code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
import unittest import time from friendloc.base.splitproc import SplitProcess class AdderSplitProc(SplitProcess): def __init__(self, delay, **kwargs): SplitProcess.__init__(self, **kwargs) self.delay = delay def produce(self): for x in xrange(10): time.sleep(self.delay) yield x def map(self,items): for item in items: yield item+1 def consume(self,items): return sum(items) class TestSplitProc(unittest.TestCase): def test_single(self): asp = AdderSplitProc(0) result = asp.run_single() self.assertEqual(55, result) @unittest.skip def test_multi(self): self._run_test(delay=0,slaves=2) self._run_test(delay=0,slaves=15) self._run_test(delay=.2,slaves=2) def _run_test(self,**kwargs): asp = AdderSplitProc(**kwargs) result = asp.run() self.assertEqual(55, result)
JeffAMcGee/friendloc
friendloc/base/tests/splitproc_tests.py
Python
bsd-2-clause
954
from django.contrib import admin from django.contrib.auth.models import User from .models import FCM # Register your models here. admin.site.register(FCM)
gtsapelas/TRANSrisk_fcm_project
fcm_app/admin.py
Python
mit
156
import numpy as np import cv2 from matplotlib import pyplot as plt ''' a = np.empty((1,10),np.uint8) cv2.randn(a,(0),(10)) print(a) ''' img = cv2.imread('nature.jpg',0) noise = img.copy() cv2.randn(noise,(32),(20)) #Mean = 0, Variance = 1 noise_img = img + noise #* 200 #Sigma for noise = 25 cv2.imshow('image',img) cv2.imshow('noise',noise_img) #pad = (int) (5 - 1) / 2 #pad = 5 #img = cv2.copyMakeBorder(img, pad, pad, pad, pad,cv2.BORDER_REPLICATE) blur = cv2.GaussianBlur(img,(11,11),2) #Kernel Size - 11x11, Sigma = 2 cv2.imshow('blur',blur) cv2.waitKey(0) cv2.destroyAllWindows() ''' plt.subplot(121),plt.imshow(img,cmap='gray'),plt.title('Original') plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('Blurred') plt.xticks([]), plt.yticks([]) plt.show() '''
rohithredd94/Computer-Vision-using-OpenCV
cv2test2.py
Python
mit
824
from gopigo import * import sys fwd() enable_com_timeout(2000)
slowrunner/goRWpigo
tests/timeout_test.py
Python
lgpl-3.0
63
""" Provide pre-made queries on top of the recorder component. For more details about this component, please refer to the documentation at https://home-assistant.io/components/history/ """ import asyncio from collections import defaultdict from datetime import timedelta from itertools import groupby import logging import time import voluptuous as vol from homeassistant.const import ( HTTP_BAD_REQUEST, CONF_DOMAINS, CONF_ENTITIES, CONF_EXCLUDE, CONF_INCLUDE) import homeassistant.util.dt as dt_util from homeassistant.components import recorder, script from homeassistant.components.http import HomeAssistantView from homeassistant.const import ATTR_HIDDEN from homeassistant.components.recorder.util import session_scope, execute _LOGGER = logging.getLogger(__name__) DOMAIN = 'history' DEPENDENCIES = ['recorder', 'http'] CONFIG_SCHEMA = vol.Schema({ DOMAIN: recorder.FILTER_SCHEMA, }, extra=vol.ALLOW_EXTRA) SIGNIFICANT_DOMAINS = ('thermostat', 'climate') IGNORE_DOMAINS = ('zone', 'scene',) def last_recorder_run(hass): """Retrieve the last closed recorder run from the database.""" from homeassistant.components.recorder.models import RecorderRuns with session_scope(hass=hass) as session: res = (session.query(RecorderRuns) .filter(RecorderRuns.end.isnot(None)) .order_by(RecorderRuns.end.desc()).first()) if res is None: return None session.expunge(res) return res def get_significant_states(hass, start_time, end_time=None, entity_ids=None, filters=None, include_start_time_state=True): """ Return states changes during UTC period start_time - end_time. Significant states are all states where there is a state change, as well as all states from certain domains (for instance thermostat so that we get current temperature in our graphs). """ timer_start = time.perf_counter() from homeassistant.components.recorder.models import States with session_scope(hass=hass) as session: query = session.query(States).filter( (States.domain.in_(SIGNIFICANT_DOMAINS) | (States.last_changed == States.last_updated)) & (States.last_updated > start_time)) if filters: query = filters.apply(query, entity_ids) if end_time is not None: query = query.filter(States.last_updated < end_time) query = query.order_by(States.last_updated) states = ( state for state in execute(query) if (_is_significant(state) and not state.attributes.get(ATTR_HIDDEN, False))) if _LOGGER.isEnabledFor(logging.DEBUG): elapsed = time.perf_counter() - timer_start _LOGGER.debug( 'get_significant_states took %fs', elapsed) return states_to_json( hass, states, start_time, entity_ids, filters, include_start_time_state) def state_changes_during_period(hass, start_time, end_time=None, entity_id=None): """Return states changes during UTC period start_time - end_time.""" from homeassistant.components.recorder.models import States with session_scope(hass=hass) as session: query = session.query(States).filter( (States.last_changed == States.last_updated) & (States.last_updated > start_time)) if end_time is not None: query = query.filter(States.last_updated < end_time) if entity_id is not None: query = query.filter_by(entity_id=entity_id.lower()) entity_ids = [entity_id] if entity_id is not None else None states = execute( query.order_by(States.last_updated)) return states_to_json(hass, states, start_time, entity_ids) def get_states(hass, utc_point_in_time, entity_ids=None, run=None, filters=None): """Return the states at a specific point in time.""" from homeassistant.components.recorder.models import States if run is None: run = recorder.run_information(hass, utc_point_in_time) # History did not run before utc_point_in_time if run is None: return [] from sqlalchemy import and_, func with session_scope(hass=hass) as session: if entity_ids and len(entity_ids) == 1: # Use an entirely different (and extremely fast) query if we only # have a single entity id most_recent_state_ids = session.query( States.state_id.label('max_state_id') ).filter( (States.last_updated < utc_point_in_time) & (States.entity_id.in_(entity_ids)) ).order_by( States.last_updated.desc()) most_recent_state_ids = most_recent_state_ids.limit(1) else: # We have more than one entity to look at (most commonly we want # all entities,) so we need to do a search on all states since the # last recorder run started. most_recent_states_by_date = session.query( States.entity_id.label('max_entity_id'), func.max(States.last_updated).label('max_last_updated') ).filter( (States.last_updated >= run.start) & (States.last_updated < utc_point_in_time) ) if entity_ids: most_recent_states_by_date.filter( States.entity_id.in_(entity_ids)) most_recent_states_by_date = most_recent_states_by_date.group_by( States.entity_id) most_recent_states_by_date = most_recent_states_by_date.subquery() most_recent_state_ids = session.query( func.max(States.state_id).label('max_state_id') ).join(most_recent_states_by_date, and_( States.entity_id == most_recent_states_by_date.c.max_entity_id, States.last_updated == most_recent_states_by_date.c. max_last_updated)) most_recent_state_ids = most_recent_state_ids.group_by( States.entity_id) most_recent_state_ids = most_recent_state_ids.subquery() query = session.query(States).join( most_recent_state_ids, States.state_id == most_recent_state_ids.c.max_state_id ).filter((~States.domain.in_(IGNORE_DOMAINS))) if filters: query = filters.apply(query, entity_ids) return [state for state in execute(query) if not state.attributes.get(ATTR_HIDDEN, False)] def states_to_json( hass, states, start_time, entity_ids, filters=None, include_start_time_state=True): """Convert SQL results into JSON friendly data structure. This takes our state list and turns it into a JSON friendly data structure {'entity_id': [list of states], 'entity_id2': [list of states]} We also need to go back and create a synthetic zero data point for each list of states, otherwise our graphs won't start on the Y axis correctly. """ result = defaultdict(list) # Get the states at the start time timer_start = time.perf_counter() if include_start_time_state: for state in get_states(hass, start_time, entity_ids, filters=filters): state.last_changed = start_time state.last_updated = start_time result[state.entity_id].append(state) if _LOGGER.isEnabledFor(logging.DEBUG): elapsed = time.perf_counter() - timer_start _LOGGER.debug( 'getting %d first datapoints took %fs', len(result), elapsed) # Append all changes to it for ent_id, group in groupby(states, lambda state: state.entity_id): result[ent_id].extend(group) return result def get_state(hass, utc_point_in_time, entity_id, run=None): """Return a state at a specific point in time.""" states = list(get_states(hass, utc_point_in_time, (entity_id,), run)) return states[0] if states else None @asyncio.coroutine def async_setup(hass, config): """Set up the history hooks.""" filters = Filters() exclude = config[DOMAIN].get(CONF_EXCLUDE) if exclude: filters.excluded_entities = exclude[CONF_ENTITIES] filters.excluded_domains = exclude[CONF_DOMAINS] include = config[DOMAIN].get(CONF_INCLUDE) if include: filters.included_entities = include[CONF_ENTITIES] filters.included_domains = include[CONF_DOMAINS] hass.http.register_view(HistoryPeriodView(filters)) yield from hass.components.frontend.async_register_built_in_panel( 'history', 'history', 'mdi:poll-box') return True class HistoryPeriodView(HomeAssistantView): """Handle history period requests.""" url = '/api/history/period' name = 'api:history:view-period' extra_urls = ['/api/history/period/{datetime}'] def __init__(self, filters): """Initialize the history period view.""" self.filters = filters @asyncio.coroutine def get(self, request, datetime=None): """Return history over a period of time.""" timer_start = time.perf_counter() if datetime: datetime = dt_util.parse_datetime(datetime) if datetime is None: return self.json_message('Invalid datetime', HTTP_BAD_REQUEST) now = dt_util.utcnow() one_day = timedelta(days=1) if datetime: start_time = dt_util.as_utc(datetime) else: start_time = now - one_day if start_time > now: return self.json([]) end_time = request.query.get('end_time') if end_time: end_time = dt_util.parse_datetime(end_time) if end_time: end_time = dt_util.as_utc(end_time) else: return self.json_message('Invalid end_time', HTTP_BAD_REQUEST) else: end_time = start_time + one_day entity_ids = request.query.get('filter_entity_id') if entity_ids: entity_ids = entity_ids.lower().split(',') include_start_time_state = 'skip_initial_state' not in request.query result = yield from request.app['hass'].async_add_job( get_significant_states, request.app['hass'], start_time, end_time, entity_ids, self.filters, include_start_time_state) result = result.values() if _LOGGER.isEnabledFor(logging.DEBUG): elapsed = time.perf_counter() - timer_start _LOGGER.debug( 'Extracted %d states in %fs', sum(map(len, result)), elapsed) return self.json(result) class Filters(object): """Container for the configured include and exclude filters.""" def __init__(self): """Initialise the include and exclude filters.""" self.excluded_entities = [] self.excluded_domains = [] self.included_entities = [] self.included_domains = [] def apply(self, query, entity_ids=None): """Apply the include/exclude filter on domains and entities on query. Following rules apply: * only the include section is configured - just query the specified entities or domains. * only the exclude section is configured - filter the specified entities and domains from all the entities in the system. * if include and exclude is defined - select the entities specified in the include and filter out the ones from the exclude list. """ from homeassistant.components.recorder.models import States # specific entities requested - do not in/exclude anything if entity_ids is not None: return query.filter(States.entity_id.in_(entity_ids)) query = query.filter(~States.domain.in_(IGNORE_DOMAINS)) filter_query = None # filter if only excluded domain is configured if self.excluded_domains and not self.included_domains: filter_query = ~States.domain.in_(self.excluded_domains) if self.included_entities: filter_query &= States.entity_id.in_(self.included_entities) # filter if only included domain is configured elif not self.excluded_domains and self.included_domains: filter_query = States.domain.in_(self.included_domains) if self.included_entities: filter_query |= States.entity_id.in_(self.included_entities) # filter if included and excluded domain is configured elif self.excluded_domains and self.included_domains: filter_query = ~States.domain.in_(self.excluded_domains) if self.included_entities: filter_query &= (States.domain.in_(self.included_domains) | States.entity_id.in_(self.included_entities)) else: filter_query &= (States.domain.in_(self.included_domains) & ~ States.domain.in_(self.excluded_domains)) # no domain filter just included entities elif not self.excluded_domains and not self.included_domains and \ self.included_entities: filter_query = States.entity_id.in_(self.included_entities) if filter_query is not None: query = query.filter(filter_query) # finally apply excluded entities filter if configured if self.excluded_entities: query = query.filter(~States.entity_id.in_(self.excluded_entities)) return query def _is_significant(state): """Test if state is significant for history charts. Will only test for things that are not filtered out in SQL. """ # scripts that are not cancellable will never change state return (state.domain != 'script' or state.attributes.get(script.ATTR_CAN_CANCEL))
ewandor/home-assistant
homeassistant/components/history.py
Python
apache-2.0
13,984
import string import subprocess import re # yield n-sized chunks # reference: https://stackoverflow.com/questions/312443/how-do-you-split-a-list-into-evenly-sized-chunks def chunks(data, byte_size): length = len(data) for i in range(0, length, byte_size): yield data[i:i + byte_size] def autoN_cmd(data, arrow, byte_size): for chunk in chunks(data, int(byte_size)): final_chunk = "" for c in chunk: # print escape characters for \t, \\, \n and \r if c == '\t' or c == '\\' or c == '\n' or c == '\r': c = c.encode('unicode_escape').decode("ASCII") # print raw for bytes between 32 and 127 elif ord(c) >= 32 and ord(c) <= 127: pass else: c = "\\" + hex(ord(c)) final_chunk += c # print each bytesize chunk print(arrow + final_chunk) def replace_cmd(data, arguments, arrow): # get replace target and new value args = vars(arguments) target = args['replace'][0] new = args['replace'][1] # apply replace functionality for each type of flag (raw, strip, hex) if arguments.raw: for line in data.splitlines(): print(arrow + " {}".format(line.replace(target, new))) elif arguments.strip: for line in data.splitlines(): filtered_line = ''.join(i if i in string.printable else '.' for i in line) print(arrow + " {}".format(filtered_line.replace(target, new))) elif arguments.hex: data = data.replace(target, new) p = subprocess.run("hexdump -C", stdout=subprocess.PIPE, shell=True, input=data.encode()) output = p.stdout.decode() for line in output.splitlines(): print(arrow + " {}".format(line)) def raw_cmd(arguments, data, arrow): for line in data.splitlines(): print(arrow + " {}".format(line)) def strip_cmd(arguments, data, arrow): for line in data.splitlines(): filtered_line = ''.join(i if i in string.printable else '.' for i in line) print(arrow + " {}".format(filtered_line)) def hex_cmd(arguments, data, arrow): import subprocess p = subprocess.run("hexdump -C", stdout=subprocess.PIPE, shell=True, input=data.encode()) output = p.stdout.decode() for line in output.splitlines(): print(arrow + " {}".format(line)) def argument_handler(arguments, byte_size, data, incoming): arrow = None if incoming is True: arrow = "<---" else: arrow = "--->" if arguments.replace: # Call replace command replace_cmd(data, arguments, arrow) return if arguments.raw: raw_cmd(arguments, data, arrow) if byte_size is not None: autoN_cmd(data, arrow, byte_size) elif arguments.strip: strip_cmd(arguments, data, arrow) elif arguments.hex: hex_cmd(arguments, data, arrow)
henrytran28/CPSC-526
assignment_3/commands.py
Python
mit
3,046
#!/usr/bin/env python import glob import re import os list=glob.glob("*00") for img in list: tmp1 = re.sub("_00_","_01_",img) tiltname = re.sub("en_00","en_01",tmp1) f1 = "./%s/down4_%s.raw" %(img,img) f2 = "./%s/down4_%s.raw" %(tiltname,tiltname) if os.path.isfile(f1) & os.path.isfile(f2): print "%s %s 1" %(f1,f2)
leschzinerlab/XMIPP
create_tiltSelFiles.py
Python
mit
332
# # ABC iView XBMC Addon # Copyright (C) 2012 Andy Botting # # This addon includes code from python-iview # Copyright (C) 2009-2012 by Jeremy Visser <[email protected]> # # This addon is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This addon is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this addon. If not, see <http://www.gnu.org/licenses/>. # import comm import config import classes import utils import sys import re import datetime import time import json import xml.etree.ElementTree as ET from BeautifulSoup import BeautifulStoneSoup # This is a throwaway variable to deal with a python bug with strptime: # ImportError: Failed to import _strptime because the import lockis # held by another thread. throwaway = time.strptime('20140101', '%Y%m%d') def parse_config(soup): """There are lots of goodies in the config we get back from the ABC. In particular, it gives us the URLs of all the other XML data we need. """ try: soup = soup.replace('&amp;', '&#38;') xml = BeautifulStoneSoup(soup) # should look like "rtmp://cp53909.edgefcs.net/ondemand" # Looks like the ABC don't always include this field. # If not included, that's okay -- ABC usually gives us the server in the auth result as well. rtmp_url = xml.find('param', attrs={'name':'server_streaming'}).get('value') rtmp_chunks = rtmp_url.split('/') return { 'rtmp_url' : rtmp_url, 'rtmp_host' : rtmp_chunks[2], 'rtmp_app' : rtmp_chunks[3], 'api_url' : xml.find('param', attrs={'name':'api'}).get('value'), 'categories_url' : xml.find('param', attrs={'name':'categories'}).get('value'), } except: raise Exception("Error fetching iView config. Service possibly unavailable") def parse_categories(soup): categories_list = [] """ <category id="pre-school" genre="true"> <name>ABC 4 Kids</name> </category> """ # This next line is the magic to make recursive=False work (wtf?) BeautifulStoneSoup.NESTABLE_TAGS["category"] = [] xml = BeautifulStoneSoup(soup) # Get all the top level categories, except the alphabetical ones for cat in xml.find('categories').findAll('category', recursive=False): id = cat.get('id') if cat.get('index') or id == 'index': continue item = {} item['keyword'] = id item['name'] = cat.find('name').string; categories_list.append(item); return categories_list def parse_programme_from_feed(data): xml = ET.fromstring(data) show_list = [] for item in xml.getiterator('item'): title = item.find('title').text if title.startswith('Trailer'): continue show = None for s in show_list: if s.title == title: show = s break if show: show.increment_num_episodes() else: show = classes.Series() show.title = title show.description = item.find('description').text show.thumbnail = item.find('{http://search.yahoo.com/mrss/}thumbnail').attrib['url'] show_list.append(show) return show_list def parse_programs_from_feed(data): xml = ET.fromstring(data) programs_list = [] for item in xml.getiterator('item'): p = classes.Program() title = item.find('title').text p.title = title subtitle = item.find('subtitle').text title_match = None title_parts = None if subtitle: # Series 2 Episode 25 Home Is Where The Hatch Is title_match = re.search('^[Ss]eries\s?(?P<series>\w+)\s[Ee]p(isode)?\s?(?P<episode>\d+)\s(?P<episode_title>.*)$', subtitle) if not title_match: # Series 8 Episode 13 title_match = re.search('^[Ss]eries\s?(?P<series>\w+)\s[Ee]p(isode)?\s?(?P<episode>\d+)$', subtitle) if not title_match: # Episode 34 Shape Shifter title_match = re.search('^[Ee]p(isode)?\s?(?P<episode>\d+)\s(?P<episode_title>.*)$', subtitle) if not title_match: # Series 10 Rylan Clark, Joanna Lumley, Ant And Dec, The Vaccines title_match = re.search('^[Ss]eries\s?(?P<series>\d+)\s(?P<episode_title>.*)$', subtitle) if not title_match: # Episode 5 title_match = re.search('^[Ee]p(isode)?\s?(?P<episode>\d+)$', subtitle) if not title_match: p.episode_title = subtitle if title_match: title_parts = title_match.groupdict() p.episode_title = title_parts.get('episode_title') try: # If we have actual series/episode fields given p.series = item.find('series').text p.episode = item.find('episode').text except: try: # If we only get series/episode in the subtitle p.series = title_parts.get('series') p.episode = title_parts.get('episode') except: pass p.description = item.find('description').text p.url = item.find('{http://www.abc.net.au/tv/mrss}videoAsset').text p.thumbnail = item.find('{http://search.yahoo.com/mrss/}thumbnail').attrib['url'] try: p.rating = item.find('{http://www.abc.net.au/tv/mrss}rating').text except: # Rating not given for all programs pass try: duration = item.find('{http://search.yahoo.com/mrss/}content').attrib['duration'] p.duration = int(duration) except: utils.log("Couldn't parse program duration: %s" % duration) try: p.link = item.find('link').text except: pass p.date = utils.get_datetime(item.find('pubDate').text) p.expire = utils.get_datetime(item.find('{http://www.abc.net.au/tv/mrss}expireDate').text) programs_list.append(p) return programs_list def convert_timecode(start, end): """ convert iview xml timecode attribute to subrip srt standard""" return start[:8]+','+start[9:11]+'0'+' --> '+end[:8]+','+end[9:11]+'0' def convert_to_srt(data): """ convert our iview xml subtitles to subrip SRT format""" tree = ET.fromstring(data) root = tree.find('reel') result = "" count = 1 for elem in root.findall('title'): if elem.text == None: continue result += str(count) + '\n' result += convert_timecode(elem.get('start'), elem.get('end'))+'\n' st = elem.text.split('|') for line in st: result += line + '\n' result += '\n' count +=1 return result.encode('utf-8')
sdt/xbmc-addon-abc-iview
resources/lib/parse.py
Python
gpl-3.0
7,401
# -*- coding: utf-8 -*- # # AWL simulator - instructions # # Copyright 2012-2014 Michael Buesch <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # from __future__ import division, absolute_import, print_function, unicode_literals from awlsim.common.compat import * from awlsim.core.instructions.main import * #@nocy from awlsim.core.operators import * #from awlsim.core.instructions.main cimport * #@cy class AwlInsn_RRD(AwlInsn): #+cdef __slots__ = () def __init__(self, cpu, rawInsn): AwlInsn.__init__(self, cpu, AwlInsn.TYPE_RRD, rawInsn) self.assertOpCount((0, 1)) if self.ops: self.ops[0].assertType(AwlOperator.IMM, 0, 255) def run(self): #@cy cdef S7StatusWord s s = self.cpu.statusWord accu1 = self.cpu.accu1.getDWord() if self.ops: count = self.ops[0].value else: count = self.cpu.accu2.getByte() if count <= 0: return count = max(0, count % 32) accu1 &= 0xFFFFFFFF accu1 = ((accu1 >> count) | (accu1 << (32 - count))) & 0xFFFFFFFF self.cpu.accu1.set(accu1) s.A0, s.A1, s.OV = 0, (accu1 >> 31) & 1, 0
gion86/awlsim
