(u32, String, (usize, usize), Option<u32>, u32)> for Encoding { fn from_iter<I: IntoIterator<Item = (u32, String, (usize, usize), Option<u32>, u32)>>( iter: I, ) -> Self { let items = iter.into_iter(); let (lower, upper) = items.size_hint(); let length = upper.unwrap_or(lower); let mut encoding = Self::with_capacity(length); for (id, token, offsets, word, type_id) in items { encoding.ids.push(id); encoding.tokens.push(token); encoding.offsets.push(offsets); encoding.type_ids.push(type_id); encoding.words.push(word); encoding.special_tokens_mask.push(0); encoding.attention_mask.push(1); } encoding } } #[cfg(test)] mod tests { use super::*; use std::iter::FromIterator; #[test] fn merge_encodings() { let mut a = Encoding { ids: vec![1], type_ids: vec![0], tokens: vec![String::from("Hello ")], words: vec![Some(0)], offsets: vec![(0, 6)], special_tokens_mask: vec![0], attention_mask: vec![1], ..Default::default() }; let b = Encoding { ids: vec![2], type_ids: vec![1], tokens: vec![String::from("World!")], words: vec![Some(0)], offsets: vec![(0, 6)], special_tokens_mask: vec![0], attention_mask: vec![1], ..Default::default() }; a.merge_with(b, true); assert_eq!( a, Encoding { ids: vec![1, 2], type_ids: vec![0, 1], tokens: vec![String::from("Hello "), String::from("World!")], words: vec![Some(0), Some(0)], offsets: vec![(0, 6), (6, 12)], special_tokens_mask: vec![0, 0], attention_mask: vec![1, 1], ..Default::default() } ); } #[test] fn truncate() { let mut a = Encoding { ids: vec![1, 2, 3], type_ids: vec![0, 0, 0], tokens: vec![ String::from("Hello"), String::from("World"), String::from("!"), ], words: vec![Some(0), Some(1), Some(2)], offsets: vec![(0, 5), (6, 11), (11, 12)], special_tokens_mask: vec![0, 0, 0], attention_mask: vec![1, 1, 1], ..Default::default() }; a.truncate(2, 0, TruncationDirection::Right); assert_eq!( a, Encoding { ids: vec![1, 2], type_ids: vec![0, 0], tokens: vec![String::from("Hello"), String::from("World")], words: vec![Some(0), Some(1)], offsets: vec![(0, 5), (6, 11)], special_tokens_mask: vec![0, 0], attention_mask: vec![1, 1], overflowing: vec![Encoding { ids: vec![3], type_ids: vec![0], tokens: vec![String::from("!")], words: vec![Some(2)], offsets: vec![(11, 12)], special_tokens_mask: vec![0], attention_mask: vec![1], ..Default::default() }], ..Default::default() } ); } #[test] fn truncate_to_empty() { let mut a = Encoding { ids: vec![1, 2, 3], type_ids: vec![0, 0, 0], tokens: vec![ String::from("Hello"), String::from("World"), String::from("!"), ], words: vec![Some(0), Some(1), Some(2)], offsets: vec![(0, 5), (6, 11), (11, 12)], special_tokens_mask: vec![0, 0, 0], attention_mask: vec![1, 1, 1], ..Default::default() }; a.truncate(0, 0, TruncationDirection::Right); assert_eq!( a, Encoding { overflowing: vec![Encoding { ids: vec![1, 2, 3], type_ids: vec![0, 0, 0], tokens: vec![ String::from("Hello"), String::from("World"), String::from("!"), ], words: vec![Some(0), Some(1), Some(2)], offsets: vec![(0, 5), (6, 11), (11, 12)], special_tokens_mask: vec![0, 0, 0], attention_mask: vec![1, 1, 1], overflowing: vec![], ..Default::default() }], ..Default::default() } ); } #[test] fn truncate_overflow_with_stride() { let mut enc = Encoding { ids: vec![1, 2, 3, 4, 5], type_ids: vec![0, 0, 0, 0, 0], tokens: vec![ String::from("42"), String::from("is"), String::from("the"), String::from("answer"), String::from("!"), ], words: vec![Some(0), Some(1), Some(2), Some(3), Some(4)], offsets: vec![(0, 2), (2, 4), (4, 7), (7, 13), (13, 14)], special_tokens_mask: vec![0, 0, 0, 0, 0], attention_mask: vec![1, 1, 1, 1, 1], overflowing: vec![], ..Default::default() }; enc.truncate(4, 2, TruncationDirection::Right); assert_eq!( enc, Encoding { ids: vec![1, 2, 3, 4], type_ids: vec![0, 0, 0, 0], tokens: vec![ String::from("42"), String::from("is"), String::from("the"), String::from("answer"), ], words: vec![Some(0), Some(1), Some(2), Some(3)], offsets: vec![(0, 2), (2, 4), (4, 7), (7, 13)], special_tokens_mask: vec![0, 0, 0, 0], attention_mask: vec![1, 1, 1, 1], overflowing: vec![Encoding { ids: vec![3, 4, 5], type_ids: vec![0, 0, 0], tokens: vec![ String::from("the"), String::from("answer"), String::from("!"), ], words: vec![Some(2), Some(3), Some(4)], offsets: vec![(4, 7), (7, 13), (13, 14)], special_tokens_mask: vec![0, 0, 0], attention_mask: vec![1, 1, 1], overflowing: vec![], ..Default::default() }], ..Default::default() } ); } #[test] fn truncate_left() { let mut a = Encoding { ids: vec![1, 2, 3], type_ids: vec![0, 0, 0], tokens: vec![ String::from("Hello"), String::from("World"), String::from("!"), ], words: vec![Some(0), Some(1), Some(2)], offsets: vec![(0, 5), (6, 11), (11, 12)], special_tokens_mask: vec![0, 0, 0], attention_mask: vec![1, 1, 1], ..Default::default() }; a.truncate(2, 0, TruncationDirection::Left); assert_eq!( a, Encoding { ids: vec![2, 3], type_ids: vec![0, 0], tokens: vec![String::from("World"), String::from("!")], words: vec![Some(1), Some(2)], offsets: vec![(6, 11), (11, 12)], special_tokens_mask: vec![0, 0], attention_mask: vec![1, 1], overflowing: vec![Encoding { ids: vec![1], type_ids: vec![0], tokens: vec![String::from("Hello")], words: vec![Some(0)], offsets: vec![(0, 5)], special_tokens_mask: vec![0], attention_mask: vec![1], ..Default::default() }], ..Default::default() } ); } #[test] fn mappings() { let encoding = Encoding { ids: vec![0; 11], // Needed for Encoding::len tokens: vec![ // First sequence: "He".into(), "llo".into(), "won".into(), "der".into(), "ful".into(), "friend".into(), "!".into(), // Second sequence: "How".into(), "are".into(), "you".into(), "?".into(), ], offsets: vec![ // First sequence: (0, 2), (2, 5), (7, 10), (10, 13), (13, 16), (17, 23), (23, 24), // Second sequence: (0, 3), (4, 7), (8, 11), (11, 12), ], words: vec![ // First sequence: Some(0), Some(0), Some(1), Some(1), Some(1), Some(2), Some(3), // Second sequence: Some(0), Some(1), Some(2), Some(3), ], sequence_ranges: HashMap::from_iter(vec![(0, 0..7), (1, 7..11)]), ..Default::default() }; assert_eq!(encoding.word_to_tokens(0, 0), Some((0, 2))); assert_eq!(encoding.word_to_tokens(1, 0), Some((2, 5))); assert_eq!(encoding.word_to_tokens(2, 0), Some((5, 6))); assert_eq!(encoding.word_to_tokens(3, 0), Some((6, 7))); assert_eq!(encoding.word_to_tokens(0, 1), Some((7, 8))); assert_eq!(encoding.word_to_tokens(1, 1), Some((8, 9))); assert_eq!(encoding.word_to_tokens(2, 1), Some((9, 10))); assert_eq!(encoding.word_to_tokens(3, 1), Some((10, 11))); assert_eq!(encoding.word_to_chars(0, 0), Some((0, 5))); assert_eq!(encoding.word_to_chars(1, 0), Some((7, 16))); assert_eq!(encoding.word_to_chars(0, 1), Some((0, 3))); assert_eq!(encoding.word_to_chars(1, 1), Some((4, 7))); assert_eq!(encoding.token_to_chars(0), Some((0, (0, 2)))); assert_eq!(encoding.token_to_chars(1), Some((0, (2, 5)))); assert_eq!(encoding.token_to_chars(7), Some((1, (0, 3)))); assert_eq!(encoding.token_to_chars(9), Some((1, (8, 11)))); assert_eq!(encoding.token_to_word(1), Some((0, 0))); assert_eq!(encoding.token_to_word(2), Some((0, 1))); assert_eq!(encoding.token_to_word(7), Some((1, 0))); assert_eq!(encoding.token_to_word(9), Some((1, 2))); assert_eq!(encoding.token_to_word(11), None); assert_eq!(encoding.char_to_token(3, 0), Some(1)); assert_eq!(encoding.char_to_token(8, 0), Some(2)); assert_eq!(encoding.char_to_token(16, 0), None); assert_eq!(encoding.char_to_token(23, 0), Some(6)); assert_eq!(encoding.char_to_token(2, 1), Some(7)); assert_eq!(encoding.char_to_token(9, 1), Some(9)); assert_eq!(encoding.char_to_word(3, 0), Some(0)); assert_eq!(encoding.char_to_word(8, 0), Some(1)); assert_eq!(encoding.char_to_word(16, 0), None); assert_eq!(encoding.char_to_word(23, 0), Some(3)); assert_eq!(encoding.char_to_word(2, 1), Some(0)); assert_eq!(encoding.char_to_word(9, 1), Some(2)); } #[test] fn padding() { let mut a = Encoding { ids: vec![1], type_ids: vec![0], tokens: vec![String::from("Hello ")], words: vec![Some(0)], offsets: vec![(0, 6)], special_tokens_mask: vec![0], attention_mask: vec![1], sequence_ranges: HashMap::from([(0, 0..1)]), ..Default::default() }; let target_length = 2; let pad_id = 99; let pad_type_id = 0; let pad_token = "[PAD]"; a.pad( target_length, pad_id, pad_type_id, pad_token, PaddingDirection::Left, ); assert_eq!(a.sequence_ranges, HashMap::from([(0, 1..2)])); } }
tokenizers/tokenizers/src/tokenizer/encoding.rs/0
{ "file_path": "tokenizers/tokenizers/src/tokenizer/encoding.rs", "repo_id": "tokenizers", "token_count": 17197 }
214
mod common; use common::*; use tokenizers::tokenizer::AddedToken; #[test] fn add_tokens() { let mut tokenizer = get_empty(); assert_eq!( tokenizer.add_special_tokens(&[ AddedToken::from("<cls>", true), AddedToken::from("<sep>", true) ]), 2 ); assert_eq!(tokenizer.token_to_id("<cls>"), Some(0)); assert_eq!(tokenizer.token_to_id("<sep>"), Some(1)); assert_eq!( tokenizer.add_tokens(&[ AddedToken::from("hello", false), AddedToken::from("world", false) ]), 2 ); assert_eq!(tokenizer.token_to_id("hello"), Some(2)); assert_eq!(tokenizer.token_to_id("world"), Some(3)); } #[test] fn lstrip_tokens() { let mut tokenizer = get_byte_level(true, false); tokenizer.add_special_tokens(&[AddedToken::from("<mask>", true).lstrip(true)]); let input = "I saw a <mask> ๐Ÿ˜บ"; let output = tokenizer.encode(input, false).unwrap(); assert_eq!( output.get_tokens(), &["ฤ I", "ฤ saw", "ฤ a", " <mask>", "ฤ รฐลฤบ", "ยบ"] ); assert_eq!( output.get_offsets(), &[(0, 1), (1, 5), (5, 7), (7, 14), (14, 19), (15, 19)] ); } #[test] fn rstrip_tokens() { let mut tokenizer = get_byte_level(false, false); tokenizer.add_special_tokens(&[AddedToken::from("<mask>", true).rstrip(true)]); let input = "I saw a <mask> ๐Ÿ˜บ"; let output = tokenizer.encode(input, false).unwrap(); assert_eq!( output.get_tokens(), &["I", "ฤ saw", "ฤ a", "ฤ ", "<mask> ", "รฐลฤบ", "ยบ"] ); // When `add_prefix_space = true` rstrip cannot work as a prefix space is added // to the next token let mut tokenizer = get_byte_level(true, false); tokenizer.add_special_tokens(&[AddedToken::from("<mask>", true).rstrip(true)]); let input = "I saw a <mask> ๐Ÿ˜บ"; let output = tokenizer.encode(input, false).unwrap(); assert_eq!