code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
# (C) British Crown Copyright 2014 - 2015, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for :func:`iris.fileformats.rules._make_cube`.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests from iris.fileformats.rules import _make_cube import iris.fileformats.rules from iris.tests import mock class Test(tests.IrisTest): def test_invalid_units(self): # Mock converter() function that returns an invalid # units string amongst the collection of other elements. factories = None references = None standard_name = None long_name = None units = 'wibble' # Invalid unit. attributes = dict(source='test') cell_methods = None dim_coords_and_dims = None aux_coords_and_dims = None metadata = iris.fileformats.rules.ConversionMetadata( factories, references, standard_name, long_name, units, attributes, cell_methods, dim_coords_and_dims, aux_coords_and_dims) converter = mock.Mock(return_value=metadata) field = mock.Mock() with mock.patch('warnings.warn') as warn: cube, factories, references = _make_cube(field, converter) # Check attributes dictionary is correctly populated. expected_attributes = attributes.copy() expected_attributes['invalid_units'] = units self.assertEqual(cube.attributes, expected_attributes) # Check warning was raised. self.assertEqual(warn.call_count, 1) warning_msg = warn.call_args[0][0] self.assertIn('invalid units', warning_msg) if __name__ == "__main__": tests.main()
mo-g/iris
lib/iris/tests/unit/fileformats/rules/test__make_cube.py
Python
gpl-3.0
2,483
import unittest from unittest.mock import Mock from test import support from worklog import * import models class WorklogTests(unittest.TestCase): @classmethod def setUpClass(self): # running the setup method only once self.tasks = Entry.select() self.stdout = None self.stdin = None self.task_name = get_task_name('a') self.task_name_edit = get_task_name('e') self.employee_name = get_employee_name('a') self.employee_name_edit = get_employee_name('e') self.task_time = get_task_time('a') self.task_time_edit = get_task_time('e') self.notes = get_notes('a') self.notes_edit = get_notes('e') def test_display_tasks(self): """test to see if it returns a particular string when there are no tasks to show""" #task is an empty list self.tasks = [] with support.captured_stdout() as self.stdout: display_tasks(self.tasks) self.check_assertion('Sorry no results to display!\n') def test_view_entries(self): """check that display_tasks is called with no issues when the default parameters are applied to view_tasks""" view_tasks = Mock() self.assertTrue(view_tasks.return_type(display_tasks([]))) def test_type_of_search(self): """check that the result type is one of the desired options""" result = type_of_search() self.assertIn(result, "edsrt") def test_get_task_name(self): """check that return value is not blank, when a user is adding a task, but at the same time test that the return value can be blank or not in an edit context""" self.assertNotEqual(self.task_name, '') self.assertEqual(self.task_name_edit,'') def test_get_task_time(self): """check that the return type is not blank when a new task is getting created but can be blank when in an edit context, also check that the return type is the same function when the user enters blank""" self.assertNotEqual(self.task_time, '') self.assertEqual(self.task_time_edit,'') def test_get_notes(self): """check that the return type is not blank when a new task is getting created but can be blank when in an edit context""" self.assertNotEqual(self.notes, '') self.assertEqual(self.notes_edit,'') def test_get_date_range(self): """check that the list returned is not empty""" result = get_date_range() self.assertNotEqual(len(result), 0) def test_get_employee_name_edit(self): """check that the return type is not blank when a new task is getting created but can be blank when in an edit context""" self.assertNotEqual(self.employee_name, '') self.assertEqual(self.employee_name_edit,'') def test_not_valid_time(self): """check the function returns true when the time format is wrong""" user_input = not_valid_time('60:01') self.assertTrue(user_input) def test_valid_date(self): """Check to see if false is returned when the date is in the wrong format""" result = valid_date('2017-03-02') self.assertFalse(result) def test_get_date_options(self): """check that the dictionary returned is not empty""" dict = get_date_options() length = len(dict) self.assertNotEqual(length, 0) def test_create_task(self): """test that a task gets created""" with support.captured_stdout() as self.stdout: create_task(self.employee_name,self.task_name, self.task_time, self.notes) self.check_assertion("Task created successfully!\n") def test_edit_task(self): """test that a task gets updated""" task = Entry.get(id='7') with support.captured_stdout() as self.stdout: edit_task(task,self.employee_name_edit,self.task_name_edit, self.task_time_edit, self.notes_edit) self.check_assertion("Task updated\n") def test_delete_task(self): """test to see if a task gets deleted successfully""" task = Entry.get(Entry.id=='6') delete_task(task) user_input = self.get_input() if user_input =='y': with support.captured_stdout() as self.stdout: delete_task(task) self.check_assertion("Task deleted!\n") def check_assertion(self, msg): self.assertEqual(self.stdout.getvalue(), msg) def test_main(self): print("enter q when prompted!") result = main() self.assertEqual(result, None) def get_input(self): '''this method captures input from the console''' with support.captured_stdin() as self.stdin: return self.stdin.readline() if __name__ == '__main__': print("*"*50) print("For each input request leave the second blank, for\n" "options, enter a value in the options") print("*"*50) unittest.main()
squadran2003/worklog-with-database
tests.py
Python
mit
4,551
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from data_explorer.models.base_model_ import Model from data_explorer.models.facet import Facet # noqa: F401,E501 from data_explorer import util class FacetsResponse(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, facets=None, count=None, invalid_filter_facets=None, invalid_extra_facets=None, sql_query=None): # noqa: E501 """FacetsResponse - a model defined in Swagger :param facets: The facets of this FacetsResponse. # noqa: E501 :type facets: List[Facet] :param count: The count of this FacetsResponse. # noqa: E501 :type count: int :param invalid_filter_facets: The invalid_filter_facets of this FacetsResponse. # noqa: E501 :type invalid_filter_facets: List[str] :param invalid_extra_facets: The invalid_extra_facets of this FacetsResponse. # noqa: E501 :type invalid_extra_facets: List[str] :param sql_query: The sql_query of this FacetsResponse. # noqa: E501 :type sql_query: str """ self.swagger_types = { 'facets': List[Facet], 'count': int, 'invalid_filter_facets': List[str], 'invalid_extra_facets': List[str], 'sql_query': str } self.attribute_map = { 'facets': 'facets', 'count': 'count', 'invalid_filter_facets': 'invalid_filter_facets', 'invalid_extra_facets': 'invalid_extra_facets', 'sql_query': 'sql_query' } self._facets = facets self._count = count self._invalid_filter_facets = invalid_filter_facets self._invalid_extra_facets = invalid_extra_facets self._sql_query = sql_query @classmethod def from_dict(cls, dikt): """Returns the dict as a model :param dikt: A dict. :type: dict :return: The FacetsResponse of this FacetsResponse. # noqa: E501 :rtype: FacetsResponse """ return util.deserialize_model(dikt, cls) @property def facets(self): """Gets the facets of this FacetsResponse. :return: The facets of this FacetsResponse. :rtype: List[Facet] """ return self._facets @facets.setter def facets(self, facets): """Sets the facets of this FacetsResponse. :param facets: The facets of this FacetsResponse. :type facets: List[Facet] """ self._facets = facets @property def count(self): """Gets the count of this FacetsResponse. Number of entities represented by current facet selection. For example, this could be 40, representing 40 people. # noqa: E501 :return: The count of this FacetsResponse. :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this FacetsResponse. Number of entities represented by current facet selection. For example, this could be 40, representing 40 people. # noqa: E501 :param count: The count of this FacetsResponse. :type count: int """ self._count = count @property def invalid_filter_facets(self): """Gets the invalid_filter_facets of this FacetsResponse. Facets that were passed in filter param that don't exist in Elasticsearch index. Example: - Data Explorer url contains filter=amppd.2019_v1_0101.demographics.sex=female which is valid. User saves a cohort with this filter - A new version of AMP PD is released. (Data explorer url remains the same.) The dataset 2019_v1_0101 is replaced by dataset 2019_v2_0401. - User won't be able to open saved cohort in DE; amppd.2019_v1_0101.demographics.sex is no longer is Elasticsearch index. invalid_filter_facets will contain amppd.2019_v1_0101.demographics.sex # noqa: E501 :return: The invalid_filter_facets of this FacetsResponse. :rtype: List[str] """ return self._invalid_filter_facets @invalid_filter_facets.setter def invalid_filter_facets(self, invalid_filter_facets): """Sets the invalid_filter_facets of this FacetsResponse. Facets that were passed in filter param that don't exist in Elasticsearch index. Example: - Data Explorer url contains filter=amppd.2019_v1_0101.demographics.sex=female which is valid. User saves a cohort with this filter - A new version of AMP PD is released. (Data explorer url remains the same.) The dataset 2019_v1_0101 is replaced by dataset 2019_v2_0401. - User won't be able to open saved cohort in DE; amppd.2019_v1_0101.demographics.sex is no longer is Elasticsearch index. invalid_filter_facets will contain amppd.2019_v1_0101.demographics.sex # noqa: E501 :param invalid_filter_facets: The invalid_filter_facets of this FacetsResponse. :type invalid_filter_facets: List[str] """ self._invalid_filter_facets = invalid_filter_facets @property def invalid_extra_facets(self): """Gets the invalid_extra_facets of this FacetsResponse. Facets that were passed in extraFacets param that don't exist in Elasticsearch index. Example: - Data Explorer url contains extraFacets=amppd.2019_v1_0101.demographics.sex which is valid. User saves a cohort with this extra facet - A new version of AMP PD is released. (Data explorer url remains the same.) The dataset 2019_v1_0101 is replaced by dataset 2019_v2_0401. - User won't be able to open saved cohort in DE; amppd.2019_v1_0101.demographics.sex is no longer is Elasticsearch index. invalid_extra_facets will contain amppd.2019_v1_0101.demographics.sex # noqa: E501 :return: The invalid_extra_facets of this FacetsResponse. :rtype: List[str] """ return self._invalid_extra_facets @invalid_extra_facets.setter def invalid_extra_facets(self, invalid_extra_facets): """Sets the invalid_extra_facets of this FacetsResponse. Facets that were passed in extraFacets param that don't exist in Elasticsearch index. Example: - Data Explorer url contains extraFacets=amppd.2019_v1_0101.demographics.sex which is valid. User saves a cohort with this extra facet - A new version of AMP PD is released. (Data explorer url remains the same.) The dataset 2019_v1_0101 is replaced by dataset 2019_v2_0401. - User won't be able to open saved cohort in DE; amppd.2019_v1_0101.demographics.sex is no longer is Elasticsearch index. invalid_extra_facets will contain amppd.2019_v1_0101.demographics.sex # noqa: E501 :param invalid_extra_facets: The invalid_extra_facets of this FacetsResponse. :type invalid_extra_facets: List[str] """ self._invalid_extra_facets = invalid_extra_facets @property def sql_query(self): """Gets the sql_query of this FacetsResponse. SQL query that can be used in BigQuery to get the cohort (list of participants) of the current filter. # noqa: E501 :return: The sql_query of this FacetsResponse. :rtype: str """ return self._sql_query @sql_query.setter def sql_query(self, sql_query): """Sets the sql_query of this FacetsResponse. SQL query that can be used in BigQuery to get the cohort (list of participants) of the current filter. # noqa: E501 :param sql_query: The sql_query of this FacetsResponse. :type sql_query: str """ self._sql_query = sql_query
DataBiosphere/data-explorer
api/data_explorer/models/facets_response.py
Python
bsd-3-clause
7,851
import os import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from astropy.io import fits from astropy.time import Time ''' This program makes awesome plots of APOGEE CCFs compared to our BFs. The idea is for you to run it once for each target. ''' #plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) #plt.rc('text', usetex=True) #KIC = '5285607'; windowrows = 1; windowcols = 6 #KIC = '6864859'; windowrows = 4; windowcols = 7 #KIC = '6778289'; windowrows = 4; windowcols = 7 #KIC = '6449358'; windowrows = 4; windowcols = 7 #KIC = '4285087'; windowrows = 1; windowcols = 6 #KIC = '6781535'; windowrows = 4; windowcols = 7 KIC = '6131659'; windowrows = 4; windowcols = 7 dir = os.path.join('data', KIC) # The name of the apStar file for a single target #ccffile = 'apStar-r8-2M19390532+4027346.fits' #5285607 #ccffile = 'apStar-r6-2M19292405+4223363.fits' #6864859 #r8 is missing one visit #ccffile = 'apStar-r8-2M19282456+4215080.fits' #6778289 #ccffile = 'apStar-r8-2M19353513+4149543.fits' #6449358 #ccffile = 'apStar-r8-2M19463571+3919069.fits' #4285087 #ccffile = 'apStar-r8-2M19321788+4216489.fits' #6781535 ccffile = 'apStar-r8-2M19370697+4126128.fits' #6131659 # The name of the file with relevant BF info for the same target #bffile = '5285607BFOutAPstar.txt' # in the same order as APOGEE even though it's not chronologic #bffile = '6864859BFOutALL.txt' #bffile = '6778289BFOutJCAllVisits.txt' #bffile = '6449358BFOutALL.txt' #bffile = '4285087BFOut.txt' #bffile = '6781535BFOutALL.txt' bffile = '6131659BFOutALL.txt' # The name of the bjdinfile used with BF_python # (heliocentric/barycentric velocities in col=(2,); note the top row is for the template) #BCVfile = '5285607bjdinfile.txt' #BCVfile = '6864859bjdinfileALL.txt' #BCVfile = '6778289bjdinfiles.txt' #BCVfile = '6449358bjdinfile.txt' #BCVfile = '4285087bjdinfile.txt' ## apogee visits aren't chronological WHY #BCVfile = '6781535bjdinfileALL.txt' BCVfile = '6131659bjdinfile.txt' #ccfinfile = os.path.join(dir, ccffile) ccfinfile = os.path.join('data', ccffile) bfinfile = os.path.join(dir, bffile) bjdinfile = os.path.join(dir, BCVfile) # Read in relevant CCF info from apStar file hdu = fits.open(ccfinfile) # The CCF information lives in the 9th HDU, because of course it does hdu9 = hdu[9].data CCFvalues = hdu9['CCF'][0][2:] CCFerrors = hdu9['CCFERR'][0][2:] CCFxaxis = hdu9['CCFLAG'][0] # pixels, needs to be turned into RVs CCF_delta = hdu9['CCFDW'][0] # Delta (log_10 lambda) #print(hdu9['VHELIO'][0] - hdu9['VREL'][0]) # (the data model website says this log lambda spacing per lag step of # 6.d-6 corresponds to 4.145 km/s) # Get the systemic RV of the star according to APOGEE apSystemic = 82 ## TODO: FIND ACTUAL SYSTEMIC RV PARAMETER !!! # Get the barycentric velocities of each visit according to APOGEE # This is called VHELIO for super obvious reasons, Jen Sobeck private communication, for reals apBCVs = hdu9['VHELIO'][0] CCF_rvaxis = [CCFxaxis * 4.145 + bcv for bcv in apBCVs] # Get the timestamp for each CCF visit from the 0th HDU hdu0 = hdu[0].header ccftimes = [] for idx in range(1, len(CCFvalues)+1): headercard = 'HJD' + str(idx) ccftimes.append(hdu0[headercard] + 2400000.) ccftimesAstropy = [] for ccftime in ccftimes: ccftimesAstropy.append(Time(ccftime, scale='utc', format='jd')) # Set up the main figure fig = plt.figure(1, figsize=(15,10)) ax = fig.add_subplot(111) ax.tick_params(top='off', bottom='off', left='off', right='off') ax.axes.xaxis.set_ticklabels([]) ax.axes.yaxis.set_ticklabels([]) ax.set_xlabel('Radial Velocity (km s$^{-1}$)', labelpad=20, size='x-large') ax.set_ylabel('Arbitrary CCF or BF amplitude', labelpad=20, size='x-large') ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') plt.title('KIC ' + KIC, size='x-large') #windowrows = 4 #windowcols = 7 #fig.text(0.5, 0.04, 'Radial Velocity (km s$^{-1}$)', ha='center', va='center', size='x-large') #fig.text(0.07, 0.5, 'Arbitrary CCF or BF amplitude', ha='center', va='center', size='x-large', rotation='vertical') axlims = [-140, 140, -0.06, 0.56] ccfyoffset = -0.12 bfyamp = 9 # arbitrary factor to stretch BF values for clarity # used 7 for 686 and 9 for 613 # Loop over and plot CCF data for idx, CCFdata in enumerate(CCFvalues): ax0 = fig.add_subplot(windowrows, windowcols, idx+1) plt.axis(axlims) plt.plot(CCF_rvaxis[idx], CCFvalues[idx] + ccfyoffset) plt.text(23, 0.5, ccftimesAstropy[idx].iso[0:10], size=10) ## TURN ON FOR TIMESTAMP TROUBLESHOOTING #plt.text(25, 0.5, '{0:.3f}'.format(ccftimes[idx] - 2450000.), size=10, color='C0') #plt.text(25, 0.3, idx, size=10, color='C0') plt.subplots_adjust(wspace=0, hspace=0) # Read in relevant BF info from the BF infile bfdata = np.loadtxt(bfinfile, comments='#', usecols=(0,1,2), unpack=True) BFrvaxis = bfdata[0] BFvalues = bfdata[1] BFerrors = bfdata[2] # Get the timestamp for each BF with open(bfinfile) as bfinfo: bftimes = [float(line[13:]) for line in bfinfo if 'timestamp' in line] # Save the indices that separate each BF's visit in the input file visitidx = 0 BFindices = [] for idx, (rv, value, error) in enumerate(zip(BFrvaxis, BFvalues, BFerrors)): if np.abs(BFrvaxis[idx-1] - rv) > 100: visitidx = visitidx + 1 BFindices.append(idx) # Read in barycentric velocity correction info from the BJD infile BCVdata = np.loadtxt(bjdinfile, comments='#', usecols=(2,), unpack=True) BCVdata = BCVdata[1:] # Loop over and plot BF data for idx in range(0, len(bftimes)): ax1 = fig.add_subplot(windowrows, windowcols, idx+1) plt.axis(axlims) ax1.yaxis.set_major_locator(ticker.MultipleLocator(0.2)) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(12) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(12) if (idx < 20): # set to 18 for 686 and 20 for 613 ax1.set_xticklabels(()) if (idx!=0 and idx!=7 and idx!=14 and idx!=21): ax1.set_yticklabels(()) ## TURN ON FOR TIMESTAMP TROUBLESHOOTING #plt.text(25, 0.4, '{0:.3f}'.format(bftimes[idx] - 2450000.), size=10, color='C1') #plt.text(25, 0.2, idx, size=10, color='C1') try: plt.plot(BFrvaxis[BFindices[idx]:BFindices[idx+1]] - apSystemic + BCVdata[idx], bfyamp*BFvalues[BFindices[idx]:BFindices[idx+1]]) except: # handle the final case where there is no idx+1 try: plt.plot(BFrvaxis[BFindices[idx]::] - apSystemic + BCVdata[idx], bfyamp*BFvalues[BFindices[idx]::]) except: print('You\'re missing a BF where an APOGEE CCF exists') continue plt.show()
savvytruffle/cauldron
rvs/BF_CCF_plotter.py
Python
mit
6,791
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module to compute Trotter errors in the plane-wave dual basis.""" from __future__ import absolute_import from future.utils import iteritems, itervalues import numpy import openfermion.hamiltonians from openfermion.ops import FermionOperator from openfermion.utils import count_qubits, normal_ordered from openfermion.utils._commutators import ( double_commutator, trivially_double_commutes_dual_basis, trivially_double_commutes_dual_basis_using_term_info) def low_depth_second_order_trotter_error_operator( terms, indices=None, is_hopping_operator=None, jellium_only=False, verbose=False): """Determine the difference between the exact generator of unitary evolution and the approximate generator given by the second-order Trotter-Suzuki expansion. Args: terms: a list of FermionOperators in the Hamiltonian in the order in which they will be simulated. indices: a set of indices the terms act on in the same order as terms. is_hopping_operator: a list of whether each term is a hopping operator. jellium_only: Whether the terms are from the jellium Hamiltonian only, rather than the full dual basis Hamiltonian (i.e. whether c_i = c for all number operators i^ i, or whether they depend on i as is possible in the general case). verbose: Whether to print percentage progress. Returns: The difference between the true and effective generators of time evolution for a single Trotter step. Notes: follows Equation 9 of Poulin et al.'s work in "The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry", applied to the "stagger"-based Trotter step for detailed in Kivlichan et al., "Quantum Simulation of Electronic Structure with Linear Depth and Connectivity", arxiv:1711.04789. """ more_info = bool(indices) n_terms = len(terms) if verbose: import time start = time.time() error_operator = FermionOperator.zero() for beta in range(n_terms): if verbose and beta % (n_terms // 30) == 0: print('%4.3f percent done in' % ( (float(beta) / n_terms) ** 3 * 100), time.time() - start) for alpha in range(beta + 1): for alpha_prime in range(beta): # If we have pre-computed info on indices, use it to determine # trivial double commutation. if more_info: if (not trivially_double_commutes_dual_basis_using_term_info( indices[alpha], indices[beta], indices[alpha_prime], is_hopping_operator[alpha], is_hopping_operator[beta], is_hopping_operator[alpha_prime], jellium_only)): # Determine the result of the double commutator. double_com = double_commutator( terms[alpha], terms[beta], terms[alpha_prime], indices[beta], indices[alpha_prime], is_hopping_operator[beta], is_hopping_operator[alpha_prime]) if alpha == beta: double_com /= 2.0 error_operator += double_com # If we don't have more info, check for trivial double # commutation using the terms directly. elif not trivially_double_commutes_dual_basis( terms[alpha], terms[beta], terms[alpha_prime]): double_com = double_commutator( terms[alpha], terms[beta], terms[alpha_prime]) if alpha == beta: double_com /= 2.0 error_operator += double_com error_operator /= 12.0 return error_operator def low_depth_second_order_trotter_error_bound( terms, indices=None, is_hopping_operator=None, jellium_only=False, verbose=False): """Numerically upper bound the error in the ground state energy for the second-order Trotter-Suzuki expansion. Args: terms: a list of single-term FermionOperators in the Hamiltonian to be simulated. indices: a set of indices the terms act on in the same order as terms. is_hopping_operator: a list of whether each term is a hopping operator. jellium_only: Whether the terms are from the jellium Hamiltonian only, rather than the full dual basis Hamiltonian (i.e. whether c_i = c for all number operators i^ i, or whether they depend on i as is possible in the general case). verbose: Whether to print percentage progress. Returns: A float upper bound on norm of error in the ground state energy. Notes: Follows Equation 9 of Poulin et al.'s work in "The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry" to calculate the error operator, for the "stagger"-based Trotter step for detailed in Kivlichan et al., "Quantum Simulation of Electronic Structure with Linear Depth and Connectivity", arxiv:1711.04789. """ # Return the 1-norm of the error operator (upper bound on error). return numpy.sum(numpy.absolute(list( low_depth_second_order_trotter_error_operator( terms, indices, is_hopping_operator, jellium_only, verbose).terms.values()))) def simulation_ordered_grouped_low_depth_terms_with_info( hamiltonian, input_ordering=None, external_potential_at_end=False): """Give terms from the dual basis Hamiltonian in simulated order. Uses the simulation ordering, grouping terms into hopping (i^ j + j^ i) and number (i^j^ i j + c_i i^ i + c_j j^ j) operators. Pre-computes term information (indices each operator acts on, as well as whether each operator is a hopping operator. Args: hamiltonian (FermionOperator): The Hamiltonian. input_ordering (list): The initial Jordan-Wigner canonical order. If no input ordering is specified, defaults to [0..n_qubits] where n_qubits is the number of qubits in the Hamiltonian. external_potential_at_end (bool): Whether to include the rotations from the external potential at the end of the Trotter step, or intersperse them throughout it. Returns: A 3-tuple of terms from the Hamiltonian in order of simulation, the indices they act on, and whether they are hopping operators (both also in the same order). Notes: Follows the "stagger"-based simulation order discussed in Kivlichan et al., "Quantum Simulation of Electronic Structure with Linear Depth and Connectivity", arxiv:1711.04789; as such, the only permitted types of terms are hopping (i^ j + j^ i) and potential terms which are products of at most two number operators. """ n_qubits = count_qubits(hamiltonian) hamiltonian = normal_ordered(hamiltonian) ordered_terms = [] ordered_indices = [] ordered_is_hopping_operator = [] # If no input mode ordering is specified, default to range(n_qubits). try: input_ordering = list(input_ordering) except TypeError: input_ordering = list(range(n_qubits)) # Half a second-order Trotter step reverses the input ordering: this tells # us how much we need to include in the ordered list of terms. final_ordering = list(reversed(input_ordering)) # Follow odd-even transposition sort. In alternating steps, swap each even # qubits with the odd qubit to its right, and in the next step swap each # the odd qubits with the even qubit to its right. Do this until the input # ordering has been reversed. parity = 0 while input_ordering != final_ordering: results = stagger_with_info( hamiltonian, input_ordering, parity, external_potential_at_end) terms_in_layer, indices_in_layer, is_hopping_operator_in_layer = ( results) ordered_terms.extend(terms_in_layer) ordered_indices.extend(indices_in_layer) ordered_is_hopping_operator.extend(is_hopping_operator_in_layer) # Alternate even and odd steps of the reversal procedure. parity = 1 - parity # If all the rotations from the external potential are in the final layer, # i.e. we don't intersperse them throughout the Trotter step. if external_potential_at_end: terms_in_final_layer = [] indices_in_final_layer = [] is_hopping_operator_in_final_layer = [] for qubit in range(n_qubits): coeff = hamiltonian.terms.get(((qubit, 1), (qubit, 0)), 0.0) if coeff: terms_in_final_layer.append( FermionOperator(((qubit, 1), (qubit, 0)), coeff)) indices_in_final_layer.append(set((qubit,))) is_hopping_operator_in_final_layer.append(False) ordered_terms.extend(terms_in_final_layer) ordered_indices.extend(indices_in_final_layer) ordered_is_hopping_operator.extend(is_hopping_operator_in_final_layer) return (ordered_terms, ordered_indices, ordered_is_hopping_operator) def stagger_with_info(hamiltonian, input_ordering, parity, external_potential_at_end=False): """Give terms simulated in a single stagger of a Trotter step. Groups terms into hopping (i^ j + j^ i) and number (i^j^ i j + c_i i^ i + c_j j^ j) operators. Pre-computes term information (indices each operator acts on, as well as whether each operator is a hopping operator). Args: hamiltonian (FermionOperator): The Hamiltonian. input_ordering (list): The initial Jordan-Wigner canonical order. parity (boolean): Whether to determine the terms from the next even (False = 0) or odd (True = 1) stagger. external_potential_at_end (bool): Whether to include the rotations from the external potential at the end of the Trotter step, or intersperse them throughout it. Returns: A 3-tuple of terms from the Hamiltonian that are simulated in the stagger, the indices they act on, and whether they are hopping operators (all in the same order). Notes: The "staggers" used here are the left (parity=False) and right (parity=True) staggers detailed in Kivlichan et al., "Quantum Simulation of Electronic Structure with Linear Depth and Connectivity", arxiv:1711.04789. As such, the Hamiltonian must be in the form discussed in that paper. This constrains it to have only hopping terms (i^ j + j^ i) and potential terms which are products of at most two number operators (n_i or n_i n_j). """ terms_in_layer = [] indices_in_layer = [] is_hopping_operator_in_layer = [] n_qubits = count_qubits(hamiltonian) # A single round of odd-even transposition sort. for i in range(parity, n_qubits - 1, 2): # Always keep the max on the left to avoid having to normal order. left = max(input_ordering[i], input_ordering[i + 1]) right = min(input_ordering[i], input_ordering[i + 1]) # Calculate the hopping operators in the Hamiltonian. left_hopping_operator = FermionOperator( ((left, 1), (right, 0)), hamiltonian.terms.get( ((left, 1), (right, 0)), 0.0)) right_hopping_operator = FermionOperator( ((right, 1), (left, 0)), hamiltonian.terms.get( ((right, 1), (left, 0)), 0.0)) # Calculate the two-number operator l^ r^ l r in the Hamiltonian. two_number_operator = FermionOperator( ((left, 1), (right, 1), (left, 0), (right, 0)), hamiltonian.terms.get( ((left, 1), (right, 1), (left, 0), (right, 0)), 0.0)) if not external_potential_at_end: # Calculate the left number operator, left^ left. left_number_operator = FermionOperator( ((left, 1), (left, 0)), hamiltonian.terms.get( ((left, 1), (left, 0)), 0.0)) # Calculate the right number operator, right^ right. right_number_operator = FermionOperator( ((right, 1), (right, 0)), hamiltonian.terms.get( ((right, 1), (right, 0)), 0.0)) # Divide single-number terms by n_qubits-1 to avoid over-accounting # for the interspersed rotations. Each qubit is swapped n_qubits-1 # times total. left_number_operator /= (n_qubits - 1) right_number_operator /= (n_qubits - 1) else: left_number_operator = FermionOperator.zero() right_number_operator = FermionOperator.zero() # If the overall hopping operator isn't close to zero, append it. # Include the indices it acts on and that it's a hopping operator. if not (left_hopping_operator + right_hopping_operator) == FermionOperator.zero(): terms_in_layer.append(left_hopping_operator + right_hopping_operator) indices_in_layer.append(set((left, right))) is_hopping_operator_in_layer.append(True) # If the overall number operator isn't close to zero, append it. # Include the indices it acts on and that it's a number operator. if not (two_number_operator + left_number_operator + right_number_operator) == FermionOperator.zero(): terms_in_layer.append(two_number_operator + left_number_operator + right_number_operator) terms_in_layer[-1].compress() indices_in_layer.append(set((left, right))) is_hopping_operator_in_layer.append(False) # Modify the current Jordan-Wigner canonical ordering in-place. input_ordering[i], input_ordering[i + 1] = (input_ordering[i + 1], input_ordering[i]) return terms_in_layer, indices_in_layer, is_hopping_operator_in_layer def ordered_low_depth_terms_no_info(hamiltonian): """Give terms from Hamiltonian in dictionary output order. Args: hamiltonian (FermionOperator): The Hamiltonian. Returns: A list of terms from the Hamiltonian in simulated order. Notes: Assumes the Hamiltonian is in the form discussed in Kivlichan et al., "Quantum Simulation of Electronic Structure with Linear Depth and Connectivity", arxiv:1711.04789. This constrains the Hamiltonian to have only hopping terms (i^ j + j^ i) and potential terms which are products of at most two number operators (n_i or n_i n_j). """ n_qubits = count_qubits(hamiltonian) hamiltonian = normal_ordered(hamiltonian) terms = [] for operators, coefficient in iteritems(hamiltonian.terms): terms += [FermionOperator(operators, coefficient)] return terms
jarrodmcc/OpenFermion
src/openfermion/utils/_low_depth_trotter_error.py
Python
apache-2.0
16,047
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Monster.immunities' db.alter_column('srd20_monster', 'immunities', self.gf('django.db.models.fields.CharField')(max_length=1024)) def backwards(self, orm): # Changing field 'Monster.immunities' db.alter_column('srd20_monster', 'immunities', self.gf('django.db.models.fields.CharField')(max_length=512)) models = { 'srd20.characterclass': { 'Meta': {'ordering': "('name',)", 'object_name': 'CharacterClass', 'db_table': "'class'"}, 'alignment': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'class_skills': ('django.db.models.fields.TextField', [], {}), 'epic_feat_base_level': ('django.db.models.fields.CharField', [], {'max_length': '4'}), 'epic_feat_interval': ('django.db.models.fields.CharField', [], {'max_length': '4'}), 'epic_feat_list': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'epic_full_text': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'full_text': ('django.db.models.fields.TextField', [], {}), 'hit_die': ('django.db.models.fields.CharField', [], {'max_length': '4'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'proficiencies': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'req_base_attack_bonus': ('django.db.models.fields.CharField', [], {'max_length': '4', 'blank': 'True'}), 'req_epic_feat': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'req_feat': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'req_languages': ('django.db.models.fields.CharField', [], {'max_length': '16', 'blank': 'True'}), 'req_psionics': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'req_race': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'req_skill': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'req_special': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'req_spells': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'req_weapon_proficiency': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'skill_points': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'skill_points_ability': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'spell_list_1': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'spell_list_2': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'spell_list_3': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'spell_list_4': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'spell_list_5': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'spell_stat': ('django.db.models.fields.CharField', [], {'max_length': '4', 'blank': 'True'}), 'spell_type': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '32'}) }, 'srd20.feat': { 'Meta': {'ordering': "('name',)", 'object_name': 'Feat', 'db_table': "'feat'"}, 'altname': ('django.db.models.fields.SlugField', [], {'max_length': '64'}), 'benefit': ('django.db.models.fields.TextField', [], {}), 'choice': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'multiple': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'normal': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'prerequisite': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'special': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'stack': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '32'}) }, 'srd20.monster': { 'Meta': {'ordering': "['name']", 'object_name': 'Monster'}, 'abilities': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'alignment': ('django.db.models.fields.CharField', [], {'max_length': '4'}), 'altname': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'armor_class': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'aura': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'base_attack_bonus': ('django.db.models.fields.IntegerField', [], {}), 'charisma': ('django.db.models.fields.IntegerField', [], {}), 'class_level': ('django.db.models.fields.CharField', [], {'max_length': '16', 'blank': 'True'}), 'combat_maneuver_bonus': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'combat_maneuver_defense': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'constitution': ('django.db.models.fields.IntegerField', [], {}), 'cr': ('django.db.models.fields.IntegerField', [], {}), 'damage_reduction_amount': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'damage_reduction_condition': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'defensive_abilities': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'dexterity': ('django.db.models.fields.IntegerField', [], {}), 'environment': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'feats': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'flavor_text': ('django.db.models.fields.TextField', [], {}), 'fortitude_save': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'gear': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'hit_points': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immunities': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'initiative': ('django.db.models.fields.IntegerField', [], {}), 'intelligence': ('django.db.models.fields.IntegerField', [], {}), 'languages': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'melee': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'opposition_schools': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'organization': ('django.db.models.fields.TextField', [], {}), 'other_type': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'racial_modifiers': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'ranged': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'reach': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'reflex_save': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'resistance': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'senses': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'size': ('django.db.models.fields.IntegerField', [], {}), 'skills': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'sorcerer_spells_known': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'space': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '6', 'decimal_places': '2'}), 'special_attacks': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'special_qualities': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'speed': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'spell_like_abilities': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'spell_resistance': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'spells_known': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'spells_prepared': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'strength': ('django.db.models.fields.IntegerField', [], {}), 'subtypes': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'treasure': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'weaknesses': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'will_save': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'wisdom': ('django.db.models.fields.IntegerField', [], {}), 'xp': ('django.db.models.fields.IntegerField', [], {}) }, 'srd20.monsterability': { 'Meta': {'object_name': 'MonsterAbility'}, 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'kind': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'monster': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['srd20.Monster']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'srd20.spell': { 'Meta': {'ordering': "('name',)", 'object_name': 'Spell', 'db_table': "'spell'"}, 'altname': ('django.db.models.fields.SlugField', [], {'max_length': '64'}), 'arcane_focus': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'arcane_material_components': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'area': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'casting_time': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'cleric_focus': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'components': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'descriptor': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'druid_focus': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'duration': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'effect': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'focus': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'material_components': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'range': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'saving_throw': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'school': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'short_description': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'spell_resistance': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'spellcraft_dc': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'subschool': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'target': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'to_develop': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'verbal_components': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'xp_cost': ('django.db.models.fields.TextField', [], {'blank': 'True'}) } } complete_apps = ['srd20']
machinalis/django-srd20
srd20/migrations/0028_auto__chg_field_monster_immunities.py
Python
bsd-3-clause
14,391
import socket import struct #create and connect to the socket def getSocket(host, port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, int(port))) return s def recvMessage(s): l = s.recv(4) L = struct.unpack('<I',l)[0] #print L data = '' while (len(data)<L): data += s.recv(L-len(data)) return data def sendMessage(s,mess): l = len(mess) byteLength = struct.pack('<I', l) s.sendall(byteLength) s.sendall(mess) def closeSocket(s): s.close()
idkwim/ictf-framework
services/poipoi/test/service.py
Python
gpl-2.0
537
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.contrib.postgres.fields class Migration(migrations.Migration): dependencies = [ ('api', '0004_remove_client_war_participated'), ] operations = [ migrations.AddField( model_name='client', name='war_participated', field=django.contrib.postgres.fields.ArrayField(default=[], base_field=models.IntegerField(), size=None), ), ]
dborstelmann/Penguins-GH6
api/migrations/0005_client_war_participated.py
Python
mit
523
#!/usr/bin/env python3 # # Copyright (c) 2019 Roberto Riggio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Exposes a RESTful interface .""" import uuid import empower.managers.apimanager.apimanager as apimanager from empower.core.acl import ACL from empower.core.etheraddress import EtherAddress from empower.managers.ranmanager.lvapp.resourcepool import ResourcePool # pylint: disable=W0223 class ProjectsHandler(apimanager.EmpowerAPIHandler): """Projects handler""" URLS = [r"/api/v1/projects/?", r"/api/v1/projects/([a-zA-Z0-9-]*)/?"] @apimanager.validate(min_args=0, max_args=1) def get(self, *args, **kwargs): """Lists all the projects. Args: [0], the project id (optional) Example URLs: GET /api/v1/projects [ { "bootstrap": { "7069c865-8849-4840-9d96-e028663a5dcf": { "name": "empower.apps.wifimobilitymanager. wifimobilitymanager", "params": { "every": 2000, "project_id": "52313ecb-9d00-4b7d-b873- b55d3d9ada26", "service_id": "7069c865-8849-4840-9d96- e028663a5dcf" } } }, "desc": "5G-EmPOWER Wi-Fi Network", "lte_props": null, "lte_slices": { "0": { "devices": {}, "properties": { "rbgs": 2, "ue_scheduler": 0 }, "slice_id": 0 } }, "owner": "foo", "project_id": "52313ecb-9d00-4b7d-b873-b55d3d9ada26", "wifi_props": { "allowed": { "04:46:65:49:e0:1f": { "addr": "04:46:65:49:e0:1f", "desc": "Some laptop" }, "04:46:65:49:e0:11": { "addr": "04:46:65:49:e0:1f", "desc": "Some other laptop" }, "04:46:65:49:e0:12": { "addr": "04:46:65:49:e0:1f", "desc": "Yet another laptop" } }, "bssid_type": "unique", "ssid": "EmPOWER" }, "wifi_slices": { "0": { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 0 }, "80": { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 80 } } } ] GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26 { "bootstrap": { "7069c865-8849-4840-9d96-e028663a5dcf": { "name": "empower.apps.wifimobilitymanager. wifimobilitymanager", "params": { "every": 2000, "project_id": "52313ecb-9d00-4b7d-b873- b55d3d9ada26", "service_id": "7069c865-8849-4840-9d96- e028663a5dcf" } } }, "desc": "5G-EmPOWER Wi-Fi Network", "lte_props": null, "lte_slices": { "0": { "devices": {}, "properties": { "rbgs": 2, "ue_scheduler": 0 }, "slice_id": 0 } }, "owner": "foo", "project_id": "52313ecb-9d00-4b7d-b873-b55d3d9ada26", "wifi_props": { "allowed": { "04:46:65:49:e0:1f": { "addr": "04:46:65:49:e0:1f", "desc": "Some laptop" }, "04:46:65:49:e0:11": { "addr": "04:46:65:49:e0:1f", "desc": "Some other laptop" }, "04:46:65:49:e0:12": { "addr": "04:46:65:49:e0:1f", "desc": "Yet another laptop" } }, "bssid_type": "unique", "ssid": "EmPOWER" }, "wifi_slices": { "0": { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 0 }, "80": { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 80 } } } """ return self.service.projects \ if not args else self.service.projects[uuid.UUID(args[0])] @apimanager.validate(returncode=201, min_args=0, max_args=1) def post(self, *args, **kwargs): """Create a new project. Args: [0], the project id (optional) Request: version: protocol version (1.0) desc: a human-readable description of the project owner: the username of the requester wifi_props: the Wi-Fi properties lte_props: the LTE properties """ project_id = uuid.UUID(args[0]) if args else uuid.uuid4() wifi_props = kwargs['wifi_props'] if 'wifi_props' in kwargs else None lte_props = kwargs['lte_props'] if 'lte_props' in kwargs else None wifi_slcs = kwargs['wifi_slices'] if 'wifi_slices' in kwargs else None lte_slcs = kwargs['lte_slices'] if 'lte_slices' in kwargs else None project = self.service.create(project_id=project_id, desc=kwargs['desc'], owner=kwargs['owner'], wifi_props=wifi_props, lte_props=lte_props) if wifi_slcs: for wifi_slice in wifi_slcs: project.upsert_wifi_slice(**wifi_slice) if lte_slcs: for lte_slice in lte_slcs: project.upsert_lte_slice(**lte_slice) self.set_header("Location", "/api/v1/projects/%s" % project.project_id) @apimanager.validate(returncode=204, min_args=1, max_args=1) def put(self, *args, **kwargs): """Update a project. Args: [0], the project id (mandatory) Request: version: protocol version (1.0) desc: a human-readable description of the project """ project_id = uuid.UUID(args[0]) self.service.update(project_id=project_id, desc=kwargs['desc']) @apimanager.validate(returncode=204, min_args=0, max_args=1) def delete(self, *args, **kwargs): """Delete one or all projects. Args: [0], the projects id Example URLs: DELETE /api/v1/projects DELETE /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26 """ if args: self.service.remove(uuid.UUID(args[0])) else: self.service.remove_all() # pylint: disable=W0223 class ProjectsWiFiACLHandler(apimanager.EmpowerAPIHandler): """Wi-Fi ACL handler""" URLS = [r"/api/v1/projects/([a-zA-Z0-9-]*)/wifi_acl/?", r"/api/v1/projects/([a-zA-Z0-9-]*)/wifi_acl/([a-zA-Z0-9:]*)/?"] @apimanager.validate(min_args=1, max_args=2) def get(self, *args, **kwargs): """Lists all clients in the ACL. Args: [0], the project id (mandatory) [0]: the device address (optional) Example URLs: GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_acl/ { "60:57:18:B1:A4:B8": { "addr": "60:57:18:B1:A4:B8", "desc": "Dell Laptop" }, "18:5E:0F:E3:B8:68": { "addr": "18:5E:0F:E3:B8:68", "desc": "Dell Laptop" }, "60:F4:45:D0:3B:FC": { "addr": "60:F4:45:D0:3B:FC", "desc": "Roberto's iPhone" } } GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_acl/60:57:18:B1:A4:B8 { "addr": "60:57:18:B1:A4:B8", "desc": "Dell Laptop" } """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] allowed = project.wifi_props.allowed return allowed if not args else allowed[str(EtherAddress(args[1]))] @apimanager.validate(returncode=204, min_args=2, max_args=2) def put(self, *args, **kwargs): """Update entry in ACL. Args: [0], the project id (mandatory) [1]: the device address (mandatory) Example URLs: PUT /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_acl/60:57:18:B1:A4:B8 { "desc": "Dell Laptop" } """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] desc = "Generic Station" if 'desc' not in kwargs else kwargs['desc'] addr = EtherAddress(args[1]) project.upsert_acl(addr, desc) @apimanager.validate(returncode=201, min_args=1, max_args=1) def post(self, *args, **kwargs): """Add entry in ACL. Args: [0], the project id (mandatory) Example URLs: POST /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_acl { "addr": "60:57:18:B1:A4:B8", "desc": "Dell Laptop" } """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] desc = "Generic Station" if 'desc' not in kwargs else kwargs['desc'] addr = EtherAddress(kwargs['addr']) acl = project.upsert_acl(addr, desc) url = "/api/v1/projects/%s/wifi_acl/%s" % (project_id, acl.addr) self.set_header("Location", url) @apimanager.validate(returncode=204, min_args=1, max_args=2) def delete(self, *args, **kwargs): """Delete an entry in ACL. Args: [0], the project id (mandatory) [0]: the device address (mandatory) Example URLs: DELETE /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_acl/60:57:18:B1:A4:B8 """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] if len(args) == 2: project.remove_acl(EtherAddress(args[1])) else: project.remove_acl() # pylint: disable=W0223 class ProjectsWiFiSlicesHandler(apimanager.EmpowerAPIHandler): """Wi-Fi slices handler""" URLS = [r"/api/v1/projects/([a-zA-Z0-9-]*)/wifi_slices/?", r"/api/v1/projects/([a-zA-Z0-9-]*)/wifi_slices/([0-9]*)/?"] @apimanager.validate(min_args=1, max_args=2) def get(self, *args, **kwargs): """Lists all slices in a project. Args: [0], the project id (mandatory) [1], the slice id (optional) Example URLs: GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_slices [ { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 0 }, { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 80 } ] GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_slices/0 { "devices": { "00:0D:B9:30:3E:18": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 } }, "properties": { "amsdu_aggregation": false, "quantum": 10000, "sta_scheduler": 1 }, "slice_id": 0 } """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] return project.wifi_slices \ if len(args) == 1 else project.wifi_slices[str(args[1])] @apimanager.validate(returncode=201, min_args=0, max_args=1) def post(self, *args, **kwargs): """Create a new slice. Args: [0], the project id (mandatory) Request: version: protocol version (1.0) slice_id: the slice id properties: the properties for this slice devices: the properties for the devices """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] slice_id = project.upsert_wifi_slice(**kwargs) project.save() project.refresh_from_db() self.set_header("Location", "/api/v1/projects/%s/wifi_slices/%s" % (project_id, slice_id)) @apimanager.validate(returncode=204, min_args=2, max_args=2) def put(self, *args, **kwargs): """Update a slice. Args: [0], the project id (mandatory) [1], the slice id (mandatory) Request: version: protocol version (1.0) slice_id: the slice id properties: the properties for this slice devices: the properties for the devices """ project_id = uuid.UUID(args[0]) slice_id = str(args[1]) kwargs['slice_id'] = slice_id project = self.service.projects[project_id] project.upsert_wifi_slice(**kwargs) @apimanager.validate(returncode=204, min_args=2, max_args=2) def delete(self, *args, **kwargs): """Delete a slice. Args: [0], the project id [1], the slice id Example URLs: DELETE /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ wifi_slices/80 """ project_id = uuid.UUID(args[0]) slice_id = str(args[1]) project = self.service.projects[project_id] project.delete_wifi_slice(slice_id) # pylint: disable=W0223 class ProjectsLTESlicesHandler(apimanager.EmpowerAPIHandler): """LTE Slices handler""" URLS = [r"/api/v1/projects/([a-zA-Z0-9-]*)/lte_slices/?", r"/api/v1/projects/([a-zA-Z0-9-]*)/lte_slices/([0-9]*)/?"] @apimanager.validate(min_args=1, max_args=2) def get(self, *args, **kwargs): """Lists all slices in a project. Args: [0], the project id (mandatory) [1], the slice id (optional) """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] return project.lte_slices \ if len(args) == 1 else project.lte_slices[str(args[1])] @apimanager.validate(returncode=201, min_args=0, max_args=1) def post(self, *args, **kwargs): """Create a new slice. Args: [0], the project id (mandatory) Request: version: protocol version (1.0) slice_id: the slice id properties: the properties for this slice devices: the properties for the devices """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] slice_id = project.upsert_lte_slice(**kwargs) project.save() project.refresh_from_db() self.set_header("Location", "/api/v1/projects/%s/lte_slices/%s" % (project_id, slice_id)) @apimanager.validate(returncode=204, min_args=2, max_args=2) def put(self, *args, **kwargs): """Update slice. Args: [0], the project id (mandatory) [1], the slice id (mandatory) Request: version: protocol version (1.0) slice_id: the slice id properties: the properties for this slice devices: the properties for the devices """ project_id = uuid.UUID(args[0]) slice_id = str(args[1]) kwargs['slice_id'] = slice_id project = self.service.projects[project_id] project.upsert_lte_slice(**kwargs) @apimanager.validate(returncode=204, min_args=2, max_args=2) def delete(self, *args, **kwargs): """Delete a slice. Args: [0], the project id (mandatory) [1], the slice id (mandatory) Example URLs: DELETE /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/ lte_slices/80 """ project_id = uuid.UUID(args[0]) slice_id = str(args[1]) project = self.service.projects[project_id] project.delete_lte_slice(slice_id) # pylint: disable=W0223 class ProjectLVAPsHandler(apimanager.EmpowerAPIHandler): """Handler for accessing LVAPs. in a project""" URLS = [r"/api/v1/projects/([a-zA-Z0-9-]*)/lvaps/?", r"/api/v1/projects/([a-zA-Z0-9-]*)/lvaps/([a-zA-Z0-9:]*)/?"] @apimanager.validate(min_args=1, max_args=2) def get(self, *args, **kwargs): """List the LVAPs. Args: [0], the project id (mandatory) [1]: the lvap address (optional) Example URLs: GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/lvaps [ { "addr": "60:F4:45:D0:3B:FC", "assoc_id": 732, "association_state": true, "authentication_state": true, "blocks": [ ... ], "bssid": "52:31:3E:D0:3B:FC", "encap": "00:00:00:00:00:00", "ht_caps": true, "ht_caps_info": { "DSSS_CCK_Mode_in_40_MHz": false, "Forty_MHz_Intolerant": false, "HT_Delayed_Block_Ack": false, "HT_Greenfield": false, "LDPC_Coding_Capability": true, "L_SIG_TXOP_Protection_Support": false, "Maximum_AMSDU_Length": false, "Reserved": false, "Rx_STBC": 0, "SM_Power_Save": 3, "Short_GI_for_20_MHz": true, "Short_GI_for_40_MHz": true, "Supported_Channel_Width_Set": true, "Tx_STBC": false }, "networks": [ [ "52:31:3E:D0:3B:FC", "EmPOWER" ] ], "pending": [], "ssid": "EmPOWER", "state": "running", "wtp": { ... } } ] GET /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/lvaps/ 60:F4:45:D0:3B:FC { "addr": "60:F4:45:D0:3B:FC", "assoc_id": 732, "association_state": true, "authentication_state": true, "blocks": [ ... ], "bssid": "52:31:3E:D0:3B:FC", "encap": "00:00:00:00:00:00", "ht_caps": true, "ht_caps_info": { "DSSS_CCK_Mode_in_40_MHz": false, "Forty_MHz_Intolerant": false, "HT_Delayed_Block_Ack": false, "HT_Greenfield": false, "LDPC_Coding_Capability": true, "L_SIG_TXOP_Protection_Support": false, "Maximum_AMSDU_Length": false, "Reserved": false, "Rx_STBC": 0, "SM_Power_Save": 3, "Short_GI_for_20_MHz": true, "Short_GI_for_40_MHz": true, "Supported_Channel_Width_Set": true, "Tx_STBC": false }, "networks": [ [ "52:31:3E:D0:3B:FC", "EmPOWER" ] ], "pending": [], "ssid": "EmPOWER", "state": "running", "wtp": { ... } } """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] return project.lvaps \ if len(args) == 1 else project.lvaps[EtherAddress(args[1])] @apimanager.validate(returncode=204, min_args=2, max_args=2) def put(self, *args, **kwargs): """Modify the LVAP Args: [0], the project id (mandatory) [1]: the lvap address (mandatory) Example URLs: PUT /api/v1/projects/52313ecb-9d00-4b7d-b873-b55d3d9ada26/lvaps/ 60:F4:45:D0:3B:FC { "version": "1.0", "wtp": "04:F0:21:09:F9:AA" } """ project_id = uuid.UUID(args[0]) project = self.service.projects[project_id] lvap = project.lvaps[EtherAddress(args[1])] if "blocks" in kwargs: wtp = project.wtps[EtherAddress(kwargs['wtp'])] pool = ResourcePool() for block_id in kwargs["blocks"]: pool.append(wtp.blocks[block_id]) lvap.blocks = pool elif "wtp" in kwargs: lvap.wtp = project.wtps[EtherAddress(kwargs['wtp'])] if "encap" in kwargs: encap = EtherAddress(kwargs["encap"]) lvap.encap = encap
rriggio/empower-runtime
empower/managers/projectsmanager/projectshandler.py
Python
apache-2.0
26,352
__author__ = 'jbowman' # https://pythonspot.com/inner-classes/ class Human: def __init__(self, name): self.name = name self.head = self.Head() def addhead(self): self.head2 = self.Head() class Head: def __init__(self): self.brain = self.Brain() def talk(self): return 'talking...' class Brain: def think(self): return 'thinking...' if __name__ == '__main__': # execute only if run as a script directly joey = Human('Joey') print(joey.name) print(joey.head.talk()) print(joey.head.brain.think())
deo1/deo1
Legacy/PythonTutorial/18InnerClasses.py
Python
mit
630