awlsim/core/instructions/insn_rrd.py
Python
gpl-2.0
1,729
# -*- coding: utf-8 -*- """ Custom module logger """ import logging module_name = 'moflow' logger = logging.getLogger(module_name) logger.addHandler(logging.NullHandler()) # best practice to not show anything def use_basic_config(level=logging.INFO, format=logging.BASIC_FORMAT): """Add basic configuration and formatting to the logger By default, the logger should not be configured in any way. However users and developers may prefer to see the logger messages. """ logger.level = level if module_name not in [_.name for _ in logger.handlers]: formatter = logging.Formatter(format) handler = logging.StreamHandler() handler.name = module_name handler.setFormatter(formatter) logger.addHandler(handler)
mwtoews/moflow
moflow/_logger.py
Python
bsd-2-clause
773
from django import forms from order.models import Pizza, Bread, Customer class PizzaForm(forms.ModelForm): class Meta: model = Pizza fields = ('size', 'toppings', 'crust') widgets = { 'size': forms.RadioSelect(), 'crust': forms.RadioSelect(), 'toppings': forms.CheckboxSelectMultiple(), } def process(self, order): data = self.cleaned_data size = data['size'] crust = data['crust'] toppings = data['toppings'] pizza = Pizza.objects.create() pizza.size = size pizza.crust = crust for topping in toppings: pizza.toppings.add(topping) pizza.save() order.pizzas.add(pizza) order.save() class BreadForm(forms.ModelForm): class Meta: model = Bread fields = ('flavor',) widgets = { 'type': forms.RadioSelect(), } def process(self, order): data = self.cleaned_data flavor = data['flavor'] bread = Bread.objects.create(flavor=flavor) order.breads.add(bread) order.save() class CustomerForm(forms.ModelForm): class Meta: model = Customer def process(self, order): data = self.cleaned_data name = str(data['name']) number = str(data['number']) customer = Customer.objects.create(name=name, number=number) order.customer = customer order.save()
ajpocus/pizzeria
order/forms.py
Python
bsd-3-clause
1,411
# Kivy Imports from kivy.uix.boxlayout import BoxLayout from kivy.uix.dropdown import DropDown from kivy.uix.button import Button from kivy.properties import ObjectProperty, StringProperty from kivy.app import App # Utility Imports import yaml # Game Imports from scripts.events import Event # File Loads loc_file = file('data/location.yml') loc_dat = yaml.load(loc_file) # Bind Classes event = Event() class EventWindow(BoxLayout): ct = StringProperty('') button_status = StringProperty('') def __init__(self, **kwargs): super(EventWindow, self).__init__(**kwargs) self.ct = event.current_text self.button_status = event.command event.bind(current_text=self.setter('ct')) event.bind(command=self.setter('button_status')) def slide_change(self, cmd): poss_commands = ("[Next Slide]", "[Query]", "[Combat]", 'Previous') if cmd == '[Terminate]': event.controller(cmd) self.parent.remove_widget(self) MainWin.in_event = False elif cmd in poss_commands: event.controller(cmd) else: print "Event command not recognized. Please check the event file." class MainWin(BoxLayout): current_map = ObjectProperty('') current_location = StringProperty() containers = ObjectProperty(loc_dat['Havana']['container'], allownone=True) in_event = False def __init__(self, **kwargs): super(MainWin, self).__init__(**kwargs) self.current_map = 'maps/Havana.jpg' self.current_location = 'Havana' self.containers = loc_dat['Havana']['container'] self.locale = loc_dat['Havana']['connections'] self.first_run = True # Drop Down code self.dropdown = DropDown() # Binds Class self.dd_updater() # Calls method to determine location containers self.ids.mb.bind(on_release=self.dropdown.open) # Connects generated locations to self.dropdown.bind(on_select=lambda instance, x: self.location(x)) # Binds button's location changing behavior # Widgets self.ew = EventWindow() # Handles the placement of buttons on the map self.place_locale() def place_locale(self): self.cleanup() if self.locale is None: pass else: for place in self.locale: place_button = Button(text=place, id='pb', size_hint=(.05, .05), pos_hint={'x': loc_dat[self.current_location]['connections'][place][0], 'y': loc_dat[self.current_location]['connections'][place][1]}, on_release=lambda destination: self.location(destination.text)) self.ids.mapspace.add_widget(place_button) if self.first_run is False: MainWin.in_event = True self.ids.mapspace.add_widget(self.ew) def cleanup(self): for child in [child for child in self.ids.mapspace.children]: self.ids.mapspace.remove_widget(child) def dd_updater(self): self.dropdown.clear_widgets() if self.containers is None: pass else: for note in self.containers: # Adds widgets to the existing dropdown btn = Button(text=note, color=(0, 0, 0, 1), background_normal='images/Button.png', background_down='images/Button.png', border=(0, 60, 0, 120), size_hint_y=None, height=30) btn.bind(on_release=lambda b: self.dropdown.select(b.text)) self.dropdown.add_widget(btn) def location(self, new_loc): if MainWin.in_event is False or self.first_run is True: self.current_location = new_loc self.current_map = loc_dat[new_loc]['image'] self.locale = loc_dat[new_loc]['connections'] self.containers = loc_dat[new_loc]['container'] event.event_name() event.parse() self.dd_updater() self.place_locale() else: pass self.first_run = False class Test(App): def build(self): self.mainspace = MainWin() self.eventwindow = EventWindow() return self.mainspace Test().run()
DinkWerks/Kivy-Game
main.py
Python
mit
4,529
#! /usr/bin/env python # #Copyright (c) 2012 Robert Rouhani <[email protected]>, Nick Richard <[email protected]>, Hayden Lee <[email protected]> # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import pygame import resources class Player(pygame.sprite.Sprite): def __init__(self, (x, y), speed, collide_lambda, fps=10): pygame.sprite.Sprite.__init__(self) self.image, self.rect = resources.load_image("../assets/images/player/front1.bmp", -1) self.rect.move_ip(x, y) self.speed = speed self.walls = [] self.obstacles = [] self.collide_obstacle = collide_lambda self._start = pygame.time.get_ticks() self._delay = 1000 / fps self._last_update = 0 self._frame = 0 self.anim_paused = True self.forward_images = [] self.backward_images = [] self.left_images = [] self.right_images = [] self.forward_images.append(resources.load_image_no_rect("../assets/images/player/front1.bmp", -1)) self.forward_images.append(resources.load_image_no_rect("../assets/images/player/front2.bmp", -1)) self.forward_images.append(resources.load_image_no_rect("../assets/images/player/front3.bmp", -1)) self.backward_images.append(resources.load_image_no_rect("../assets/images/player/back1.bmp", -1)) self.backward_images.append(resources.load_image_no_rect("../assets/images/player/back2.bmp", -1)) self.backward_images.append(resources.load_image_no_rect("../assets/images/player/back3.bmp", -1)) self.left_images.append(resources.load_image_no_rect("../assets/images/player/left1.bmp", -1)) self.left_images.append(resources.load_image_no_rect("../assets/images/player/left2.bmp", -1)) self.right_images.append(resources.load_image_no_rect("../assets/images/player/right1.bmp", -1)) self.right_images.append(resources.load_image_no_rect("../assets/images/player/right2.bmp", -1)) self._images = self.forward_images self.update_anim(pygame.time.get_ticks()) def set_walls(self, walls): self.walls = walls def set_obstacles(self, obstacles): self.obstacles = obstacles def update_anim(self, t): if not self.anim_paused: if t - self._last_update > self._delay: self._frame += 1 if self._frame >= len(self._images): self._frame = 0 self.image = self._images[self._frame] self._last_update = t def pause(self): self.anim_paused = True def play(self): self.anim_paused = False def move_forward(self): self.move(0, -self.speed) self._images = self.backward_images self.play() def move_backwards(self): self.move(0, self.speed) self._images = self.forward_images self.play() def move_left(self): self.move(-self.speed, 0) self._images = self.left_images self.play() def move_right(self): self.move(self.speed, 0) self._images = self.right_images self.play() def move(self, x, y): self.rect.move_ip(x, y) for i in self.rect.collidelistall(self.walls): r = self.walls[i] if x > 0: # Moving right; Hit the left side of the wall self.rect.right = r.left if x < 0: # Moving left; Hit the right side of the wall self.rect.left = r.right if y > 0: # Moving down; Hit the top side of the wall self.rect.bottom = r.top if y < 0: # Moving up; Hit the bottom side of the wall self.rect.top = r.bottom obstacle_to_remove = None for o in self.obstacles: if self.rect.colliderect(o.get_rect()): if x > 0: # Moving right; Hit the left side of the wall self.rect.right = o.get_rect().left if x < 0: # Moving left; Hit the right side of the wall self.rect.left = o.get_rect().right if y > 0: # Moving down; Hit the top side of the wall self.rect.bottom = o.get_rect().top if y < 0: # Moving up; Hit the bottom side of the wall self.rect.top = o.get_rect().bottom obstacle_to_remove = self.collide_obstacle(o) if obstacle_to_remove is not None: self.obstacles.remove(obstacle_to_remove) def move_to(self, x, y): self.rect.left = x self.rect.top = y
Robmaister/RPI-Game-Jam-9-22-12
src/player.py
Python
mit
5,660
# -*- coding: utf-8 -*- # +---------------------------------------------------------------------------+ # | pylstar : Implementation of the LSTAR Grammatical Inference Algorithm | # +---------------------------------------------------------------------------+ # | Copyright (C) 2015 Georges Bossert | # | This program is free software: you can redistribute it and/or modify | # | it under the terms of the GNU General Public License as published by | # | the Free Software Foundation, either version 3 of the License, or | # | (at your option) any later version. | # | | # | This program is distributed in the hope that it will be useful, | # | but WITHOUT ANY WARRANTY; without even the implied warranty of | # | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | # | GNU General Public License for more details. | # | | # | You should have received a copy of the GNU General Public License | # | along with this program. If not, see <http://www.gnu.org/licenses/>. | # +---------------------------------------------------------------------------+ # | @url : https://github.com/gbossert/pylstar | # | @contact : [email protected] | # +---------------------------------------------------------------------------+ # +---------------------------------------------------------------------------- # | Global Imports # +---------------------------------------------------------------------------- import os import json # +---------------------------------------------------------------------------- # | Pylstar Imports # +---------------------------------------------------------------------------- from pylstar.tools.Decorators import PylstarLogger from pylstar.Word import Word from pylstar.Letter import Letter @PylstarLogger class KnowledgeNode(object): def __init__(self, input_letter, output_letter): self.input_letter = input_letter self.output_letter = output_letter self.children = dict() def __str__(self, level=0): return json.dumps(self.serialize(), sort_keys=True, indent=4, separators=(',', ': ')) def serialize(self): """This method return a serialized representation of the node""" node = { "input_letter" : self.input_letter.serialize(), "output_letter": self.output_letter.serialize(), "children" : [c.serialize() for c in self.children.values()] } return node @staticmethod def deserialize(dict_data, possible_letters): if dict_data is None: raise Exception("dict_data cannot be None") input_letter = Letter.deserialize(dict_data['input_letter'], possible_letters) output_letter = Letter.deserialize(dict_data['output_letter'], possible_letters) node = KnowledgeNode(input_letter, output_letter) for child in dict_data["children"]: child_node = KnowledgeNode.deserialize(child, possible_letters) node.children[child_node.input_letter] = child_node return node def traverse(self, input_letters, output_letters = None): if input_letters[0] != self.input_letter: raise Exception("Node cannot be traversed with input letter '{}'".format(input_letters[0])) if output_letters is not None and output_letters[0] != self.output_letter: raise Exception("Node '{}' cannot be traversed with output letter '{}'".format(self, output_letters[0])) if output_letters is not None and len(input_letters) != len(output_letters): raise Exception("Specified input and output letters do not have the same length") if len(input_letters) < 2: return [self.output_letter] current_input_letter = input_letters[1] current_output_letter = None if output_letters is not None: current_output_letter = output_letters[1] if current_input_letter in self.children: child = self.children[current_input_letter] if current_output_letter is not None and child.output_letter != current_output_letter: raise Exception("Incompatible path found, expected '{}' found '{}'".format(child.output_letter.symbols, current_output_letter.symbols)) if output_letters is None: new_output_letters = None else: new_output_letters = output_letters[1:] new_input_letters = input_letters[1:] return [self.output_letter] + child.traverse(new_input_letters, output_letters = new_output_letters) elif output_letters is not None: new_children = KnowledgeNode(input_letter = input_letters[1], output_letter = output_letters[1]) self.children[new_children.input_letter] = new_children new_input_letters = input_letters[1:] new_output_letters = output_letters[1:] return [self.output_letter] + new_children.traverse(new_input_letters, output_letters = new_output_letters) raise Exception("Cannot traverse node '{}' with subsequences '{}'".format(self, ', '.join([str(l) for l in input_letters]))) @property def input_letter(self): """Input letter""" return self.__input_letter @input_letter.setter def input_letter(self, input_letter): if input_letter is None: raise Exception("Input letter cannot be None") self.__input_letter = input_letter @property def output_letter(self): """Output letter""" return self.__output_letter @output_letter.setter def output_letter(self, output_letter): if output_letter is None: raise Exception("Output letter cannot be None") self.__output_letter = output_letter @PylstarLogger class KnowledgeTree(object): """A pythonic implementation of a tree that hosts query results. >>> from pylstar.KnowledgeTree import KnowledgeTree >>> from pylstar.Word import Word >>> from pylstar.Letter import Letter >>> tree = KnowledgeTree() >>> input_word = Word([Letter("a"), Letter("b")]) >>> output_word = Word([Letter(1), Letter(2)]) >>> tree.get_output_word(input_word) Traceback (most recent call last): ... Exception: No path found >>> tree.add_word(input_word, output_word) >>> print(tree.get_output_word(input_word)) [Letter(1), Letter(2)] >>> eq_input_word = Word([Letter("a"), Letter("b")]) >>> print(tree.get_output_word(eq_input_word)) [Letter(1), Letter(2)] """ def __init__(self, cache_file_path = None): self.__cache_file_path = cache_file_path self.__nb_added_word = 0 self.roots = [] def __str__(self): result = '\n'.join([root.__str__(level=1).rstrip() for root in self.roots]) return 'Tree (\n{}\n)'.format(result) def get_output_word(self, input_word): if input_word is None: raise Exception("Input word cannot be None") for root in self.roots: try: w = Word(root.traverse(input_word.letters)) self._logger.info("I = {} > O = {}".format(input_word, w)) return w except Exception: pass raise Exception("No path found") def add_word(self, input_word, output_word): """This method can be use to associate an input word to an output word >>> from pylstar.KnowledgeTree import KnowledgeTree >>> from pylstar.Word import Word >>> from pylstar.Letter import Letter >>> tree = KnowledgeTree() >>> input_word = Word([Letter("a"), Letter("b")]) >>> output_word = Word([Letter(1), Letter(2)]) >>> tree.add_word(input_word, output_word) The same association can be inserted twice iif both input and output are equivalent to the previously inserted association >>> from pylstar.KnowledgeTree import KnowledgeTree >>> from pylstar.Word import Word >>> from pylstar.Letter import Letter >>> tree = KnowledgeTree() >>> input_word = Word([Letter("a"), Letter("b")]) >>> output_word = Word([Letter(1), Letter(2)]) >>> tree.add_word(input_word, output_word) >>> input_word2 = Word([Letter("a"), Letter("b")]) >>> output_word2 = Word([Letter(1), Letter(2)]) >>> tree.add_word(input_word2, output_word2) >>> output_word3 = Word([Letter(1), Letter(1)]) >>> tree.add_word(input_word2, output_word3) Traceback (most recent call last): ... Exception: Incompatible path found, expected '{2}' found '{1}' """ if input_word is None: raise Exception("Input word cannot be None") if output_word is None: raise Exception("Output word cannot be None") if len(input_word) != len(output_word): raise Exception("Input and output words do not have the same size") self.__add_letters(input_word.letters, output_word.letters) self.__nb_added_word += 1 if self.__cache_file_path is not None and self.__nb_added_word % 100 == 0: self.write_cache() def write_cache(self): """This method writes the content of the knowledge tree to the self.cache_file_path. >>> cache_file = "/tmp/test_ktree_cache.dump" >>> from pylstar.KnowledgeTree import KnowledgeTree >>> from pylstar.Word import Word >>> from pylstar.Letter import Letter >>> l_a = Letter("a") >>> l_b = Letter("b") >>> l_c = Letter("c") >>> l_1 = Letter(1) >>> l_2 = Letter(2) >>> l_3 = Letter(3) >>> tree = KnowledgeTree(cache_file_path = cache_file) >>> input_word = Word([l_a, l_b]) >>> output_word = Word([l_1, l_2]) >>> tree.add_word(input_word, output_word) >>> tree.write_cache() >>> input_word = Word([l_a, l_c]) >>> output_word = Word([l_1, l_3]) >>> tree.add_word(input_word, output_word) >>> tree.write_cache() >>> tree2 = KnowledgeTree(cache_file_path = cache_file) >>> tree2.load_cache(possible_letters = [l_a, l_b, l_c, l_1, l_2, l_3]) >>> print(tree2.get_output_word(input_word)) [Letter(1), Letter(3)] """ if self.__cache_file_path is None: raise Exception("Cache file path cannot be None") self._logger.info("Writing the knowledge tree in cache '{}'".format(self.__cache_file_path)) if os.path.exists(self.__cache_file_path): self._logger.info("Removing previous cache file '{}'".format(self.__cache_file_path)) os.remove(self.__cache_file_path) nodes = [ root.serialize() for root in self.roots ] with open(self.__cache_file_path, "w") as fd: str_content = json.dumps(nodes, sort_keys=True, indent=4, separators=(',', ': ')) fd.write(str_content) def load_cache(self, possible_letters): """This method loads the content of the cache in the knowledge tree See doctest declared in method "write_cache" """ if self.__cache_file_path is None: raise Exception("Cache file path cannot be None") self._logger.info("Loading cache from '{}'".format(self.__cache_file_path)) json_content = None with open(self.__cache_file_path, "r") as fd: json_content = json.loads(fd.read()) for content in json_content: root = KnowledgeNode.deserialize(content, possible_letters) self.roots.append(root) def __add_letters(self, input_letters, output_letters): self._logger.debug("Adding letters '{}' / '{}'".format(', '.join([str(l) for l in input_letters]), ', '.join([str(l) for l in output_letters]))) retained_root = None for root in self.roots: if root.input_letter == input_letters[0]: if root.output_letter != output_letters[0]: raise Exception("Incompatible path found, expected '{}' found '{}'".format(root.output_letter.symbols, output_letters[0].symbols)) retained_root = root break if retained_root is None: retained_root = KnowledgeNode(input_letters[0], output_letters[0]) self._logger.debug("Creating '{}' as a new root".format(retained_root)) self.roots.append(retained_root) return retained_root.traverse(input_letters, output_letters)
gbossert/pylstar
src/pylstar/KnowledgeTree.py
Python
gpl-3.0
12,988
import boto3 import json import sure # noqa from moto import mock_lambda, mock_cloudformation, mock_apigateway, mock_iam, mock_logs from string import Template template = """{ "AWSTemplateFormatVersion": "2010-09-09", "Description": "The AWS CloudFormation template for this Serverless application", "Resources": { "ServerlessDeploymentBucket": { "Type": "AWS::S3::Bucket" }, "HelloLogGroup": { "Type": "AWS::Logs::LogGroup", "Properties": { "LogGroupName": "/aws/lambda/timeseries-service-dev-hello" } }, "IamRoleLambdaExecution": { "Type": "AWS::IAM::Role", "Properties": { "AssumeRolePolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": [ "lambda.amazonaws.com" ] }, "Action": [ "sts:AssumeRole" ] } ] }, "Policies": [ { "PolicyName": { "Fn::Join": [ "-", [ "dev", "timeseries-service", "lambda" ] ] }, "PolicyDocument": { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "logs:CreateLogStream" ], "Resource": [ { "Fn::Sub": "arn:${AWS::Partition}:logs:${AWS::Region}:${AWS::AccountId}:log-group:/aws/lambda/timeseries-service-dev-hello:*" } ] }, { "Effect": "Allow", "Action": [ "logs:PutLogEvents" ], "Resource": [ { "Fn::Sub": "arn:${AWS::Partition}:logs:${AWS::Region}:${AWS::AccountId}:log-group:/aws/lambda/timeseries-service-dev-hello:*:*" } ] } ] } } ], "Path": "/", "RoleName": { "Fn::Join": [ "-", [ "timeseries-service", "dev", "us-east-1", "lambdaRole" ] ] } } }, "HelloLambdaFunction": { "Type": "AWS::Lambda::Function", "Properties": { "Code": { "S3Bucket": { "Ref": "ServerlessDeploymentBucket" }, "S3Key": "serverless/timeseries-service/dev/1542744572309-2018-11-20T20:09:32.309Z/timeseries-service.zip" }, "FunctionName": "timeseries-service-dev-hello", "Handler": "handler.hello", "MemorySize": 1024, "Role": { "Fn::GetAtt": [ "IamRoleLambdaExecution", "Arn" ] }, "Runtime": "python2.7", "Timeout": 6 }, "DependsOn": [ "HelloLogGroup", "IamRoleLambdaExecution" ] }, "HelloLambdaVersionU88Ag36tX5K6Yuze3R8jedH2g7q2TTGuafWQxEnUmo": { "Type": "AWS::Lambda::Version", "DeletionPolicy": "Retain", "Properties": { "FunctionName": { "Ref": "HelloLambdaFunction" }, "CodeSha256": "+pq+8RveA979z1DNF8UKnFGZfgE07blNyJGust5VJnU=" } }, "ApiGatewayRestApi": { "Type": "AWS::ApiGateway::RestApi", "Properties": { "Name": "dev-timeseries-service", "EndpointConfiguration": { "Types": [ "EDGE" ] } } }, "ApiGatewayResourceHello": { "Type": "AWS::ApiGateway::Resource", "Properties": { "ParentId": { "Fn::GetAtt": [ "ApiGatewayRestApi", "RootResourceId" ] }, "PathPart": "hello", "RestApiId": { "Ref": "ApiGatewayRestApi" } } }, "ApiGatewayMethodHelloGet": { "Type": "AWS::ApiGateway::Method", "Properties": { "HttpMethod": "GET", "RequestParameters": {}, "ResourceId": { "Ref": "ApiGatewayResourceHello" }, "RestApiId": { "Ref": "ApiGatewayRestApi" }, "ApiKeyRequired": false, "AuthorizationType": "NONE", "Integration": { "IntegrationHttpMethod": "POST", "Type": "AWS_PROXY", "Uri": { "Fn::Join": [ "", [ "arn:", { "Ref": "AWS::Partition" }, ":apigateway:", { "Ref": "AWS::Region" }, ":lambda:path/2015-03-31/functions/", { "Fn::GetAtt": [ "HelloLambdaFunction", "Arn" ] }, "/invocations" ] ] } }, "MethodResponses": [] } }, "ApiGatewayDeployment1542744572805": { "Type": "AWS::ApiGateway::Deployment", "Properties": { "RestApiId": { "Ref": "ApiGatewayRestApi" }, "StageName": "dev" }, "DependsOn": [ "ApiGatewayMethodHelloGet" ] }, "HelloLambdaPermissionApiGateway": { "Type": "AWS::Lambda::Permission", "Properties": { "FunctionName": { "Fn::GetAtt": [ "HelloLambdaFunction", "Arn" ] }, "Action": "lambda:InvokeFunction", "Principal": { "Fn::Join": [ "", [ "apigateway.", { "Ref": "AWS::URLSuffix" } ] ] }, "SourceArn": { "Fn::Join": [ "", [ "arn:", { "Ref": "AWS::Partition" }, ":execute-api:", { "Ref": "AWS::Region" }, ":", { "Ref": "AWS::AccountId" }, ":", { "Ref": "ApiGatewayRestApi" }, "/*/*" ] ] } } } }, "Outputs": { "ServerlessDeploymentBucketName": { "Value": { "Ref": "ServerlessDeploymentBucket" } }, "HelloLambdaFunctionQualifiedArn": { "Description": "Current Lambda function version", "Value": { "Ref": "HelloLambdaVersionU88Ag36tX5K6Yuze3R8jedH2g7q2TTGuafWQxEnUmo" } }, "ServiceEndpoint": { "Description": "URL of the service endpoint", "Value": { "Fn::Join": [ "", [ "https://", { "Ref": "ApiGatewayRestApi" }, ".execute-api.us-east-1.", { "Ref": "AWS::URLSuffix" }, "/dev" ] ] } } } }""" @mock_cloudformation @mock_lambda @mock_iam @mock_logs @mock_apigateway def test_simple_apigateway_with_lambda_proxy(): region = "us-east-1" apigw = boto3.client("apigateway", region_name=region) cf = boto3.client("cloudformation", region_name=region) awslambda = boto3.client("lambda", region_name=region) cf.create_stack(StackName="teststack", TemplateBody=template) # cf.describe_stacks(StackName="teststack")["Stacks"] resources = cf.describe_stack_resources(StackName="teststack")["StackResources"] api_id = [ r["PhysicalResourceId"] for r in resources if r["ResourceType"] == "AWS::ApiGateway::RestApi" ][0] fn_name = [ r["PhysicalResourceId"] for r in resources if r["LogicalResourceId"] == "HelloLambdaFunction" ][0] # # Verify Rest API was created api = apigw.get_rest_apis()["items"][0] api["id"].should.equal(api_id) api["name"].should.equal("dev-timeseries-service") # # Verify Gateway Resource was created paths = apigw.get_resources(restApiId=api_id)["items"] root_path = [p for p in paths if p["path"] == "/"][0] hello_path = [p for p in paths if p["path"] == "/hello"][0] hello_path["parentId"].should.equal(root_path["id"]) # # Verify Gateway Method was created m = apigw.get_method( restApiId=api_id, resourceId=hello_path["id"], httpMethod="GET" ) m["httpMethod"].should.equal("GET") # # Verify a Gateway Deployment was created d = apigw.get_deployments(restApiId=api_id)["items"] d.should.have.length_of(1) # # Verify Lambda function was created awslambda.get_function(FunctionName=fn_name) # Will throw 404 if it doesn't exist # # Verify Lambda Permission was created policy = json.loads(awslambda.get_policy(FunctionName=fn_name)["Policy"]) statement = policy["Statement"][0] statement["FunctionName"].should.contain(fn_name) statement["Condition"]["ArnLike"]["AWS:SourceArn"].should.equal( "arn:aws:execute-api:us-east-1:123456789012:{}/*/*".format(api_id) )