( output.get_tokens(), &["ฤ I", "ฤ saw", "ฤ a", "ฤ ", "<mask> ", "ฤ รฐลฤบ", "ยบ"] ); } #[test] fn single_word_tokens() { // If `single_word = true` it shouldn't split `dancing` let mut tokenizer = get_byte_level(false, false); tokenizer.add_special_tokens(&[AddedToken::from("ing", true).single_word(true)]); let input = "I like dancing"; let output = tokenizer.encode(input, false).unwrap(); assert_eq!(output.get_tokens(), &["I", "ฤ like", "ฤ dancing"]); // If `single_word = false` it should split `dancing` let mut tokenizer = get_byte_level(false, false); tokenizer.add_special_tokens(&[AddedToken::from("ing", true).single_word(false)]); let input = "I like dancing"; let output = tokenizer.encode(input, false).unwrap(); assert_eq!(output.get_tokens(), &["I", "ฤ like", "ฤ d", "anc", "ing"]); } #[test] fn overlapping_tokens() { let mut tokenizer = get_byte_level(false, false); tokenizer.add_special_tokens(&[AddedToken::from("danc", true)]); tokenizer.add_special_tokens(&[AddedToken::from("nci", true)]); tokenizer.add_special_tokens(&[AddedToken::from("ing", true)]); let input = "I like dancing"; let output = tokenizer.encode(input, false).unwrap(); assert_eq!(output.get_tokens(), &["I", "ฤ like", "ฤ ", "danc", "ing"]); let mut tokenizer = get_byte_level(false, false); tokenizer.add_special_tokens(&[AddedToken::from("nci", true)]); tokenizer.add_special_tokens(&[AddedToken::from("danc", true)]); tokenizer.add_special_tokens(&[AddedToken::from("ing", true)]); tokenizer.add_special_tokens(&[AddedToken::from("ike", true)]); let output = tokenizer.encode(input, false).unwrap(); // Breaking change but following `transformers` breaking change. // This behavior is deemed not used in practice: // https://github.com/huggingface/transformers/pull/13220 // Order does NOT matter. (We could make it work again but the trie // would need to keep insertion order too) // // assert_eq!(output.get_tokens(), &["I", "ฤ like", "ฤ da", "nci", "ng"]); assert_eq!(output.get_tokens(), &["I", "ฤ l", "ike", "ฤ ", "danc", "ing"]); }
tokenizers/tokenizers/tests/added_tokens.rs/0
{ "file_path": "tokenizers/tokenizers/tests/added_tokens.rs", "repo_id": "tokenizers", "token_count": 1770 }
215
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04 LABEL maintainer="Hugging Face" ARG DEBIAN_FRONTEND=noninteractive # Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands) SHELL ["sh", "-lc"] # The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant # to be used as arguments for docker build (so far). ARG PYTORCH='2.1.1' # (not always a valid torch version) ARG INTEL_TORCH_EXT='2.1.100' # Example: `cu102`, `cu113`, etc. ARG CUDA='cu118' RUN apt update RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs RUN git lfs install RUN python3 -m pip install --no-cache-dir --upgrade pip ARG REF=main RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF # TODO: Handle these in a python utility script RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile RUN echo torch=$VERSION # `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build. # Currently, let's just use their latest releases (when `torch` is installed with a release version) # TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI). RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] RUN python3 -m pip uninstall -y flax jax RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract RUN python3 -m pip install -U "itsdangerous<2.1.0" RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft # Add bitsandbytes for mixed int8 testing RUN python3 -m pip install --no-cache-dir bitsandbytes # Add auto-gptq for gtpq quantization testing RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Add einops for additional model testing RUN python3 -m pip install --no-cache-dir einops # Add autoawq for quantization testing RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.8/autoawq-0.1.8+cu118-cp38-cp38-linux_x86_64.whl # For bettertransformer + gptq RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum # For video model testing RUN python3 -m pip install --no-cache-dir decord av==9.2.0 # For `dinat` model RUN python3 -m pip install --no-cache-dir 'natten<0.15.0' -f https://shi-labs.com/natten/wheels/$CUDA/ # For `nougat` tokenizer RUN python3 -m pip install --no-cache-dir python-Levenshtein # When installing in editable mode, `transformers` is not recognized as a package. # this line must be added in order for python to be aware of transformers. RUN cd transformers && python3 setup.py develop
transformers/docker/transformers-all-latest-gpu/Dockerfile/0
{ "file_path": "transformers/docker/transformers-all-latest-gpu/Dockerfile", "repo_id": "transformers", "token_count": 1267 }
216
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Schnellstart [[open-in-colab]] Mit ๐Ÿค— Transformers kรถnnen Sie sofort loslegen! Verwenden Sie die [`pipeline`] fรผr schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lรถsen. <Tip> Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter fรผr PyTorch und TensorFlow. Wenn nicht, wird erwartet, dass der Code fรผr beide Backends ohne ร„nderungen funktioniert. </Tip> ## Pipeline [`pipeline`] ist der einfachste Weg, ein vortrainiertes Modell fรผr eine bestimmte Aufgabe zu verwenden. <Youtube id="tiZFewofSLM"/> Die [`pipeline`] unterstรผtzt viele gรคngige Aufgaben: **Text**: * Stimmungsanalyse: Klassifizierung der Polaritรคt eines gegebenen Textes. * Textgenerierung (auf Englisch): Generierung von Text aus einer gegebenen Eingabe. * Name-Entity-Recognition (NER): Kennzeichnung jedes Worts mit der Entitรคt, die es reprรคsentiert (Person, Datum, Ort usw.). * Beantwortung von Fragen: Extrahieren der Antwort aus dem Kontext, wenn ein gewisser Kontext und eine Frage gegeben sind. * Fill-mask: Ausfรผllen von Lรผcken in einem Text mit maskierten Wรถrtern. * Zusammenfassung: Erstellung einer Zusammenfassung einer langen Text- oder Dokumentensequenz. * รœbersetzung: รœbersetzen eines Textes in eine andere Sprache. * Merkmalsextraktion: Erstellen einer Tensordarstellung des Textes. **Bild**: * Bildklassifizierung: Klassifizierung eines Bildes. * Bildsegmentierung: Klassifizierung jedes Pixels in einem Bild. * Objekterkennung: Erkennen von Objekten innerhalb eines Bildes. **Audio**: * Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment. * Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text. <Tip> Fรผr mehr Details รผber die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines). </Tip> ### Verwendung der Pipeline Im folgenden Beispiel werden Sie die [`pipeline`] fรผr die Stimmungsanalyse verwenden. Installieren Sie die folgenden Abhรคngigkeiten, falls Sie dies nicht bereits getan haben: <frameworkcontent> <pt> ```bash pip install torch ``` </pt> <tf> ```bash pip install tensorflow ``` </tf> </frameworkcontent> Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lรถsen mรถchten: ```py >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis") ``` Die Pipeline lรคdt ein standardmรครŸiges [vortrainiertes Modell] (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) und einen Tokenizer fรผr die Stimmungs-Analyse herunter und speichert sie. Jetzt kรถnnen Sie den "Klassifikator" auf Ihren Zieltext anwenden: ```py >>> classifier("We are very happy to show you the ๐Ÿค— Transformers library.") [{'label': 'POSITIVE', 'score': 0.9998}] ``` For more than one sentence, pass a list of sentences to the [`pipeline`] which returns a list of dictionaries: ```py >>> results = classifier(["We are very happy to show you the ๐Ÿค— Transformers library.", "We hope you don't hate it."]) >>> for result in results: ... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") label: POSITIVE, with score: 0.9998 label: NEGATIVE, with score: 0.5309 ``` Die [`pipeline`] kann auch รผber einen ganzen Datensatz iterieren. Starten wir mit der Installation der [๐Ÿค— Datasets](https://huggingface.co/docs/datasets/) Bibliothek: ```bash pip install datasets ``` Erstellen wir eine [`pipeline`] mit der Aufgabe die wir lรถsen und dem Modell welches wir nutzen mรถchten. ```py >>> import torch >>> from transformers import pipeline >>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") ``` Als nรคchstes laden wir den Datensatz (siehe ๐Ÿค— Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart) fรผr mehr Details) welches wir nutzen mรถchten. Zum Beispiel laden wir den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT ``` Wir mรผssen sicherstellen, dass die Abtastrate des Datensatzes der Abtastrate entspricht, mit der `facebook/wav2vec2-base-960h` trainiert wurde. ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) ``` Audiodateien werden automatisch geladen und neu abgetastet, wenn die Spalte "audio" aufgerufen wird. Extrahieren wir die rohen Wellenform-Arrays der ersten 4 Beispiele und รผbergeben wir sie als Liste an die Pipeline: ```py >>> result = speech_recognizer(dataset[:4]["audio"]) >>> print([d["text"] for d in result]) ['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT'] ``` Bei einem grรถรŸeren Datensatz mit vielen Eingaben (wie bei Sprache oder Bildverarbeitung) sollten Sie einen Generator anstelle einer Liste รผbergeben, der alle Eingaben in den Speicher lรคdt. Weitere Informationen finden Sie in der [Pipeline-Dokumentation](./main_classes/pipelines). ### Ein anderes Modell und einen anderen Tokenizer in der Pipeline verwenden Die [`pipeline`] kann jedes Modell aus dem [Model Hub] (https://huggingface.co/models) verwenden, wodurch es einfach ist, die [`pipeline`] fรผr andere Anwendungsfรคlle anzupassen. Wenn Sie beispielsweise ein Modell wรผnschen, das franzรถsischen Text verarbeiten kann, verwenden Sie die Tags im Model Hub, um nach einem geeigneten Modell zu filtern. Das oberste gefilterte Ergebnis liefert ein mehrsprachiges [BERT-Modell](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment), das auf die Stimmungsanalyse abgestimmt ist. GroรŸartig, verwenden wir dieses Modell! ```py >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" ``` <frameworkcontent> <pt> Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` below): ```py >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </pt> <tf> Use the [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` below): ```py >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </tf> </frameworkcontent> Dann kรถnnen Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden: ```py >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> classifier("Nous sommes trรจs heureux de vous prรฉsenter la bibliothรจque ๐Ÿค— Transformers.") [{'label': '5 stars', 'score': 0.7273}] ``` Wenn Sie kein Modell fรผr Ihren Anwendungsfall finden kรถnnen, mรผssen Sie ein vortrainiertes Modell auf Ihren Daten feinabstimmen. Schauen Sie sich unser [Feinabstimmungs-Tutorial](./training) an, um zu erfahren, wie das geht. Und schlieรŸlich, nachdem Sie Ihr trainiertes Modell verfeinert haben, sollten Sie es mit der Community im Model Hub teilen (siehe Tutorial [hier](./model_sharing)), um NLP fรผr alle zu demokratisieren! ๐Ÿค— ## AutoClass <Youtube id="AhChOFRegn4"/> Unter der Haube arbeiten die Klassen [`AutoModelForSequenceClassification`] und [`AutoTokenizer`] zusammen, um die [`pipeline`] zu betreiben. Eine [`AutoClass`](./model_doc/auto) ist eine Abkรผrzung, die automatisch die Architektur eines trainierten Modells aus dessen Namen oder Pfad abruft. Sie mรผssen nur die passende `AutoClass` fรผr Ihre Aufgabe und den zugehรถrigen Tokenizer mit [`AutoTokenizer`] auswรคhlen. Kehren wir zu unserem Beispiel zurรผck und sehen wir uns an, wie Sie die `AutoClass` verwenden kรถnnen, um die Ergebnisse der [`pipeline`] zu replizieren. ### AutoTokenizer Ein Tokenizer ist fรผr die Vorverarbeitung von Text in ein fรผr das Modell verstรคndliches Format zustรคndig. Zunรคchst zerlegt der Tokenisierer den Text in Wรถrter, die *Token* genannt werden. Es gibt mehrere Regeln fรผr den Tokenisierungsprozess, z. B. wie und auf welcher Ebene ein Wort aufgespalten wird (weitere Informationen รผber Tokenisierung [hier](./tokenizer_summary)). Das Wichtigste ist jedoch, dass Sie den Tokenizer mit demselben Modellnamen instanziieren mรผssen, um sicherzustellen, dass Sie dieselben Tokenisierungsregeln verwenden, mit denen ein Modell zuvor trainiert wurde. Laden sie einen Tokenizer mit [`AutoTokenizer`]: ```py >>> from transformers import AutoTokenizer >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` AnschlieรŸend wandelt der Tokenizer die Token in Zahlen um, um einen Tensor als Eingabe fรผr das Modell zu konstruieren. Dieser wird als *Vokabular* des Modells bezeichnet. รœbergeben Sie Ihren Text an den Tokenizer: ```py >>> encoding = tokenizer("We are very happy to show you the ๐Ÿค— Transformers library.") >>> print(encoding) {'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` Der Tokenizer gibt ein Wรถrterbuch zurรผck, das Folgendes enthรคlt: * [input_ids](./glossary#input-ids): numerische Reprรคsentationen Ihrer Token. * [atttention_mask](.glossary#attention-mask): gibt an, welche Token beachtet werden sollen. Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darรผber hinaus kann der Tokenizer den Text auch auffรผllen und kรผrzen, um einen Stapel mit einheitlicher Lรคnge zurรผckzugeben: <frameworkcontent> <pt> ```py >>> pt_batch = tokenizer( ... ["We are very happy to show you the ๐Ÿค— Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt", ... ) ``` </pt> <tf> ```py >>> tf_batch = tokenizer( ... ["We are very happy to show you the ๐Ÿค— Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf", ... ) ``` </tf> </frameworkcontent> Lesen Sie das Tutorial [preprocessing](./preprocessing) fรผr weitere Details zur Tokenisierung. ### AutoModel <frameworkcontent> <pt> ๐Ÿค— Transformers bietet eine einfache und einheitliche Mรถglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden kรถnnen, wie Sie einen [`AutoTokenizer`] laden wรผrden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] fรผr die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse fรผr welche Aufgabe zu verwenden ist. </Tip> Jetzt kรถnnen Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell รผbergeben. Sie mรผssen nur das Wรถrterbuch entpacken, indem Sie `**` hinzufรผgen: ```py >>> pt_outputs = pt_model(**pt_batch) ``` Das Modell gibt die endgรผltigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten: ```py >>> from torch import nn >>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) >>> print(pt_predictions) tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>) ``` </pt> <tf> ๐Ÿค— Transformers bietet eine einfache und einheitliche Methode zum Laden von vortrainierten Instanzen. Das bedeutet, dass Sie ein [`TFAutoModel`] genauso laden kรถnnen, wie Sie einen [`AutoTokenizer`] laden wรผrden. Der einzige Unterschied ist die Auswahl des richtigen [`TFAutoModel`] fรผr die Aufgabe. Da Sie Text - oder Sequenz - Klassifizierung machen, laden Sie [`TFAutoModelForSequenceClassification`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse fรผr welche Aufgabe zu verwenden ist. </Tip> Jetzt kรถnnen Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell รผbergeben, indem Sie die Wรถrterbuchschlรผssel direkt an die Tensoren รผbergeben: ```py >>> tf_outputs = tf_model(tf_batch) ``` Das Modell gibt die endgรผltigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten: ```py >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) >>> tf_predictions # doctest: +IGNORE_RESULT ``` </tf> </frameworkcontent> <Tip> Alle ๐Ÿค— Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgรผltigen Aktivierungsfunktion Funktion (wie Softmax) aus, da die endgรผltige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist. </Tip> Modelle sind ein standardmรครŸiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer รผblichen Trainingsschleife verwenden kรถnnen. Um jedoch die Dinge einfacher zu machen, bietet ๐Ÿค— Transformers eine [`Trainer`]-Klasse fรผr PyTorch, die Funktionalitรคt fรผr verteiltes Training, gemischte Prรคzision und mehr bietet. Fรผr TensorFlow kรถnnen Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) fรผr weitere Details. <Tip> Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollstรคndigt werden. Die Modellausgรคnge verhalten sich auch wie ein Tupel oder ein Wรถrterbuch (z.B. kรถnnen Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden. </Tip> ### Modell speichern <frameworkcontent> <pt> Sobald Ihr Modell feinabgestimmt ist, kรถnnen Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden: ```py >>> pt_save_directory = "./pt_save_pretrained" >>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT >>> pt_model.save_pretrained(pt_save_directory) ``` Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrainedModel.from_pretrained`]: ```py >>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") ``` </pt> <tf> Sobald Ihr Modell feinabgestimmt ist, kรถnnen Sie es mit seinem Tokenizer unter Verwendung von [`TFPreTrainedModel.save_pretrained`] speichern: ```py >>> tf_save_directory = "./tf_save_pretrained" >>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT >>> tf_model.save_pretrained(tf_save_directory) ``` Wenn Sie bereit sind, das Modell wieder zu verwenden, laden Sie es mit [`TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") ``` </tf> </frameworkcontent> Ein besonders cooles ๐Ÿค— Transformers-Feature ist die Mรถglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren: <frameworkcontent> <pt> ```py >>> from transformers import AutoModel >>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) >>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) ``` </pt> <tf> ```py >>> from transformers import TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) ``` </tf> </frameworkcontent> ## Custom model builds Sie kรถnnen die Konfigurationsklasse des Modells รคndern, um zu bestimmen, wie ein Modell aufgebaut ist. Die Konfiguration legt die Attribute eines Modells fest, z. B. die Anzahl der verborgenen Schichten oder der Aufmerksamkeitskรถpfe. Wenn Sie ein Modell aus einer benutzerdefinierten Konfigurationsklasse initialisieren, beginnen Sie bei Null. Die Modellattribute werden zufรคllig initialisiert, und Sie mรผssen das Modell trainieren, bevor Sie es verwenden kรถnnen, um aussagekrรคftige Ergebnisse zu erhalten. Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte Modell, das Sie รคndern mรถchten. Innerhalb von [`AutoConfig.from_pretrained`] kรถnnen Sie das Attribut angeben, das Sie รคndern mรถchten, z. B. die Anzahl der Aufmerksamkeitskรถpfe: ```py >>> from transformers import AutoConfig >>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12) ``` <frameworkcontent> <pt> Create a model from your custom configuration with [`AutoModel.from_config`]: ```py >>> from transformers import AutoModel >>> my_model = AutoModel.from_config(my_config) ``` </pt> <tf> Create a model from your custom configuration with [`TFAutoModel.from_config`]: ```py >>> from transformers import TFAutoModel >>> my_model = TFAutoModel.from_config(my_config) ``` </tf> </frameworkcontent> Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model). ## Wie geht es weiter? Nachdem Sie nun die ๐Ÿค— Transformers-Kurztour abgeschlossen haben, schauen Sie sich unsere Anleitungen an und erfahren Sie, wie Sie spezifischere Dinge tun kรถnnen, wie das Schreiben eines benutzerdefinierten Modells, die Feinabstimmung eines Modells fรผr eine Aufgabe und wie man ein Modell mit einem Skript trainiert. Wenn Sie mehr รผber die Kernkonzepte von ๐Ÿค— Transformers erfahren mรถchten, nehmen Sie sich eine Tasse Kaffee und werfen Sie einen Blick auf unsere konzeptionellen Leitfรคden!
transformers/docs/source/de/quicktour.md/0
{ "file_path": "transformers/docs/source/de/quicktour.md", "repo_id": "transformers", "token_count": 7324 }
217