# -*- coding: utf-8 -*- # (c) 2012-2014, Michael DeHaan <[email protected]> # (c) 2016 Toshio Kuratomi <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division) __metaclass__ = type import errno import json import os import sys from io import BytesIO, StringIO from units.mock.procenv import ModuleTestCase, swap_stdin_and_argv from ansible.compat.tests import unittest from ansible.compat.tests.mock import patch, MagicMock, mock_open, Mock, call from ansible.module_utils.six.moves import builtins realimport = builtins.__import__ class TestModuleUtilsBasic(ModuleTestCase): def clear_modules(self, mods): for mod in mods: if mod in sys.modules: del sys.modules[mod] @patch.object(builtins, '__import__') def test_module_utils_basic_import_syslog(self, mock_import): def _mock_import(name, *args, **kwargs): if name == 'syslog': raise ImportError return realimport(name, *args, **kwargs) self.clear_modules(['syslog', 'ansible.module_utils.basic']) mod = builtins.__import__('ansible.module_utils.basic') self.assertTrue(mod.module_utils.basic.HAS_SYSLOG) self.clear_modules(['syslog', 'ansible.module_utils.basic']) mock_import.side_effect = _mock_import mod = builtins.__import__('ansible.module_utils.basic') self.assertFalse(mod.module_utils.basic.HAS_SYSLOG) @patch.object(builtins, '__import__') def test_module_utils_basic_import_selinux(self, mock_import): def _mock_import(name, *args, **kwargs): if name == 'selinux': raise ImportError return realimport(name, *args, **kwargs) try: self.clear_modules(['selinux', 'ansible.module_utils.basic']) mod = builtins.__import__('ansible.module_utils.basic') self.assertTrue(mod.module_utils.basic.HAVE_SELINUX) except ImportError: # no selinux on test system, so skip pass self.clear_modules(['selinux', 'ansible.module_utils.basic']) mock_import.side_effect = _mock_import mod = builtins.__import__('ansible.module_utils.basic') self.assertFalse(mod.module_utils.basic.HAVE_SELINUX) @patch.object(builtins, '__import__') def test_module_utils_basic_import_json(self, mock_import): def _mock_import(name, *args, **kwargs): if name == 'json': raise ImportError elif name == 'simplejson': return MagicMock() return realimport(name, *args, **kwargs) self.clear_modules(['json', 'ansible.module_utils.basic']) mod = builtins.__import__('ansible.module_utils.basic') self.clear_modules(['json', 'ansible.module_utils.basic']) mock_import.side_effect = _mock_import mod = builtins.__import__('ansible.module_utils.basic') # FIXME: doesn't work yet #@patch.object(builtins, 'bytes') #def test_module_utils_basic_bytes(self, mock_bytes): # mock_bytes.side_effect = NameError() # from ansible.module_utils import basic @patch.object(builtins, '__import__') @unittest.skipIf(sys.version_info[0] >= 3, "literal_eval is available in every version of Python3") def test_module_utils_basic_import_literal_eval(self, mock_import): def _mock_import(name, *args, **kwargs): try: fromlist = kwargs.get('fromlist', args[2]) except IndexError: fromlist = [] if name == 'ast' and 'literal_eval' in fromlist: raise ImportError return realimport(name, *args, **kwargs) mock_import.side_effect = _mock_import self.clear_modules(['ast', 'ansible.module_utils.basic']) mod = builtins.__import__('ansible.module_utils.basic') self.assertEqual(mod.module_utils.basic.literal_eval("'1'"), "1") self.assertEqual(mod.module_utils.basic.literal_eval("1"), 1) self.assertEqual(mod.module_utils.basic.literal_eval("-1"), -1) self.assertEqual(mod.module_utils.basic.literal_eval("(1,2,3)"), (1,2,3)) self.assertEqual(mod.module_utils.basic.literal_eval("[1]"), [1]) self.assertEqual(mod.module_utils.basic.literal_eval("True"), True) self.assertEqual(mod.module_utils.basic.literal_eval("False"), False) self.assertEqual(mod.module_utils.basic.literal_eval("None"), None) #self.assertEqual(mod.module_utils.basic.literal_eval('{"a": 1}'), dict(a=1)) self.assertRaises(ValueError, mod.module_utils.basic.literal_eval, "asdfasdfasdf") @patch.object(builtins, '__import__') def test_module_utils_basic_import_systemd_journal(self, mock_import): def _mock_import(name, *args, **kwargs): try: fromlist = kwargs.get('fromlist', args[2]) except IndexError: fromlist = [] if name == 'systemd' and 'journal' in fromlist: raise ImportError return realimport(name, *args, **kwargs) self.clear_modules(['systemd', 'ansible.module_utils.basic']) mod = builtins.__import__('ansible.module_utils.basic') self.assertTrue(mod.module_utils.basic.has_journal) self.clear_modules(['systemd', 'ansible.module_utils.basic']) mock_import.side_effect = _mock_import mod = builtins.__import__('ansible.module_utils.basic') self.assertFalse(mod.module_utils.basic.has_journal) def test_module_utils_basic_get_platform(self): with patch('platform.system', return_value='foo'): from ansible.module_utils.basic import get_platform self.assertEqual(get_platform(), 'foo') def test_module_utils_basic_get_distribution(self): from ansible.module_utils.basic import get_distribution with patch('platform.system', return_value='Foo'): self.assertEqual(get_distribution(), None) with patch('platform.system', return_value='Linux'): with patch('platform.linux_distribution', return_value=["foo"]): self.assertEqual(get_distribution(), "Foo") with patch('os.path.isfile', return_value=True): with patch('platform.linux_distribution', side_effect=[("AmazonFooBar",)]): self.assertEqual(get_distribution(), "Amazonfoobar") with patch('platform.linux_distribution', side_effect=(("",), ("AmazonFooBam",))): self.assertEqual(get_distribution(), "Amazon") with patch('platform.linux_distribution', side_effect=[("",),("",)]): self.assertEqual(get_distribution(), "OtherLinux") def _dist(distname='', version='', id='', supported_dists=(), full_distribution_name=1): if supported_dists != (): return ("Bar", "2", "Two") else: return ("", "", "") with patch('platform.linux_distribution', side_effect=_dist): self.assertEqual(get_distribution(), "Bar") with patch('platform.linux_distribution', side_effect=Exception("boo")): with patch('platform.dist', return_value=("bar", "2", "Two")): self.assertEqual(get_distribution(), "Bar") def test_module_utils_basic_get_distribution_version(self): from ansible.module_utils.basic import get_distribution_version with patch('platform.system', return_value='Foo'): self.assertEqual(get_distribution_version(), None) with patch('platform.system', return_value='Linux'): with patch('platform.linux_distribution', return_value=("foo", "1", "One")): self.assertEqual(get_distribution_version(), "1") with patch('os.path.isfile', return_value=True): def _dist(distname='', version='', id='', supported_dists=(), full_distribution_name=1): if supported_dists != (): return ("AmazonFooBar", "2", "") else: return ("", "", "") with patch('platform.linux_distribution', side_effect=_dist): self.assertEqual(get_distribution_version(), "2") with patch('platform.linux_distribution', side_effect=Exception("boo")): with patch('platform.dist', return_value=("bar", "3", "Three")): self.assertEqual(get_distribution_version(), "3") def test_module_utils_basic_load_platform_subclass(self): class LinuxTest: pass class Foo(LinuxTest): platform = "Linux" distribution = None class Bar(LinuxTest): platform = "Linux" distribution = "Bar" from ansible.module_utils.basic import load_platform_subclass # match just the platform class, not a specific distribution with patch('ansible.module_utils.basic.get_platform', return_value="Linux"): with patch('ansible.module_utils.basic.get_distribution', return_value=None): self.assertIs(type(load_platform_subclass(LinuxTest)), Foo) # match both the distribution and platform class with patch('ansible.module_utils.basic.get_platform', return_value="Linux"): with patch('ansible.module_utils.basic.get_distribution', return_value="Bar"): self.assertIs(type(load_platform_subclass(LinuxTest)), Bar) # if neither match, the fallback should be the top-level class with patch('ansible.module_utils.basic.get_platform', return_value="Foo"): with patch('ansible.module_utils.basic.get_distribution', return_value=None): self.assertIs(type(load_platform_subclass(LinuxTest)), LinuxTest) def test_module_utils_basic_json_dict_converters(self): from ansible.module_utils.basic import json_dict_unicode_to_bytes, json_dict_bytes_to_unicode test_data = dict( item1 = u"Fóo", item2 = [u"Bár", u"Bam"], item3 = dict(sub1=u"Súb"), item4 = (u"föo", u"bär", u"©"), item5 = 42, ) res = json_dict_unicode_to_bytes(test_data) res2 = json_dict_bytes_to_unicode(res) self.assertEqual(test_data, res2) def test_module_utils_basic_get_module_path(self): from ansible.module_utils.basic import get_module_path with patch('os.path.realpath', return_value='/path/to/foo/'): self.assertEqual(get_module_path(), '/path/to/foo') def test_module_utils_basic_ansible_module_creation(self): from ansible.module_utils import basic am = basic.AnsibleModule( argument_spec=dict(), ) arg_spec = dict( foo = dict(required=True), bar = dict(), bam = dict(), baz = dict(), ) mut_ex = (('bar', 'bam'),) req_to = (('bam', 'baz'),) # should test ok args = json.dumps(dict(ANSIBLE_MODULE_ARGS={"foo": "hello"})) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = arg_spec, mutually_exclusive = mut_ex, required_together = req_to, no_log=True, check_invalid_arguments=False, add_file_common_args=True, supports_check_mode=True, ) # FIXME: add asserts here to verify the basic config # fail, because a required param was not specified args = json.dumps(dict(ANSIBLE_MODULE_ARGS={})) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None self.assertRaises( SystemExit, basic.AnsibleModule, argument_spec = arg_spec, mutually_exclusive = mut_ex, required_together = req_to, no_log=True, check_invalid_arguments=False, add_file_common_args=True, supports_check_mode=True, ) # fail because of mutually exclusive parameters args = json.dumps(dict(ANSIBLE_MODULE_ARGS={"foo":"hello", "bar": "bad", "bam": "bad"})) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None self.assertRaises( SystemExit, basic.AnsibleModule, argument_spec = arg_spec, mutually_exclusive = mut_ex, required_together = req_to, no_log=True, check_invalid_arguments=False, add_file_common_args=True, supports_check_mode=True, ) # fail because a param required due to another param was not specified args = json.dumps(dict(ANSIBLE_MODULE_ARGS={"bam": "bad"})) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None self.assertRaises( SystemExit, basic.AnsibleModule, argument_spec = arg_spec, mutually_exclusive = mut_ex, required_together = req_to, no_log=True, check_invalid_arguments=False, add_file_common_args=True, supports_check_mode=True, ) def test_module_utils_basic_ansible_module_type_check(self): from ansible.module_utils import basic arg_spec = dict( foo = dict(type='float'), foo2 = dict(type='float'), foo3 = dict(type='float'), bar = dict(type='int'), bar2 = dict(type='int'), ) # should test ok args = json.dumps(dict(ANSIBLE_MODULE_ARGS={ "foo": 123.0, # float "foo2": 123, # int "foo3": "123", # string "bar": 123, # int "bar2": "123", # string })) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = arg_spec, no_log=True, check_invalid_arguments=False, add_file_common_args=True, supports_check_mode=True, ) # fail, because bar does not accept floating point numbers args = json.dumps(dict(ANSIBLE_MODULE_ARGS={"bar": 123.0})) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None self.assertRaises( SystemExit, basic.AnsibleModule, argument_spec = arg_spec, no_log=True, check_invalid_arguments=False, add_file_common_args=True, supports_check_mode=True, ) def test_module_utils_basic_ansible_module_load_file_common_arguments(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) am.selinux_mls_enabled = MagicMock() am.selinux_mls_enabled.return_value = True am.selinux_default_context = MagicMock() am.selinux_default_context.return_value = 'unconfined_u:object_r:default_t:s0'.split(':', 3) # with no params, the result should be an empty dict res = am.load_file_common_arguments(params=dict()) self.assertEqual(res, dict()) base_params = dict( path = '/path/to/file', mode = 0o600, owner = 'root', group = 'root', seuser = '_default', serole = '_default', setype = '_default', selevel = '_default', ) extended_params = base_params.copy() extended_params.update(dict( follow = True, foo = 'bar', )) final_params = base_params.copy() final_params.update(dict( path = '/path/to/real_file', secontext=['unconfined_u', 'object_r', 'default_t', 's0'], attributes=None, )) # with the proper params specified, the returned dictionary should represent # only those params which have something to do with the file arguments, excluding # other params and updated as required with proper values which may have been # massaged by the method with patch('os.path.islink', return_value=True): with patch('os.path.realpath', return_value='/path/to/real_file'): res = am.load_file_common_arguments(params=extended_params) self.assertEqual(res, final_params) def test_module_utils_basic_ansible_module_selinux_mls_enabled(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) basic.HAVE_SELINUX = False self.assertEqual(am.selinux_mls_enabled(), False) basic.HAVE_SELINUX = True basic.selinux = Mock() with patch.dict('sys.modules', {'selinux': basic.selinux}): with patch('selinux.is_selinux_mls_enabled', return_value=0): self.assertEqual(am.selinux_mls_enabled(), False) with patch('selinux.is_selinux_mls_enabled', return_value=1): self.assertEqual(am.selinux_mls_enabled(), True) delattr(basic, 'selinux') def test_module_utils_basic_ansible_module_selinux_initial_context(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) am.selinux_mls_enabled = MagicMock() am.selinux_mls_enabled.return_value = False self.assertEqual(am.selinux_initial_context(), [None, None, None]) am.selinux_mls_enabled.return_value = True self.assertEqual(am.selinux_initial_context(), [None, None, None, None]) def test_module_utils_basic_ansible_module_selinux_enabled(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) # we first test the cases where the python selinux lib is # not installed, which has two paths: one in which the system # does have selinux installed (and the selinuxenabled command # is present and returns 0 when run), or selinux is not installed basic.HAVE_SELINUX = False am.get_bin_path = MagicMock() am.get_bin_path.return_value = '/path/to/selinuxenabled' am.run_command = MagicMock() am.run_command.return_value=(0, '', '') self.assertRaises(SystemExit, am.selinux_enabled) am.get_bin_path.return_value = None self.assertEqual(am.selinux_enabled(), False) # finally we test the case where the python selinux lib is installed, # and both possibilities there (enabled vs. disabled) basic.HAVE_SELINUX = True basic.selinux = Mock() with patch.dict('sys.modules', {'selinux': basic.selinux}): with patch('selinux.is_selinux_enabled', return_value=0): self.assertEqual(am.selinux_enabled(), False) with patch('selinux.is_selinux_enabled', return_value=1): self.assertEqual(am.selinux_enabled(), True) delattr(basic, 'selinux') def test_module_utils_basic_ansible_module_selinux_default_context(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) am.selinux_initial_context = MagicMock(return_value=[None, None, None, None]) am.selinux_enabled = MagicMock(return_value=True) # we first test the cases where the python selinux lib is not installed basic.HAVE_SELINUX = False self.assertEqual(am.selinux_default_context(path='/foo/bar'), [None, None, None, None]) # all following tests assume the python selinux bindings are installed basic.HAVE_SELINUX = True basic.selinux = Mock() with patch.dict('sys.modules', {'selinux': basic.selinux}): # next, we test with a mocked implementation of selinux.matchpathcon to simulate # an actual context being found with patch('selinux.matchpathcon', return_value=[0, 'unconfined_u:object_r:default_t:s0']): self.assertEqual(am.selinux_default_context(path='/foo/bar'), ['unconfined_u', 'object_r', 'default_t', 's0']) # we also test the case where matchpathcon returned a failure with patch('selinux.matchpathcon', return_value=[-1, '']): self.assertEqual(am.selinux_default_context(path='/foo/bar'), [None, None, None, None]) # finally, we test where an OSError occurred during matchpathcon's call with patch('selinux.matchpathcon', side_effect=OSError): self.assertEqual(am.selinux_default_context(path='/foo/bar'), [None, None, None, None]) delattr(basic, 'selinux') def test_module_utils_basic_ansible_module_selinux_context(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) am.selinux_initial_context = MagicMock(return_value=[None, None, None, None]) am.selinux_enabled = MagicMock(return_value=True) # we first test the cases where the python selinux lib is not installed basic.HAVE_SELINUX = False self.assertEqual(am.selinux_context(path='/foo/bar'), [None, None, None, None]) # all following tests assume the python selinux bindings are installed basic.HAVE_SELINUX = True basic.selinux = Mock() with patch.dict('sys.modules', {'selinux': basic.selinux}): # next, we test with a mocked implementation of selinux.lgetfilecon_raw to simulate # an actual context being found with patch('selinux.lgetfilecon_raw', return_value=[0, 'unconfined_u:object_r:default_t:s0']): self.assertEqual(am.selinux_context(path='/foo/bar'), ['unconfined_u', 'object_r', 'default_t', 's0']) # we also test the case where matchpathcon returned a failure with patch('selinux.lgetfilecon_raw', return_value=[-1, '']): self.assertEqual(am.selinux_context(path='/foo/bar'), [None, None, None, None]) # finally, we test where an OSError occurred during matchpathcon's call e = OSError() e.errno = errno.ENOENT with patch('selinux.lgetfilecon_raw', side_effect=e): self.assertRaises(SystemExit, am.selinux_context, path='/foo/bar') e = OSError() with patch('selinux.lgetfilecon_raw', side_effect=e): self.assertRaises(SystemExit, am.selinux_context, path='/foo/bar') delattr(basic, 'selinux') def test_module_utils_basic_ansible_module_is_special_selinux_path(self): from ansible.module_utils import basic args = json.dumps(dict(ANSIBLE_MODULE_ARGS={'_ansible_selinux_special_fs': "nfs,nfsd,foos"})) with swap_stdin_and_argv(stdin_data=args): basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) def _mock_find_mount_point(path): if path.startswith('/some/path'): return '/some/path' elif path.startswith('/weird/random/fstype'): return '/weird/random/fstype' return '/' am.find_mount_point = MagicMock(side_effect=_mock_find_mount_point) am.selinux_context = MagicMock(return_value=['foo_u', 'foo_r', 'foo_t', 's0']) m = mock_open() m.side_effect = OSError with patch.object(builtins, 'open', m, create=True): self.assertEqual(am.is_special_selinux_path('/some/path/that/should/be/nfs'), (False, None)) mount_data = [ '/dev/disk1 / ext4 rw,seclabel,relatime,data=ordered 0 0\n', '1.1.1.1:/path/to/nfs /some/path nfs ro 0 0\n', 'whatever /weird/random/fstype foos rw 0 0\n', ] # mock_open has a broken readlines() implementation apparently... # this should work by default but doesn't, so we fix it m = mock_open(read_data=''.join(mount_data)) m.return_value.readlines.return_value = mount_data with patch.object(builtins, 'open', m, create=True): self.assertEqual(am.is_special_selinux_path('/some/random/path'), (False, None)) self.assertEqual(am.is_special_selinux_path('/some/path/that/should/be/nfs'), (True, ['foo_u', 'foo_r', 'foo_t', 's0'])) self.assertEqual(am.is_special_selinux_path('/weird/random/fstype/path'), (True, ['foo_u', 'foo_r', 'foo_t', 's0'])) def test_module_utils_basic_ansible_module_user_and_group(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) mock_stat = MagicMock() mock_stat.st_uid = 0 mock_stat.st_gid = 0 with patch('os.lstat', return_value=mock_stat): self.assertEqual(am.user_and_group('/path/to/file'), (0, 0)) def test_module_utils_basic_ansible_module_find_mount_point(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) def _mock_ismount(path): if path == '/': return True return False with patch('os.path.ismount', side_effect=_mock_ismount): self.assertEqual(am.find_mount_point('/root/fs/../mounted/path/to/whatever'), '/') def _mock_ismount(path): if path == '/subdir/mount': return True return False with patch('os.path.ismount', side_effect=_mock_ismount): self.assertEqual(am.find_mount_point('/subdir/mount/path/to/whatever'), '/subdir/mount') def test_module_utils_basic_ansible_module_set_context_if_different(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) basic.HAVE_SELINUX = False am.selinux_enabled = MagicMock(return_value=False) self.assertEqual(am.set_context_if_different('/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], True), True) self.assertEqual(am.set_context_if_different('/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], False), False) basic.HAVE_SELINUX = True am.selinux_enabled = MagicMock(return_value=True) am.selinux_context = MagicMock(return_value=['bar_u', 'bar_r', None, None]) am.is_special_selinux_path = MagicMock(return_value=(False, None)) basic.selinux = Mock() with patch.dict('sys.modules', {'selinux': basic.selinux}): with patch('selinux.lsetfilecon', return_value=0) as m: self.assertEqual(am.set_context_if_different('/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], False), True) m.assert_called_with('/path/to/file', 'foo_u:foo_r:foo_t:s0') m.reset_mock() am.check_mode = True self.assertEqual(am.set_context_if_different('/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], False), True) self.assertEqual(m.called, False) am.check_mode = False with patch('selinux.lsetfilecon', return_value=1) as m: self.assertRaises(SystemExit, am.set_context_if_different, '/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], True) with patch('selinux.lsetfilecon', side_effect=OSError) as m: self.assertRaises(SystemExit, am.set_context_if_different, '/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], True) am.is_special_selinux_path = MagicMock(return_value=(True, ['sp_u', 'sp_r', 'sp_t', 's0'])) with patch('selinux.lsetfilecon', return_value=0) as m: self.assertEqual(am.set_context_if_different('/path/to/file', ['foo_u', 'foo_r', 'foo_t', 's0'], False), True) m.assert_called_with('/path/to/file', 'sp_u:sp_r:sp_t:s0') delattr(basic, 'selinux') def test_module_utils_basic_ansible_module_set_owner_if_different(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) self.assertEqual(am.set_owner_if_different('/path/to/file', None, True), True) self.assertEqual(am.set_owner_if_different('/path/to/file', None, False), False) am.user_and_group = MagicMock(return_value=(500, 500)) with patch('os.lchown', return_value=None) as m: self.assertEqual(am.set_owner_if_different('/path/to/file', 0, False), True) m.assert_called_with(b'/path/to/file', 0, -1) def _mock_getpwnam(*args, **kwargs): mock_pw = MagicMock() mock_pw.pw_uid = 0 return mock_pw m.reset_mock() with patch('pwd.getpwnam', side_effect=_mock_getpwnam): self.assertEqual(am.set_owner_if_different('/path/to/file', 'root', False), True) m.assert_called_with(b'/path/to/file', 0, -1) with patch('pwd.getpwnam', side_effect=KeyError): self.assertRaises(SystemExit, am.set_owner_if_different, '/path/to/file', 'root', False) m.reset_mock() am.check_mode = True self.assertEqual(am.set_owner_if_different('/path/to/file', 0, False), True) self.assertEqual(m.called, False) am.check_mode = False with patch('os.lchown', side_effect=OSError) as m: self.assertRaises(SystemExit, am.set_owner_if_different, '/path/to/file', 'root', False) def test_module_utils_basic_ansible_module_set_group_if_different(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) self.assertEqual(am.set_group_if_different('/path/to/file', None, True), True) self.assertEqual(am.set_group_if_different('/path/to/file', None, False), False) am.user_and_group = MagicMock(return_value=(500, 500)) with patch('os.lchown', return_value=None) as m: self.assertEqual(am.set_group_if_different('/path/to/file', 0, False), True) m.assert_called_with(b'/path/to/file', -1, 0) def _mock_getgrnam(*args, **kwargs): mock_gr = MagicMock() mock_gr.gr_gid = 0 return mock_gr m.reset_mock() with patch('grp.getgrnam', side_effect=_mock_getgrnam): self.assertEqual(am.set_group_if_different('/path/to/file', 'root', False), True) m.assert_called_with(b'/path/to/file', -1, 0) with patch('grp.getgrnam', side_effect=KeyError): self.assertRaises(SystemExit, am.set_group_if_different, '/path/to/file', 'root', False) m.reset_mock() am.check_mode = True self.assertEqual(am.set_group_if_different('/path/to/file', 0, False), True) self.assertEqual(m.called, False) am.check_mode = False with patch('os.lchown', side_effect=OSError) as m: self.assertRaises(SystemExit, am.set_group_if_different, '/path/to/file', 'root', False) @patch('tempfile.mkstemp') @patch('os.umask') @patch('shutil.copyfileobj') @patch('shutil.move') @patch('shutil.copy2') @patch('os.rename') @patch('pwd.getpwuid') @patch('os.getuid') @patch('os.environ') @patch('os.getlogin') @patch('os.chown') @patch('os.chmod') @patch('os.stat') @patch('os.path.exists') @patch('os.close') def test_module_utils_basic_ansible_module_atomic_move( self, _os_close, _os_path_exists, _os_stat, _os_chmod, _os_chown, _os_getlogin, _os_environ, _os_getuid, _pwd_getpwuid, _os_rename, _shutil_copy2, _shutil_move, _shutil_copyfileobj, _os_umask, _tempfile_mkstemp): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) environ = dict() _os_environ.__getitem__ = environ.__getitem__ _os_environ.__setitem__ = environ.__setitem__ am.selinux_enabled = MagicMock() am.selinux_context = MagicMock() am.selinux_default_context = MagicMock() am.set_context_if_different = MagicMock() # test destination does not exist, no selinux, login name = 'root', # no environment, os.rename() succeeds _os_path_exists.side_effect = [False, False] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_rename.return_value = None _os_umask.side_effect = [18, 0] am.selinux_enabled.return_value = False _os_chmod.reset_mock() _os_chown.reset_mock() am.set_context_if_different.reset_mock() am.atomic_move('/path/to/src', '/path/to/dest') _os_rename.assert_called_with(b'/path/to/src', b'/path/to/dest') self.assertEqual(_os_chmod.call_args_list, [call(b'/path/to/dest', basic.DEFAULT_PERM & ~18)]) # same as above, except selinux_enabled _os_path_exists.side_effect = [False, False] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_rename.return_value = None _os_umask.side_effect = [18, 0] mock_context = MagicMock() am.selinux_default_context.return_value = mock_context am.selinux_enabled.return_value = True _os_chmod.reset_mock() _os_chown.reset_mock() am.set_context_if_different.reset_mock() am.selinux_default_context.reset_mock() am.atomic_move('/path/to/src', '/path/to/dest') _os_rename.assert_called_with(b'/path/to/src', b'/path/to/dest') self.assertEqual(_os_chmod.call_args_list, [call(b'/path/to/dest', basic.DEFAULT_PERM & ~18)]) self.assertEqual(am.selinux_default_context.call_args_list, [call('/path/to/dest')]) self.assertEqual(am.set_context_if_different.call_args_list, [call('/path/to/dest', mock_context, False)]) # now with dest present, no selinux, also raise OSError when using # os.getlogin() to test corner case with no tty _os_path_exists.side_effect = [True, True] _os_getlogin.side_effect = OSError() _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_rename.return_value = None _os_umask.side_effect = [18, 0] environ['LOGNAME'] = 'root' stat1 = MagicMock() stat1.st_mode = 0o0644 stat1.st_uid = 0 stat1.st_gid = 0 _os_stat.side_effect = [stat1,] am.selinux_enabled.return_value = False _os_chmod.reset_mock() _os_chown.reset_mock() am.set_context_if_different.reset_mock() am.atomic_move('/path/to/src', '/path/to/dest') _os_rename.assert_called_with(b'/path/to/src', b'/path/to/dest') # dest missing, selinux enabled _os_path_exists.side_effect = [True, True] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_rename.return_value = None _os_umask.side_effect = [18, 0] stat1 = MagicMock() stat1.st_mode = 0o0644 stat1.st_uid = 0 stat1.st_gid = 0 _os_stat.side_effect = [stat1,] mock_context = MagicMock() am.selinux_context.return_value = mock_context am.selinux_enabled.return_value = True _os_chmod.reset_mock() _os_chown.reset_mock() am.set_context_if_different.reset_mock() am.selinux_default_context.reset_mock() am.atomic_move('/path/to/src', '/path/to/dest') _os_rename.assert_called_with(b'/path/to/src', b'/path/to/dest') self.assertEqual(am.selinux_context.call_args_list, [call('/path/to/dest')]) self.assertEqual(am.set_context_if_different.call_args_list, [call('/path/to/dest', mock_context, False)]) # now testing with exceptions raised # have os.stat raise OSError which is not EPERM _os_stat.side_effect = OSError() _os_path_exists.side_effect = [True, True] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_rename.return_value = None _os_umask.side_effect = [18, 0] self.assertRaises(OSError, am.atomic_move, '/path/to/src', '/path/to/dest') # and now have os.stat return EPERM, which should not fail _os_stat.side_effect = OSError(errno.EPERM, 'testing os stat with EPERM') _os_path_exists.side_effect = [True, True] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_rename.return_value = None _os_umask.side_effect = [18, 0] # FIXME: we don't assert anything here yet am.atomic_move('/path/to/src', '/path/to/dest') # now we test os.rename() raising errors... # first we test with a bad errno to verify it bombs out _os_path_exists.side_effect = [False, False] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_umask.side_effect = [18, 0] _os_rename.side_effect = OSError(errno.EIO, 'failing with EIO') self.assertRaises(SystemExit, am.atomic_move, '/path/to/src', '/path/to/dest') # next we test with EPERM so it continues to the alternate code for moving # test with mkstemp raising an error first _os_path_exists.side_effect = [False, False] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _os_close.return_value = None _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_umask.side_effect = [18, 0] _os_rename.side_effect = [OSError(errno.EPERM, 'failing with EPERM'), None] _tempfile_mkstemp.return_value = None _tempfile_mkstemp.side_effect = OSError() am.selinux_enabled.return_value = False self.assertRaises(SystemExit, am.atomic_move, '/path/to/src', '/path/to/dest') # then test with it creating a temp file _os_path_exists.side_effect = [False, False, False] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_umask.side_effect = [18, 0] _os_rename.side_effect = [OSError(errno.EPERM, 'failing with EPERM'), None] mock_stat1 = MagicMock() mock_stat2 = MagicMock() mock_stat3 = MagicMock() _os_stat.return_value = [mock_stat1, mock_stat2, mock_stat3] _os_stat.side_effect = None _tempfile_mkstemp.return_value = (None, '/path/to/tempfile') _tempfile_mkstemp.side_effect = None am.selinux_enabled.return_value = False # FIXME: we don't assert anything here yet am.atomic_move('/path/to/src', '/path/to/dest') # same as above, but with selinux enabled _os_path_exists.side_effect = [False, False, False] _os_getlogin.return_value = 'root' _os_getuid.return_value = 0 _pwd_getpwuid.return_value = ('root', '', 0, 0, '', '', '') _os_umask.side_effect = [18, 0] _os_rename.side_effect = [OSError(errno.EPERM, 'failing with EPERM'), None] _tempfile_mkstemp.return_value = (None, None) mock_context = MagicMock() am.selinux_default_context.return_value = mock_context am.selinux_enabled.return_value = True am.atomic_move('/path/to/src', '/path/to/dest') def test_module_utils_basic_ansible_module__symbolic_mode_to_octal(self): from ansible.module_utils import basic basic._ANSIBLE_ARGS = None am = basic.AnsibleModule( argument_spec = dict(), ) mock_stat = MagicMock() # FIXME: trying many more combinations here would be good # directory, give full perms to all, then one group at a time mock_stat.st_mode = 0o040000 self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'a+rwx'), 0o0777) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'u+rwx,g+rwx,o+rwx'), 0o0777) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'o+rwx'), 0o0007) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'g+rwx'), 0o0070) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'u+rwx'), 0o0700) # same as above, but in reverse so removing permissions mock_stat.st_mode = 0o040777 self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'a-rwx'), 0o0000) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'u-rwx,g-rwx,o-rwx'), 0o0000) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'o-rwx'), 0o0770) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'g-rwx'), 0o0707) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'u-rwx'), 0o0077) # now using absolute assignment mock_stat.st_mode = 0o040000 self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'a=rwx'), 0o0777) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'u=rwx,g=rwx,o=rwx'), 0o0777) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'o=rwx'), 0o0007) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'g=rwx'), 0o0070) self.assertEqual(am._symbolic_mode_to_octal(mock_stat, 'u=rwx'), 0o0700) # invalid modes mock_stat.st_mode = 0o040000 self.assertRaises(ValueError, am._symbolic_mode_to_octal, mock_stat, 'a=foo')
bjolivot/ansible
test/units/module_utils/test_basic.py
Python
gpl-3.0
44,007
# Copyright (C) 2017 ABRT Team # Copyright (C) 2017 Red Hat, Inc. # # This file is part of faf. # # faf is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # faf is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with faf. If not, see <http://www.gnu.org/licenses/>. import os import urllib from http.client import RemoteDisconnected from pyfaf.actions import Action from pyfaf.storage.opsys import Repo class CheckRepo(Action): name = "check-repo" def check_repo(self, repo) -> int: # Test available mirror for mirror in repo.url_list: if mirror.url.startswith("http:") or \ mirror.url.startswith("https:") or \ mirror.url.startswith("ftp:"): repodata = urllib.parse.urljoin(mirror.url, "repodata") try: with urllib.request.urlopen(repodata): # Ignore the result. We only want to know if the URL is live. pass break except urllib.error.URLError: pass except RemoteDisconnected: break else: if mirror.url.startswith("file://"): mirror.url = mirror.url[7:] self.log_error(mirror.url) if os.path.exists(os.path.join(mirror.url, "repodata")): break else: print("'{0}' does not have a valid url.".format(repo.name)) return 1 # Test if assigned if not repo.opsysrelease_list: print("'{0}' is not assigned with OpSys release.".format(repo.name)) return 1 if not repo.arch_list: print("'{0}' is not assigned with architecture.".format(repo.name)) return 1 return 0 def run(self, cmdline, db) -> None: repos = [] for reponame in cmdline.REPO: repo = (db.session.query(Repo) .filter(Repo.name == reponame) .first()) if repo: repos.append(repo) else: print("Repository '{0}' does not exists".format(reponame)) if not cmdline.REPO: for repo in db.session.query(Repo): repos.append(repo) problems = 0 for repo in repos: problems += self.check_repo(repo) if problems: print("There are some problems, please resolve them") else: print("Everything is OK!") def tweak_cmdline_parser(self, parser) -> None: parser.add_repo(multiple=True, helpstr="Name of the repo to be checked")
abrt/faf
src/pyfaf/actions/check_repo.py
Python
gpl-3.0
3,131
""" Copyright 2014 This file is part of Phase. Phase is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Phase is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Phase. If not, see <http://www.gnu.org/licenses/>. """ from libphase import utilities,http_client from threading import Thread import Queue from gi.repository import Gtk from gi.repository import GObject import os import glob import sys class DialogBruteForce(Gtk.Dialog): def __init__(self, parent,url): Gtk.Dialog.__init__(self, "Brute Force", parent, 0, ()) self.add_button("Cancel",Gtk.ResponseType.CANCEL) self.generate_button=self.add_button("Start",Gtk.ResponseType.OK) box = self.get_content_area() self.word_list=Gtk.ComboBox() self.wordlist_store=Gtk.ListStore(str) wordlist_dir=os.path.abspath(os.path.dirname(sys.argv[0]))+os.sep+"resources"+os.sep+"dirbuster-lists"+os.sep self.wordlist_files=[] for filename in glob.glob(wordlist_dir+"*.txt"): self.wordlist_store.append([filename.replace(wordlist_dir,"")]) self.wordlist_files.append(filename) self.word_list.set_model(self.wordlist_store) wordlist_cell=Gtk.CellRendererText() self.word_list.pack_start(wordlist_cell,True) self.word_list.add_attribute(wordlist_cell,'text',0) self.word_list.set_active(0) word_list_box=Gtk.Box() word_list_box.add(Gtk.Label("Word List:")) word_list_box.add(self.word_list) box.add(word_list_box) self.recursive=Gtk.CheckButton("Recursive") box.add(self.recursive) self.show_all() class DialogBruteForceView(Gtk.Dialog): def __init__(self): Gtk.Dialog.__init__(self, "Brute Force Status", None, 0, ()) self.ok_button=self.add_button("OK",Gtk.ResponseType.OK) self.ok_button.connect("clicked",self.handler_delete,None) box = self.get_content_area() self.set_size_request(600,500) vbox=Gtk.Box(orientation=Gtk.Orientation.VERTICAL) progress_label=Gtk.Label("Progress:") progress_label.set_alignment(0,0) vbox.add(progress_label) self.progress_bar=Gtk.ProgressBar() self.progress_bar.set_size_request(-1,30) self.progress_bar.set_show_text(True) vbox.add(self.progress_bar) output_label=Gtk.Label("Output:") output_label.set_alignment(0,0) vbox.add(output_label) scrolled_window=Gtk.ScrolledWindow(expand=True) self.textview=Gtk.TextView() self.textview.set_editable(False) scrolled_window.add(self.textview) vbox.add(scrolled_window) box.add(vbox) self.connect("delete-event",self.handler_delete) def handler_delete(self,widget,event): self.hide() return True def progress_function(self,current_total,total,log): self.progress_bar.set_fraction(float(current_total)/float(total)) self.progress_bar.set_text(str(current_total)+"/"+str(total)) self.textview.get_buffer().set_text(log) class BruteForce(Thread): iter=None def __init__(self,config,base_url,wordlist,recursive,add_function,progress_function,finished_function): Thread.__init__(self) self.config=config self.recursive=recursive self.wordlist_length=0 self.wordlist=[] self.total=0 self.current_total=0 self.finished=False self.base_queue=Queue.Queue(0) self.base_queue.put(base_url) self.add_function=add_function self.progress_function=progress_function self.finished_function=finished_function self._log_dict={} self.view=DialogBruteForceView() f=open(wordlist,"r") for word in f: word=word.strip() if len(word) > 0: if word[0] != "#": if word[-1:] != "/": word+="/" self.wordlist_length+=1 self.wordlist.append(word) f.close() @property def log(self): log_view=str() for key in sorted(self._log_dict.keys()): log_view+=key+"\n=====================\n" for url in self._log_dict[key]: log_view+=url.strip()+"\n" log_view+="\n\n" return log_view def run(self): self.total+=self.wordlist_length work_queue=Queue.Queue(0) while not self.finished: try: base_url=self.base_queue.get_nowait() for word in self.wordlist: work_queue.put(base_url+word) self.worker=http_client.HTTPMultiClient(self.config,self.response_callback,self.finished_callback) self.worker.run("HEAD",work_queue) except Queue.Empty: self.finished=True GObject.idle_add(self.finished_function,self.iter) GObject.idle_add(self.view.progress_function,self.current_total,self.total,self.log) def response_callback(self,flow): url=flow.request.get_url() if flow.response.code != 404: if str(flow.response.code) in self._log_dict.keys(): self._log_dict[str(flow.response.code)].append(url) else: self._log_dict[str(flow.response.code)]=[url] if flow.response.code == 200: if self.recursive: self.total+=self.wordlist_length self.base_queue.put(url) GObject.idle_add(self.add_function,url) self.current_total+=1 if divmod(self.current_total,100)[1] == 0: GObject.idle_add(self.progress_function,self.iter,self.current_total,self.total) GObject.idle_add(self.view.progress_function,self.current_total,self.total,self.log) def finished_callback(self): pass def stop(self): self.worker.stop() self.finished=True
phase-dev/phase
libphase/brute_forcer.py
Python
gpl-3.0
5,575
# Copyright (c) 2016 EMC Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Contains some commonly used utility methods.""" try: import cookielib as cookie_lib except ImportError: import http.cookiejar as cookie_lib import json import re import socket import oslo_serialization from oslo_utils import timeutils from oslo_utils import units import requests from requests import exceptions import six from cinder import exception from cinder.i18n import _ from cinder.volume.drivers.coprhd.helpers import urihelper PROD_NAME = 'storageos' TIMEOUT_SEC = 20 # 20 SECONDS global AUTH_TOKEN AUTH_TOKEN = None TASK_TIMEOUT = 300 URI_TASKS_BY_OPID = '/vdc/tasks/{0}' def _decode_list(data): rv = [] for item in data: if isinstance(item, unicode): item = item.encode('utf-8') elif isinstance(item, list): item = _decode_list(item) elif isinstance(item, dict): item = _decode_dict(item) rv.append(item) return rv def _decode_dict(data): rv = {} for key, value in data.items(): if isinstance(key, unicode): key = key.encode('utf-8') if isinstance(value, unicode): value = value.encode('utf-8') elif isinstance(value, list): value = _decode_list(value) elif isinstance(value, dict): value = _decode_dict(value) rv[key] = value return rv def json_decode(rsp): """Used to decode the JSON encoded response.""" try: o = json.loads(rsp, object_hook=_decode_dict) except ValueError: raise CoprHdError(CoprHdError.VALUE_ERR, (_("Failed to recognize JSON payload:\n[%s]") % rsp)) return o def service_json_request(ip_addr, port, http_method, uri, body, contenttype='application/json', customheaders=None): """Used to make an HTTP request and get the response. The message body is encoded in JSON format :param ip_addr: IP address or host name of the server :param port: port number of the server on which it is listening to HTTP requests :param http_method: one of GET, POST, PUT, DELETE :param uri: the request URI :param body: the request payload :returns: a tuple of two elements: (response body, response headers) :raises: CoprHdError in case of HTTP errors with err_code 3 """ SEC_AUTHTOKEN_HEADER = 'X-SDS-AUTH-TOKEN' headers = {'Content-Type': contenttype, 'ACCEPT': 'application/json, application/octet-stream', 'X-EMC-REST-CLIENT': 'TRUE'} if customheaders: headers.update(customheaders) try: protocol = "https://" if port == 8080: protocol = "http://" url = protocol + ip_addr + ":" + six.text_type(port) + uri cookiejar = cookie_lib.LWPCookieJar() headers[SEC_AUTHTOKEN_HEADER] = AUTH_TOKEN if http_method == 'GET': response = requests.get(url, headers=headers, verify=False, cookies=cookiejar) elif http_method == 'POST': response = requests.post(url, data=body, headers=headers, verify=False, cookies=cookiejar) elif http_method == 'PUT': response = requests.put(url, data=body, headers=headers, verify=False, cookies=cookiejar) elif http_method == 'DELETE': response = requests.delete(url, headers=headers, verify=False, cookies=cookiejar) else: raise CoprHdError(CoprHdError.HTTP_ERR, (_("Unknown/Unsupported HTTP method: %s") % http_method)) if (response.status_code == requests.codes['ok'] or response.status_code == 202): return (response.text, response.headers) error_msg = None if response.status_code == 500: response_text = json_decode(response.text) error_details = "" if 'details' in response_text: error_details = response_text['details'] error_msg = (_("CoprHD internal server error. Error details: %s"), error_details) elif response.status_code == 401: error_msg = _("Access forbidden: Authentication required") elif response.status_code == 403: error_msg = "" error_details = "" error_description = "" response_text = json_decode(response.text) if 'details' in response_text: error_details = response_text['details'] error_msg = (_("%(error_msg)s Error details:" " %(error_details)s"), {'error_msg': error_msg, 'error_details': error_details }) elif 'description' in response_text: error_description = response_text['description'] error_msg = (_("%(error_msg)s Error description:" " %(error_description)s"), {'error_msg': error_msg, 'error_description': error_description }) else: error_msg = _("Access forbidden: You don't have" " sufficient privileges to perform this" " operation") elif response.status_code == 404: error_msg = "Requested resource not found" elif response.status_code == 405: error_msg = six.text_type(response.text) elif response.status_code == 503: error_msg = "" error_details = "" error_description = "" response_text = json_decode(response.text) if 'code' in response_text: errorCode = response_text['code'] error_msg = "Error " + six.text_type(errorCode) if 'details' in response_text: error_details = response_text['details'] error_msg = error_msg + ": " + error_details elif 'description' in response_text: error_description = response_text['description'] error_msg = error_msg + ": " + error_description else: error_msg = _("Service temporarily unavailable:" " The server is temporarily unable to" " service your request") else: error_msg = response.text if isinstance(error_msg, unicode): error_msg = error_msg.encode('utf-8') raise CoprHdError(CoprHdError.HTTP_ERR, (_("HTTP code: %(status_code)s" ", %(reason)s" " [%(error_msg)s]") % { 'status_code': six.text_type( response.status_code), 'reason': six.text_type( response.reason), 'error_msg': six.text_type( error_msg) })) except (CoprHdError, socket.error, exceptions.SSLError, exceptions.ConnectionError, exceptions.TooManyRedirects, exceptions.Timeout) as e: raise CoprHdError(CoprHdError.HTTP_ERR, six.text_type(e)) # TODO(Ravi) : Either following exception should have proper message or # IOError should just be combined with the above statement except IOError as e: raise CoprHdError(CoprHdError.HTTP_ERR, six.text_type(e)) def is_uri(name): """Checks whether the name is a URI or not. :param name: Name of the resource :returns: True if name is URI, False otherwise """ try: (urn, prod, trailer) = name.split(':', 2) return (urn == 'urn' and prod == PROD_NAME) except Exception: return False def format_json_object(obj): """Formats JSON object to make it readable by proper indentation. :param obj: JSON object :returns: a string of formatted JSON object """ return oslo_serialization.jsonutils.dumps(obj, sort_keys=True, indent=3) def get_parent_child_from_xpath(name): """Returns the parent and child elements from XPath.""" if '/' in name: (pname, label) = name.rsplit('/', 1) else: pname = None label = name return (pname, label) def to_bytes(in_str): """Converts a size to bytes. :param in_str: a number suffixed with a unit: {number}{unit} units supported: K, KB, k or kb - kilobytes M, MB, m or mb - megabytes G, GB, g or gb - gigabytes T, TB, t or tb - terabytes :returns: number of bytes None; if input is incorrect """ match = re.search('^([0-9]+)([a-zA-Z]{0,2})$', in_str) if not match: return None unit = match.group(2).upper() value = match.group(1) size_count = int(value) if unit in ['K', 'KB']: multiplier = int(units.Ki) elif unit in ['M', 'MB']: multiplier = int(units.Mi) elif unit in ['G', 'GB']: multiplier = int(units.Gi) elif unit in ['T', 'TB']: multiplier = int(units.Ti) elif unit == "": return size_count else: return None size_in_bytes = int(size_count * multiplier) return size_in_bytes def get_list(json_object, parent_node_name, child_node_name=None): """Returns a list of values from child_node_name. If child_node is not given, then it will retrieve list from parent node """ if not json_object: return [] return_list = [] if isinstance(json_object[parent_node_name], list): for detail in json_object[parent_node_name]: if child_node_name: return_list.append(detail[child_node_name]) else: return_list.append(detail) else: if child_node_name: return_list.append(json_object[parent_node_name][child_node_name]) else: return_list.append(json_object[parent_node_name]) return return_list def get_node_value(json_object, parent_node_name, child_node_name=None): """Returns value of given child_node. If child_node is not given, then value of parent node is returned returns None: If json_object or parent_node is not given, If child_node is not found under parent_node """ if not json_object: return None if not parent_node_name: return None detail = json_object[parent_node_name] if not child_node_name: return detail return_value = None if child_node_name in detail: return_value = detail[child_node_name] else: return_value = None return return_value def format_err_msg_and_raise(operation_type, component, error_message, error_code): """Method to format error message. :param operation_type: create, update, add, etc :param component: storagesystem, vpool, etc :param error_code: Error code from the API call :param error_message: Detailed error message """ formated_err_msg = (_("Error: Failed to %(operation_type)s" " %(component)s") % {'operation_type': operation_type, 'component': component }) if error_message.startswith("\"\'") and error_message.endswith("\'\""): # stripping the first 2 and last 2 characters, which are quotes. error_message = error_message[2:len(error_message) - 2] formated_err_msg = formated_err_msg + "\nReason:" + error_message raise CoprHdError(error_code, formated_err_msg) def search_by_tag(resource_search_uri, ipaddr, port): """Fetches the list of resources with a given tag. :param resource_search_uri: The tag based search uri Example: '/block/volumes/search?tag=tagexample1' :param ipaddr: IP address of CoprHD host :param port: Port number """ # check if the URI passed has both project and name parameters str_uri = six.text_type(resource_search_uri) if 'search' in str_uri and '?tag=' in str_uri: # Get the project URI (s, h) = service_json_request( ipaddr, port, "GET", resource_search_uri, None) o = json_decode(s) if not o: return None resources = get_node_value(o, "resource") resource_uris = [] for resource in resources: resource_uris.append(resource["id"]) return resource_uris else: raise CoprHdError(CoprHdError.VALUE_ERR, (_("Search URI %s" " is not in the expected" " format, it should end" " with ?tag={0}") % str_uri)) # Blocks the operation until the task is complete/error out/timeout def block_until_complete(component_type, resource_uri, task_id, ipaddr, port, synctimeout=0): if not synctimeout: synctimeout = TASK_TIMEOUT t = timeutils.StopWatch(duration=synctimeout) t.start() while not t.expired(): if component_type == 'block': out = show_task_opid(task_id, ipaddr, port) else: out = get_task_by_resourceuri_and_taskId( component_type, resource_uri, task_id, ipaddr, port) if out: if out["state"] == "ready": # stop the timer and return t.stop() break # if the status of the task is 'error' then stop the timer # and raise exception if out["state"] == "error": # stop the timer t.stop() error_message = "Please see logs for more details" if ("service_error" in out and "details" in out["service_error"]): error_message = out["service_error"]["details"] raise CoprHdError(CoprHdError.VALUE_ERR, (_("Task: %(task_id)s" " is failed with" " error: %(error_message)s") % {'task_id': task_id, 'error_message': error_message })) else: raise CoprHdError(CoprHdError.TIME_OUT, (_("Task did not complete in %d secs." " Operation timed out. Task in CoprHD" " will continue") % synctimeout)) return def show_task_opid(taskid, ipaddr, port): (s, h) = service_json_request( ipaddr, port, "GET", URI_TASKS_BY_OPID.format(taskid), None) if (not s): return None o = json_decode(s) return o def get_task_by_resourceuri_and_taskId(component_type, resource_uri, task_id, ipaddr, port): """Returns the single task details.""" task_uri_constant = urihelper.singletonURIHelperInstance.getUri( component_type, "task") (s, h) = service_json_request( ipaddr, port, "GET", task_uri_constant.format(resource_uri, task_id), None) if not s: return None o = json_decode(s) return o class CoprHdError(exception.VolumeBackendAPIException): """Custom exception class used to report logical errors. Attributes: err_code - String error code msg - String text """ SOS_FAILURE_ERR = 1 CMD_LINE_ERR = 2 HTTP_ERR = 3 VALUE_ERR = 4 NOT_FOUND_ERR = 1 ENTRY_ALREADY_EXISTS_ERR = 5 MAX_COUNT_REACHED = 6 TIME_OUT = 7 def __init__(self, err_code, msg): self.err_code = err_code self.msg = msg def __str__(self): return repr(self.msg) class CoprHDResource(object): def __init__(self, ipaddr, port): """Constructor: takes IP address and port of the CoprHD instance. These are needed to make http requests for REST API """ self.ipaddr = ipaddr self.port = port
Nexenta/cinder
cinder/volume/drivers/coprhd/helpers/commoncoprhdapi.py
Python
apache-2.0
17,348
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2011 Deepin, Inc. # 2011 Hou Shaohui # # Author: Hou Shaohui <[email protected]> # Maintainer: Hou ShaoHui <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import gtk from dtk.ui.menu import Menu from player import Player from widget.skin import app_theme from helper import Dispatcher from config import config from nls import _ class BaseTrayIcon(object): '''Trayicon base, needs to be derived from.''' def __init__(self, instance): self.update_icon() self.connect_events() self.instance = instance self.menu = None def update_icon(self): self.set_from_pixbuf(app_theme.get_pixbuf("skin/logo.ico").get_pixbuf()) def get_volume_menu(self): menu_items = [ (None, _("Increase volume"), Player.increase_volume), (None, _("Decrease volume"), Player.decrease_volume), (None, _("Mute"), Player.mute_volume), ] return Menu(menu_items) def update_menu(self): menu_items = [] if Player.is_paused(): pixbuf_group = self.get_pixbuf_group("play") status_label = _("Play") else: pixbuf_group = self.get_pixbuf_group("pause") status_label = _("Pause") menu_items.append((pixbuf_group, status_label, Player.playpause)) menu_items.append((self.get_pixbuf_group("previous"), _("Previous"), Player.previous)) menu_items.append((self.get_pixbuf_group("next"), _("Next"), Player.next)) menu_items.append(None) menu_items.append((self.get_pixbuf_group("volume"), _("Volume"), self.get_volume_menu())) menu_items.append(None) if config.getboolean("lyrics", "locked"): menu_items.append((self.get_pixbuf_group("unlock"), _("Unlock lyrics"), lambda : Dispatcher.unlock_lyrics())) else: menu_items.append((self.get_pixbuf_group("lock"), _("Lock lyrics"), lambda : Dispatcher.lock_lyrics())) if config.getboolean("lyrics", "status"): menu_items.append((None, _("Lyrics on"), lambda : Dispatcher.close_lyrics())) else: menu_items.append((None, _("Lyrics off"), lambda : Dispatcher.show_lyrics())) menu_items.append(None) menu_items.append((self.get_pixbuf_group("setting"), _("Preference"), lambda : Dispatcher.show_setting())) menu_items.append((self.get_pixbuf_group("close"), _("Quit"), lambda : Dispatcher.quit())) if self.menu is not None: del self.menu self.menu = Menu(menu_items, True) def get_pixbuf_group(self, name): return (app_theme.get_pixbuf("tray/%s_normal.png" % name), app_theme.get_pixbuf("tray/%s_hover.png" % name)) def connect_events(self): self.connect("button-press-event", self.on_button_press_event) def on_button_press_event(self, widget, event): if event.button == 1: if event.state == gtk.gdk.CONTROL_MASK: Player.previous() else: self.instance.toggle_visible() elif event.button == 2: Player.playpause() elif event.button == 3: if event.state == gtk.gdk.CONTROL_MASK: Player.next() else: menu = gtk.Menu() (x, y, z) = self.get_menu_position(menu, self) self.update_menu() self.menu.show((int(x), int(y)), (0, -32)) def destroy(self): self.instance.toggle_visible(True) self.set_visible(False) class TrayIcon(gtk.StatusIcon, BaseTrayIcon): def __init__(self, instance): gtk.StatusIcon.__init__(self) BaseTrayIcon.__init__(self, instance) def get_menu_position(self, menu, icon): return gtk.status_icon_position_menu(menu, icon)
hillwoodroc/deepin-music-player
src/widget/tray.py
Python
gpl-3.0
4,642
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from zerver.lib.alert_words import ( add_user_alert_words, alert_words_in_realm, remove_user_alert_words, user_alert_words, ) from zerver.lib.test_helpers import ( get_user_profile_by_email, most_recent_message, most_recent_usermessage, ) from zerver.lib.test_classes import ( ZulipTestCase, ) from zerver.models import ( Recipient, UserProfile, ) from typing import Text import ujson class AlertWordTests(ZulipTestCase): interesting_alert_word_list = ['alert', 'multi-word word', u'☃'] def test_internal_endpoint(self): # type: () -> None email = "[email protected]" self.login(email) params = { 'alert_words': ujson.dumps(['milk', 'cookies']) } result = self.client_post('/json/users/me/alert_words', params) self.assert_json_success(result) user = get_user_profile_by_email(email) words = user_alert_words(user) self.assertEqual(words, ['milk', 'cookies']) def test_default_no_words(self): # type: () -> None """ Users start out with no alert words. """ user = self.example_user('cordelia') words = user_alert_words(user) self.assertEqual(words, []) def test_add_word(self): # type: () -> None """ add_user_alert_words can add multiple alert words at once. """ user = self.example_user('cordelia') # Add several words, including multi-word and non-ascii words. add_user_alert_words(user, self.interesting_alert_word_list) words = user_alert_words(user) self.assertEqual(words, self.interesting_alert_word_list) def test_remove_word(self): # type: () -> None """ Removing alert words works via remove_user_alert_words, even for multi-word and non-ascii words. """ user = self.example_user('cordelia') add_user_alert_words(user, self.interesting_alert_word_list) theoretical_remaining_alerts = self.interesting_alert_word_list[:] for alert_word in self.interesting_alert_word_list: remove_user_alert_words(user, alert_word) theoretical_remaining_alerts.remove(alert_word) actual_remaining_alerts = user_alert_words(user) self.assertEqual(actual_remaining_alerts, theoretical_remaining_alerts) def test_realm_words(self): # type: () -> None """ We can gather alert words for an entire realm via alert_words_in_realm. Alerts added for one user do not impact other users. """ user1 = self.example_user('cordelia') add_user_alert_words(user1, self.interesting_alert_word_list) user2 = self.example_user('othello') add_user_alert_words(user2, ['another']) realm_words = alert_words_in_realm(user2.realm) self.assertEqual(len(realm_words), 2) self.assertEqual(list(realm_words.keys()), [user1.id, user2.id]) self.assertEqual(realm_words[user1.id], self.interesting_alert_word_list) self.assertEqual(realm_words[user2.id], ['another']) def test_json_list_default(self): # type: () -> None self.login("[email protected]") result = self.client_get('/json/users/me/alert_words') self.assert_json_success(result) data = ujson.loads(result.content) self.assertEqual(data['alert_words'], []) def test_json_list_add(self): # type: () -> None self.login("[email protected]") result = self.client_put('/json/users/me/alert_words', {'alert_words': ujson.dumps(['one ', '\n two', 'three'])}) self.assert_json_success(result) result = self.client_get('/json/users/me/alert_words') self.assert_json_success(result) data = ujson.loads(result.content) self.assertEqual(data['alert_words'], ['one', 'two', 'three']) def test_json_list_remove(self): # type: () -> None self.login("[email protected]") result = self.client_put('/json/users/me/alert_words', {'alert_words': ujson.dumps(['one', 'two', 'three'])}) self.assert_json_success(result) result = self.client_delete('/json/users/me/alert_words', {'alert_words': ujson.dumps(['one'])}) self.assert_json_success(result) result = self.client_get('/json/users/me/alert_words') self.assert_json_success(result) data = ujson.loads(result.content) self.assertEqual(data['alert_words'], ['two', 'three']) def test_json_list_set(self): # type: () -> None self.login("[email protected]") result = self.client_put('/json/users/me/alert_words', {'alert_words': ujson.dumps(['one', 'two', 'three'])}) self.assert_json_success(result) result = self.client_post('/json/users/me/alert_words', {'alert_words': ujson.dumps(['a', 'b', 'c'])}) self.assert_json_success(result) result = self.client_get('/json/users/me/alert_words') self.assert_json_success(result) data = ujson.loads(result.content) self.assertEqual(data['alert_words'], ['a', 'b', 'c']) def message_does_alert(self, user_profile, message): # type: (UserProfile, Text) -> bool """Send a bunch of messages as othello, so Hamlet is notified""" self.send_message("[email protected]", "Denmark", Recipient.STREAM, message) user_message = most_recent_usermessage(user_profile) return 'has_alert_word' in user_message.flags_list() def test_alert_flags(self): # type: () -> None self.login("[email protected]") user_profile_hamlet = self.example_user('hamlet') result = self.client_put('/json/users/me/alert_words', {'alert_words': ujson.dumps(['one', 'two', 'three'])}) self.assert_json_success(result) result = self.client_get('/json/users/me/alert_words') self.assert_json_success(result) data = ujson.loads(result.content) self.assertEqual(data['alert_words'], ['one', 'two', 'three']) # Alerts in the middle of messages work. self.assertTrue(self.message_does_alert(user_profile_hamlet, "Normal alert one time")) # Alerts at the end of messages work. self.assertTrue(self.message_does_alert(user_profile_hamlet, "Normal alert one")) # Alerts at the beginning of messages work. self.assertTrue(self.message_does_alert(user_profile_hamlet, "two normal alerts")) # Alerts with surrounding punctuation work. self.assertTrue(self.message_does_alert(user_profile_hamlet, "This one? should alert")) self.assertTrue(self.message_does_alert(user_profile_hamlet, "Definitely time for three.")) # Multiple alerts in a message work. self.assertTrue(self.message_does_alert(user_profile_hamlet, "One two three o'clock")) # Alerts are case-insensitive. self.assertTrue(self.message_does_alert(user_profile_hamlet, "One o'clock")) self.assertTrue(self.message_does_alert(user_profile_hamlet, "Case of ONE, won't stop me")) # We don't cause alerts for matches in URLs. self.assertFalse(self.message_does_alert(user_profile_hamlet, "Don't alert on http://t.co/one/ urls")) self.assertFalse(self.message_does_alert(user_profile_hamlet, "Don't alert on http://t.co/one urls")) def test_update_alert_words(self): # type: () -> None user_profile = self.example_user('hamlet') me_email = user_profile.email self.login(me_email) result = self.client_put('/json/users/me/alert_words', {'alert_words': ujson.dumps(['ALERT'])}) content = 'this is an ALERT for you' self.send_message(me_email, "Denmark", Recipient.STREAM, content) self.assert_json_success(result) original_message = most_recent_message(user_profile) user_message = most_recent_usermessage(user_profile) self.assertIn('has_alert_word', user_message.flags_list()) result = self.client_patch("/json/messages/" + str(original_message.id), { 'message_id': original_message.id, 'content': 'new ALERT for you', }) self.assert_json_success(result) user_message = most_recent_usermessage(user_profile) self.assertEqual(user_message.message.content, 'new ALERT for you') self.assertIn('has_alert_word', user_message.flags_list()) result = self.client_patch("/json/messages/" + str(original_message.id), { 'message_id': original_message.id, 'content': 'sorry false alarm', }) self.assert_json_success(result) user_message = most_recent_usermessage(user_profile) self.assertEqual(user_message.message.content, 'sorry false alarm') self.assertNotIn('has_alert_word', user_message.flags_list())
jphilipsen05/zulip
zerver/tests/test_alert_words.py
Python
apache-2.0
9,107
# *************************************************************************** # * * # * Copyright (c) 2015 - FreeCAD Developers * # * Author (c) 2015 - Przemo Fiszt < [email protected]> * # * * # * This program is free software; you can redistribute it and/or modify * # * it under the terms of the GNU Lesser General Public License (LGPL) * # * as published by the Free Software Foundation; either version 2 of * # * the License, or (at your option) any later version. * # * for detail see the LICENCE text file. * # * * # * This program is distributed in the hope that it will be useful, * # * but WITHOUT ANY WARRANTY; without even the implied warranty of * # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * # * GNU Library General Public License for more details. * # * * # * You should have received a copy of the GNU Library General Public * # * License along with this program; if not, write to the Free Software * # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * # * USA * # * * # *************************************************************************** __title__ = "Fem Commands" __author__ = "Przemo Firszt" __url__ = "http://www.freecadweb.org" import FreeCAD if FreeCAD.GuiUp: import FreeCADGui import FemGui from PySide import QtCore class FemCommands(object): def __init__(self): self.resources = {'Pixmap': 'fem-frequency-analysis', 'MenuText': QtCore.QT_TRANSLATE_NOOP("Fem_Command", "Default Fem Command MenuText"), 'Accel': "", 'ToolTip': QtCore.QT_TRANSLATE_NOOP("Fem_Command", "Default Fem Command ToolTip")} # FIXME add option description self.is_active = None def GetResources(self): return self.resources def IsActive(self): if not self.is_active: active = False elif self.is_active == 'with_document': active = FreeCADGui.ActiveDocument is not None elif self.is_active == 'with_analysis': active = FemGui.getActiveAnalysis() is not None and self.active_analysis_in_active_doc() elif self.is_active == 'with_results': active = FemGui.getActiveAnalysis() is not None and self.active_analysis_in_active_doc() and self.results_present() elif self.is_active == 'with_part_feature': active = FreeCADGui.ActiveDocument is not None and self.part_feature_selected() elif self.is_active == 'with_material': active = FemGui.getActiveAnalysis() is not None and self.active_analysis_in_active_doc() and self.material_selected() elif self.is_active == 'with_solver': active = FemGui.getActiveAnalysis() is not None and self.active_analysis_in_active_doc() and self.solver_selected() elif self.is_active == 'with_analysis_without_solver': active = FemGui.getActiveAnalysis() is not None and self.active_analysis_in_active_doc() and not self.analysis_has_solver() return active def results_present(self): results = False analysis_members = FemGui.getActiveAnalysis().Member for o in analysis_members: if o.isDerivedFrom('Fem::FemResultObject'): results = True return results def part_feature_selected(self): sel = FreeCADGui.Selection.getSelection() if len(sel) == 1 and sel[0].isDerivedFrom("Part::Feature"): return True else: return False def material_selected(self): sel = FreeCADGui.Selection.getSelection() if len(sel) == 1 and sel[0].isDerivedFrom("App::MaterialObjectPython"): return True else: return False def active_analysis_in_active_doc(self): return FemGui.getActiveAnalysis().Document is FreeCAD.ActiveDocument def solver_selected(self): sel = FreeCADGui.Selection.getSelection() if len(sel) == 1 and sel[0].isDerivedFrom("Fem::FemSolverObjectPython"): return True else: return False def analysis_has_solver(self): solver = False analysis_members = FemGui.getActiveAnalysis().Member for o in analysis_members: if o.isDerivedFrom("Fem::FemSolverObjectPython"): solver = True if solver is True: return True else: return False def hide_parts_constraints_show_meshes(self): if FreeCAD.GuiUp: for acnstrmesh in FemGui.getActiveAnalysis().Member: # if "Constraint" in acnstrmesh.TypeId: # acnstrmesh.ViewObject.Visibility = False fem_prefs = FreeCAD.ParamGet("User parameter:BaseApp/Preferences/Mod/Fem/General") hide_constraints = fem_prefs.GetBool("HideConstraint", False) if hide_constraints: if "Constraint" in acnstrmesh.TypeId: acnstrmesh.ViewObject.Visibility = False if "Mesh" in acnstrmesh.TypeId: aparttoshow = acnstrmesh.Name.replace("_Mesh", "") for apart in FreeCAD.activeDocument().Objects: if aparttoshow == apart.Name: apart.ViewObject.Visibility = False acnstrmesh.ViewObject.Visibility = True # OvG: Hide constraints and parts and show meshes def hide_meshes_show_parts_constraints(self): if FreeCAD.GuiUp: for acnstrmesh in FemGui.getActiveAnalysis().Member: if "Constraint" in acnstrmesh.TypeId: acnstrmesh.ViewObject.Visibility = True if "Mesh" in acnstrmesh.TypeId: aparttoshow = acnstrmesh.Name.replace("_Mesh", "") for apart in FreeCAD.activeDocument().Objects: if aparttoshow == apart.Name: apart.ViewObject.Visibility = True acnstrmesh.ViewObject.Visibility = False # OvG: Hide meshes and show constraints and meshed part e.g. on purging results
wood-galaxy/FreeCAD
src/Mod/Fem/FemCommands.py
Python
lgpl-2.1
7,121
#!/usr/bin/env python # -*- coding: utf-8 -*- """ SleekXMPP: The Sleek XMPP Library Copyright (C) 2010 Nathanael C. Fritz This file is part of SleekXMPP. See the file LICENSE for copying permission. """ import sys import logging import getpass from optparse import OptionParser import sleekxmpp from sleekxmpp.componentxmpp import ComponentXMPP # Python versions before 3.0 do not use UTF-8 encoding # by default. To ensure that Unicode is handled properly # throughout SleekXMPP, we will set the default encoding # ourselves to UTF-8. if sys.version_info < (3, 0): reload(sys) sys.setdefaultencoding('utf8') else: raw_input = input class EchoComponent(ComponentXMPP): """ A simple SleekXMPP component that echoes messages. """ def __init__(self, jid, secret, server, port): ComponentXMPP.__init__(self, jid, secret, server, port) # You don't need a session_start handler, but that is # where you would broadcast initial presence. # The message event is triggered whenever a message # stanza is received. Be aware that that includes # MUC messages and error messages. self.add_event_handler("message", self.message) def message(self, msg): """ Process incoming message stanzas. Be aware that this also includes MUC messages and error messages. It is usually a good idea to check the messages's type before processing or sending replies. Since a component may send messages from any number of JIDs, it is best to always include a from JID. Arguments: msg -- The received message stanza. See the documentation for stanza objects and the Message stanza to see how it may be used. """ # The reply method will use the messages 'to' JID as the # outgoing reply's 'from' JID. msg.reply("Thanks for sending\n%(body)s" % msg).send() if __name__ == '__main__': # Setup the command line arguments. optp = OptionParser() # Output verbosity options. optp.add_option('-q', '--quiet', help='set logging to ERROR', action='store_const', dest='loglevel', const=logging.ERROR, default=logging.INFO) optp.add_option('-d', '--debug', help='set logging to DEBUG', action='store_const', dest='loglevel', const=logging.DEBUG, default=logging.INFO) optp.add_option('-v', '--verbose', help='set logging to COMM', action='store_const', dest='loglevel', const=5, default=logging.INFO) # JID and password options. optp.add_option("-j", "--jid", dest="jid", help="JID to use") optp.add_option("-p", "--password", dest="password", help="password to use") optp.add_option("-s", "--server", dest="server", help="server to connect to") optp.add_option("-P", "--port", dest="port", help="port to connect to") opts, args = optp.parse_args() if opts.jid is None: opts.jid = raw_input("Component JID: ") if opts.password is None: opts.password = getpass.getpass("Password: ") if opts.server is None: opts.server = raw_input("Server: ") if opts.port is None: opts.port = int(raw_input("Port: ")) # Setup logging. logging.basicConfig(level=opts.loglevel, format='%(levelname)-8s %(message)s') # Setup the EchoComponent and register plugins. Note that while plugins # may have interdependencies, the order in which you register them does # not matter. xmpp = EchoComponent(opts.jid, opts.password, opts.server, opts.port) xmpp.registerPlugin('xep_0030') # Service Discovery xmpp.registerPlugin('xep_0004') # Data Forms xmpp.registerPlugin('xep_0060') # PubSub xmpp.registerPlugin('xep_0199') # XMPP Ping # Connect to the XMPP server and start processing XMPP stanzas. if xmpp.connect(): xmpp.process(block=True) print("Done") else: print("Unable to connect.")