william-richard/moto
tests/test_apigateway/test_apigateway_cloudformation.py
Python
apache-2.0
9,464
class ParameterError(Exception): """An error in the parameters passed to a function.""" pass
jlorieau/mollib
mollib/utils/exceptions.py
Python
gpl-3.0
100
# coding: utf-8 # # Monk is an unobtrusive data modeling, manipulation and validation library. # Copyright © 2011—2014 Andrey Mikhaylenko # # This file is part of Monk. # # Monk is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Monk is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Monk. If not, see <http://gnu.org/licenses/>. """ ~~~~~~~~~~ Validators ~~~~~~~~~~ """ __all__ = [ 'BaseValidator', # combinators 'BaseCombinator', 'All', 'Any', # requirements 'BaseRequirement', 'Anything', 'Exists', 'IsA', 'HasAttr', 'Equals', 'Contains', 'InRange', 'Length', 'ListOf', 'ListOfAll', 'ListOfAny', 'DictOf', # functions 'translate', # special objects 'MISSING', ] import copy from . import compat from .errors import ( CombinedValidationError, AtLeastOneFailed, AllFailed, ValidationError, NoDefaultValue, InvalidKeys, MissingKeys, StructureSpecificationError, DictValueError, ) #: The value is valid if any of its items passes validation. ITEM_STRATEGY_ANY = 'any' #: The value is valid if all of its items pass validation. ITEM_STRATEGY_ALL = 'all' class MISSING: """ Stub for Exists validator to pass if the value is missing (e.g. for dictionary keys). """ pass def _reluctantly_translate(spec): # `translate()` can do it itself but some validators have the `implies` # attribute which can trigger instantiation of a BaseValidator subclass # before the translation function is ready. # # We don't want to defer its usage as far as we can because it is best # to fully build the validator in order to fail early. # # So this function is just a small barrier that prevents NameError # in some cases. if isinstance(spec, BaseValidator): return spec else: return translate(spec) class BaseValidator(object): error_class = ValidationError _default = NotImplemented negated = False def _combine(self, other, combinator): # XXX should we flatten same-logic one-item combs? if isinstance(other, type) and issubclass(other, BaseValidator): # e.g. Exists instead of Exists() raise TypeError('got {cls} class instead of its instance' .format(cls=other.__name__)) return combinator([self, _reluctantly_translate(other)]) def _merge(self, value): if value is not None: raise NoDefaultValue('value is not None') if self._default is NotImplemented: raise NoDefaultValue('self._default is not implemented') return self._default def __and__(self, other): return self._combine(other, All) def __or__(self, other): return self._combine(other, Any) def __eq__(self, other): return isinstance(other, type(self)) and self.__dict__ == other.__dict__ def __invert__(self): clone = copy.deepcopy(self) clone.negated = not self.negated return clone def __call__(self, value): try: self._check(value) except ValidationError: if self.negated: return else: raise else: if self.negated: self._raise_error(value) def __hash__(self): # TODO think this over and check Python docs #return hash(((k,v) for k,v in self.__dict__.items())) return hash('validator_'+str(self.__dict__)) def get_default_for(self, value, silent=True): try: return self._merge(value) except NoDefaultValue: if silent: return value else: raise def _check(self, value): raise NotImplementedError def _raise_error(self, value): raise self.error_class(repr(self)) class BaseCombinator(BaseValidator): error_class = CombinedValidationError break_on_first_fail = False _repr_tmpl = '{not_}({items})' _repr_items_sep = '; ' def __init__(self, specs, default=None, first_is_default=False): assert specs self._specs = [_reluctantly_translate(s) for s in specs] self._default = default self._first_is_default = first_is_default def _check(self, value): errors = [] for spec in self._specs: # TODO: group errors by exception type # TODO: try recursive validators after all flat ones are OK # (may be not a good idea because the order may matter) #if spec.is_recursive and errors: # # Don't collect nested errors if we already have one here. # # Another optimized strategy would be to fail early instead of # # trying to collect all exceptions for the node. # continue try: spec(value) except ValidationError as e: if self.break_on_first_fail: # don't even wrap the error raise errors.append(e) if not self.can_tolerate(errors): raise self.error_class(*errors) def __repr__(self): return self._repr_tmpl.format( cls=self.__class__.__name__, items=self._repr_items_sep.join(map(str, self._specs)), not_='not ' if self.negated else '') def can_tolerate(self, errors): raise NotImplementedError def _merge(self, value): if self._default: return self._default defaults = [] for choice in self._specs: try: default = choice.get_default_for(value, silent=False) except NoDefaultValue: pass else: defaults.append(default) if not defaults: return value if len(defaults) == 1: return defaults[0] else: if self._first_is_default: return defaults[0] else: return value class All(BaseCombinator): """ Requires that the value passes all nested validators. """ error_class = AtLeastOneFailed break_on_first_fail = True _repr_items_sep = ' and ' def can_tolerate(self, errors): # TODO: fail early, work as `or` does # (this also enables basic if-then in the schema) if not errors: return True class Any(BaseCombinator): """ Requires that the value passes at least one of nested validators. """ error_class = AllFailed _repr_items_sep = ' or ' def can_tolerate(self, errors): if len(errors) < len(self._specs): return True class BaseRequirement(BaseValidator): # a hint for combinators, see their code is_recursive = False implies = NotImplemented def __call__(self, value): if self.implies is not NotImplemented: self.implies(value) super(BaseRequirement, self).__call__(value) def _represent(self): return self.__dict__ def __repr__(self): return '{negated}{cls}({rep})'.format( cls=self.__class__.__name__, rep=self._represent(), negated='~' if self.negated else '') class Anything(BaseRequirement): """ Any values passes validation. """ def _check(self, value): pass def _represent(self): return '' class IsA(BaseRequirement): """ Requires that the value is an instance of given type. """ def __init__(self, expected_type, default=None): self.expected_type = expected_type self._default = default def _check(self, value): if not isinstance(value, self.expected_type): self._raise_error(value) def __repr__(self): s = 'must be {pattern_}'.format(pattern_=self.expected_type.__name__) if self.negated: s = 'not ({s})'.format(s=s) return s class Equals(BaseRequirement): """ Requires that the value equals given expected value. """ def __init__(self, expected_value): self._expected_value = expected_value def _check(self, value): if self._expected_value != value: self._raise_error(value) def __repr__(self): s = 'must equal {pattern_!r}'.format(pattern_=self._expected_value) if self.negated: s = 'not ({s})'.format(s=s) return s @property def _default(self): return self._expected_value class Contains(BaseRequirement): """ Requires that the value contains given expected value. """ def __init__(self, expected_value): self._expected_value = expected_value def _check(self, value): if self._expected_value not in value: self._raise_error(value) def __repr__(self): s = 'must contain {pattern_!r}'.format(pattern_=self._expected_value) if self.negated: s = 'not ({s})'.format(s=s) return s @property def _default(self): return self._expected_value class Exists(BaseRequirement): """ Requires that the value exists. Obviously this only makes sense in special cases like dictionary keys; otherwise there's simply nothing to validate. Note that this is *not* a check against `None` or `False`. """ def __init__(self, default=None): self._default = default def _check(self, value): if value is MISSING: self._raise_error(value) def __repr__(self): if self.negated: return 'must not exist' else: return 'must exist' class BaseListOf(BaseRequirement): """ The base class for validating lists. Supports different error toleration strategies which can be selected by subclasses. In many aspects this is similar to :class:`BaseCombinator`. """ implies = IsA(list) item_strategy = NotImplemented error_class = CombinedValidationError is_recursive = True def __init__(self, validator, default=None): self._nested_validator = translate(validator) self._default = default def _check(self, value): if not value: try: self._nested_validator(MISSING) except ValidationError as e: raise ValidationError('lacks item: {error}' .format(error=e)) errors = [] for i, nested_value in enumerate(value): try: self._nested_validator(nested_value) except ValidationError as e: annotated_error = ValidationError( 'item #{elem}: {error}'.format(elem=i, error=e)) if self.item_strategy == ITEM_STRATEGY_ALL: raise annotated_error errors.append(annotated_error) if self.can_tolerate(errors, value): return raise self.error_class(*errors) def can_tolerate(self, errors, value): if self.item_strategy == ITEM_STRATEGY_ALL: if errors: return False else: return True elif self.item_strategy == ITEM_STRATEGY_ANY: if len(errors) < len(value): return True else: return False else: raise ValueError('unknown strategy') def _represent(self): return repr(self._nested_validator) def _merge(self, value): """ Returns a list based on `value`: * missing required value is converted to an empty list; * missing required items are never created; * nested items are merged recursively. """ if not value: return [] if value is not None and not isinstance(value, list): # bogus value; will not pass validation but should be preserved return value item_spec = self._nested_validator return [x if x is None else item_spec.get_default_for(x) for x in value] class ListOfAll(BaseListOf): """ Requires that the value is a `list` which items match given validator. Usage:: >>> v = ListOfAll(IsA(int) | IsA(str)) >>> v([123, 'hello']) >>> v([123, 'hello', 5.5]) Traceback (most recent call last): ... ValidationError: item #2: must be int or must be str """ error_class = AtLeastOneFailed item_strategy = ITEM_STRATEGY_ALL class ListOfAny(BaseListOf): """ Same as :class:`ListOfAll` but tolerates invalid items as long as there is at least one valid among them. """ error_class = AllFailed item_strategy = ITEM_STRATEGY_ANY ListOf = ListOfAll #@requirement(implies=[IsA(dict)], is_recursive=True, vars=['key', 'req']) #def dict_contains(ctx, value): # nested_value = value[ctx['key']] # ctx['req'](nested_value) class DictOf(BaseRequirement): """ Requires that the value is a `dict` which items match given patterns. Usage:: >>> v = DictOf([ ... # key "name" must exist; its value must be a `str` ... (Equals('name'), IsA(str)), ... # key "age" may not exist; its value must be an `int` ... (Equals('age') | ~Exists(), IsA(int)), ... # there may be other `str` keys with `str` or `int` values ... (IsA(str), IsA(str) | IsA(int)), ... ]) >>> v({'name': 'John'}) >>> v({'name': 'John', 'age': 25}) >>> v({'name': 'John', 'age': 25.5}) Traceback (most recent call last): ... DictValueError: 'age' value must be int >>> v({'name': 'John', 'age': 25, 'note': 'custom field'}) >>> v({'name': 'John', 'age': 25, 'note': 5.5}) Traceback (most recent call last): ... DictValueError: 'note' value must be str or must be int Note that this validator supports :class:`Exists` to mark keys that can be missing. """ implies = IsA(dict) def __init__(self, pairs): self._pairs = pairs def _represent(self): return repr(self._pairs) def _check(self, value): value = value or {} validated_data_keys = [] missing_key_specs = [] for k_validator, v_validator in self._pairs: # NOTE kspec.datatype can be None => any key of any datatype # NOTE kspec.default can be None => any key of given datatype # gather data keys that match given kspec; # then validate them against vspec matched = False for k,v in value.items(): if k in validated_data_keys: continue # check if this key is described by current key validator; # if it isn't, just skip it (and try another validator # on it later on) try: k_validator(k) except (TypeError, ValidationError): continue # this key *is* described by current value validator; # validate the value (it *must* validate) try: v_validator(v) except (ValidationError, TypeError) as e: if isinstance(e, DictValueError): msg = 'in {k!r} ({e})' else: msg = '{k!r} value {e}' raise DictValueError(msg.format(k=k, e=e)) validated_data_keys.append(k) matched = True # if not matched and not k_validator.optional: if not matched: try: k_validator(MISSING) except ValidationError: missing_key_specs.append(k_validator) # TODO document that unknown keys are checked before missing ones # check if there are data keys that did not match any key spec; # if yes, raise InvalidKey for them if len(validated_data_keys) < len(value): invalid_keys = set(value) - set(validated_data_keys) raise InvalidKeys(*invalid_keys) if missing_key_specs: # XXX this prints validators, not keys as strings; # one exception is the Equals validator from which we get # the expected value via internal API. And that's gross. reprs = (spec._expected_value if isinstance(spec, Equals) else spec for spec in missing_key_specs) raise MissingKeys(*reprs) def _merge(self, value): """ Returns a dictionary based on `value` with each value recursively merged with `spec`. """ if value is not None and not isinstance(value, dict): # bogus value; will not pass validation but should be preserved return value if not self._pairs: return {} collected = {} # collected.update(value) for k_validator, v_validator in self._pairs: k_default = k_validator.get_default_for(None) if k_default is None: continue # even None is ok if value: v_for_this_k = value.get(k_default) else: v_for_this_k = None v_default = v_validator.get_default_for(v_for_this_k) collected.update({k_default: v_default}) if value: for k, v in value.items(): if k not in collected: collected[k] = v return collected class InRange(BaseRequirement): """ Requires that the numeric value is in given boundaries. """ implies = IsA(int) | IsA(float) def __init__(self, min=None, max=None, default=NotImplemented): self._min = min self._max = max if default is not NotImplemented: self._default = default def _check(self, value): if self._min is not None and self._min > value: self._raise_error(value) if self._max is not None and self._max < value: self._raise_error(value) def __repr__(self): if self.negated: must = 'must not' else: must = 'must' def _fmt(x): return '' if x is None else x return '{must} belong to {min_}..{max_}'.format( must=must, min_=_fmt(self._min), max_=_fmt(self._max)) class HasAttr(BaseRequirement): """ Requires that the value has given attribute. """ def __init__(self, attr_name): self._attr_name = attr_name def _check(self, value): if not hasattr(value, self._attr_name): self._raise_error(value) def __repr__(self): if self.negated: must = 'must not' else: must = 'must' return '{must} have attribute {name!r}'.format( must=must, name=self._attr_name) class Length(InRange): """ Requires that the value length is in given boundaries. """ implies = HasAttr('__len__') def _check(self, value): try: super(Length, self)._check(len(value)) except ValidationError as e: self._raise_error(value) def __repr__(self): if self.negated: must = 'must not' else: must = 'must' def _fmt(x): return '' if x is None else x return '{must} have length of {min_}..{max_}'.format( must=must, min_=_fmt(self._min), max_=_fmt(self._max)) def translate(value): """ Translates given schema from "pythonic" syntax to a validator. Usage:: >>> translate(str) IsA(str) >>> translate('hello') IsA(str, default='hello') """ if isinstance(value, BaseValidator): return value if value is None: return Anything() if isinstance(value, type): return IsA(value) if type(value) in compat.func_types: real_value = value() return IsA(type(real_value), default=real_value) if isinstance(value, list): if value == []: # no inner spec, just an empty list as the default value return IsA(list) elif len(value) == 1: # the only item as spec for each item of the collection return ListOf(translate(value[0])) else: raise StructureSpecificationError( 'Expected a list containing exactly 1 item; ' 'got {cnt}: {spec}'.format(cnt=len(value), spec=value)) if isinstance(value, dict): if not value: return IsA(dict) items = [] for k, v in value.items(): if isinstance(k, BaseValidator): k_validator = k else: k_validator = translate(k) default = k_validator.get_default_for(None) if default is not None: k_validator = Equals(default) v_validator = translate(v) items.append((k_validator, v_validator)) return DictOf(items) return IsA(type(value), default=value)
andifined/monk
monk/validators.py
Python
lgpl-3.0
21,852
# for rgenetics - lped to fbat # recode to numeric fbat version # much slower so best to always # use numeric alleles internally import sys,os,time prog = os.path.split(sys.argv[0])[-1] myversion = 'Oct 10 2009' galhtmlprefix = """<?xml version="1.0" encoding="utf-8" ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="Galaxy %s tool output - see http://getgalaxy.org" /> <title></title> <link rel="stylesheet" href="/static/style/base.css" type="text/css" /> </head> <body> <div class="document"> """ def timenow(): """return current time as a string """ return time.strftime('%d/%m/%Y %H:%M:%S', time.localtime(time.time())) def rgConv(inpedfilepath,outhtmlname,outfilepath): """convert linkage ped/map to fbat""" recode={'A':'1','C':'2','G':'3','T':'4','N':'0','0':'0','1':'1','2':'2','3':'3','4':'4'} basename = os.path.split(inpedfilepath)[-1] # get basename inmap = '%s.map' % inpedfilepath inped = '%s.ped' % inpedfilepath outf = '%s.ped' % basename # note the fbat exe insists that this is the extension for the ped data outfpath = os.path.join(outfilepath,outf) # where to write the fbat format file to try: mf = file(inmap,'r') except: sys.stderr.write('%s cannot open inmap file %s - do you have permission?\n' % (prog,inmap)) sys.exit(1) try: rsl = [x.split()[1] for x in mf] except: sys.stderr.write('## cannot parse %s' % inmap) sys.exit(1) try: os.makedirs(outfilepath) except: pass # already exists head = ' '.join(rsl) # list of rs numbers # TODO add anno to rs but fbat will prolly barf? pedf = file(inped,'r') o = file(outfpath,'w',2**20) o.write(head) o.write('\n') for i,row in enumerate(pedf): if i == 0: lrow = row.split() try: x = [int(x) for x in lrow[10:50]] # look for non numeric codes except: dorecode = 1 if dorecode: lrow = row.strip().split() p = lrow[:6] g = lrow[6:] gc = [recode.get(x,'0') for x in g] lrow = p+gc row = '%s\n' % ' '.join(lrow) o.write(row) o.close() def main(): """call fbater need to work with rgenetics composite datatypes so in and out are html files with data in extrafiles path <command interpreter="python">rg_convert_lped_fped.py '$input1/$input1.metadata.base_name' '$output1' '$output1.extra_files_path' </command> """ nparm = 3 if len(sys.argv) < nparm: sys.stderr.write('## %s called with %s - needs %d parameters \n' % (prog,sys.argv,nparm)) sys.exit(1) inpedfilepath = sys.argv[1] outhtmlname = sys.argv[2] outfilepath = sys.argv[3] try: os.makedirs(outfilepath) except: pass rgConv(inpedfilepath,outhtmlname,outfilepath) f = file(outhtmlname,'w') f.write(galhtmlprefix % prog) flist = os.listdir(outfilepath) print '## Rgenetics: http://rgenetics.org Galaxy Tools %s %s' % (prog,timenow()) # becomes info f.write('<div>## Rgenetics: http://rgenetics.org Galaxy Tools %s %s\n<ol>' % (prog,timenow())) for i, data in enumerate( flist ): f.write('<li><a href="%s">%s</a></li>\n' % (os.path.split(data)[-1],os.path.split(data)[-1])) f.write("</div></body></html>") f.close() if __name__ == "__main__": main()
mikel-egana-aranguren/SADI-Galaxy-Docker
galaxy-dist/lib/galaxy/datatypes/converters/lped_to_fped_converter.py
Python
gpl-3.0
3,564
""" Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2). You are given a target value to search. If found in the array return its index, otherwise return -1. You may assume no duplicate exists in the array. """ class Solution: # @param A, a list of integers # @param target, an integer to be searched # @return an integer def search(self, A, target): return self.search_1(A, target) def search_1(self, A, target): start = 0 end = len(A) - 1 while start + 1 < end: mid = (start + end) / 2 if target == A[mid]: return mid if A[start] < A[mid]: # First half sorted if A[start] <= target < A[mid]: # In first half end = mid else: # In second half start = mid else: # Second half sorted if A[mid] < target <= A[end]: # In second half start = mid else: end = mid if A[start] == target: return start if A[end] == target: return end return -1 # Switching to NC way, use start+1 < end instead def search_rec(self, A, target): return self.search_helper(A, target, 0, len(A) - 1) def search_helper(self, A, target, start, end): if start > end: return -1 mid = (start + end) / 2 if A[mid] == target: return mid elif A[mid] > A[end]: # First half sorted if A[start] <= target and target < A[mid]: return self.search_helper(A, target, start, mid - 1) else: return self.search_helper(A, target, mid + 1, end) else: # Second half sorted if A[mid] < target and target <= A[end]: return self.search_helper(A, target, mid + 1, end) else: return self.search_helper(A, target, start, mid - 1)
cyandterry/Python-Study
Ninja/Leetcode/33_Search_in_Rotated_Sorted_Array.py
Python
mit
2,223
from p2ner.abstract.interface import Interface # Copyright 2012 Loris Corazza, Sakis Christakidis # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Interface(Interface): def initInterface(self, *args, **kwargs): pass def contactServers(self,servers): for s in servers: self.root.interface.contactServer(s) #d.addCallback(self.parent.getStream) #d.addErrback(self.failedXMLRPC) def subscribeStream(self,id,ip,port,outputMethod): self.root.interface.subscribeStream(id,ip,port,outputMethod) #d.addCallback(self.parent.succesfulSubscription,id) #d.addErrback(self.failedXMLRPC) def stopProducing(self,id,repub): self.root.interface.stopProducing(id,repub) #d.addCallback(self.parent.stopProducing,id) #d.addErrback(self.failedXMLRPC) def unregisterStream(self,id): self.root.interface.unregisterStream(id) #d.addCallback(self.parent.unregisterStream,id) #d.addErrback(self.failedXMLRPC) def startProducing(self,id,type): self.root.interface.startProducing(id) #d.addCallback(self.parent.changeStreamStatus,id,type) #d.addErrback(self.failedXMLRPC) def startRemoteProducer(self,id,type): self.root.interface.startRemoteProducer(id) #d.addCallback(self.parent.changeStreamStatus,id,type) #d.addErrback(self.failedXMLRPC) #self.parent.changeStreamStatus(d,id,type) def registerStream(self,settings,inputMethod,outputMethod): self.root.interface.registerStream(settings,inputMethod,outputMethod) #d.addCallback(self.parent.registerStream) #d.addErrback(self.failedXMLRPC) def getComponentsInterfaces(self,comp): self.root.interface.getComponentsInterfaces(comp) def startConverting(self,gui,dir,filename,videorate,subs,subsFile,subsEnc): self.root.interface.startConverting(gui,dir,filename,videorate,subs,subsFile,subsEnc) def getConverterStatus(self,gui,id): self.root.interface.getConverterStatus(gui,id) def abortConverter(self,id): self.root.interface.abortConverter(id) def send(self,rcom,arg,lcom): rcom=eval('self.root.interface.'+rcom) if arg: lcom(rcom(arg)) else: lcom(rcom()) def exiting(self): self.root.exiting() def getAvailableStatistics(self,func): func(self.root.interface.getStatistics()) def getStatValues(self,func,stats): func(self.root.interface.getStatValues(stats)) def startMeasurement(self,ip,gui): self.root.startBWMeasurement(ip,gui) def setBW(self,bw): self.root.setBW(bw) def checkNetwork(self): self.root.interface.checkNetwork() def sendChatMessage(self,id,message,peer): self.root.interface.sendChatMessage(id,message,peer) def joinChatRoom(self,id,username,server): self.root.interface.joinChatRoom(id,username,server) def leaveChatRoom(self,id,username,server): self.root.interface.leaveChatRoom(id,username,server)
schristakidis/p2ner
p2ner/components/ui/gtkgui/gtkgui/interface/localinterface.py
Python
apache-2.0
3,773
# Copyright 2013 the Melange authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GCIConversationUser logic methods.""" from datetime import timedelta from google.appengine.ext import db from google.appengine.ext import ndb from melange.logic import profile as profile_logic from melange.models import profile as profile_model from soc.tasks import mailer from soc.modules.gci.logic import message as gcimessage_logic from soc.modules.gci.logic.helper import notifications from soc.modules.gci.models import conversation as gciconversation_model from soc.modules.gci.models import message as gcimessage_model from soc.models import conversation as conversation_model def queryForProgramAndCreator(program, creator): """Creates a query for GCIConversation entities for the given program and creator. Args: program: Key (ndb) of GCIProgram. creator: Key (ndb) of User who created the conversation. Returns: An ndb query for GCIConversations for the program and creator. """ query = (gciconversation_model.GCIConversation.query() .filter(gciconversation_model.GCIConversation.program == program) .filter(gciconversation_model.GCIConversation.creator == creator)) return query def queryForProgramAndUser(program, user): """Creates a query for GCIConversationUser entities for the given program and user. Args: program: Key (ndb) of GCIProgram. user: Key (ndb) of User. Returns: An ndb query for GCIConversationUsers for the program and user. """ query = (gciconversation_model.GCIConversationUser.query() .filter(gciconversation_model.GCIConversationUser.program == program) .filter(gciconversation_model.GCIConversationUser.user == user)) return query def queryConversationsForProgram(program): """Creates a query for GCIConversation entities for the given program. Args: program: Key (ndb) of GCIProgram. Returns: An ndb query for GCIConversations for the program. """ return gciconversation_model.GCIConversation.query( gciconversation_model.GCIConversation.program == program) def queryConversationUserForConversation(conversation): """Creates a query for GCIConversationUser entities for a conversation. Args: conversation: Key (ndb) of GCIConversation. Returns: An ndb query for GCIConversationUsers for the conversation. """ return gciconversation_model.GCIConversationUser.query( gciconversation_model.GCIConversationUser.conversation == conversation) def queryConversationUserForConversationAndUser(conversation, user): """Creates a query for GCIConversationUser entities in a conversation for a user. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of User. Returns: An ndb query for GCIConversationUsers for a conversation and user. """ return queryConversationUserForConversation(conversation).filter( gciconversation_model.GCIConversationUser.user == user) def queryUnreadMessagesForConversationAndUser(conversation, user): """Creates a query for unread messages in a conversation for a user. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of User. Returns: An ndb query for GCIMessages the user has not yet read in the conversation. If the user is not part of the conversation, None is returned. """ conversation_user = queryConversationUserForConversationAndUser( conversation, user).get() if not conversation_user: return None date_last_seen = conversation_user.last_message_seen_on # The > filter in the query below seemed to still include equivalent # datetimes, so incrememting this by a second fixes this. date_last_seen += timedelta(seconds=1) return (gcimessage_logic.queryForConversation(conversation) .filter(gcimessage_model.GCIMessage.sent_on > date_last_seen)) def numUnreadMessagesForConversationAndUser(conversation, user): """Calculates the number of unread messages in a conversation for a user. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of User. Returns: The number of messages the user has not read in the conversation. If the user is not involved in the conversation, 0 is returned. """ query = queryUnreadMessagesForConversationAndUser(conversation, user) return 0 if query is None else query.count() #TODO(drewgottlieb) use mapreduce for this def numUnreadMessagesForProgramAndUser(program, user): """Returns the number of unread messages for all conversations the user is in for a program. Args: program: Key (ndb) of GCIProgram. user: Key (ndb) of User. """ conv_users = queryForProgramAndUser(program, user).fetch(1000) unread_count = 0 for conv_user in conv_users: unread_count += numUnreadMessagesForConversationAndUser( conv_user.conversation, user) return unread_count def markAllReadForConversationAndUser(conversation, user): """Marks all messages in a conversation as read for the user. Sets the GCIConversationUser's last_message_seen_on to the last message's sent_on. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of User. """ conv_user_results = queryConversationUserForConversationAndUser( conversation, user).fetch(1) if not conv_user_results: raise Exception('No GCIConversationUser could be found.') conv_user = conv_user_results[0] last_message = gcimessage_logic.getLastMessageForConversation(conversation) conv_user.last_message_seen_on = last_message.sent_on conv_user.put() def reputConversationUsers(conversation): """Updates all computed properties in each GCIConversationUser entity for a conversation. Args: conversation: Key (ndb) of GCIConversation. """ @ndb.tasklet def reput(conv_user): conv_user.put() queryConversationUserForConversation(conversation).map(reput) def createMessage(conversation, user=None, content=''): """Creates and returns a new GCIMessage, and updates conversation and conversationusers' last_message_sent_on date. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of user who sent the message. Can be None if conversation is created by Melange itself. content: Content of message. This function will not sanitize it for you. Returns: The created GCIMessage. """ if content is None: return None @ndb.transactional def create(): message = gcimessage_model.GCIMessage( parent=conversation, conversation=conversation, content=content, author=user) message.put() # Update last_message_sent_on in conversation conversation_ent = conversation.get() conversation_ent.last_message_on = message.sent_on conversation_ent.put() return message message = create() # Reput each conversationuser for the conversation to update computed # properties such as last_message_sent_on reputConversationUsers(conversation) return message def addUserToConversation(conversation, user): """Creates a GCIConversationUser adding the user to the conversation, if the user is not already part of the conversation. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of User. Returns: The created (or existing) GCIConversationUser entity representing the user's involvement. """ @ndb.transactional def txn(): query = gciconversation_model.GCIConversationUser.query( gciconversation_model.GCIConversationUser.user == user, gciconversation_model.GCIConversationUser.conversation == conversation, ancestor=conversation) conv_user = query.get() if conv_user: return conv_user conv_user = gciconversation_model.GCIConversationUser( parent=conversation, conversation=conversation, user=user) conv_user.put() return conv_user return txn() def removeUserFromConversation(conversation, user): """Removes the GCIConversationUser for a user and conversation, if it exists. Will remove all matching instances, even though there should never be more then one. Args: conversation: Key (ndb) of GCIConversation. user: Key (ndb) of User. """ keys = queryConversationUserForConversationAndUser( conversation=conversation, user=user).fetch(100, keys_only=True) ndb.delete_multi(keys) def doesConversationUserBelong( conversation_user, ignore_auto_update_users=True): """Decides whether the user in a conversation belongs in the conversation. If ignore_auto_update_users is False, True will be returned if the conversation's auto_update_users is False. Args: conversation_user: Key (ndb) of a GCIConversationUser representing the user's involvement in the conversation. ignore_auto_update_users: Whether this should ignore the conversation's auto_update_users property. Returns: Whether the user belongs in the conversation. If the conversation's recipients_type is 'User', True is always returned. Also returns true if the user is the conversation's creator. """ conversation_user_ent = conversation_user.get() return doesUserBelongInConversation( user=conversation_user_ent.user, conversation=conversation_user_ent.conversation, ignore_auto_update_users=ignore_auto_update_users) def doesUserBelongInConversation( user, conversation, ignore_auto_update_users=True): """Decides whether the user in a conversation belongs in the conversation. If ignore_auto_update_users is False, True will be returned if the conversation's auto_update_users is False. Args: user: Key (ndb) of a User. conversation: Key (ndb) of a GCIConversation. ignore_auto_update_users: Whether this should ignore the conversation's auto_update_users property. Returns: Whether the user belongs in the conversation. If the conversation's recipients_type is 'User', True is always returned. Also returns true if the user is the conversation's creator. """ conversation_ent = conversation.get() if not conversation_ent.auto_update_users and not ignore_auto_update_users: return True if conversation_ent.creator == user: return True profile = profile_logic.getProfileForUsername( user.id(), conversation_ent.program.to_old_key()) if not profile: raise Exception('Could not find GCIProfile for user and program.') if conversation_ent.recipients_type == conversation_model.PROGRAM: if conversation_ent.include_admins and profile.is_admin: return True elif conversation_ent.include_mentors and profile.is_mentor: return True elif conversation_ent.include_students and profile.is_student: return True elif (profile.is_student and conversation_ent.include_winners and profile.student_data.is_winner): return True else: return False elif conversation_ent.recipients_type == conversation_model.ORGANIZATION: if (conversation_ent.include_admins and conversation_ent.organization in profile.admin_for): return True elif (conversation_ent.include_mentors and conversation_ent.organization in profile.mentor_for): return True elif (profile.is_student and conversation_ent.include_winners and profile.student_data.is_winner and conversation_ent.organization == profile.student_data.winner_for): return True else: return False # This might be reached if conversation recipients_type is 'User' return True def refreshConversationParticipants(conversation): """Creates/deletes GCIConversationUser entities depending on the converation's criteria. The conversation's owner is always included in the conversation. If the conversation's recipients_type is 'User', this function will not do anything because it is expected that the GCIConversationUser will be managed elsewhere. Args: conversation: Key (ndb) of GCIConversation. """ conv = conversation.get() def addProfile(profile): addUserToConversation( conversation=conversation, user=profile.key.parent()) def deleteConvUserIfDoesntBelong(conv_user): if not doesConversationUserBelong(conversation_user=conv_user.key): conv_user.key.delete() # Remove any users included who no longer fit the criteria if conv.recipients_type != conversation_model.USER: conv_user_query = queryConversationUserForConversation(conversation) map(deleteConvUserIfDoesntBelong, conv_user_query) # Make sure users who fit the criteria are included if conv.recipients_type == conversation_model.PROGRAM: if conv.include_admins: query = profile_model.Profile.query( profile_model.Profile.program == conv.program, profile_model.Profile.is_admin == True) map(addProfile, query) if conv.include_mentors: query = profile_logic.queryAllMentorsForProgram(conv.program.to_old_key()) map(addProfile, query) if conv.include_students: query = profile_model.Profile.query( profile_model.Profile.program == conv.program, profile_model.Profile.is_student == True) map(addProfile, query) if conv.include_winners: query = profile_model.Profile.query( profile_model.Profile.program == conv.program, profile_model.Profile.student_data.is_winner == True) map(addProfile, query) elif conv.recipients_type == conversation_model.ORGANIZATION: if conv.include_admins: org_admins = profile_logic.getOrgAdmins(conv.organization) map(addProfile, org_admins) if conv.include_mentors: query = profile_model.Profile.query( profile_model.Profile.mentor_for == conv.organization, profile_model.Profile.status == profile_model.Status.ACTIVE) map(addProfile, query) if conv.include_winners: query = profile_model.Profile.query( profile_model.Profile.student_data.winner_for == conv.organization, profile_model.Profile.status == profile_model.Status.ACTIVE) map(addProfile, query) # Make sure conversation's creator is included if conv.creator is not None: addUserToConversation(conversation=conversation, user=conv.creator) def refreshConversationsForUserAndProgram(user_key, program_key): """Adds/removes the user to/from conversations that they should be involved in based on the conversation's criteria. For example, if there is a conversation that should include all program mentors, and this user is a program mentor who is involved with the program but isn't part of the converation, this function will add the user to that conversation. Likewise, it will remove the user from converstions they have no business being in, unless they're the creator of the conversation or the conversation is for specific users. This will only look at conversations that have auto_update_users set as True, and whoose, recipients_type is not 'User'. This function will not add a user to a conversation if the user does not fit the conversation's criteria, even if the user is the creator. If the user is _only_ the creator of the conversation, the user's GCIConversationUser entity should have been created when the conversation was initially created. Args: user_key: Key (ndb) of the User. program_key: Key (ndb) of the GCIProgram. """ profile = profile_logic.getProfileForUsername( user_key.id(), program_key.to_old_key()) if not profile: raise Exception('Could not find Profile for user and program.') def deleteConvUserIfDoesntBelong(conv_user): if not doesConversationUserBelong( conversation_user=conv_user.key, ignore_auto_update_users=False): conv_user.key.delete() # Remove user from any conversations they're in that they don't belong in conv_user_query = queryForProgramAndUser(user=user_key, program=program_key) map(deleteConvUserIfDoesntBelong, conv_user_query) def addToConversation(conversation): addUserToConversation(conversation=conversation.key, user=user_key) mentor_org_keys = profile.mentor_for admin_org_keys = profile.admin_for # Make sure user is added to program conversations they belong in as a # student if profile.is_student: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.PROGRAM) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_students == True)) map(addToConversation, query) # Make sure user is added to program conversations they belong in as a # mentor if profile.is_mentor: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.PROGRAM) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_mentors == True)) map(addToConversation, query) # Make sure user is added to program conversations they belong in as an # admin if profile.is_admin: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.PROGRAM) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_admins == True)) map(addToConversation, query) # Make sure user is added to program conversations they belong in as a # winner if profile.student_data and profile.student_data.is_winner: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.PROGRAM) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_winners == True)) map(addToConversation, query) # Make sure user is added to org conversations they belong in as an org # mentor if profile.is_mentor and mentor_org_keys: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.ORGANIZATION) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_mentors == True) .filter(gciconversation_model.GCIConversation.organization.IN( mentor_org_keys))) map(addToConversation, query) # Make sure user is added to org conversations they belong in as an org # admin if profile.is_admin and admin_org_keys: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.ORGANIZATION) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_admins == True) .filter(gciconversation_model.GCIConversation.organization.IN( admin_org_keys))) map(addToConversation, query) # Make sure user is added to org conversations they belong in as an org # winner if profile.is_student and profile.student_data.is_winner: query = (queryConversationsForProgram(program_key) .filter(gciconversation_model.GCIConversation.recipients_type == conversation_model.ORGANIZATION) .filter(gciconversation_model.GCIConversation.auto_update_users == True) .filter(gciconversation_model.GCIConversation.include_winners == True) .filter(gciconversation_model.GCIConversation.organization == profile.student_data.winner_for)) map(addToConversation, query) def getSubscribedEmails(conversation, exclude=None): """Gets the list of email addresses for all users subscribed to a conversation. Args: conversation: Key (ndb) of GCIConversation. exclude: Keys (ndb) of Users that, if given, will not be in the set of emails. Returns: Set of email addresses. """ conversation_ent = conversation.get() conv_users = queryConversationUserForConversation(conversation) program_key = ndb.Key.to_old_key(conversation_ent.program) addresses = set() for conv_user in conv_users: if conv_user.enable_notifications and ( not exclude or conv_user.user not in exclude): profile = profile_logic.getProfileForUsername( conv_user.user.id(), program_key) if not profile: raise Exception('Could not find GCIProfile for user %s and program. %s' % (conv_user.name, program_key.name())) addresses.add(profile.contact.email) return addresses def notifyParticipantsOfMessage(message, is_reply): """Notifies participants in a conversation's participants of a new message. Args: message: Key (ndb) of GCIMessage of which to notify participants. is_reply: Whether this message is a reply to an existing conversation. """ message_ent = message.get() conversation_ent = message_ent.conversation.get() to_emails = getSubscribedEmails( message_ent.conversation, exclude=[message_ent.author]) context = notifications.getTaskConversationMessageContext( message, list(to_emails), is_reply) txn = mailer.getSpawnMailTaskTxn(context, parent=None) db.run_in_transaction(txn)
rhyolight/nupic.son
app/soc/modules/gci/logic/conversation.py
Python
apache-2.0
22,136