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Instantiating a big model When you want to use a very big pretrained model, one challenge is to minimize the use of the RAM. The usual workflow from PyTorch is: 1. Create your model with random weights. 2. Load your pretrained weights. 3. Put those pretrained weights in your random model. Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you get out of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM. <Tip> Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instantiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible! </Tip> In this guide, we explore the solutions Transformers offer to deal with this issue. Note that this is an area of active development, so the APIs explained here may change slightly in the future. ## Sharded checkpoints Since version 4.18.0, model checkpoints that end up taking more than 10GB of space are automatically sharded in smaller pieces. In terms of having one single checkpoint when you do `model.save_pretrained(save_dir)`, you will end up with several partial checkpoints (each of which being of size < 10GB) and an index that maps parameter names to the files they are stored in. You can control the maximum size before sharding with the `max_shard_size` parameter, so for the sake of an example, we'll use a normal-size models with a small shard size: let's take a traditional BERT model. ```py from transformers import AutoModel model = AutoModel.from_pretrained("bert-base-cased") ``` If you save it using [`~PreTrainedModel.save_pretrained`], you will get a new folder with two files: the config of the model and its weights: ```py >>> import os >>> import tempfile >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir) ... print(sorted(os.listdir(tmp_dir))) ['config.json', 'pytorch_model.bin'] ``` Now let's use a maximum shard size of 200MB: ```py >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... print(sorted(os.listdir(tmp_dir))) ['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json'] ``` On top of the configuration of the model, we see three different weights files, and an `index.json` file which is our index. A checkpoint like this can be fully reloaded using the [`~PreTrainedModel.from_pretrained`] method: ```py >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... new_model = AutoModel.from_pretrained(tmp_dir) ``` The main advantage of doing this for big models is that during step 2 of the workflow shown above, each shard of the checkpoint is loaded after the previous one, capping the memory usage in RAM to the model size plus the size of the biggest shard. Behind the scenes, the index file is used to determine which keys are in the checkpoint, and where the corresponding weights are stored. We can load that index like any json and get a dictionary: ```py >>> import json >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f: ... index = json.load(f) >>> print(index.keys()) dict_keys(['metadata', 'weight_map']) ``` The metadata just consists of the total size of the model for now. We plan to add other information in the future: ```py >>> index["metadata"] {'total_size': 433245184} ``` The weights map is the main part of this index, which maps each parameter name (as usually found in a PyTorch model `state_dict`) to the file it's stored in: ```py >>> index["weight_map"] {'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin', 'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin', ... ``` If you want to directly load such a sharded checkpoint inside a model without using [`~PreTrainedModel.from_pretrained`] (like you would do `model.load_state_dict()` for a full checkpoint) you should use [`~modeling_utils.load_sharded_checkpoint`]: ```py >>> from transformers.modeling_utils import load_sharded_checkpoint >>> with tempfile.TemporaryDirectory() as tmp_dir: ... model.save_pretrained(tmp_dir, max_shard_size="200MB") ... load_sharded_checkpoint(model, tmp_dir) ``` ## Low memory loading Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library. Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)
transformers/docs/source/en/big_models.md/0
{ "file_path": "transformers/docs/source/en/big_models.md", "repo_id": "transformers", "token_count": 1718 }
218
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Installation Install ๐Ÿค— Transformers for whichever deep learning library you're working with, setup your cache, and optionally configure ๐Ÿค— Transformers to run offline. ๐Ÿค— Transformers is tested on Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, and Flax. Follow the installation instructions below for the deep learning library you are using: * [PyTorch](https://pytorch.org/get-started/locally/) installation instructions. * [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions. * [Flax](https://flax.readthedocs.io/en/latest/) installation instructions. ## Install with pip You should install ๐Ÿค— Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, take a look at this [guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). A virtual environment makes it easier to manage different projects, and avoid compatibility issues between dependencies. Start by creating a virtual environment in your project directory: ```bash python -m venv .env ``` Activate the virtual environment. On Linux and MacOs: ```bash source .env/bin/activate ``` Activate Virtual environment on Windows ```bash .env/Scripts/activate ``` Now you're ready to install ๐Ÿค— Transformers with the following command: ```bash pip install transformers ``` For CPU-support only, you can conveniently install ๐Ÿค— Transformers and a deep learning library in one line. For example, install ๐Ÿค— Transformers and PyTorch with: ```bash pip install 'transformers[torch]' ``` ๐Ÿค— Transformers and TensorFlow 2.0: ```bash pip install 'transformers[tf-cpu]' ``` <Tip warning={true}> M1 / ARM Users You will need to install the following before installing TensorFLow 2.0 ``` brew install cmake brew install pkg-config ``` </Tip> ๐Ÿค— Transformers and Flax: ```bash pip install 'transformers[flax]' ``` Finally, check if ๐Ÿค— Transformers has been properly installed by running the following command. It will download a pretrained model: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" ``` Then print out the label and score: ```bash [{'label': 'POSITIVE', 'score': 0.9998704791069031}] ``` ## Install from source Install ๐Ÿค— Transformers from source with the following command: ```bash pip install git+https://github.com/huggingface/transformers ``` This command installs the bleeding edge `main` version rather than the latest `stable` version. The `main` version is useful for staying up-to-date with the latest developments. For instance, if a bug has been fixed since the last official release but a new release hasn't been rolled out yet. However, this means the `main` version may not always be stable. We strive to keep the `main` version operational, and most issues are usually resolved within a few hours or a day. If you run into a problem, please open an [Issue](https://github.com/huggingface/transformers/issues) so we can fix it even sooner! Check if ๐Ÿค— Transformers has been properly installed by running the following command: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" ``` ## Editable install You will need an editable install if you'd like to: * Use the `main` version of the source code. * Contribute to ๐Ÿค— Transformers and need to test changes in the code. Clone the repository and install ๐Ÿค— Transformers with the following commands: ```bash git clone https://github.com/huggingface/transformers.git cd transformers pip install -e . ``` These commands will link the folder you cloned the repository to and your Python library paths. Python will now look inside the folder you cloned to in addition to the normal library paths. For example, if your Python packages are typically installed in `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python will also search the folder you cloned to: `~/transformers/`. <Tip warning={true}> You must keep the `transformers` folder if you want to keep using the library. </Tip> Now you can easily update your clone to the latest version of ๐Ÿค— Transformers with the following command: ```bash cd ~/transformers/ git pull ``` Your Python environment will find the `main` version of ๐Ÿค— Transformers on the next run. ## Install with conda Install from the conda channel `conda-forge`: ```bash conda install conda-forge::transformers ``` ## Cache setup Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/hub`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\hub`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory: 1. Shell environment variable (default): `HUGGINGFACE_HUB_CACHE` or `TRANSFORMERS_CACHE`. 2. Shell environment variable: `HF_HOME`. 3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface`. <Tip> ๐Ÿค— Transformers will use the shell environment variables `PYTORCH_TRANSFORMERS_CACHE` or `PYTORCH_PRETRAINED_BERT_CACHE` if you are coming from an earlier iteration of this library and have set those environment variables, unless you specify the shell environment variable `TRANSFORMERS_CACHE`. </Tip> ## Offline mode Run ๐Ÿค— Transformers in a firewalled or offline environment with locally cached files by setting the environment variable `TRANSFORMERS_OFFLINE=1`. <Tip> Add [๐Ÿค— Datasets](https://huggingface.co/docs/datasets/) to your offline training workflow with the environment variable `HF_DATASETS_OFFLINE=1`. </Tip> ```bash HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \ python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ... ``` This script should run without hanging or waiting to timeout because it won't attempt to download the model from the Hub. You can also bypass loading a model from the Hub from each [`~PreTrainedModel.from_pretrained`] call with the [`local_files_only`] parameter. When set to `True`, only local files are loaded: ```py from transformers import T5Model model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True) ``` ### Fetch models and tokenizers to use offline Another option for using ๐Ÿค— Transformers offline is to download the files ahead of time, and then point to their local path when you need to use them offline. There are three ways to do this: * Download a file through the user interface on the [Model Hub](https://huggingface.co/models) by clicking on the โ†“ icon. ![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png) * Use the [`PreTrainedModel.from_pretrained`] and [`PreTrainedModel.save_pretrained`] workflow: 1. Download your files ahead of time with [`PreTrainedModel.from_pretrained`]: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B") >>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B") ``` 2. Save your files to a specified directory with [`PreTrainedModel.save_pretrained`]: ```py >>> tokenizer.save_pretrained("./your/path/bigscience_t0") >>> model.save_pretrained("./your/path/bigscience_t0") ``` 3. Now when you're offline, reload your files with [`PreTrainedModel.from_pretrained`] from the specified directory: ```py >>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0") >>> model = AutoModel.from_pretrained("./your/path/bigscience_t0") ``` * Programmatically download files with the [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) library: 1. Install the `huggingface_hub` library in your virtual environment: ```bash python -m pip install huggingface_hub ``` 2. Use the [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) function to download a file to a specific path. For example, the following command downloads the `config.json` file from the [T0](https://huggingface.co/bigscience/T0_3B) model to your desired path: ```py >>> from huggingface_hub import hf_hub_download >>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0") ``` Once your file is downloaded and locally cached, specify it's local path to load and use it: ```py >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json") ``` <Tip> See the [How to download files from the Hub](https://huggingface.co/docs/hub/how-to-downstream) section for more details on downloading files stored on the Hub. </Tip>
transformers/docs/source/en/installation.md/0
{ "file_path": "transformers/docs/source/en/installation.md", "repo_id": "transformers", "token_count": 2895 }
219
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Data Collator Data collators are objects that will form a batch by using a list of dataset elements as input. These elements are of the same type as the elements of `train_dataset` or `eval_dataset`. To be able to build batches, data collators may apply some processing (like padding). Some of them (like [`DataCollatorForLanguageModeling`]) also apply some random data augmentation (like random masking) on the formed batch. Examples of use can be found in the [example scripts](../examples) or [example notebooks](../notebooks). ## Default data collator [[autodoc]] data.data_collator.default_data_collator ## DefaultDataCollator [[autodoc]] data.data_collator.DefaultDataCollator ## DataCollatorWithPadding [[autodoc]] data.data_collator.DataCollatorWithPadding ## DataCollatorForTokenClassification [[autodoc]] data.data_collator.DataCollatorForTokenClassification ## DataCollatorForSeq2Seq [[autodoc]] data.data_collator.DataCollatorForSeq2Seq ## DataCollatorForLanguageModeling [[autodoc]] data.data_collator.DataCollatorForLanguageModeling - numpy_mask_tokens - tf_mask_tokens - torch_mask_tokens ## DataCollatorForWholeWordMask [[autodoc]] data.data_collator.DataCollatorForWholeWordMask - numpy_mask_tokens - tf_mask_tokens - torch_mask_tokens ## DataCollatorForPermutationLanguageModeling [[autodoc]] data.data_collator.DataCollatorForPermutationLanguageModeling - numpy_mask_tokens - tf_mask_tokens - torch_mask_tokens
transformers/docs/source/en/main_classes/data_collator.md/0
{ "file_path": "transformers/docs/source/en/main_classes/data_collator.md", "repo_id": "transformers", "token_count": 681 }
220
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ALBERT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=albert"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-albert-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/albert-base-v2"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The ALBERT model was proposed in [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. It presents two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT: - Splitting the embedding matrix into two smaller matrices. - Using repeating layers split among groups. The abstract from the paper is the following: *Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.* This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT). ## Usage tips - ALBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. - Embedding size E is different from hidden size H justified because the embeddings are context independent (one embedding vector represents one token), whereas hidden states are context dependent (one hidden state represents a sequence of tokens) so it's more logical to have H >> E. Also, the embedding matrix is large since it's V x E (V being the vocab size). If E < H, it has less parameters. - Layers are split in groups that share parameters (to save memory). Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not. This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT). ## Resources The resources provided in the following sections consist of a list of official Hugging Face and community (indicated by ๐ŸŒŽ) resources to help you get started with AlBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - [`AlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification). - [`TFAlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification). - [`FlaxAlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb). - Check the [Text classification task guide](../tasks/sequence_classification) on how to use the model. <PipelineTag pipeline="token-classification"/> - [`AlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification). - [`TFAlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). - [`FlaxAlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification). - [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the ๐Ÿค— Hugging Face Course. - Check the [Token classification task guide](../tasks/token_classification) on how to use the model. <PipelineTag pipeline="fill-mask"/> - [`AlbertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFAlbertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - [`FlaxAlbertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb). - [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the ๐Ÿค— Hugging Face Course. - Check the [Masked language modeling task guide](../tasks/masked_language_modeling) on how to use the model. <PipelineTag pipeline="question-answering"/> - [`AlbertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb). - [`TFAlbertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb). - [`FlaxAlbertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering). - [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the ๐Ÿค— Hugging Face Course. - Check the [Question answering task guide](../tasks/question_answering) on how to use the model. **Multiple choice** - [`AlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb). - [`TFAlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb). - Check the [Multiple choice task guide](../tasks/multiple_choice) on how to use the model. ## AlbertConfig [[autodoc]] AlbertConfig ## AlbertTokenizer [[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## AlbertTokenizerFast [[autodoc]] AlbertTokenizerFast ## Albert specific outputs [[autodoc]] models.albert.modeling_albert.AlbertForPreTrainingOutput [[autodoc]] models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput <frameworkcontent> <pt> ## AlbertModel [[autodoc]] AlbertModel - forward ## AlbertForPreTraining [[autodoc]] AlbertForPreTraining - forward ## AlbertForMaskedLM [[autodoc]] AlbertForMaskedLM - forward ## AlbertForSequenceClassification [[autodoc]] AlbertForSequenceClassification - forward ## AlbertForMultipleChoice [[autodoc]] AlbertForMultipleChoice ## AlbertForTokenClassification [[autodoc]] AlbertForTokenClassification - forward ## AlbertForQuestionAnswering [[autodoc]] AlbertForQuestionAnswering - forward </pt> <tf> ## TFAlbertModel [[autodoc]] TFAlbertModel - call ## TFAlbertForPreTraining [[autodoc]] TFAlbertForPreTraining - call ## TFAlbertForMaskedLM [[autodoc]] TFAlbertForMaskedLM - call ## TFAlbertForSequenceClassification [[autodoc]] TFAlbertForSequenceClassification - call ## TFAlbertForMultipleChoice [[autodoc]] TFAlbertForMultipleChoice - call ## TFAlbertForTokenClassification [[autodoc]] TFAlbertForTokenClassification - call ## TFAlbertForQuestionAnswering [[autodoc]] TFAlbertForQuestionAnswering - call </tf> <jax> ## FlaxAlbertModel [[autodoc]] FlaxAlbertModel - __call__ ## FlaxAlbertForPreTraining [[autodoc]] FlaxAlbertForPreTraining - __call__ ## FlaxAlbertForMaskedLM [[autodoc]] FlaxAlbertForMaskedLM - __call__ ## FlaxAlbertForSequenceClassification [[autodoc]] FlaxAlbertForSequenceClassification - __call__ ## FlaxAlbertForMultipleChoice [[autodoc]] FlaxAlbertForMultipleChoice - __call__ ## FlaxAlbertForTokenClassification [[autodoc]] FlaxAlbertForTokenClassification - __call__ ## FlaxAlbertForQuestionAnswering [[autodoc]] FlaxAlbertForQuestionAnswering - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/albert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/albert.md", "repo_id": "transformers", "token_count": 3405 }
221