tiancj/emesene
emesene/e3/xmpp/SleekXMPP/examples/echo_component.py
Python
gpl-3.0
4,190
#!/usr/bin/env python """Compatibility check of synchronous interface automata""" __author__ = "Simon Maurer" __version__ = "0.9.0" __maintainer__ = "Simon Maurer" __email__ = "[email protected]" __status__ = "Prototype" import igraph, sia import sys, argparse import igraph.vendor.texttable sys.settrace parser = argparse.ArgumentParser('This script performs the folding operation on interface automata passed as graphml files') parser.add_argument( '-p', '--plot', action='store_true', help='plot the graph of the folded system' ) parser.add_argument( '-f', metavar="FORMAT", dest='format', choices=['graphml', 'gml'], default='graphml', help='set the format of the input graph (default: graphml)' ) parser.add_argument( '-o', metavar="OUTFILE", dest='output', default='out', help='set the output path of the result (default: out.[FORMAT])' ) parser.add_argument( 'net', metavar="NET", nargs=1, help='the dependency graph of the PNSC' ) parser.add_argument( 'infiles', nargs='+', metavar="INFILE", help="the graph files to be folded" ) args = parser.parse_args() def main(): """main program entry point""" g_arr = [] for gf in args.infiles: g_arr.append( igraph.load( gf, format=args.format ) ) net = igraph.load( args.net[0], format=args.format ) pnsc = sia.Pnsc( net, g_arr ) pnsc.fold() pnsc.print_error() if args.plot: pnsc.sia.save() if args.output == parser.get_default( 'output' ): args.output = args.output + "." + args.format pnsc.sia.g.save( args.output ) if __name__ == "__main__": main()
moiri/streamix-sia
check_sia.py
Python
gpl-2.0
1,575
#!/usr/bin/env python2 import sys from pwn import log from pycparser import parse_file import pycparser import json import os.path FAKE_LIBC = "c_code/utils/fake_libc_include" class information: def __init__(self): self.isptr = False self.name = "" self.type = "" self.isfunct = False self.params = [] def get_type(x): f = information() while(not isinstance(x, pycparser.c_ast.IdentifierType)): if(isinstance(x, pycparser.c_ast.PtrDecl)): f.isptr = True x = x.type f.type = " ".join(x.names) return f def print_function(f): tolog = [] for p in f.params: con = " " if(p.isptr): con = "* " if(p.name): tolog.append(p.type + con + p.name) params = ", ".join(tolog) con = " " if(f.isptr): con = "* " log.info(f.type + con + f.name + "(" + params + ")") def export_function(f): fdesc = {} fdesc["name"] = f.name fdesc["parameters"] = [] fdesc["monitor"] = True for p in f.params: entry = {} entry["name"] = p.name if(p.isptr): entry["type"] = "addr" if("char" in p.type): entry["type"] = "string" else: entry["type"] = "num" entry["monitor"] = False if(p.name): fdesc["parameters"].append(entry) filename = "functions/" + f.name + ".json" if(os.path.isfile(filename)): log.warn("File " + filename + " already exists!") else: with open(filename, 'w') as outfile: json.dump(fdesc, outfile, sort_keys=True, indent=4, separators=(',', ': ')) def get_functions(tree): functions = [] for e in tree: if isinstance(e.type, pycparser.c_ast.FuncDecl): f = get_type(e) f.isfunct = True f.name = e.name for ee in e.type.args.params: p = get_type(ee) p.name = ee.name f.params.append(p) functions.append(f) return functions def main(filename): ast = parse_file(filename, use_cpp=True, cpp_args="-I" + FAKE_LIBC) functions = get_functions(ast.ext) for f in functions: # print_function(f) export_function(f) if __name__ == '__main__': if len(sys.argv) != 2: try: log.error("Usage: %s <path_to_file>" % __file__) except: sys.exit(-1) main(sys.argv[1])
sigttou/analyzecrypt.py
get_functions.py
Python
mit
2,513
import swiftclient def connect(creds): """ Construct a connection value from a container """ return swiftclient.Connection( authurl=creds.authurl, user=creds.user, key=creds.password, auth_version=creds.auth_version, tenant_name=creds.tenant_name, os_options={ "region_name": creds.region, "endpoint_type": creds.endpoint_type } )
x86Labs/wal-e
wal_e/blobstore/swift/calling_format.py
Python
bsd-3-clause
433
# Copyright 2018 Verily Life Sciences LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for query characterize_genotypes.sql. See https://github.com/verilylifesciences/analysis-py-utils for more details about the testing framework. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from ddt import data from ddt import ddt from jinja2 import Template import os import unittest from verily.bigquery_wrapper import bq_test_case from test_constants import TestConstants @ddt class QueryTest(bq_test_case.BQTestCase): @classmethod def setUpClass(cls): """Set up class.""" super(QueryTest, cls).setUpClass(use_mocks=False) cls.longMessage = True cls.sql_to_test = open( os.path.join( os.path.dirname(os.path.realpath(__file__)), "characterize_genotypes.sql"), "r").read() @classmethod def create_mock_tables(cls): """Create mock tables.""" cls.basic_tables = {} for tbl_name, tbl_input in (TestConstants .GENOME_CALL_OR_MULTISAMPLE_TABLES.iteritems()): cls.basic_tables[tbl_name] = cls.client.path(tbl_name) cls.client.create_table_from_query(tbl_input, tbl_name) # Table created specifically for this test. cls.src_table_name = cls.client.path("genome_call_table") cls.client.create_table_from_query(""" SELECT * FROM UNNEST([ STRUCT<reference_name STRING, start_position INT64, end_position INT64, reference_bases STRING, alternate_bases ARRAY<STRUCT<alt STRING>>, call ARRAY<STRUCT<name STRING, genotype ARRAY<INT64>>> > -- SNP ('chr1', 123, 124, 'A', ARRAY[STRUCT('T')], ARRAY[STRUCT('sample1', ARRAY[0, 0]), STRUCT('sample2', ARRAY[0, 1]), STRUCT('sample3', ARRAY[1, 0]), STRUCT('sample4', ARRAY[1, 1]), STRUCT('sample5', ARRAY[-1, 1]), STRUCT('sample6', ARRAY[1, -1]), STRUCT('sample7', ARRAY[-1, -1])]), -- Multiallelic SNP ('chr1', 456, 457, 'C', ARRAY[STRUCT('A'), STRUCT('G'), STRUCT('T')], ARRAY[STRUCT('sample1', ARRAY[2, 2]), STRUCT('sample2', ARRAY[3, 3]), STRUCT('sample3', ARRAY[1, 4]), STRUCT('sample4', ARRAY[0, 0]), STRUCT('sample5', ARRAY[1, 1]), STRUCT('sample6', ARRAY[4, 4]), STRUCT('sample7', ARRAY[-1, 3])]) ])""", cls.src_table_name) def test(self): sql = Template(self.sql_to_test).render( {"GENOME_CALL_OR_MULTISAMPLE_VARIANT_TABLE": self.src_table_name}) expected = [ # genotype, genotype_count ("-1,-1", 1), ("-1,1", 1), ("1,-1", 1), ("0,0", 2), ("0,1", 1), ("1,0", 1), ("1,1", 2), ("2,2", 1), ("3,3", 1), ("1,4", 1), ("-1,3", 1), ("4,4", 1) ] self.expect_query_result( query=sql, expected=expected, enforce_ordering=False) @data(TestConstants.GENOME_CALL_TABLE) def test_basic_input_genome_call_table(self, table): sql = Template(self.sql_to_test).render( {"GENOME_CALL_OR_MULTISAMPLE_VARIANT_TABLE": self.basic_tables[table]}) expected = [ # genotype, genotype_count ("-1,-1", 1), ("-1,1", 1), ("0,0", 3), ("0,1", 2), ("1,1", 2), ("1,2", 1) ] self.expect_query_result( query=sql, expected=expected, enforce_ordering=False) @data(TestConstants.MULTISAMPLE_VARIANTS_TABLE) def test_basic_input_multisample_variants_table(self, table): sql = Template(self.sql_to_test).render( {"GENOME_CALL_OR_MULTISAMPLE_VARIANT_TABLE": self.basic_tables[table]}) expected = [ # genotype, genotype_count ("-1,-1", 18), ("-1,1", 1), ("0,0", 1), ("0,1", 2), ("1,1", 2), ("1,2", 1) ] self.expect_query_result( query=sql, expected=expected, enforce_ordering=False) if __name__ == "__main__": unittest.main()
verilylifesciences/variant-qc
sql/characterize_genotypes_test.py
Python
apache-2.0
5,161
# views.py from flask import render_template from app import app @app.route('/') def index(): return render_template("index.html") @app.route('/about') def about(): return render_template("about.html")
rayidghani/CharBucks
app/views.py
Python
mit
214
import _plotly_utils.basevalidators class FontValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="font", parent_name="box.hoverlabel", **kwargs): super(FontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Font"), data_docs=kwargs.pop( "data_docs", """ color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size . """, ), **kwargs )
plotly/python-api
packages/python/plotly/plotly/validators/box/hoverlabel/_font.py
Python
mit
1,855
# Purely included to allow for app install.
shaunsephton/django-snippetscream
snippetscream/models.py
Python
bsd-3-clause
44
# -*- coding: utf-8 -*- # Copyright(C) 2014 Bezleputh # # This file is part of weboob. # # weboob is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # weboob is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with weboob. If not, see <http://www.gnu.org/licenses/>. from weboob.browser import PagesBrowser, URL from .pages import EventListPage, EventPage from datetime import timedelta, date class AgendadulibreBrowser(PagesBrowser): event_list_page = URL('events\?start_date=(?P<date_from>.*)(?P<region>.*)', EventListPage) event_page = URL('events/(?P<_id>.*)', EventPage) def __init__(self, website, region, *args, **kwargs): self.BASEURL = u'%s' % website self.region = '&region=%s' % region if region else '' PagesBrowser.__init__(self, *args, **kwargs) def list_events(self, date_from, date_to, city=None, categories=None, max_date=None): _max_date = date_from + timedelta(days=365) max_date = date(year=_max_date.year, month=_max_date.month, day=_max_date.day) return self.event_list_page.go(date_from=date_from.strftime("%Y-%m-%d"), region=self.region)\ .list_events(date_from=date_from, date_to=date_to, city=city, categories=categories, max_date=max_date) def get_event(self, event_id, event=None): _id = event_id.split('#')[-1] return self.event_page.go(_id=_id).get_event(obj=event)
Konubinix/weboob
modules/agendadulibre/browser.py
Python
agpl-3.0
2,003
# Licensed under a 3-clause BSD style license - see LICENSE.rst import functools import numpy as np import pytest from astropy import units as u from astropy.utils import iers from astropy.time import Time from astropy.table import Table try: import h5py # pylint: disable=W0611 # noqa except ImportError: HAS_H5PY = False else: HAS_H5PY = True try: import yaml # pylint: disable=W0611 # noqa HAS_YAML = True except ImportError: HAS_YAML = False allclose_sec = functools.partial(np.allclose, rtol=2. ** -52, atol=2. ** -52 * 24 * 3600) # 20 ps atol is_masked = np.ma.is_masked def test_simple(): t = Time([1, 2, 3], format='cxcsec') assert t.masked is False assert np.all(t.mask == [False, False, False]) # Before masking, format output is not a masked array (it is an ndarray # like always) assert not isinstance(t.value, np.ma.MaskedArray) assert not isinstance(t.unix, np.ma.MaskedArray) t[2] = np.ma.masked assert t.masked is True assert np.all(t.mask == [False, False, True]) assert allclose_sec(t.value[:2], [1, 2]) assert is_masked(t.value[2]) assert is_masked(t[2].value) # After masking format output is a masked array assert isinstance(t.value, np.ma.MaskedArray) assert isinstance(t.unix, np.ma.MaskedArray) # Todo : test all formats def test_scalar_init(): t = Time('2000:001') assert t.masked is False assert t.mask == np.array(False) def test_mask_not_writeable(): t = Time('2000:001') with pytest.raises(AttributeError) as err: t.mask = True assert "can't set attribute" in str(err.value) t = Time(['2000:001']) with pytest.raises(ValueError) as err: t.mask[0] = True assert "assignment destination is read-only" in str(err.value) def test_str(): t = Time(['2000:001', '2000:002']) t[1] = np.ma.masked assert str(t) == "['2000:001:00:00:00.000' --]" assert repr(t) == "<Time object: scale='utc' format='yday' value=['2000:001:00:00:00.000' --]>" expected = ["masked_array(data=['2000-01-01 00:00:00.000', --],", ' mask=[False, True],', " fill_value='N/A',", " dtype='<U23')"] # Note that we need to take care to allow for big-endian platforms, # for which the dtype will be >U23 instead of <U23, which we do with # the call to replace(). assert repr(t.iso).replace('>U23', '<U23').splitlines() == expected # Assign value to unmask t[1] = '2000:111' assert str(t) == "['2000:001:00:00:00.000' '2000:111:00:00:00.000']" assert t.masked is False def test_transform(): with iers.conf.set_temp('auto_download', False): t = Time(['2000:001', '2000:002']) t[1] = np.ma.masked # Change scale (this tests the ERFA machinery with masking as well) t_ut1 = t.ut1 assert is_masked(t_ut1.value[1]) assert not is_masked(t_ut1.value[0]) assert np.all(t_ut1.mask == [False, True]) # Change format t_unix = t.unix assert is_masked(t_unix[1]) assert not is_masked(t_unix[0]) assert np.all(t_unix.mask == [False, True]) def test_masked_input(): v0 = np.ma.MaskedArray([[1, 2], [3, 4]]) # No masked elements v1 = np.ma.MaskedArray([[1, 2], [3, 4]], mask=[[True, False], [False, False]]) v2 = np.ma.MaskedArray([[10, 20], [30, 40]], mask=[[False, False], [False, True]]) # Init from various combinations of masked arrays t = Time(v0, format='cxcsec') assert np.ma.allclose(t.value, v0) assert np.all(t.mask == [[False, False], [False, False]]) assert t.masked is False t = Time(v1, format='cxcsec') assert np.ma.allclose(t.value, v1) assert np.all(t.mask == v1.mask) assert np.all(t.value.mask == v1.mask) assert t.masked is True t = Time(v1, v2, format='cxcsec') assert np.ma.allclose(t.value, v1 + v2) assert np.all(t.mask == (v1 + v2).mask) assert t.masked is True t = Time(v0, v1, format='cxcsec') assert np.ma.allclose(t.value, v0 + v1) assert np.all(t.mask == (v0 + v1).mask) assert t.masked is True t = Time(0, v2, format='cxcsec') assert np.ma.allclose(t.value, v2) assert np.all(t.mask == v2.mask) assert t.masked is True # Init from a string masked array t_iso = t.iso t2 = Time(t_iso) assert np.all(t2.value == t_iso) assert np.all(t2.mask == v2.mask) assert t2.masked is True def test_all_masked_input(): """Fix for #9612""" # Test with jd=0 and jd=np.nan. Both triggered an exception prior to #9624 # due to astropy.utils.exceptions.ErfaError. for val in (0, np.nan): t = Time(np.ma.masked_array([val], mask=[True]), format='jd') assert str(t.iso) == '[--]' def test_serialize_fits_masked(tmpdir): tm = Time([1, 2, 3], format='cxcsec') tm[1] = np.ma.masked fn = str(tmpdir.join('tempfile.fits')) t = Table([tm]) t.write(fn) t2 = Table.read(fn, astropy_native=True) # Time FITS handling does not current round-trip format in FITS t2['col0'].format = tm.format assert t2['col0'].masked assert np.all(t2['col0'].mask == [False, True, False]) assert np.all(t2['col0'].value == t['col0'].value) @pytest.mark.skipif(not HAS_YAML or not HAS_H5PY, reason='Need both h5py and yaml') def test_serialize_hdf5_masked(tmpdir): tm = Time([1, 2, 3], format='cxcsec') tm[1] = np.ma.masked fn = str(tmpdir.join('tempfile.hdf5')) t = Table([tm]) t.write(fn, path='root', serialize_meta=True) t2 = Table.read(fn) assert t2['col0'].masked assert np.all(t2['col0'].mask == [False, True, False]) assert np.all(t2['col0'].value == t['col0'].value) # Ignore warning in MIPS https://github.com/astropy/astropy/issues/9750 @pytest.mark.skipif('not HAS_YAML') @pytest.mark.filterwarnings('ignore:invalid value encountered') @pytest.mark.parametrize('serialize_method', ['jd1_jd2', 'formatted_value']) def test_serialize_ecsv_masked(serialize_method, tmpdir): tm = Time([1, 2, 3], format='cxcsec') tm[1] = np.ma.masked tm.info.serialize_method['ecsv'] = serialize_method fn = str(tmpdir.join('tempfile.ecsv')) t = Table([tm]) t.write(fn) t2 = Table.read(fn) assert t2['col0'].masked assert np.all(t2['col0'].mask == [False, True, False]) # Serializing formatted_value loses some precision. atol = 0.1*u.us if serialize_method == 'formatted_value' else 1*u.ps assert np.all(abs(t2['col0'] - t['col0']) <= atol)
dhomeier/astropy
astropy/time/tests/test_mask.py
Python
bsd-3-clause
6,709
# coding=utf-8 # # <BestRussianTV plugin for XBMC> # Copyright (C) <2011> <BestRussianTV> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # encoding:utf-8 import httplib import Config from BeautifulSoup import BeautifulSoup class Obj: def __init__(self, id, descr, name, epcount, length, startTime, epnum, cont, imgcount): self.id = id self.descr = descr self.name = name self.epcount = epcount self.length = length self.startTime = startTime self.epnum = epnum self.cont = cont self.imgcount = imgcount class GObj: def __init__(self, TPage, Page, Items): self.tpage = int(TPage) self.page = int(Page) self.items = Items def GetItem(sID, type, page=1, keyword="", date="0001-01-01", id="0"): Items = [] soup = BeautifulSoup(Request(sID, type, page, keyword, date, id)) try: tpage = soup("b:totalpages")[0].text except: tpage = "1" try: page = soup("b:pagenumber")[0].text except: page = "1" d = soup("a:programguideitem") for i in range(len(d)): c = d[i] sup = BeautifulSoup(c.prettify()) name = sup("a:name")[0].text.encode('utf-8') descr = sup("a:description")[0].text.encode('utf-8') descr = descr.replace('&#xD;', '') epcount = sup("a:episodescount")[0].text length = sup("a:length")[0].text id = sup("a:id")[0].text startTime = sup("a:starttime")[0].text epnum = sup("a:episodenum")[0].text cont = sup("a:iscontainer")[0].text imgcount = sup("a:imagecount")[0].text Items.append(Obj(id, descr, name, epcount, length, startTime, epnum, cont, imgcount)) return GObj(tpage, page, Items) def Request(sID, type, page, keyword, date, id ): ctype = ['ArcPlus','VOD','DVR'] t = int(type) #keyword = "Маша" #keyword = keyword.decode('utf-8') #keyword = keyword.encode('cp1251') #req = '<?xml version="1.0" encoding="utf-8"?>' \ #'<s:Envelope ' k = [keyword,""] req = \ '<?xml version="1.0" encoding="utf-8"?>' \ '<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><GetClientProgramGuide xmlns="http://ivsmedia.iptv-distribution.net"><sessionID>' + sID + '</sessionID><type>'+ctype[t] +'</type>' \ '<request xmlns:d4p1="http://schemas.datacontract.org/2004/07/IVS.Content.Data" xmlns:i="http://www.w3.org/2001/XMLSchema-instance">' \ '<d4p1:filter><d4p1:availableOnly>true</d4p1:availableOnly><d4p1:contentGenre i:nil="true" />' \ '<d4p1:contentType>'+ctype[t]+'</d4p1:contentType><d4p1:date>' + date + 'T23:59:59</d4p1:date><d4p1:dateTill>' + date +'T00:00:00</d4p1:dateTill><d4p1:favoritesOnly>false</d4p1:favoritesOnly><d4p1:keyWord>' + keyword.decode('utf-8') + '</d4p1:keyWord>' \ '<d4p1:orderBy i:nil="true" /><d4p1:showItems>true</d4p1:showItems><d4p1:studioID>' + id + '</d4p1:studioID><d4p1:visibleOnly>false</d4p1:visibleOnly></d4p1:filter>' \ '<d4p1:paging xmlns:d5p1="http://schemas.datacontract.org/2004/07/IVS.Common"><d5p1:itemsOnPage>40</d5p1:itemsOnPage><d5p1:pageNumber>'+str(page)+'</d5p1:pageNumber><d5p1:totalItems>0</d5p1:totalItems><d5p1:totalPages>0</d5p1:totalPages>' \ '</d4p1:paging><d4p1:sort i:nil="true" />' \ '<d4p1:type>'+ ctype[t] +'</d4p1:type><d4p1:requestType>SearchByName</d4p1:requestType><d4p1:channelID>0</d4p1:channelID><d4p1:fromTime>0001-01-01T00:00:00</d4p1:fromTime><d4p1:itemCountAfter>0</d4p1:itemCountAfter>' \ '<d4p1:itemCountBefore>0</d4p1:itemCountBefore><d4p1:streamZone i:nil="true" /><d4p1:streamZoneUTCOffset>0</d4p1:streamZoneUTCOffset><d4p1:tillTime>0001-01-01T00:00:00</d4p1:tillTime><d4p1:watchingZone i:nil="true" />' \ '<d4p1:watchingZoneUTCOffset>0</d4p1:watchingZoneUTCOffset></request></GetClientProgramGuide></s:Body></s:Envelope>' #req = unicode(req, 'utf8') #req = req % k[0] req = req.encode('utf-8') #req = req.replace('{sessionID}', sID).replace('{ID}', id).replace('{CTYPE}', ctype[t]).replace('{PageNum}',str(page)).replace('{DATE}',date) conn = httplib.HTTPConnection('ivsmedia.iptv-distribution.net') conn.request('POST', Config.ContentService, req, { 'Host': 'ivsmedia.iptv-distribution.net', 'SOAPAction': 'http://ivsmedia.iptv-distribution.net/ContentService/GetClientProgramGuide', 'Content-Type': 'text/xml; charset=utf-8' }) response = conn.getresponse() return response.read()
tatigo/XBMC-BestRussianTVPlugin
ArcSearch.py
Python
gpl-3.0
5,298
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests boosted_trees estimators and model_fn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.core.kernels.boosted_trees import boosted_trees_pb2 from tensorflow.python.data.ops import dataset_ops from tensorflow.python.estimator import model_fn from tensorflow.python.estimator import run_config from tensorflow.python.estimator.canned import boosted_trees from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import gen_boosted_trees_ops from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import session_run_hook NUM_FEATURES = 3 BUCKET_BOUNDARIES = [-2., .5, 12.] # Boundaries for all the features. INPUT_FEATURES = np.array( [ [12.5, 1.0, -2.001, -2.0001, -1.999], # feature_0 quantized:[3,2,0,0,1] [2.0, -3.0, 0.5, 0.0, 0.4995], # feature_1 quantized:[2,0,2,1,1] [3.0, 20.0, 50.0, -100.0, 102.75], # feature_2 quantized:[2,3,3,0,3] ], dtype=np.float32) CLASSIFICATION_LABELS = [[0.], [1.], [1.], [0.], [0.]] REGRESSION_LABELS = [[1.5], [0.3], [0.2], [2.], [5.]] FEATURES_DICT = {'f_%d' % i: INPUT_FEATURES[i] for i in range(NUM_FEATURES)} # EXAMPLE_ID is not exposed to Estimator yet, but supported at model_fn level. EXAMPLE_IDS = np.array([0, 1, 2, 3, 4], dtype=np.int64) EXAMPLE_ID_COLUMN = '__example_id__' def _make_train_input_fn(is_classification): """Makes train input_fn for classification/regression.""" def _input_fn(): features_dict = dict(FEATURES_DICT) # copies the dict to add an entry. features_dict[EXAMPLE_ID_COLUMN] = constant_op.constant(EXAMPLE_IDS) labels = CLASSIFICATION_LABELS if is_classification else REGRESSION_LABELS return features_dict, labels return _input_fn def _make_train_input_fn_dataset(is_classification, batch=None, repeat=None): """Makes input_fn using Dataset.""" def _input_fn(): features_dict = dict(FEATURES_DICT) # copies the dict to add an entry. features_dict[EXAMPLE_ID_COLUMN] = constant_op.constant(EXAMPLE_IDS) labels = CLASSIFICATION_LABELS if is_classification else REGRESSION_LABELS if batch: ds = dataset_ops.Dataset.zip( (dataset_ops.Dataset.from_tensor_slices(features_dict), dataset_ops.Dataset.from_tensor_slices(labels))).batch(batch) else: ds = dataset_ops.Dataset.zip( (dataset_ops.Dataset.from_tensors(features_dict), dataset_ops.Dataset.from_tensors(labels))) # repeat indefinitely by default, or stop at the given step. ds = ds.repeat(repeat) return ds return _input_fn class BoostedTreesEstimatorTest(test_util.TensorFlowTestCase): def setUp(self): self._feature_columns = { feature_column.bucketized_column( feature_column.numeric_column('f_%d' % i, dtype=dtypes.float32), BUCKET_BOUNDARIES) for i in range(NUM_FEATURES) } def _assert_checkpoint(self, model_dir, global_step, finalized_trees, attempted_layers): self._assert_checkpoint_and_return_model(model_dir, global_step, finalized_trees, attempted_layers) def _assert_checkpoint_and_return_model(self, model_dir, global_step, finalized_trees, attempted_layers): reader = checkpoint_utils.load_checkpoint(model_dir) self.assertEqual(global_step, reader.get_tensor(ops.GraphKeys.GLOBAL_STEP)) serialized = reader.get_tensor('boosted_trees:0_serialized') ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertEqual( finalized_trees, sum([1 for t in ensemble_proto.tree_metadata if t.is_finalized])) self.assertEqual(attempted_layers, ensemble_proto.growing_metadata.num_layers_attempted) return ensemble_proto def testFirstCheckpointWorksFine(self): """Tests that eval/pred doesn't crash with the very first checkpoint. The step-0 checkpoint will have only an empty ensemble, and a separate eval job might read from it and crash. This test ensures that prediction/evaluation works fine with it. """ input_fn = _make_train_input_fn(is_classification=True) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) class BailOutWithoutTraining(session_run_hook.SessionRunHook): def before_run(self, run_context): raise StopIteration('to bail out.') est.train(input_fn, steps=100, # must stop at 0 anyway. hooks=[BailOutWithoutTraining()]) self._assert_checkpoint( est.model_dir, global_step=0, finalized_trees=0, attempted_layers=0) # Empty ensemble returns 0 logits, so that all output labels are 0. eval_res = est.evaluate(input_fn=input_fn, steps=1) self.assertAllClose(eval_res['accuracy'], 0.6) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose([[0], [0], [0], [0], [0]], [pred['class_ids'] for pred in predictions]) def testTrainAndEvaluateBinaryClassifier(self): input_fn = _make_train_input_fn(is_classification=True) est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) # It will stop after 5 steps because of the max depth and num trees. num_steps = 100 # Train for a few steps, and validate final checkpoint. est.train(input_fn, steps=num_steps) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=input_fn, steps=1) self.assertAllClose(eval_res['accuracy'], 1.0) def testInferBinaryClassifier(self): train_input_fn = _make_train_input_fn(is_classification=True) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) # It will stop after 5 steps because of the max depth and num trees. num_steps = 100 # Train for a few steps, and validate final checkpoint. est.train(train_input_fn, steps=num_steps) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose([[0], [1], [1], [0], [0]], [pred['class_ids'] for pred in predictions]) def testTrainClassifierWithRankOneLabel(self): """Tests that label with rank-1 tensor is also accepted by classifier.""" def _input_fn_with_rank_one_label(): return FEATURES_DICT, [0., 1., 1., 0., 0.] est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) # It will stop after 5 steps because of the max depth and num trees. num_steps = 100 # Train for a few steps, and validate final checkpoint. est.train(_input_fn_with_rank_one_label, steps=num_steps) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=_input_fn_with_rank_one_label, steps=1) self.assertAllClose(eval_res['accuracy'], 1.0) def testTrainClassifierWithLabelVocabulary(self): apple, banana = 'apple', 'banana' def _input_fn_with_label_vocab(): return FEATURES_DICT, [[apple], [banana], [banana], [apple], [apple]] predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5, label_vocabulary=[apple, banana]) est.train(input_fn=_input_fn_with_label_vocab, steps=5) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=_input_fn_with_label_vocab, steps=1) self.assertAllClose(eval_res['accuracy'], 1.0) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose([[0], [1], [1], [0], [0]], [pred['class_ids'] for pred in predictions]) def testTrainClassifierWithIntegerLabel(self): def _input_fn_with_integer_label(): return (FEATURES_DICT, constant_op.constant([[0], [1], [1], [0], [0]], dtypes.int32)) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) est.train(input_fn=_input_fn_with_integer_label, steps=5) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=_input_fn_with_integer_label, steps=1) self.assertAllClose(eval_res['accuracy'], 1.0) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose([[0], [1], [1], [0], [0]], [pred['class_ids'] for pred in predictions]) def testTrainClassifierWithDataset(self): train_input_fn = _make_train_input_fn_dataset(is_classification=True) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesClassifier( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) est.train(train_input_fn, steps=100) # will stop after 5 steps anyway. self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=train_input_fn, steps=1) self.assertAllClose(eval_res['accuracy'], 1.0) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose([[0], [1], [1], [0], [0]], [pred['class_ids'] for pred in predictions]) def testTrainAndEvaluateRegressor(self): input_fn = _make_train_input_fn(is_classification=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=2, max_depth=5) # It will stop after 10 steps because of the max depth and num trees. num_steps = 100 # Train for a few steps, and validate final checkpoint. est.train(input_fn, steps=num_steps) self._assert_checkpoint( est.model_dir, global_step=10, finalized_trees=2, attempted_layers=10) eval_res = est.evaluate(input_fn=input_fn, steps=1) self.assertAllClose(eval_res['average_loss'], 1.008551) def testInferRegressor(self): train_input_fn = _make_train_input_fn(is_classification=False) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) # It will stop after 5 steps because of the max depth and num trees. num_steps = 100 # Train for a few steps, and validate final checkpoint. est.train(train_input_fn, steps=num_steps) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose( [[0.571619], [0.262821], [0.124549], [0.956801], [1.769801]], [pred['predictions'] for pred in predictions]) def testTrainRegressorWithRankOneLabel(self): """Tests that label with rank-1 tensor is also accepted by regressor.""" def _input_fn_with_rank_one_label(): return FEATURES_DICT, [1.5, 0.3, 0.2, 2., 5.] est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) # It will stop after 5 steps because of the max depth and num trees. num_steps = 100 # Train for a few steps, and validate final checkpoint. est.train(_input_fn_with_rank_one_label, steps=num_steps) self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=_input_fn_with_rank_one_label, steps=1) self.assertAllClose(eval_res['average_loss'], 2.478283) def testTrainRegressorWithDataset(self): train_input_fn = _make_train_input_fn_dataset(is_classification=False) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) est.train(train_input_fn, steps=100) # will stop after 5 steps anyway. self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=train_input_fn, steps=1) self.assertAllClose(eval_res['average_loss'], 2.478283) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose( [[0.571619], [0.262821], [0.124549], [0.956801], [1.769801]], [pred['predictions'] for pred in predictions]) def testTrainRegressorWithDatasetBatch(self): # The batch_size as the entire data size should yield the same result as # dataset without batching. train_input_fn = _make_train_input_fn_dataset( is_classification=False, batch=5) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) est.train(train_input_fn, steps=100) # will stop after 5 steps anyway. self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=train_input_fn, steps=1) self.assertAllClose(eval_res['average_loss'], 2.478283) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose( [[0.571619], [0.262821], [0.124549], [0.956801], [1.769801]], [pred['predictions'] for pred in predictions]) def testTrainRegressorWithDatasetLargerBatch(self): # The batch_size as the multiple of the entire data size should still yield # the same result. train_input_fn = _make_train_input_fn_dataset( is_classification=False, batch=15) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) est.train(train_input_fn, steps=100) # will stop after 5 steps anyway. self._assert_checkpoint( est.model_dir, global_step=5, finalized_trees=1, attempted_layers=5) eval_res = est.evaluate(input_fn=train_input_fn, steps=1) self.assertAllClose(eval_res['average_loss'], 2.478283) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose( [[0.571619], [0.262821], [0.124549], [0.956801], [1.769801]], [pred['predictions'] for pred in predictions]) def testTrainRegressorWithDatasetSmallerBatch(self): # Even when using small batches, if (n_batches_per_layer * batch_size) makes # the same entire data size, the result should be the same. train_input_fn = _make_train_input_fn_dataset( is_classification=False, batch=1) predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=5, n_trees=1, max_depth=5) # Train stops after (n_batches_per_layer * n_trees * max_depth) steps. est.train(train_input_fn, steps=100) self._assert_checkpoint( est.model_dir, global_step=25, finalized_trees=1, attempted_layers=5) # 5 batches = one epoch. eval_res = est.evaluate(input_fn=train_input_fn, steps=5) self.assertAllClose(eval_res['average_loss'], 2.478283) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose( [[0.571619], [0.262821], [0.124549], [0.956801], [1.769801]], [pred['predictions'] for pred in predictions]) def testTrainRegressorWithDatasetWhenInputIsOverEarlier(self): train_input_fn = _make_train_input_fn_dataset( is_classification=False, repeat=3) # to stop input after 3 steps. predict_input_fn = numpy_io.numpy_input_fn( x=FEATURES_DICT, y=None, batch_size=1, num_epochs=1, shuffle=False) est = boosted_trees.BoostedTreesRegressor( feature_columns=self._feature_columns, n_batches_per_layer=1, n_trees=1, max_depth=5) # Note that training will stop when input exhausts. # This might not be a typical pattern, but dataset.repeat(3) causes # the input stream to cease after 3 steps. est.train(train_input_fn, steps=100) self._assert_checkpoint( est.model_dir, global_step=3, finalized_trees=0, attempted_layers=3) eval_res = est.evaluate(input_fn=train_input_fn, steps=1) self.assertAllClose(eval_res['average_loss'], 3.777295) predictions = list(est.predict(input_fn=predict_input_fn)) self.assertAllClose( [[0.353850], [0.254100], [0.106850], [0.712100], [1.012100]], [pred['predictions'] for pred in predictions]) def testTrainEvaluateAndPredictWithIndicatorColumn(self): categorical = feature_column.categorical_column_with_vocabulary_list( key='categorical', vocabulary_list=('bad', 'good', 'ok')) feature_indicator = feature_column.indicator_column(categorical) bucketized_col = feature_column.bucketized_column( feature_column.numeric_column( 'an_uninformative_feature', dtype=dtypes.float32), BUCKET_BOUNDARIES) labels = np.array([[0.], [5.7], [5.7], [0.], [0.]], dtype=np.float32) # Our categorical feature defines the labels perfectly input_fn = numpy_io.numpy_input_fn( x={ 'an_uninformative_feature': np.array([1, 1, 1, 1, 1]), 'categorical': np.array(['bad', 'good', 'good', 'ok', 'bad']), }, y=labels, batch_size=5, shuffle=False) # Train depth 1 tree. est = boosted_trees.BoostedTreesRegressor( feature_columns=[bucketized_col, feature_indicator], n_batches_per_layer=1, n_trees=1, learning_rate=1.0, max_depth=1) num_steps = 1 est.train(input_fn, steps=num_steps) ensemble = self._assert_checkpoint_and_return_model( est.model_dir, global_step=1, finalized_trees=1, attempted_layers=1) # We learnt perfectly. eval_res = est.evaluate(input_fn=input_fn, steps=1) self.assertAllClose(eval_res['loss'], 0) predictions = list(est.predict(input_fn)) self.assertAllClose( labels, [pred['predictions'] for pred in predictions]) self.assertEqual(3, len(ensemble.trees[0].nodes)) # Check that the split happened on 'good' value, which will be encoded as # feature with index 2 (0-numeric, 1 - 'bad') self.assertEqual(2, ensemble.trees[0].nodes[0].bucketized_split.feature_id) self.assertEqual(0, ensemble.trees[0].nodes[0].bucketized_split.threshold) def testTrainEvaluateAndPredictWithOnlyIndicatorColumn(self): categorical = feature_column.categorical_column_with_vocabulary_list( key='categorical', vocabulary_list=('bad', 'good', 'ok')) feature_indicator = feature_column.indicator_column(categorical) labels = np.array([[0.], [5.7], [5.7], [0.], [0.]], dtype=np.float32) # Our categorical feature defines the labels perfectly input_fn = numpy_io.numpy_input_fn( x={ 'categorical': np.array(['bad', 'good', 'good', 'ok', 'bad']), }, y=labels, batch_size=5, shuffle=False) # Train depth 1 tree. est = boosted_trees.BoostedTreesRegressor( feature_columns=[feature_indicator], n_batches_per_layer=1, n_trees=1, learning_rate=1.0, max_depth=1) num_steps = 1 est.train(input_fn, steps=num_steps) ensemble = self._assert_checkpoint_and_return_model( est.model_dir, global_step=1, finalized_trees=1, attempted_layers=1) # We learnt perfectly. eval_res = est.evaluate(input_fn=input_fn, steps=1) self.assertAllClose(eval_res['loss'], 0) predictions = list(est.predict(input_fn)) self.assertAllClose( labels, [pred['predictions'] for pred in predictions]) self.assertEqual(3, len(ensemble.trees[0].nodes)) # Check that the split happened on 'good' value, which will be encoded as # feature with index 1 (0 - 'bad', 2 - 'ok') self.assertEqual(1, ensemble.trees[0].nodes[0].bucketized_split.feature_id) self.assertEqual(0, ensemble.trees[0].nodes[0].bucketized_split.threshold) class ModelFnTests(test_util.TensorFlowTestCase): """Tests bt_model_fn including unexposed internal functionalities.""" def setUp(self): self._feature_columns = { feature_column.bucketized_column( feature_column.numeric_column('f_%d' % i, dtype=dtypes.float32), BUCKET_BOUNDARIES) for i in range(NUM_FEATURES) } def _get_expected_ensembles_for_classification(self): first_round = """ trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.387675 } } nodes { leaf { scalar: -0.181818 } } nodes { leaf { scalar: 0.0625 } } } tree_weights: 1.0 tree_metadata { num_layers_grown: 1 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 1 last_layer_node_start: 1 last_layer_node_end: 3 } """ second_round = """ trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.387675 } } nodes { bucketized_split { feature_id: 0 threshold: 3 left_id: 3 right_id: 4 } metadata { gain: 0.0 original_leaf { scalar: -0.181818 } } } nodes { bucketized_split { feature_id: 0 threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.105518 original_leaf { scalar: 0.0625 } } } nodes { leaf { scalar: -0.348397 } } nodes { leaf { scalar: -0.181818 } } nodes { leaf { scalar: 0.224091 } } nodes { leaf { scalar: 0.056815 } } } trees { nodes { leaf { scalar: 0.0 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 0 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 2 last_layer_node_start: 0 last_layer_node_end: 1 } """ third_round = """ trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.387675 } } nodes { bucketized_split { feature_id: 0 threshold: 3 left_id: 3 right_id: 4 } metadata { gain: 0.0 original_leaf { scalar: -0.181818 } } } nodes { bucketized_split { feature_id: 0 threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.105518 original_leaf { scalar: 0.0625 } } } nodes { leaf { scalar: -0.348397 } } nodes { leaf { scalar: -0.181818 } } nodes { leaf { scalar: 0.224091 } } nodes { leaf { scalar: 0.056815 } } } trees { nodes { bucketized_split { feature_id: 1 threshold: 0 left_id: 1 right_id: 2 } metadata { gain: 0.287131 } } nodes { leaf { scalar: 0.162042 } } nodes { leaf { scalar: -0.086986 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 1 is_finalized: false } growing_metadata { num_trees_attempted: 2 num_layers_attempted: 3 last_layer_node_start: 1 last_layer_node_end: 3 } """ return (first_round, second_round, third_round) def _get_expected_ensembles_for_classification_with_bias(self): first_round = """ trees { nodes { leaf { scalar: -0.405086 } } } tree_weights: 1.0 tree_metadata { } """ second_round = """ trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.407711 original_leaf { scalar: -0.405086 } } } nodes { leaf { scalar: -0.556054 } } nodes { leaf { scalar: -0.301233 } } } tree_weights: 1.0 tree_metadata { num_layers_grown: 1 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 1 last_layer_node_start: 1 last_layer_node_end: 3 } """ third_round = """ trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.407711 original_leaf { scalar: -0.405086 } } } nodes { bucketized_split { feature_id: 0 threshold: 3 left_id: 3 right_id: 4 } metadata { original_leaf { scalar: -0.556054 } } } nodes { bucketized_split { feature_id: 0 threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.09876 original_leaf { scalar: -0.301233 } } } nodes { leaf { scalar: -0.698072 } } nodes { leaf { scalar: -0.556054 } } nodes { leaf { scalar: -0.106016 } } nodes { leaf { scalar: -0.27349 } } } trees { nodes { leaf { } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 2 last_layer_node_end: 1 } """ forth_round = """ trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.4077113 original_leaf { scalar: -0.405086 } } } nodes { bucketized_split { threshold: 3 left_id: 3 right_id: 4 } metadata { original_leaf { scalar: -0.556054 } } } nodes { bucketized_split { threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.09876 original_leaf { scalar: -0.301233 } } } nodes { leaf { scalar: -0.698072 } } nodes { leaf { scalar: -0.556054 } } nodes { leaf { scalar: -0.106016 } } nodes { leaf { scalar: -0.27349 } } } trees { nodes { bucketized_split { feature_id: 2 threshold: 2 left_id: 1 right_id: 2 } metadata { gain: 0.289927 } } nodes { leaf { scalar: -0.134588 } } nodes { leaf { scalar: 0.083838 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 1 } growing_metadata { num_trees_attempted: 2 num_layers_attempted: 3 last_layer_node_start: 1 last_layer_node_end: 3 } """ return (first_round, second_round, third_round, forth_round) def _get_expected_ensembles_for_regression(self): first_round = """ trees { nodes { bucketized_split { feature_id: 1 threshold: 1 left_id: 1 right_id: 2 } metadata { gain: 1.169714 } } nodes { leaf { scalar: 0.241322 } } nodes { leaf { scalar: 0.083951 } } } tree_weights: 1.0 tree_metadata { num_layers_grown: 1 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 1 last_layer_node_start: 1 last_layer_node_end: 3 } """ second_round = """ trees { nodes { bucketized_split { feature_id: 1 threshold: 1 left_id: 1 right_id: 2 } metadata { gain: 1.169714 } } nodes { bucketized_split { feature_id: 0 threshold: 1 left_id: 3 right_id: 4 } metadata { gain: 2.673407 original_leaf { scalar: 0.241322 } } } nodes { bucketized_split { feature_id: 0 threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.324102 original_leaf { scalar: 0.083951 } } } nodes { leaf { scalar: 0.563167 } } nodes { leaf { scalar: 0.247047 } } nodes { leaf { scalar: 0.095273 } } nodes { leaf { scalar: 0.222102 } } } trees { nodes { leaf { scalar: 0.0 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 0 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 2 last_layer_node_start: 0 last_layer_node_end: 1 } """ third_round = """ trees { nodes { bucketized_split { feature_id: 1 threshold: 1 left_id: 1 right_id: 2 } metadata { gain: 1.169714 } } nodes { bucketized_split { feature_id: 0 threshold: 1 left_id: 3 right_id: 4 } metadata { gain: 2.673407 original_leaf { scalar: 0.241322 } } } nodes { bucketized_split { feature_id: 0 threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.324102 original_leaf { scalar: 0.083951 } } } nodes { leaf { scalar: 0.563167 } } nodes { leaf { scalar: 0.247047 } } nodes { leaf { scalar: 0.095273 } } nodes { leaf { scalar: 0.222102 } } } trees { nodes { bucketized_split { feature_id: 1 threshold: 0 left_id: 1 right_id: 2 } metadata { gain: 0.981026 } } nodes { leaf { scalar: 0.005166 } } nodes { leaf { scalar: 0.180281 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 1 is_finalized: false } growing_metadata { num_trees_attempted: 2 num_layers_attempted: 3 last_layer_node_start: 1 last_layer_node_end: 3 } """ return (first_round, second_round, third_round) def _get_expected_ensembles_for_regression_with_bias(self): first_round = """ trees { nodes { leaf { scalar: 1.799974 } } } tree_weights: 1.0 tree_metadata { } """ second_round = """ trees { nodes { bucketized_split { feature_id: 1 threshold: 1 left_id: 1 right_id: 2 } metadata { gain: 1.190442 original_leaf { scalar: 1.799974 } } } nodes { leaf { scalar: 1.862786 } } nodes { leaf { scalar: 1.706149 } } } tree_weights: 1.0 tree_metadata { num_layers_grown: 1 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 1 last_layer_node_start: 1 last_layer_node_end: 3 } """ third_round = """ trees { nodes { bucketized_split { feature_id: 1 threshold: 1 left_id: 1 right_id: 2 } metadata { gain: 1.190442 original_leaf { scalar: 1.799974 } } } nodes { bucketized_split { feature_id: 0 threshold: 1 left_id: 3 right_id: 4 } metadata { gain: 2.683594 original_leaf { scalar: 1.862786 } } } nodes { bucketized_split { feature_id: 0 threshold: 0 left_id: 5 right_id: 6 } metadata { gain: 0.322693 original_leaf { scalar: 1.706149 } } } nodes { leaf { scalar: 2.024487 } } nodes { leaf { scalar: 1.710319 } } nodes { leaf { scalar: 1.559208 } } nodes { leaf { scalar: 1.686037 } } } trees { nodes { leaf { scalar: 0.0 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 0 is_finalized: false } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 2 last_layer_node_start: 0 last_layer_node_end: 1 } """ forth_round = """ trees { nodes { bucketized_split { feature_id: 1 threshold: 1 left_id: 1 right_id: 2 } metadata { gain: 1.190442 original_leaf { scalar: 1.799974 } } } nodes { bucketized_split { threshold: 1 left_id: 3 right_id: 4 } metadata { gain: 2.683594 original_leaf { scalar: 1.8627863 } } } nodes { bucketized_split { left_id: 5 right_id: 6 } metadata { gain: 0.322693 original_leaf { scalar: 1.706149 } } } nodes { leaf { scalar: 2.024487 } } nodes { leaf { scalar: 1.710319 } } nodes { leaf { scalar: 1.5592078 } } nodes { leaf { scalar: 1.686037 } } } trees { nodes { bucketized_split { feature_id: 1 left_id: 1 right_id: 2 } metadata { gain: 0.972589 } } nodes { leaf { scalar: -0.137592 } } nodes { leaf { scalar: 0.034926 } } } tree_weights: 1.0 tree_weights: 1.0 tree_metadata { num_layers_grown: 2 is_finalized: true } tree_metadata { num_layers_grown: 1 } growing_metadata { num_trees_attempted: 2 num_layers_attempted: 3 last_layer_node_start: 1 last_layer_node_end: 3 } """ return (first_round, second_round, third_round, forth_round) def _get_train_op_and_ensemble(self, head, config, is_classification, train_in_memory, center_bias=False): """Calls bt_model_fn() and returns the train_op and ensemble_serialzed.""" features, labels = _make_train_input_fn(is_classification)() tree_hparams = boosted_trees._TreeHParams( # pylint:disable=protected-access n_trees=2, max_depth=2, learning_rate=0.1, l1=0., l2=0.01, tree_complexity=0., min_node_weight=0., center_bias=center_bias, pruning_mode='none') estimator_spec = boosted_trees._bt_model_fn( # pylint:disable=protected-access features=features, labels=labels, mode=model_fn.ModeKeys.TRAIN, head=head, feature_columns=self._feature_columns, tree_hparams=tree_hparams, example_id_column_name=EXAMPLE_ID_COLUMN, n_batches_per_layer=1, config=config, train_in_memory=train_in_memory) resources.initialize_resources(resources.shared_resources()).run() variables.global_variables_initializer().run() variables.local_variables_initializer().run() # Gets the train_op and serialized proto of the ensemble. shared_resources = resources.shared_resources() self.assertEqual(1, len(shared_resources)) train_op = estimator_spec.train_op with ops.control_dependencies([train_op]): _, ensemble_serialized = ( gen_boosted_trees_ops.boosted_trees_serialize_ensemble( shared_resources[0].handle)) return train_op, ensemble_serialized def testTrainClassifierInMemory(self): ops.reset_default_graph() expected_first, expected_second, expected_third = ( self._get_expected_ensembles_for_classification()) with self.test_session() as sess: # Train with train_in_memory mode. with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_classification_head(n_classes=2), run_config.RunConfig(), is_classification=True, train_in_memory=True) _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) def testTrainClassifierWithCenterBiasInMemory(self): ops.reset_default_graph() # When bias centering is on, we expect the very first node to have the expected_first, expected_second, expected_third, expected_forth = ( self._get_expected_ensembles_for_classification_with_bias()) with self.test_session() as sess: with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_classification_head(n_classes=2), run_config.RunConfig(), is_classification=True, train_in_memory=True, center_bias=True) # 4 iterations to center bias. for _ in range(4): _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) # Forth round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_forth, ensemble_proto) def testTrainClassifierNonInMemory(self): ops.reset_default_graph() expected_first, expected_second, expected_third = ( self._get_expected_ensembles_for_classification()) with self.test_session() as sess: # Train without train_in_memory mode. with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_classification_head(n_classes=2), run_config.RunConfig(), is_classification=True, train_in_memory=False) _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) def testTrainClassifierWithCenterBiasNonInMemory(self): ops.reset_default_graph() # When bias centering is on, we expect the very first node to have the expected_first, expected_second, expected_third, expected_forth = ( self._get_expected_ensembles_for_classification_with_bias()) with self.test_session() as sess: with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_classification_head(n_classes=2), run_config.RunConfig(), is_classification=True, train_in_memory=False, center_bias=True) # 4 iterations to center bias. for _ in range(4): _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) # Forth round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_forth, ensemble_proto) def testTrainRegressorInMemory(self): ops.reset_default_graph() expected_first, expected_second, expected_third = ( self._get_expected_ensembles_for_regression()) with self.test_session() as sess: # Train with train_in_memory mode. with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_regression_head(label_dimension=1), run_config.RunConfig(), is_classification=False, train_in_memory=True) _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) def testTrainRegressorInMemoryWithCenterBias(self): ops.reset_default_graph() expected_first, expected_second, expected_third, expected_forth = ( self._get_expected_ensembles_for_regression_with_bias()) with self.test_session() as sess: # Train with train_in_memory mode. with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_regression_head(label_dimension=1), run_config.RunConfig(), is_classification=False, train_in_memory=True, center_bias=True) # 3 iterations to center bias. for _ in range(3): _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) # Forth round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_forth, ensemble_proto) def testTrainRegressorNonInMemory(self): ops.reset_default_graph() expected_first, expected_second, expected_third = ( self._get_expected_ensembles_for_regression()) with self.test_session() as sess: # Train without train_in_memory mode. with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_regression_head(label_dimension=1), run_config.RunConfig(), is_classification=False, train_in_memory=False) _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) def testTrainRegressorNotInMemoryWithCenterBias(self): ops.reset_default_graph() expected_first, expected_second, expected_third, expected_forth = ( self._get_expected_ensembles_for_regression_with_bias()) with self.test_session() as sess: # Train with train_in_memory mode. with sess.graph.as_default(): train_op, ensemble_serialized = self._get_train_op_and_ensemble( boosted_trees._create_regression_head(label_dimension=1), run_config.RunConfig(), is_classification=False, train_in_memory=False, center_bias=True) # 3 iterations to center the bias (because we are using regularization). for _ in range(3): _, serialized = sess.run([train_op, ensemble_serialized]) # Validate the trained ensemble. ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_first, ensemble_proto) # Run one more time and validate the trained ensemble. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_second, ensemble_proto) # Third round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_third, ensemble_proto) # Forth round training and validation. _, serialized = sess.run([train_op, ensemble_serialized]) ensemble_proto = boosted_trees_pb2.TreeEnsemble() ensemble_proto.ParseFromString(serialized) self.assertProtoEquals(expected_forth, ensemble_proto) if __name__ == '__main__': googletest.main()
aselle/tensorflow
tensorflow/python/estimator/canned/boosted_trees_test.py
Python
apache-2.0
58,435