# -*- coding: utf-8 -*- from collections import Iterable from helpers import add_attribute_self, yesman @add_attribute_self('filter_constructor') class ftuple(tuple): """ Replacement class for tuple, with better API. In place methods return 'self' instead of None, better for chaining and returning """ root = tuple def __new__(cls, *args): """ Replacement constructor, admits a single iterable or more than one parameter """ if len(args) == 1 and isinstance(args[0], Iterable): return tuple.__new__(cls, args[0]) else: return tuple.__new__(cls, args) @add_attribute_self('filter_constructor') class flist(list): """ Replacement class for list, with compatible API. In place methods are redefined to return 'self' instead of None. """ root = list def __init__(self, *args): """ Replacement constructor, admits a single iterable or more than one parameter """ if len(args) == 1 and isinstance(args[0], Iterable): list.__init__(self, args[0]) else: list.__init__(self, args) # mutable methods (return self) def clear(self): """ clear returns self """ del self[:] return self def append(self, x): """ append replacement that returns self """ list.append(self, x) return self def extend(self, iterable): """ extend replacement that returns self """ list.extend(self, iterable) return self def remove(self, value): """ remove replacement that returns self """ list.remove(self, value) return self def remove_all(self, iterable): """ iterable version of remove """ for i in iterable: list.remove(self, i) return self def remove_index(self, at): del self[at] return self def remove_slice(self, start=0, end=None): """ Does not raise IndexError """ if end is None: del self[start:] else: del self[start:end] return self def discard(self, value): """ Like remove except it does not raise ValueError exception """ try: list.remove(self, value) except ValueError: pass return self def discard_all(self, iterable): """ iterable version of discard """ for i in iterable: self.discard(i) return self def discard_index(self, at): try: del self[at] except IndexError: pass return self discard_slice = remove_slice def reverse(self): """ reverse replacement that returns self """ list.reverse() return self def sort(self, **p): """ sort replacement that returns self """ list.sort(self, **p) return self __isub__ = discard_all
francois-vincent/containers
base_containers.py
Python
gpl-2.0
3,025
from .base import * import warnings import pandas as pd def validate_set_ops(df, other): """ Helper function to ensure that DataFrames are valid for set operations. Columns must be the same name in the same order, and indices must be of the same dimension with the same names. """ if df.columns.values.tolist() != other.columns.values.tolist(): not_in_df = [col for col in other.columns if col not in df.columns] not_in_other = [col for col in df.columns if col not in other.columns] error_string = 'Error: not compatible.' if len(not_in_df): error_string += ' Cols in y but not x: ' + str(not_in_df) + '.' if len(not_in_other): error_string += ' Cols in x but not y: ' + str(not_in_other) + '.' raise ValueError(error_string) if len(df.index.names) != len(other.index.names): raise ValueError('Index dimension mismatch') if df.index.names != other.index.names: raise ValueError('Index mismatch') else: return # ------------------------------------------------------------------------------ # `union` # ------------------------------------------------------------------------------ @pipe def union(df, other, index=False, keep='first'): """ Returns rows that appear in either DataFrame. Args: df (pandas.DataFrame): data passed in through the pipe. other (pandas.DataFrame): other DataFrame to use for set operation with the first. Kwargs: index (bool): Boolean indicating whether to consider the pandas index as part of the set operation (default `False`). keep (str): Indicates which duplicate should be kept. Options are `'first'` and `'last'`. """ validate_set_ops(df, other) stacked = df.append(other) if index: stacked_reset_indexes = stacked.reset_index() index_cols = [col for col in stacked_reset_indexes.columns if col not in df.columns] index_name = df.index.names return_df = stacked_reset_indexes.drop_duplicates(keep=keep).set_index(index_cols) return_df.index.names = index_name return return_df else: return stacked.drop_duplicates(keep=keep) # ------------------------------------------------------------------------------ # `intersect` # ------------------------------------------------------------------------------ @pipe def intersect(df, other, index=False, keep='first'): """ Returns rows that appear in both DataFrames. Args: df (pandas.DataFrame): data passed in through the pipe. other (pandas.DataFrame): other DataFrame to use for set operation with the first. Kwargs: index (bool): Boolean indicating whether to consider the pandas index as part of the set operation (default `False`). keep (str): Indicates which duplicate should be kept. Options are `'first'` and `'last'`. """ validate_set_ops(df, other) if index: df_reset_index = df.reset_index() other_reset_index = other.reset_index() index_cols = [col for col in df_reset_index.columns if col not in df.columns] df_index_names = df.index.names return_df = (pd.merge(df_reset_index, other_reset_index, how='inner', left_on=df_reset_index.columns.values.tolist(), right_on=df_reset_index.columns.values.tolist()) .set_index(index_cols)) return_df.index.names = df_index_names return_df = return_df.drop_duplicates(keep=keep) return return_df else: return_df = pd.merge(df, other, how='inner', left_on=df.columns.values.tolist(), right_on=df.columns.values.tolist()) return_df = return_df.drop_duplicates(keep=keep) return return_df # ------------------------------------------------------------------------------ # `set_diff` # ------------------------------------------------------------------------------ @pipe def set_diff(df, other, index=False, keep='first'): """ Returns rows that appear in the first DataFrame but not the second. Args: df (pandas.DataFrame): data passed in through the pipe. other (pandas.DataFrame): other DataFrame to use for set operation with the first. Kwargs: index (bool): Boolean indicating whether to consider the pandas index as part of the set operation (default `False`). keep (str): Indicates which duplicate should be kept. Options are `'first'` and `'last'`. """ validate_set_ops(df, other) if index: df_reset_index = df.reset_index() other_reset_index = other.reset_index() index_cols = [col for col in df_reset_index.columns if col not in df.columns] df_index_names = df.index.names return_df = (pd.merge(df_reset_index, other_reset_index, how='left', left_on=df_reset_index.columns.values.tolist(), right_on=other_reset_index.columns.values.tolist(), indicator=True) .set_index(index_cols)) return_df = return_df[return_df._merge == 'left_only'] return_df.index.names = df_index_names return_df = return_df.drop_duplicates(keep=keep)[df.columns] return return_df else: return_df = pd.merge(df, other, how='left', left_on=df.columns.values.tolist(), right_on=df.columns.values.tolist(), indicator=True) return_df = return_df[return_df._merge == 'left_only'] return_df = return_df.drop_duplicates(keep=keep)[df.columns] return return_df
kieferk/dfply
dfply/set_ops.py
Python
gpl-3.0
6,022
# Copyright 2017 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from google.cloud.pubsub.message import Message from notification_polling import summarize MESSAGE_ID = 12345 def test_parse_json_message(): attributes = { 'eventType': 'OBJECT_FINALIZE', 'bucketId': 'mybucket', 'objectId': 'myobject', 'objectGeneration': 1234567, 'resource': 'projects/_/buckets/mybucket/objects/myobject#1234567', 'notificationConfig': ('projects/_/buckets/mybucket/' 'notificationConfigs/5'), 'payloadFormat': 'JSON_API_V1'} data = ('{' ' "size": 12345,' ' "contentType": "text/html",' ' "metageneration": 1' '}') message = Message(data, MESSAGE_ID, attributes=attributes) assert summarize(message) == ( '\tEvent type: OBJECT_FINALIZE\n' '\tBucket ID: mybucket\n' '\tObject ID: myobject\n' '\tGeneration: 1234567\n' '\tContent type: text/html\n' '\tSize: 12345\n' '\tMetageneration: 1\n')
JavaRabbit/CS496_capstone
storage/cloud-client/notification_polling_test.py
Python
apache-2.0
1,621
response.title = "LEL" response.subtitle = "List Extraction Learning" response.menu = [ (T('Home'), False, URL('default','index')), (T('Tutorial'), False, URL('default','tutorial')), (T('Contribute'), False, URL('default','contribute')), ]
satwantrana/lelui
models/menu.py
Python
mit
240
# Copyright (c) 2015 Advanced Micro Devices, Inc. # All rights reserved. # # For use for simulation and test purposes only # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Authors: Sooraj Puthoor import math import m5 from m5.objects import * from m5.defines import buildEnv from m5.util import addToPath from Ruby import create_topology from Ruby import send_evicts addToPath('../') from topologies.Cluster import Cluster from topologies.Crossbar import Crossbar class CntrlBase: _seqs = 0 @classmethod def seqCount(cls): # Use SeqCount not class since we need global count CntrlBase._seqs += 1 return CntrlBase._seqs - 1 _cntrls = 0 @classmethod def cntrlCount(cls): # Use CntlCount not class since we need global count CntrlBase._cntrls += 1 return CntrlBase._cntrls - 1 _version = 0 @classmethod def versionCount(cls): cls._version += 1 # Use count for this particular type return cls._version - 1 class L1Cache(RubyCache): resourceStalls = False dataArrayBanks = 2 tagArrayBanks = 2 dataAccessLatency = 1 tagAccessLatency = 1 def create(self, size, assoc, options): self.size = MemorySize(size) self.assoc = assoc self.replacement_policy = PseudoLRUReplacementPolicy() class L2Cache(RubyCache): resourceStalls = False assoc = 16 dataArrayBanks = 16 tagArrayBanks = 16 def create(self, size, assoc, options): self.size = MemorySize(size) self.assoc = assoc self.replacement_policy = PseudoLRUReplacementPolicy() class CPCntrl(CorePair_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.L1Icache = L1Cache() self.L1Icache.create(options.l1i_size, options.l1i_assoc, options) self.L1D0cache = L1Cache() self.L1D0cache.create(options.l1d_size, options.l1d_assoc, options) self.L1D1cache = L1Cache() self.L1D1cache.create(options.l1d_size, options.l1d_assoc, options) self.L2cache = L2Cache() self.L2cache.create(options.l2_size, options.l2_assoc, options) self.sequencer = RubySequencer() self.sequencer.version = self.seqCount() self.sequencer.icache = self.L1Icache self.sequencer.dcache = self.L1D0cache self.sequencer.ruby_system = ruby_system self.sequencer.coreid = 0 self.sequencer.is_cpu_sequencer = True self.sequencer1 = RubySequencer() self.sequencer1.version = self.seqCount() self.sequencer1.icache = self.L1Icache self.sequencer1.dcache = self.L1D1cache self.sequencer1.ruby_system = ruby_system self.sequencer1.coreid = 1 self.sequencer1.is_cpu_sequencer = True self.issue_latency = options.cpu_to_dir_latency self.send_evictions = send_evicts(options) self.ruby_system = ruby_system if options.recycle_latency: self.recycle_latency = options.recycle_latency class TCPCache(RubyCache): size = "16kB" assoc = 16 dataArrayBanks = 16 tagArrayBanks = 16 dataAccessLatency = 4 tagAccessLatency = 1 def create(self, options): self.size = MemorySize(options.tcp_size) self.dataArrayBanks = 16 self.tagArrayBanks = 16 self.dataAccessLatency = 4 self.tagAccessLatency = 1 self.resourceStalls = options.no_tcc_resource_stalls self.replacement_policy = PseudoLRUReplacementPolicy() class TCPCntrl(TCP_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.L1cache = TCPCache() self.L1cache.create(options) self.issue_latency = 1 self.coalescer = VIPERCoalescer() self.coalescer.version = self.seqCount() self.coalescer.icache = self.L1cache self.coalescer.dcache = self.L1cache self.coalescer.ruby_system = ruby_system self.coalescer.support_inst_reqs = False self.coalescer.is_cpu_sequencer = False self.sequencer = RubySequencer() self.sequencer.version = self.seqCount() self.sequencer.icache = self.L1cache self.sequencer.dcache = self.L1cache self.sequencer.ruby_system = ruby_system self.sequencer.is_cpu_sequencer = True self.use_seq_not_coal = False self.ruby_system = ruby_system if options.recycle_latency: self.recycle_latency = options.recycle_latency class SQCCache(RubyCache): dataArrayBanks = 8 tagArrayBanks = 8 dataAccessLatency = 1 tagAccessLatency = 1 def create(self, options): self.size = MemorySize(options.sqc_size) self.assoc = options.sqc_assoc self.replacement_policy = PseudoLRUReplacementPolicy() class SQCCntrl(SQC_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.L1cache = SQCCache() self.L1cache.create(options) self.L1cache.resourceStalls = False self.sequencer = RubySequencer() self.sequencer.version = self.seqCount() self.sequencer.icache = self.L1cache self.sequencer.dcache = self.L1cache self.sequencer.ruby_system = ruby_system self.sequencer.support_data_reqs = False self.sequencer.is_cpu_sequencer = False self.ruby_system = ruby_system if options.recycle_latency: self.recycle_latency = options.recycle_latency class TCC(RubyCache): size = MemorySize("256kB") assoc = 16 dataAccessLatency = 8 tagAccessLatency = 2 resourceStalls = True def create(self, options): self.assoc = options.tcc_assoc if hasattr(options, 'bw_scalor') and options.bw_scalor > 0: s = options.num_compute_units tcc_size = s * 128 tcc_size = str(tcc_size)+'kB' self.size = MemorySize(tcc_size) self.dataArrayBanks = 64 self.tagArrayBanks = 64 else: self.size = MemorySize(options.tcc_size) self.dataArrayBanks = 256 / options.num_tccs #number of data banks self.tagArrayBanks = 256 / options.num_tccs #number of tag banks self.size.value = self.size.value / options.num_tccs if ((self.size.value / long(self.assoc)) < 128): self.size.value = long(128 * self.assoc) self.start_index_bit = math.log(options.cacheline_size, 2) + \ math.log(options.num_tccs, 2) self.replacement_policy = PseudoLRUReplacementPolicy() class TCCCntrl(TCC_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.L2cache = TCC() self.L2cache.create(options) self.ruby_system = ruby_system self.L2cache.resourceStalls = options.no_tcc_resource_stalls if options.recycle_latency: self.recycle_latency = options.recycle_latency class L3Cache(RubyCache): dataArrayBanks = 16 tagArrayBanks = 16 def create(self, options, ruby_system, system): self.size = MemorySize(options.l3_size) self.size.value /= options.num_dirs self.assoc = options.l3_assoc self.dataArrayBanks /= options.num_dirs self.tagArrayBanks /= options.num_dirs self.dataArrayBanks /= options.num_dirs self.tagArrayBanks /= options.num_dirs self.dataAccessLatency = options.l3_data_latency self.tagAccessLatency = options.l3_tag_latency self.resourceStalls = False self.replacement_policy = PseudoLRUReplacementPolicy() class ProbeFilter(RubyCache): size = "4MB" assoc = 16 dataArrayBanks = 256 tagArrayBanks = 256 def create(self, options, ruby_system, system): self.block_size = "%dB" % (64 * options.blocks_per_region) self.size = options.region_dir_entries * \ self.block_size * options.num_compute_units self.assoc = 8 self.tagArrayBanks = 8 self.tagAccessLatency = options.dir_tag_latency self.dataAccessLatency = 1 self.resourceStalls = options.no_resource_stalls self.start_index_bit = 6 + int(math.log(options.blocks_per_region, 2)) self.replacement_policy = PseudoLRUReplacementPolicy() class L3Cntrl(L3Cache_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.L3cache = L3Cache() self.L3cache.create(options, ruby_system, system) self.l3_response_latency = \ max(self.L3cache.dataAccessLatency, self.L3cache.tagAccessLatency) self.ruby_system = ruby_system if options.recycle_latency: self.recycle_latency = options.recycle_latency def connectWireBuffers(self, req_to_dir, resp_to_dir, l3_unblock_to_dir, req_to_l3, probe_to_l3, resp_to_l3): self.reqToDir = req_to_dir self.respToDir = resp_to_dir self.l3UnblockToDir = l3_unblock_to_dir self.reqToL3 = req_to_l3 self.probeToL3 = probe_to_l3 self.respToL3 = resp_to_l3 class DirMem(RubyDirectoryMemory, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() phys_mem_size = AddrRange(options.mem_size).size() mem_module_size = phys_mem_size / options.num_dirs dir_size = MemorySize('0B') dir_size.value = mem_module_size self.size = dir_size class DirCntrl(Directory_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.response_latency = 30 self.directory = DirMem() self.directory.create(options, ruby_system, system) self.L3CacheMemory = L3Cache() self.L3CacheMemory.create(options, ruby_system, system) self.ProbeFilterMemory = ProbeFilter() self.ProbeFilterMemory.create(options, ruby_system, system) self.l3_hit_latency = \ max(self.L3CacheMemory.dataAccessLatency, self.L3CacheMemory.tagAccessLatency) self.ruby_system = ruby_system if options.recycle_latency: self.recycle_latency = options.recycle_latency def connectWireBuffers(self, req_to_dir, resp_to_dir, l3_unblock_to_dir, req_to_l3, probe_to_l3, resp_to_l3): self.reqToDir = req_to_dir self.respToDir = resp_to_dir self.l3UnblockToDir = l3_unblock_to_dir self.reqToL3 = req_to_l3 self.probeToL3 = probe_to_l3 self.respToL3 = resp_to_l3 def define_options(parser): parser.add_option("--num-subcaches", type = "int", default = 4) parser.add_option("--l3-data-latency", type = "int", default = 20) parser.add_option("--l3-tag-latency", type = "int", default = 15) parser.add_option("--cpu-to-dir-latency", type = "int", default = 120) parser.add_option("--gpu-to-dir-latency", type = "int", default = 120) parser.add_option("--no-resource-stalls", action = "store_false", default = True) parser.add_option("--no-tcc-resource-stalls", action = "store_false", default = True) parser.add_option("--num-tbes", type = "int", default = 2560) parser.add_option("--l2-latency", type = "int", default = 50) # load to use parser.add_option("--num-tccs", type = "int", default = 1, help = "number of TCC banks in the GPU") parser.add_option("--sqc-size", type = 'string', default = '32kB', help = "SQC cache size") parser.add_option("--sqc-assoc", type = 'int', default = 8, help = "SQC cache assoc") parser.add_option("--region-dir-entries", type = "int", default = 8192) parser.add_option("--dir-tag-latency", type = "int", default = 8) parser.add_option("--dir-tag-banks", type = "int", default = 4) parser.add_option("--blocks-per-region", type = "int", default = 1) parser.add_option("--use-L3-on-WT", action = "store_true", default = False) parser.add_option("--nonInclusiveDir", action = "store_true", default = False) parser.add_option("--WB_L1", action = "store_true", default = False, help = "writeback L2") parser.add_option("--WB_L2", action = "store_true", default = False, help = "writeback L2") parser.add_option("--TCP_latency", type = "int", default = 4, help = "TCP latency") parser.add_option("--TCC_latency", type = "int", default = 16, help = "TCC latency") parser.add_option("--tcc-size", type = 'string', default = '2MB', help = "agregate tcc size") parser.add_option("--tcc-assoc", type = 'int', default = 16, help = "tcc assoc") parser.add_option("--tcp-size", type = 'string', default = '16kB', help = "tcp size") parser.add_option("--sampler-sets", type = "int", default = 1024) parser.add_option("--sampler-assoc", type = "int", default = 16) parser.add_option("--sampler-counter", type = "int", default = 512) parser.add_option("--noL1", action = "store_true", default = False, help = "bypassL1") parser.add_option("--noL2", action = "store_true", default = False, help = "bypassL2") def create_system(options, full_system, system, dma_devices, bootmem, ruby_system): if buildEnv['PROTOCOL'] != 'GPU_VIPER_Baseline': panic("This script requires the" \ "GPU_VIPER_Baseline protocol to be built.") cpu_sequencers = [] # # The ruby network creation expects the list of nodes in the system to be # consistent with the NetDest list. Therefore the l1 controller nodes # must be listed before the directory nodes and directory nodes before # dma nodes, etc. # cp_cntrl_nodes = [] tcp_cntrl_nodes = [] sqc_cntrl_nodes = [] tcc_cntrl_nodes = [] dir_cntrl_nodes = [] l3_cntrl_nodes = [] # # Must create the individual controllers before the network to ensure the # controller constructors are called before the network constructor # # For an odd number of CPUs, still create the right number of controllers TCC_bits = int(math.log(options.num_tccs, 2)) # This is the base crossbar that connects the L3s, Dirs, and cpu/gpu # Clusters crossbar_bw = 16 * options.num_compute_units #Assuming a 2GHz clock mainCluster = Cluster(intBW = crossbar_bw) for i in xrange(options.num_dirs): dir_cntrl = DirCntrl(noTCCdir=True,TCC_select_num_bits = TCC_bits) dir_cntrl.create(options, ruby_system, system) dir_cntrl.number_of_TBEs = options.num_tbes dir_cntrl.useL3OnWT = options.use_L3_on_WT dir_cntrl.inclusiveDir = not options.nonInclusiveDir # Connect the Directory controller to the ruby network dir_cntrl.requestFromCores = MessageBuffer(ordered = True) dir_cntrl.requestFromCores.slave = ruby_system.network.master dir_cntrl.responseFromCores = MessageBuffer() dir_cntrl.responseFromCores.slave = ruby_system.network.master dir_cntrl.unblockFromCores = MessageBuffer() dir_cntrl.unblockFromCores.slave = ruby_system.network.master dir_cntrl.probeToCore = MessageBuffer() dir_cntrl.probeToCore.master = ruby_system.network.slave dir_cntrl.responseToCore = MessageBuffer() dir_cntrl.responseToCore.master = ruby_system.network.slave dir_cntrl.triggerQueue = MessageBuffer(ordered = True) dir_cntrl.L3triggerQueue = MessageBuffer(ordered = True) dir_cntrl.responseFromMemory = MessageBuffer() exec("system.dir_cntrl%d = dir_cntrl" % i) dir_cntrl_nodes.append(dir_cntrl) mainCluster.add(dir_cntrl) cpuCluster = Cluster(extBW = crossbar_bw, intBW=crossbar_bw) for i in xrange((options.num_cpus + 1) / 2): cp_cntrl = CPCntrl() cp_cntrl.create(options, ruby_system, system) exec("system.cp_cntrl%d = cp_cntrl" % i) # # Add controllers and sequencers to the appropriate lists # cpu_sequencers.extend([cp_cntrl.sequencer, cp_cntrl.sequencer1]) # Connect the CP controllers and the network cp_cntrl.requestFromCore = MessageBuffer() cp_cntrl.requestFromCore.master = ruby_system.network.slave cp_cntrl.responseFromCore = MessageBuffer() cp_cntrl.responseFromCore.master = ruby_system.network.slave cp_cntrl.unblockFromCore = MessageBuffer() cp_cntrl.unblockFromCore.master = ruby_system.network.slave cp_cntrl.probeToCore = MessageBuffer() cp_cntrl.probeToCore.slave = ruby_system.network.master cp_cntrl.responseToCore = MessageBuffer() cp_cntrl.responseToCore.slave = ruby_system.network.master cp_cntrl.mandatoryQueue = MessageBuffer() cp_cntrl.triggerQueue = MessageBuffer(ordered = True) cpuCluster.add(cp_cntrl) gpuCluster = Cluster(extBW = crossbar_bw, intBW = crossbar_bw) for i in xrange(options.num_compute_units): tcp_cntrl = TCPCntrl(TCC_select_num_bits = TCC_bits, issue_latency = 1, number_of_TBEs = 2560) # TBEs set to max outstanding requests tcp_cntrl.create(options, ruby_system, system) tcp_cntrl.WB = options.WB_L1 tcp_cntrl.disableL1 = options.noL1 exec("system.tcp_cntrl%d = tcp_cntrl" % i) # # Add controllers and sequencers to the appropriate lists # cpu_sequencers.append(tcp_cntrl.coalescer) tcp_cntrl_nodes.append(tcp_cntrl) # Connect the CP (TCP) controllers to the ruby network tcp_cntrl.requestFromTCP = MessageBuffer(ordered = True) tcp_cntrl.requestFromTCP.master = ruby_system.network.slave tcp_cntrl.responseFromTCP = MessageBuffer(ordered = True) tcp_cntrl.responseFromTCP.master = ruby_system.network.slave tcp_cntrl.unblockFromCore = MessageBuffer() tcp_cntrl.unblockFromCore.master = ruby_system.network.slave tcp_cntrl.probeToTCP = MessageBuffer(ordered = True) tcp_cntrl.probeToTCP.slave = ruby_system.network.master tcp_cntrl.responseToTCP = MessageBuffer(ordered = True) tcp_cntrl.responseToTCP.slave = ruby_system.network.master tcp_cntrl.mandatoryQueue = MessageBuffer() gpuCluster.add(tcp_cntrl) for i in xrange(options.num_sqc): sqc_cntrl = SQCCntrl(TCC_select_num_bits = TCC_bits) sqc_cntrl.create(options, ruby_system, system) exec("system.sqc_cntrl%d = sqc_cntrl" % i) # # Add controllers and sequencers to the appropriate lists # cpu_sequencers.append(sqc_cntrl.sequencer) # Connect the SQC controller to the ruby network sqc_cntrl.requestFromSQC = MessageBuffer(ordered = True) sqc_cntrl.requestFromSQC.master = ruby_system.network.slave sqc_cntrl.probeToSQC = MessageBuffer(ordered = True) sqc_cntrl.probeToSQC.slave = ruby_system.network.master sqc_cntrl.responseToSQC = MessageBuffer(ordered = True) sqc_cntrl.responseToSQC.slave = ruby_system.network.master sqc_cntrl.mandatoryQueue = MessageBuffer() # SQC also in GPU cluster gpuCluster.add(sqc_cntrl) # Because of wire buffers, num_tccs must equal num_tccdirs numa_bit = 6 for i in xrange(options.num_tccs): tcc_cntrl = TCCCntrl() tcc_cntrl.create(options, ruby_system, system) tcc_cntrl.l2_request_latency = options.gpu_to_dir_latency tcc_cntrl.l2_response_latency = options.TCC_latency tcc_cntrl_nodes.append(tcc_cntrl) tcc_cntrl.WB = options.WB_L2 tcc_cntrl.number_of_TBEs = 2560 * options.num_compute_units # Connect the TCC controllers to the ruby network tcc_cntrl.requestFromTCP = MessageBuffer(ordered = True) tcc_cntrl.requestFromTCP.slave = ruby_system.network.master tcc_cntrl.responseToCore = MessageBuffer(ordered = True) tcc_cntrl.responseToCore.master = ruby_system.network.slave tcc_cntrl.probeFromNB = MessageBuffer() tcc_cntrl.probeFromNB.slave = ruby_system.network.master tcc_cntrl.responseFromNB = MessageBuffer() tcc_cntrl.responseFromNB.slave = ruby_system.network.master tcc_cntrl.requestToNB = MessageBuffer(ordered = True) tcc_cntrl.requestToNB.master = ruby_system.network.slave tcc_cntrl.responseToNB = MessageBuffer() tcc_cntrl.responseToNB.master = ruby_system.network.slave tcc_cntrl.unblockToNB = MessageBuffer() tcc_cntrl.unblockToNB.master = ruby_system.network.slave tcc_cntrl.triggerQueue = MessageBuffer(ordered = True) exec("system.tcc_cntrl%d = tcc_cntrl" % i) # connect all of the wire buffers between L3 and dirs up # TCC cntrls added to the GPU cluster gpuCluster.add(tcc_cntrl) # Assuming no DMA devices assert(len(dma_devices) == 0) # Add cpu/gpu clusters to main cluster mainCluster.add(cpuCluster) mainCluster.add(gpuCluster) ruby_system.network.number_of_virtual_networks = 10 return (cpu_sequencers, dir_cntrl_nodes, mainCluster)
vineodd/PIMSim