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CLIP ## Overview The CLIP model was proposed in [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3. The abstract from the paper is the following: *State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at this https URL.* This model was contributed by [valhalla](https://huggingface.co/valhalla). The original code can be found [here](https://github.com/openai/CLIP). ## Usage tips and example CLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image classification. CLIP uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features are then projected to a latent space with identical dimension. The dot product between the projected image and text features is then used as a similar score. To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches, which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. The [`CLIPImageProcessor`] can be used to resize (or rescale) and normalize images for the model. The [`CLIPTokenizer`] is used to encode the text. The [`CLIPProcessor`] wraps [`CLIPImageProcessor`] and [`CLIPTokenizer`] into a single instance to both encode the text and prepare the images. The following example shows how to get the image-text similarity scores using [`CLIPProcessor`] and [`CLIPModel`]. ```python >>> from PIL import Image >>> import requests >>> from transformers import CLIPProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Resources A list of official Hugging Face and community (indicated by ๐ŸŒŽ) resources to help you get started with CLIP. - [Fine tuning CLIP with Remote Sensing (Satellite) images and captions](https://huggingface.co/blog/fine-tune-clip-rsicd), a blog post about how to fine-tune CLIP with [RSICD dataset](https://github.com/201528014227051/RSICD_optimal) and comparison of performance changes due to data augmentation. - This [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text) shows how to train a CLIP-like vision-text dual encoder model using a pre-trained vision and text encoder using [COCO dataset](https://cocodataset.org/#home). <PipelineTag pipeline="image-to-text"/> - A [notebook](https://colab.research.google.com/drive/1tuoAC5F4sC7qid56Z0ap-stR3rwdk0ZV?usp=sharing) on how to use a pretrained CLIP for inference with beam search for image captioning. ๐ŸŒŽ **Image retrieval** - A [notebook](https://colab.research.google.com/drive/1bLVwVKpAndpEDHqjzxVPr_9nGrSbuOQd?usp=sharing) on image retrieval using pretrained CLIP and computing MRR(Mean Reciprocal Rank) score. ๐ŸŒŽ - A [notebook](https://colab.research.google.com/github/deep-diver/image_search_with_natural_language/blob/main/notebooks/Image_Search_CLIP.ipynb) on image retrieval and showing the similarity score. ๐ŸŒŽ - A [notebook](https://colab.research.google.com/drive/1xO-wC_m_GNzgjIBQ4a4znvQkvDoZJvH4?usp=sharing) on how to map images and texts to the same vector space using Multilingual CLIP. ๐ŸŒŽ - A [notebook](https://colab.research.google.com/github/vivien000/clip-demo/blob/master/clip.ipynb#scrollTo=uzdFhRGqiWkR) on how to run CLIP on semantic image search using [Unsplash](https://unsplash.com) and [TMDB](https://www.themoviedb.org/) datasets. ๐ŸŒŽ **Explainability** - A [notebook](https://colab.research.google.com/github/hila-chefer/Transformer-MM-Explainability/blob/main/CLIP_explainability.ipynb) on how to visualize similarity between input token and image segment. ๐ŸŒŽ If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it. The resource should ideally demonstrate something new instead of duplicating an existing resource. ## CLIPConfig [[autodoc]] CLIPConfig - from_text_vision_configs ## CLIPTextConfig [[autodoc]] CLIPTextConfig ## CLIPVisionConfig [[autodoc]] CLIPVisionConfig ## CLIPTokenizer [[autodoc]] CLIPTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## CLIPTokenizerFast [[autodoc]] CLIPTokenizerFast ## CLIPImageProcessor [[autodoc]] CLIPImageProcessor - preprocess ## CLIPFeatureExtractor [[autodoc]] CLIPFeatureExtractor ## CLIPProcessor [[autodoc]] CLIPProcessor <frameworkcontent> <pt> ## CLIPModel [[autodoc]] CLIPModel - forward - get_text_features - get_image_features ## CLIPTextModel [[autodoc]] CLIPTextModel - forward ## CLIPTextModelWithProjection [[autodoc]] CLIPTextModelWithProjection - forward ## CLIPVisionModelWithProjection [[autodoc]] CLIPVisionModelWithProjection - forward ## CLIPVisionModel [[autodoc]] CLIPVisionModel - forward </pt> <tf> ## TFCLIPModel [[autodoc]] TFCLIPModel - call - get_text_features - get_image_features ## TFCLIPTextModel [[autodoc]] TFCLIPTextModel - call ## TFCLIPVisionModel [[autodoc]] TFCLIPVisionModel - call </tf> <jax> ## FlaxCLIPModel [[autodoc]] FlaxCLIPModel - __call__ - get_text_features - get_image_features ## FlaxCLIPTextModel [[autodoc]] FlaxCLIPTextModel - __call__ ## FlaxCLIPTextModelWithProjection [[autodoc]] FlaxCLIPTextModelWithProjection - __call__ ## FlaxCLIPVisionModel [[autodoc]] FlaxCLIPVisionModel - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/clip.md/0
{ "file_path": "transformers/docs/source/en/model_doc/clip.md", "repo_id": "transformers", "token_count": 2668 }
222
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Decision Transformer ## Overview The Decision Transformer model was proposed in [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. The abstract from the paper is the following: *We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.* This version of the model is for tasks where the state is a vector. This model was contributed by [edbeeching](https://huggingface.co/edbeeching). The original code can be found [here](https://github.com/kzl/decision-transformer). ## DecisionTransformerConfig [[autodoc]] DecisionTransformerConfig ## DecisionTransformerGPT2Model [[autodoc]] DecisionTransformerGPT2Model - forward ## DecisionTransformerModel [[autodoc]] DecisionTransformerModel - forward
transformers/docs/source/en/model_doc/decision_transformer.md/0
{ "file_path": "transformers/docs/source/en/model_doc/decision_transformer.md", "repo_id": "transformers", "token_count": 639 }
223
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # EfficientNet ## Overview The EfficientNet model was proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan and Quoc V. Le. EfficientNets are a family of image classification models, which achieve state-of-the-art accuracy, yet being an order-of-magnitude smaller and faster than previous models. The abstract from the paper is the following: *Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet. To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In particular, our EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters.* This model was contributed by [adirik](https://huggingface.co/adirik). The original code can be found [here](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet). ## EfficientNetConfig [[autodoc]] EfficientNetConfig ## EfficientNetImageProcessor [[autodoc]] EfficientNetImageProcessor - preprocess ## EfficientNetModel [[autodoc]] EfficientNetModel - forward ## EfficientNetForImageClassification [[autodoc]] EfficientNetForImageClassification - forward
transformers/docs/source/en/model_doc/efficientnet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/efficientnet.md", "repo_id": "transformers", "token_count": 725 }
224
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Funnel Transformer <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=funnel"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-funnel-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/funnel-transformer-small"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Funnel Transformer model was proposed in the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236). It is a bidirectional transformer model, like BERT, but with a pooling operation after each block of layers, a bit like in traditional convolutional neural networks (CNN) in computer vision. The abstract from the paper is the following: *With the success of language pretraining, it is highly desirable to develop more efficient architectures of good scalability that can exploit the abundant unlabeled data at a lower cost. To improve the efficiency, we examine the much-overlooked redundancy in maintaining a full-length token-level presentation, especially for tasks that only require a single-vector presentation of the sequence. With this intuition, we propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, we further improve the model capacity. In addition, to perform token-level predictions as required by common pretraining objectives, Funnel-Transformer is able to recover a deep representation for each token from the reduced hidden sequence via a decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks, including text classification, language understanding, and reading comprehension.* This model was contributed by [sgugger](https://huggingface.co/sgugger). The original code can be found [here](https://github.com/laiguokun/Funnel-Transformer). ## Usage tips - Since Funnel Transformer uses pooling, the sequence length of the hidden states changes after each block of layers. This way, their length is divided by 2, which speeds up the computation of the next hidden states. The base model therefore has a final sequence length that is a quarter of the original one. This model can be used directly for tasks that just require a sentence summary (like sequence classification or multiple choice). For other tasks, the full model is used; this full model has a decoder that upsamples the final hidden states to the same sequence length as the input. - For tasks such as classification, this is not a problem, but for tasks like masked language modeling or token classification, we need a hidden state with the same sequence length as the original input. In those cases, the final hidden states are upsampled to the input sequence length and go through two additional layers. That's why there are two versions of each checkpoint. The version suffixed with โ€œ-baseโ€ contains only the three blocks, while the version without that suffix contains the three blocks and the upsampling head with its additional layers. - The Funnel Transformer checkpoints are all available with a full version and a base version. The first ones should be used for [`FunnelModel`], [`FunnelForPreTraining`], [`FunnelForMaskedLM`], [`FunnelForTokenClassification`] and [`FunnelForQuestionAnswering`]. The second ones should be used for [`FunnelBaseModel`], [`FunnelForSequenceClassification`] and [`FunnelForMultipleChoice`]. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## FunnelConfig [[autodoc]] FunnelConfig ## FunnelTokenizer [[autodoc]] FunnelTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## FunnelTokenizerFast [[autodoc]] FunnelTokenizerFast ## Funnel specific outputs [[autodoc]] models.funnel.modeling_funnel.FunnelForPreTrainingOutput [[autodoc]] models.funnel.modeling_tf_funnel.TFFunnelForPreTrainingOutput <frameworkcontent> <pt> ## FunnelBaseModel [[autodoc]] FunnelBaseModel - forward ## FunnelModel [[autodoc]] FunnelModel - forward ## FunnelModelForPreTraining [[autodoc]] FunnelForPreTraining - forward ## FunnelForMaskedLM [[autodoc]] FunnelForMaskedLM - forward ## FunnelForSequenceClassification [[autodoc]] FunnelForSequenceClassification - forward ## FunnelForMultipleChoice [[autodoc]] FunnelForMultipleChoice - forward ## FunnelForTokenClassification [[autodoc]] FunnelForTokenClassification - forward ## FunnelForQuestionAnswering [[autodoc]] FunnelForQuestionAnswering - forward </pt> <tf> ## TFFunnelBaseModel [[autodoc]] TFFunnelBaseModel - call ## TFFunnelModel [[autodoc]] TFFunnelModel - call ## TFFunnelModelForPreTraining [[autodoc]] TFFunnelForPreTraining - call ## TFFunnelForMaskedLM [[autodoc]] TFFunnelForMaskedLM - call ## TFFunnelForSequenceClassification [[autodoc]] TFFunnelForSequenceClassification - call ## TFFunnelForMultipleChoice [[autodoc]] TFFunnelForMultipleChoice - call ## TFFunnelForTokenClassification [[autodoc]] TFFunnelForTokenClassification - call ## TFFunnelForQuestionAnswering [[autodoc]] TFFunnelForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/funnel.md/0