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This API defines FeatureColumn for sequential input. NOTE: This API is a work in progress and will likely be changing frequently. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.python.feature_column import feature_column_v2 as fc from tensorflow.python.feature_column import utils as fc_utils from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.util.tf_export import keras_export from tensorflow.python.util.tf_export import tf_export # pylint: disable=protected-access @keras_export('keras.experimental.SequenceFeatures') class SequenceFeatures(fc._BaseFeaturesLayer): """A layer for sequence input. All `feature_columns` must be sequence dense columns with the same `sequence_length`. The output of this method can be fed into sequence networks, such as RNN. The output of this method is a 3D `Tensor` of shape `[batch_size, T, D]`. `T` is the maximum sequence length for this batch, which could differ from batch to batch. If multiple `feature_columns` are given with `Di` `num_elements` each, their outputs are concatenated. So, the final `Tensor` has shape `[batch_size, T, D0 + D1 + ... + Dn]`. Example: ```python rating = sequence_numeric_column('rating') watches = sequence_categorical_column_with_identity( 'watches', num_buckets=1000) watches_embedding = embedding_column(watches, dimension=10) columns = [rating, watches_embedding] sequence_input_layer = SequenceFeatures(columns) features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_input, sequence_length = sequence_input_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` """ def __init__( self, feature_columns, trainable=True, name=None, **kwargs): """"Constructs a SequenceFeatures layer. Args: feature_columns: An iterable of dense sequence columns. Valid columns are - `embedding_column` that wraps a `sequence_categorical_column_with_*` - `sequence_numeric_column`. trainable: Boolean, whether the layer's variables will be updated via gradient descent during training. name: Name to give to the SequenceFeatures. **kwargs: Keyword arguments to construct a layer. Raises: ValueError: If any of the `feature_columns` is not a `SequenceDenseColumn`. """ super(SequenceFeatures, self).__init__( feature_columns=feature_columns, trainable=trainable, name=name, expected_column_type=fc.SequenceDenseColumn, **kwargs) def _target_shape(self, input_shape, total_elements): return (input_shape[0], input_shape[1], total_elements) def call(self, features): """Returns sequence input corresponding to the `feature_columns`. Args: features: A dict mapping keys to tensors. Returns: An `(input_layer, sequence_length)` tuple where: - input_layer: A float `Tensor` of shape `[batch_size, T, D]`. `T` is the maximum sequence length for this batch, which could differ from batch to batch. `D` is the sum of `num_elements` for all `feature_columns`. - sequence_length: An int `Tensor` of shape `[batch_size]`. The sequence length for each example. Raises: ValueError: If features are not a dictionary. """ if not isinstance(features, dict): raise ValueError('We expected a dictionary here. Instead we got: ', features) transformation_cache = fc.FeatureTransformationCache(features) output_tensors = [] sequence_lengths = [] for column in self._feature_columns: with ops.name_scope(column.name): dense_tensor, sequence_length = column.get_sequence_dense_tensor( transformation_cache, self._state_manager) # Flattens the final dimension to produce a 3D Tensor. output_tensors.append(self._process_dense_tensor(column, dense_tensor)) sequence_lengths.append(sequence_length) # Check and process sequence lengths. fc._verify_static_batch_size_equality(sequence_lengths, self._feature_columns) sequence_length = _assert_all_equal_and_return(sequence_lengths) return self._verify_and_concat_tensors(output_tensors), sequence_length def concatenate_context_input(context_input, sequence_input): """Replicates `context_input` across all timesteps of `sequence_input`. Expands dimension 1 of `context_input` then tiles it `sequence_length` times. This value is appended to `sequence_input` on dimension 2 and the result is returned. Args: context_input: A `Tensor` of dtype `float32` and shape `[batch_size, d1]`. sequence_input: A `Tensor` of dtype `float32` and shape `[batch_size, padded_length, d0]`. Returns: A `Tensor` of dtype `float32` and shape `[batch_size, padded_length, d0 + d1]`. Raises: ValueError: If `sequence_input` does not have rank 3 or `context_input` does not have rank 2. """ seq_rank_check = check_ops.assert_rank( sequence_input, 3, message='sequence_input must have rank 3', data=[array_ops.shape(sequence_input)]) seq_type_check = check_ops.assert_type( sequence_input, dtypes.float32, message='sequence_input must have dtype float32; got {}.'.format( sequence_input.dtype)) ctx_rank_check = check_ops.assert_rank( context_input, 2, message='context_input must have rank 2', data=[array_ops.shape(context_input)]) ctx_type_check = check_ops.assert_type( context_input, dtypes.float32, message='context_input must have dtype float32; got {}.'.format( context_input.dtype)) with ops.control_dependencies( [seq_rank_check, seq_type_check, ctx_rank_check, ctx_type_check]): padded_length = array_ops.shape(sequence_input)[1] tiled_context_input = array_ops.tile( array_ops.expand_dims(context_input, 1), array_ops.concat([[1], [padded_length], [1]], 0)) return array_ops.concat([sequence_input, tiled_context_input], 2) @tf_export('feature_column.sequence_categorical_column_with_identity') def sequence_categorical_column_with_identity( key, num_buckets, default_value=None): """Returns a feature column that represents sequences of integers. Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN. Example: ```python watches = sequence_categorical_column_with_identity( 'watches', num_buckets=1000) watches_embedding = embedding_column(watches, dimension=10) columns = [watches_embedding] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` Args: key: A unique string identifying the input feature. num_buckets: Range of inputs. Namely, inputs are expected to be in the range `[0, num_buckets)`. default_value: If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace out-of-range inputs. Returns: A `SequenceCategoricalColumn`. Raises: ValueError: if `num_buckets` is less than one. ValueError: if `default_value` is not in range `[0, num_buckets)`. """ return fc.SequenceCategoricalColumn( fc.categorical_column_with_identity( key=key, num_buckets=num_buckets, default_value=default_value)) @tf_export('feature_column.sequence_categorical_column_with_hash_bucket') def sequence_categorical_column_with_hash_bucket( key, hash_bucket_size, dtype=dtypes.string): """A sequence of categorical terms where ids are set by hashing. Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN. Example: ```python tokens = sequence_categorical_column_with_hash_bucket( 'tokens', hash_bucket_size=1000) tokens_embedding = embedding_column(tokens, dimension=10) columns = [tokens_embedding] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` Args: key: A unique string identifying the input feature. hash_bucket_size: An int > 1. The number of buckets. dtype: The type of features. Only string and integer types are supported. Returns: A `SequenceCategoricalColumn`. Raises: ValueError: `hash_bucket_size` is not greater than 1. ValueError: `dtype` is neither string nor integer. """ return fc.SequenceCategoricalColumn( fc.categorical_column_with_hash_bucket( key=key, hash_bucket_size=hash_bucket_size, dtype=dtype)) @tf_export('feature_column.sequence_categorical_column_with_vocabulary_file') def sequence_categorical_column_with_vocabulary_file( key, vocabulary_file, vocabulary_size=None, num_oov_buckets=0, default_value=None, dtype=dtypes.string): """A sequence of categorical terms where ids use a vocabulary file. Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN. Example: ```python states = sequence_categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=50, num_oov_buckets=5) states_embedding = embedding_column(states, dimension=10) columns = [states_embedding] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` Args: key: A unique string identifying the input feature. vocabulary_file: The vocabulary file name. vocabulary_size: Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`. num_oov_buckets: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. default_value: The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. dtype: The type of features. Only string and integer types are supported. Returns: A `SequenceCategoricalColumn`. Raises: ValueError: `vocabulary_file` is missing or cannot be opened. ValueError: `vocabulary_size` is missing or < 1. ValueError: `num_oov_buckets` is a negative integer. ValueError: `num_oov_buckets` and `default_value` are both specified. ValueError: `dtype` is neither string nor integer. """ return fc.SequenceCategoricalColumn( fc.categorical_column_with_vocabulary_file( key=key, vocabulary_file=vocabulary_file, vocabulary_size=vocabulary_size, num_oov_buckets=num_oov_buckets, default_value=default_value, dtype=dtype)) @tf_export('feature_column.sequence_categorical_column_with_vocabulary_list') def sequence_categorical_column_with_vocabulary_list( key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0): """A sequence of categorical terms where ids use an in-memory list. Pass this to `embedding_column` or `indicator_column` to convert sequence categorical data into dense representation for input to sequence NN, such as RNN. Example: ```python colors = sequence_categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('R', 'G', 'B', 'Y'), num_oov_buckets=2) colors_embedding = embedding_column(colors, dimension=3) columns = [colors_embedding] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` Args: key: A unique string identifying the input feature. vocabulary_list: An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`. dtype: The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`. default_value: The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. num_oov_buckets: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. Returns: A `SequenceCategoricalColumn`. Raises: ValueError: if `vocabulary_list` is empty, or contains duplicate keys. ValueError: `num_oov_buckets` is a negative integer. ValueError: `num_oov_buckets` and `default_value` are both specified. ValueError: if `dtype` is not integer or string. """ return fc.SequenceCategoricalColumn( fc.categorical_column_with_vocabulary_list( key=key, vocabulary_list=vocabulary_list, dtype=dtype, default_value=default_value, num_oov_buckets=num_oov_buckets)) @tf_export('feature_column.sequence_numeric_column') def sequence_numeric_column( key, shape=(1,), default_value=0., dtype=dtypes.float32, normalizer_fn=None): """Returns a feature column that represents sequences of numeric data. Example: ```python temperature = sequence_numeric_column('temperature') columns = [temperature] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) sequence_feature_layer = SequenceFeatures(columns) sequence_input, sequence_length = sequence_feature_layer(features) sequence_length_mask = tf.sequence_mask(sequence_length) rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` Args: key: A unique string identifying the input features. shape: The shape of the input data per sequence id. E.g. if `shape=(2,)`, each example must contain `2 * sequence_length` values. default_value: A single value compatible with `dtype` that is used for padding the sparse data into a dense `Tensor`. dtype: The type of values. normalizer_fn: If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. Returns: A `SequenceNumericColumn`. Raises: TypeError: if any dimension in shape is not an int. ValueError: if any dimension in shape is not a positive integer. ValueError: if `dtype` is not convertible to `tf.float32`. """ shape = fc._check_shape(shape=shape, key=key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) if normalizer_fn is not None and not callable(normalizer_fn): raise TypeError( 'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn)) return SequenceNumericColumn( key, shape=shape, default_value=default_value, dtype=dtype, normalizer_fn=normalizer_fn) def _assert_all_equal_and_return(tensors, name=None): """Asserts that all tensors are equal and returns the first one.""" with ops.name_scope(name, 'assert_all_equal', values=tensors): if len(tensors) == 1: return tensors[0] assert_equal_ops = [] for t in tensors[1:]: assert_equal_ops.append(check_ops.assert_equal(tensors[0], t)) with ops.control_dependencies(assert_equal_ops): return array_ops.identity(tensors[0]) class SequenceNumericColumn( fc.SequenceDenseColumn, collections.namedtuple( 'SequenceNumericColumn', ('key', 'shape', 'default_value', 'dtype', 'normalizer_fn'))): """Represents sequences of numeric data.""" @property def _is_v2_column(self): return True @property def name(self): """See `FeatureColumn` base class.""" return self.key @property def parse_example_spec(self): """See `FeatureColumn` base class.""" return {self.key: parsing_ops.VarLenFeature(self.dtype)} def transform_feature(self, transformation_cache, state_manager): """See `FeatureColumn` base class. In this case, we apply the `normalizer_fn` to the input tensor. Args: transformation_cache: A `FeatureTransformationCache` object to access features. state_manager: A `StateManager` to create / access resources such as lookup tables. Returns: Normalized input tensor. """ input_tensor = transformation_cache.get(self.key, state_manager) if self.normalizer_fn is not None: input_tensor = self.normalizer_fn(input_tensor) return input_tensor @property def variable_shape(self): """Returns a `TensorShape` representing the shape of sequence input.""" return tensor_shape.TensorShape(self.shape) def get_sequence_dense_tensor(self, transformation_cache, state_manager): """Returns a `TensorSequenceLengthPair`. Args: transformation_cache: A `FeatureTransformationCache` object to access features. state_manager: A `StateManager` to create / access resources such as lookup tables. """ sp_tensor = transformation_cache.get(self, state_manager) dense_tensor = sparse_ops.sparse_tensor_to_dense( sp_tensor, default_value=self.default_value) # Reshape into [batch_size, T, variable_shape]. dense_shape = array_ops.concat( [array_ops.shape(dense_tensor)[:1], [-1], self.variable_shape], axis=0) dense_tensor = array_ops.reshape(dense_tensor, shape=dense_shape) # Get the number of timesteps per example # For the 2D case, the raw values are grouped according to num_elements; # for the 3D case, the grouping happens in the third dimension, and # sequence length is not affected. if sp_tensor.shape.ndims == 2: num_elements = self.variable_shape.num_elements() else: num_elements = 1 seq_length = fc_utils.sequence_length_from_sparse_tensor( sp_tensor, num_elements=num_elements) return fc.SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=dense_tensor, sequence_length=seq_length) @property def parents(self): """See 'FeatureColumn` base class.""" return [self.key] def _get_config(self): """See 'FeatureColumn` base class.""" config = dict(zip(self._fields, self)) config['normalizer_fn'] = utils.serialize_keras_object(self.normalizer_fn) config['dtype'] = self.dtype.name return config @classmethod def _from_config(cls, config, custom_objects=None, columns_by_name=None): """See 'FeatureColumn` base class.""" fc._check_config_keys(config, cls._fields) kwargs = config.copy() kwargs['normalizer_fn'] = utils.deserialize_keras_object( config['normalizer_fn'], custom_objects=custom_objects) kwargs['dtype'] = dtypes.as_dtype(config['dtype']) return cls(**kwargs) # pylint: enable=protected-access
ghchinoy/tensorflow
tensorflow/python/feature_column/sequence_feature_column.py
Python
apache-2.0
22,673
from __future__ import unicode_literals import logging import struct import boto3 import gzip import io import msgpack import numpy as np logger = logging.getLogger(__name__) def get_inputs_from_s3(): s3 = boto3.resource('s3', region_name='eu-west-1') bucket = s3.Bucket('chessbot') logger.info("Fetching input object summary items from S3") object_summary_items = list(bucket.objects.filter(Prefix='input')) logger.info('Inputs found: %d', len(object_summary_items)) for index, object_summary in enumerate(object_summary_items): logger.info("Processing item %d: %s", index + 1, object_summary.key) object = object_summary.get() with io.BytesIO(object['Body'].read()) as bytestream: with gzip.GzipFile(fileobj=bytestream, mode='rb') as f: unpacker = msgpack.Unpacker(f) inputs = [struct.unpack("<769B", input) for input in unpacker] yield np.array(inputs, dtype=np.int32)
srom/chessbot
classifier/train/load.py
Python
mit
990
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-11-28 15:54 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('movies', '0004_auto_20161128_1544'), ] operations = [ migrations.AddField( model_name='movie', name='titlehash', field=models.CharField(default=0, max_length=200), preserve_default=False, ), ]
pdevetto/super-duper-disco
movies/migrations/0005_movie_titlehash.py
Python
gpl-3.0
496
# Copyright (c) David Wilson 2015 # Icarus is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # Icarus is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Icarus. If not, see <http://www.gnu.org/licenses/>. import unittest from Platform import Platform class TestPlatform(unittest.TestCase): def test_from_dict(self): Platform.from_dict({"":""}) def test_from_dict_returns_platform(self): result = Platform.from_dict({"":""}) self.assertIsInstance(result, Platform) def test_from_dict_performs_mappings(self): d = {"name": "name", "description": "description"} result = Platform.from_dict(d) self.assertEqual(d["name"], result.name) self.assertEqual(d["description"], result.description) def test_from_mongo_result_performs_mapping(self): """Initialise the mapper :param mongo_result: A MongoDB result. The following fields can currently be mapped: * _id * _Platform__name * _Platform__description """ d = {"_id": "id", "_Platform__name": "name", "_Platform__description": "description"} p = Platform.from_mongo_result(d) self.assertEqual(d["_id"], p.id) self.assertEqual(d["_Platform__name"], p.name) self.assertEqual(d["_Platform__description"], p.description)
jeroanan/GameCollection
Tests/TestPlatform.py
Python
gpl-3.0
1,844
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** AUTO GENERATED CODE *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_compute_instance_template_facts description: - Gather facts for GCP InstanceTemplate short_description: Gather facts for GCP InstanceTemplate version_added: 2.7 author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: filters: description: - A list of filter value pairs. Available filters are listed here U(https://cloud.google.com/sdk/gcloud/reference/topic/filters.) - Each additional filter in the list will act be added as an AND condition (filter1 and filter2) . extends_documentation_fragment: gcp ''' EXAMPLES = ''' - name: " a instance template facts" gcp_compute_instance_template_facts: filters: - name = test_object project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" state: facts ''' RETURN = ''' items: description: List of items returned: always type: complex contains: creationTimestamp: description: - Creation timestamp in RFC3339 text format. returned: success type: str description: description: - An optional description of this resource. Provide this property when you create the resource. returned: success type: str id: description: - The unique identifier for the resource. This identifier is defined by the server. returned: success type: int name: description: - Name of the resource. The name is 1-63 characters long and complies with RFC1035. returned: success type: str properties: description: - The instance properties for this instance template. returned: success type: complex contains: canIpForward: description: - Enables instances created based on this template to send packets with source IP addresses other than their own and receive packets with destination IP addresses other than their own. If these instances will be used as an IP gateway or it will be set as the next-hop in a Route resource, specify true. If unsure, leave this set to false. returned: success type: bool description: description: - An optional text description for the instances that are created from this instance template. returned: success type: str disks: description: - An array of disks that are associated with the instances that are created from this template. returned: success type: complex contains: autoDelete: description: - Specifies whether the disk will be auto-deleted when the instance is deleted (but not when the disk is detached from the instance). - 'Tip: Disks should be set to autoDelete=true so that leftover disks are not left behind on machine deletion.' returned: success type: bool boot: description: - Indicates that this is a boot disk. The virtual machine will use the first partition of the disk for its root filesystem. returned: success type: bool deviceName: description: - Specifies a unique device name of your choice that is reflected into the /dev/disk/by-id/google-* tree of a Linux operating system running within the instance. This name can be used to reference the device for mounting, resizing, and so on, from within the instance. returned: success type: str diskEncryptionKey: description: - Encrypts or decrypts a disk using a customer-supplied encryption key. returned: success type: complex contains: rawKey: description: - Specifies a 256-bit customer-supplied encryption key, encoded in RFC 4648 base64 to either encrypt or decrypt this resource. returned: success type: str rsaEncryptedKey: description: - Specifies an RFC 4648 base64 encoded, RSA-wrapped 2048-bit customer-supplied encryption key to either encrypt or decrypt this resource. returned: success type: str sha256: description: - The RFC 4648 base64 encoded SHA-256 hash of the customer-supplied encryption key that protects this resource. returned: success type: str index: description: - Assigns a zero-based index to this disk, where 0 is reserved for the boot disk. For example, if you have many disks attached to an instance, each disk would have a unique index number. If not specified, the server will choose an appropriate value. returned: success type: int initializeParams: description: - Specifies the parameters for a new disk that will be created alongside the new instance. Use initialization parameters to create boot disks or local SSDs attached to the new instance. returned: success type: complex contains: diskName: description: - Specifies the disk name. If not specified, the default is to use the name of the instance. returned: success type: str diskSizeGb: description: - Specifies the size of the disk in base-2 GB. returned: success type: int diskType: description: - Reference to a disk type. - Specifies the disk type to use to create the instance. - If not specified, the default is pd-standard. returned: success type: str sourceImage: description: - The source image to create this disk. When creating a new instance, one of initializeParams.sourceImage or disks.source is required. To create a disk with one of the public operating system images, specify the image by its family name. returned: success type: str sourceImageEncryptionKey: description: - The customer-supplied encryption key of the source image. Required if the source image is protected by a customer-supplied encryption key. - Instance templates do not store customer-supplied encryption keys, so you cannot create disks for instances in a managed instance group if the source images are encrypted with your own keys. returned: success type: complex contains: rawKey: description: - Specifies a 256-bit customer-supplied encryption key, encoded in RFC 4648 base64 to either encrypt or decrypt this resource. returned: success type: str sha256: description: - The RFC 4648 base64 encoded SHA-256 hash of the customer-supplied encryption key that protects this resource. returned: success type: str interface: description: - Specifies the disk interface to use for attaching this disk, which is either SCSI or NVME. The default is SCSI. - Persistent disks must always use SCSI and the request will fail if you attempt to attach a persistent disk in any other format than SCSI. returned: success type: str mode: description: - The mode in which to attach this disk, either READ_WRITE or READ_ONLY. If not specified, the default is to attach the disk in READ_WRITE mode. returned: success type: str source: description: - Reference to a disk. When creating a new instance, one of initializeParams.sourceImage or disks.source is required. - If desired, you can also attach existing non-root persistent disks using this property. This field is only applicable for persistent disks. - Note that for InstanceTemplate, specify the disk name, not the URL for the disk. returned: success type: dict type: description: - Specifies the type of the disk, either SCRATCH or PERSISTENT. If not specified, the default is PERSISTENT. returned: success type: str machineType: description: - The machine type to use in the VM instance template. returned: success type: str minCpuPlatform: description: - Specifies a minimum CPU platform for the VM instance. Applicable values are the friendly names of CPU platforms . returned: success type: str metadata: description: - The metadata key/value pairs to assign to instances that are created from this template. These pairs can consist of custom metadata or predefined keys. returned: success type: dict guestAccelerators: description: - List of the type and count of accelerator cards attached to the instance . returned: success type: complex contains: acceleratorCount: description: - The number of the guest accelerator cards exposed to this instance. returned: success type: int acceleratorType: description: - Full or partial URL of the accelerator type resource to expose to this instance. returned: success type: str networkInterfaces: description: - An array of configurations for this interface. This specifies how this interface is configured to interact with other network services, such as connecting to the internet. Only one network interface is supported per instance. returned: success type: complex contains: accessConfigs: description: - An array of configurations for this interface. Currently, only one access config, ONE_TO_ONE_NAT, is supported. If there are no accessConfigs specified, then this instance will have no external internet access. returned: success type: complex contains: name: description: - The name of this access configuration. The default and recommended name is External NAT but you can use any arbitrary string you would like. For example, My external IP or Network Access. returned: success type: str natIP: description: - Reference to an address. - An external IP address associated with this instance. - Specify an unused static external IP address available to the project or leave this field undefined to use an IP from a shared ephemeral IP address pool. If you specify a static external IP address, it must live in the same region as the zone of the instance. returned: success type: dict type: description: - The type of configuration. The default and only option is ONE_TO_ONE_NAT. returned: success type: str aliasIpRanges: description: - An array of alias IP ranges for this network interface. Can only be specified for network interfaces on subnet-mode networks. returned: success type: complex contains: ipCidrRange: description: - The IP CIDR range represented by this alias IP range. - This IP CIDR range must belong to the specified subnetwork and cannot contain IP addresses reserved by system or used by other network interfaces. This range may be a single IP address (e.g. 10.2.3.4), a netmask (e.g. /24) or a CIDR format string (e.g. 10.1.2.0/24). returned: success type: str subnetworkRangeName: description: - Optional subnetwork secondary range name specifying the secondary range from which to allocate the IP CIDR range for this alias IP range. If left unspecified, the primary range of the subnetwork will be used. returned: success type: str name: description: - The name of the network interface, generated by the server. For network devices, these are eth0, eth1, etc . returned: success type: str network: description: - Specifies the title of an existing network. When creating an instance, if neither the network nor the subnetwork is specified, the default network global/networks/default is used; if the network is not specified but the subnetwork is specified, the network is inferred. returned: success type: dict networkIP: description: - An IPv4 internal network address to assign to the instance for this network interface. If not specified by the user, an unused internal IP is assigned by the system. returned: success type: str subnetwork: description: - Reference to a VPC network. - If the network resource is in legacy mode, do not provide this property. If the network is in auto subnet mode, providing the subnetwork is optional. If the network is in custom subnet mode, then this field should be specified. returned: success type: dict scheduling: description: - Sets the scheduling options for this instance. returned: success type: complex contains: automaticRestart: description: - Specifies whether the instance should be automatically restarted if it is terminated by Compute Engine (not terminated by a user). - You can only set the automatic restart option for standard instances. Preemptible instances cannot be automatically restarted. returned: success type: bool onHostMaintenance: description: - Defines the maintenance behavior for this instance. For standard instances, the default behavior is MIGRATE. For preemptible instances, the default and only possible behavior is TERMINATE. - For more information, see Setting Instance Scheduling Options. returned: success type: str preemptible: description: - Defines whether the instance is preemptible. This can only be set during instance creation, it cannot be set or changed after the instance has been created. returned: success type: bool serviceAccounts: description: - A list of service accounts, with their specified scopes, authorized for this instance. Only one service account per VM instance is supported. returned: success type: complex contains: email: description: - Email address of the service account. returned: success type: str scopes: description: - The list of scopes to be made available for this service account. returned: success type: list tags: description: - A list of tags to apply to this instance. Tags are used to identify valid sources or targets for network firewalls and are specified by the client during instance creation. The tags can be later modified by the setTags method. Each tag within the list must comply with RFC1035. returned: success type: complex contains: fingerprint: description: - Specifies a fingerprint for this request, which is essentially a hash of the metadata's contents and used for optimistic locking. - The fingerprint is initially generated by Compute Engine and changes after every request to modify or update metadata. You must always provide an up-to-date fingerprint hash in order to update or change metadata. returned: success type: str items: description: - An array of tags. Each tag must be 1-63 characters long, and comply with RFC1035. returned: success type: list ''' ################################################################################ # Imports ################################################################################ from ansible.module_utils.gcp_utils import navigate_hash, GcpSession, GcpModule, GcpRequest import json ################################################################################ # Main ################################################################################ def main(): module = GcpModule(argument_spec=dict(filters=dict(type='list', elements='str'))) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/compute'] items = fetch_list(module, collection(module), query_options(module.params['filters'])) if items.get('items'): items = items.get('items') else: items = [] return_value = {'items': items} module.exit_json(**return_value) def collection(module): return "https://www.googleapis.com/compute/v1/projects/{project}/global/instanceTemplates".format(**module.params) def fetch_list(module, link, query): auth = GcpSession(module, 'compute') response = auth.get(link, params={'filter': query}) return return_if_object(module, response) def query_options(filters): if not filters: return '' if len(filters) == 1: return filters[0] else: queries = [] for f in filters: # For multiple queries, all queries should have () if f[0] != '(' and f[-1] != ')': queries.append("(%s)" % ''.join(f)) else: queries.append(f) return ' '.join(queries) def return_if_object(module, response): # If not found, return nothing. if response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError) as inst: module.fail_json(msg="Invalid JSON response with error: %s" % inst) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result if __name__ == "__main__": main()
tersmitten/ansible
lib/ansible/modules/cloud/google/gcp_compute_instance_template_facts.py
Python
gpl-3.0
22,189
import sys def get_most_popular_destination(n): destinations = {} for i in range(n): destination = input() if destination in destinations: destinations[destination] += 1 else: destinations[destination] = 1 return max(destinations, key=destinations.get) n = int(input()) print(get_most_popular_destination(n))
MightyPixel/algorithms
Interviews/Company_1/problem_01.py
Python
gpl-2.0
373
from expyriment import stimuli from expyriment.misc import constants from config import templatePicture, cardColor, picturesFolder class LdCard(object): def __init__(self, size, color=cardColor): self._size = size self._stimuli = (stimuli.Picture(templatePicture, position=None), stimuli.Rectangle(size, colour=color, line_width=None, position=None)) @property def stimuli(self): return self._stimuli @property def size(self): return self._size @property def position(self): return self._position @property def color(self): return self._stimuli[1].colour @position.setter def position(self, value): self._position = value self._stimuli[0].replace(value) self._stimuli[1].replace(value) @color.setter def color(self, value): self._stimuli = ( self.stimuli[0], stimuli.Rectangle(self.size, colour=value, line_width=None, position=self.position)) def setPicture(self, value, scale=True): self._stimuli = (stimuli.Picture(value, position=self.position), stimuli.Rectangle(self.size, colour=constants.C_WHITE, line_width=None, position=self.position)) if scale: self._stimuli[0].scale(self.size[0]/float(300))
arnaudbore/declarativeTask
src/ld_card.py
Python
mit
1,380
from django.urls import reverse_lazy from django.views.generic import ListView from django.views.generic.edit import UpdateView from .models import Toy class ToyEditView(UpdateView): model = Toy fields = '__all__' template_name_suffix = '_edit' success_url = reverse_lazy('toy:list') class ToyListView(ListView): def get_queryset(self): return Toy.objects.all()
toystori/v2
app/toy/views.py
Python
mit
396
############################################################################# ## ## Copyright (c) 2014 Riverbank Computing Limited <[email protected]> ## ## This file is part of PyQt5. ## ## This file may be used under the terms of the GNU General Public License ## version 3.0 as published by the Free Software Foundation and appearing in ## the file LICENSE included in the packaging of this file. Please review the ## following information to ensure the GNU General Public License version 3.0 ## requirements will be met: http://www.gnu.org/copyleft/gpl.html. ## ## If you do not wish to use this file under the terms of the GPL version 3.0 ## then you may purchase a commercial license. For more information contact ## [email protected]. ## ## This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ## WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ## ############################################################################# import re def as_string(obj): if isinstance(obj, basestring): return '"' + _escape(obj.encode('UTF-8')) + '"' return str(obj) _esc_regex = re.compile(r"(\"|\'|\\)") def _escape(text): # This escapes any escaped single or double quote or backslash. x = _esc_regex.sub(r"\\\1", text) # This replaces any '\n' with an escaped version and a real line break. return re.sub(r'\n', r'\\n"\n"', x)
dragondjf/PyQt5
python2.7/PyQt5/uic/port_v2/as_string.py
Python
gpl-2.0
1,435
import _plotly_utils.basevalidators class LatValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="lat", parent_name="layout.geo.center", **kwargs): super(LatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "info"), **kwargs )
plotly/python-api
packages/python/plotly/plotly/validators/layout/geo/center/_lat.py
Python
mit
439
from django.contrib import admin from django import forms from django.utils.translation import ugettext_lazy as _ from ovp_core.models import Cause class CauseInline(admin.TabularInline): model = Cause class CauseAdmin(admin.ModelAdmin): fields = ['id', 'name', 'image'] list_display = ['id', 'name'] list_filter = [] list_editable = ['name'] search_fields = ['id', 'name'] readonly_fields = ['id'] raw_id_fields = [] admin.site.register(Cause, CauseAdmin)
OpenVolunteeringPlatform/django-ovp-core
ovp_core/admin/cause.py
Python
agpl-3.0
480
"""Problem 78 10 September 2004 Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can separated into piles in exactly seven different ways, so p(5)=7. OOOOO OOOO O OOO OO OOO O O OO OO O OO O O O O O O O O Find the least value of n for which p(n) is divisible by one million. """ # I successfully found a way to calculate partitions in problem 76, but the # function is too slow for this case. # Then I tried to implement the generating function based on this: # http://en.wikipedia.org/wiki/Partition_%28number_theory%29#Generating_function # ...with no success. # Then I "cheated", and got the function p() below at: # http://stackoverflow.com/questions/3164305/optimizing-a-partition-function from eulerlib import pentagonalNum def generalizedPentagonalNum(n): if n%2: i = (n + 1)/2 else: i = -n/2 return pentagonalNum(i) partitions = [1] def p(n): try: return partitions[int(n)] except IndexError: total = 0 sign = 1 i = 1 k = generalizedPentagonalNum(i) while n - k >= 0: total += sign * p(n - k) i += 1 if i%2: sign *= -1 k = generalizedPentagonalNum(i) partitions.insert(n, total) return total n = 1 while True: x = p(n) if x % 10000 == 0: print(n, x, sep="\t") if x % 1000000 == 0: break n += 1 #10 9 #100 74 #1000 449 #10000 599 #100000 11224 #1000000 55374
feliposz/project-euler-solutions
python/euler78.py
Python
mit
1,566
# -*- coding: utf-8 -*- from __future__ import unicode_literals from io import BytesIO import os import gzip import tempfile import unittest import zlib from django.core.exceptions import ImproperlyConfigured from django.core.files import File from django.core.files.move import file_move_safe from django.core.files.base import ContentFile from django.core.files.uploadedfile import SimpleUploadedFile, UploadedFile from django.core.files.temp import NamedTemporaryFile from django.utils._os import upath from django.utils import six try: from django.utils.image import Image from django.core.files import images except ImproperlyConfigured: Image = None class FileTests(unittest.TestCase): def test_unicode_uploadedfile_name(self): uf = UploadedFile(name='¿Cómo?', content_type='text') self.assertIs(type(repr(uf)), str) def test_unicode_file_name(self): f = File(None, 'djángö') self.assertIs(type(repr(f)), str) def test_context_manager(self): orig_file = tempfile.TemporaryFile() base_file = File(orig_file) with base_file as f: self.assertIs(base_file, f) self.assertFalse(f.closed) self.assertTrue(f.closed) self.assertTrue(orig_file.closed) def test_namedtemporaryfile_closes(self): """ The symbol django.core.files.NamedTemporaryFile is assigned as a different class on different operating systems. In any case, the result should minimally mock some of the API of tempfile.NamedTemporaryFile from the Python standard library. """ tempfile = NamedTemporaryFile() self.assertTrue(hasattr(tempfile, "closed")) self.assertFalse(tempfile.closed) tempfile.close() self.assertTrue(tempfile.closed) def test_file_mode(self): # Should not set mode to None if it is not present. # See #14681, stdlib gzip module crashes if mode is set to None file = SimpleUploadedFile("mode_test.txt", b"content") self.assertFalse(hasattr(file, 'mode')) gzip.GzipFile(fileobj=file) def test_file_iteration(self): """ File objects should yield lines when iterated over. Refs #22107. """ file = File(BytesIO(b'one\ntwo\nthree')) self.assertEqual(list(file), [b'one\n', b'two\n', b'three']) class NoNameFileTestCase(unittest.TestCase): """ Other examples of unnamed files may be tempfile.SpooledTemporaryFile or urllib.urlopen() """ def test_noname_file_default_name(self): self.assertEqual(File(BytesIO(b'A file with no name')).name, None) def test_noname_file_get_size(self): self.assertEqual(File(BytesIO(b'A file with no name')).size, 19) class ContentFileTestCase(unittest.TestCase): def test_content_file_default_name(self): self.assertEqual(ContentFile(b"content").name, None) def test_content_file_custom_name(self): """ Test that the constructor of ContentFile accepts 'name' (#16590). """ name = "I can have a name too!" self.assertEqual(ContentFile(b"content", name=name).name, name) def test_content_file_input_type(self): """ Test that ContentFile can accept both bytes and unicode and that the retrieved content is of the same type. """ self.assertIsInstance(ContentFile(b"content").read(), bytes) if six.PY3: self.assertIsInstance(ContentFile("español").read(), six.text_type) else: self.assertIsInstance(ContentFile("español").read(), bytes) class DimensionClosingBug(unittest.TestCase): """ Test that get_image_dimensions() properly closes files (#8817) """ @unittest.skipUnless(Image, "Pillow/PIL not installed") def test_not_closing_of_files(self): """ Open files passed into get_image_dimensions() should stay opened. """ empty_io = BytesIO() try: images.get_image_dimensions(empty_io) finally: self.assertTrue(not empty_io.closed) @unittest.skipUnless(Image, "Pillow/PIL not installed") def test_closing_of_filenames(self): """ get_image_dimensions() called with a filename should closed the file. """ # We need to inject a modified open() builtin into the images module # that checks if the file was closed properly if the function is # called with a filename instead of an file object. # get_image_dimensions will call our catching_open instead of the # regular builtin one. class FileWrapper(object): _closed = [] def __init__(self, f): self.f = f def __getattr__(self, name): return getattr(self.f, name) def close(self): self._closed.append(True) self.f.close() def catching_open(*args): return FileWrapper(open(*args)) images.open = catching_open try: images.get_image_dimensions(os.path.join(os.path.dirname(upath(__file__)), "test1.png")) finally: del images.open self.assertTrue(FileWrapper._closed) class InconsistentGetImageDimensionsBug(unittest.TestCase): """ Test that get_image_dimensions() works properly after various calls using a file handler (#11158) """ @unittest.skipUnless(Image, "Pillow/PIL not installed") def test_multiple_calls(self): """ Multiple calls of get_image_dimensions() should return the same size. """ img_path = os.path.join(os.path.dirname(upath(__file__)), "test.png") with open(img_path, 'rb') as fh: image = images.ImageFile(fh) image_pil = Image.open(fh) size_1 = images.get_image_dimensions(image) size_2 = images.get_image_dimensions(image) self.assertEqual(image_pil.size, size_1) self.assertEqual(size_1, size_2) @unittest.skipUnless(Image, "Pillow/PIL not installed") def test_bug_19457(self): """ Regression test for #19457 get_image_dimensions fails on some pngs, while Image.size is working good on them """ img_path = os.path.join(os.path.dirname(upath(__file__)), "magic.png") try: size = images.get_image_dimensions(img_path) except zlib.error: self.fail("Exception raised from get_image_dimensions().") with open(img_path, 'rb') as fh: self.assertEqual(size, Image.open(fh).size) class FileMoveSafeTests(unittest.TestCase): def test_file_move_overwrite(self): handle_a, self.file_a = tempfile.mkstemp(dir=os.environ['DJANGO_TEST_TEMP_DIR']) handle_b, self.file_b = tempfile.mkstemp(dir=os.environ['DJANGO_TEST_TEMP_DIR']) # file_move_safe should raise an IOError exception if destination file exists and allow_overwrite is False self.assertRaises(IOError, lambda: file_move_safe(self.file_a, self.file_b, allow_overwrite=False)) # should allow it and continue on if allow_overwrite is True self.assertIsNone(file_move_safe(self.file_a, self.file_b, allow_overwrite=True)) os.close(handle_a) os.close(handle_b)
wfxiang08/django178
tests/files/tests.py
Python
bsd-3-clause
7,360
#!/usr/bin/env python # -*- coding: utf-8 -*- """ cookiecutter.prompt --------------------- Functions for prompting the user for project info. """ from __future__ import unicode_literals import sys from .compat import iteritems, read_response, is_string from jinja2.environment import Environment def prompt_for_config(context, no_input=False): """ Prompts the user to enter new config, using context as a source for the field names and sample values. :param no_input: Prompt the user at command line for manual configuration? """ cookiecutter_dict = {} env = Environment() for key, raw in iteritems(context['cookiecutter']): if key.startswith('_'): cookiecutter_dict[key] = raw continue raw = raw if is_string(raw) else str(raw) val = env.from_string(raw).render(cookiecutter=cookiecutter_dict) if not no_input: prompt = '{0} (default is "{1}")? '.format(key, val) new_val = read_response(prompt).strip() if new_val != '': val = new_val cookiecutter_dict[key] = val return cookiecutter_dict def query_yes_no(question, default='yes'): """ Ask a yes/no question via `read_response()` and return their answer. :param question: A string that is presented to the user. :param default: The presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is one of "yes" or "no". Adapted from http://stackoverflow.com/questions/3041986/python-command-line-yes-no-input http://code.activestate.com/recipes/577058/ """ valid = {'yes': True, 'y': True, 'ye': True, 'no': False, 'n': False} if default is None: prompt = ' [y/n] ' elif default == 'yes': prompt = ' [Y/n] ' elif default == 'no': prompt = ' [y/N] ' else: raise ValueError('Invalid default answer: "{0}"'.format(default)) while True: sys.stdout.write(question + prompt) choice = read_response().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write('Please respond with "yes" or "no" ' '(or "y" or "n").\n')
vincentbernat/cookiecutter
cookiecutter/prompt.py
Python
bsd-3-clause
2,429
import ssl import imp import os import tornado.web import tornado.httpserver import tornado.autoreload import tornado.process from DIRAC import S_OK, S_ERROR, gLogger, gConfig from WebAppDIRAC.Core.HandlerMgr import HandlerMgr from WebAppDIRAC.Core.TemplateLoader import TemplateLoader from WebAppDIRAC.Lib.SessionData import SessionData from WebAppDIRAC.Lib import Conf from DIRAC.Core.Utilities.CFG import CFG from DIRAC.ConfigurationSystem.Client.ConfigurationData import gConfigurationData from DIRAC.ConfigurationSystem.Client.Helpers import CSGlobals import DIRAC class App( object ): def __init__( self ): self.__handlerMgr = HandlerMgr( Conf.rootURL() ) self.__servers = {} self.log = gLogger.getSubLogger( "Web" ) def _logRequest( self, handler ): status = handler.get_status() if status < 400: logm = self.log.notice elif status < 500: logm = self.log.warn else: logm = self.log.error request_time = 1000.0 * handler.request.request_time() logm( "%d %s %.2fms" % ( status, handler._request_summary(), request_time ) ) def __reloadAppCB( self ): gLogger.notice( "\n !!!!!! Reloading web app...\n" ) def _loadWebAppCFGFiles( self ): """ Load WebApp/web.cfg definitions """ exts = [] for ext in CSGlobals.getCSExtensions(): if ext == "DIRAC": continue if ext[-5:] != "DIRAC": ext = "%sDIRAC" % ext if ext != "WebAppDIRAC": exts.append( ext ) exts.append( "DIRAC" ) exts.append( "WebAppDIRAC" ) webCFG = CFG() for modName in reversed( exts ): try: modPath = imp.find_module( modName )[1] except ImportError: continue gLogger.verbose( "Found module %s at %s" % ( modName, modPath ) ) cfgPath = os.path.join( modPath, "WebApp", "web.cfg" ) if not os.path.isfile( cfgPath ): gLogger.verbose( "Inexistant %s" % cfgPath ) continue try: modCFG = CFG().loadFromFile( cfgPath ) except Exception, excp: gLogger.error( "Could not load %s: %s" % ( cfgPath, excp ) ) continue gLogger.verbose( "Loaded %s" % cfgPath ) expl = [ Conf.BASECS ] while len( expl ): current = expl.pop( 0 ) if not modCFG.isSection( current ): continue if modCFG.getOption( "%s/AbsoluteDefinition" % current, False ): gLogger.verbose( "%s:%s is an absolute definition" % ( modName, current ) ) try: webCFG.deleteKey( current ) except: pass modCFG.deleteKey( "%s/AbsoluteDefinition" % current ) else: for sec in modCFG[ current ].listSections(): expl.append( "%s/%s" % ( current, sec ) ) # Add the modCFG webCFG = webCFG.mergeWith( modCFG ) gConfig.loadCFG( webCFG ) def _loadDefaultWebCFG( self ): """ This method reloads the web.cfg file from etc/web.cfg """ modCFG = None cfgPath = os.path.join( DIRAC.rootPath, 'etc', 'web.cfg' ) isLoaded = True if not os.path.isfile( cfgPath ): isLoaded = False else: try: modCFG = CFG().loadFromFile( cfgPath ) except Exception, excp: isLoaded = False gLogger.error( "Could not load %s: %s" % ( cfgPath, excp ) ) if modCFG: if modCFG.isSection( "/Website" ): gLogger.warn( "%s configuration file is not correct. It is used by the old portal!" % ( cfgPath ) ) isLoaded = False else: gConfig.loadCFG( modCFG ) else: isLoaded = False return isLoaded def bootstrap( self ): """ Configure and create web app """ self.log.always( "\n ====== Starting DIRAC web app ====== \n" ) # Load required CFG files if not self._loadDefaultWebCFG(): # if we have a web.cfg under etc directory we use it, otherwise we use the configuration file defined by the developer self._loadWebAppCFGFiles() # Calculating routes result = self.__handlerMgr.getRoutes() if not result[ 'OK' ]: return result routes = result[ 'Value' ] # Initialize the session data SessionData.setHandlers( self.__handlerMgr.getHandlers()[ 'Value' ] ) # Create the app tLoader = TemplateLoader( self.__handlerMgr.getPaths( "template" ) ) kw = dict( debug = Conf.devMode(), template_loader = tLoader, cookie_secret = Conf.cookieSecret(), log_function = self._logRequest ) # Check processes if we're under a load balancert if Conf.balancer() and Conf.numProcesses() not in ( 0, 1 ): tornado.process.fork_processes( Conf.numProcesses(), max_restarts = 0 ) kw[ 'debug' ] = False # Debug mode? if kw[ 'debug' ]: self.log.info( "Configuring in developer mode..." ) # Configure tornado app self.__app = tornado.web.Application( routes, **kw ) self.log.notice( "Configuring HTTP on port %s" % ( Conf.HTTPPort() ) ) # Create the web servers srv = tornado.httpserver.HTTPServer( self.__app ) port = Conf.HTTPPort() srv.listen( port ) self.__servers[ ( 'http', port ) ] = srv Conf.generateRevokedCertsFile() # it is used by nginx.... if Conf.HTTPS(): self.log.notice( "Configuring HTTPS on port %s" % Conf.HTTPSPort() ) sslops = dict( certfile = Conf.HTTPSCert(), keyfile = Conf.HTTPSKey(), cert_reqs = ssl.CERT_OPTIONAL, ca_certs = Conf.generateCAFile() ) sslprotocol = str( Conf.SSLProrocol() ) aviableProtocols = [ i for i in dir( ssl ) if i.find( 'PROTOCOL' ) == 0] if sslprotocol and sslprotocol != "": if ( sslprotocol in aviableProtocols ): sslops['ssl_version'] = getattr( ssl, sslprotocol ) else: message = "%s protocol is not provided. The following protocols are provided: %s" % ( sslprotocol, str( aviableProtocols ) ) gLogger.warn( message ) self.log.debug( " - %s" % "\n - ".join( [ "%s = %s" % ( k, sslops[k] ) for k in sslops ] ) ) srv = tornado.httpserver.HTTPServer( self.__app, ssl_options = sslops ) port = Conf.HTTPSPort() srv.listen( port ) self.__servers[ ( 'https', port ) ] = srv else: Conf.generateCAFile() # if we use Nginx we have to generate the cas as well... return result def run( self ): """ Start web servers """ bu = Conf.rootURL().strip( "/" ) urls = [] for proto, port in self.__servers: urls.append( "%s://0.0.0.0:%s/%s/" % ( proto, port, bu ) ) self.log.always( "Listening on %s" % " and ".join( urls ) ) tornado.autoreload.add_reload_hook( self.__reloadAppCB ) tornado.ioloop.IOLoop.instance().start()
atsareg/WebAppDIRAC
Core/App.py
Python
gpl-3.0
6,772