GEM5Simulation/gem5/configs/ruby/GPU_VIPER_Baseline.py
Python
gpl-3.0
23,064
#! /usr/bin/env python import os import sys import select import time import math import getopt import RPi.GPIO as GPIO # Debug flag debug = False def Usage(): print('Usage: stepper.py -d -h -v --debug --help --version degrees timing-in-milliseconds') # Stepper motor operation -- 28BYJ48 5V DC motor # 32 teeth (poles) per 360 degrees = 11.25 degrees per full step # Using half-steps then 5.625 degrees per half-step # Gear ratio = 3.5555 (32/9), 2.000 (22/11), 2.888 (26/9), 3.100 (31/10) # Final gear ratio = 3.555 * 2.000 * 2.888 * 3.100 = 63.683950617 # One rotation of main shaft = 63.683950617 turns of rotor shaft # But 63.683950617 turns of rotor shaft requires 63.683950617 * 64 steps = 4075.7728395 steps # 0.0883268 degrees per step # Stepper Motor Parameters pi = 3.14159265358979323846 halfStep = 5.625 stepsRotor = 360.0/5.625 gearRatio = 63.683950617 stepsMain = gearRatio * stepsRotor stepDegree = 360.0/stepsMain lastStep = 0 degreesRotated = 0.0 # Default timing for each step timing = 10.0 # Define GPIO signals to use # Physical pins 31, 33, 35, 37 # GPIO06, GPIO13, GPIO19, GPIO26 gpioPins = [6, 13, 19, 26] # Define half-step sequence # as shown in manufacturers datasheet seq = [[1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0], [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1]] # Step the motor. Degrees (positive or negative), time in milliseconds for each, energized state def stepper(degrees, stepTime, stepLock) : global lastStep global stepDegree global degreesRotated # Use BCM GPIO references # instead of physical pin numbers GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) # Set all pins as output for pin in gpioPins: if debug: print('GPIO setup for pin %d' % pin) GPIO.setup(pin, GPIO.OUT) GPIO.output(pin, False) if degrees > 0.0 : direction = 1 else: direction = -1 # The amount of rotation may be slightly less than requested. Steps are integral stepsNeeded = abs(int(degrees/stepDegree)) stepCount = len(seq) # Start main loop # Variable for counting amount rotated in each step rotation = 0.0 while stepsNeeded > 0 : lastStep = lastStep + direction if lastStep > len(seq) - 1 : lastStep = 0 if lastStep < 0 : lastStep = len(seq) - 1 for i in range(4): pin = gpioPins[i] if seq[lastStep][i]!=0 : if debug: print('Step %d: Enable GPIO %i' % (lastStep, pin)) GPIO.output(pin, True) else: if debug: print ('Step %d: Disable GPIO %i' % (lastStep, pin)) GPIO.output(pin, False) rotation = rotation + float(direction) * stepDegree if debug: print('Degrees rotated %4.3f' % rotation) time.sleep(stepTime/1000.0) stepsNeeded = stepsNeeded - 1 # De-energize all output pins. Leave motor energized to lock-in the step. if not stepLock : for pin in gpioPins: GPIO.output(pin, False) return rotation # Start of main program def main(degrees, timing): global degreesRotated rotation = stepper(degrees, timing, False) degreesRotated = degreesRotated + rotation print('Degrees rotated: %4.3f' % degreesRotated) sys.exit(0) if __name__ == "__main__": # This code corrects getopt's handling of negative numbers as arguments # Look for the first negative number (if any) for i,arg in enumerate(sys.argv[1:]): # stop if a non-argument is detected if arg[0] != "-": break # if a valid number is found insert a "--" string before it which # explicitly flags to getopt the end of options try: f = float(arg) sys.argv.insert(i+1,"--") break; except ValueError: pass try: options, args = getopt.getopt(sys.argv[1:], 'dhv', ['debug', 'help', 'version']) except getopt.GetoptError: Usage() sys.exit(2) for o, a in options: if o in ("-d", "--debug"): debug = True if o in ("-h", "--help"): Usage() sys.exit() if o in ("-v", "--version"): print('stepper.py Version 1.0') sys.exit() # Degrees to move (float). Can be positive or negative value if len(args) > 0 : degrees = float(args[0]) else: Usage() sys.exit(-2) # Timing in millisecond for each step. Default is 10.0 milliseconds if len(args) > 1 : timing = float(args[1]) if timing < 1.0 : print('Timing value incorrect. Needs to be 1.0 milliseconds or greater') sys.exit(-1) main(degrees, timing)
hankster/pi-eye
stepper.py
Python
mit
4,952
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-11-03 22:23 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('backend', '0006_auto_20161129_1421'), ] operations = [ migrations.CreateModel( name='BattleHistory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('is_victorious', models.BooleanField(default=False)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('difficult_level', models.CharField(default='normal', max_length=10)), ('opponent', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='opponents', to=settings.AUTH_USER_MODEL)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='battlehistories', to=settings.AUTH_USER_MODEL)), ], ), ]
Petrole/MaturePyRobots
WebPyRobot/backend/migrations/0007_battlehistory.py
Python
gpl-3.0
1,190
# -*-coding:utf-8 -* from django.db import models from agency.models import Vehicle, Agency from django.contrib.auth.models import User EVENT_TYPE = ( ('code', 'Session de code'), ('driving', 'Conduite en circulation'), ('plateau', 'Conduite sur plateau'), ('code_exam', 'Examen de code'), ('driving_exam', 'Examen de conduite'), ('initial_circuit', 'Conduite sur circuit (initial)'), ('medium_circuit', 'Conduite sur circuit (intermédiaire)'), ('improvement_circuit', 'Conduite sur circuit (perfectionnement)'), ) class Event(models.Model): start = models.DateTimeField() end = models.DateTimeField() slots = models.IntegerField() type = models.CharField(max_length=255, choices=EVENT_TYPE) vehicle = models.ManyToManyField(Vehicle, null=True, blank=True, related_name='events') agency = models.ForeignKey(Agency) supervisor = models.ForeignKey(User) def __unicode__(self): return 'Evenement du %s au %s' % (self.start, self.end)
SBillion/aegroupware
planner/models.py
Python
mit
954
# -*- coding: utf-8 -*- # Copyright (C) 2015 Osmo Salomaa # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import pan.test import threading import time class TestConnectionPool(pan.test.TestCase): def setup_method(self, method): self.pool = pan.http.ConnectionPool(2) self.http_url = "http://otsaloma.io/" self.https_url = "https://otsaloma.io/" def teardown_method(self, method): self.pool.terminate() def test_get__2(self): connection1 = self.pool.get(self.http_url) connection2 = self.pool.get(self.http_url) assert connection1 is not None assert connection2 is not None def test_get__http(self): connection = self.pool.get(self.http_url) assert connection is not None def test_get__https(self): connection = self.pool.get(self.https_url) assert connection is not None def test_get__terminate_blocking(self): kwargs = dict(target=self.pool.get, args=(self.http_url,)) threading.Thread(**kwargs).start() threading.Thread(**kwargs).start() # The third of these calls should block, but gracefully exit # by raising an exception when terminate is called. threading.Thread(**kwargs).start() self.pool.terminate() time.sleep(3) def test_is_alive(self): assert self.pool.is_alive() self.pool.terminate() assert not self.pool.is_alive() def test_put(self): connection = self.pool.get(self.http_url) assert connection is not None self.pool.put(self.http_url, connection) connection = self.pool.get(self.http_url) assert connection is not None def test_reset(self): connection = self.pool.get(self.http_url) assert connection is not None self.pool.put(self.http_url, connection) self.pool.reset(self.http_url) connection = self.pool.get(self.http_url) assert connection is not None def test_terminate(self): self.pool.terminate() assert not self.pool.is_alive() class TestModule(pan.test.TestCase): def test_get(self): url = "https://otsaloma.io/" blob = pan.http.get(url, encoding="utf_8") assert blob.strip().startswith("<!DOCTYPE html>") def test_get__error(self): url = "https://xxx.yyy.zzz/" self.assert_raises(Exception, pan.http.get, url) def test_get__non_200(self): url = "https://otsaloma.io/xxx/yyy/zzz" self.assert_raises(Exception, pan.http.get, url) def test_get_json(self): url = "https://otsaloma.io/pub/test.json" assert isinstance(pan.http.get_json(url), dict) def test_get_json__error(self): url = "https://otsaloma.io/pub/test.xml" self.assert_raises(Exception, pan.http.get_json, url)
otsaloma/pan-bikes
pan/test/test_http.py
Python
gpl-3.0
3,443
from plyer.platforms.win.libs.batterystatus import battery_status from plyer.facades import Battery class WinBattery(Battery): def _get_status(self): status = {"connected": None, "percentage": None} query = battery_status() if (not query): return status status["connected"] = query["ACLineStatus"] == 1 status["percentage"] = query["BatteryLifePercent"] return status def instance(): return WinBattery()
brousch/pyohio-kivy-2014
plyer/platforms/win/battery.py
Python
mit
480
import datetime import logging import os from django.conf import settings from django.core.files.base import ContentFile from django.core.mail import EmailMultiAlternatives from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from django.utils import timezone from . import defaults from .utils import get_storage, upload_to logger = logging.getLogger(__name__) class MailerMessageManager(models.Manager): def send_queued(self, limit=None): if limit is None: limit = getattr(settings, 'MAILQUEUE_LIMIT', defaults.MAILQUEUE_LIMIT) for email in self.filter(sent=False)[:limit]: email.send_mail() def clear_sent_messages(self, offset=None): """ Deletes sent MailerMessage records """ if offset is None: offset = getattr(settings, 'MAILQUEUE_CLEAR_OFFSET', defaults.MAILQUEUE_CLEAR_OFFSET) if type(offset) is int: offset = datetime.timedelta(hours=offset) delete_before = timezone.now() - offset self.filter(sent=True, last_attempt__lte=delete_before).delete() @python_2_unicode_compatible class MailerMessage(models.Model): created = models.DateTimeField(_('Created'), auto_now_add=True, auto_now=False, editable=False, null=True) subject = models.CharField(_('Subject'), max_length=250, blank=True) to_address = models.TextField(_('To')) cc_address = models.TextField(_('CC'), blank=True) bcc_address = models.TextField(_('BCC'), blank=True) from_address = models.EmailField(_('From'), max_length=250) reply_to = models.TextField(_('Reply to'), max_length=250, blank=True, null=True) content = models.TextField(_('Content'), blank=True) html_content = models.TextField(_('HTML Content'), blank=True) app = models.CharField(_('App'), max_length=250, blank=True) sent = models.BooleanField(_('Sent'), default=False, editable=False) last_attempt = models.DateTimeField(_('Last attempt'), auto_now=False, auto_now_add=False, blank=True, null=True, editable=False) objects = MailerMessageManager() class Meta: verbose_name = _('Message') verbose_name_plural = _('Messages') def __str__(self): return self.subject def add_attachment(self, attachment): """ Takes a Django `File` object and creates an attachment for this mailer message. """ if self.pk is None: self._save_without_sending() original_filename = attachment.file.name.split(os.sep)[-1] file_content = ContentFile(attachment.read()) new_attachment = Attachment() new_attachment.file_attachment.save(original_filename, file_content, save=False) new_attachment.email = self new_attachment.original_filename = original_filename try: new_attachment.save() except Exception as e: logger.error(e) new_attachment.file_attachment.delete() def _save_without_sending(self, *args, **kwargs): """ Saves the MailerMessage instance without sending the e-mail. This ensures other models (e.g. `Attachment`) have something to relate to in the database. """ self.do_not_send = True super(MailerMessage, self).save(*args, **kwargs) def send_mail(self): """ Public api to send mail. Makes the determinination of using celery or not and then calls the appropriate methods. """ if getattr(settings, 'MAILQUEUE_CELERY', defaults.MAILQUEUE_CELERY): from mailqueue.tasks import send_mail send_mail.delay(self.pk) else: self._send() def _send(self): if not self.sent: self.last_attempt = timezone.now() subject, from_email = self.subject, self.from_address text_content = self.content msg = EmailMultiAlternatives(subject, text_content, from_email) if self.reply_to: msg.extra_headers.update({"reply-to": self.reply_to}) if self.html_content: html_content = self.html_content msg.attach_alternative(html_content, "text/html") msg.to = [email.strip() for email in self.to_address.split(',') if email.strip()] msg.cc = [email.strip() for email in self.cc_address.split(',') if email.strip()] msg.bcc = [email.strip() for email in self.bcc_address.split(',') if email.strip()] # Add any additional attachments for attachment in self.attachment_set.all(): path = attachment.file_attachment.path if os.path.isfile(path): with open(path, 'rb') as f: content = f.read() msg.attach(attachment.original_filename, content, None) try: msg.send() self.sent = True except Exception as e: self.do_not_send = True logger.error('Mail Queue Exception: {0}'.format(e)) self.save() @python_2_unicode_compatible class Attachment(models.Model): file_attachment = models.FileField(storage=get_storage(), upload_to=upload_to, blank=True, null=True) original_filename = models.CharField(default=None, max_length=250, blank=False) email = models.ForeignKey(MailerMessage, on_delete=models.CASCADE, blank=True, null=True) class Meta: verbose_name = _('Attachment') verbose_name_plural = _('Attachments') def __str__(self): return self.original_filename
Goury/django-mail-queue
mailqueue/models.py
Python
mit
5,805
# # serialize.py # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # from https://github.com/jgarzik/python-bitcoinlib/blob/master/bitcoin/script.py # from __future__ import absolute_import, division, print_function, unicode_literals import binascii import struct import inspect from StringIO import StringIO from enum import IntEnum import types from copy import deepcopy from app import config as cfg # Py3 compatibility import sys bchr = chr if sys.version > '3': bchr = lambda x: bytes([x]) def wrap_to_StringIO(f): if isinstance(f, bytearray): f = bytes(f) if isinstance(f, str): f = StringIO(f) return f class SerType(IntEnum): # primary actions SER_NETWORK = (1 << 0) SER_DISK = (1 << 1) SER_GETHASH = (1 << 2) # modifiers SER_SKIPSIG = (1 << 16) SER_BLOCKHEADERONLY = (1 << 17) def deser_str(f): nit = struct.unpack(b"<B", f.read(1))[0] if nit == 253: nit = struct.unpack(b"<H", f.read(2))[0] elif nit == 254: nit = struct.unpack(b"<I", f.read(4))[0] elif nit == 255: nit = struct.unpack(b"<Q", f.read(8))[0] return f.read(nit) def ser_str(s): if len(s) < 253: return bchr(len(s)) + s elif len(s) < 254: return bchr(253) + struct.pack(b"<H", len(s)) + s elif len(s) < 255: return bchr(254) + struct.pack(b"<I", len(s)) + s return bchr(255) + struct.pack(b"<Q", len(s)) + s def ser_flatdata(s, n=-1): s_size = len(s) if s_size < n: s += (b'\x00' * (n - s_size)) elif s_size > n: s = s[:n] return s def deser_flatdata(f, n): return f.read(n) def deser_uint256(f): r = 0 if type(f) is str: f = StringIO(f) for i in range(8): t = struct.unpack(b"<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = b"" for i in range(8): rs += struct.pack(b"<I", u & 0xFFFFFFFF) u >>= 32 return rs def hexser_uint256(u, in_type=None): if in_type != 'str': u = ser_uint256(u) return binascii.hexlify(u) # ''.join(["%02X" % ord(x) for x in u]) def deser_uint160(f): r = 0 if type(f) is str or isinstance(f, bytearray): f = StringIO(f) for i in range(5): t = struct.unpack(b"<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint160(u): rs = b"" for i in range(5): rs += struct.pack(b"<I", u & 0xFFFFFFFF) u >>= 32 return rs def deser_int64(f): return struct.unpack(b"<q", f.read(8))[0] def ser_int64(u): return struct.pack(b"<q", u) def deser_uint64(f): return struct.unpack(b"<Q", f.read(8))[0] def ser_uint64(u): return struct.pack(b"<Q", u) def deser_uint(f, endian='small'): if endian == 'big': return struct.unpack(b">I", f.read(4))[0] return struct.unpack(b"<I", f.read(4))[0] def ser_uint(i, endian='small'): if endian == 'big': return struct.pack(b">I", i) return struct.pack(b"<I", i) def deser_int(f, endian='small'): if endian == 'big': return struct.unpack(b">i", f.read(4))[0] return struct.unpack(b"<i", f.read(4))[0] def ser_int(i, endian='small'): if endian == 'big': return struct.pack(b">i", i) return struct.pack(b"<i", i) def deser_short(f, endian='small'): if endian == 'big': return struct.unpack(b">h", f.read(2))[0] return struct.unpack(b"<h", f.read(2))[0] def ser_short(i, endian='small'): if endian == 'big': return struct.pack(b">h", i) return struct.pack(b"<h", i) def deser_ushort(f, endian='small'): if endian == 'big': return struct.unpack(b">H", f.read(2))[0] return struct.unpack(b"<H", f.read(2))[0] def ser_ushort(i, endian='small'): if endian == 'big': return struct.pack(b">H", i) return struct.pack(b"<H", i) def deser_char(f): return struct.unpack(b"b", f.read(1))[0] def ser_char(i): return struct.pack(b"b", i) def deser_uchar(f): return struct.unpack(b"B", f.read(1))[0] def ser_uchar(i): return struct.pack(b"B", i) # list def deser_list(f, cls, arg1=None, nType=0, nVersion=cfg.VERSION): nit = struct.unpack(b"<B", f.read(1))[0] if nit == 253: nit = struct.unpack(b"<H", f.read(2))[0] elif nit == 254: nit = struct.unpack(b"<I", f.read(4))[0] elif nit == 255: nit = struct.unpack(b"<Q", f.read(8))[0] r = [] for i in range(nit): if isinstance(cls, types.FunctionType): t = cls(f) else: if arg1 is not None: t = cls(arg1) else: t = cls() t.deserialize(f) r.append(t) return r def ser_list(l, ser_func=None, cls=None, nType=0, nVersion=cfg.VERSION): s = StringIO() if len(l) < 253: s.write(bchr(len(l))) elif len(l) < 254: s.write(bchr(253) + struct.pack(b"<H", len(l))) elif len(l) < 255: s.write(bchr(254) + struct.pack(b"<I", len(l))) else: s.write(bchr(255) + struct.pack(b"<Q", len(l))) for i in l: if cls is not None: s.write(cls.serialize(i, nType=nType, nVersion=nVersion)) else: s.write(i.serialize(nType=nType, nVersion=nVersion) if ser_func is None else ser_func(i)) return s.getvalue() def deser_uint256_list(f): return deser_list(f, deser_uint256) def ser_uint256_list(l): return ser_list(l, ser_func=ser_uint256) def deser_str_list(f): return deser_list(f, deser_str) def ser_str_list(l): return ser_list(l, ser_func=ser_str) def deser_strpair_list(f): nit = struct.unpack(b"<B", f.read(1))[0] if nit == 253: nit = struct.unpack(b"<H", f.read(2))[0] elif nit == 254: nit = struct.unpack(b"<I", f.read(4))[0] elif nit == 255: nit = struct.unpack(b"<Q", f.read(8))[0] r = [] for i in range(nit): fir = deser_str(f) sec = deser_str(f) r.append((fir, sec)) return r def ser_strpair_list(l): r = b"" if len(l) < 253: r = bchr(len(l)) elif len(l) < 254: r = bchr(253) + struct.pack(b"<H", len(l)) elif len(l) < 255: r = bchr(254) + struct.pack(b"<I", len(l)) else: r = bchr(255) + struct.pack(b"<Q", len(l)) for sv in l: r += ser_str(sv[0]) r += ser_str(sv[1]) return r def deser_int_list(f): return deser_list(f, deser_int) def ser_int_list(l): return ser_list(l, ser_func=ser_int) def deser_str_dict(f): return deser_dict(f, deser_str, deser_str) def ser_str_dict(d): return ser_dict(d, ser_str, ser_str) def deser_dict(f, key_cls, value_cls, arg1=None, arg2=None): nit = struct.unpack(b"<B", f.read(1))[0] if nit == 253: nit = struct.unpack(b"<H", f.read(2))[0] elif nit == 254: nit = struct.unpack(b"<I", f.read(4))[0] elif nit == 255: nit = struct.unpack(b"<Q", f.read(8))[0] r = dict() for i in range(nit): if isinstance(key_cls, types.FunctionType): k = key_cls(f) else: if arg1 is not None: k = key_cls(arg1) else: k = key_cls() k.deserialize(f) if isinstance(value_cls, types.FunctionType): v = value_cls(f) else: if arg2 is not None: v = value_cls(arg2) else: v = value_cls() v.deserialize(f) r[k] = v return r def ser_dict(d, key_ser_fuc=None, value_ser_fuc=None): r = b"" dict_size = len(d) if dict_size < 253: r = bchr(len(d)) elif dict_size < 254: r = bchr(253) + struct.pack(b"<H", dict_size) elif len(d) < 255: r = bchr(254) + struct.pack(b"<I", dict_size) else: r = bchr(255) + struct.pack(b"<Q", dict_size) for k, v in d.items(): r += key_ser_fuc(k) if key_ser_fuc is not None else k.serialize() r += value_ser_fuc(v) if value_ser_fuc is not None else v.serialize() return r class DataType(IntEnum): SER_NETWORK = (1 << 0) SER_DISK = (1 << 1) SER_GETHASH = (1 << 2) # modifiers SER_SKIPSIG = (1 << 16) SER_BLOCKHEADERONLY = (1 << 17) class Stream(object): def write(self, s): pass def read(self, n=-1): pass class Serializable(object): def deserialize(self, f, nType=0, nVersion=cfg.VERSION): raise NotImplementedError("must implement deserialize function") def serialize(self, nType=0, nVersion=cfg.VERSION): raise NotImplementedError("must implement serialize function") def serialize_size(self, nType=0, nVersion=cfg.VERSION): return len(self.serialize(nType, nVersion)) def serialize_hash(s, nType=SerType.SER_GETHASH, nVersion=cfg.VERSION): """ :param s: :type s: Serializable :return: """ return s.serialize(nType, nVersion=nVersion) UCHAR_MAX = 0xff def _get_size_of_compact_size(size): if size < (UCHAR_MAX - 2): return 1 elif size <= 0xffff: return 1 + 2 elif size <= 0xffffffff: return 1 + 4 else: return 1 + 8 # same as serialize.ser_string() def _write_compact_size(stream, size): if size < (UCHAR_MAX - 2): # uchar_max-2 stream.write(struct.pack("<B", size)) # unsigned char elif size <= 0xffff: # ushort_max ch_str = struct.pack("<B", UCHAR_MAX - 2) # unsigned char size_str = struct.pack("<H", size) # unsigned shor stream.write(ch_str) stream.write(size_str) elif size <= 0xffffffff: # uint_max ch_str = struct.pack("<B", UCHAR_MAX - 1) # unsigned char size_str = struct.pack("<I", size) # unsigned int stream.write(ch_str) stream.write(size_str) else: ch_str = struct.pack("<B", UCHAR_MAX) # unsigned char size_str = struct.pack("<Q", size) # unsigned long long stream.write(ch_str) stream.write(size_str) # same as serialize.deser_string() def _read_compact_size(stream): s = stream.read(1) # read 1 byte n = struct.unpack("<B", s)[0] if n < (UCHAR_MAX - 2): return n elif n == UCHAR_MAX - 2: s = stream.read(2) # read 2B return struct.unpack("<H", s)[0] elif n == UCHAR_MAX - 1: s = stream.read(4) # read 4B return struct.unpack("<I", s)[0] else: s = stream.read(8) # read 8B return struct.unpack("<Q", s)[0] def Serialize(stream, obj, in_type=None, nType=0, nVersion=cfg.VERSION): """ :param stream: :type stream: Stream :param obj: :type obj: any :param in_type: :type in_type: str | unicode | tuple :param nType: :param nVersion: :return: """ if in_type is None: in_type = type(obj).