{ "file_path": "transformers/docs/source/en/model_doc/funnel.md", "repo_id": "transformers", "token_count": 1879 }
225
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # I-BERT ## Overview The I-BERT model was proposed in [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney and Kurt Keutzer. It's a quantized version of RoBERTa running inference up to four times faster. The abstract from the paper is the following: *Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive for efficient inference at the edge, and even at the data center. While quantization can be a viable solution for this, previous work on quantizing Transformer based models use floating-point arithmetic during inference, which cannot efficiently utilize integer-only logical units such as the recent Turing Tensor Cores, or traditional integer-only ARM processors. In this work, we propose I-BERT, a novel quantization scheme for Transformer based models that quantizes the entire inference with integer-only arithmetic. Based on lightweight integer-only approximation methods for nonlinear operations, e.g., GELU, Softmax, and Layer Normalization, I-BERT performs an end-to-end integer-only BERT inference without any floating point calculation. We evaluate our approach on GLUE downstream tasks using RoBERTa-Base/Large. We show that for both cases, I-BERT achieves similar (and slightly higher) accuracy as compared to the full-precision baseline. Furthermore, our preliminary implementation of I-BERT shows a speedup of 2.4 - 4.0x for INT8 inference on a T4 GPU system as compared to FP32 inference. The framework has been developed in PyTorch and has been open-sourced.* This model was contributed by [kssteven](https://huggingface.co/kssteven). The original code can be found [here](https://github.com/kssteven418/I-BERT). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/masked_language_modeling) ## IBertConfig [[autodoc]] IBertConfig ## IBertModel [[autodoc]] IBertModel - forward ## IBertForMaskedLM [[autodoc]] IBertForMaskedLM - forward ## IBertForSequenceClassification [[autodoc]] IBertForSequenceClassification - forward ## IBertForMultipleChoice [[autodoc]] IBertForMultipleChoice - forward ## IBertForTokenClassification [[autodoc]] IBertForTokenClassification - forward ## IBertForQuestionAnswering [[autodoc]] IBertForQuestionAnswering - forward
transformers/docs/source/en/model_doc/ibert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/ibert.md", "repo_id": "transformers", "token_count": 947 }
226
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LLaVa ## Overview LLaVa is an open-source chatbot trained by fine-tuning LlamA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. In other words, it is an multi-modal version of LLMs fine-tuned for chat / instructions. The LLaVa model was proposed in [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) and improved in [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/pdf/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. The abstract from the paper is the following: *Large multimodal models (LMM) have recently shown encouraging progress with visual instruction tuning. In this note, we show that the fully-connected vision-language cross-modal connector in LLaVA is surprisingly powerful and data-efficient. With simple modifications to LLaVA, namely, using CLIP-ViT-L-336px with an MLP projection and adding academic-task-oriented VQA data with simple response formatting prompts, we establish stronger baselines that achieve state-of-the-art across 11 benchmarks. Our final 13B checkpoint uses merely 1.2M publicly available data, and finishes full training in โˆผ1 day on a single 8-A100 node. We hope this can make state-of-the-art LMM research more accessible. Code and model will be publicly available* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_architecture.jpg" alt="drawing" width="600"/> <small> LLaVa architecture. Taken from the <a href="https://arxiv.org/abs/2304.08485">original paper.</a> </small> This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ) and [ybelkada](https://huggingface.co/ybelkada). The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main/llava). ## Usage tips - We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating. - Note the model has not been explicitly trained to process multiple images in the same prompt, although this is technically possible, you may experience inaccurate results. - For better results, we recommend users to prompt the model with the correct prompt format: ```bash "USER: <image>\n<prompt>ASSISTANT:" ``` For multiple turns conversation: ```bash "USER: <image>\n<prompt1>ASSISTANT: <answer1>USER: <prompt2>ASSISTANT: <answer2>USER: <prompt3>ASSISTANT:" ``` ### Using Flash Attention 2 Flash Attention 2 is an even faster, optimized version of the previous optimization, please refer to the [Flash Attention 2 section of performance docs](https://huggingface.co/docs/transformers/perf_infer_gpu_one). ## Resources A list of official Hugging Face and community (indicated by ๐ŸŒŽ) resources to help you get started with BEiT. <PipelineTag pipeline="image-to-text"/> - A [Google Colab demo](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing) on how to run Llava on a free-tier Google colab instance leveraging 4-bit inference. - A [similar notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LLaVa/Inference_with_LLaVa_for_multimodal_generation.ipynb) showcasing batched inference. ๐ŸŒŽ ## LlavaConfig [[autodoc]] LlavaConfig ## LlavaProcessor [[autodoc]] LlavaProcessor ## LlavaForConditionalGeneration [[autodoc]] LlavaForConditionalGeneration - forward
transformers/docs/source/en/model_doc/llava.md/0
{ "file_path": "transformers/docs/source/en/model_doc/llava.md", "repo_id": "transformers", "token_count": 1228 }
227
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MVP ## Overview The MVP model was proposed in [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. According to the abstract, - MVP follows a standard Transformer encoder-decoder architecture. - MVP is supervised pre-trained using labeled datasets. - MVP also has task-specific soft prompts to stimulate the model's capacity in performing a certain task. - MVP is specially designed for natural language generation and can be adapted to a wide range of generation tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story generation, question answering, question generation, task-oriented dialogue system, commonsense generation, paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural language understanding tasks such as sequence classification and (extractive) question answering. This model was contributed by [Tianyi Tang](https://huggingface.co/StevenTang). The detailed information and instructions can be found [here](https://github.com/RUCAIBox/MVP). ## Usage tips - We have released a series of models [here](https://huggingface.co/models?filter=mvp), including MVP, MVP with task-specific prompts, and multi-task pre-trained variants. - If you want to use a model without prompts (standard Transformer), you can load it through `MvpForConditionalGeneration.from_pretrained('RUCAIBox/mvp')`. - If you want to use a model with task-specific prompts, such as summarization, you can load it through `MvpForConditionalGeneration.from_pretrained('RUCAIBox/mvp-summarization')`. - Our model supports lightweight prompt tuning following [Prefix-tuning](https://arxiv.org/abs/2101.00190) with method `set_lightweight_tuning()`. ## Usage examples For summarization, it is an example to use MVP and MVP with summarization-specific prompts. ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp") >>> model_with_prompt = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-summarization") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Why You Shouldn't Quit Your Job"] >>> generated_ids = model_with_prompt.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Don't do it if these are your reasons"] ``` For data-to-text generation, it is an example to use MVP and multi-task pre-trained variants. ```python >>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration >>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp") >>> model_with_mtl = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Stan Lee created the character of Iron Man, a fictional superhero appearing in American comic'] >>> generated_ids = model_with_mtl.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` For lightweight tuning, *i.e.*, fixing the model and only tuning prompts, you can load MVP with randomly initialized prompts or with task-specific prompts. Our code also supports Prefix-tuning with BART following the [original paper](https://arxiv.org/abs/2101.00190). ```python >>> from transformers import MvpForConditionalGeneration >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp", use_prompt=True) >>> # the number of trainable parameters (full tuning) >>> sum(p.numel() for p in model.parameters() if p.requires_grad) 468116832 >>> # lightweight tuning with randomly initialized prompts >>> model.set_lightweight_tuning() >>> # the number of trainable parameters (lightweight tuning) >>> sum(p.numel() for p in model.parameters() if p.requires_grad) 61823328 >>> # lightweight tuning with task-specific prompts >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text") >>> model.set_lightweight_tuning() >>> # original lightweight Prefix-tuning >>> model = MvpForConditionalGeneration.from_pretrained("facebook/bart-large", use_prompt=True) >>> model.set_lightweight_tuning() ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## MvpConfig [[autodoc]] MvpConfig ## MvpTokenizer [[autodoc]] MvpTokenizer ## MvpTokenizerFast [[autodoc]] MvpTokenizerFast ## MvpModel [[autodoc]] MvpModel - forward ## MvpForConditionalGeneration [[autodoc]] MvpForConditionalGeneration - forward ## MvpForSequenceClassification [[autodoc]] MvpForSequenceClassification - forward ## MvpForQuestionAnswering [[autodoc]] MvpForQuestionAnswering - forward ## MvpForCausalLM [[autodoc]] MvpForCausalLM - forward