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python import pywrap_tensorflow from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import tape from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import custom_gradient from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_grad # pylint: disable=unused-import from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.training import training class BackpropTest(test.TestCase): @test_util.run_in_graph_and_eager_modes() def testAggregateGradients(self): def fn(x): ind1 = constant_op.constant(np.array([0, 1])) ind2 = constant_op.constant(np.array([2, 3])) ind3 = constant_op.constant(np.array([1, 3])) # A mixture of IndexedSlices and dense tensor to aggregate. g1 = embedding_ops.embedding_lookup(x, ind1) g2 = embedding_ops.embedding_lookup(x, ind2) g3 = embedding_ops.embedding_lookup(x, ind3) g4 = math_ops.reduce_sum(x * constant_op.constant(2.0)) return g1 * g2 * g3 * g4 var_np = np.random.rand(4, 2).astype(np.float32) var = constant_op.constant(var_np) grad = backprop.gradients_function(fn, [0])(var)[0] grad = self.evaluate(ops.convert_to_tensor(grad)) with context.graph_mode(), self.test_session(): tf_var = array_ops.constant(var_np, dtypes.float32) tf_ind1 = array_ops.constant([0, 1]) tf_ind2 = array_ops.constant([2, 3]) tf_ind3 = array_ops.constant([1, 3]) tf_g1 = embedding_ops.embedding_lookup(tf_var, tf_ind1) tf_g2 = embedding_ops.embedding_lookup(tf_var, tf_ind2) tf_g3 = embedding_ops.embedding_lookup(tf_var, tf_ind3) tf_g4 = math_ops.reduce_sum(tf_var * 2.0, reduction_indices=(0, 1)) tf_y = tf_g1 * tf_g2 * tf_g3 * tf_g4 tf_grad = gradients.gradients(tf_y, [tf_var])[0] tf_dense_grad = math_ops.unsorted_segment_sum( tf_grad.values, tf_grad.indices, tf_grad.dense_shape[0]) self.assertAllClose(grad, tf_dense_grad.eval()) def testImplicitGradWithResourceVariable(self): x = resource_variable_ops.ResourceVariable( initial_value=constant_op.constant(1.0), name='x') def fn(): tape.watch_variable(x) b = constant_op.constant(2.0) c = math_ops.add(x.value(), b) return math_ops.add(c, constant_op.constant(3.0)) grads_and_vars = backprop.implicit_grad(fn)() self.assertAllEqual(grads_and_vars[0][0], 1.0) self.assertAllEqual(id(grads_and_vars[0][1]), id(x)) def testDy(self): def f(x): return x grad_fn = backprop.gradients_function(f) self.assertAllEqual(2., grad_fn(1., dy=2.)[0]) def testErrors(self): @custom_gradient.custom_gradient def f(x): def grad(_): raise RuntimeError('x') return x, grad # TODO(apassos) raise the right error here with self.assertRaises(RuntimeError): backprop.gradients_function(f)(constant_op.constant(1.0)) def testGradientsFunctionInCustomGradient(self): @custom_gradient.custom_gradient def f(x): (y,) = backprop.gradients_function(lambda x: x * x)(x) def grad(dy): return [2 * dy] return y, grad self.assertAllEqual(f(1.0), 2.0) def testImplicitGradOverEmbeddingLookup(self): batch_size = 8 embedding_size = 512 vocab_size = 1000 lrn_rate = 0.1 random_init = random_ops.random_uniform([vocab_size, embedding_size]) x = array_ops.ones((batch_size), dtypes.int64) embedding = resource_variable_ops.ResourceVariable( initial_value=random_init, dtype=dtypes.float32, name='embedding') def f(): tape.watch_variable(embedding) embedded_x = embedding_ops.embedding_lookup(embedding, x) return constant_op.constant(1.0, dtypes.float32) - embedded_x grad = backprop.implicit_grad(f)()[0][0] opt = training.GradientDescentOptimizer(lrn_rate) with context.graph_mode(), self.test_session(): tf_x = array_ops.ones((batch_size), dtypes.int64) # TODO(ashankar,apassos): Change to ResourceVariable. tf_embedding = variables.Variable( random_init.numpy(), name='tf_embedding') tf_embedded_x = embedding_ops.embedding_lookup(tf_embedding, tf_x) tf_y = 1.0 - tf_embedded_x tf_grad = gradients.gradients(tf_y, [tf_embedding])[0] tf_opt = training.GradientDescentOptimizer(0.1) tf_embedding.initializer.run() self.assertAllClose(tf_grad.indices.eval(), grad.indices) self.assertAllClose(tf_grad.values.eval(), grad.values) tf_opt.apply_gradients([(tf_grad, tf_embedding)]).run() expected = tf_embedding.eval() opt.apply_gradients([(grad, embedding)]) self.assertAllClose(expected, embedding.read_value()) def testImplicitGradOrdering(self): v0 = resource_variable_ops.ResourceVariable(1.0) v1 = resource_variable_ops.ResourceVariable(2.0) def f(): x = v1 * v1 y = v0 * v0 return x + y grads = backprop.implicit_grad(f)() ordered_variables = [x[1] for x in grads] self.assertTrue(ordered_variables[0] is v0) self.assertTrue(ordered_variables[1] is v1) @test_util.assert_no_new_tensors def testGradientNone(self): def loss(x, l): return math_ops.reduce_mean( nn_ops.softmax_cross_entropy_with_logits(logits=x, labels=l), constant_op.constant([0])) logits = constant_op.constant([[0.0, 0.0]]) labels = constant_op.constant([[1.0, 0.0]]) # softmax_cross_entropy_with_logits returns two outputs and in this case the # gradient wrt the second is None. g, = backprop.gradients_function(loss, [0])(logits, labels) self.assertAllEqual(g.numpy(), [[-0.5, 0.5]]) @test_util.run_in_graph_and_eager_modes() def testGradientWithinTapeBlock(self): v1 = resource_variable_ops.ResourceVariable(1.) self.evaluate(v1.initializer) with backprop.GradientTape() as t: loss = 2 * v1 with self.assertRaises(RuntimeError): t.gradient(loss, [v1]) with backprop.GradientTape(persistent=True) as t: loss = 2 * v1 grad = t.gradient(loss, [v1]) self.assertAllEqual(self.evaluate(grad[0]), 2.0) @test_util.assert_no_new_tensors def testSecondGrad(self): def first(x): l = constant_op.constant([[0.0]]) x = nn_ops.softmax_cross_entropy_with_logits(labels=l, logits=x) x = math_ops.reduce_sum(x, constant_op.constant([0])) return x def second(x): grad = backprop.gradients_function(first, [0])(x)[0] return math_ops.reduce_sum(grad, constant_op.constant([0])) f = constant_op.constant([[0.1]]) grad = backprop.gradients_function(second, [0])(f)[0] self.assertAllEqual([[0.0]], grad) @test_util.assert_no_new_tensors def testMakeVJP(self): def f(x): return x * x wrapped_fn = backprop.make_vjp(f, persistent=False) result, vjp = wrapped_fn(constant_op.constant(3.0)) self.assertAllEqual(result, 9.0) self.assertAllEqual(vjp(2.0)[0], 12.0) def testPersistentMakeVJP(self): def f(x): return x * x wrapped_fn = backprop.make_vjp(f, persistent=True) _, vjp = wrapped_fn(constant_op.constant(3.0)) vjp_result1 = vjp(2.0)[0] vjp_result2 = vjp(2.0)[0] self.assertAllEqual(vjp_result1, vjp_result2, 12.0) @test_util.assert_no_new_tensors def testGradGrad(self): def sq(x): return x * x def grad(x): value = backprop.gradients_function(sq, [0])(x)[0] return value gradgrad = backprop.gradients_function(grad, [0]) self.assertAllEqual(gradgrad(constant_op.constant(3.0))[0], 2.0) @test_util.assert_no_new_tensors def testGradGradExp(self): def grad(x): value = backprop.gradients_function(math_ops.exp, [0])(x)[0] return value gradgrad = backprop.gradients_function(grad, [0]) self.assertAllEqual(gradgrad(constant_op.constant(0.0))[0], 1.0) @test_util.assert_no_new_tensors def testStopGradient(self): grad = backprop.gradients_function( lambda x: array_ops.stop_gradient(math_ops.argmax(x))) self.assertAllEqual(grad([0.0])[0], None) @test_util.assert_no_new_tensors def testArgmax(self): def argmax(x): i = math_ops.argmax(x) return array_ops.stop_gradient(i) grad = backprop.gradients_function(argmax) self.assertAllEqual(grad([0.0])[0], None) @test_util.assert_no_new_tensors def testGPU(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') def fn(x): with context.device('/gpu:0'): b = constant_op.constant(2.0) c = math_ops.add(x.gpu(), b) # TODO(apassos): remove cpu below by making TensorVSPace aware # of devices. return math_ops.add(c, constant_op.constant(3.0)).cpu() grad = backprop.gradients_function(fn, [0])(constant_op.constant(1.0))[0] self.assertAllEqual(grad, 1.0) @test_util.assert_no_new_tensors def testGPUImplicitGrad(self): if not context.context().num_gpus(): self.skipTest('No GPU found') with context.device('gpu:0'): v = resource_variable_ops.ResourceVariable( constant_op.constant(1.0), name='v') def f(): with context.device('gpu:0'): tape.watch_variable(v) return v.read_value() self.assertEqual( backprop.implicit_grad(f)()[0][0].cpu().numpy(), 1.0) @test_util.assert_no_new_tensors def testCPU(self): def fn(x): b = constant_op.constant(2.0) c = math_ops.add(x, b) return math_ops.add(c, constant_op.constant(3.0)) grad = backprop.gradients_function(fn, [0])(constant_op.constant(1.0))[0] self.assertAllEqual(grad, 1.0) @test_util.assert_no_new_tensors def testTensorCopyGPU2CPU2GPU(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') def f(a, b): return a.cpu() + b.cpu() with context.device('/gpu:0'): a = constant_op.constant(1.0) b = constant_op.constant(2.0) grad = backprop.gradients_function(f, [0])(a, b)[0] self.assertAllEqual(grad, 1.0) @test_util.assert_no_new_tensors def testEmptyParams(self): def fn(a, b): return a * b x = constant_op.constant(1.0) y = constant_op.constant(2.0) dx, dy = backprop.gradients_function(fn)(x, y) self.assertAllEqual(dx, y.numpy()) self.assertAllEqual(dy, x.numpy()) @test_util.assert_no_new_tensors def testUnconnectedNone(self): v = resource_variable_ops.ResourceVariable( 1.0, name='testUnconnectedNone') def f(): v.read_value() return constant_op.constant(1.0) self.assertEqual(backprop.implicit_grad(f)()[0][0], None) @test_util.assert_no_new_tensors @test_util.run_in_graph_and_eager_modes() def testGradientTape(self): with backprop.GradientTape() as g: x = constant_op.constant(3.0) g.watch(x) y = x * x with backprop.GradientTape() as gg: gg.watch(y) z = 2 * y inner_grad = gg.gradient(z, [y])[0] self.assertEqual(self.evaluate(inner_grad), 2.0) y += inner_grad grad = g.gradient(y, [x])[0] self.assertEqual(self.evaluate(grad), 6.0) @test_util.assert_no_new_tensors def testGradientTapeGradientCalledMultipleTimes(self): with backprop.GradientTape() as g: x = constant_op.constant(3.0) g.watch(x) y = x * x z = y * y g.gradient(z, [x]) with self.assertRaisesRegexp( RuntimeError, 'GradientTape.gradient can only be called once'): g.gradient(y, [x]) @test_util.assert_no_new_tensors @test_util.run_in_graph_and_eager_modes() def testPersistentTape(self): with backprop.GradientTape(persistent=True) as g: x = constant_op.constant(3.0) g.watch(x) y = x * x z = y * y dz_dx = g.gradient(z, [x])[0] self.assertEqual(self.evaluate(dz_dx), 4 * 3 * 3 * 3) dy_dx = g.gradient(y, [x])[0] self.assertEqual(self.evaluate(dy_dx), 2 * 3) del g @test_util.assert_no_new_tensors @test_util.run_in_graph_and_eager_modes() def testPersistentNestedTape(self): with backprop.GradientTape(persistent=True) as g: x = constant_op.constant(3.0) g.watch(x) y = x * x with backprop.GradientTape(persistent=True) as gg: gg.watch(y) z = 2 * y for _ in range(2): inner_grad = gg.gradient(z, [y])[0] self.assertEqual(self.evaluate(inner_grad), 2.0) y += inner_grad del gg grad = g.gradient(y, [x])[0] self.assertEqual(self.evaluate(grad), 6.0) grad = g.gradient(z, [x])[0] self.assertEqual(self.evaluate(grad), 12.0) del g @test_util.assert_no_new_tensors @test_util.run_in_graph_and_eager_modes() def testGradientTapeVariable(self): v = resource_variable_ops.ResourceVariable(1.0, name='v') self.evaluate(v.initializer) with backprop.GradientTape() as g: y = v * v grad = g.gradient(y, [v])[0] self.assertAllEqual(self.evaluate(grad), 2.0) @test_util.assert_no_new_tensors def testEmptyParamsForValueAndGradFunction(self): def fn(a, b): return a * b val_and_grads_fn = backprop.val_and_grad_function(fn) x = 2.0 y = 3.0 val, (dx, dy) = val_and_grads_fn(x, y) self.assertAllClose(val, x * y) self.assertAllEqual(dx, y) self.assertAllEqual(dy, x) @test_util.assert_no_new_tensors def testNonEmptyParamsForValueAndGradFunction(self): def fn(a, b): return a * b val_and_grad_fn = backprop.val_and_grad_function(fn, params=[1]) x = 2.0 y = 3.0 val, grads = val_and_grad_fn(x, y) self.assertAllClose(val, x * y) self.assertEqual(1, len(grads)) self.assertAllEqual(grads[0], x) @test_util.assert_no_new_tensors def testTensorCopyCPU2GPU2CPU(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') # forward: a (cpu->gpu) -> add (gpu) -> c (gpu->cpu) -> add (cpu) -> e (cpu) # back: e (cpu) -> add (cpu) -> c (cpu->gpu) -> add (gpu) -> grad (gpu->cpu) def f(a, b): with context.device('/gpu:0'): c = math_ops.add(a.gpu(0), b.gpu(0)) return math_ops.add(c.cpu(), constant_op.constant(3.0)) with context.device('/cpu:0'): a = constant_op.constant(1.0) b = constant_op.constant(2.0) grad = backprop.gradients_function(f, [0])(a, b)[0] self.assertAllEqual(grad, 1.0) def testGetAttrType(self): typ = backprop.op_attr_type('Add', 'T') self.assertEqual(typ, pywrap_tensorflow.TF_ATTR_TYPE) def testGetAttrList(self): typ = backprop.op_attr_type('MaxPool', 'ksize') self.assertEqual(typ, [pywrap_tensorflow.TF_ATTR_INT]) def testMakeAttrType(self): self.assertEqual(dtypes.float32, backprop.make_attr(pywrap_tensorflow.TF_ATTR_TYPE, 1)) def testMakeAttrTypeList(self): self.assertEqual([dtypes.float32], backprop.make_attr([pywrap_tensorflow.TF_ATTR_TYPE], [1])) def testMulType(self): def mul(x): return math_ops._mul_dispatch(x, x) # pylint: disable=protected-access self.assertAllEqual( backprop.gradients_function(mul)(3.0)[0].numpy(), 6.0) def testMakeAttrShape(self): for s in ([], None, [1, 2, 3], [None, None], [1, None, 3]): expected = tensor_shape.TensorShape(s).as_proto() actual = backprop.make_attr(pywrap_tensorflow.TF_ATTR_SHAPE, s) self.assertEqual( expected, actual, msg=('For shape %r, expected %r != %r actual' % (s, expected, actual))) def testMakeAttrShapeList(self): shape_list = [[], None, [1, 2, 3], [None, None], [1, None, 3]] self.assertEqual( [tensor_shape.TensorShape(s).as_proto() for s in shape_list], backprop.make_attr([pywrap_tensorflow.TF_ATTR_SHAPE], shape_list)) def testArgsGradientFunction(self): def f(*args): return args[0] * args[0] grad = backprop.gradients_function(f) self.assertAllEqual(grad(1.0)[0], 2.0) def testPartial(self): def f(x, y): return x * y part = functools.partial(f, constant_op.constant(2.0)) self.assertAllEqual( backprop.gradients_function(part)(constant_op.constant(1.0))[0], 2.0) def testReturnSameThing(self): def f(x): return x, 2 * x self.assertAllEqual(backprop.gradients_function(f)(1.0)[0], 3.0) @test_util.assert_no_new_tensors def testExceptionSafety(self): def f(unused_x): raise ValueError() try: backprop.gradients_function(f)(1.0) except ValueError: pass def real_f(x): return x * x self.assertAllEqual(backprop.gradients_function(real_f)(1.0)[0], 2.0) @test_util.assert_no_new_tensors def testMultiValueConvertToTensor(self): x = resource_variable_ops.ResourceVariable( initial_value=array_ops.constant([1.0]), name='x') def fn(): tape.watch_variable(x) a = math_ops.add(x.value(), 1.0) # Make sure convert_to_tensor works correctly with list of TensorNodes. b = array_ops.stack([a, a], axis=0) return math_ops.reduce_mean(b) grad = backprop.implicit_grad(fn)()[0][0] self.assertAllEqual([1.0], grad) def testOutput(self): def multiout(x): return x + 2, x * x x = constant_op.constant([0.0, 1.0, 2.0]) grad = backprop.gradients_function(multiout)(x)[0] self.assertAllEqual([1.0, 3.0, 5.0], grad) def testMultiValuePreservesIfNotDiffedAgainst(self): def tfe_conv2d(timage, tkernel, conv2dstrides): return nn_ops.conv2d(timage, tkernel, conv2dstrides, 'SAME') i = constant_op.constant([[[[1.0]]]]) k = constant_op.constant([[[[2.0]]]]) s = [1, 1, 1, 1] grad = backprop.gradients_function(tfe_conv2d, params=(0,))(i, k, s)[0] self.assertAllEqual([[[[2.0]]]], grad) def testSameObjectForMultipleArguments(self): def f(x, y): return math_ops.multiply(x, y) g = backprop.gradients_function(f) def np_g(x, y): dx, dy = g(x, y) return [dx.numpy(), dy.numpy()] x = constant_op.constant(1.) self.assertAllEqual([1., 1.], np_g(x, x)) x = 1. self.assertAllEqual([1., 1.], np_g(x, x)) x = constant_op.constant([[1.]]) self.assertAllEqual([[[1.]], [[1.]]], np_g(x, x)) x = [[1.]] self.assertAllEqual([[[1.]], [[1.]]], np_g(x, x)) v = resource_variable_ops.ResourceVariable( initial_value=1., name='testSameObjectForMultipleArguments.Variable') self.assertAllEqual([1., 1.], np_g(v, v)) @test_util.assert_no_new_tensors def testImplicitGradientsCustomGradientAndCachedVariableValue(self): @custom_gradient.custom_gradient def my_square(x): result = math_ops.square(x) def grad(dr): return 2 * dr * x + 1 return result, grad x = resource_variable_ops.ResourceVariable( initial_value=3, name='X.' + self.id()) def f(): return my_square(x) g = backprop.implicit_grad(f) grads_and_vars = g() self.assertEqual(1, len(grads_and_vars)) grad, var = grads_and_vars[0] self.assertAllEqual(7, grad) self.assertAllEqual(x, var) @test_util.assert_no_new_tensors def testCustomGradient(self): @custom_gradient.custom_gradient def my_mul(x, y): result = x*y def grad(dr): return [dr*y, dr*x] return result, grad lr = 0.25 x = resource_variable_ops.ResourceVariable(2., name='x') def loss(x): return my_mul(2., x.read_value()) loss_grads_fn = backprop.implicit_val_and_grad(loss) losses = [] for _ in range(5): loss, grads_and_vars = loss_grads_fn(x) losses.append(loss.numpy()) for (grad, var) in grads_and_vars: var.assign_sub(lr*grad) self.assertAllEqual(losses, [4.0, 3., 2., 1., 0.]) @test_util.assert_no_new_tensors def testCustomGradientIdentity(self): @custom_gradient.custom_gradient def my_identity(x): def grad(dresult): return [2 * dresult] return x, grad self.assertAllEqual(backprop.gradients_function(my_identity)(1.0)[0], 2.0) def testDifferentiatingFunctionThatReturnsNone(self): def fn(x, y): result = x*y # pylint: disable=unused-variable x = constant_op.constant(1) y = constant_op.constant(2) loss_grads_fn = backprop.implicit_val_and_grad(fn) with self.assertRaisesRegexp( ValueError, 'Cannot differentiate a function that returns None; ' 'did you forget to return a value from fn?'): loss_grads_fn(x, y) val_and_grads_fn = backprop.val_and_grad_function(fn) with self.assertRaisesRegexp( ValueError, 'Cannot differentiate a function that returns None; ' 'did you forget to return a value from fn?'): val_and_grads_fn(x, y) if __name__ == '__main__': test.main()
Xeralux/tensorflow
tensorflow/python/eager/backprop_test.py
Python
apache-2.0
22,305
import queue from threading import Thread import requests from .analyzer import Analyzer, init_start_url import threading from collections import namedtuple from .structurers import ThreadSafeSet, FilterableList __author__ = 'zz' _sentinel = object() Task = namedtuple('Task', ['url', 'response_gt', 'max_page']) def singleton(cls): _instance = None def wrapper(*args, **kwargs): nonlocal _instance if not _instance: _instance = cls(*args, **kwargs) return _instance return wrapper @singleton class Engine: def __init__(self, tasks=None, max_thread=8): # tasks should be a list of dict contain 'url', 'response_gt','max_page' if tasks: self._init_tasks(tasks) self.max_thread = max_thread self._init() def _init(self): self._task_queue = queue.Queue() self._result_cache_queue = queue.Queue() self._busying = ThreadSafeSet() self._results = FilterableList() self._thread_tasks = [] self._shutdown = False self._shutdown_lock = threading.Lock() self._result_lock = threading.Lock() self._queue_timeout = 1 self._pre_work_running = False @property def is_running(self): return any(t.is_alive() for t in self._thread_tasks) @property def is_busy(self): if self._busying: return True else: return False @property def results(self): """ :return: collect results which already pop in get_one_result method. when engine stop, it will return the whole results """ if not self.is_running: while self.get_one_result(): pass return self._results def _init_tasks(self, tasks): self.init_tasks = [] simple = tasks[0] if isinstance(simple, Task): for task in tasks: self.init_tasks.append(task._asdict()) else: for task in tasks: self.init_tasks.append(task) for task in self.init_tasks: task['url'] = init_start_url(task['url']) def set_init_tasks(self, tasks): self._reset() self._init_tasks(tasks) def _reset(self): """ reset the engine, re init the engine """ if self.is_running: self.shutdown() self._init() def start(self): self._pre_work_running = True t = threading.Thread(target=self._generate_tasks) t.start() self._thread_tasks.append(t) for i in range(self.max_thread): t = Thread(target=self.worker) t.daemon = True t.start() self._thread_tasks.append(t) def _generate_tasks(self): for task in self.init_tasks: url = task['url'] response_gt = task['response_gt'] max_page = task['max_page'] # add the init task immediately to avoid main worker stop self.add_task(url, response_gt, max_page) r = self._fetch(url) a = Analyzer(r, max_page) while True: if self._shutdown: return url = a.next_page(current_page_url=url) if not url: break self.add_task(url, response_gt, max_page) self._pre_work_running = False def worker(self): try: while True: # data is Task object data = self._retrieve_task() if data is _sentinel: self._task_queue.put(data) return else: url, response_gt, max_page = data # shutdown immediately if self._shutdown: break self._busying.add(url) r = self._fetch(url) a = Analyzer(r, max_page) self._add_result(a.filter_divs(response_gt=response_gt)) self._busying.remove(url) except BaseException as e: # TODO: log error print(type(e), e) raise e def shutdown(self, wait=True): with self._shutdown_lock: self._shutdown = True self._task_queue.put(_sentinel) if wait: for t in self._thread_tasks: t.join() def _retrieve_task(self): while True: try: t = self._task_queue.get(timeout=self._queue_timeout) except queue.Empty: self._detect_finish() else: return t def _detect_finish(self): if self._task_queue.empty() and not self.is_busy and not self._pre_work_running: self._task_queue.put(_sentinel) def _fetch(self, url): r = requests.get(url) return r def _add_result(self, results): for result in results: self._result_cache_queue.put(result) def add_task(self, url, response_gt, max_page): if not url: return t = Task(url, response_gt, max_page) self._task_queue.put(t) def get_one_result(self): """ :return: result or None which does not mean the engine is stop! """ try: result = self._result_cache_queue.get_nowait() except queue.Empty: result = None if result: with self._result_lock: self._results.append(result) return result engine = Engine()
littlezz/IslandCollection
core/engine.py
Python
mit
5,666
# (c) 2014, Toshio Kuratomi <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type ''' Compat module for Python2.7's unittest module ''' import sys # Python 2.6 if sys.version_info < (2, 7): try: # Need unittest2 on python2.6 from unittest2 import * except ImportError: print('You need unittest2 installed on python2.6.x to run tests') else: from unittest import *
ravello/ansible
v2/ansible/compat/tests/unittest.py
Python
gpl-3.0
1,147
def f(): raise AssertionError('Silverlight test for throwing exception.')
tempbottle/dlr
Src/Hosts/Silverlight/Tests/tests/regressions/fixtures/module_throw.py
Python
apache-2.0
79
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Core PTransform subclasses, such as FlatMap, GroupByKey, and Map.""" from __future__ import absolute_import import copy import logging import random import re import types from builtins import map from builtins import object from builtins import range from future.builtins import filter from past.builtins import unicode from apache_beam import coders from apache_beam import pvalue from apache_beam import typehints from apache_beam.coders import typecoders from apache_beam.internal import pickler from apache_beam.internal import util from apache_beam.options.pipeline_options import DebugOptions from apache_beam.options.pipeline_options import TypeOptions from apache_beam.portability import common_urns from apache_beam.portability import python_urns from apache_beam.portability.api import beam_runner_api_pb2 from apache_beam.transforms import ptransform from apache_beam.transforms import userstate from apache_beam.transforms.display import DisplayDataItem from apache_beam.transforms.display import HasDisplayData from apache_beam.transforms.ptransform import PTransform from apache_beam.transforms.ptransform import PTransformWithSideInputs from apache_beam.transforms.userstate import StateSpec from apache_beam.transforms.userstate import TimerSpec from apache_beam.transforms.window import GlobalWindows from apache_beam.transforms.window import TimestampCombiner from apache_beam.transforms.window import TimestampedValue from apache_beam.transforms.window import WindowedValue from apache_beam.transforms.window import WindowFn from apache_beam.typehints import KV from apache_beam.typehints import Any from apache_beam.typehints import Iterable from apache_beam.typehints import Union from apache_beam.typehints import trivial_inference from apache_beam.typehints.decorators import TypeCheckError from apache_beam.typehints.decorators import WithTypeHints from apache_beam.typehints.decorators import get_type_hints from apache_beam.typehints.decorators import getfullargspec from apache_beam.typehints.trivial_inference import element_type from apache_beam.typehints.typehints import is_consistent_with from apache_beam.utils import urns __all__ = [ 'DoFn', 'CombineFn', 'PartitionFn', 'ParDo', 'FlatMap', 'Map', 'Filter', 'CombineGlobally', 'CombinePerKey', 'CombineValues', 'GroupByKey', 'Partition', 'Windowing', 'WindowInto', 'Flatten', 'Create', 'Impulse', ] # Type variables T = typehints.TypeVariable('T') K = typehints.TypeVariable('K') V = typehints.TypeVariable('V') class DoFnContext(object): """A context available to all methods of DoFn instance.""" pass class DoFnProcessContext(DoFnContext): """A processing context passed to DoFn process() during execution. Experimental; no backwards-compatibility guarantees. Most importantly, a DoFn.process method will access context.element to get the element it is supposed to process. Attributes: label: label of the ParDo whose element is being processed. element: element being processed (in process method only; always None in start_bundle and finish_bundle) timestamp: timestamp of the element (in process method only; always None in start_bundle and finish_bundle) windows: windows of the element (in process method only; always None in start_bundle and finish_bundle) state: a DoFnState object, which holds the runner's internal state for this element. Not used by the pipeline code. """ def __init__(self, label, element=None, state=None): """Initialize a processing context object with an element and state. The element represents one value from a PCollection that will be accessed by a DoFn object during pipeline execution, and state is an arbitrary object where counters and other pipeline state information can be passed in. DoFnProcessContext objects are also used as inputs to PartitionFn instances. Args: label: label of the PCollection whose element is being processed. element: element of a PCollection being processed using this context. state: a DoFnState object with state to be passed in to the DoFn object. """ self.label = label self.state = state if element is not None: self.set_element(element) def set_element(self, windowed_value): if windowed_value is None: # Not currently processing an element. if hasattr(self, 'element'): del self.element del self.timestamp del self.windows else: self.element = windowed_value.value self.timestamp = windowed_value.timestamp self.windows = windowed_value.windows class ProcessContinuation(object): """An object that may be produced as the last element of a process method invocation. Experimental; no backwards-compatibility guarantees. If produced, indicates that there is more work to be done for the current input element. """ def __init__(self, resume_delay=0): """Initializes a ProcessContinuation object. Args: resume_delay: indicates the minimum time, in seconds, that should elapse before re-invoking process() method for resuming the invocation of the current element. """ self.resume_delay = resume_delay @staticmethod def resume(resume_delay=0): """A convenient method that produces a ``ProcessContinuation``. Args: resume_delay: delay after which processing current element should be resumed. Returns: a ``ProcessContinuation`` for signalling the runner that current input element has not been fully processed and should be resumed later. """ return ProcessContinuation(resume_delay=resume_delay) class RestrictionProvider(object): """Provides methods for generating and manipulating restrictions. This class should be implemented to support Splittable ``DoFn``s in Python SDK. See https://s.apache.org/splittable-do-fn for more details about Splittable ``DoFn``s. To denote a ``DoFn`` class to be Splittable ``DoFn``, ``DoFn.process()`` method of that class should have exactly one parameter whose default value is an instance of ``RestrictionProvider``. The provided ``RestrictionProvider`` instance must provide suitable overrides for the following methods. * create_tracker() * initial_restriction() Optionally, ``RestrictionProvider`` may override default implementations of following methods. * restriction_coder() * split() ** Pausing and resuming processing of an element ** As the last element produced by the iterator returned by the ``DoFn.process()`` method, a Splittable ``DoFn`` may return an object of type ``ProcessContinuation``. If provided, ``ProcessContinuation`` object specifies that runner should later re-invoke ``DoFn.process()`` method to resume processing the current element and the manner in which the re-invocation should be performed. A ``ProcessContinuation`` object must only be specified as the last element of the iterator. If a ``ProcessContinuation`` object is not provided the runner will assume that the current input element has been fully processed. ** Updating output watermark ** ``DoFn.process()`` method of Splittable ``DoFn``s could contain a parameter with default value ``DoFn.WatermarkReporterParam``. If specified this asks the runner to provide a function that can be used to give the runner a (best-effort) lower bound about the timestamps of future output associated with the current element processed by the ``DoFn``. If the ``DoFn`` has multiple outputs, the watermark applies to all of them. Provided function must be invoked with a single parameter of type ``Timestamp`` or as an integer that gives the watermark in number of seconds. """ def create_tracker(self, restriction): """Produces a new ``RestrictionTracker`` for the given restriction. Args: restriction: an object that defines a restriction as identified by a Splittable ``DoFn`` that utilizes the current ``RestrictionProvider``. For example, a tuple that gives a range of positions for a Splittable ``DoFn`` that reads files based on byte positions. Returns: an object of type ``RestrictionTracker``. """ raise NotImplementedError def initial_restriction(self, element): """Produces an initial restriction for the given element.""" raise NotImplementedError def split(self, element, restriction): """Splits the given element and restriction. Returns an iterator of restrictions. The total set of elements produced by reading input element for each of the returned restrictions should be the same as the total set of elements produced by reading the input element for the input restriction. TODO(chamikara): give suitable hints for performing splitting, for example number of parts or size in bytes. """ yield restriction def restriction_coder(self): """Returns a ``Coder`` for restrictions. Returned``Coder`` will be used for the restrictions produced by the current ``RestrictionProvider``. Returns: an object of type ``Coder``. """ return coders.registry.get_coder(object) def get_function_arguments(obj, func): """Return the function arguments based on the name provided. If they have a _inspect_function attached to the class then use that otherwise default to the modified version of python inspect library. """ func_name = '_inspect_%s' % func if hasattr(obj, func_name): f = getattr(obj, func_name) return f() f = getattr(obj, func) return getfullargspec(f) class _DoFnParam(object): """DoFn parameter.""" def __init__(self, param_id): self.param_id = param_id def __eq__(self, other): if type(self) == type(other): return self.param_id == other.param_id return False def __ne__(self, other): # TODO(BEAM-5949): Needed for Python 2 compatibility. return not self == other def __hash__(self): return hash(self.param_id) def __repr__(self): return self.param_id class _StateDoFnParam(_DoFnParam): """State DoFn parameter.""" def __init__(self, state_spec): if not isinstance(state_spec, StateSpec): raise ValueError("DoFn.StateParam expected StateSpec object.") self.state_spec = state_spec self.param_id = 'StateParam(%s)' % state_spec.name class _TimerDoFnParam(_DoFnParam): """Timer DoFn parameter.""" def __init__(self, timer_spec): if not isinstance(timer_spec, TimerSpec): raise ValueError("DoFn.TimerParam expected TimerSpec object.") self.timer_spec = timer_spec self.param_id = 'TimerParam(%s)' % timer_spec.name class DoFn(WithTypeHints, HasDisplayData, urns.RunnerApiFn): """A function object used by a transform with custom processing. The ParDo transform is such a transform. The ParDo.apply method will take an object of type DoFn and apply it to all elements of a PCollection object. In order to have concrete DoFn objects one has to subclass from DoFn and define the desired behavior (start_bundle/finish_bundle and process) or wrap a callable object using the CallableWrapperDoFn class. """ # Parameters that can be used in the .process() method. ElementParam = _DoFnParam('ElementParam') SideInputParam = _DoFnParam('SideInputParam') TimestampParam = _DoFnParam('TimestampParam') WindowParam = _DoFnParam('WindowParam') WatermarkReporterParam = _DoFnParam('WatermarkReporterParam') DoFnProcessParams = [ElementParam, SideInputParam, TimestampParam, WindowParam, WatermarkReporterParam] # Parameters to access state and timers. Not restricted to use only in the # .process() method. Usage: DoFn.StateParam(state_spec), # DoFn.TimerParam(timer_spec). StateParam = _StateDoFnParam TimerParam = _TimerDoFnParam @staticmethod def from_callable(fn): return CallableWrapperDoFn(fn) def default_label(self): return self.__class__.__name__ def process(self, element, *args, **kwargs): """Method to use for processing elements. This is invoked by ``DoFnRunner`` for each element of a input ``PCollection``. If specified, following default arguments are used by the ``DoFnRunner`` to be able to pass the parameters correctly. ``DoFn.ElementParam``: element to be processed. ``DoFn.SideInputParam``: a side input that may be used when processing. ``DoFn.TimestampParam``: timestamp of the input element. ``DoFn.WindowParam``: ``Window`` the input element belongs to. A ``RestrictionProvider`` instance: an ``iobase.RestrictionTracker`` will be provided here to allow treatment as a Splittable `DoFn``. ``DoFn.WatermarkReporterParam``: a function that can be used to report output watermark of Splittable ``DoFn`` implementations. Args: element: The element to be processed *args: side inputs **kwargs: other keyword arguments. """ raise NotImplementedError def start_bundle(self): """Called before a bundle of elements is processed on a worker. Elements to be processed are split into bundles and distributed to workers. Before a worker calls process() on the first element of its bundle, it calls this method. """ pass def finish_bundle(self): """Called after a bundle of elements is processed on a worker. """ pass def get_function_arguments(self, func): return get_function_arguments(self, func) # TODO(sourabhbajaj): Do we want to remove the responsibility of these from # the DoFn or maybe the runner def infer_output_type(self, input_type): # TODO(robertwb): Side inputs types. # TODO(robertwb): Assert compatibility with input type hint? return self._strip_output_annotations( trivial_inference.infer_return_type(self.process, [input_type])) def _strip_output_annotations(self, type_hint): annotations = (TimestampedValue, WindowedValue, pvalue.TaggedOutput) # TODO(robertwb): These should be parameterized types that the # type inferencer understands. if (type_hint in annotations or trivial_inference.element_type(type_hint) in annotations): return Any return type_hint def _process_argspec_fn(self): """Returns the Python callable that will eventually be invoked. This should ideally be the user-level function that is called with the main and (if any) side inputs, and is used to relate the type hint parameters with the input parameters (e.g., by argument name). """ return self.process def is_process_bounded(self): """Checks if an object is a bound method on an instance.""" if not isinstance(self.process, types.MethodType): return False # Not a method if self.process.__self__ is None: return False # Method is not bound if issubclass(self.process.__self__.__class__, type) or \ self.process.__self__.__class__ is type: return False # Method is a classmethod return True urns.RunnerApiFn.register_pickle_urn(python_urns.PICKLED_DOFN) def _fn_takes_side_inputs(fn): try: argspec = getfullargspec(fn) except TypeError: # We can't tell; maybe it does. return True is_bound = isinstance(fn, types.MethodType) and fn.__self__ is not None try: varkw = argspec.varkw kwonlyargs = argspec.kwonlyargs except AttributeError: # Python 2 varkw = argspec.keywords kwonlyargs = [] return (len(argspec.args) + len(kwonlyargs) > 1 + is_bound or argspec.varargs or varkw) class CallableWrapperDoFn(DoFn): """For internal use only; no backwards-compatibility guarantees. A DoFn (function) object wrapping a callable object. The purpose of this class is to conveniently wrap simple functions and use them in transforms. """ def __init__(self, fn): """Initializes a CallableWrapperDoFn object wrapping a callable. Args: fn: A callable object. Raises: TypeError: if fn parameter is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn if isinstance(fn, ( types.BuiltinFunctionType, types.MethodType, types.FunctionType)): self.process = fn else: # For cases such as set / list where fn is callable but not a function self.process = lambda element: fn(element) super(CallableWrapperDoFn, self).__init__() def display_data(self): # If the callable has a name, then it's likely a function, and # we show its name. # Otherwise, it might be an instance of a callable class. We # show its class. display_data_value = (self._fn.__name__ if hasattr(self._fn, '__name__') else self._fn.__class__) return {'fn': DisplayDataItem(display_data_value, label='Transform Function')} def __repr__(self): return 'CallableWrapperDoFn(%s)' % self._fn def default_type_hints(self): type_hints = get_type_hints(self._fn) # If the fn was a DoFn annotated with a type-hint that hinted a return # type compatible with Iterable[Any], then we strip off the outer # container type due to the 'flatten' portion of FlatMap. # TODO(robertwb): Should we require an iterable specification for FlatMap? if type_hints.output_types: args, kwargs = type_hints.output_types if len(args) == 1 and is_consistent_with(args[0], Iterable[Any]): type_hints = type_hints.copy() type_hints.set_output_types(element_type(args[0]), **kwargs) return type_hints def infer_output_type(self, input_type): return self._strip_output_annotations( trivial_inference.infer_return_type(self._fn, [input_type])) def _process_argspec_fn(self): return getattr(self._fn, '_argspec_fn', self._fn) def _inspect_process(self): return getfullargspec(self._process_argspec_fn()) class CombineFn(WithTypeHints, HasDisplayData, urns.RunnerApiFn): """A function object used by a Combine transform with custom processing. A CombineFn specifies how multiple values in all or part of a PCollection can be merged into a single value---essentially providing the same kind of information as the arguments to the Python "reduce" builtin (except for the input argument, which is an instance of CombineFnProcessContext). The combining process proceeds as follows: 1. Input values are partitioned into one or more batches. 2. For each batch, the create_accumulator method is invoked to create a fresh initial "accumulator" value representing the combination of zero values. 3. For each input value in the batch, the add_input method is invoked to combine more values with the accumulator for that batch. 4. The merge_accumulators method is invoked to combine accumulators from separate batches into a single combined output accumulator value, once all of the accumulators have had all the input value in their batches added to them. This operation is invoked repeatedly, until there is only one accumulator value left. 5. The extract_output operation is invoked on the final accumulator to get the output value. Note: If this **CombineFn** is used with a transform that has defaults, **apply** will be called with an empty list at expansion time to get the default value. """ def default_label(self): return self.__class__.__name__ def create_accumulator(self, *args, **kwargs): """Return a fresh, empty accumulator for the combine operation. Args: *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self)) def add_input(self, accumulator, element, *args, **kwargs): """Return result of folding element into accumulator. CombineFn implementors must override add_input. Args: accumulator: the current accumulator element: the element to add *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self)) def add_inputs(self, accumulator, elements, *args, **kwargs): """Returns the result of folding each element in elements into accumulator. This is provided in case the implementation affords more efficient bulk addition of elements. The default implementation simply loops over the inputs invoking add_input for each one. Args: accumulator: the current accumulator elements: the elements to add *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ for element in elements: accumulator = self.add_input(accumulator, element, *args, **kwargs) return accumulator def merge_accumulators(self, accumulators, *args, **kwargs): """Returns the result of merging several accumulators to a single accumulator value. Args: accumulators: the accumulators to merge *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self)) def extract_output(self, accumulator, *args, **kwargs): """Return result of converting accumulator into the output value. Args: accumulator: the final accumulator value computed by this CombineFn for the entire input key or PCollection. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ raise NotImplementedError(str(self)) def apply(self, elements, *args, **kwargs): """Returns result of applying this CombineFn to the input values. Args: elements: the set of values to combine. *args: Additional arguments and side inputs. **kwargs: Additional arguments and side inputs. """ return self.extract_output( self.add_inputs( self.create_accumulator(*args, **kwargs), elements, *args, **kwargs), *args, **kwargs) def for_input_type(self, input_type): """Returns a specialized implementation of self, if it exists. Otherwise, returns self. Args: input_type: the type of input elements. """ return self @staticmethod def from_callable(fn): return CallableWrapperCombineFn(fn) @staticmethod def maybe_from_callable(fn): if isinstance(fn, CombineFn): return fn elif callable(fn): return CallableWrapperCombineFn(fn) else: raise TypeError('Expected a CombineFn or callable, got %r' % fn) def get_accumulator_coder(self): return coders.registry.get_coder(object) urns.RunnerApiFn.register_pickle_urn(python_urns.PICKLED_COMBINE_FN) class CallableWrapperCombineFn(CombineFn): """For internal use only; no backwards-compatibility guarantees. A CombineFn (function) object wrapping a callable object. The purpose of this class is to conveniently wrap simple functions and use them in Combine transforms. """ _EMPTY = object() def __init__(self, fn): """Initializes a CallableFn object wrapping a callable. Args: fn: A callable object that reduces elements of an iterable to a single value (like the builtins sum and max). This callable must be capable of receiving the kind of values it generates as output in its input, and for best results, its operation must be commutative and associative. Raises: TypeError: if fn parameter is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) super(CallableWrapperCombineFn, self).__init__() self._fn = fn def display_data(self): return {'fn_dd': self._fn} def __repr__(self): return "CallableWrapperCombineFn(%s)" % self._fn def create_accumulator(self, *args, **kwargs): return self._EMPTY def add_input(self, accumulator, element, *args, **kwargs): if accumulator is self._EMPTY: return element return self._fn([accumulator, element], *args, **kwargs) def add_inputs(self, accumulator, elements, *args, **kwargs): if accumulator is self._EMPTY: return self._fn(elements, *args, **kwargs) elif isinstance(elements, (list, tuple)): return self._fn([accumulator] + list(elements), *args, **kwargs) def union(): yield accumulator for e in elements: yield e return self._fn(union(), *args, **kwargs) def merge_accumulators(self, accumulators, *args, **kwargs): filter_fn = lambda x: x is not self._EMPTY class ReiterableNonEmptyAccumulators(object): def __iter__(self): return filter(filter_fn, accumulators) # It's (weakly) assumed that self._fn is associative. return self._fn(ReiterableNonEmptyAccumulators(), *args, **kwargs) def extract_output(self, accumulator, *args, **kwargs): return self._fn(()) if accumulator is self._EMPTY else accumulator def default_type_hints(self): fn_hints = get_type_hints(self._fn) if fn_hints.input_types is None: return fn_hints else: # fn(Iterable[V]) -> V becomes CombineFn(V) -> V input_args, input_kwargs = fn_hints.input_types if not input_args: if len(input_kwargs) == 1: input_args, input_kwargs = tuple(input_kwargs.values()), {} else: raise TypeError('Combiner input type must be specified positionally.') if not is_consistent_with(input_args[0], Iterable[Any]): raise TypeCheckError( 'All functions for a Combine PTransform must accept a ' 'single argument compatible with: Iterable[Any]. ' 'Instead a function with input type: %s was received.' % input_args[0]) input_args = (element_type(input_args[0]),) + input_args[1:] # TODO(robertwb): Assert output type is consistent with input type? hints = fn_hints.copy() hints.set_input_types(*input_args, **input_kwargs) return hints def for_input_type(self, input_type): # Avoid circular imports. from apache_beam.transforms import cy_combiners if self._fn is any: return cy_combiners.AnyCombineFn() elif self._fn is all: return cy_combiners.AllCombineFn() else: known_types = { (sum, int): cy_combiners.SumInt64Fn(), (min, int): cy_combiners.MinInt64Fn(), (max, int): cy_combiners.MaxInt64Fn(), (sum, float): cy_combiners.SumFloatFn(), (min, float): cy_combiners.MinFloatFn(), (max, float): cy_combiners.MaxFloatFn(), } return known_types.get((self._fn, input_type), self) class PartitionFn(WithTypeHints): """A function object used by a Partition transform. A PartitionFn specifies how individual values in a PCollection will be placed into separate partitions, indexed by an integer. """ def default_label(self): return self.__class__.__name__ def partition_for(self, element, num_partitions, *args, **kwargs): """Specify which partition will receive this element. Args: element: An element of the input PCollection. num_partitions: Number of partitions, i.e., output PCollections. *args: optional parameters and side inputs. **kwargs: optional parameters and side inputs. Returns: An integer in [0, num_partitions). """ pass class CallableWrapperPartitionFn(PartitionFn): """For internal use only; no backwards-compatibility guarantees. A PartitionFn object wrapping a callable object. Instances of this class wrap simple functions for use in Partition operations. """ def __init__(self, fn): """Initializes a PartitionFn object wrapping a callable. Args: fn: A callable object, which should accept the following arguments: element - element to assign to a partition. num_partitions - number of output partitions. and may accept additional arguments and side inputs. Raises: TypeError: if fn is not a callable type. """ if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn def partition_for(self, element, num_partitions, *args, **kwargs): return self._fn(element, num_partitions, *args, **kwargs) class ParDo(PTransformWithSideInputs): """A :class:`ParDo` transform. Processes an input :class:`~apache_beam.pvalue.PCollection` by applying a :class:`DoFn` to each element and returning the accumulated results into an output :class:`~apache_beam.pvalue.PCollection`. The type of the elements is not fixed as long as the :class:`DoFn` can deal with it. In reality the type is restrained to some extent because the elements sometimes must be persisted to external storage. See the :meth:`.expand()` method comments for a detailed description of all possible arguments. Note that the :class:`DoFn` must return an iterable for each element of the input :class:`~apache_beam.pvalue.PCollection`. An easy way to do this is to use the ``yield`` keyword in the process method. Args: pcoll (~apache_beam.pvalue.PCollection): a :class:`~apache_beam.pvalue.PCollection` to be processed. fn (DoFn): a :class:`DoFn` object to be applied to each element of **pcoll** argument. *args: positional arguments passed to the :class:`DoFn` object. **kwargs: keyword arguments passed to the :class:`DoFn` object. Note that the positional and keyword arguments will be processed in order to detect :class:`~apache_beam.pvalue.PCollection` s that will be computed as side inputs to the transform. During pipeline execution whenever the :class:`DoFn` object gets executed (its :meth:`DoFn.process()` method gets called) the :class:`~apache_beam.pvalue.PCollection` arguments will be replaced by values from the :class:`~apache_beam.pvalue.PCollection` in the exact positions where they appear in the argument lists. """ def __init__(self, fn, *args, **kwargs): super(ParDo, self).__init__(fn, *args, **kwargs) # TODO(robertwb): Change all uses of the dofn attribute to use fn instead. self.dofn = self.fn self.output_tags = set() if not isinstance(self.fn, DoFn): raise TypeError('ParDo must be called with a DoFn instance.') # Validate the DoFn by creating a DoFnSignature from apache_beam.runners.common import DoFnSignature self._signature = DoFnSignature(self.fn) def default_type_hints(self): return self.fn.get_type_hints() def infer_output_type(self, input_type): return trivial_inference.element_type( self.fn.infer_output_type(input_type)) def make_fn(self, fn): if isinstance(fn, DoFn): return fn return CallableWrapperDoFn(fn) def _process_argspec_fn(self): return self.fn._process_argspec_fn() def display_data(self): return {'fn': DisplayDataItem(self.fn.__class__, label='Transform Function'), 'fn_dd': self.fn} def expand(self, pcoll): # In the case of a stateful DoFn, warn if the key coder is not # deterministic. if self._signature.is_stateful_dofn(): kv_type_hint = pcoll.element_type if kv_type_hint and kv_type_hint != typehints.Any: coder = coders.registry.get_coder(kv_type_hint) if not coder.is_kv_coder(): raise ValueError( 'Input elements to the transform %s with stateful DoFn must be ' 'key-value pairs.' % self) key_coder = coder.key_coder() else: key_coder = coders.registry.get_coder(typehints.Any) if not key_coder.is_deterministic(): logging.warning( 'Key coder %s for transform %s with stateful DoFn may not ' 'be deterministic. This may cause incorrect behavior for complex ' 'key types. Consider adding an input type hint for this transform.', key_coder, self) return pvalue.PCollection(pcoll.pipeline) def with_outputs(self, *tags, **main_kw): """Returns a tagged tuple allowing access to the outputs of a :class:`ParDo`. The resulting object supports access to the :class:`~apache_beam.pvalue.PCollection` associated with a tag (e.g. ``o.tag``, ``o[tag]``) and iterating over the available tags (e.g. ``for tag in o: ...``). Args: *tags: if non-empty, list of valid tags. If a list of valid tags is given, it will be an error to use an undeclared tag later in the pipeline. **main_kw: dictionary empty or with one key ``'main'`` defining the tag to be used for the main output (which will not have a tag associated with it). Returns: ~apache_beam.pvalue.DoOutputsTuple: An object of type :class:`~apache_beam.pvalue.DoOutputsTuple` that bundles together all the outputs of a :class:`ParDo` transform and allows accessing the individual :class:`~apache_beam.pvalue.PCollection` s for each output using an ``object.tag`` syntax. Raises: ~exceptions.TypeError: if the **self** object is not a :class:`~apache_beam.pvalue.PCollection` that is the result of a :class:`ParDo` transform. ~exceptions.ValueError: if **main_kw** contains any key other than ``'main'``. """ main_tag = main_kw.pop('main', None) if main_kw: raise ValueError('Unexpected keyword arguments: %s' % list(main_kw)) return _MultiParDo(self, tags, main_tag) def _pardo_fn_data(self): si_tags_and_types = None windowing = None return self.fn, self.args, self.kwargs, si_tags_and_types, windowing def to_runner_api_parameter(self, context): assert isinstance(self, ParDo), \ "expected instance of ParDo, but got %s" % self.__class__ picked_pardo_fn_data = pickler.dumps(self._pardo_fn_data()) state_specs, timer_specs = userstate.get_dofn_specs(self.fn) return ( common_urns.primitives.PAR_DO.urn, beam_runner_api_pb2.ParDoPayload( do_fn=beam_runner_api_pb2.SdkFunctionSpec( environment_id=context.default_environment_id(), spec=beam_runner_api_pb2.FunctionSpec( urn=python_urns.PICKLED_DOFN_INFO, payload=picked_pardo_fn_data)), state_specs={spec.name: spec.to_runner_api(context) for spec in state_specs}, timer_specs={spec.name: spec.to_runner_api(context) for spec in timer_specs}, # It'd be nice to name these according to their actual # names/positions in the orignal argument list, but such a # transformation is currently irreversible given how # remove_objects_from_args and insert_values_in_args # are currently implemented. side_inputs={ "side%s" % ix: si.to_runner_api(context) for ix, si in enumerate(self.side_inputs)})) @PTransform.register_urn( common_urns.primitives.PAR_DO.urn, beam_runner_api_pb2.ParDoPayload) def from_runner_api_parameter(pardo_payload, context): assert pardo_payload.do_fn.spec.urn == python_urns.PICKLED_DOFN_INFO fn, args, kwargs, si_tags_and_types, windowing = pickler.loads( pardo_payload.do_fn.spec.payload) if si_tags_and_types: raise NotImplementedError('explicit side input data') elif windowing: raise NotImplementedError('explicit windowing') result = ParDo(fn, *args, **kwargs) # This is an ordered list stored as a dict (see the comments in # to_runner_api_parameter above). indexed_side_inputs = [ (int(re.match('side([0-9]+)(-.*)?$', tag).group(1)), pvalue.AsSideInput.from_runner_api(si, context)) for tag, si in pardo_payload.side_inputs.items()] result.side_inputs = [si for _, si in sorted(indexed_side_inputs)] return result def runner_api_requires_keyed_input(self): return userstate.is_stateful_dofn(self.fn) class _MultiParDo(PTransform): def __init__(self, do_transform, tags, main_tag): super(_MultiParDo, self).__init__(do_transform.label) self._do_transform = do_transform self._tags = tags self._main_tag = main_tag def expand(self, pcoll): _ = pcoll | self._do_transform return pvalue.DoOutputsTuple( pcoll.pipeline, self._do_transform, self._tags, self._main_tag) def FlatMap(fn, *args, **kwargs): # pylint: disable=invalid-name """:func:`FlatMap` is like :class:`ParDo` except it takes a callable to specify the transformation. The callable must return an iterable for each element of the input :class:`~apache_beam.pvalue.PCollection`. The elements of these iterables will be flattened into the output :class:`~apache_beam.pvalue.PCollection`. Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`FlatMap` outputs. Raises: ~exceptions.TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ label = 'FlatMap(%s)' % ptransform.label_from_callable(fn) if not callable(fn): raise TypeError( 'FlatMap can be used only with callable objects. ' 'Received %r instead.' % (fn)) pardo = ParDo(CallableWrapperDoFn(fn), *args, **kwargs) pardo.label = label return pardo def Map(fn, *args, **kwargs): # pylint: disable=invalid-name """:func:`Map` is like :func:`FlatMap` except its callable returns only a single element. Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`Map` outputs. Raises: ~exceptions.TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ if not callable(fn): raise TypeError( 'Map can be used only with callable objects. ' 'Received %r instead.' % (fn)) if _fn_takes_side_inputs(fn): wrapper = lambda x, *args, **kwargs: [fn(x, *args, **kwargs)] else: wrapper = lambda x: [fn(x)] label = 'Map(%s)' % ptransform.label_from_callable(fn) # TODO. What about callable classes? if hasattr(fn, '__name__'): wrapper.__name__ = fn.__name__ # Proxy the type-hint information from the original function to this new # wrapped function. get_type_hints(wrapper).input_types = get_type_hints(fn).input_types output_hint = get_type_hints(fn).simple_output_type(label) if output_hint: get_type_hints(wrapper).set_output_types(typehints.Iterable[output_hint]) # pylint: disable=protected-access wrapper._argspec_fn = fn # pylint: enable=protected-access pardo = FlatMap(wrapper, *args, **kwargs) pardo.label = label return pardo def Filter(fn, *args, **kwargs): # pylint: disable=invalid-name """:func:`Filter` is a :func:`FlatMap` with its callable filtering out elements. Args: fn (callable): a callable object. *args: positional arguments passed to the transform callable. **kwargs: keyword arguments passed to the transform callable. Returns: ~apache_beam.pvalue.PCollection: A :class:`~apache_beam.pvalue.PCollection` containing the :func:`Filter` outputs. Raises: ~exceptions.TypeError: If the **fn** passed as argument is not a callable. Typical error is to pass a :class:`DoFn` instance which is supported only for :class:`ParDo`. """ if not callable(fn): raise TypeError( 'Filter can be used only with callable objects. ' 'Received %r instead.' % (fn)) wrapper = lambda x, *args, **kwargs: [x] if fn(x, *args, **kwargs) else [] label = 'Filter(%s)' % ptransform.label_from_callable(fn) # TODO: What about callable classes? if hasattr(fn, '__name__'): wrapper.__name__ = fn.__name__ # Proxy the type-hint information from the function being wrapped, setting the # output type to be the same as the input type. get_type_hints(wrapper).input_types = get_type_hints(fn).input_types output_hint = get_type_hints(fn).simple_output_type(label) if (output_hint is None and get_type_hints(wrapper).input_types and get_type_hints(wrapper).input_types[0]): output_hint = get_type_hints(wrapper).input_types[0] if output_hint: get_type_hints(wrapper).set_output_types(typehints.Iterable[output_hint]) # pylint: disable=protected-access wrapper._argspec_fn = fn # pylint: enable=protected-access pardo = FlatMap(wrapper, *args, **kwargs) pardo.label = label return pardo def _combine_payload(combine_fn, context): return beam_runner_api_pb2.CombinePayload( combine_fn=combine_fn.to_runner_api(context), accumulator_coder_id=context.coders.get_id( combine_fn.get_accumulator_coder())) class CombineGlobally(PTransform): """A :class:`CombineGlobally` transform. Reduces a :class:`~apache_beam.pvalue.PCollection` to a single value by progressively applying a :class:`CombineFn` to portions of the :class:`~apache_beam.pvalue.PCollection` (and to intermediate values created thereby). See documentation in :class:`CombineFn` for details on the specifics on how :class:`CombineFn` s are applied. Args: pcoll (~apache_beam.pvalue.PCollection): a :class:`~apache_beam.pvalue.PCollection` to be reduced into a single value. fn (callable): a :class:`CombineFn` object that will be called to progressively reduce the :class:`~apache_beam.pvalue.PCollection` into single values, or a callable suitable for wrapping by :class:`~apache_beam.transforms.core.CallableWrapperCombineFn`. *args: positional arguments passed to the :class:`CombineFn` object. **kwargs: keyword arguments passed to the :class:`CombineFn` object. Raises: ~exceptions.TypeError: If the output type of the input :class:`~apache_beam.pvalue.PCollection` is not compatible with ``Iterable[A]``. Returns: ~apache_beam.pvalue.PCollection: A single-element :class:`~apache_beam.pvalue.PCollection` containing the main output of the :class:`CombineGlobally` transform. Note that the positional and keyword arguments will be processed in order to detect :class:`~apache_beam.pvalue.PValue` s that will be computed as side inputs to the transform. During pipeline execution whenever the :class:`CombineFn` object gets executed (i.e. any of the :class:`CombineFn` methods get called), the :class:`~apache_beam.pvalue.PValue` arguments will be replaced by their actual value in the exact position where they appear in the argument lists. """ has_defaults = True as_view = False fanout = None def __init__(self, fn, *args, **kwargs): if not (isinstance(fn, CombineFn) or callable(fn)): raise TypeError( 'CombineGlobally can be used only with combineFn objects. ' 'Received %r instead.' % (fn)) super(CombineGlobally, self).__init__() self.fn = fn self.args = args self.kwargs = kwargs def display_data(self): return {'combine_fn': DisplayDataItem(self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn} def default_label(self): return 'CombineGlobally(%s)' % ptransform.label_from_callable(self.fn) def _clone(self, **extra_attributes): clone = copy.copy(self) clone.