__name__ if in_type not in ['str', 'unicode', 'int', 'long', 'tuple', 'list', 'dict', 'set']: in_type = Serializable if isinstance(obj, Serializable) or in_type == 'Serializable': s = obj.serialize(nType=nType, nVersion=nVersion) stream.write(s) elif (isinstance(obj, tuple) or in_type == 'tuple') and len(obj) == 2: Serialize(stream, obj[0], in_type=in_type[0], nType=nType, nVersion=nVersion) Serialize(stream, obj[1], in_type=in_type[1], nType=nType, nVersion=nVersion) elif isinstance(obj, (list, set)) or in_type == 'list' or in_type == 'set': _write_compact_size(stream, len(obj)) for i in obj: stream.write(Serialize(stream, i, in_type=in_type, nType=nType, nVersion=nVersion)) elif isinstance(obj, dict) or in_type == 'dict': _write_compact_size(stream, len(obj)) for k, v in obj.items(): stream.write(Serialize(stream, k, in_type=in_type[0], nType=nType, nVersion=nVersion)) stream.write(Serialize(stream, v, in_type=in_type[1], nType=nType, nVersion=nVersion)) elif in_type == 'str': _write_compact_size(stream, len(obj)) stream.write(obj) elif in_type == 'char': stream.write(ser_char(obj)) elif in_type == 'uchar': stream.write(ser_uchar(obj)) elif in_type == 'short': stream.write(ser_short(obj)) elif in_type == 'ushort': stream.write(ser_ushort(obj)) elif in_type == 'int': stream.write(ser_int(obj)) elif in_type == 'uint': stream.write(ser_uint(obj)) elif in_type == 'int64': stream.write(ser_int64(obj)) elif in_type == 'uint64': stream.write(ser_uint64(obj)) elif in_type == 'uint160': stream.write(ser_uint160(obj)) elif in_type == 'uint256': stream.write(ser_uint256(obj)) else: raise TypeError("Unsupported type") def Unserialize(f, out_type='str', cls=None, nType=0, nVersion=cfg.VERSION): """ :param f: :type f: Stream :param out_type: :type out_type: str | unicode | None :param cls: :type cls: type | tuple | None :param nType: :param nVersion: :return: """ if out_type == "str" and cls is not None: out_type = None if (out_type == 'Serializable' or out_type is None) and \ (cls is not None and inspect.isclass(cls) and issubclass(cls, Serializable)): ins = cls() # new the instance ins.deserialize(f, nType, nVersion) return ins elif out_type == 'tuple': if not isinstance(cls, tuple) or len(cls) != 2: raise TypeError("when out_type is tuple, the cls must be the tuple like ((info1,cls1), (info2,cls2))") if type(cls[0]) is tuple: fir = Unserialize(f, cls[0][0], cls[0][1], nType=nType, nVersion=nVersion) else: if isinstance(cls[0], (str, unicode)): fir = Unserialize(f, cls[0], None, nType=nType, nVersion=nVersion) elif inspect.isclass(cls) and issubclass(cls, Serializable): fir = Unserialize(f, None, cls[0], nType=nType, nVersion=nVersion) else: raise TypeError( "when out_type is 'tuple', the cls must be (ele_type, ele_class) or ele_type or Serializable class") if type(cls[1]) is tuple: sec = Unserialize(f, cls[1][0], cls[1][1], nType=nType, nVersion=nVersion) else: if isinstance(cls[1], (str, unicode)): sec = Unserialize(f, cls[1], None, nType=nType, nVersion=nVersion) elif inspect.isclass(cls) and issubclass(cls, Serializable): sec = Unserialize(f, None, cls[1], nType=nType, nVersion=nVersion) else: raise TypeError( "when out_type is 'tuple', the cls must be ('type', Serializable) or 'type' or Serializable") return fir, sec elif out_type == 'list' or out_type == 'set': size = _read_compact_size(f) if isinstance(cls, tuple) and len(cls) == 2: ret = [Unserialize(f, out_type=cls[0], cls=cls[1], nType=nType, nVersion=nVersion) for _ in range(size)] elif isinstance(cls, (str, unicode)): ret = [Unserialize(f, out_type=cls, cls=None, nType=nType, nVersion=nVersion) for _ in range(size)] elif inspect.isclass(cls) and issubclass(cls, Serializable): ret = [Unserialize(f, out_type=None, cls=cls, nType=nType, nVersion=nVersion) for _ in range(size)] else: raise TypeError( "when out_type is 'list' or 'set', the cls must be ('type', Serializable) 'type' or Serializable") return ret if out_type == 'list' else set(ret) elif out_type == 'dict': if not isinstance(cls, tuple) or len(cls) != 2: raise TypeError( "when out_type is tuple, the cls must be the tuple like ((key_info,key_cls), (value_info,value_cls))") size = _read_compact_size(f) r = dict() for _ in range(size): if type(cls[0]) is type: k = Unserialize(f, cls[0][0], cls[0][1], nType=nType, nVersion=nVersion) else: if isinstance(cls[0], (str, unicode)): k = Unserialize(f, cls[0], None, nType=nType, nVersion=nVersion) elif inspect.isclass(cls) and issubclass(cls, Serializable): k = Unserialize(f, None, cls[0], nType=nType, nVersion=nVersion) else: raise TypeError( "when out_type is 'dict', the cls must be ('key_type', Serializable) 'key_type' or Serializable") if type(cls[1]) is type: v = Unserialize(f, cls[1][0], cls[1][1], nType=nType, nVersion=nVersion) else: if isinstance(cls[1], (str, unicode)): v = Unserialize(f, cls[1], None, nType=nType, nVersion=nVersion) elif inspect.isclass(cls) and issubclass(cls, Serializable): v = Unserialize(f, None, cls[1], nType=nType, nVersion=nVersion) else: raise TypeError( "when out_type is 'dict', the cls must be ('key_type', Serializable) 'key_type' or Serializable") r[k] = v return r elif out_type == 'str': size = _read_compact_size(f) return f.read(size) elif out_type == 'char': return deser_char(f) elif out_type == 'uchar': return deser_uchar(f) elif out_type == 'short': return deser_short(f) elif out_type == 'ushort': return deser_ushort(f) elif out_type == 'int': return deser_int(f) elif out_type == 'uint': return deser_uint(f) elif out_type == 'int64': return deser_int64(f) elif out_type == 'uint64': return deser_uint64(f) elif out_type == 'uint160': return deser_uint160(f) elif out_type == 'uint256': return deser_uint256(f) else: raise TypeError("Unsupported type") def GetSerializeSize(s): return _get_size_of_compact_size(len(s)) + len(s) def GetSizeOfCompactSize(size): return _get_size_of_compact_size(size) class PyFlatData(Serializable): def __init__(self, data, size=-1): self.__data = data if size == -1: self.__size = len(self.__data) else: self.__size = size def serialize(self, nType=0, nVersion=cfg.VERSION): return self.__data pass def deserialize(self, f, nType=0, nVersion=cfg.VERSION): if self.__size == -1: raise RuntimeError("FlatData must init with size") self.__data = f.read(self.__size) return self.__data def serialize_size(self, nType=0, nVersion=cfg.VERSION): return self.__size pass class PyDataStream(StringIO, Stream, Serializable): def __init__(self, s=b'', nType=0, nVersion=cfg.VERSION): super(PyDataStream, self).__init__(s) self.nType = nType self.nVersion = nVersion pass def __add__(self, other): s = self.getvalue() pos = self.tell() s += other.unread_str() self.buf = s self.len = len(self.buf) self.seek(pos) return self def __str__(self): return self.getvalue()[self.pos:] def __len__(self): return len(self.getvalue()) - self.pos def __getitem__(self, n): pos = self.tell() s = self.getvalue() if isinstance(n, slice): fir = pos + (n.start if n.start else 0) sec = pos + (n.stop if n.stop else len(self)) if n.step is not None: raise NotImplementedError("not impl for step") return s[fir:sec] elif isinstance(n, (int, long)): if pos + n > len(s): return "" return s[pos + n] else: raise NotImplementedError("just impl for slice and int/long") def deserialize(self, f, nType=0, nVersion=cfg.VERSION): print "Warning! Can't use this function" pass def serialize(self, nType=0, nVersion=cfg.VERSION): # Special case: stream << stream concatenates like stream += stream return str(self) def copy(self): return deepcopy(self) def begin_index(self): return self.tell() # pos def end_index(self): return len(self.getvalue()) def write(self, s): pos = self.tell() self.seek(len(self.getvalue())) super(PyDataStream, self).write(s) self.seek(pos) def raw_write(self, s, pos): old_pos = self.tell() self.seek(old_pos + pos) super(PyDataStream, self).write(s) self.seek(old_pos) def raw_read(self, fir, size): old_pos = self.tell() fir += old_pos return self.getvalue()[fir:fir + size] def raw_read_buf(self, fir, size): return self.getvalue()[fir:fir + size] def unread_str(self): return self.getvalue()[self.tell():] def insert(self, index, b): self.flush() s = self.getvalue() pos = self.tell() if index >= pos: s = s[:index] + b + s[index:] self.buf = s self.len = len(self.buf) self.seek(pos) def erase(self, first, last=-1): if last == -1: last = self.end_index() if last < first: last = first s = self.getvalue() if first == self.tell(): # special case for erasing from the front if last == len(s): self.seek(0) self.buf = '' self.len = 0 else: self.seek(last) else: self.buf = s[:first] + s[last:] self.len = len(self.buf) # if last == -1: # last = first + 1 # assert first <= last, "last index must larger than first index" # if first == last: # return # s = self.getvalue() # pos = self.tell() # if last < pos: # return # elif first < pos <= last: # first = pos # elif pos <= first: # pos = first # pass # s = s[:first] + s[last:] # self.buf = s # self.len = len(self.buf) # self.seek(pos) def ignore(self, size): if size < 0: return read_pos_next = self.tell() + size buff_str = self.getvalue() buff_str_size = len(buff_str) if read_pos_next >= buff_str_size: self.clear() return self self.seek(read_pos_next) return self def compact(self): pos = self.tell() self.buf = self.getvalue()[pos:] self.len = len(self.buf) self.seek(0) def clear(self): self.getvalue() self.seek(0) self.buf = '' self.len = 0 def stream_in(self, obj, in_type=None): Serialize(self, obj, in_type, nType=self.nType, nVersion=self.nVersion) return self def stream_out(self, out_type="str", cls=None): return Unserialize(self, out_type, cls, nType=self.nType, nVersion=self.nVersion) pass def main(): print(hexser_uint256(0xfffffffffffff)) # class SerType(IntEnum): # # primary actions # SER_NETWORK = (1 << 0) # SER_DISK = (1 << 1) # SER_GETHASH = (1 << 2) # # # modifiers # SER_SKIPSIG = (1 << 16) # SER_BLOCKHEADERONLY = (1 << 17) # # def __or__(self, other): # ret = self.value | other.value # return self._reflect(ret) # # def _reflect(self, value): # d = dict(zip(SerType.__dict__.values(), SerType.__dict__.keys())) # return getattr(SerType, d[value]) r = SerType.SER_DISK | SerType.SER_GETHASH print(type(r)) s = PyDataStream() s2 = s.copy() s.stream_in(1, in_type='int').stream_in(100, in_type='uint256') print(s.stream_out(out_type='int')) # print(s.stream_out(out_type='uint256')) s2.stream_in([1, 2, 3], in_type="int") s3 = s2.copy() print(repr(str(s))) print(s.tell()) print(repr(str(s2))) s2.stream_out(out_type="list", cls=b"int") print(s2.tell()) print(repr(str(s3))) print(s3.tell()) # print(repr(s.stream_out(out_type="list", cls=b"int"))) print(repr(ser_uint64(0))) s = PyDataStream('12345678123456') s.read(3) s.read(1) s.write("123") # s.erase(10) # s.erase(5) print s[:] pass if __name__ == "__main__": main()
JKingdom/KingCoin
app/base/serialize.py
Python
gpl-3.0
24,827
#!/bin/env python2.7 # -*- coding: utf-8 -*- # This file is part of EPlatform. # # EPlatform is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # EPlatform is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EPlatform. If not, see <http://www.gnu.org/licenses/>. import wxversion wxversion.select('2.8') import glob, os, time import time from random import shuffle import wx import wx.lib.buttons as bt from pymouse import PyMouse import Tkinter import numpy as np import subprocess as sp import shlex import pygame from pygame import mixer import check #"nazwij obrazek" class cwiczenia(wx.Frame): def __init__(self, parent, id): wx.Frame.__init__( self , parent , id , 'EMatch') self.Maximize( True ) self.winWidth, self.winHeight = wx.DisplaySize( ) self.parent=parent style = self.GetWindowStyle() self.SetWindowStyle( style | wx.STAY_ON_TOP ) self.initializeParameters() self.createGui() self.initializeTimer() self.Bind( wx.EVT_CLOSE , self.OnExit ) def initializeParameters(self): self.pathToEPlatform = './' with open( self.pathToEPlatform + 'parameters', 'r' ) as parametersFile: for line in parametersFile: if line[ :line.find('=')-1 ] == 'timeGap': self.timeGap = int( line[ line.rfind('=')+2:-1 ] ) elif line[ :line.find('=')-1 ] == 'backgroundColour': self.backgroundColour = line[ line.rfind('=')+2:-1 ] elif line[ :line.find('=')-1 ] == 'textColour': self.textColour = line[ line.rfind('=')+2:-1 ] elif line[ :line.find('=')-1 ] == 'scanningColour': self.scanningColour = line[ line.rfind('=')+2:-1 ] elif line[ :line.find('=')-1 ] == 'selectionColour': self.selectionColour = line[ line.rfind('=')+2:-1 ] elif line[ :line.find('=')-1 ] == 'musicVolume': pass elif line[ :line.find('=')-1 ] == 'filmVolume': pass elif not line.isspace( ): print '\nNiewłaściwie opisany parametr. Błąd w linii:\n%s' % line self.timeGap = 1500 self.backgroundColour = 'white' self.textColour = 'black' self.scanningColour = '#E7FAFD' self.selectionColour = '#9EE4EF' with open( self.pathToEPlatform + 'parametersCW', 'r' ) as parametersFile: for line in parametersFile: if line[ :line.find('=')-1 ] == 'textSize': self.textSize = int( line[ line.rfind('=')+2:-1 ]) elif line[ :line.find('=')-1 ] == 'checkTime': pass elif line[ :line.find('=')-1 ] == 'colorGrat': pass elif line[ :line.find('=')-1 ] == 'maxPoints': self.maxPoints = int(line[ line.rfind('=')+2:-1 ]) elif line[ :line.find('=')-1 ] == 'colorNiest': pass elif line[ :line.find('=')-1 ] == 'ileLuk': pass elif not line.isspace( ): print 'Niewłaściwie opisane parametry' print 'Błąd w linii', line self.textSize=80 sel.maxPoints=2 self.flaga=0 self.PicNr=0 self.result=0 self.mouseCursor = PyMouse( ) self.WordsList=os.listdir(self.pathToEPlatform+'multimedia/pictures') shuffle(self.WordsList) self.poczatek=True self.numberOfPresses = 1 self.czyBack=False mixer.init() self.numberOfExtraWords= 4 #self.ktorySizer='wyrazy' def initializeTimer(self): id1=wx.NewId() wx.RegisterId(id1) self.stoper = wx.Timer(self,id1) self.Bind( wx.EVT_TIMER, self.timerUpdate, self.stoper,id1 ) #self.id2=wx.NewId() #wx.RegisterId(self.id2) #self.stoper2 = wx.Timer( self ,self.id2) self.id3=wx.NewId() wx.RegisterId(self.id3) self.stoper3 = wx.Timer( self ,self.id3) self.id4=wx.NewId() wx.RegisterId(self.id4) self.stoper4=wx.Timer(self,self.id4) self.Bind(wx.EVT_TIMER, self.pomocniczyStoper, self.stoper4,self.id4 ) self.stoper.Start( self.timeGap ) def timerUpdate(self,event): self.mouseCursor.move( self.winWidth - 12, self.winHeight - 12 ) self.numberOfPresses = 0 '''for i in range(5): item = self.subSizer.GetChildren() b=item[i].GetWindow() b.SetBackgroundColour( self.backgroundColour ) b.SetFocus() for i in range(self.numberOfExtraWords+1): item = self.wordSizer.GetChildren() b=item[i].GetWindow() b.SetBackgroundColour( self.backgroundColour ) b.SetFocus()''' if self.flaga<= self.numberOfExtraWords+1 and self.flaga>0: item = self.wordSizer.GetChildren() b = item[self.flaga-1].GetWindow() b.SetBackgroundColour( self.backgroundColour ) b.SetFocus() else: if self.flaga==0: item = self.subSizer.GetChildren() b=item[len(item)-1].GetWindow() b.SetBackgroundColour( self.backgroundColour ) b.SetFocus() else: item = self.subSizer.GetChildren() b=item[self.flaga-self.numberOfExtraWords -2].GetWindow() b.SetBackgroundColour( self.backgroundColour ) b.SetFocus() if self.poczatek: time.sleep(1) self.stoper.Stop() mixer.music.load(self.pathToEPlatform+'multimedia/voices/'+str(self.word)+'.ogg') mixer.music.play() time.sleep(2) self.stoper.Start(self.timeGap) self.poczatek=False if self.flaga >= self.numberOfExtraWords+1: item = self.subSizer.GetChildren() b=item[self.flaga-self.numberOfExtraWords -1].GetWindow() b.SetBackgroundColour( self.scanningColour ) b.SetFocus() else: item = self.wordSizer.GetChildren() b = item[self.flaga].GetWindow() b.SetBackgroundColour( self.scanningColour ) b.SetFocus() if self.flaga== 4 +self.numberOfExtraWords+1: self.flaga=0 else: self.flaga+=1 def createGui(self): if self.PicNr ==len(self.WordsList): self.PicNr=0 self.picture=self.WordsList[self.PicNr] self.PicNr+=1 self.path=self.pathToEPlatform+'multimedia/pictures/' im=wx.ImageFromStream( open(self.path+self.picture, "rb")) x=im.GetWidth() y=im.GetHeight() if x >y: im=im.Scale(600,500) elif x==y: im=im.Scale(600,600) else: im=im.Scale(500,600) picture=wx.BitmapFromImage(im) self.word=self.picture[:self.picture.index('.')] self.extraWords=[] #wybiera dodatkowe slowa while len(self.extraWords)<self.numberOfExtraWords: slowo=self.WordsList[np.random.randint(0,len(self.WordsList),1)[0]] slowo=slowo[:slowo.index('.')] if slowo not in self.extraWords and slowo!= self.word: self.extraWords.append(slowo) b = bt.GenBitmapButton( self, -1, bitmap=picture,name='picture') #zdjecie b.SetBackgroundColour( self.backgroundColour) b.Bind( wx.EVT_LEFT_DOWN, self.onPress ) obiekty_wyrazow=[] #wyrazy self.wyrazy_w_kolejnosci=[] gdzie_poprawne=np.random.randint(0,self.numberOfExtraWords,1)[0] for i,j in enumerate(self.extraWords): be = bt.GenButton( self, -1, j) be.SetFont( wx.Font(50, wx.FONTFAMILY_ROMAN, wx.FONTWEIGHT_LIGHT, False) ) be.SetBackgroundColour( self.backgroundColour) be.Bind( wx.EVT_LEFT_DOWN, self.onPress ) obiekty_wyrazow.append(be) self.wyrazy_w_kolejnosci.append(j) be = bt.GenButton( self, -1, self.word) be.SetFont( wx.Font(50, wx.FONTFAMILY_ROMAN, wx.FONTWEIGHT_LIGHT, False) ) be.SetBackgroundColour( self.backgroundColour) be.Bind( wx.EVT_LEFT_DOWN, self.onPress ) obiekty_wyrazow.insert(gdzie_poprawne,be) self.wyrazy_w_kolejnosci.insert(gdzie_poprawne,self.word) #punkty res = bt.GenButton( self, -1, u'twój wynik: '+str(self.result)+' / '+str(self.maxPoints)) res.SetFont( wx.Font(27, wx.FONTFAMILY_ROMAN, wx.FONTWEIGHT_LIGHT, False) ) res.SetBackgroundColour( self.backgroundColour) res.Bind( wx.EVT_LEFT_DOWN, self.onPress ) self.wordSizer=wx.BoxSizer( wx.VERTICAL ) for i in obiekty_wyrazow: self.wordSizer.Add( i, proportion=1, flag=wx.EXPAND ) try: self.subSizerP.Hide(0) self.subSizerP.Remove(0) self.subSizerP.Add( res, 0,wx.EXPAND) #dodanie wyniku self.subSizer0.Hide(0) self.subSizer0.Remove(0) self.subSizer0.Hide(0) self.subSizer0.Remove(0) self.subSizer0.Add( self.wordSizer, 0,wx.EXPAND ) #tutaj trzeba dodac caly zagniezdzony subsizer ze slowami self.subSizer0.Add( b, 0,wx.EXPAND) #dodanie zdjecia except AttributeError: if self.czyBack: self.czyBack=False self.SetBackgroundColour((220, 220, 220, 255)) else: self. mainSizer = wx.BoxSizer( wx.VERTICAL ) self.subSizerP=wx.GridSizer(1,1,3,3) self.subSizer0 = wx.GridSizer(1,2,3,3) self.subSizer=wx.GridSizer(1,5,3,3) self.subSizerP.Add(res,0,wx.EXPAND) self.subSizer0.Add( self.wordSizer, 0,wx.EXPAND ) self.subSizer0.Add( b, 0,wx.EXPAND ) self.icons=sorted(os.listdir(self.pathToEPlatform+'multimedia/icons')) self.path=self.pathToEPlatform+'multimedia/icons/' for idx,icon in enumerate(self.icons): if icon[0].isdigit(): i=wx.BitmapFromImage( wx.ImageFromStream( open(self.path+icon, "rb"))) b = bt.GenBitmapButton( self, -1, bitmap=i) b.SetBackgroundColour( self.backgroundColour) b.Bind( wx.EVT_LEFT_DOWN, self.onPress ) self.subSizer.Add( b, 0,wx.EXPAND ) self. mainSizer.Add( self.subSizerP, proportion=1, flag=wx.EXPAND ) self. mainSizer.Add( self.subSizer0, proportion=7, flag=wx.EXPAND ) self. mainSizer.Add( self.subSizer, proportion=2, flag=wx.EXPAND ) self.SetSizer( self. mainSizer,deleteOld=True ) self.Layout() self.Refresh() self.Center() self.MakeModal(True) self.flaga=0 self.poczatek=True def OnExit(self,event): if self.parent: self.parent.MakeModal(True) self.parent.Show() self.parent.stoper.Start(self.parent.timeGap) else: pass self.MakeModal(False) self.Destroy() def onPress(self,event): self.numberOfPresses += 1 if self.numberOfPresses == 1: if self.flaga==0 : items = self.subSizer.GetChildren() item=items[ 4] else: if self.flaga >= self.numberOfExtraWords+2: items = self.subSizer.GetChildren() item=items[ self.flaga-self.numberOfExtraWords -2] else: items = self.wordSizer.GetChildren() item=items[ self.flaga -1 ] b = item.GetWindow() b.SetBackgroundColour( self.selectionColour ) b.SetFocus() b.Update() if 'speller' in self.icons[self.flaga-self.numberOfExtraWords -2] and self.flaga>=self.numberOfExtraWords+2: pass #self.stoper.Stop() #self.mainSizer.Clear(deleteWindows=True) #self.spellerW = spellerMistake.speller( self) #self.Bind( wx.EVT_TIMER, self.spellerW.timerUpdate, self.stoper2,self.id2 ) #self.stoper2.Start( self.spellerW.timeGap ) elif self.flaga == 0: #cancel or self.flaga==0: if __name__ == '__main__': self.stoper.Stop( ) self.Destroy( ) else: self.stoper.Stop( ) self.MakeModal( False ) self.parent.Show( True ) self.parent.stoper.Start( self.parent.timeGap ) self.Destroy( ) elif 'speak' in self.icons[self.flaga-self.numberOfExtraWords -2] and self.flaga>=self.numberOfExtraWords+2: time.sleep(1) self.stoper.Stop() mixer.music.load(self.pathToEPlatform+'multimedia/voices/'+str(self.word)+'.ogg') mixer.music.play() self.stoper4.Start(2000) elif 'literuj' in self.icons[self.flaga-self.numberOfExtraWords -2]and self.flaga>=self.numberOfExtraWords+2 : self.stoper.Stop() if str(self.word)+'.ogg' not in os.listdir(self.pathToEPlatform+'multimedia/spelling/'): command='sox -m '+self.pathToEPlatform+'sounds/phone/'+list(self.word)[0].swapcase()+'.wav' ile=0 for l in list(self.word)[1:]: ile+=2 command+=' "|sox '+self.pathToEPlatform+'sounds/phone/'+l.swapcase()+'.wav'+' -p pad '+str(ile)+'"' command+=' '+self.pathToEPlatform+'multimedia/spelling/'+self.word+'.ogg' wykonaj=sp.Popen(shlex.split(command)) time.sleep(1.5) do_literowania=mixer.Sound(self.pathToEPlatform+'multimedia/spelling/'+self.word+'.ogg') do_literowania.play() self.stoper4.Start((do_literowania.get_length()+0.5 )* 1000) elif 'undo' in self.icons[self.flaga-self.numberOfExtraWords -2]and self.flaga>=self.numberOfExtraWords+2 : self.stoper.Stop() self.createGui() self.stoper.Start(self.timeGap) else: if self.wyrazy_w_kolejnosci[self.flaga-1] ==self.word: self.ownWord=self.word else: self.ownWord='' #self.MakeModal(False) #self.Hide() self.stoper.Stop() self.check() else: event.Skip( ) def pomocniczyStoper(self,event): self.stoper4.Stop() self.stoper.Start( self.timeGap ) def check(self): self.mainSizer.Clear(deleteWindows=True) self.checkW=check.check( self ) self.Bind( wx.EVT_TIMER, self.checkW.zamknij, self.stoper3,self.id3 ) def back(self): self.czyBack=True del self.checkW self.mainSizer.Clear(deleteWindows=True) self.createGui() self.stoper.Start(self.timeGap) if __name__ == '__main__': app = wx.PySimpleApp() frame = cwiczenia(parent = None, id = -1) frame.Show() app.MainLoop()