transformers/docs/source/en/model_doc/mvp.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mvp.md", "repo_id": "transformers", "token_count": 1922 }
228
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Speech Encoder Decoder Models The [`SpeechEncoderDecoderModel`] can be used to initialize a speech-to-text model with any pretrained speech autoencoding model as the encoder (*e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert)) and any pretrained autoregressive model as the decoder. The effectiveness of initializing speech-sequence-to-text-sequence models with pretrained checkpoints for speech recognition and speech translation has *e.g.* been shown in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. An example of how to use a [`SpeechEncoderDecoderModel`] for inference can be seen in [Speech2Text2](speech_to_text_2). ## Randomly initializing `SpeechEncoderDecoderModel` from model configurations. [`SpeechEncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`Wav2Vec2Model`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder. ```python >>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel >>> config_encoder = Wav2Vec2Config() >>> config_decoder = BertConfig() >>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> model = SpeechEncoderDecoderModel(config=config) ``` ## Initialising `SpeechEncoderDecoderModel` from a pretrained encoder and a pretrained decoder. [`SpeechEncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based speech model, *e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert) can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder. Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized. Initializing [`SpeechEncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder). To do so, the `SpeechEncoderDecoderModel` class provides a [`SpeechEncoderDecoderModel.from_encoder_decoder_pretrained`] method. ```python >>> from transformers import SpeechEncoderDecoderModel >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/hubert-large-ll60k", "bert-base-uncased" ... ) ``` ## Loading an existing `SpeechEncoderDecoderModel` checkpoint and perform inference. To load fine-tuned checkpoints of the `SpeechEncoderDecoderModel` class, [`SpeechEncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers. To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling. ```python >>> from transformers import Wav2Vec2Processor, SpeechEncoderDecoderModel >>> from datasets import load_dataset >>> import torch >>> # load a fine-tuned speech translation model and corresponding processor >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> # let's perform inference on a piece of English speech (which we'll translate to German) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # autoregressively generate transcription (uses greedy decoding by default) >>> generated_ids = model.generate(input_values) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heiรŸen zu kรถnnen. ``` ## Training Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (speech, text) pairs. As you can see, only 2 inputs are required for the model in order to compute a loss: `input_values` (which are the speech inputs) and `labels` (which are the `input_ids` of the encoded target sequence). ```python >>> from transformers import AutoTokenizer, AutoFeatureExtractor, SpeechEncoderDecoderModel >>> from datasets import load_dataset >>> encoder_id = "facebook/wav2vec2-base-960h" # acoustic model encoder >>> decoder_id = "bert-base-uncased" # text decoder >>> feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id) >>> tokenizer = AutoTokenizer.from_pretrained(decoder_id) >>> # Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id) >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> # load an audio input and pre-process (normalise mean/std to 0/1) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # load its corresponding transcription and tokenize to generate labels >>> labels = tokenizer(ds[0]["text"], return_tensors="pt").input_ids >>> # the forward function automatically creates the correct decoder_input_ids >>> loss = model(input_values=input_values, labels=labels).loss >>> loss.backward() ``` ## SpeechEncoderDecoderConfig [[autodoc]] SpeechEncoderDecoderConfig ## SpeechEncoderDecoderModel [[autodoc]] SpeechEncoderDecoderModel - forward - from_encoder_decoder_pretrained ## FlaxSpeechEncoderDecoderModel [[autodoc]] FlaxSpeechEncoderDecoderModel - __call__ - from_encoder_decoder_pretrained
transformers/docs/source/en/model_doc/speech-encoder-decoder.md/0
{ "file_path": "transformers/docs/source/en/model_doc/speech-encoder-decoder.md", "repo_id": "transformers", "token_count": 2084 }
229
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Time Series Transformer ## Overview The Time Series Transformer model is a vanilla encoder-decoder Transformer for time series forecasting. This model was contributed by [kashif](https://huggingface.co/kashif). ## Usage tips - Similar to other models in the library, [`TimeSeriesTransformerModel`] is the raw Transformer without any head on top, and [`TimeSeriesTransformerForPrediction`] adds a distribution head on top of the former, which can be used for time-series forecasting. Note that this is a so-called probabilistic forecasting model, not a point forecasting model. This means that the model learns a distribution, from which one can sample. The model doesn't directly output values. - [`TimeSeriesTransformerForPrediction`] consists of 2 blocks: an encoder, which takes a `context_length` of time series values as input (called `past_values`), and a decoder, which predicts a `prediction_length` of time series values into the future (called `future_values`). During training, one needs to provide pairs of (`past_values` and `future_values`) to the model. - In addition to the raw (`past_values` and `future_values`), one typically provides additional features to the model. These can be the following: - `past_time_features`: temporal features which the model will add to `past_values`. These serve as "positional encodings" for the Transformer encoder. Examples are "day of the month", "month of the year", etc. as scalar values (and then stacked together as a vector). e.g. if a given time-series value was obtained on the 11th of August, then one could have [11, 8] as time feature vector (11 being "day of the month", 8 being "month of the year"). - `future_time_features`: temporal features which the model will add to `future_values`. These serve as "positional encodings" for the Transformer decoder. Examples are "day of the month", "month of the year", etc. as scalar values (and then stacked together as a vector). e.g. if a given time-series value was obtained on the 11th of August, then one could have [11, 8] as time feature vector (11 being "day of the month", 8 being "month of the year"). - `static_categorical_features`: categorical features which are static over time (i.e., have the same value for all `past_values` and `future_values`). An example here is the store ID or region ID that identifies a given time-series. Note that these features need to be known for ALL data points (also those in the future). - `static_real_features`: real-valued features which are static over time (i.e., have the same value for all `past_values` and `future_values`). An example here is the image representation of the product for which you have the time-series values (like the [ResNet](resnet) embedding of a "shoe" picture, if your time-series is about the sales of shoes). Note that these features need to be known for ALL data points (also those in the future). - The model is trained using "teacher-forcing", similar to how a Transformer is trained for machine translation. This means that, during training, one shifts the `future_values` one position to the right as input to the decoder, prepended by the last value of `past_values`. At each time step, the model needs to predict the next target. So the set-up of training is similar to a GPT model for language, except that there's no notion of `decoder_start_token_id` (we just use the last value of the context as initial input for the decoder). - At inference time, we give the final value of the `past_values` as input to the decoder. Next, we can sample from the model to make a prediction at the next time step, which is then fed to the decoder in order to make the next prediction (also called autoregressive generation). ## Resources A list of official Hugging Face and community (indicated by ๐ŸŒŽ) resources to help you get started. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - Check out the Time Series Transformer blog-post in HuggingFace blog: [Probabilistic Time Series Forecasting with ๐Ÿค— Transformers](https://huggingface.co/blog/time-series-transformers) ## TimeSeriesTransformerConfig [[autodoc]] TimeSeriesTransformerConfig ## TimeSeriesTransformerModel [[autodoc]] TimeSeriesTransformerModel - forward ## TimeSeriesTransformerForPrediction [[autodoc]] TimeSeriesTransformerForPrediction - forward
transformers/docs/source/en/model_doc/time_series_transformer.md/0
{ "file_path": "transformers/docs/source/en/model_doc/time_series_transformer.md", "repo_id": "transformers", "token_count": 1371 }
230