__dict__.update(extra_attributes) return clone def with_fanout(self, fanout): return self._clone(fanout=fanout) def with_defaults(self, has_defaults=True): return self._clone(has_defaults=has_defaults) def without_defaults(self): return self.with_defaults(False) def as_singleton_view(self): return self._clone(as_view=True) def expand(self, pcoll): def add_input_types(transform): type_hints = self.get_type_hints() if type_hints.input_types: return transform.with_input_types(type_hints.input_types[0][0]) return transform combine_per_key = CombinePerKey(self.fn, *self.args, **self.kwargs) if self.fanout: combine_per_key = combine_per_key.with_hot_key_fanout(self.fanout) combined = (pcoll | 'KeyWithVoid' >> add_input_types( Map(lambda v: (None, v)).with_output_types( KV[None, pcoll.element_type])) | 'CombinePerKey' >> combine_per_key | 'UnKey' >> Map(lambda k_v: k_v[1])) if not self.has_defaults and not self.as_view: return combined if self.has_defaults: combine_fn = ( self.fn if isinstance(self.fn, CombineFn) else CombineFn.from_callable(self.fn)) default_value = combine_fn.apply([], *self.args, **self.kwargs) else: default_value = pvalue.AsSingleton._NO_DEFAULT # pylint: disable=protected-access view = pvalue.AsSingleton(combined, default_value=default_value) if self.as_view: return view else: if pcoll.windowing.windowfn != GlobalWindows(): raise ValueError( "Default values are not yet supported in CombineGlobally() if the " "output PCollection is not windowed by GlobalWindows. " "Instead, use CombineGlobally().without_defaults() to output " "an empty PCollection if the input PCollection is empty, " "or CombineGlobally().as_singleton_view() to get the default " "output of the CombineFn if the input PCollection is empty.") def typed(transform): # TODO(robertwb): We should infer this. if combined.element_type: return transform.with_output_types(combined.element_type) return transform return (pcoll.pipeline | 'DoOnce' >> Create([None]) | 'InjectDefault' >> typed(Map(lambda _, s: s, view))) class CombinePerKey(PTransformWithSideInputs): """A per-key Combine transform. Identifies sets of values associated with the same key in the input PCollection, then applies a CombineFn to condense those sets to single values. See documentation in CombineFn for details on the specifics on how CombineFns are applied. Args: pcoll: input pcollection. fn: instance of CombineFn to apply to all values under the same key in pcoll, or a callable whose signature is ``f(iterable, *args, **kwargs)`` (e.g., sum, max). *args: arguments and side inputs, passed directly to the CombineFn. **kwargs: arguments and side inputs, passed directly to the CombineFn. Returns: A PObject holding the result of the combine operation. """ def with_hot_key_fanout(self, fanout): """A per-key combine operation like self but with two levels of aggregation. If a given key is produced by too many upstream bundles, the final reduction can become a bottleneck despite partial combining being lifted pre-GroupByKey. In these cases it can be helpful to perform intermediate partial aggregations in parallel and then re-group to peform a final (per-key) combine. This is also useful for high-volume keys in streaming where combiners are not generally lifted for latency reasons. Note that a fanout greater than 1 requires the data to be sent through two GroupByKeys, and a high fanout can also result in more shuffle data due to less per-bundle combining. Setting the fanout for a key at 1 or less places values on the "cold key" path that skip the intermediate level of aggregation. Args: fanout: either an int, for a constant-degree fanout, or a callable mapping keys to a key-specific degree of fanout Returns: A per-key combining PTransform with the specified fanout. """ from apache_beam.transforms.combiners import curry_combine_fn return _CombinePerKeyWithHotKeyFanout( curry_combine_fn(self.fn, self.args, self.kwargs), fanout) def display_data(self): return {'combine_fn': DisplayDataItem(self.fn.__class__, label='Combine Function'), 'combine_fn_dd': self.fn} def make_fn(self, fn): self._fn_label = ptransform.label_from_callable(fn) return fn if isinstance(fn, CombineFn) else CombineFn.from_callable(fn) def default_label(self): return '%s(%s)' % (self.__class__.__name__, self._fn_label) def _process_argspec_fn(self): return lambda element, *args, **kwargs: None def expand(self, pcoll): args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) return pcoll | GroupByKey() | 'Combine' >> CombineValues( self.fn, *args, **kwargs) def default_type_hints(self): hints = self.fn.get_type_hints().copy() if hints.input_types: K = typehints.TypeVariable('K') args, kwargs = hints.input_types args = (typehints.Tuple[K, args[0]],) + args[1:] hints.set_input_types(*args, **kwargs) else: K = typehints.Any if hints.output_types: main_output_type = hints.simple_output_type('') hints.set_output_types(typehints.Tuple[K, main_output_type]) return hints def to_runner_api_parameter(self, context): if self.args or self.kwargs: from apache_beam.transforms.combiners import curry_combine_fn combine_fn = curry_combine_fn(self.fn, self.args, self.kwargs) else: combine_fn = self.fn return ( common_urns.composites.COMBINE_PER_KEY.urn, _combine_payload(combine_fn, context)) @PTransform.register_urn( common_urns.composites.COMBINE_PER_KEY.urn, beam_runner_api_pb2.CombinePayload) def from_runner_api_parameter(combine_payload, context): return CombinePerKey( CombineFn.from_runner_api(combine_payload.combine_fn, context)) def runner_api_requires_keyed_input(self): return True # TODO(robertwb): Rename to CombineGroupedValues? class CombineValues(PTransformWithSideInputs): def make_fn(self, fn): return fn if isinstance(fn, CombineFn) else CombineFn.from_callable(fn) def expand(self, pcoll): args, kwargs = util.insert_values_in_args( self.args, self.kwargs, self.side_inputs) input_type = pcoll.element_type key_type = None if input_type is not None: key_type, _ = input_type.tuple_types runtime_type_check = ( pcoll.pipeline._options.view_as(TypeOptions).runtime_type_check) return pcoll | ParDo( CombineValuesDoFn(key_type, self.fn, runtime_type_check), *args, **kwargs) def to_runner_api_parameter(self, context): if self.args or self.kwargs: from apache_beam.transforms.combiners import curry_combine_fn combine_fn = curry_combine_fn(self.fn, self.args, self.kwargs) else: combine_fn = self.fn return ( common_urns.combine_components.COMBINE_GROUPED_VALUES.urn, _combine_payload(combine_fn, context)) @PTransform.register_urn( common_urns.combine_components.COMBINE_GROUPED_VALUES.urn, beam_runner_api_pb2.CombinePayload) def from_runner_api_parameter(combine_payload, context): return CombineValues( CombineFn.from_runner_api(combine_payload.combine_fn, context)) class CombineValuesDoFn(DoFn): """DoFn for performing per-key Combine transforms.""" def __init__(self, input_pcoll_type, combinefn, runtime_type_check): super(CombineValuesDoFn, self).__init__() self.combinefn = combinefn self.runtime_type_check = runtime_type_check def process(self, element, *args, **kwargs): # Expected elements input to this DoFn are 2-tuples of the form # (key, iter), with iter an iterable of all the values associated with key # in the input PCollection. if self.runtime_type_check: # Apply the combiner in a single operation rather than artificially # breaking it up so that output type violations manifest as TypeCheck # errors rather than type errors. return [ (element[0], self.combinefn.apply(element[1], *args, **kwargs))] # Add the elements into three accumulators (for testing of merge). elements = list(element[1]) accumulators = [] for k in range(3): if len(elements) <= k: break accumulators.append( self.combinefn.add_inputs( self.combinefn.create_accumulator(*args, **kwargs), elements[k::3], *args, **kwargs)) # Merge the accumulators. accumulator = self.combinefn.merge_accumulators( accumulators, *args, **kwargs) # Convert accumulator to the final result. return [(element[0], self.combinefn.extract_output(accumulator, *args, **kwargs))] def default_type_hints(self): hints = self.combinefn.get_type_hints().copy() if hints.input_types: K = typehints.TypeVariable('K') args, kwargs = hints.input_types args = (typehints.Tuple[K, typehints.Iterable[args[0]]],) + args[1:] hints.set_input_types(*args, **kwargs) else: K = typehints.Any if hints.output_types: main_output_type = hints.simple_output_type('') hints.set_output_types(typehints.Tuple[K, main_output_type]) return hints class _CombinePerKeyWithHotKeyFanout(PTransform): def __init__(self, combine_fn, fanout): self._fanout_fn = ( (lambda key: fanout) if isinstance(fanout, int) else fanout) self._combine_fn = combine_fn def expand(self, pcoll): from apache_beam.transforms.trigger import AccumulationMode combine_fn = self._combine_fn fanout_fn = self._fanout_fn class SplitHotCold(DoFn): def start_bundle(self): # Spreading a hot key across all possible sub-keys for all bundles # would defeat the goal of not overwhelming downstream reducers # (as well as making less efficient use of PGBK combining tables). # Instead, each bundle independently makes a consistent choice about # which "shard" of a key to send its intermediate results. self._nonce = int(random.getrandbits(31)) def process(self, element): key, value = element fanout = fanout_fn(key) if fanout <= 1: # Boolean indicates this is not an accumulator. yield (key, (False, value)) # cold else: yield pvalue.TaggedOutput('hot', ((self._nonce % fanout, key), value)) class PreCombineFn(CombineFn): @staticmethod def extract_output(accumulator): # Boolean indicates this is an accumulator. return (True, accumulator) create_accumulator = combine_fn.create_accumulator add_input = combine_fn.add_input merge_accumulators = combine_fn.merge_accumulators class PostCombineFn(CombineFn): @staticmethod def add_input(accumulator, element): is_accumulator, value = element if is_accumulator: return combine_fn.merge_accumulators([accumulator, value]) else: return combine_fn.add_input(accumulator, value) create_accumulator = combine_fn.create_accumulator merge_accumulators = combine_fn.merge_accumulators extract_output = combine_fn.extract_output def StripNonce(nonce_key_value): (_, key), value = nonce_key_value return key, value cold, hot = pcoll | ParDo(SplitHotCold()).with_outputs('hot', main='cold') cold.element_type = typehints.Any # No multi-output type hints. precombined_hot = ( hot # Avoid double counting that may happen with stacked accumulating mode. | 'WindowIntoDiscarding' >> WindowInto( pcoll.windowing, accumulation_mode=AccumulationMode.DISCARDING) | CombinePerKey(PreCombineFn()) | Map(StripNonce) | 'WindowIntoOriginal' >> WindowInto(pcoll.windowing)) return ( (cold, precombined_hot) | Flatten() | CombinePerKey(PostCombineFn())) @typehints.with_input_types(typehints.KV[K, V]) @typehints.with_output_types(typehints.KV[K, typehints.Iterable[V]]) class GroupByKey(PTransform): """A group by key transform. Processes an input PCollection consisting of key/value pairs represented as a tuple pair. The result is a PCollection where values having a common key are grouped together. For example (a, 1), (b, 2), (a, 3) will result into (a, [1, 3]), (b, [2]). The implementation here is used only when run on the local direct runner. """ class ReifyWindows(DoFn): def process(self, element, window=DoFn.WindowParam, timestamp=DoFn.TimestampParam): try: k, v = element except TypeError: raise TypeCheckError('Input to GroupByKey must be a PCollection with ' 'elements compatible with KV[A, B]') return [(k, WindowedValue(v, timestamp, [window]))] def infer_output_type(self, input_type): key_type, value_type = trivial_inference.key_value_types(input_type) return Iterable[KV[key_type, typehints.WindowedValue[value_type]]] def expand(self, pcoll): # This code path is only used in the local direct runner. For Dataflow # runner execution, the GroupByKey transform is expanded on the service. input_type = pcoll.element_type if input_type is not None: # Initialize type-hints used below to enforce type-checking and to pass # downstream to further PTransforms. key_type, value_type = trivial_inference.key_value_types(input_type) # Enforce the input to a GBK has a KV element type. pcoll.element_type = KV[key_type, value_type] typecoders.registry.verify_deterministic( typecoders.registry.get_coder(key_type), 'GroupByKey operation "%s"' % self.label) reify_output_type = KV[key_type, typehints.WindowedValue[value_type]] gbk_input_type = ( KV[key_type, Iterable[typehints.WindowedValue[value_type]]]) gbk_output_type = KV[key_type, Iterable[value_type]] # pylint: disable=bad-continuation return (pcoll | 'ReifyWindows' >> (ParDo(self.ReifyWindows()) .with_output_types(reify_output_type)) | 'GroupByKey' >> (_GroupByKeyOnly() .with_input_types(reify_output_type) .with_output_types(gbk_input_type)) | ('GroupByWindow' >> _GroupAlsoByWindow(pcoll.windowing) .with_input_types(gbk_input_type) .with_output_types(gbk_output_type))) else: # The input_type is None, run the default return (pcoll | 'ReifyWindows' >> ParDo(self.ReifyWindows()) | 'GroupByKey' >> _GroupByKeyOnly() | 'GroupByWindow' >> _GroupAlsoByWindow(pcoll.windowing)) def infer_output_type(self, input_type): key_type, value_type = trivial_inference.key_value_types(input_type) return KV[key_type, Iterable[value_type]] def to_runner_api_parameter(self, unused_context): return common_urns.primitives.GROUP_BY_KEY.urn, None @PTransform.register_urn(common_urns.primitives.GROUP_BY_KEY.urn, None) def from_runner_api_parameter(unused_payload, unused_context): return GroupByKey() def runner_api_requires_keyed_input(self): return True @typehints.with_input_types(typehints.KV[K, V]) @typehints.with_output_types(typehints.KV[K, typehints.Iterable[V]]) class _GroupByKeyOnly(PTransform): """A group by key transform, ignoring windows.""" def infer_output_type(self, input_type): key_type, value_type = trivial_inference.key_value_types(input_type) return KV[key_type, Iterable[value_type]] def expand(self, pcoll): self._check_pcollection(pcoll) return pvalue.PCollection(pcoll.pipeline) @typehints.with_input_types(typehints.KV[K, typehints.Iterable[V]]) @typehints.with_output_types(typehints.KV[K, typehints.Iterable[V]]) class _GroupAlsoByWindow(ParDo): """The GroupAlsoByWindow transform.""" def __init__(self, windowing): super(_GroupAlsoByWindow, self).__init__( _GroupAlsoByWindowDoFn(windowing)) self.windowing = windowing def expand(self, pcoll): self._check_pcollection(pcoll) return pvalue.PCollection(pcoll.pipeline) class _GroupAlsoByWindowDoFn(DoFn): # TODO(robertwb): Support combiner lifting. def __init__(self, windowing): super(_GroupAlsoByWindowDoFn, self).__init__() self.windowing = windowing def infer_output_type(self, input_type): key_type, windowed_value_iter_type = trivial_inference.key_value_types( input_type) value_type = windowed_value_iter_type.inner_type.inner_type return Iterable[KV[key_type, Iterable[value_type]]] def start_bundle(self): # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import create_trigger_driver # pylint: enable=wrong-import-order, wrong-import-position self.driver = create_trigger_driver(self.windowing, True) def process(self, element): k, vs = element return self.driver.process_entire_key(k, vs) class Partition(PTransformWithSideInputs): """Split a PCollection into several partitions. Uses the specified PartitionFn to separate an input PCollection into the specified number of sub-PCollections. When apply()d, a Partition() PTransform requires the following: Args: partitionfn: a PartitionFn, or a callable with the signature described in CallableWrapperPartitionFn. n: number of output partitions. The result of this PTransform is a simple list of the output PCollections representing each of n partitions, in order. """ class ApplyPartitionFnFn(DoFn): """A DoFn that applies a PartitionFn.""" def process(self, element, partitionfn, n, *args, **kwargs): partition = partitionfn.partition_for(element, n, *args, **kwargs) if not 0 <= partition < n: raise ValueError( 'PartitionFn specified out-of-bounds partition index: ' '%d not in [0, %d)' % (partition, n)) # Each input is directed into the output that corresponds to the # selected partition. yield pvalue.TaggedOutput(str(partition), element) def make_fn(self, fn): return fn if isinstance(fn, PartitionFn) else CallableWrapperPartitionFn(fn) def expand(self, pcoll): n = int(self.args[0]) return pcoll | ParDo( self.ApplyPartitionFnFn(), self.fn, *self.args, **self.kwargs).with_outputs(*[str(t) for t in range(n)]) class Windowing(object): def __init__(self, windowfn, triggerfn=None, accumulation_mode=None, timestamp_combiner=None): global AccumulationMode, DefaultTrigger # pylint: disable=global-variable-not-assigned # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import AccumulationMode, DefaultTrigger # pylint: enable=wrong-import-order, wrong-import-position if triggerfn is None: triggerfn = DefaultTrigger() if accumulation_mode is None: if triggerfn == DefaultTrigger(): accumulation_mode = AccumulationMode.DISCARDING else: raise ValueError( 'accumulation_mode must be provided for non-trivial triggers') if not windowfn.get_window_coder().is_deterministic(): raise ValueError( 'window fn (%s) does not have a determanistic coder (%s)' % ( windowfn, windowfn.get_window_coder())) self.windowfn = windowfn self.triggerfn = triggerfn self.accumulation_mode = accumulation_mode self.timestamp_combiner = ( timestamp_combiner or TimestampCombiner.OUTPUT_AT_EOW) self._is_default = ( self.windowfn == GlobalWindows() and self.triggerfn == DefaultTrigger() and self.accumulation_mode == AccumulationMode.DISCARDING and self.timestamp_combiner == TimestampCombiner.OUTPUT_AT_EOW) def __repr__(self): return "Windowing(%s, %s, %s, %s)" % (self.windowfn, self.triggerfn, self.accumulation_mode, self.timestamp_combiner) def __eq__(self, other): if type(self) == type(other): if self._is_default and other._is_default: return True return ( self.windowfn == other.windowfn and self.triggerfn == other.triggerfn and self.accumulation_mode == other.accumulation_mode and self.timestamp_combiner == other.timestamp_combiner) return False def __ne__(self, other): # TODO(BEAM-5949): Needed for Python 2 compatibility. return not self == other def __hash__(self): return hash((self.windowfn, self.accumulation_mode, self.timestamp_combiner)) def is_default(self): return self._is_default def to_runner_api(self, context): return beam_runner_api_pb2.WindowingStrategy( window_fn=self.windowfn.to_runner_api(context), # TODO(robertwb): Prohibit implicit multi-level merging. merge_status=(beam_runner_api_pb2.MergeStatus.NEEDS_MERGE if self.windowfn.is_merging() else beam_runner_api_pb2.MergeStatus.NON_MERGING), window_coder_id=context.coders.get_id( self.windowfn.get_window_coder()), trigger=self.triggerfn.to_runner_api(context), accumulation_mode=self.accumulation_mode, output_time=self.timestamp_combiner, # TODO(robertwb): Support EMIT_IF_NONEMPTY closing_behavior=beam_runner_api_pb2.ClosingBehavior.EMIT_ALWAYS, OnTimeBehavior=beam_runner_api_pb2.OnTimeBehavior.FIRE_ALWAYS, allowed_lateness=0) @staticmethod def from_runner_api(proto, context): # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms.trigger import TriggerFn return Windowing( windowfn=WindowFn.from_runner_api(proto.window_fn, context), triggerfn=TriggerFn.from_runner_api(proto.trigger, context), accumulation_mode=proto.accumulation_mode, timestamp_combiner=proto.output_time) @typehints.with_input_types(T) @typehints.with_output_types(T) class WindowInto(ParDo): """A window transform assigning windows to each element of a PCollection. Transforms an input PCollection by applying a windowing function to each element. Each transformed element in the result will be a WindowedValue element with the same input value and timestamp, with its new set of windows determined by the windowing function. """ class WindowIntoFn(DoFn): """A DoFn that applies a WindowInto operation.""" def __init__(self, windowing): self.windowing = windowing def process(self, element, timestamp=DoFn.TimestampParam, window=DoFn.WindowParam): context = WindowFn.AssignContext(timestamp, element=element, window=window) new_windows = self.windowing.windowfn.assign(context) yield WindowedValue(element, context.timestamp, new_windows) def __init__(self, windowfn, **kwargs): """Initializes a WindowInto transform. Args: windowfn: Function to be used for windowing trigger: (optional) Trigger used for windowing, or None for default. accumulation_mode: (optional) Accumulation mode used for windowing, required for non-trivial triggers. timestamp_combiner: (optional) Timestamp combniner used for windowing, or None for default. """ if isinstance(windowfn, Windowing): # Overlay windowing with kwargs. windowing = windowfn windowfn = windowing.windowfn # Use windowing to fill in defaults for kwargs. kwargs = dict(dict( trigger=windowing.triggerfn, accumulation_mode=windowing.accumulation_mode, timestamp_combiner=windowing.timestamp_combiner), **kwargs) # Use kwargs to simulate keyword-only arguments. triggerfn = kwargs.pop('trigger', None) accumulation_mode = kwargs.pop('accumulation_mode', None) timestamp_combiner = kwargs.pop('timestamp_combiner', None) if kwargs: raise ValueError('Unexpected keyword arguments: %s' % list(kwargs)) self.windowing = Windowing( windowfn, triggerfn, accumulation_mode, timestamp_combiner) super(WindowInto, self).__init__(self.WindowIntoFn(self.windowing)) def get_windowing(self, unused_inputs): return self.windowing def infer_output_type(self, input_type): return input_type def expand(self, pcoll): input_type = pcoll.element_type if input_type is not None: output_type = input_type self.with_input_types(input_type) self.with_output_types(output_type) return super(WindowInto, self).expand(pcoll) def to_runner_api_parameter(self, context): return ( common_urns.primitives.ASSIGN_WINDOWS.urn, self.windowing.to_runner_api(context)) @staticmethod def from_runner_api_parameter(proto, context): windowing = Windowing.from_runner_api(proto, context) return WindowInto( windowing.windowfn, trigger=windowing.triggerfn, accumulation_mode=windowing.accumulation_mode, timestamp_combiner=windowing.timestamp_combiner) PTransform.register_urn( common_urns.primitives.ASSIGN_WINDOWS.urn, # TODO(robertwb): Update WindowIntoPayload to include the full strategy. # (Right now only WindowFn is used, but we need this to reconstitute the # WindowInto transform, and in the future will need it at runtime to # support meta-data driven triggers.) # TODO(robertwb): Use a reference rather than embedding? beam_runner_api_pb2.WindowingStrategy, WindowInto.from_runner_api_parameter) # Python's pickling is broken for nested classes. WindowIntoFn = WindowInto.WindowIntoFn class Flatten(PTransform): """Merges several PCollections into a single PCollection. Copies all elements in 0 or more PCollections into a single output PCollection. If there are no input PCollections, the resulting PCollection will be empty (but see also kwargs below). Args: **kwargs: Accepts a single named argument "pipeline", which specifies the pipeline that "owns" this PTransform. Ordinarily Flatten can obtain this information from one of the input PCollections, but if there are none (or if there's a chance there may be none), this argument is the only way to provide pipeline information and should be considered mandatory. """ def __init__(self, **kwargs): super(Flatten, self).__init__() self.pipeline = kwargs.pop('pipeline', None) if kwargs: raise ValueError('Unexpected keyword arguments: %s' % list(kwargs)) def _extract_input_pvalues(self, pvalueish): try: pvalueish = tuple(pvalueish) except TypeError: raise ValueError('Input to Flatten must be an iterable. ' 'Got a value of type %s instead.' % type(pvalueish)) return pvalueish, pvalueish def expand(self, pcolls): for pcoll in pcolls: self._check_pcollection(pcoll) result = pvalue.PCollection(self.pipeline) result.element_type = typehints.Union[ tuple(pcoll.element_type for pcoll in pcolls)] return result def get_windowing(self, inputs): if not inputs: # TODO(robertwb): Return something compatible with every windowing? return Windowing(GlobalWindows()) return super(Flatten, self).get_windowing(inputs) def to_runner_api_parameter(self, context): return common_urns.primitives.FLATTEN.urn, None @staticmethod def from_runner_api_parameter(unused_parameter, unused_context): return Flatten() PTransform.register_urn( common_urns.primitives.FLATTEN.urn, None, Flatten.from_runner_api_parameter) class Create(PTransform): """A transform that creates a PCollection from an iterable.""" def __init__(self, values): """Initializes a Create transform. Args: values: An object of values for the PCollection """ super(Create, self).__init__() if isinstance(values, (unicode, str, bytes)): raise TypeError('PTransform Create: Refusing to treat string as ' 'an iterable. (string=%r)' % values) elif isinstance(values, dict): values = values.items() self.values = tuple(values) def to_runner_api_parameter(self, context): # Required as this is identified by type in PTransformOverrides. # TODO(BEAM-3812): Use an actual URN here. return self.to_runner_api_pickled(context) def infer_output_type(self, unused_input_type): if not self.values: return Any return Union[[trivial_inference.instance_to_type(v) for v in self.values]] def get_output_type(self): return (self.get_type_hints().simple_output_type(self.label) or self.infer_output_type(None)) def expand(self, pbegin): assert isinstance(pbegin, pvalue.PBegin) # Must guard against this as some legacy runners don't implement impulse. debug_options = pbegin.pipeline._options.view_as(DebugOptions) fn_api = (debug_options.experiments and 'beam_fn_api' in debug_options.experiments) if fn_api: coder = typecoders.registry.get_coder(self.get_output_type()) serialized_values = [coder.encode(v) for v in self.values] # Avoid the "redistributing" reshuffle for 0 and 1 element Creates. # These special cases are often used in building up more complex # transforms (e.g. Write). class MaybeReshuffle(PTransform): def expand(self, pcoll): if len(serialized_values) > 1: from apache_beam.transforms.util import Reshuffle return pcoll | Reshuffle() else: return pcoll return ( pbegin | Impulse() | FlatMap(lambda _: serialized_values) | MaybeReshuffle() | Map(coder.decode).with_output_types(self.get_output_type())) else: self.pipeline = pbegin.pipeline from apache_beam.io import iobase coder = typecoders.registry.get_coder(self.get_output_type()) source = self._create_source_from_iterable(self.values, coder) return (pbegin.pipeline | iobase.Read(source).with_output_types(self.get_output_type())) def get_windowing(self, unused_inputs): return Windowing(GlobalWindows()) @staticmethod def _create_source_from_iterable(values, coder): return Create._create_source(list(map(coder.encode, values)), coder) @staticmethod def _create_source(serialized_values, coder): from apache_beam.transforms.create_source import _CreateSource return _CreateSource(serialized_values, coder) class Impulse(PTransform): """Impulse primitive.""" def expand(self, pbegin): if not isinstance(pbegin, pvalue.PBegin): raise TypeError( 'Input to Impulse transform must be a PBegin but found %s' % pbegin) return pvalue.PCollection(pbegin.pipeline) def get_windowing(self, inputs): return Windowing(GlobalWindows()) def infer_output_type(self, unused_input_type): return bytes def to_runner_api_parameter(self, unused_context): return common_urns.primitives.IMPULSE.urn, None @PTransform.register_urn(common_urns.primitives.IMPULSE.urn, None) def from_runner_api_parameter(unused_parameter, unused_context): return Impulse()
mxm/incubator-beam
sdks/python/apache_beam/transforms/core.py
Python
apache-2.0
76,746
#!/usr/bin/python import sqlite3 import accounts import json import time #----------------------------------------------------------------------------- class DB: def __init__(self, config): self.conn = sqlite3.connect( config['DATABASE_FILE_ABS'], isolation_level = "IMMEDIATE", ) self.create_tables() #------------------------------------------------------- # creating missing tables {{{ def has_table(self, name): with self.conn as cursor: result = cursor.execute( ''' SELECT count(*) FROM sqlite_master WHERE type = 'table' AND name = ? ''', (name,) ).fetchone() return result[0] > 0 def create_tables(self): with self.conn as cursor: if not self.has_table("pending"): cursor.execute(""" CREATE TABLE pending ( token TEXT PRIMARY KEY, nick TEXT, email TEXT, firstname TEXT, lastname TEXT, crypt_password TEXT ) """) if not self.has_table("password_reset"): cursor.execute(""" CREATE TABLE password_reset ( nick TEXT PRIMARY KEY, token TEXT ) """) if not self.has_table("email_change"): cursor.execute(""" CREATE TABLE email_change ( nick TEXT PRIMARY KEY, email TEXT, token TEXT ) """) if not self.has_table("session"): cursor.execute(""" CREATE TABLE session ( session_id TEXT PRIMARY KEY, variables TEXT, last_access INTEGER ) """) # }}} #------------------------------------------------------- # register forms {{{ def save_form(self, token, nick, email, firstname, lastname, password): with self.conn as cursor: cursor.execute( """ INSERT INTO pending (token, nick, email, firstname, lastname, crypt_password) VALUES (?, ?, ?, ?, ?, ?) """, (token, nick, email, firstname, lastname, password) ) def load_form(self, token): with self.conn as cursor: result = cursor.execute( """ SELECT nick, email, firstname, lastname, crypt_password FROM pending WHERE token = ? """, (token,) ).fetchone() # None | (nick, email, firstname, lastname, crypt_password) return result def delete_all_forms_for(self, nick): # XXX: deleting all attempts for `nick' registration with self.conn as cursor: cursor.execute("DELETE FROM pending WHERE nick = ?", (nick,)) # }}} #------------------------------------------------------- # password reset confirmations {{{ def save_reset_password_token(self, token, nick): with self.conn as cursor: cursor.execute( """ DELETE FROM password_reset WHERE nick = ? """, (nick,) ) cursor.execute( """ INSERT INTO password_reset (nick, token) VALUES (?, ?) """, (nick, token) ) def load_reset_password_token(self, token): with self.conn as cursor: result = cursor.execute( """ SELECT nick FROM password_reset WHERE token = ? """, (token,) ).fetchone() if result is None: return None return result[0] # return just nick def delete_reset_password_token(self, token): with self.conn as cursor: cursor.execute( """ DELETE FROM password_reset WHERE token = ? """, (token,) ) # }}} #------------------------------------------------------- # e-mail change confirmations {{{ def save_email_change_token(self, token, nick, email): with self.conn as cursor: cursor.execute( """ DELETE FROM email_change WHERE nick = ? """, (nick,) ) cursor.execute( """ INSERT INTO email_change (nick, email, token) VALUES (?, ?, ?) """, (nick, email, token) ) def load_email_change_token(self, token): with self.conn as cursor: result = cursor.execute( """ SELECT nick, email FROM email_change WHERE token = ? """, (token,) ).fetchone() if result is None: return None return result # (nick, email) def delete_email_change_token(self, token): with self.conn as cursor: cursor.execute( """ DELETE FROM email_change WHERE token = ? """, (token,) ) # }}} #------------------------------------------------------- # HTTP sessions {{{ def save_session(self, session_id, variables): access_time = time.time() session_data = json.dumps(variables, sort_keys = True) with self.conn as cursor: result = cursor.execute( """ INSERT OR IGNORE INTO session VALUES (?, ?, ?) """, (session_id, session_data, access_time) ) if result.rowcount == 0: cursor.execute( """ UPDATE session SET variables = ?, last_access = ? WHERE session_id = ? """, (session_data, access_time, session_id) ) def delete_session(self, session_id): with self.conn as cursor: cursor.execute("DELETE FROM session WHERE session_id = ?", (session_id,)) def load_session(self, session_id): with self.conn as cursor: result = cursor.execute( """ SELECT variables FROM session WHERE session_id = ? """, (session_id,) ).fetchone() if result is None: return {} else: return json.loads(result[0]) # }}} #------------------------------------------------------- #----------------------------------------------------------------------------- # vim:ft=python:foldmethod=marker
HackerspaceWroclaw/rejestruj
rejestruj/fdb.py
Python
gpl-3.0
7,382
from wedo2.bluetooth.bluetooth_io import BluetoothIO from wedo2.input_output.data_format import DataFormat from wedo2.input_output.input_format import InputFormat, InputFormatUnit from wedo2.bluetooth.connect_info import ConnectInfo from wedo2.utils import byte_utils class LegoService(object): def __init__(self, connect_info, io): assert connect_info is not None, "Cannot instantiate service with null ConnectInfo" assert io is not None, "Cannot instantiate service with null IO" self.connect_info = connect_info self.io = io self.valid_data_formats = set() self.input_format = self.get_default_input_format() self.value_data = None def create_service(connect_info, io): return LegoService(connect_info, io) def verify_data(self, *args): if len(args) == 1: data = args[0] if data is not None and len(self.valid_data_formats) != 0: d_format = self.data_format_for_input_format(self.input_format) if d_format is None: raise Exception("Did not find a valid input data format") self.verify_data(data, d_format) elif len(args) == 2: data = args[0] d_format = args[1] if len(data) != (d_format.dataset_size * d_format.dataset_count): raise Exception("Package sizes don't add up. Something is wrong") def data_format_for_input_format(self, i_format): for d_format in self.valid_data_formats: if d_format.mode == i_format.mode and d_format.unit == i_format.unit: return d_format return None def get_service_name(self): return "Undefined" def get_default_input_format(self): return None def update_input_format(self, new_format): self.io.write_input_format(new_format, self.connect_info.connect_id) self.input_format = new_format def get_input_format_mode(self): if self.input_format is not None: return self.input_format.mode elif self.get_default_input_format() is not None: return self.get_default_input_format().mode return 0 def update_current_input_format_with_new_mode(self, new_mode): if self.input_format is not None: self.update_input_format(self.input_format.input_format_by_setting_mode(new_mode)) elif self.get_default_input_format() is not None: self.update_input_format(self.get_default_input_format().input_format_by_setting_mode(new_mode)) else: print("Couldn't update input format") def add_valid_data_format(self, d_format): assert d_format is not None, "DataFormat cannot be None" self.valid_data_formats.add(d_format) def remove_valid_data_format(self, d_format): assert d_format is not None, "DataFormat cannot be None" if len(self.valid_data_formats == 0): return self.valid_data_formats.remove(d_format) # 0 or 1 argument def get_number_from_value_data(self, *args): if len(args) == 0: return self.get_number_from_value_data(self.value_data) else: # len(args) == 1 data = args[0] values_as_numbers = self.get_numbers_from_value_data_set(data) if values_as_numbers is None: return None if len(values_as_numbers) != 1: return None return values_as_numbers[0] # 0 or 1 argument def get_numbers_from_value_data_set(self, *args): if len(args) == 0: return self.get_numbers_from_value_data_set(self.value_data) else: # len(args) == 1 data_set = args[0] if data_set is None: return None d_format = self.data_format_for_input_format(self.input_format) if d_format is None: print("d_format was None") return None try: self.verify_data(data_set, d_format) result_array = [] current_index = 0 for i in range(0, d_format.dataset_count): current_index = i * d_format.dataset_size data_set_bytes = bytearray(data_set[current_index: current_index + d_format.dataset_size]) if d_format.unit == InputFormatUnit.INPUT_FORMAT_UNIT_RAW or \ d_format.unit == InputFormatUnit.INPUT_FORMAT_UNIT_PERCENTAGE: result_array.append(self.get_integer_from_data(data_set_bytes)) else: result_array.append(self.get_float_from_data(data_set_bytes)) return result_array except: return None def get_float_from_data(self, data): if len(data) > 4: return 0 return byte_utils.get_float(data) def get_integer_from_data(self, data): if len(data) == 1: return data[0] elif len(data) == 2: return byte_utils.get_short(data) elif len(data) == 4: return byte_utils.get_int(data) else: return 0 def __eq__(self, obj): if obj is None: return False elif self.connect_info != obj.connect_info: return False else: return True def __ne__(self, obj): return not self.__eq__(obj) def __hash__(self): return hash(str(self))
jannopet/LEGO-WeDo-2.0-Python-SDK
wedo2/services/lego_service.py
Python
mit
5,639
""" Adapter for pysqlite backend """ from current.db.pysqlite.pysqlite import PySqliteDB ## END OF LINE ##
jjneely/current
current/db/pysqlite/__init__.py
Python
gpl-2.0
109
"""The tests for the analytics .""" from unittest.mock import AsyncMock, Mock, PropertyMock, patch import aiohttp import pytest from homeassistant.components.analytics.analytics import Analytics from homeassistant.components.analytics.const import ( ANALYTICS_ENDPOINT_URL, ANALYTICS_ENDPOINT_URL_DEV, ATTR_BASE, ATTR_DIAGNOSTICS, ATTR_PREFERENCES, ATTR_STATISTICS, ATTR_USAGE, ) from homeassistant.components.api import ATTR_UUID from homeassistant.const import ATTR_DOMAIN from homeassistant.loader import IntegrationNotFound from homeassistant.setup import async_setup_component MOCK_UUID = "abcdefg" MOCK_VERSION = "1970.1.0" MOCK_VERSION_DEV = "1970.1.0.dev0" MOCK_VERSION_NIGHTLY = "1970.1.0.dev19700101" async def test_no_send(hass, caplog, aioclient_mock): """Test send when no preferences are defined.""" analytics = Analytics(hass) with patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=False), ): assert not analytics.preferences[ATTR_BASE] await analytics.send_analytics() assert "Nothing to submit" in caplog.text assert len(aioclient_mock.mock_calls) == 0 async def test_load_with_supervisor_diagnostics(hass): """Test loading with a supervisor that has diagnostics enabled.""" analytics = Analytics(hass) assert not analytics.preferences[ATTR_DIAGNOSTICS] with patch( "homeassistant.components.hassio.get_supervisor_info", side_effect=Mock(return_value={"diagnostics": True}), ), patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=True), ): await analytics.load() assert analytics.preferences[ATTR_DIAGNOSTICS] async def test_load_with_supervisor_without_diagnostics(hass): """Test loading with a supervisor that has not diagnostics enabled.""" analytics = Analytics(hass) analytics._data[ATTR_PREFERENCES][ATTR_DIAGNOSTICS] = True assert analytics.preferences[ATTR_DIAGNOSTICS] with patch( "homeassistant.components.hassio.get_supervisor_info", side_effect=Mock(return_value={"diagnostics": False}), ), patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=True), ): await analytics.load() assert not analytics.preferences[ATTR_DIAGNOSTICS] async def test_failed_to_send(hass, caplog, aioclient_mock): """Test failed to send payload.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=400) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) assert analytics.preferences[ATTR_BASE] with patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() assert ( f"Sending analytics failed with statuscode 400 from {ANALYTICS_ENDPOINT_URL}" in caplog.text ) async def test_failed_to_send_raises(hass, caplog, aioclient_mock): """Test raises when failed to send payload.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, exc=aiohttp.ClientError()) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) assert analytics.preferences[ATTR_BASE] with patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() assert "Error sending analytics" in caplog.text async def test_send_base(hass, caplog, aioclient_mock): """Test send base preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) assert analytics.preferences[ATTR_BASE] with patch("uuid.UUID.hex", new_callable=PropertyMock) as hex, patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ): hex.return_value = MOCK_UUID await analytics.send_analytics() assert f"'uuid': '{MOCK_UUID}'" in caplog.text assert f"'version': '{MOCK_VERSION}'" in caplog.text assert "'installation_type':" in caplog.text assert "'integration_count':" not in caplog.text assert "'integrations':" not in caplog.text async def test_send_base_with_supervisor(hass, caplog, aioclient_mock): """Test send base preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) assert analytics.preferences[ATTR_BASE] with patch( "homeassistant.components.hassio.get_supervisor_info", side_effect=Mock( return_value={"supported": True, "healthy": True, "arch": "amd64"} ), ), patch( "homeassistant.components.hassio.get_os_info", side_effect=Mock(return_value={"board": "blue", "version": "123"}), ), patch( "homeassistant.components.hassio.get_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.get_host_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=True), ), patch( "uuid.UUID.hex", new_callable=PropertyMock ) as hex, patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ): hex.return_value = MOCK_UUID await analytics.load() await analytics.send_analytics() assert f"'uuid': '{MOCK_UUID}'" in caplog.text assert f"'version': '{MOCK_VERSION}'" in caplog.text assert ( "'supervisor': {'healthy': True, 'supported': True, 'arch': 'amd64'}" in caplog.text ) assert "'operating_system': {'board': 'blue', 'version': '123'}" in caplog.text assert "'installation_type':" in caplog.text assert "'integration_count':" not in caplog.text assert "'integrations':" not in caplog.text async def test_send_usage(hass, caplog, aioclient_mock): """Test send usage preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_USAGE: True}) assert analytics.preferences[ATTR_BASE] assert analytics.preferences[ATTR_USAGE] hass.config.components = ["default_config"] with patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() assert "'integrations': ['default_config']" in caplog.text assert "'integration_count':" not in caplog.text async def test_send_usage_with_supervisor(hass, caplog, aioclient_mock): """Test send usage with supervisor preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_USAGE: True}) assert analytics.preferences[ATTR_BASE] assert analytics.preferences[ATTR_USAGE] hass.config.components = ["default_config"] with patch( "homeassistant.components.hassio.get_supervisor_info", side_effect=Mock( return_value={ "healthy": True, "supported": True, "arch": "amd64", "addons": [{"slug": "test_addon"}], } ), ), patch( "homeassistant.components.hassio.get_os_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.get_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.get_host_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.async_get_addon_info", side_effect=AsyncMock( return_value={ "slug": "test_addon", "protected": True, "version": "1", "auto_update": False, } ), ), patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=True), ), patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ): await analytics.send_analytics() assert ( "'addons': [{'slug': 'test_addon', 'protected': True, 'version': '1', 'auto_update': False}]" in caplog.text ) assert "'addon_count':" not in caplog.text async def test_send_statistics(hass, caplog, aioclient_mock): """Test send statistics preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_STATISTICS: True}) assert analytics.preferences[ATTR_BASE] assert analytics.preferences[ATTR_STATISTICS] hass.config.components = ["default_config"] with patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() assert ( "'state_count': 0, 'automation_count': 0, 'integration_count': 1, 'user_count': 0" in caplog.text ) assert "'integrations':" not in caplog.text async def test_send_statistics_one_integration_fails(hass, caplog, aioclient_mock): """Test send statistics preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_STATISTICS: True}) assert analytics.preferences[ATTR_BASE] assert analytics.preferences[ATTR_STATISTICS] hass.config.components = ["default_config"] with patch( "homeassistant.components.analytics.analytics.async_get_integration", side_effect=IntegrationNotFound("any"), ), patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() post_call = aioclient_mock.mock_calls[0] assert "uuid" in post_call[2] assert post_call[2]["integration_count"] == 0 async def test_send_statistics_async_get_integration_unknown_exception( hass, caplog, aioclient_mock ): """Test send statistics preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_STATISTICS: True}) assert analytics.preferences[ATTR_BASE] assert analytics.preferences[ATTR_STATISTICS] hass.config.components = ["default_config"] with pytest.raises(ValueError), patch( "homeassistant.components.analytics.analytics.async_get_integration", side_effect=ValueError, ), patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() async def test_send_statistics_with_supervisor(hass, caplog, aioclient_mock): """Test send statistics preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_STATISTICS: True}) assert analytics.preferences[ATTR_BASE] assert analytics.preferences[ATTR_STATISTICS] with patch( "homeassistant.components.hassio.get_supervisor_info", side_effect=Mock( return_value={ "healthy": True, "supported": True, "arch": "amd64", "addons": [{"slug": "test_addon"}], } ), ), patch( "homeassistant.components.hassio.get_os_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.get_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.get_host_info", side_effect=Mock(return_value={}), ), patch( "homeassistant.components.hassio.async_get_addon_info", side_effect=AsyncMock( return_value={ "slug": "test_addon", "protected": True, "version": "1", "auto_update": False, } ), ), patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=True), ), patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ): await analytics.send_analytics() assert "'addon_count': 1" in caplog.text assert "'integrations':" not in caplog.text async def test_reusing_uuid(hass, aioclient_mock): """Test reusing the stored UUID.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) analytics._data[ATTR_UUID] = "NOT_MOCK_UUID" await analytics.save_preferences({ATTR_BASE: True}) with patch("uuid.UUID.hex", new_callable=PropertyMock) as hex, patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ): # This is not actually called but that in itself prove the test hex.return_value = MOCK_UUID await analytics.send_analytics() assert analytics.uuid == "NOT_MOCK_UUID" async def test_custom_integrations(hass, aioclient_mock, enable_custom_integrations): """Test sending custom integrations.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) assert await async_setup_component(hass, "test_package", {"test_package": {}}) await analytics.save_preferences({ATTR_BASE: True, ATTR_USAGE: True}) with patch("homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION): await analytics.send_analytics() payload = aioclient_mock.mock_calls[0][2] assert payload["custom_integrations"][0][ATTR_DOMAIN] == "test_package" async def test_dev_url(hass, aioclient_mock): """Test sending payload to dev url.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL_DEV, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) with patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION_DEV ): await analytics.send_analytics() payload = aioclient_mock.mock_calls[0] assert str(payload[1]) == ANALYTICS_ENDPOINT_URL_DEV async def test_dev_url_error(hass, aioclient_mock, caplog): """Test sending payload to dev url that returns error.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL_DEV, status=400) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) with patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION_DEV ): await analytics.send_analytics() payload = aioclient_mock.mock_calls[0] assert str(payload[1]) == ANALYTICS_ENDPOINT_URL_DEV assert ( f"Sending analytics failed with statuscode 400 from {ANALYTICS_ENDPOINT_URL_DEV}" in caplog.text ) async def test_nightly_endpoint(hass, aioclient_mock): """Test sending payload to production url when running nightly.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True}) with patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION_NIGHTLY ): await analytics.send_analytics() payload = aioclient_mock.mock_calls[0] assert str(payload[1]) == ANALYTICS_ENDPOINT_URL async def test_send_with_no_energy(hass, aioclient_mock): """Test send base preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_USAGE: True}) with patch("uuid.UUID.hex", new_callable=PropertyMock) as hex, patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ), patch( "homeassistant.components.analytics.analytics.energy_is_configured", AsyncMock() ) as energy_is_configured: energy_is_configured.return_value = False hex.return_value = MOCK_UUID await analytics.send_analytics() postdata = aioclient_mock.mock_calls[-1][2] assert "energy" not in postdata async def test_send_with_no_energy_config(hass, aioclient_mock): """Test send base preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_USAGE: True}) assert await async_setup_component( hass, "energy", {"recorder": {"db_url": "sqlite://"}} ) with patch("uuid.UUID.hex", new_callable=PropertyMock) as hex, patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ), patch( "homeassistant.components.analytics.analytics.energy_is_configured", AsyncMock() ) as energy_is_configured: energy_is_configured.return_value = False hex.return_value = MOCK_UUID await analytics.send_analytics() postdata = aioclient_mock.mock_calls[-1][2] assert not postdata["energy"]["configured"] async def test_send_with_energy_config(hass, aioclient_mock): """Test send base preferences are defined.""" aioclient_mock.post(ANALYTICS_ENDPOINT_URL, status=200) analytics = Analytics(hass) await analytics.save_preferences({ATTR_BASE: True, ATTR_USAGE: True}) assert await async_setup_component( hass, "energy", {"recorder": {"db_url": "sqlite://"}} ) with patch("uuid.UUID.hex", new_callable=PropertyMock) as hex, patch( "homeassistant.components.analytics.analytics.HA_VERSION", MOCK_VERSION ), patch( "homeassistant.components.analytics.analytics.energy_is_configured", AsyncMock() ) as energy_is_configured: energy_is_configured.return_value = True hex.return_value = MOCK_UUID await analytics.send_analytics() postdata = aioclient_mock.mock_calls[-1][2] assert postdata["energy"]["configured"]
rohitranjan1991/home-assistant
tests/components/analytics/test_analytics.py
Python
mit
18,101
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json from ansible.compat.tests.mock import patch from ansible.modules.network.onyx import onyx_vlan from units.modules.utils import set_module_args from .onyx_module import TestOnyxModule, load_fixture class TestOnyxVlanModule(TestOnyxModule): module = onyx_vlan def setUp(self): super(TestOnyxVlanModule, self).setUp() self.mock_get_config = patch.object( onyx_vlan.OnyxVlanModule, "_get_vlan_config") self.get_config = self.mock_get_config.start() self.mock_load_config = patch( 'ansible.module_utils.network.onyx.onyx.load_config') self.load_config = self.mock_load_config.start() def tearDown(self): super(TestOnyxVlanModule, self).tearDown() self.mock_get_config.stop() self.mock_load_config.stop() def load_fixtures(self, commands=None, transport='cli'): config_file = 'onyx_vlan_show.cfg' self.get_config.return_value = load_fixture(config_file) self.load_config.return_value = None def test_vlan_no_change(self): set_module_args(dict(vlan_id=20)) self.execute_module(changed=False) def test_vlan_remove_name(self): set_module_args(dict(vlan_id=10, name='')) commands = ['vlan 10 no name'] self.execute_module(changed=True, commands=commands) def test_vlan_change_name(self): set_module_args(dict(vlan_id=10, name='test-test')) commands = ['vlan 10 name test-test'] self.execute_module(changed=True, commands=commands) def test_vlan_create(self): set_module_args(dict(vlan_id=30)) commands = ['vlan 30', 'exit'] self.execute_module(changed=True, commands=commands) def test_vlan_create_with_name(self): set_module_args(dict(vlan_id=30, name='test-test')) commands = ['vlan 30', 'exit', 'vlan 30 name test-test'] self.execute_module(changed=True, commands=commands) def test_vlan_remove(self): set_module_args(dict(vlan_id=20, state='absent')) commands = ['no vlan 20'] self.execute_module(changed=True, commands=commands) def test_vlan_remove_not_exist(self): set_module_args(dict(vlan_id=30, state='absent')) self.execute_module(changed=False) def test_vlan_aggregate(self): aggregate = list() aggregate.append(dict(vlan_id=30)) aggregate.append(dict(vlan_id=20)) set_module_args(dict(aggregate=aggregate)) commands = ['vlan 30', 'exit'] self.execute_module(changed=True, commands=commands) def test_vlan_aggregate_purge(self): aggregate = list() aggregate.append(dict(vlan_id=30)) aggregate.append(dict(vlan_id=20)) set_module_args(dict(aggregate=aggregate, purge=True)) commands = ['vlan 30', 'exit', 'no vlan 10', 'no vlan 1'] self.execute_module(changed=True, commands=commands)
ravibhure/ansible
test/units/modules/network/onyx/test_onyx_vlan.py
Python
gpl-3.0
3,728
#!/usr/bin/env python # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Javelin makes resources that should survive an upgrade. Javelin is a tool for creating, verifying, and deleting a small set of resources in a declarative way. """ import argparse import collections import datetime import os import sys import unittest import yaml import tempest.auth from tempest import config from tempest import exceptions from tempest.openstack.common import log as logging from tempest.openstack.common import timeutils from tempest.services.compute.json import flavors_client from tempest.services.compute.json import servers_client from tempest.services.identity.json import identity_client from tempest.services.image.v2.json import image_client from tempest.services.object_storage import container_client from tempest.services.object_storage import object_client from tempest.services.telemetry.json import telemetry_client from tempest.services.volume.json import volumes_client OPTS = {} USERS = {} RES = collections.defaultdict(list) LOG = None JAVELIN_START = datetime.datetime.utcnow() class OSClient(object): _creds = None identity = None servers = None def __init__(self, user, pw, tenant): _creds = tempest.auth.KeystoneV2Credentials( username=user, password=pw, tenant_name=tenant) _auth = tempest.auth.KeystoneV2AuthProvider(_creds) self.identity = identity_client.IdentityClientJSON(_auth) self.servers = servers_client.ServersClientJSON(_auth) self.objects = object_client.ObjectClient(_auth) self.containers = container_client.ContainerClient(_auth) self.images = image_client.ImageClientV2JSON(_auth) self.flavors = flavors_client.FlavorsClientJSON(_auth) self.telemetry = telemetry_client.TelemetryClientJSON(_auth) self.volumes = volumes_client.VolumesClientJSON(_auth) def load_resources(fname): """Load the expected resources from a yaml flie.""" return yaml.load(open(fname, 'r')) def keystone_admin(): return OSClient(OPTS.os_username, OPTS.os_password, OPTS.os_tenant_name) def client_for_user(name): LOG.debug("Entering client_for_user") if name in USERS: user = USERS[name] LOG.debug("Created client for user %s" % user) return OSClient(user['name'], user['pass'], user['tenant']) else: LOG.error("%s not found in USERS: %s" % (name, USERS)) ################### # # TENANTS # ################### def create_tenants(tenants): """Create tenants from resource definition. Don't create the tenants if they already exist. """ admin = keystone_admin() _, body = admin.identity.list_tenants() existing = [x['name'] for x in body] for tenant in tenants: if tenant not in existing: admin.identity.create_tenant(tenant) else: LOG.warn("Tenant '%s' already exists in this environment" % tenant) def destroy_tenants(tenants): admin = keystone_admin() for tenant in tenants: tenant_id = admin.identity.get_tenant_by_name(tenant)['id'] r, body = admin.identity.delete_tenant(tenant_id) ############## # # USERS # ############## def _users_for_tenant(users, tenant): u_for_t = [] for user in users: for n in user: if user[n]['tenant'] == tenant: u_for_t.append(user[n]) return u_for_t def _tenants_from_users(users): tenants = set() for user in users: for n in user: tenants.add(user[n]['tenant']) return tenants def _assign_swift_role(user): admin = keystone_admin() resp, roles = admin.identity.list_roles() role = next(r for r in roles if r['name'] == 'Member') LOG.debug(USERS[user]) try: admin.identity.assign_user_role( USERS[user]['tenant_id'], USERS[user]['id'], role['id']) except exceptions.Conflict: # don't care if it's already assigned pass def create_users(users): """Create tenants from resource definition. Don't create the tenants if they already exist. """ global USERS LOG.info("Creating users") admin = keystone_admin() for u in users: try: tenant = admin.identity.get_tenant_by_name(u['tenant']) except exceptions.NotFound: LOG.error("Tenant: %s - not found" % u['tenant']) continue try: admin.identity.get_user_by_username(tenant['id'], u['name']) LOG.warn("User '%s' already exists in this environment" % u['name']) except exceptions.NotFound: admin.identity.create_user( u['name'], u['pass'], tenant['id'], "%s@%s" % (u['name'], tenant['id']), enabled=True) def destroy_users(users): admin = keystone_admin() for user in users: tenant_id = admin.identity.get_tenant_by_name(user['tenant'])['id'] user_id = admin.identity.get_user_by_username(tenant_id, user['name'])['id'] r, body = admin.identity.delete_user(user_id) def collect_users(users): global USERS LOG.info("Collecting users") admin = keystone_admin() for u in users: tenant = admin.identity.get_tenant_by_name(u['tenant']) u['tenant_id'] = tenant['id'] USERS[u['name']] = u body = admin.identity.get_user_by_username(tenant['id'], u['name']) USERS[u['name']]['id'] = body['id'] class JavelinCheck(unittest.TestCase): def __init__(self, users, resources): super(JavelinCheck, self).__init__() self.users = users self.res = resources def runTest(self, *args): pass def check(self): self.check_users() self.check_objects() self.check_servers() self.check_volumes() self.check_telemetry() def check_users(self): """Check that the users we expect to exist, do. We don't use the resource list for this because we need to validate that things like tenantId didn't drift across versions. """ LOG.info("checking users") for name, user in self.users.iteritems(): client = keystone_admin() _, found = client.identity.get_user(user['id']) self.assertEqual(found['name'], user['name']) self.assertEqual(found['tenantId'], user['tenant_id']) # also ensure we can auth with that user, and do something # on the cloud. We don't care about the results except that it # remains authorized. client = client_for_user(user['name']) resp, body = client.servers.list_servers() self.assertEqual(resp['status'], '200') def check_objects(self): """Check that the objects created are still there.""" if not self.res.get('objects'): return LOG.info("checking objects") for obj in self.res['objects']: client = client_for_user(obj['owner']) r, contents = client.objects.get_object( obj['container'], obj['name']) source = _file_contents(obj['file']) self.assertEqual(contents, source) def check_servers(self): """Check that the servers are still up and running.""" if not self.res.get('servers'): return LOG.info("checking servers") for server in self.res['servers']: client = client_for_user(server['owner']) found = _get_server_by_name(client, server['name']) self.assertIsNotNone( found, "Couldn't find expected server %s" % server['name']) r, found = client.servers.get_server(found['id']) # get the ipv4 address addr = found['addresses']['private'][0]['addr'] for count in range(60): return_code = os.system("ping -c1 " + addr) if return_code is 0: break self.assertNotEqual(count, 59, "Server %s is not pingable at %s" % ( server['name'], addr)) def check_telemetry(self): """Check that ceilometer provides a sane sample. Confirm that there are more than one sample and that they have the expected metadata. If in check mode confirm that the oldest sample available is from before the upgrade. """ if not self.res.get('telemetry'): return LOG.info("checking telemetry") for server in self.res['servers']: client = client_for_user(server['owner']) response, body = client.telemetry.list_samples( 'instance', query=('metadata.display_name', 'eq', server['name']) ) self.assertEqual(response.status, 200) self.assertTrue(len(body) >= 1, 'expecting at least one sample') self._confirm_telemetry_sample(server, body[-1]) def check_volumes(self): """Check that the volumes are still there and attached.""" if not self.res.get('volumes'): return LOG.info("checking volumes") for volume in self.res['volumes']: client = client_for_user(volume['owner']) vol_body = _get_volume_by_name(client, volume['name']) self.assertIsNotNone( vol_body, "Couldn't find expected volume %s" % volume['name']) # Verify that a volume's attachment retrieved server_id = _get_server_by_name(client, volume['server'])['id'] attachment = client.volumes.get_attachment_from_volume(vol_body) self.assertEqual(vol_body['id'], attachment['volume_id']) self.assertEqual(server_id, attachment['server_id']) def _confirm_telemetry_sample(self, server, sample): """Check this sample matches the expected resource metadata.""" # Confirm display_name self.assertEqual(server['name'], sample['resource_metadata']['display_name']) # Confirm instance_type of flavor flavor = sample['resource_metadata'].get( 'flavor.name', sample['resource_metadata'].get('instance_type') ) self.assertEqual(server['flavor'], flavor) # Confirm the oldest sample was created before upgrade. if OPTS.mode == 'check': oldest_timestamp = timeutils.normalize_time( timeutils.parse_isotime(sample['timestamp'])) self.assertTrue( oldest_timestamp < JAVELIN_START, 'timestamp should come before start of second javelin run' ) ####################### # # OBJECTS # ####################### def _file_contents(fname): with open(fname, 'r') as f: return f.read() def create_objects(objects): if not objects: return LOG.info("Creating objects") for obj in objects: LOG.debug("Object %s" % obj) _assign_swift_role(obj['owner']) client = client_for_user(obj['owner']) client.containers.create_container(obj['container']) client.objects.create_object( obj['container'], obj['name'], _file_contents(obj['file'])) def destroy_objects(objects): for obj in objects: client = client_for_user(obj['owner']) r, body = client.objects.delete_object(obj['container'], obj['name']) if not (200 <= int(r['status']) < 299): raise ValueError("unable to destroy object: [%s] %s" % (r, body)) ####################### # # IMAGES # ####################### def _resolve_image(image, imgtype): name = image[imgtype] fname = os.path.join(OPTS.devstack_base, image['imgdir'], name) return name, fname def _get_image_by_name(client, name): r, body = client.images.image_list() for image in body: if name == image['name']: return image return None def create_images(images): if not images: return LOG.info("Creating images") for image in images: client = client_for_user(image['owner']) # only upload a new image if the name isn't there if _get_image_by_name(client, image['name']): LOG.info("Image '%s' already exists" % image['name']) continue # special handling for 3 part image extras = {} if image['format'] == 'ami': name, fname = _resolve_image(image, 'aki') r, aki = client.images.create_image( 'javelin_' + name, 'aki', 'aki') client.images.store_image(aki.get('id'), open(fname, 'r')) extras['kernel_id'] = aki.get('id') name, fname = _resolve_image(image, 'ari') r, ari = client.images.create_image( 'javelin_' + name, 'ari', 'ari') client.images.store_image(ari.get('id'), open(fname, 'r')) extras['ramdisk_id'] = ari.get('id') _, fname = _resolve_image(image, 'file') r, body = client.images.create_image( image['name'], image['format'], image['format'], **extras) image_id = body.get('id') client.images.store_image(image_id, open(fname, 'r')) def destroy_images(images): if not images: return LOG.info("Destroying images") for image in images: client = client_for_user(image['owner']) response = _get_image_by_name(client, image['name']) if not response: LOG.info("Image '%s' does not exists" % image['name']) continue client.images.delete_image(response['id']) ####################### # # SERVERS # ####################### def _get_server_by_name(client, name): r, body = client.servers.list_servers() for server in body['servers']: if name == server['name']: return server return None def _get_flavor_by_name(client, name): r, body = client.flavors.list_flavors() for flavor in body: if name == flavor['name']: return flavor return None def create_servers(servers): if not servers: return LOG.info("Creating servers") for server in servers: client = client_for_user(server['owner']) if _get_server_by_name(client, server['name']): LOG.info("Server '%s' already exists" % server['name']) continue image_id = _get_image_by_name(client, server['image'])['id'] flavor_id = _get_flavor_by_name(client, server['flavor'])['id'] resp, body = client.servers.create_server(server['name'], image_id, flavor_id) server_id = body['id'] client.servers.wait_for_server_status(server_id, 'ACTIVE') def destroy_servers(servers): if not servers: return LOG.info("Destroying servers") for server in servers: client = client_for_user(server['owner']) response = _get_server_by_name(client, server['name']) if not response: LOG.info("Server '%s' does not exist" % server['name']) continue client.servers.delete_server(response['id']) client.servers.wait_for_server_termination(response['id'], ignore_error=True) ####################### # # VOLUMES # ####################### def _get_volume_by_name(client, name): r, body = client.volumes.list_volumes() for volume in body: if name == volume['display_name']: return volume return None def create_volumes(volumes): if not volumes: return LOG.info("Creating volumes") for volume in volumes: client = client_for_user(volume['owner']) # only create a volume if the name isn't here if _get_volume_by_name(client, volume['name']): LOG.info("volume '%s' already exists" % volume['name']) continue size = volume['gb'] v_name = volume['name'] resp, body = client.volumes.create_volume(size=size, display_name=v_name) client.volumes.wait_for_volume_status(body['id'], 'available') def destroy_volumes(volumes): for volume in volumes: client = client_for_user(volume['owner']) volume_id = _get_volume_by_name(client, volume['name'])['id'] client.volumes.detach_volume(volume_id) client.volumes.delete_volume(volume_id) def attach_volumes(volumes): for volume in volumes: client = client_for_user(volume['owner']) server_id = _get_server_by_name(client, volume['server'])['id'] volume_id = _get_volume_by_name(client, volume['name'])['id'] device = volume['device'] client.volumes.attach_volume(volume_id, server_id, device) ####################### # # MAIN LOGIC # ####################### def create_resources(): LOG.info("Creating Resources") # first create keystone level resources, and we need to be admin # for those. create_tenants(RES['tenants']) create_users(RES['users']) collect_users(RES['users']) # next create resources in a well known order create_objects(RES['objects']) create_images(RES['images']) create_servers(RES['servers']) create_volumes(RES['volumes']) attach_volumes(RES['volumes']) def destroy_resources(): LOG.info("Destroying Resources") # Destroy in inverse order of create destroy_servers(RES['servers']) destroy_images(RES['images']) destroy_objects(RES['objects']) destroy_volumes(RES['volumes']) destroy_users(RES['users']) destroy_tenants(RES['tenants']) LOG.warn("Destroy mode incomplete") def get_options(): global OPTS parser = argparse.ArgumentParser( description='Create and validate a fixed set of OpenStack resources') parser.add_argument('-m', '--mode', metavar='<create|check|destroy>', required=True, help=('One of (create, check, destroy)')) parser.add_argument('-r', '--resources', required=True, metavar='resourcefile.yaml', help='Resources definition yaml file') parser.add_argument( '-d', '--devstack-base', required=True, metavar='/opt/stack/old', help='Devstack base directory for retrieving artifacts') parser.add_argument( '-c', '--config-file', metavar='/etc/tempest.conf', help='path to javelin2(tempest) config file') # auth bits, letting us also just source the devstack openrc parser.add_argument('--os-username', metavar='<auth-user-name>', default=os.environ.get('OS_USERNAME'), help=('Defaults to env[OS_USERNAME].')) parser.add_argument('--os-password', metavar='<auth-password>', default=os.environ.get('OS_PASSWORD'), help=('Defaults to env[OS_PASSWORD].')) parser.add_argument('--os-tenant-name', metavar='<auth-tenant-name>', default=os.environ.get('OS_TENANT_NAME'), help=('Defaults to env[OS_TENANT_NAME].')) OPTS = parser.parse_args() if OPTS.mode not in ('create', 'check', 'destroy'): print("ERROR: Unknown mode -m %s\n" % OPTS.mode) parser.print_help() sys.exit(1) if OPTS.config_file: config.CONF.set_config_path(OPTS.config_file) def setup_logging(): global LOG logging.setup(__name__) LOG = logging.getLogger(__name__) def main(): global RES get_options() setup_logging() RES.update(load_resources(OPTS.resources)) if OPTS.mode == 'create': create_resources() # Make sure the resources we just created actually work checker = JavelinCheck(USERS, RES) checker.check() elif OPTS.mode == 'check': collect_users(RES['users']) checker = JavelinCheck(USERS, RES) checker.check() elif OPTS.mode == 'destroy': collect_users(RES['users']) destroy_resources() else: LOG.error('Unknown mode %s' % OPTS.mode) return 1 LOG.info('javelin2 successfully finished') return 0 if __name__ == "__main__": sys.exit(main())
nikolay-fedotov/tempest
tempest/cmd/javelin.py
Python
apache-2.0
21,190
from setuptools import setup, Extension from Cython.Distutils import build_ext import numpy import os catchmod = Extension('pycatchmod._catchmod', ['pycatchmod/_catchmod.pyx'], include_dirs=[numpy.get_include()]) weather_generator = Extension('pycatchmod._weather_generator', ['pycatchmod/_weather_generator.pyx'], include_dirs=[numpy.get_include()]) with open(os.path.join(os.path.dirname(__file__), "pycatchmod", "__init__.py"), "r") as f: for line in f: if line.startswith("__version__"): _, version, _ = line.split("\"") break # needed to compile setup_requires = [ "cython", "numpy", "setuptools_scm" ] # needed to run install_requires = [ "numpy", "pandas", "click", "tables", "xlrd", "scipy", "future", "matplotlib" ] # only needed for testing test_requires = [ "pytest" ] with open('README.rst') as fh: long_description = fh.read() setup( name='pycatchmod', description='Python implementation of the rainfall runoff model CATCHMOD.', long_description= long_description, long_description_content_type='text/x-rst', author='James E Tomlinson', author_email='[email protected]', url="https://github.com/pywr/pycatchmod", packages=['pycatchmod', "pycatchmod.io"], install_requires=install_requires, use_scm_version=True, setup_requires=setup_requires, tests_require=test_requires, ext_modules=[catchmod, weather_generator], cmdclass = {'build_ext': build_ext}, entry_points={ "console_scripts": [ "pycatchmod = pycatchmod.__main__:main" ] } )
jetuk/pycatchmod
setup.py
Python
gpl-3.0
1,639
import os import platform import sys import threading from concurrent.futures import ThreadPoolExecutor from os import environ, path from threading import Timer import grpc import ptvsd from getgauge import handlers, logger, processor from getgauge.impl_loader import copy_skel_files from getgauge.messages import runner_pb2_grpc from getgauge.static_loader import load_files from getgauge.util import get_step_impl_dirs PLUGIN_JSON = 'python.json' VERSION = 'version' ATTACH_DEBUGGER_EVENT = 'Runner Ready for Debugging' def main(): logger.info("Python: {}".format(platform.python_version())) if sys.argv[1] == "--init": logger.debug("Initilizing gauge project.") copy_skel_files() else: load_implementations() start() def load_implementations(): d = get_step_impl_dirs() logger.debug( "Loading step implemetations from {} dirs.".format(', '.join(d))) for impl_dir in d: if not path.exists(impl_dir): logger.error('can not load implementations from {}. {} does not exist.'.format( impl_dir, impl_dir)) load_files(d) def _handle_detached(): logger.info("No debugger attached. Stopping the execution.") os._exit(1) def start(): if environ.get('DEBUGGING'): ptvsd.enable_attach(address=( '127.0.0.1', int(environ.get('DEBUG_PORT')))) print(ATTACH_DEBUGGER_EVENT) t = Timer(int(environ.get("debugger_wait_time", 30)), _handle_detached) t.start() ptvsd.wait_for_attach() t.cancel() logger.debug('Starting grpc server..') server = grpc.server(ThreadPoolExecutor(max_workers=1)) p = server.add_insecure_port('127.0.0.1:0') handler = handlers.RunnerServiceHandler(server) runner_pb2_grpc.add_RunnerServicer_to_server(handler, server) logger.info('Listening on port:{}'.format(p)) server.start() t = threading.Thread( name="listener", target=handler.wait_for_kill_event) t.start() t.join() os._exit(0) if __name__ == '__main__': main()
kashishm/gauge-python
start.py
Python
mit
2,076
from django.conf import settings from django.core import management from django.core.management.base import BaseCommand from fabric.api import local from optparse import make_option class Command(BaseCommand): help = "Redeploy the current instance" option_list = BaseCommand.option_list + ( make_option('--servername', action='store', type='string', dest='servername', default='staging', help='Server name - to pick which configuration to use'), make_option('--noreqs', action='store_true', dest='noreqs', default=False, help='Don\'t update requirements'), ) def handle(self, *args, **options): server_name = options.get('servername') noreqs = options.get('noreqs') if not server_name in settings.DEPLOYS: self.stderr.write('Non existant server config') return server = settings.DEPLOYS[server_name] if not noreqs: local('pip install -r requirements.txt') management.call_command('syncdb', interactive=False, stdout=self.stdout) management.call_command('migrate', interactive=False, stdout=self.stdout) management.call_command('collectstatic', interactive=False, stdout=self.stdout) # Reload the app in the webserver ws = server['WEBSERVER'] if ws == 'apache': local('touch {0}'.format(server['WSGI_FILE'])) # reload wsgi elif ws == 'gunicorn': local('sudo kill -HUP `cat {0}`'.format(server['PID_FILE'])) else: self.stderr.write('Unknown webserver type!')
yprez/django-sitepush
sitepush/management/commands/deploy_local.py
Python
isc
1,686
from motherbrain.base import models from motherbrain.base.models.processors import Compose, transform, compose from motherbrain.models import helpers, legacy_helpers, url def _type(settings): order = settings.get('order') _map = {'chart': ['love', 'numeric'], 'draft': ['recent', 'author'], 'reference': ['color']} for k, v in _map.iteritems(): if order in v: return k return 'draft' def _comments(data): if not isinstance(data, list): return [] def _fmt_time(time_obj): t = transform.MongoDateTimeToStr() return t(time_obj) return [dict(x, **{'created_at': _fmt_time(x.get('created_at'))}) for x in data] def _followers(followers): if not followers: return [] return [dict(user_id=str(x)) for x in followers] class Model(models.Model): fields = ( ('_id', None), ('list_hash', transform.DoNothing), ('description', transform.DoNothing), ('hash', transform.DoNothing), ('title', transform.DoNothing), ('views_amount', transform.DoNothing), ('is_secret', transform.DoNothing), ('user_id', transform.MongoOidToStr), ('creation_time', transform.MongoDateTimeToStr), ('update_time', transform.MongoDateTimeToStr), ('urls', url.Collection), ('comments', transform.DoNothing), ('comments', Compose('comments', using=_comments)), ('contributors', transform.DoNothing), ('full_url', Compose('hash', using=helpers.full_url)), ('is_unlisted', transform.DoNothing), ('last_visit', [Compose('hash', using=helpers.last_visit), transform.MongoDateTimeToStr]), ('sections', transform.DoNothing), ('followers', Compose('followers', using=_followers)), ('followers_amount', Compose('followers', using=compose.count)), ('following', Compose('followers', 'contributors', using=helpers.is_favorited)), ('links_amount', Compose('urls', using=compose.count)), ('relist_amount', Compose('hash', using=helpers.list_relist_amount)), ('categories', transform.DoNothing), ('type', Compose('settings', using=_type, override=False)), ('slug', transform.DoNothing) ) def __init__(self, data): super(Model, self).__init__(self.fields, data) def __len__(self): return len(self.get('urls')) def __repr__(self): return u'List {}, {}'.format(self.get('hash'), self.get('title')) class Collection(models.Collection): def __init__(self, models): super(Collection, self).__init__(Model, models)
urlist/urlist
motherbrain/models/urlist.py
Python
gpl-3.0
3,009
# Copyright 2013 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys import eventlet eventlet.monkey_patch() from oslo.config import cfg from neutron.agent.common import config from neutron.agent.linux import interface from neutron.common import config as common_config from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.openstack.common import service from neutron_lbaas.services.loadbalancer.agent import agent_manager as manager OPTS = [ cfg.IntOpt( 'periodic_interval', default=10, help=_('Seconds between periodic task runs') ) ] class LbaasAgentService(n_rpc.Service): def start(self): super(LbaasAgentService, self).start() self.tg.add_timer( cfg.CONF.periodic_interval, self.manager.run_periodic_tasks, None, None ) def main(): cfg.CONF.register_opts(OPTS) cfg.CONF.register_opts(manager.OPTS) # import interface options just in case the driver uses namespaces cfg.CONF.register_opts(interface.OPTS) config.register_interface_driver_opts_helper(cfg.CONF) config.register_agent_state_opts_helper(cfg.CONF) config.register_root_helper(cfg.CONF) common_config.init(sys.argv[1:]) config.setup_logging() mgr = manager.LbaasAgentManager(cfg.CONF) svc = LbaasAgentService( host=cfg.CONF.host, topic=topics.LOADBALANCER_AGENT, manager=mgr ) service.launch(svc).wait()
citrix-openstack-build/neutron-lbaas
neutron_lbaas/services/loadbalancer/agent/agent.py
Python
apache-2.0
2,067
#!/usr/bin/env python import os import yaml import logging import pymysql from connections import Connections __dir__ = os.path.dirname(__file__) config = yaml.safe_load(open(os.path.join(__dir__, "../default_config.yaml"))) try: config.update(yaml.safe_load(open(os.path.join(__dir__, "../config.yaml")))) except IOError: # is ok if we do not have config.yaml pass logging.basicConfig( filename=config['KILLER_LOG_PATH'], level=logging.INFO, format='%(asctime)s pid:%(process)d %(message)s' ) logging.info("Started killer process, with limit %s", config['QUERY_TIME_LIMIT']) conn = Connections(config) cur = conn.replica.cursor() try: cur.execute('SHOW PROCESSLIST') queries = cur.fetchall() logging.info("Found %s queries running", len(queries)) to_kill = [q for q in queries if q[5] > config['QUERY_TIME_LIMIT'] and q[4] != 'Sleep'] logging.info("Found %s queries to kill", len(to_kill)) for q in to_kill: try: cur.execute('KILL QUERY %s', q[0]) logging.info("Killed query with thread_id:%s" % q[0]) except pymysql.InternalError as e: if e.args[0] == 1094: # Error code for 'no such thread' logging.info('Query with thread_id:%s dead before it could be killed') else: raise finally: logging.info("Finished killer process") cur.close() conn.close_all()
wikimedia/analytics-quarry-web
quarry/web/killer.py
Python
mit
1,430
""" WSGI config for todoapp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "todoapp.settings") application = get_wsgi_application()
erdem/django-selenium-example
todoapp/todoapp/wsgi.py
Python
mit
391
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Fakechroot(AutotoolsPackage): """fakechroot runs a command in an environment were is additional possibility to use chroot(8) command without root privileges.This is useful for allowing users to create own chrooted environment with possibility to install another packages without need for root privileges.""" homepage = "https://github.com/dex4er/fakechroot" url = "https://github.com/dex4er/fakechroot/releases/download/2.20.1/fakechroot-2.20.1.tar.gz" version('2.20.1', sha256='5abd04323c9ddae06b5dcaa56b2da07728de3fe21007b08bd88a17b2409b32aa') version('2.20', sha256='5da99358d2a49ddd3dd54ba2ff401d93a8fa641e3754cd058bdf53adb4b7e100') version('2.19', sha256='39ffbbbe3a823be7450928b8e3b99ae4cb339c47213b2f1d8ff903e0246f2e15')
LLNL/spack
var/spack/repos/builtin/packages/fakechroot/package.py
Python
lgpl-2.1
1,005
import branca.element as be # currently using the static info page ava_info_static.html class SatSkredInfoPage(): def __init__(self): self.f = be.Figure() def make_header(self): pass def add_map(self, map_name="./ava_map.html", h="600px"): self.f.html.add_child(be.Element("<H2>Kart over detekterte skred</H2>")) # self.f.html.add_child(be.Element('''<iframe src="./ava_map.html:text/html;charset=utf-8;base64,CiAgICAuL2F2YtYXAuaHRtbA==" width="100%" style="border:none !important;" height="600px"></iframe>''') self.f.html.add_child(be.Element('<iframe src="./ava_map.html", height="600px"></iframe>') # self.f.html.add_child(be.IFrame(map_name, height=h)) def save(self, filename="ava_info.html"): self.f.render() self.f.save(filename) if __name__ == "__main__": page = SatSkredInfoPage() page.add_map() page.save()
kmunve/APS
aps/satskred/import_skreddb/make_satskred_infopage.py
Python
mit
917
#!/usr/bin/python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example creates a click-to-download ad in a given ad group. This type of ad is also known as an app promotion ad. To list ad groups, run get_ad_groups.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. Tags: AdGroupAdService.mutate Api: AdWordsOnly """ __author__ = 'Joseph DiLallo' from googleads import adwords AD_GROUP_ID = 'INSERT_AD_GROUP_ID_HERE' def main(client, ad_group_id): # Initialize appropriate service. ad_group_ad_service = client.GetService('AdGroupAdService', version='v201506') # Create the template elements for the ad. You can refer to # https://developers.google.com/adwords/api/docs/appendix/templateads # for the list of available template fields. ad_data = { 'uniqueName': 'adData', 'fields': [ { 'name': 'headline', 'fieldText': 'Enjoy your drive in Mars', 'type': 'TEXT' }, { 'name': 'description1', 'fieldText': 'Realistic physics simulation', 'type': 'TEXT' }, { 'name': 'description2', 'fieldText': 'Race against players online', 'type': 'TEXT' }, { 'name': 'appId', 'fieldText': 'com.example.demogame', 'type': 'TEXT' }, { 'name': 'appStore', 'fieldText': '2', 'type': 'ENUM' } ] } # Create click to download ad. click_to_download_app_ad = { 'xsi_type': 'TemplateAd', 'name': 'Ad for demo game', 'templateId': '353', 'finalUrls': [ 'http://play.google.com/store/apps/details?id=com.example.demogame' ], 'displayUrl': 'play.google.com', 'templateElements': [ad_data] } # Create ad group ad. ad_group_ad = { 'adGroupId': ad_group_id, 'ad': click_to_download_app_ad, # Optional. 'status': 'PAUSED' } # Add ad. ads = ad_group_ad_service.mutate([ {'operator': 'ADD', 'operand': ad_group_ad} ]) # Display results. if 'value' in ads: for ad in ads['value']: print ('Added new click-to-download ad to ad group ID \'%s\' ' 'with URL \'%s\'.' % (ad['ad']['id'], ad['ad']['finalUrls'][0])) else: print 'No ads were added.' if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client, AD_GROUP_ID)
coxmediagroup/googleads-python-lib
examples/adwords/v201506/advanced_operations/add_click_to_download_ad.py
Python
apache-2.0
3,318
""" Result backend for Easy-Job which use python logging available options to use * log_level: level of logging could be logging.DEBUG logging.ERROR or any other log level defined in logging module default: logging.DEBUG * logger: name of the logger to use, be cautious , the logger must already defined default: no default value available, you must specify either logger or logger_instance * logger_instance: for testing purposes you can provide the logger object itself default: None message_template: string template to log function and result , you can use {task_id} and {result} in your template default: "{task_id} -> {result}" """ from . import BaseResultBackend import logging __author__ = 'Apollo' class LogResultBackend(BaseResultBackend): def __init__(self, log_level=logging.DEBUG, logger=None, logger_instance=None, message_template=None): if logger_instance is not None: self.logger = logger_instance elif logger is not None: self.logger = logging.getLogger(logger) else: raise ValueError("No logger or logger_instance specified") self.log_level = log_level self.message_template = message_template or "{task_id} -> {result}" def store(self, task_id, result, *args, **kwargs): self.logger.log( level=self.log_level, msg=self.message_template.format( task_id=task_id, result=result ) )
inb-co/easy-job
easy_job/result_backends/log.py
Python
mit
1,521
from django import forms from crispy_forms.helper import FormHelper, Layout from crispy_forms.layout import Field, Div, Row, HTML from crispy_forms.bootstrap import FormActions, TabHolder, Tab # from ..models import Pais from django.utils.translation import ugettext_lazy as _ from apps.utils.forms import smtSave, btnCancel, btnReset from django.utils.text import capfirst, get_text_list from unicodedata import normalize """ class PaisForm(forms.ModelForm): class Meta: model = Pais exclude = ('usuario',) widgets = { 'codigo': forms.TextInput(attrs={'class': 'form-control', 'required':'true', 'placeholder': 'Ingrese codigo'}), 'nombre': forms.TextInput(attrs={'class': 'form-control', 'required':'true', 'placeholder': 'Ingrese nombre'}) 'departamento': forms.Select(attrs={'class': 'form-control', 'required':'true'}) """
upeu-jul-20161-epis-ads2/MedicFast
apps/atencion/forms/PaisForm.py
Python
bsd-3-clause
894
from subprocess import Popen, PIPE from tempfile import NamedTemporaryFile class Statistic(object): #TODO: move to a FileStatistic or something like that b/c # it only deals with files and there are other stats which don't def set_files(self, files): self.files = files #can be overriden by individual stats def set_config(self, conf): pass #TODO: move to some utils class def get_result_from_shell(self, cmd): p = Popen(cmd, shell=True, stdout=PIPE) (stdout_data, stderr_data) = p.communicate() return stdout_data #TODO: move to some utils class def write_filenames_to_temp_file(self): filestr = "\n".join(self.files) f = NamedTemporaryFile(mode='w', delete=False) f.write(filestr) f.close() return f.name
markdrago/caboose
src/stats/statistic.py
Python
mit
832
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base classes for view based unit tests. """ import mox import nova_adminclient as adminclient from django import test from django.conf import settings from django.contrib.auth import models as auth_models from django_nova import manager from django_nova import shortcuts TEST_PROJECT = 'test' TEST_USER = 'test' TEST_REGION = 'test' class BaseViewTests(test.TestCase): def setUp(self): self.mox = mox.Mox() def tearDown(self): self.mox.UnsetStubs() def assertRedirectsNoFollow(self, response, expected_url): self.assertEqual(response._headers['location'], ('Location', settings.TESTSERVER + expected_url)) self.assertEqual(response.status_code, 302) def authenticateTestUser(self): user = auth_models.User.objects.create_user(TEST_USER, '[email protected]', password='test') login = self.client.login(username=TEST_USER, password='test') self.failUnless(login, 'Unable to login') return user class BaseProjectViewTests(BaseViewTests): def setUp(self): super(BaseProjectViewTests, self).setUp() project = adminclient.ProjectInfo() project.projectname = TEST_PROJECT project.projectManagerId = TEST_USER self.user = self.authenticateTestUser() self.region = adminclient.RegionInfo(name=TEST_REGION, endpoint='http://test:8773/') self.project = manager.ProjectManager(self.user.username, project, self.region) self.mox.StubOutWithMock(shortcuts, 'get_project_or_404') shortcuts.get_project_or_404(mox.IgnoreArg(), 'test').AndReturn(self.project) def create_key_pair_choices(self, key_names): return [(k, k) for k in key_names] def create_instance_type_choices(self): return [('m1.medium', 'm1.medium'), ('m1.large', 'm1.large')] def create_instance_choices(self, instance_ids): return [(id, id) for id in instance_ids] def create_available_volume_choices(self, volumes): return [(v.id, '%s %s - %dGB' % (v.id, v.displayName, v.size)) \ for v in volumes]
sleepsonthefloor/openstack-dashboard
django-nova/src/django_nova/tests/view_tests/base.py
Python
apache-2.0
3,195
#!/usr/bin/env python # # Generate seeds.txt from Pieter's DNS seeder # NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 200000 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). SUSPICIOUS_HOSTS = set([ "127.0.0.1" - наш ип основной ноды ]) import re import sys import dns.resolver PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):9887$") тут изменяем порт PATTERN_AGENT = re.compile(r"^(\/Satoshi:0.8.6\/|\/Satoshi:0.9.(2|3)\/|\/Core:0.1(0|1|2).\d{1,2}.\d{1,2}\/)$") def parseline(line): sline = line.split() if len(sline) < 11: return None # Match only IPv4 m = PATTERN_IPV4.match(sline[0]) if m is None: return None # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'ip': m.group(1), 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, } # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): result = [] asn_count = {} for ip in ips: if len(result) == max_total: break try: asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') return result def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] # Skip entries with valid IPv4 address. ips = [ip for ip in ips if ip is not None] # Skip entries from suspicious hosts. ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS] # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] # Require at least 50% 30-day uptime. ips = [ip for ip in ips if ip['uptime'] > 50] # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(ip['agent'])] # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['ipnum'])) for ip in ips: print ip['ip'] if __name__ == '__main__': main()
freelion93/mtucicoin
contrib/seeds/makeseeds.py
Python
mit
3,563
# Created By: Virgil Dupras # Created On: 2008-07-21 # Copyright 2015 Hardcoded Software (http://www.hardcoded.net) # # This software is licensed under the "GPLv3" License as described in the "LICENSE" file, # which should be included with this package. The terms are also available at # http://www.gnu.org/licenses/gpl-3.0.html from hscommon.gui.text_field import TextField class SearchField(TextField): def __init__(self, mainwindow): TextField.__init__(self) self.document = mainwindow.document def _update(self, newvalue): self.document.filter_string = newvalue def refresh(self): self._text = self._value = self.document.filter_string self.view.refresh()
fokusov/moneyguru
core/gui/search_field.py
Python
gpl-3.0
729
# -*- coding: utf-8 -*- # # Copyright (C) 2000-2005 by Yasushi Saito ([email protected]) # # Jockey is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2, or (at your option) any # later version. # # Jockey is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # class T(object): def get_canvas_pos(self, size, val, min, max): """ Compute the screen location at which a sample value would be drawn. ``size`` is the width or height of the chart, in points. ``val`` is the sample value. ``min`` and ``max`` are the minimum and maximum sample values that are to be displayed over the length of ``size``. For example, suppose the width of a chart is 200 points and the minimum and maximum X values in the sample data are 100 and 150 respectively. When Pychart wants to draw a sample point at the X value of 120, it will call area.T.x_coord.get_canvas_pos(size = 200, val = 120, min = 100, max = 150). """ raise Exception def get_tics(self, min, max, interval): """Generate the list of places for drawing tick marks.""" raise Exception def get_min_max(self, min, max, interval): """Compute the min/max values to be displayed in the chart. Parameters ``min`` and ``max`` are the minimum and maximum values of the sample data passed to the plots. Parameter ``interval`` is the value of attribute area.T.x_grid_interval (or y_grid_interval). It is None if these attributes are non-specified. This method must return tuple (dmin, dmax, dinterval). dmin should be ``min`` rounded down to some good number. dmax should be ``max`` rounded up to some good number. dinterval should be ``interval`` if it is non-None. Otherwise, the method must compute some good value. """ raise Exception
BorgERP/borg-erp-6of3
server/openerp/pychart/coord.py
Python
agpl-3.0
2,226
########################################################### # # Copyright (c) 2009, Southpaw Technology # All Rights Reserved # # PROPRIETARY INFORMATION. This software is proprietary to # Southpaw Technology, and is not to be reproduced, transmitted, # or disclosed in any way without written permission. # # # __all__ = ["ProjectConfigWdg", "UserConfigWdg", "UserPanelWdg"] from pyasm.common import Common, Environment from pyasm.search import Search, SearchKey, SearchType from pyasm.biz import Project from pyasm.web import DivWdg, Table, WebContainer, SpanWdg from pyasm.widget import ThumbWdg, IconWdg, CheckboxWdg from tactic.ui.container import SmartMenu from tactic.ui.common import BaseRefreshWdg from tactic.ui.widget import IconButtonWdg, SingleButtonWdg, ActionButtonWdg class ProjectConfigWdg(BaseRefreshWdg): ARGS_KEYS = { } def get_help_alias(my): return 'project-startup-configuration' def get_panel_wdg(my, td, panel): title = panel.get("title") widget = panel.get("widget") width = panel.get("width") #height = panel.get("height") #if not height: # height = "250px" #td.add_style("height: %s" % height) if width: td.add_style("width: %s" % width) td.add_border() div = DivWdg() div.add_style("padding: 5px") #div.add_style("padding: 10px") title_wdg = DivWdg() div.add(title_wdg) title_wdg.add_style("padding: 5px") #title_wdg.add_style("margin: -12px -12px 10px -12px") title_wdg.add_style("margin: -6px -7px 5px -7px") title_wdg.add_style("font-weight: bold") title_wdg.add_style("font-size: 14px") if title: title_wdg.add_color("background", "background", -5) title_wdg.add_color("color", "color", -10) title_wdg.add_border() title_wdg.add(title) from tactic.ui.app import HelpButtonWdg help_wdg = HelpButtonWdg(alias=my.get_help_alias()) help_wdg.add_style("float: right") help_wdg.add_style("margin-top: -5px") title_wdg.add(help_wdg) else: title_wdg.add_style("height: 10px") if widget: div.add(widget) return div def get_panels(my): panels = [] search_type_panel = DivWdg() search_type_panel.add_style("padding-top: 3px") search_type_panel.add_style("overflow-y: auto") search_type_panel.add( SearchTypePanel() ) search_type_panel.add_style("min-height: 100px") search_type_panel.add_style("height: 300px") search_type_panel.add_class("spt_resizable") panel = { 'widget': search_type_panel, 'title': 'List of Searchable Types (sTypes)', 'width': '50%' } panels.append(panel) from tactic.ui.container import TabWdg config_xml = ''' <config> <tab> <element name="Help"> <display class='tactic.ui.app.HelpContentWideWdg'> <alias>main</alias> <width>1000px</width> </display> </element> </tab> </config> ''' div = DivWdg() tab = TabWdg(show_add=False, config_xml=config_xml, tab_offset=5) div.add(tab) div.add_style("margin: 0px -6px -6px -6px") panel = { 'widget': div, #'title': 'Data', 'title': None, 'width': '100%', } panels.append(panel) return panels def get_display(my): # set the sobjects to all the widgets then preprocess for widget in my.widgets: widget.set_sobjects(my.sobjects) widget.set_parent_wdg(my) # preprocess the elements widget.preprocess() top = my.top my.set_as_panel(top) inner = DivWdg() top.add(inner) inner.add_color("background", "background") inner.add_color("color", "color") inner.add_class("spt_dashboard_top") title = DivWdg() inner.add(title) title.add(my.get_title()) title.add_style("font-size: 18px") title.add_style("font-weight: bold") title.add_style("text-align: center") title.add_style("padding: 10px") #title.add_style("margin: -10px -10px 10px -10px") title.add_color("background", "background3") #table = Table() from tactic.ui.container import ResizableTableWdg table = ResizableTableWdg() inner.add(table) table.set_max_width() panels = my.get_panels() for panel in panels: title = panel.get('title') #if title in ['Data', None]: # tr, td = table.add_row_cell() #else: # td = table.add_cell() tr = table.add_row() td = table.add_cell(resize=False) td.add_style("min-height: 100px") td.add_style("vertical-align: top") panel = my.get_panel_wdg(td, panel) td.add(panel) return top def get_title(my): return "Project Configuration" class UserConfigWdg(ProjectConfigWdg): def get_title(my): return "Manage Users" def get_help_alias(my): return 'project-startup-manage-users' def get_panels(my): panels = [] show_security = my.kwargs.get("show_security") user_panel = DivWdg() user_panel.add_style("padding-top: 3px") user_panel.add_style("overflow-y: auto") user_panel.add( UserPanelWdg(show_security=show_security) ) user_panel.add_style("min-height: 100px") user_panel.add_style("height: 300px") user_panel.add_class("spt_resizable") panel = { 'widget': user_panel, 'title': 'List of Users', } panels.append(panel) from tactic.ui.container import TabWdg config_xml = [] config_xml.append(''' <config> <tab> ''') """ <element name="Help"> <display class='tactic.ui.app.HelpContentWideWdg'> <alias>main</alias> <width>1000px</width> </display> </element>''') """ config_xml.append(''' <element name="Groups"> <display class='tactic.ui.startup.UserSecurityWdg'/> </element> ''') config_xml.append(''' </tab> </config> ''') config_xml = "\n".join(config_xml) tab = TabWdg(show_add=False, config_xml=config_xml) panel = { 'widget': tab, #'title': 'Data', 'title': None, 'width': '100%', 'height': '100%' } panels.append(panel) return panels class SearchTypePanel(BaseRefreshWdg): def get_display(my): web = WebContainer.get_web() show_multi_project = web.get_form_value('show_multi_project') project = Project.get() search_type_objs = project.get_search_types(include_multi_project=show_multi_project) top = my.top top.add_class("spt_panel_stype_list_top") #top.add_style("min-width: 400px") #top.add_style("max-width: 1000px") #top.add_style("width: 100%") top.center() button = SingleButtonWdg(title="Advanced Setup", icon=IconWdg.ADVANCED) top.add(button) button.add_style("float: right") button.add_style("margin-top: -8px") button.add_behavior( { 'type': 'click_up', 'cbjs_action': ''' var class_name = 'tactic.ui.app.ProjectStartWdg'; spt.tab.set_main_body_tab() spt.tab.add_new("project_setup", "Project Setup", class_name) ''' } ) button = SingleButtonWdg(title="Add", tip="Add New Searchable Type (sType)", icon=IconWdg.ADD) top.add(button) button.add_style("float: left") button.add_style("margin-top: -8px") button.add_behavior( { 'type': 'click_up', 'cbjs_action': ''' var class_name = 'tactic.ui.app.SearchTypeCreatorWdg'; var kwargs = { }; var popup = spt.panel.load_popup("Create New Searchable Type", class_name, kwargs); var top = bvr.src_el.getParent(".spt_panel_stype_list_top"); popup.on_register_cbk = function() { spt.panel.refresh(top); } ''' } ) cb = CheckboxWdg('show_multi_project', label=' show multi-project') if show_multi_project: cb.set_checked() cb.add_behavior( { 'type': 'click_up', 'cbjs_action': ''' var panel = bvr.src_el.getParent('.spt_panel_stype_list_top') spt.panel.refresh(panel, {show_multi_project: bvr.src_el.checked}); ''' }) span = SpanWdg(css='small') top.add(span) top.add(cb) top.add("<br clear='all'/>") #search_type_objs = [] if not search_type_objs: arrow_div = DivWdg() top.add(arrow_div) icon = IconWdg("Click to Add", IconWdg.ARROW_UP_LEFT_32) icon.add_style("margin-top: -20") icon.add_style("margin-left: -15") icon.add_style("position: absolute") arrow_div.add(icon) arrow_div.add("&nbsp;"*5) arrow_div.add("<b>Click to Add</b>") arrow_div.add_style("position: relative") arrow_div.add_style("margin-top: 5px") arrow_div.add_style("margin-left: 20px") arrow_div.add_style("float: left") arrow_div.add_style("padding: 25px") arrow_div.set_box_shadow("0px 5px 20px") arrow_div.set_round_corners(30) arrow_div.add_color("background", "background") div = DivWdg() top.add(div) div.add_border() div.add_style("min-height: 180px") div.add_style("width: 600px") div.add_style("margin: 30px auto") div.add_style("padding: 20px") div.add_color("background", "background3") icon = IconWdg( "WARNING", IconWdg.WARNING ) div.add(icon) div.add("<b>No Searchable Types have been created</b>") div.add("<br/><br/>") div.add("Searchables Types contain lists of items that are managed in this project. Each item will automatically have the ability to have files checked into it, track tasks and status and record work hours.") div.add("<br/>"*2) div.add("For more information, read the help docs: ") from tactic.ui.app import HelpButtonWdg help = HelpButtonWdg(alias="main") div.add(help) div.add("<br/>") div.add("Click on the 'Add' button above to start adding new types.") return top div = DivWdg() top.add(div) #div.add_style("max-height: 300px") #div.add_style("overflow-y: auto") table = Table() div.add(table) table.add_style("margin-top: 10px") table.set_max_width() # group mouse over table.add_relay_behavior( { 'type': "mouseover", 'bvr_match_class': 'spt_row', 'cbjs_action': "spt.mouse.table_layout_hover_over({}, {src_el: bvr.src_el, add_color_modifier: -2})" } ) table.add_relay_behavior( { 'type': "mouseout", 'bvr_match_class': 'spt_row', 'cbjs_action': "spt.mouse.table_layout_hover_out({}, {src_el: bvr.src_el})" } ) tr = table.add_row() tr.add_color("color", "color") tr.add_gradient("background", "background", -10) th = table.add_header("") th.add_style("text-align: left") th = table.add_header("Title") th.add_style("text-align: left") th = table.add_header("# Items") th.add_style("text-align: left") th = table.add_header("View") th.add_style("text-align: left") th = table.add_header("Add") th.add_style("text-align: left") th = table.add_header("Import") th.add_style("text-align: left") th = table.add_header("Custom Columns") th.add_style("text-align: left") th = table.add_header("Workflow") th.add_style("text-align: left") th = table.add_header("Notifications") th.add_style("text-align: left") th = table.add_header("Triggers") th.add_style("text-align: left") th = table.add_header("Edit") th.add_style("text-align: left") #th = table.add_header("Security") #th.add_style("text-align: left") for i, search_type_obj in enumerate(search_type_objs): tr = table.add_row() tr.add_class("spt_row") if not i or not i%2: tr.add_color("background", "background3") else: tr.add_color("background", "background", -2 ) thumb = ThumbWdg() thumb.set_sobject(search_type_obj) thumb.set_icon_size(30) td = table.add_cell(thumb) search_type = search_type_obj.get_value("search_type") title = search_type_obj.get_title() table.add_cell(title) try: search = Search(search_type) count = search.get_count() if count: table.add_cell("%s item/s" % count) else: table.add_cell("&nbsp;") except: td = table.add_cell("&lt; No table &gt;") td.add_style("font-style: italic") td.add_style("color: #F00") continue #search = Search(search_type) #search.add_interval_filter("timestamp", "today") #created_today = search.get_count() #table.add_cell(created_today) td = table.add_cell() button = IconButtonWdg(title="View", icon=IconWdg.ZOOM) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'title': title, 'cbjs_action': ''' var class_name = 'tactic.ui.panel.ViewPanelWdg'; var kwargs = { search_type: bvr.search_type, view: 'table', 'simple_search_view': 'simple_search' }; // use tab var top = bvr.src_el.getParent(".spt_dashboard_top"); spt.tab.set_tab_top(top); spt.tab.add_new(bvr.title, bvr.title, class_name, kwargs); //spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) button.add_style("float: left") arrow_button = IconButtonWdg(tip="More Views", icon=IconWdg.ARROWHEAD_DARK_DOWN) arrow_button.add_style("margin-left: 20px") td.add(arrow_button) cbk = ''' var activator = spt.smenu.get_activator(bvr); var class_name = bvr.class_name; var layout = bvr.layout; var kwargs = { search_type: bvr.search_type, layout: layout, view: bvr.view, simple_search_view: 'simple_search', element_names: bvr.element_names, }; // use tab var top = activator.getParent(".spt_dashboard_top"); spt.tab.set_tab_top(top); spt.tab.add_new('%s', '%s', class_name, kwargs); ''' % (title, title) from tactic.ui.panel import SwitchLayoutMenu SwitchLayoutMenu(search_type=search_type, activator=arrow_button, cbk=cbk, is_refresh=False) td = table.add_cell() button = IconButtonWdg(title="Add", icon=IconWdg.ADD) td.add(button) button.add_behavior( { 'type': 'listen', 'search_type': search_type, 'event_name': 'startup_save:' + search_type_obj.get_title(), 'title': search_type_obj.get_title(), 'cbjs_action': ''' var top = bvr.src_el.getParent(".spt_dashboard_top"); spt.tab.set_tab_top(top); var class_name = 'tactic.ui.panel.ViewPanelWdg'; var kwargs = { search_type: bvr.search_type, view: 'table', 'simple_search_view': 'simple_search' }; spt.tab.add_new(bvr.title, bvr.title, class_name, kwargs); ''' } ) button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'title': search_type_obj.get_title(), 'cbjs_action': ''' var top = bvr.src_el.getParent(".spt_dashboard_top"); spt.tab.set_tab_top(top); var class_name = 'tactic.ui.panel.EditWdg'; var kwargs = { search_type: bvr.search_type, view: "insert", save_event: "startup_save:" + bvr.title } spt.panel.load_popup("Add New Items ("+bvr.title+")", class_name, kwargs); var class_name = 'tactic.ui.panel.ViewPanelWdg'; var kwargs = { search_type: bvr.search_type, view: 'table', 'simple_search_view': 'simple_search' }; spt.tab.add_new(bvr.title, bvr.title, class_name, kwargs); ''' } ) """ td = table.add_cell() button = IconButtonWdg(title="Check-in", icon=IconWdg.PUBLISH) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'title': title, 'cbjs_action': ''' var class_name = 'tactic.ui.panel.ViewPanelWdg'; var kwargs = { search_type: bvr.search_type, view: 'checkin', element_names: ['preview','code','name','description','history','general_checkin','notes'] }; // use tab var top = bvr.src_el.getParent(".spt_dashboard_top"); spt.tab.set_tab_top(top); spt.tab.add_new(bvr.title, bvr.title, class_name, kwargs); //spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) """ td = table.add_cell() button = IconButtonWdg(title="Import", icon=IconWdg.IMPORT) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'title': "Import Data", 'cbjs_action': ''' var class_name = 'tactic.ui.widget.CsvImportWdg'; var kwargs = { search_type: bvr.search_type, }; spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Custom Columns", icon=IconWdg.COLUMNS) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_type': search_type, 'title': "Add Custom Columns", 'cbjs_action': ''' var class_name = 'tactic.ui.startup.ColumnEditWdg'; var kwargs = { search_type: bvr.search_type, }; spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Workflow", icon=IconWdg.PIPELINE) button.add_style("float: left") td.add(button) search = Search("sthpw/pipeline") search.add_filter("search_type", search_type) count = search.get_count() if count: check = IconWdg( "Has Items", IconWdg.CHECK, width=8 ) td.add(check) #check.add_style("margin-left: 0px") check.add_style("margin-top: 4px") button.add_behavior( { 'type': 'click_up', 'title': 'Workflow', 'search_type': search_type, 'cbjs_action': ''' var class_name = 'tactic.ui.startup.PipelineEditWdg'; var kwargs = { search_type: bvr.search_type }; spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Notifications", icon=IconWdg.MAIL) button.add_style("float: left") td.add(button) search = Search("sthpw/notification") search.add_filter("search_type", search_type) count = search.get_count() if count: check = IconWdg( "Has Items", IconWdg.CHECK, width=8 ) td.add(check) #check.add_style("margin-left: 0px") check.add_style("margin-top: 4px") button.add_behavior( { 'type': 'click_up', 'title': 'Trigger', 'search_type': search_type, 'cbjs_action': ''' var class_name = 'tactic.ui.tools.TriggerToolWdg'; var kwargs = { mode: "search_type", search_type: bvr.search_type }; spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Triggers", icon=IconWdg.ARROW_OUT) td.add(button) button.add_style("float: left") search = Search("config/trigger") search.add_filter("search_type", search_type) count = search.get_count() if count: check = IconWdg( "Has Items", IconWdg.CHECK, width=8 ) td.add(check) #check.add_style("margin-left: 0px") check.add_style("margin-top: 4px") button.add_behavior( { 'type': 'click_up', 'title': 'Trigger', 'search_type': search_type, 'cbjs_action': ''' var class_name = 'tactic.ui.tools.TriggerToolWdg'; var kwargs = { mode: "search_type", search_type: bvr.search_type }; spt.panel.load_popup(bvr.title, class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Edit Searchable Type", icon=IconWdg.EDIT) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_key': search_type_obj.get_search_key(), 'cbjs_action': ''' var class_name = 'tactic.ui.panel.EditWdg'; var kwargs = { search_type: "sthpw/sobject", view: "edit_startup", search_key: bvr.search_key } spt.panel.load_popup("Edit Searchable Type", class_name, kwargs); ''' } ) """ td = table.add_cell() button = IconButtonWdg(title="Security", icon=IconWdg.LOCK) td.add(button) button.add_behavior( { 'type': 'click_up', 'title': 'Trigger', 'search_type': search_type, 'cbjs_action': ''' alert("security"); ''' } ) """ columns_wdg = DivWdg() top.add(columns_wdg) return top class UserPanelWdg(BaseRefreshWdg): def get_help_alias(my): return 'project-startup-manage-users' def get_display(my): search = Search("sthpw/login") search.add_filter("login", "admin", op="!=") logins = search.get_sobjects() top = my.top top.add_class("spt_panel_user_top") top.add_style("min-width: 400px") show_security = my.kwargs.get("show_security") if show_security not in ['false', False]: button = ActionButtonWdg(title="Security") top.add(button) button.add_style("float: right") #button.add_style("margin-top: -8px") button.add_behavior( { 'type': 'click_up', 'cbjs_action': ''' var class_name = 'tactic.ui.startup.SecurityWdg'; spt.tab.set_main_body_tab() spt.tab.add_new("Security", "Security", class_name) ''' } ) button = ActionButtonWdg(title="Add", tip="Add New User") top.add(button) button.add_style("float: left") button.add_behavior( { 'type': 'click_up', 'cbjs_action': ''' var class_name = 'tactic.ui.panel.EditWdg'; var kwargs = { search_type: "sthpw/login", view: "edit", show_header: false, } var popup = spt.panel.load_popup("Create New User", class_name, kwargs); var top = bvr.src_el.getParent(".spt_panel_user_top"); popup.on_save_cbk = function() { spt.panel.refresh(top); } ''' } ) security = Environment.get_security() license = security.get_license() num_left = license.get_num_licenses_left() current_users = license.get_current_users() max_users = license.get_max_users() top.add(''' <span style="margin-left: 20px; margin-top: 10px"> Users &nbsp; <span class="badge">%s</span> </span> ''' % current_users) if num_left < 1000: top.add(''' <span style="margin-left: 20px; margin-top: 10px"> Users Left &nbsp; <span class="badge">%s</span> </span> ''' % num_left) top.add("<br clear='all'/>") #logins = [] if not logins: """ arrow_div = DivWdg() top.add(arrow_div) arrow_div.add("<b><<< Click to Add</b>") arrow_div.add_style("position: relative") arrow_div.add_style("margin-top: -35px") arrow_div.add_style("margin-left: 35px") arrow_div.add_style("float: left") arrow_div.add_style("padding: 5px") arrow_div.set_box_shadow("1px 1px 2px 2px") arrow_div.set_round_corners(10, corners=['TL','BL']) """ div = DivWdg() top.add(div) div.add_style("text-align: center") div.add_border() div.add_style("min-height: 150px") div.add_style("margin: 15px 30px 30px 30px") div.add_style("padding: 30px 20px 0px 20px") div.add_color("background", "background3") icon = IconWdg( "WARNING", IconWdg.WARNING ) div.add(icon) div.add("<b>No users have been added</b>") div.add("<br/><br/>") div.add("For more information, read the help docs: ") from tactic.ui.app import HelpButtonWdg help = HelpButtonWdg(alias=my.get_help_alias()) div.add(help) div.add("<br/>") div.add("Click on the 'Add' button above to start adding new users.") return top div = DivWdg() top.add(div) #div.add_style("max-height: 300px") #div.add_style("overflow-y: auto") table = Table() table.set_max_width() table.add_style("margin-top: 10px") div.add(table) # group mouse over table.add_relay_behavior( { 'type': "mouseover", 'bvr_match_class': 'spt_row', 'cbjs_action': "spt.mouse.table_layout_hover_over({}, {src_el: bvr.src_el, add_color_modifier: -2})" } ) table.add_relay_behavior( { 'type': "mouseout", 'bvr_match_class': 'spt_row', 'cbjs_action': "spt.mouse.table_layout_hover_out({}, {src_el: bvr.src_el})" } ) tr = table.add_row() tr.add_color("color", "color") tr.add_color("background", "background", -10) th = table.add_header("&nbsp;") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Login") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("First Name") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Last Name") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Display Name") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Activity") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Groups") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Security") th.add_style("padding: 8px 3px") th.add_style("text-align: left") th = table.add_header("Edit") th.add_style("padding: 8px 3px") th.add_style("text-align: left") for i, login in enumerate(logins): tr = table.add_row() tr.add_class("spt_row") if not i or not i%2: tr.add_color("background", "background") else: tr.add_color("background", "background", -2 ) thumb = ThumbWdg() thumb.set_sobject(login) thumb.set_icon_size(45) td = table.add_cell(thumb) td = table.add_cell(login.get_value("login")) td.add_style("padding: 3px") td = table.add_cell(login.get_value("first_name")) td.add_style("padding: 3px") td = table.add_cell(login.get_value("last_name")) td.add_style("padding: 3px") td = table.add_cell(login.get_value("display_name")) td.add_style("padding: 3px") search_key = login.get_search_key() login_code = login.get_code() full_name = login.get_full_name() td = table.add_cell() button = IconButtonWdg(tip="Activity", icon=IconWdg.CALENDAR) td.add(button) button.add_behavior( { 'type': 'click_up', 'login_code': login_code, 'full_name': full_name, 'cbjs_action': ''' var class_name = 'tactic.ui.tools.ScheduleUserToolWdg'; var kwargs = { login: bvr.login_code } var title = bvr.full_name + ' Schedule'; var top = bvr.src_el.getParent(".spt_dashboard_top"); spt.tab.set_tab_top(top); spt.tab.add_new("user_schedule", title, class_name, kwargs); //spt.panel.load_popup("Activty", class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Groups", icon=IconWdg.GROUP_LINK) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_key': search_key, 'cbjs_action': ''' var class_name = 'tactic.ui.startup.GroupAssignWdg'; var kwargs = { search_key: bvr.search_key }; var popup = spt.panel.load_popup("Group Assignment", class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Security", icon=IconWdg.LOCK) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_key': search_key, 'cbjs_action': ''' var class_name = 'tactic.ui.startup.GroupSummaryWdg'; var kwargs = { search_key: bvr.search_key }; var popup = spt.panel.load_popup("Security Summary", class_name, kwargs); ''' } ) td = table.add_cell() button = IconButtonWdg(title="Edit User", icon=IconWdg.EDIT) td.add(button) button.add_behavior( { 'type': 'click_up', 'search_key': search_key, 'cbjs_action': ''' var top = bvr.src_el.getParent(".spt_panel_user_top"); var class_name = 'tactic.ui.panel.EditWdg'; var kwargs = { search_type: "sthpw/login", view: "edit", search_key: bvr.search_key } var popup = spt.panel.load_popup("Create New User", class_name, kwargs); popup.on_save_cbk = function() { spt.panel.refresh(top); } ''' } ) return top
southpawtech/TACTIC-DEV
src/tactic/ui/startup/project_config_wdg.py
Python
epl-1.0
34,352
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ from openstack_auth import utils import horizon from django.conf import settings class Admin(horizon.Dashboard): name = _("Admin") slug = "admin" if getattr(settings, 'POLICY_CHECK_FUNCTION', None): policy_rules = (('identity', 'admin_required'), ('image', 'context_is_admin'), ('volume', 'context_is_admin'), ('compute', 'context_is_admin'), ('network', 'context_is_admin'), ('orchestration', 'context_is_admin'),) else: permissions = (tuple(utils.get_admin_permissions()),) horizon.register(Admin)
yeming233/horizon
openstack_dashboard/dashboards/admin/dashboard.py
Python
apache-2.0
1,320
for _ in range(int(input())): A, B = map(int, input().split()) print('Tuzik' if A % 2 == 0 or B % 2 == 0 else 'Vanka')
knuu/competitive-programming
codechef/ltime26_puppygm.py
Python
mit
127
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Michael Still # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import fixtures from nova import test from nova.virt.disk.mount import loop def _fake_noop(*args, **kwargs): return def _fake_trycmd_losetup_works(*args, **kwargs): return '/dev/loop0', '' def _fake_trycmd_losetup_fails(*args, **kwards): return '', 'doh' class LoopTestCase(test.NoDBTestCase): def test_get_dev(self): tempdir = self.useFixture(fixtures.TempDir()).path l = loop.LoopMount(None, tempdir) self.useFixture(fixtures.MonkeyPatch('nova.utils.trycmd', _fake_trycmd_losetup_works)) self.useFixture(fixtures.MonkeyPatch('nova.utils.execute', _fake_noop)) # No error logged, device consumed self.assertTrue(l.get_dev()) self.assertTrue(l.linked) self.assertEqual('', l.error) self.assertEqual('/dev/loop0', l.device) # Free l.unget_dev() self.assertFalse(l.linked) self.assertEqual('', l.error) self.assertIsNone(l.device) def test_inner_get_dev_fails(self): tempdir = self.useFixture(fixtures.TempDir()).path l = loop.LoopMount(None, tempdir) self.useFixture(fixtures.MonkeyPatch('nova.utils.trycmd', _fake_trycmd_losetup_fails)) # No error logged, device consumed self.assertFalse(l._inner_get_dev()) self.assertFalse(l.linked) self.assertNotEqual('', l.error) self.assertIsNone(l.device) # Free l.unget_dev() self.assertFalse(l.linked) self.assertIsNone(l.device) def test_get_dev_timeout(self): tempdir = self.useFixture(fixtures.TempDir()).path l = loop.LoopMount(None, tempdir) self.useFixture(fixtures.MonkeyPatch('time.sleep', _fake_noop)) self.useFixture(fixtures.MonkeyPatch('nova.utils.trycmd', _fake_trycmd_losetup_fails)) self.useFixture(fixtures.MonkeyPatch(('nova.virt.disk.mount.api.' 'MAX_DEVICE_WAIT'), -10)) # Always fail to get a device def fake_get_dev_fails(): return False l._inner_get_dev = fake_get_dev_fails # Fail to get a device self.assertFalse(l.get_dev()) def test_unget_dev(self): tempdir = self.useFixture(fixtures.TempDir()).path l = loop.LoopMount(None, tempdir) self.useFixture(fixtures.MonkeyPatch('nova.utils.execute', _fake_noop)) # This just checks that a free of something we don't have doesn't # throw an exception l.unget_dev()
sacharya/nova
nova/tests/virt/disk/test_loop.py
Python
apache-2.0
3,418
# Webhooks for external integrations. from django.utils.translation import ugettext as _ from zerver.lib.actions import check_send_stream_message from zerver.lib.response import json_success, json_error from zerver.decorator import REQ, has_request_variables, api_key_only_webhook_view from zerver.lib.validator import check_dict, check_string from zerver.models import UserProfile from django.http import HttpRequest, HttpResponse from typing import Dict, Any, Iterable, Optional, Text @api_key_only_webhook_view('HelloWorld') @has_request_variables def api_helloworld_webhook(request, user_profile, payload=REQ(argument_type='body'), stream=REQ(default='test'), topic=REQ(default='Hello World')): # type: (HttpRequest, UserProfile, Dict[str, Iterable[Dict[str, Any]]], Text, Optional[Text]) -> HttpResponse # construct the body of the message body = 'Hello! I am happy to be here! :smile:' # try to add the Wikipedia article of the day body_template = '\nThe Wikipedia featured article for today is **[{featured_title}]({featured_url})**' body += body_template.format(**payload) # send the message check_send_stream_message(user_profile, request.client, stream, topic, body) return json_success()
amanharitsh123/zulip
zerver/webhooks/helloworld/view.py
Python
apache-2.0
1,295
from grid.models import Grid from django.contrib.auth.models import Group, User, Permission from package.models import Category, PackageExample, Project from grid.models import Element, Feature, GridPackage from core.tests import datautil def load(): category, created = Category.objects.get_or_create( pk=1, slug='apps', title='App', description='Small components used to build projects.', ) package1, created = Project.objects.get_or_create( pk=1, category=category, repo_watchers=0, title='Testability', pypi_url='', participants='malcomt,jacobian', pypi_downloads=0, repo_url='https://github.com/pydanny/django-la-facebook', repo_forks=0, slug='testability', repo_description='Increase your testing ability with this steroid free supplement.', ) package2, created = Project.objects.get_or_create( pk=2, category=category, repo_watchers=0, title='Supertester', pypi_url='', participants='thetestman', pypi_downloads=0, repo_url='https://github.com/pydanny/django-uni-form', repo_forks=0, slug='supertester', repo_description='Test everything under the sun with one command!', ) package3, created = Project.objects.get_or_create( pk=3, category=category, repo_watchers=0, title='Serious Testing', pypi_url='', participants='pydanny', pypi_downloads=0, repo_url='https://github.com/opencomparison/opencomparison', repo_forks=0, slug='serious-testing', repo_description='Make testing as painless as waxing your legs.', ) package4, created = Project.objects.get_or_create( pk=4, category=category, repo_watchers=0, title='Another Test', pypi_url='', participants='pydanny', pypi_downloads=0, repo_url='https://github.com/djangopackages/djangopackages', repo_forks=0, slug='another-test', repo_description='Yet another test package, with no grid affiliation.', ) grid1, created = Grid.objects.get_or_create( pk=1, description='A grid for testing.', title='Testing', is_locked=False, slug='testing', ) grid2, created = Grid.objects.get_or_create( pk=2, description='Another grid for testing.', title='Another Testing', is_locked=False, slug='another-testing', ) gridpackage1, created = GridPackage.objects.get_or_create( pk=1, package=package1, grid=grid1, ) gridpackage2, created = GridPackage.objects.get_or_create( pk=2, package=package1, grid=grid1, ) gridpackage3, created = GridPackage.objects.get_or_create( pk=3, package=package3, grid=grid1, ) gridpackage4, created = GridPackage.objects.get_or_create( pk=4, package=package3, grid=grid2, ) gridpackage5, created = GridPackage.objects.get_or_create( pk=5, package=package2, grid=grid1, ) feature1, created = Feature.objects.get_or_create( pk=1, title='Has tests?', grid=grid1, description='Does this package come with tests?', ) feature2, created = Feature.objects.get_or_create( pk=2, title='Coolness?', grid=grid1, description='Is this package cool?', ) element, created = Element.objects.get_or_create( pk=1, text='Yes', feature=feature1, grid_package=gridpackage1, ) group1, created = Group.objects.get_or_create( pk=1, name='Moderators', #permissions=[[u'delete_gridpackage', u'grid', u'gridpackage'], [u'delete_feature', u'grid', u'feature']], ) group1.permissions.clear() group1.permissions = [ Permission.objects.get(codename='delete_gridpackage'), Permission.objects.get(codename='delete_feature') ] user1, created = User.objects.get_or_create( pk=1, username='user', first_name='', last_name='', is_active=True, is_superuser=False, is_staff=False, last_login='2010-01-01 12:00:00', email='', date_joined='2010-01-01 12:00:00', ) user1.set_password('user') user1.save() user2, created = User.objects.get_or_create( pk=2, username='cleaner', first_name='', last_name='', is_active=True, is_superuser=False, is_staff=False, last_login='2010-01-01 12:00:00', #groups=[group1], email='', date_joined='2010-01-01 12:00:00', ) user2.groups = [group1] user2.set_password('cleaner') user2.save() user3, created = User.objects.get_or_create( pk=3, username='staff', first_name='', last_name='', is_active=True, is_superuser=False, is_staff=True, last_login='2010-01-01 12:00:00', email='', date_joined='2010-01-01 12:00:00', ) user3.set_password('staff') user3.save() user4, created = User.objects.get_or_create( pk=4, username='admin', first_name='', last_name='', is_active=True, is_superuser=True, is_staff=True, last_login='2010-01-01 12:00:00', email='', date_joined='2010-01-01 12:00:00', ) user4.set_password('admin') user4.save() packageexample, created = PackageExample.objects.get_or_create( pk=1, package=package1, url='http://www.example.com/', active=True, title='www.example.com', ) datautil.reset_sequences(Grid, Group, User, Permission, Category, PackageExample, Project, Element, Feature, GridPackage)
noisy/steemprojects.com
feeds/tests/data.py
Python
mit
6,035
# Copyright (c) 2016 Hitachi Data Systems. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """add_share_snapshot_access Revision ID: a77e2ad5012d Revises: e1949a93157a Create Date: 2016-07-15 13:32:19.417771 """ # revision identifiers, used by Alembic. revision = 'a77e2ad5012d' down_revision = 'e1949a93157a' from manila.common import constants from manila.db.migrations import utils from alembic import op import sqlalchemy as sa def upgrade(): op.create_table( 'share_snapshot_access_map', sa.Column('id', sa.String(36), primary_key=True), sa.Column('created_at', sa.DateTime), sa.Column('updated_at', sa.DateTime), sa.Column('deleted_at', sa.DateTime), sa.Column('deleted', sa.String(36), default='False'), sa.Column('share_snapshot_id', sa.String(36), sa.ForeignKey('share_snapshots.id', name='ssam_snapshot_fk')), sa.Column('access_type', sa.String(255)), sa.Column('access_to', sa.String(255)) ) op.create_table( 'share_snapshot_instance_access_map', sa.Column('id', sa.String(36), primary_key=True), sa.Column('created_at', sa.DateTime), sa.Column('updated_at', sa.DateTime), sa.Column('deleted_at', sa.DateTime), sa.Column('deleted', sa.String(36), default='False'), sa.Column('share_snapshot_instance_id', sa.String(36), sa.ForeignKey('share_snapshot_instances.id', name='ssiam_snapshot_instance_fk')), sa.Column('access_id', sa.String(36), sa.ForeignKey('share_snapshot_access_map.id', name='ssam_access_fk')), sa.Column('state', sa.String(255), default=constants.ACCESS_STATE_QUEUED_TO_APPLY) ) op.create_table( 'share_snapshot_instance_export_locations', sa.Column('id', sa.String(36), primary_key=True), sa.Column('created_at', sa.DateTime), sa.Column('updated_at', sa.DateTime), sa.Column('deleted_at', sa.DateTime), sa.Column('deleted', sa.String(36), default='False'), sa.Column('share_snapshot_instance_id', sa.String(36), sa.ForeignKey('share_snapshot_instances.id', name='ssiel_snapshot_instance_fk')), sa.Column('path', sa.String(2000)), sa.Column('is_admin_only', sa.Boolean, default=False, nullable=False) ) op.add_column('shares', sa.Column('mount_snapshot_support', sa.Boolean, default=False)) connection = op.get_bind() shares_table = utils.load_table('shares', connection) # pylint: disable=no-value-for-parameter op.execute( shares_table.update().where( shares_table.c.deleted == 'False').values({ 'mount_snapshot_support': False, }) ) def downgrade(): op.drop_table('share_snapshot_instance_export_locations') op.drop_table('share_snapshot_instance_access_map') op.drop_table('share_snapshot_access_map') op.drop_column('shares', 'mount_snapshot_support')
openstack/manila
manila/db/migrations/alembic/versions/a77e2ad5012d_add_share_snapshot_access.py
Python
apache-2.0
3,742
from pyccel.decorators import types #============================================================================== @types( int ) def sum_natural_numbers( n ): x = 0 for i in range( 1, n+1 ): x += i return x # ... @types( int ) def factorial( n ): x = 1 for i in range( 2, n+1 ): x *= i return x # ... @types( int ) def fibonacci( n ): x = 0 y = 1 for i in range( n ): z = x+y x = y y = z return x # ... @types( int ) def double_loop( n ): x = 0 for i in range( 3, 10 ): x += 1 y = n*x for j in range( 4, 15 ): z = x-y return z # ... @types( 'int[:,:](order=C)' ) def double_loop_on_2d_array_C( z ): from numpy import shape s = shape( z ) m = s[0] n = s[1] for i in range( m ): for j in range( n ): z[i,j] = i-j # ... @types( 'int[:,:](order=F)' ) def double_loop_on_2d_array_F( z ): from numpy import shape s = shape( z ) m = s[0] n = s[1] for i in range( m ): for j in range( n ): z[i,j] = i-j # ... @types( 'int[:,:](order=C)' ) def product_loop_on_2d_array_C( z ): from numpy import shape from itertools import product s = shape( z ) m = s[0] n = s[1] x = [i for i in range(m)] y = [j for j in range(n)] for i,j in product( x, y ): z[i,j] = i-j # ... @types( 'int[:,:](order=F)' ) def product_loop_on_2d_array_F( z ): from numpy import shape from itertools import product s = shape( z ) m = s[0] n = s[1] x = [i for i in range(m)] y = [j for j in range(n)] for i,j in product( x, y ): z[i,j] = i-j # ... @types( 'int[:]' ) def map_on_1d_array( z ): @types( int ) def f( x ): return x+5 res = 0 for v in map( f, z ): res *= v return res # ... @types( 'int[:]' ) def enumerate_on_1d_array( z ): res = 0 for i,v in enumerate( z ): res += v*i return res # ... @types( int ) def zip_prod( m ): x = [ i for i in range(m)] y = [2*j for j in range(m)] res = 0 for i1,i2 in zip( x, y ): res += i1*i2 return res
ratnania/pyccel
tests/epyccel/modules/loops.py
Python
mit
2,225
# -*- coding:Utf8 -*- # Exemple de serveur web ne délivrant plusieurs pages simples. import cherrypy class MonSiteWeb(object): def index(self): # Renvoi d'une page HTML contenant un lien vers une autre page # (laquelle sera produite par une autre méthode) : return '<h2>Veuillez <a href="unMessage">cliquer ici</a> '\ "pour accéder à une information d'importance cruciale.</h2>" index.exposed = True def unMessage(self): # Le message incontournable : return "<h1>La programmation, c'est génial !</h1>" unMessage.exposed = True cherrypy.quickstart(MonSiteWeb(), config ="tutoriel.conf")
widowild/messcripts
exercice/python3/chap17/site_web_02.py
Python
gpl-3.0
661
#-*- encoding: utf-8 -*- import ConfigParser import string import os import sys cf = ConfigParser.ConfigParser() cf.read("test.conf") # 返回所有的section s = cf.sections() print 'section:', s o = cf.options("db") print 'options:', o v = cf.items("db") print 'db:', v print '-' * 60 # 可以按照类型读取出来 db_host = cf.get("db", "db_host") db_port = cf.getint("db", "db_port") db_user = cf.get("db", "db_user") db_pass = cf.get("db", "db_pass") # 返回的是整型的 threads = cf.getint("concurrent", "thread") processors = cf.getint("concurrent", "processor") print "db_host:", db_host print "db_port:", db_port print "db_user:", db_user print "db_pass:", db_pass print "thread:", threads print "processor:", processors # 修改一个值,再写回去 cf.set("db", "db_pass", "zhaowei") cf.write(open("test.conf", "w"))
quchunguang/test
pythonchallenge/config.py
Python
mit
845
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from enum import Enum, EnumMeta from six import with_metaclass class _CaseInsensitiveEnumMeta(EnumMeta): def __getitem__(self, name): return super().__getitem__(name.upper()) def __getattr__(cls, name): """Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves. """ try: return cls._member_map_[name.upper()] except KeyError: raise AttributeError(name) class ActionType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The type of the action. """ EMAIL_CONTACTS = "EmailContacts" AUTO_RENEW = "AutoRenew" class DeletionRecoveryLevel(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """Reflects the deletion recovery level currently in effect for keys in the current vault. If it contains 'Purgeable' the key can be permanently deleted by a privileged user; otherwise, only the system can purge the key, at the end of the retention interval. """ #: Soft-delete is not enabled for this vault. A DELETE operation results in immediate and #: irreversible data loss. PURGEABLE = "Purgeable" #: Soft-delete is enabled for this vault; A privileged user may trigger an immediate, irreversible #: deletion(purge) of a deleted entity. RECOVERABLE_PURGEABLE = "Recoverable+Purgeable" #: Soft-delete is enabled for this vault and purge has been disabled. A deleted entity will remain #: in this state until recovered, or the end of the retention interval. RECOVERABLE = "Recoverable" #: Soft-delete is enabled for this vault, and the subscription is protected against immediate #: deletion. RECOVERABLE_PROTECTED_SUBSCRIPTION = "Recoverable+ProtectedSubscription" class JsonWebKeyCurveName(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """Elliptic curve name. For valid values, see JsonWebKeyCurveName. """ #: The NIST P-256 elliptic curve, AKA SECG curve SECP256R1. P256 = "P-256" #: The NIST P-384 elliptic curve, AKA SECG curve SECP384R1. P384 = "P-384" #: The NIST P-521 elliptic curve, AKA SECG curve SECP521R1. P521 = "P-521" #: The SECG SECP256K1 elliptic curve. SECP256_K1 = "SECP256K1" class JsonWebKeyEncryptionAlgorithm(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """algorithm identifier """ RSA_OAEP = "RSA-OAEP" RSA_OAEP256 = "RSA-OAEP-256" RSA1_5 = "RSA1_5" class JsonWebKeyOperation(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """JSON web key operations. For more information, see JsonWebKeyOperation. """ ENCRYPT = "encrypt" DECRYPT = "decrypt" SIGN = "sign" VERIFY = "verify" WRAP_KEY = "wrapKey" UNWRAP_KEY = "unwrapKey" class JsonWebKeySignatureAlgorithm(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The signing/verification algorithm identifier. For more information on possible algorithm types, see JsonWebKeySignatureAlgorithm. """ PS256 = "PS256" PS384 = "PS384" PS512 = "PS512" RS256 = "RS256" RS384 = "RS384" RS512 = "RS512" RSNULL = "RSNULL" ES256 = "ES256" ES384 = "ES384" ES512 = "ES512" ECDSA256 = "ECDSA256" class JsonWebKeyType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """JsonWebKey key type (kty). """ EC = "EC" EC_HSM = "EC-HSM" RSA = "RSA" RSA_HSM = "RSA-HSM" OCT = "oct" class KeyUsageType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): DIGITAL_SIGNATURE = "digitalSignature" NON_REPUDIATION = "nonRepudiation" KEY_ENCIPHERMENT = "keyEncipherment" DATA_ENCIPHERMENT = "dataEncipherment" KEY_AGREEMENT = "keyAgreement" KEY_CERT_SIGN = "keyCertSign" C_RL_SIGN = "cRLSign" ENCIPHER_ONLY = "encipherOnly" DECIPHER_ONLY = "decipherOnly"
Azure/azure-sdk-for-python
sdk/keyvault/azure-keyvault-secrets/azure/keyvault/secrets/_generated/v2016_10_01/models/_key_vault_client_enums.py
Python
mit
4,522
import functools def normalizeCode(code): lines = [l for l in code.split('\n')] if len(lines) < 3: raise ValueError("Invalid number of lines ({0})".format(len(lines))) numChars = max([len(l) for l in lines]) # assure that all lines have the same amount of characters def adjustLine(l): return l + ' ' * max(numChars-len(l), 0); lines = [adjustLine(l) for l in lines] return '\n'.join(lines) def splitDigits(code): lines = [l for l in code.split('\n')] numChars = max([len(l) for l in lines]) numDigits = numChars//3 digits = ['']*numDigits for i in range(numDigits): digits[i] += lines[0][i*3:i*3+3] + '\n' digits[i] += lines[1][i*3:i*3+3] + '\n' digits[i] += lines[2][i*3:i*3+3] return digits __numbers = ''' _ _ _ _ _ _ _ _ | | | _| _||_||_ |_ ||_||_| |_| ||_ _| | _||_| ||_| _| '''[1:]#remove first newline #create a dict that maps each digit in string representation to its number (also str to keep leading 0) __digitMap = dict([(d,str(i)) for i,d in enumerate(splitDigits(normalizeCode(__numbers)))]) def convertDigit(digit): try: return __digitMap[digit] except KeyError: return '?' def convertDigits(digits): for d in splitDigits(digits): yield convertDigit(d) def checksum(number): if len(number) == 9: sum = 0 for i, n in enumerate(number): try: sum += int(n) * (9-i) except ValueError: return False; return sum % 11 == 0 return False; def recover(code): recovered = [] def replace(code, i, c): #print(code[:i] + c + code[i+1:]) number = ''.join(convertDigits(code[:i] + c + code[i+1:])) if checksum(number): recovered.append(number) for i,c in enumerate(code): if c == '_' or c == '|': replace(code, i, ' ') elif c == ' ': replace(code, i, '_') replace(code, i, '|') return recovered def test(code, expected): code = normalizeCode(code) digits = splitDigits(code) number = ''.join([convertDigit(d) for d in digits]) actual = number if '?' in actual or not checksum(actual): recovered = recover(code) if not recovered: actual += ' ILL' elif len(recovered) == 1: actual = recovered[0] else: actual = number + ' AMB ' + str(recovered) if (actual != expected): print(code) print("Got: {0}\n Expected: {1}) ".format(actual, expected)) else: print(actual) # for k,v in __digitMap.items(): # print(k) # print(v) with open('BankOCR_Test.txt', 'r') as f: codes = [c for c in f.read().split(';\n') if c] for code in codes: lines = code.split('\n') test('\n'.join(lines[0:3]), lines[3])
M-Mueller/Python-Exercises
BankOCR.py
Python
mit
2,891
# -*- coding: utf-8 -*- # Copyright (c) 2014 Docker. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ docker_registry.core.lru ~~~~~~~~~~~~~~~~~~~~~~~~~~ Redis based LRU. Can be activated or de-activated globally. Drivers are largely encouraged to use it. By default, doesn't run, until one calls init(). """ import functools import logging import redis logger = logging.getLogger(__name__) redis_conn = None cache_prefix = None def init(enable=True, host='localhost', port=6379, db=0, password=None, path='/'): global redis_conn, cache_prefix if not enable: redis_conn = None return logging.info('Enabling storage cache on Redis') logging.info('Redis config: {0}'.format({ 'host': host, 'port': port, 'db': db, 'password': password, 'path': path })) redis_conn = redis.StrictRedis(host=host, port=int(port), db=int(db), password=password) cache_prefix = 'cache_path:{0}'.format(path) def cache_key(key): return cache_prefix + key def set(f): @functools.wraps(f) def wrapper(*args): content = args[-1] key = args[-2] key = cache_key(key) redis_conn.set(key, content) return f(*args) if redis_conn is None: return f return wrapper def get(f): @functools.wraps(f) def wrapper(*args): key = args[-1] key = cache_key(key) content = redis_conn.get(key) if content is not None: return content # Refresh cache content = f(*args) if content is not None: redis_conn.set(key, content) return content if redis_conn is None: return f return wrapper def remove(f): @functools.wraps(f) def wrapper(*args): key = args[-1] key = cache_key(key) redis_conn.delete(key) return f(*args) if redis_conn is None: return f return wrapper
glenux/contrib-docker-registry
depends/docker-registry-core/docker_registry/core/lru.py
Python
apache-2.0
2,565
#!/usr/bin/env python """ Ex 1. Construct a script that retrieves NAPALM facts from two IOS routers, two Arista switches, and one Junos device. pynet-rtr1 (Cisco IOS) 184.105.247.70 pynet-rtr2 (Cisco IOS) 184.105.247.71 pynet-sw1 (Arista EOS) 184.105.247.72 pynet-sw2 (Arista EOS) 184.105.247.73 ​juniper-srx 184.105.247.76 Retrieve the 'model' number from each device and print the model to standard out. As part of this exercise define the devices that you use in a Python file (for example my_devices.py) and import these devices into your program. Optionally, define the devices in a YAML file and read this my_devices.yml file in. """ from __future__ import print_function from __future__ import unicode_literals from getpass import getpass from pprint import pprint from napalm_base import get_network_driver from pyeapi.eapilib import CommandError import yaml import re YAML_FILE = 'my_devices.yml' def main(): with open(YAML_FILE) as f: my_devices = yaml.load(f) #pprint(my_devices) pwd = getpass() print("{:<20} {:<20} {:<20}".format("Device Type", "Hostname", "Model")) for device_dict in my_devices: device_dict['password'] = pwd device_type = device_dict.pop('device_type') driver = get_network_driver(device_type) device=driver(**device_dict) device.open() facts = device.get_facts() print('*' * 80) print("{:<20} {:<20} {:<20}".format(device_type, device_dict['hostname'], facts['model'])) print('*' * 80) print if __name__ == "__main__": main()
jrslocum17/pynet_test
Bonus3/napalm_get_model.py
Python
apache-2.0
1,612
# -*- coding: utf8 -*- # Copyright (c) 2014 by Ecreall under licence AGPL terms # available on http://www.gnu.org/licenses/agpl.html # licence: AGPL # author: Amen Souissi import datetime import pytz from persistent.list import PersistentList from pyramid.httpexceptions import HTTPFound from dace.util import getSite from dace.objectofcollaboration.principal.util import ( has_role, has_any_roles, grant_roles, get_current) from dace.processinstance.activity import ( InfiniteCardinality, ActionType) from ..user_management.behaviors import ( global_user_processsecurity, access_user_processsecurity) from novaideo.content.interface import ( INovaIdeoApplication, IWebAdvertising, IAdvertising) from novaideo.core import access_action, serialize_roles from novaideo import _ def get_access_key(obj): if 'published' in obj.state: return ['always'] else: result = serialize_roles( (('Owner', obj), 'Moderator')) return result def seewebadvertising_processsecurity_validation(process, context): return access_user_processsecurity(process, context) and \ ('published' in context.state or \ has_any_roles( roles=(('Owner', context), 'Moderator'))) @access_action(access_key=get_access_key) class SeeWebAdvertising(InfiniteCardinality): """SeeFile is the behavior allowing access to context""" title = _('Details') context = IWebAdvertising actionType = ActionType.automatic processsecurity_validation = seewebadvertising_processsecurity_validation def start(self, context, request, appstruct, **kw): return {} def redirect(self, context, request, **kw): return HTTPFound(request.resource_url(context, "@@index")) def createwebadvertising_roles_validation(process, context): return has_role(role=('Moderator',)) class CreateWebAdvertising(InfiniteCardinality): style_descriminator = 'admin-action' style_picto = 'glyphicon glyphicon-picture' style_order = 100 title = _('Create an announcement') submission_title = _('Save') context = INovaIdeoApplication roles_validation = createwebadvertising_roles_validation def start(self, context, request, appstruct, **kw): root = getSite() newadvertising = appstruct['_object_data'] root.addtoproperty('advertisings', newadvertising) newadvertising.state.append('editable') grant_roles(roles=(('Owner', newadvertising), )) newadvertising.setproperty('author', get_current()) newadvertising.reindex() return {'newcontext': newadvertising} def redirect(self, context, request, **kw): return HTTPFound(request.resource_url(kw['newcontext'], "@@index")) def edit_roles_validation(process, context): return has_any_roles( roles=(('Owner', context), 'Moderator')) def edit_processsecurity_validation(process, context): return global_user_processsecurity() def edit_state_validation(process, context): if 'editable' in context.state: return True return has_role(role=('Moderator', )) class EditWebAdvertising(InfiniteCardinality): style = 'button' #TODO add style abstract class style_descriminator = 'text-action' style_picto = 'glyphicon glyphicon-pencil' style_order = 1 submission_title = _('Save') context = IWebAdvertising roles_validation = edit_roles_validation state_validation = edit_state_validation processsecurity_validation = edit_processsecurity_validation def start(self, context, request, appstruct, **kw): context.modified_at = datetime.datetime.now(tz=pytz.UTC) if context.picture: context.rename(context.picture.__name__, context.picture.title) context.reindex() return {} def redirect(self, context, request, **kw): return HTTPFound(request.resource_url(context, "@@index")) def publish_roles_validation(process, context): return has_any_roles(roles=('Moderator',)) def publish_processsecurity_validation(process, context): return global_user_processsecurity() def publish_state_validation(process, context): return 'editable' in context.state class PublishAdvertising(InfiniteCardinality): style = 'button' #TODO add style abstract class style_descriminator = 'global-action' style_interaction = 'ajax-action' style_picto = 'glyphicon glyphicon-ok' style_order = 5 submission_title = _('Continue') context = IAdvertising roles_validation = publish_roles_validation state_validation = publish_state_validation processsecurity_validation = publish_processsecurity_validation def start(self, context, request, appstruct, **kw): context.state = PersistentList(['published']) context.modified_at = datetime.datetime.now(tz=pytz.UTC) context.reindex() return {} def redirect(self, context, request, **kw): return HTTPFound(request.resource_url(context, "@@index")) def archive_roles_validation(process, context): return has_any_roles(roles=('Moderator',)) def archive_processsecurity_validation(process, context): return global_user_processsecurity() def archive_state_validation(process, context): return 'published' in context.state class ArchiveAdvertising(InfiniteCardinality): style = 'button' #TODO add style abstract class style_descriminator = 'global-action' style_interaction = 'ajax-action' style_picto = 'glyphicon glyphicon-folder-close' style_order = 6 submission_title = _('Continue') context = IAdvertising roles_validation = archive_roles_validation state_validation = archive_state_validation processsecurity_validation = archive_processsecurity_validation def start(self, context, request, appstruct, **kw): context.state = PersistentList(['archived']) context.modified_at = datetime.datetime.now(tz=pytz.UTC) context.reindex() return {} def redirect(self, context, request, **kw): return HTTPFound(request.resource_url(context, "@@index")) def remove_roles_validation(process, context): return has_any_roles(roles=('Moderator',)) def remove_processsecurity_validation(process, context): return global_user_processsecurity() class RemoveAdvertising(InfiniteCardinality): style = 'button' #TODO add style abstract class style_descriminator = 'global-action' style_interaction = 'ajax-action' style_picto = 'glyphicon glyphicon-trash' style_order = 7 submission_title = _('Continue') context = IAdvertising roles_validation = remove_roles_validation processsecurity_validation = remove_processsecurity_validation def start(self, context, request, appstruct, **kw): root = getSite() root.delfromproperty('advertisings', context) return {} def redirect(self, context, request, **kw): root = getSite() return HTTPFound(request.resource_url(root, "")) def seeads_roles_validation(process, context): return has_role(role=('Moderator',)) def seeads_processsecurity_validation(process, context): return global_user_processsecurity() class SeeAdvertisings(InfiniteCardinality): style = 'button' #TODO add style abstract class style_descriminator = 'admin-action' style_picto = 'glyphicon glyphicon-picture' style_order = 100 isSequential = False context = INovaIdeoApplication roles_validation = seeads_roles_validation processsecurity_validation = seeads_processsecurity_validation def start(self, context, request, appstruct, **kw): return {} def redirect(self, context, request, **kw): return HTTPFound(request.resource_url(context)) #TODO behaviors
ecreall/nova-ideo
novaideo/content/processes/advertising_management/behaviors.py
Python
agpl-3.0
7,840
from __future__ import absolute_import from django.test import Client from django.core.handlers.wsgi import WSGIRequest from django.core.handlers.base import BaseHandler from celery.utils.compat import WhateverIO class RequestFactory(Client): """Class that lets you create mock Request objects for use in testing. Usage: rf = RequestFactory() get_request = rf.get('/hello/') post_request = rf.post('/submit/', {'foo': 'bar'}) This class re-uses the django.test.client.Client interface, docs here: http://www.djangoproject.com/documentation/testing/#the-test-client Once you have a request object you can pass it to any view function, just as if that view had been hooked up using a URLconf. """ def request(self, **request): """Similar to parent class, but returns the request object as soon as it has created it.""" environ = { 'HTTP_COOKIE': self.cookies, 'HTTP_USER_AGENT': 'Django UnitTest Client 1.0', 'REMOTE_ADDR': '127.0.0.1', 'PATH_INFO': '/', 'QUERY_STRING': '', 'REQUEST_METHOD': 'GET', 'SCRIPT_NAME': '', 'SERVER_NAME': 'testserver', 'SERVER_PORT': 80, 'SERVER_PROTOCOL': 'HTTP/1.1', 'wsgi.input': WhateverIO(), } environ.update(self.defaults) environ.update(request) return WSGIRequest(environ) class MockRequest(object): def __init__(self): handler = BaseHandler() handler.load_middleware() self.request_factory = RequestFactory() self.middleware = handler._request_middleware def _make_request(self, request_method, *args, **kwargs): request_method_handler = getattr(self.request_factory, request_method) request = request_method_handler(*args, **kwargs) [middleware_processor(request) for middleware_processor in self.middleware] return request def get(self, *args, **kwargs): return self._make_request("get", *args, **kwargs) def post(self, *args, **kwargs): return self._make_request("post", *args, **kwargs) def put(self, *args, **kwargs): return self._make_request("put", *args, **kwargs) def delete(self, *args, **kwargs): return self._make_request("delete", *args, **kwargs)
mozilla/firefox-flicks
vendor-local/lib/python/djcelery/tests/req.py
Python
bsd-3-clause
2,380
#!/usr/bin/env python3 """Project Euler - Problem 52 Module""" import pelib def problem52(): """Problem 52 - Permuted multiples""" x = 1 while True: ss_str_2x = sorted(set(str(2 * x))) ss_str_3x = sorted(set(str(3 * x))) ss_str_4x = sorted(set(str(4 * x))) ss_str_5x = sorted(set(str(5 * x))) ss_str_6x = sorted(set(str(6 * x))) if ss_str_2x == ss_str_3x == ss_str_4x == ss_str_5x == ss_str_6x: #print(x, ss_str_2x) return x x += 1 def run(): """Default Run Method""" return problem52() if __name__ == '__main__': print("Result: ", run())
rado0x54/project-euler
python/problem0052.py
Python
mit
651
#!/usr/bin/env python # -*- coding: utf-8 -*- import functools def memoize(obj): """Memoize decorator, as seen on `here <https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize>`_ """ cache = obj._cache = {} @functools.wraps(obj) def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = obj(*args, **kwargs) return cache[key] return memoizer
galactics/space-api
beyond/utils/memoize.py
Python
gpl-3.0
453
# Copyright 2018 Creu Blanca # License LGPL-3.0 or later (https://www.gnu.org/licenses/lgpl.html). from odoo import api, fields, models class ResConfigSettings(models.TransientModel): _inherit = 'res.config.settings' group_stock_request_order = fields.Boolean( implied_group='stock_request.group_stock_request_order') module_stock_request_purchase = fields.Boolean( string='Stock Requests for Purchases') module_stock_request_kanban = fields.Boolean( string='Stock Requests Kanban integration') stock_request_allow_virtual_loc = fields.Boolean( related='company_id.stock_request_allow_virtual_loc', readonly=False) module_stock_request_analytic = fields.Boolean( string='Stock Requests Analytic integration') module_stock_request_submit = fields.Boolean( string='Submitted state in Stock Requests') # Dependencies @api.onchange('stock_request_allow_virtual_loc') def _onchange_stock_request_allow_virtual_loc(self): if self.stock_request_allow_virtual_loc: self.group_stock_multi_locations = True
Vauxoo/stock-logistics-warehouse
stock_request/models/res_config_settings.py
Python
agpl-3.0
1,123
from sling import Application, logger from sling import logger from sling.ext import hello import localmodule app = Application([ hello, ]) # Other way of installing a module app.add_module(localmodule) # Install a Falcon middleware class HelloMiddleware(object): def process_request(self, req, res): logger.info('hellomiddleware processing request...') def process_resource(self, req, res, resource): logger.info('hellomiddleware processing resource...') def process_response(self, req, res, resource): logger.info('hellomiddleware processing response...') app.add_middleware(HelloMiddleware) # Install a standard WSGI Middleware from werkzeug.contrib.profiler import ProfilerMiddleware app.add_wsgi_middleware(ProfilerMiddleware, sort_by=('cumtime',), restrictions=('/opt', 30)) # Install werkzeug debugger from werkzeug.debug import DebuggedApplication app.add_wsgi_middleware(DebuggedApplication, evalex=True) wsgi = app.wsgi if __name__ == '__main__': app.manage()
slinghq/sling
examples/app/app.py
Python
apache-2.0
1,030
# -*- coding: utf-8 -*- class LineCallback(object): def __init__(self, callback): self.callback = callback def Pinverified(self, pin): self.callback("Enter PinCode '" + pin + "' to your mobile phone in 2 minutes") def QrUrl(self, url): self.callback("Login qrcode to your smartphone in 2 minutes\nModify By Hyunakyu\n" + url) def default(self, str): self.callback(str)
Hyunakyu/FFR
LineAlpha/LineApi/LineCallback.py
Python
gpl-3.0
435
# -*- coding: utf-8 -*- import scrapy from rrs.items import RrsItem, FoodItem class OnepageSpider(scrapy.Spider): name = "onepage" allowed_domains = ["cd.meituan.com"] start_urls = [ 'http://cd.meituan.com/category/meishi/' ] def parse(self, response): for sel in response.css("div.basic.cf > a"): rrs_item = RrsItem() rrs_item['r_name'] = sel.xpath('text()').extract() rrs_item['r_link'] = sel.xpath('@href').extract() #url = response.urljoin(sel.xpath('@href').extract()) yield scrapy.Request(rrs_item['r_link'][0], meta = {'rrs_item' : rrs_item}, callback = self.parse_food) def parse_food(self, response): rrs_item = response.meta['rrs_item'] r_foods = [] for sel in response.css("div.menu__items > table > tr > td"): r_food = FoodItem() r_food['f_name'] = sel.xpath('text()').extract() r_food['f_price'] = sel.xpath('span/text()').extract() r_foods.append(r_food) rrs_item['r_foods'] = r_foods yield rrs_item
tensorchen/spider
rrs/rrs/spiders/one_page.py
Python
artistic-2.0
1,136
# # SSSD LOCAL domain tests # # Copyright (c) 2015 Red Hat, Inc. # Author: Michal Zidek <[email protected]> # # This is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; version 2 only # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import os import stat import pwd import time import config import signal import subprocess import pytest from util import unindent def stop_sssd(): pid_file = open(config.PIDFILE_PATH, "r") pid = int(pid_file.read()) os.kill(pid, signal.SIGTERM) while True: try: os.kill(pid, signal.SIGCONT) except: break time.sleep(1) def create_conf_fixture(request, contents): """Generate sssd.conf and add teardown for removing it""" conf = open(config.CONF_PATH, "w") conf.write(contents) conf.close() os.chmod(config.CONF_PATH, stat.S_IRUSR | stat.S_IWUSR) request.addfinalizer(lambda: os.unlink(config.CONF_PATH)) def create_sssd_fixture(request): """Start sssd and add teardown for stopping it and removing state""" if subprocess.call(["sssd", "-D", "-f"]) != 0: raise Exception("sssd start failed") def teardown(): try: stop_sssd() except: pass for path in os.listdir(config.DB_PATH): os.unlink(config.DB_PATH + "/" + path) for path in os.listdir(config.MCACHE_PATH): os.unlink(config.MCACHE_PATH + "/" + path) request.addfinalizer(teardown) @pytest.fixture def local_domain_only(request): conf = unindent("""\ [sssd] domains = LOCAL services = nss [nss] memcache_timeout = 0 [domain/LOCAL] id_provider = local min_id = 10000 max_id = 20000 """).format(**locals()) create_conf_fixture(request, conf) create_sssd_fixture(request) return None def assert_nonexistent_user(name): with pytest.raises(KeyError): pwd.getpwnam(name) def test_wrong_LC_ALL(local_domain_only): """ Regression test for ticket https://fedorahosted.org/sssd/ticket/2785 """ subprocess.check_call(["sss_useradd", "foo", "-M"]) pwd.getpwnam("foo") # Change the LC_ALL variable to nonexistent locale oldvalue = os.environ.get("LC_ALL", "") os.environ["LC_ALL"] = "nonexistent_locale" # sss_userdel must remove the user despite wrong LC_ALL subprocess.check_call(["sss_userdel", "foo", "-R"]) assert_nonexistent_user("foo") os.environ["LC_LOCAL"] = oldvalue
sgallagher/sssd
src/tests/intg/test_local_domain.py
Python
gpl-3.0
2,993
def main() -> None: N = int(input()) ans = 3 ** N odd = 1 for a in map(int, input().split()): if a % 2 == 0: odd *= 2 print(ans - odd) if __name__ == '__main__': main()
knuu/competitive-programming
atcoder/corp/code-festival-2017-qualc_b.py
Python
mit
215
#!/usr/bin/env python import optparse from sys import * import os,sys,re from optparse import OptionParser import glob import subprocess from os import system import linecache import time import datetime import calendar #========================= def setupParserOptions(): parser = optparse.OptionParser() parser.set_usage("%prog -i <instance type> --days=<days>") parser.add_option("-i",dest="instance",type="string",metavar="STRING", help="Amazon instance type (e.g. r3.8xlarge, t2.micro, etc.)") parser.add_option("--days",dest="days",type="int",metavar="INT", help="Timeframe over which to retrieve spot instance price history. Maximum is 90 days.") parser.add_option("-d", action="store_true",dest="debug",default=False, help="debug") options,args = parser.parse_args() if len(args) > 0: parser.error("Unknown commandline options: " +str(args)) if len(sys.argv) < 3: parser.print_help() sys.exit() params={} for i in parser.option_list: if isinstance(i.dest,str): params[i.dest] = getattr(options,i.dest) return params #============================= def getSpotHistory(params,outdir,timeFrame,currentTime): #Inputs instance=params['instance'] #Regions returned from command: $ ec2-describe-regions if os.path.exists('%s/regions.txt'%(outdir)): os.remove('%s/regions.txt' %(outdir)) cmd = 'ec2-describe-regions > %s/regions.txt' %(outdir) subprocess.Popen(cmd,shell=True).wait() r1 = open('%s/regions.txt' %(outdir),'r') #Loop over all regions for regionline in r1: region=regionline.split()[2] os.environ["EC2_URL"] = "%s" %(region) #Get region name region=region.split('.')[1] print '\n Working on region %s' %(region) if os.path.exists('%s/%s.txt' %(outdir,region)): os.remove('%s/%s.txt' %(outdir,region)) #Get list of availability zones cmd = 'ec2-describe-availability-zones --region %s > %s/%s.txt' %(region,outdir,region) if params['debug'] is True: print cmd subprocess.Popen(cmd,shell=True).wait() f1=open('%s/%s.txt' %(outdir,region),'r') for line in f1: zone=line.split()[1] if os.path.exists('%s/%s_%s_%s_to_%s_spotHistory.txt' %(outdir,zone,instance,timeFrame,currentTime)): os.remove('%s/%s_%s_%s_to_%s_spotHistory.txt' %(outdir,zone,instance,timeFrame,currentTime)) cmd = 'ec2-describe-spot-price-history -t %s -d Linux/UNIX -a %s -s %sT14:10:34-0500 > %s/%s_%s_%s_to_%s_spotHistory.txt' %(instance,zone,timeFrame,outdir,zone,instance,timeFrame,currentTime) if params['debug'] is True: print cmd subprocess.Popen(cmd,shell=True).wait() f1.close() os.remove('%s/%s.txt' %(outdir,region)) r1.close() os.remove('%s/regions.txt' %(outdir)) #============================== def checkConflicts(params): instanceList='m3.large, i2.8xlarge, c3.2xlarge, hs1.8xlarge, c1.xlarge, r3.4xlarge, g2.2xlarge, m1.small, c1.medium, m3.2xlarge, c3.8xlarge, m2.xlarge, r3.2xlarge, t1.micro, cr1.8xlarge, r3.8xlarge, cc1.4xlarge, m1.medium, r3.large, c3.xlarge, i2.xlarge, m3.medium, cc2.8xlarge, m1.large, cg1.4xlarge, i2.2xlarge, c3.large, i2.4xlarge, c3.4xlarge, r3.xlarge, m1.xlarge, hi1.4xlarge, m2.4xlarge, m2.2xlarge, m3.xlarge'.split(', ') if not params['instance'] in instanceList: print '\nError: Instance %s is not a valid Amazon instance type. Exiting.\n' %(params['instance']) sys.exit() if params['days'] >90: print '\nA larger time frame than 90 days has been specified (%i days). Using 90 day limit instead.\n' %(params['days']) params['days']=90 if os.path.exists('SpotHistory_%s_%s_last%02ddays' %(params['instance'],datetime.datetime.now().strftime('%Y-%m-%d'),params['days'])): print '\nError: Directory SpotHistory_%s_%s_last%02ddays already exists. Exiting.\n' %(params['instance'],datetime.datetime.now().strftime('%Y-%m-%d'),params['days']) sys.exit() return params #============================== def getDates(prevDay): today = datetime.datetime.now() dtdelta=datetime.timedelta(days=-prevDay) prevDate=today+dtdelta return '%s' %(prevDate.strftime('%Y-%m-%d')) #============================= def checkAWSPath(): ec2 = subprocess.Popen("env | grep EC2_HOME", shell=True, stdout=subprocess.PIPE).stdout.read().strip() if not ec2: print '\n Error: No AWS CLI tools environment set for $EC2_HOME. Exiting.\n' key=subprocess.Popen("env | grep AWS_ACCESS_KEY", shell=True, stdout=subprocess.PIPE).stdout.read().strip() secret=subprocess.Popen("env | grep AWS_SECRET_KEY", shell=True, stdout=subprocess.PIPE).stdout.read().strip() awsid= subprocess.Popen("env | grep AWS_USER_ID", shell=True, stdout=subprocess.PIPE).stdout.read().strip() if not key: print '\n Error: No AWS_ACCESS_KEY specified in the environment as $AWS_ACCESS_KEY. Exiting.\n' sys.exit() if not secret: print '\n Error: No AWS_SECRET_KEY specified in the environment as $AWS_SECRET_KEY. Exiting.\n' sys.exit() if not awsid: print '\n Error: No AWS_USER_ID specified in the environment as $AWS_USER_ID. Exiting.\n' sys.exit() #============================== if __name__ == "__main__": params=setupParserOptions() checkAWSPath() params=checkConflicts(params) prevDate=getDates(params['days']) outdir='SpotHistory_%s_%s_last%02ddays' %(params['instance'],datetime.datetime.now().strftime('%Y-%m-%d'),params['days']) os.makedirs(outdir) getSpotHistory(params,outdir,prevDate,datetime.datetime.now().strftime('%Y-%m-%d'))
mcianfrocco/Cianfrocco-and-Leschziner-EMCloudProcessing
get_spot_histories_all_regions_all_zones.py
Python
mit
5,680
from setuptools import setup setup( name='python-web-demo-flask', packages=['demo'], )
Appdynamics/Python-Demo-App
setup.py
Python
mit
96
import logging from src import messagebus, pages import time import cherrypy class WebUI(): @cherrypy.expose def scan(self): pages.postOnly() pages.require("/admin/settings.edit") import bluetoothctl bt = bluetoothctl.Bluetoothctl() try: bt.start_scan() time.sleep(15) bt.stop_scan() devs = bt.get_discoverable_devices() paired = bt.get_paired_devices() finally: bt.close(force=True) return pages.get_template("settings/bluetooth/scan.html").render(devs=devs, paired=paired) @cherrypy.expose def pair(self, mac): pages.require("/admin/settings.edit") pages.postOnly() import bluetoothctl bt = bluetoothctl.Bluetoothctl() bt.set_agent("NoInputNoOutput") time.sleep(0.5) try: # I think this horriby fussy command needs exactlt this order to work. if not bt.pair(mac): raise RuntimeError("Pairing failed") if not bt.connect(mac): raise RuntimeError("Pairing suceeded but connection failed") if not bt.trust(mac): raise RuntimeError("Trusting failed") finally: bt.close(force=True) devs = [] paired = bt.get_paired_devices() return pages.get_template("settings/bluetooth/scan.html").render(devs=devs, paired=paired) @cherrypy.expose def remove(self, mac): pages.require("/admin/settings.edit") pages.postOnly() import bluetoothctl bt = bluetoothctl.Bluetoothctl() time.sleep(0.5) try: devs = bt.get_discoverable_devices() paired = bt.get_paired_devices() if not bt.remove(mac): raise RuntimeError("Removing failed") finally: bt.close(force=True) return pages.get_template("settings/bluetooth/scan.html").render(devs=devs, paired=paired)
EternityForest/KaithemAutomation
kaithem/src/btadmin.py
Python
gpl-3.0
2,025
""" sentry.models.event ~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2013 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import logging from django.db import models from django.utils import timezone from django.utils.datastructures import SortedDict from django.utils.translation import ugettext_lazy as _ from sentry.constants import LOG_LEVELS, MAX_CULPRIT_LENGTH from sentry.db.models import ( Model, NodeField, BoundedIntegerField, BoundedPositiveIntegerField, BaseManager, sane_repr ) from sentry.utils.cache import memoize from sentry.utils.imports import import_string from sentry.utils.safe import safe_execute from sentry.utils.strings import truncatechars, strip class Event(Model): """ An individual event. """ group = models.ForeignKey('sentry.Group', blank=True, null=True, related_name="event_set") event_id = models.CharField(max_length=32, null=True, db_column="message_id") project = models.ForeignKey('sentry.Project', null=True) logger = models.CharField( max_length=64, blank=True, default='root', db_index=True) level = BoundedPositiveIntegerField( choices=LOG_LEVELS.items(), default=logging.ERROR, blank=True, db_index=True) message = models.TextField() culprit = models.CharField( max_length=MAX_CULPRIT_LENGTH, blank=True, null=True, db_column='view') checksum = models.CharField(max_length=32, db_index=True) num_comments = BoundedPositiveIntegerField(default=0, null=True) platform = models.CharField(max_length=64, null=True) datetime = models.DateTimeField(default=timezone.now, db_index=True) time_spent = BoundedIntegerField(null=True) server_name = models.CharField(max_length=128, db_index=True, null=True) site = models.CharField(max_length=128, db_index=True, null=True) data = NodeField(blank=True, null=True) objects = BaseManager() class Meta: app_label = 'sentry' db_table = 'sentry_message' verbose_name = _('message') verbose_name_plural = _('messages') unique_together = ('project', 'event_id') __repr__ = sane_repr('project_id', 'group_id', 'checksum') def error(self): message = strip(self.message) if not message: message = '<unlabeled message>' else: message = truncatechars(message.splitlines()[0], 100) return message error.short_description = _('error') def has_two_part_message(self): message = strip(self.message) return '\n' in message or len(message) > 100 def message_top(self): culprit = strip(self.culprit) if culprit: return culprit return self.error() @property def team(self): return self.project.team @memoize def ip_address(self): http_data = self.data.get('sentry.interfaces.Http') if http_data and 'env' in http_data: value = http_data['env'].get('REMOTE_ADDR') if value: return value user_data = self.data.get('sentry.interfaces.User') if user_data: value = user_data.get('ip_address') if value: return value return None @memoize def user_ident(self): """ The identifier from a user is considered from several interfaces. In order: - User.id - User.email - User.username - Http.env.REMOTE_ADDR """ user_data = self.data.get('sentry.interfaces.User') if user_data: ident = user_data.get('id') if ident: return 'id:%s' % (ident,) ident = user_data.get('email') if ident: return 'email:%s' % (ident,) ident = user_data.get('username') if ident: return 'username:%s' % (ident,) ident = self.ip_address if ident: return 'ip:%s' % (ident,) return None @memoize def interfaces(self): result = [] for key, data in self.data.iteritems(): if '.' not in key: continue try: cls = import_string(key) except ImportError: continue # suppress invalid interfaces value = safe_execute(cls, **data) if not value: continue result.append((key, value)) return SortedDict((k, v) for k, v in sorted(result, key=lambda x: x[1].get_score(), reverse=True)) def get_version(self): if not self.data: return if '__sentry__' not in self.data: return if 'version' not in self.data['__sentry__']: return module = self.data['__sentry__'].get('module', 'ver') return module, self.data['__sentry__']['version'] def get_tags(self): try: return [ (t, v) for t, v in self.data.get('tags') or () if not t.startswith('sentry:') ] except ValueError: # at one point Sentry allowed invalid tag sets such as (foo, bar) # vs ((tag, foo), (tag, bar)) return [] def as_dict(self): # We use a SortedDict to keep elements ordered for a potential JSON serializer data = SortedDict() data['id'] = self.event_id data['checksum'] = self.checksum data['project'] = self.project.slug data['logger'] = self.logger data['level'] = self.get_level_display() data['culprit'] = self.culprit data['datetime'] = self.datetime data['time_spent'] = self.time_spent for k, v in sorted(self.data.iteritems()): data[k] = v return data @property def size(self): return len(unicode(vars(self)))
rdio/sentry
src/sentry/models/event.py
Python
bsd-3-clause
5,941