bjura/EPlatform
EMatch.py
Python
gpl-3.0
18,227
# -*- coding: utf-8 -*- """ by LW 03/20/2015 some wrapper functions for ophyd """ import Tkinter, tkFileDialog def det_select(det): """ by LW 03/20/2015 function to select detector for scanning and ct removes all existing detectors from ophyd function ascan.user_detectors and replaces them with the list of names passed in this function ONLY FOR SINGLE STRINGS (not lists) SO FAR! Only works if there is one default detector/trigger to start with => needs some work in the future calling sequence: det_select(det) """ try: rm_det=ascan.user_detectors[0].name ascan.user_detectors.remove(session_mgr[rm_det]) ascan.default_triggers = [] ascan.default_detectors = [] print 'removed previous default detector: ',rm_det except: print 'list of detectors appeared to be empty...' ascan.user_detectors.append(det) # add detector new_def_det=ascan.user_detectors[0].name print '' print 'new default detector: ',new_def_det def cw_ascan(mot,xmin,xmax,npoints,acqt='default',pos_ret=True): """ by LW 03/21/2015 wrapper function for ophyd's acan added functionality: - default option: returns scanned axis back to the position where it was prior to starting the scan - option to change acquition times on detectors (default: use current setting from corresponding css screen) - stop camera and set image mode to single - after the scan: restarts camera and set image mode to where it was prior to starting the scan calling sequence: cw_ascan(det,xmin,xmax,npoints,acqt='default',pos_ret=True) WILL NOT WORK FOR A LIST OF DETECTORS! """ # gather beamline information prior to starting the scan: ini_motpos=caget(mot.record+'.RBV') # current detector: acq_pv=session_mgr[ascan.user_detectors[0].name].pvname # set different exposure time for the scan, if requested: if acqt!='default': try: ini_expt=caget(acq_pv[2]) # initial exposure time session_mgr[ascan.user_detectors[0].name].acquire_time = acqt print 'successfully set exposure time to [s]: ',acqt except: print 'could not set exposure time to ',acqt # execute the scan ascan(mot,xmin,xmax,npoints) # put beamline back into initial state if pos_ret==True: caput(mot.record+'.VAL',ini_motpos) print 'returned axes to: ',ini_motpos if acqt!='default': try: session_mgr[ascan.user_detectors[0].name].acquire_time = ini_expt print 'successfully reset exposure time to [s]: ',ini_expt except: print 'could not reset exposure time to ',ini_expt def cw_dscan(mot,mdx,pdx,npoints,acqt='default',pos_ret=True): """ by LW 03/21/2015 wrapper function for ophyd's ascan added functionality: - option to change acquition times on detectors (default: use current setting from corresponding css screen) calling sequence: cw_dscan(det,mdx,pdx,npoints,acqt='default',pos_ret=True) WILL NOT WORK FOR A LIST OF DETECTORS! """ # current detector: acq_pv=session_mgr[ascan.user_detectors[0].name].pvname # set different exposure time for the scan, if requested: if acqt!='default': try: ini_expt=caget(acq_pv[2]) # initial exposure time session_mgr[ascan.user_detectors[0].name].acquire_time = acqt print 'successfully set exposure time to [s]: ',acqt except: print 'could not set exposure time to ',acqt # execute the scan dscan(mot,mdx,pdx,npoints) #print 'finished scan' if acqt!='default': try: session_mgr[ascan.user_detectors[0].name].acquire_time = ini_expt print 'successfully reset exposure time to [s]: ',ini_expt except: print 'could not reset exposure time to ',ini_expt def cw_CCDseries(folder,filename,detector,imnum='default',startn=1,acqt='default',acqperiod='default'): """ by LW 04/06/2015 wrapper function to take a time series with a CCD detector functionalities: - select/create folder via GUI (name for new folder in the GUI, new folder will be created) - select CCD - gather current CCD acquisition parameters and restore these after the timeseries - select acquisition time and acquiering period ('default': use current parameters from area detector - switch autosave on before the series and off when done - select start number for image series !!if file existed already, it will be overwritten !! - currently saving .tiff as default calling sequence: cw_CCDseries(folder,filename,detector,imnum='default',startn=1,acqt='default',acqperiod='default') """ import time import Tkinter, tkFileDialog import os, stat, sys # get the detector name:: detector.pvname.split('}')[0]+'}' #get folder interactively: if folder == 'ia': root=Tkinter.Tk() root.withdraw() directory=tkFileDialog.askdirectory() folder=directory # check whether target directory exists and create it, if it doesn't if not os.path.exists(folder): os.mkdir(folder) os.chmod(folder,436) #make sure everybody can read an write os.chmod(folder,stat.S_IRWXO) print 'successfully created new directory: ',folder # put folder: r=caput(detector.pvname.split('}')[0]+'}TIFF1:FilePath', folder) # have some problem with syntax here... if r==1: print 'changed saving directory to: ',folder else: print 'error: could not change directory for saving data files.' # put the filename: r=caput(detector.pvname.split('}')[0]+'}TIFF1:FileName', filename) # have some problem with syntax here... if r==1: print 'filename for saving: ',filename else: print 'error: could not change file name for saving.' # put start number caput(detector.pvname.split('}')[0]+'}TIFF1:FileNumber',startn) #gather information about current camera settings acq_pv=session_mgr[ascan.user_detectors[0].name].pvname ini_acq=caget(acq_pv.split('}')[0]+'}cam1:Acquire') # initial state: started or stopped ini_mode=caget(acq_pv.split('}')[0]+'}cam1:ImageMode') # initial image mode: single [0], multiple [1], continous [2] ini_expt=caget(acq_pv.split('}')[0]+'}cam1:AcquireTime') # initial exposure time ini_acqperiod=caget(acq_pv.split('}')[0]+'}cam1:AcquirePeriod') # initial acquiring period ini_imnum=caget(acq_pv.split('}')[0]+'}cam1:NumImages') # initial image number if acqt!='default': try: caput(acq_pv.split('}')[0]+'}cam1:AcquireTime',acqt) print 'successfully set exposure time to [s]: ',acqt except: print 'could not set exposure time to ',acqt # stop camara: try: caput(acq_pv.split('}')[0]+'}cam1:Acquire',0) print 'successfully stopped camera' except: print 'could not stop camera' # try to set image mode to multiple try: caput(acq_pv.split('}')[0]+'}cam1:ImageMode',1) print 'successfully set ImageMode to "multiple"' except: print 'could not set ImageMode to "multiple"' if acqperiod!='default': try: caput(acq_pv.split('}')[0]+'}cam1:AcquirePeriod',acqperiod) print 'successfully set acquiering period to: ',acqperiod except: print 'could not set aquireing period to ',acqperiod # set number of images to be taken: if imnum!='default': try: caput(acq_pv.split('}')[0]+'}cam1:NumImages',imnum) print 'successfully set number of images to: ',imnum except: print 'could not set number of images to ',imnum print 'going to start the acquisition...' time.sleep(1) # start the acquisition!!! caput(acq_pv.split('}')[0]+'}cam1:ArrayCounter',0)#set Images acquired (image counter) to 0 caput(detector.pvname.split('}')[0]+'}TIFF1:AutoSave',1) # start auto save caput(acq_pv.split('}')[0]+'}cam1:Acquire',1) # start series acquisition counting=0 current_file=caget(detector.pvname.split('}')[0]+'}TIFF1:FullFileName_RBV',as_string=True) while counting==0: time.sleep(.5) if caget(acq_pv.split('}')[0]+'}cam1:ArrayCounter_RBV')==imnum: counting=1 if caget(detector.pvname.split('}')[0]+'}TIFF1:FullFileName_RBV',as_string=True)!=current_file: current_file=caget(detector.pvname.split('}')[0]+'}TIFF1:FullFileName_RBV',as_string=True) print 'file written: ',current_file time.sleep(.1) print 'going to stop the acquisition...' time.sleep(.5) caput(acq_pv.split('}')[0]+'}cam1:Acquire',0) # stop series acquisition (redundent...should have stopped already caput(detector.pvname.split('}')[0]+'}TIFF1:AutoSave',0) # stop auto save print 'going to reset camera...' #time.sleep(5) # put camera back into initial state: if acqt!='default': try: caput(acq_pv.split('}')[0]+'}cam1:AcquireTime',ini_expt) print 'successfully reset exposure time to [s]: ',ini_expt except: print 'could not reset exposure time to ',ini_expt try: caput(acq_pv.split('}')[0]+'}cam1:ImageMode',ini_mode) print 'successfully reset ImageMode' except: print 'could not reset ImageMode' try: caput(acq_pv.split('}')[0]+'}cam1:Acquire',ini_acq) print 'successfully reset camera acqusition mode' except: print 'could not reset camera acquisition mode' if acqperiod!='default': try: caput(acq_pv.split('}')[0]+'}cam1:AcquirePeriod',ini_acqperiod) print 'successfully reset acquisition period to [s]: ',ini_acqperiod except: print 'could not reset acquisition period to ',ini_acqperiod if imnum!='default': try: caput(acq_pv.split('}')[0]+'}cam1:NumImages',ini_imnum) print 'successfully reset image numbers to: ',ini_imnum except: print 'could not reset image numbers to ',ini_imnum time.sleep(.5) try: caput(acq_pv.split('}')[0]+'}cam1:Acquire',ini_acq) # restart camera if it was running before taking the series print 'restarted camera' except: print 'could not restart camera...'
sameera2004/chxtools
chxtools/chx_wrapper.py
Python
bsd-3-clause
10,326
#!/usr/bin/env python3 # Copyright (C) 2016 Kaspar Schleiser <[email protected]> # Copyright (C) 2017 HAW Hamburg # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. import os import sys def testfunc(child): child.expect(r"MAIN: reply from T-\d+") child.expect(r"MAIN: \d+! = \d+") child.expect_exact("[SUCCESS]") if __name__ == "__main__": sys.path.append(os.path.join(os.environ['RIOTTOOLS'], 'testrunner')) from testrunner import run sys.exit(run(testfunc))
MichelRottleuthner/RIOT
tests/thread_cooperation/tests/01-run.py
Python
lgpl-2.1
611
import numpy, pylab D2S = 86400 PROT_SUN = 27.0 OMEGA_SUN = 2 * numpy.pi / (27.0 * D2S) root = '/Users/aigrain/Data/Kepler/diffrot/' X = numpy.genfromtxt('%snoise_free/regions_par.txt' % root).T lmin = X[4] lmax = X[5] nsim = len(lmin) incl = numpy.arcsin(numpy.sqrt(numpy.random.uniform(0, 1, nsim))) n1 = nsim/10 n2 = nsim-n1 period_eq = 10.0**(numpy.append(numpy.random.uniform(0, 1, n1), \ numpy.random.uniform(1, 1.7, n2))) numpy.random.shuffle(period_eq) # in days omega_eq_solar = PROT_SUN / period_eq # relative to solar rotation rate n1 = nsim/3 n2 = nsim-n1 delta_per_rel = numpy.append(10.0**(numpy.random.uniform(-1, 0, n2)), \ numpy.zeros(n1)) numpy.random.shuffle(delta_per_rel) # relative period_pole = period_eq * (1 + delta_per_rel) delta_omega_solar = delta_per_rel * omega_eq_solar # relative to solar rotation rate omega_eq = omega_eq_solar * OMEGA_SUN # in radians delta_omega = delta_omega_solar * OMEGA_SUN # in radians omega_pole = omega_eq - delta_omega # in radians period_eq_2 = 2 * numpy.pi / omega_eq / D2S # in days period_pole_2 = 2 * numpy.pi / omega_pole / D2S # in days x = period_pole_2 y = period_eq / (1 - period_eq * delta_per_rel / PROT_SUN) pylab.clf() pylab.plot(x, y, 'k.') pylab.plot([0,200],[0,200]) pylab.xlim(0,200) pylab.ylim(0,200) for i in numpy.arange(nsim): print 'Saved in output file:' print 'Period_eq: ', period_eq[i] print 'Period_pole: ', period_pole[i] print 'Differential rotation in terms of relative period' print 'Delta_per_rel: ', delta_per_rel[i] print 'Rotation rate in solar units' print 'Omega_eq_solar: ', omega_eq_solar[i] print 'Delta_omega_solar: ', delta_omega_solar[i] print 'Rotation rate in radians' print 'Omega_eq: ', omega_eq[i] print 'Delta_omega: ', delta_omega[i] print 'Omega_pole: ', omega_pole[i] print 'Computed from Omega_eq and Omega_pole' print 'Period_eq: ', period_eq_2[i] print 'Period_pole: ', period_pole_2[i] print '' raw_input('Next?')
RuthAngus/LSST-max
code/soft/simlc_check.py
Python
mit
2,065
#!/usr/bin/env python """ Network (C) 2008 Michael 'Mickey' Lauer <[email protected]> (C) 2008 Openmoko, Inc. GPLv2 or later Package: onetworkd Module: network """ MODULE_NAME = "onetworkd" __version__ = "0.0.1" import gobject import os import socket import fcntl import struct import logging logger = logging.getLogger( MODULE_NAME ) #============================================================================# class Network( dict ): #============================================================================# def __init__( self ): gobject.idle_add( self._sync ) def _sync( self ): # FIXME add listener so that this gets called whenever a change in # interfaces occurs interfaces = os.listdir( "/sys/class/net" ) # first pass: remove for interface in self: if interface not in interfaces: logger.debug( "interface %s no longer present -- removing" % interface ) del self[interface] # second pass: add for interface in os.listdir( "/sys/class/net" ): if interface not in self: logger.debug( "new interface %s -- adding" % interface ) self[interface] = Interface( interface ) return False #============================================================================# class Interface( object ): #============================================================================# def __init__( self, name ): self._name = name def name( self ): return self._name def ipAddress4( self ): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, # SIOCGIFADDR struct.pack('256s', self._name[:15]) )[20:24]) #============================================================================# theNetwork = Network() #============================================================================# if __name__ == "__main__": pass
freesmartphone/framework
framework/subsystems/onetworkd/network.py
Python
gpl-2.0
2,048
from __future__ import print_function import re import traceback class MiniObject(object): def __init__(self, py_object, **meta): ( "The following python types map to the following mini types:\n" " bool -> boolean\n" " str -> string\n" " int -> integer\n" " float -> float\n" " tuple -> list (may contain different types)\n" " list -> vector (may only contain one type)\n" " dict -> map\n" " MiniSymbol -> symbol\n" " Pair -> pair" "mini vectors and maps should be treated as though immutable" "s-expressions should be parsed as tuples" ) self.py_object = py_object self.meta = meta def __repr__(self): if self.py_object == None: return 'nil' if isinstance(self.py_object,bool): return 'true' if self.py_object else 'false' return repr(self.py_object) def __str__(self): if isinstance(self.py_object,str): return self.py_object return repr(self) class Identifier(object): def __init__(self,symbol,**kwargs): assert isinstance(symbol,str) self.symbol = symbol self.start = kwargs.get('start') self.end = kwargs.get('end') def __repr__(self): return '<identifier {}>'.format(self.symbol) def is_identifier(mini_object): assert isinstance(mini_object, MiniObject) if isinstance(mini_object.py_object, Identifier): return TRUE return FALSE SYMBOLS = {} class MiniSymbol(object): def __init__(self,string): self.string = string def __eq__(self,other): return self is other def __repr__(self): return '<symbol :{}>'.format(self.string) class MiniPair(object): def __init__(self, car, cdr): assert isinstance(car, MiniObject) assert isinstance(cdr, MiniObject) self.car = car self.cdr = cdr def __repr__(self): return '<pair {}, {}>'.format(self.car, self.cdr) def evaluate_arguments(arguments_cons_list, environment): if arguments_cons_list == NIL: return NIL return cons( evaluate(car(arguments_cons_list), environment), evaluate_arguments(cdr(arguments_cons_list), environment)) class MiniEnvironment(MiniObject): 'This acts like a dict in Python code and a cons-dict in mini code' def __init__(self): super(self.__class__, self).__init__(None) def __getitem__(self,key): assert isinstance(key,str) key_symbol = create_symbol(key) return cons_dict_get(self,key_symbol) def __setitem__(self,key,value): assert isinstance(key,str) key_symbol = create_symbol(key) assert isinstance(value, MiniObject) self.py_object = cons_dict_set(self,key_symbol,value).py_object def __contains__(self,key): assert isinstance(key,str) key_symbol = create_symbol(key) return cons_dict_has_key(self,key_symbol) == TRUE def get(self,key): assert isinstance(key,str) if key in self: return self[key] return None def dict_to_environment(dictionary): result = MiniEnvironment() for key,value in dictionary.iteritems(): result[key] = value return result class MiniApplicative(object): def __init__(self, operative): assert callable(operative) self.operative = operative def __call__(self, pattern, environment): assert isinstance(pattern, MiniObject) return self.operative(pattern, environment) class MiniWrapper(object): def __init__(self, operative): assert isinstance(operative,MiniObject) assert isinstance(operative.py_object, MiniApplicative) or isinstance(operative.py_object, MiniWrapper) self.operative = operative def __call__(self, pattern, environment): assert isinstance(pattern, MiniObject) return self.operative.py_object(evaluate_arguments(pattern, environment), environment) def __repr__(self): return "<wrapper {}>".format(repr(self.operative)) def wrap(thing): return MiniObject(MiniWrapper(thing)) def unwrap(thing): if isinstance(thing.py_object, MiniWrapper): return thing.py_object.operative raise Exception('UnwrapError') def create_symbol(string,**kwargs): if string in SYMBOLS: return SYMBOLS[string] k = MiniObject(MiniSymbol(string), **kwargs) SYMBOLS[string] = k return k def create_cons_collection(py_collection): result = NIL for item in reversed(py_collection): result = MiniObject(MiniPair(item, result)) return result def cons_collection_to_py_collection(cons_collection): while cons_collection != NIL: yield car(cons_collection) cons_collection = cdr(cons_collection) token_regex = re.compile(r'''(?mx) (\s*|\#.*?\n)*(?: (?P<open_parenthese>\()| (?P<close_parenthese>\))| (?P<number>\-?\d+\.\d+|\-?\d+)| (?P<string>"[^"]*")| (?P<identifier>[_A-Za-z\?\-\+\*/=\>\<]+)| (?P<symbol>\:[_A-Za-z\?\-\+\*/=\>\<]*) )''') def parse_all(source): def parse(matches, index_holder): match = matches[index_holder[0]] index_holder[0] += 1 if match.group('open_parenthese'): r = [] while index_holder[0] < len(matches) and not matches[index_holder[0]].group('close_parenthese'): r.append(parse(matches, index_holder)) if index_holder[0] == len(matches): raise Exception('Unmatched parenthese (') index_holder[0] += 1 return create_cons_collection(r) if match.group('close_parenthese'): raise Exception("Unmatched parenthese )") if match.group('number'): v = float(match.group('number')) if v.is_integer(): v = int(v) return MiniObject( v, start = match.start('number'), end = match.end('number')) if match.group('string'): return MiniObject( match.group('string')[1:-1], start = match.start('string'), end = match.end('string')) if match.group('identifier'): return MiniObject(Identifier( match.group('identifier'), start = match.start('identifier'), end = match.end('identifier'))) if match.group('symbol'): return create_symbol( match.group('symbol')[1:], start = match.start('symbol'), end = match.end('symbol')) assert False, "I'm not sure how this happened" def parse_all_internal(matches, index_holder): if index_holder[0] == len(matches): return NIL parsed_atom = parse(matches, index_holder) return cons(parsed_atom, parse_all_internal(matches, index_holder)) matches = list(token_regex.finditer(source)) match_index_wrapped = [0] return parse_all_internal(matches, match_index_wrapped) NIL = MiniObject(None) class Boolean(MiniObject): def __init__(self, py_object, **kwargs): super(Boolean,self).__init__(py_object, **kwargs) TRUE = Boolean(True) FALSE = Boolean(False) def is_number(arg): if isinstance(arg, float): return True # isinstance(True, int) returns True return isinstance(arg, int) and not isinstance(arg, bool) def py_to_mini(py_object): assert callable(py_object) def wrapped(pattern, environment): result = py_object(*cons_collection_to_py_collection(pattern)) if is_number(result) or isinstance(result,MiniPair): return MiniObject(result) if isinstance(result,str): return MiniObject(result) return { True : TRUE, False : FALSE, None : NIL, }.get(result, result) return MiniObject(MiniWrapper(MiniObject(MiniApplicative(wrapped)))) def apply(applicative, pattern, environment): assert isinstance(applicative, MiniObject) return applicative.py_object(pattern, environment) def evaluate(expression, environment): assert isinstance(expression, MiniObject) if isinstance(expression.py_object, str) or is_number(expression.py_object): return expression if isinstance(expression.py_object, MiniSymbol): return expression if isinstance(expression.py_object, MiniPair): applicative = evaluate(car(expression), environment) arguments = cdr(expression) assert isinstance(applicative, MiniObject) assert isinstance(arguments, MiniObject) if isinstance(applicative.py_object, MiniApplicative) or isinstance(applicative.py_object, MiniWrapper): return apply(applicative, arguments, environment) raise Exception("Expected applicative, got {}".format(applicative.py_object)) if isinstance(expression.py_object, Identifier): parent_symbol = create_symbol('__parent__') while environment != None: if cons_dict_has_key(environment, create_symbol(expression.py_object.symbol)) == TRUE: return cons_dict_get(environment, create_symbol(expression.py_object.symbol)) if cons_dict_has_key(environment, parent_symbol) == TRUE: environment = cons_dict_get(environment, create_symbol('__parent__')) else: raise Exception('UndefinedIdentifierError: Undefined identifier {}'.format(expression.py_object.symbol)) def length(string): assert isinstance(string, MiniObject) if isinstance(string.py_object, str): return len(string.py_object) raise Exception("TypeError") def concatenate(l,r): # TODO Implement ropes: http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.14.9450&rep=rep1&type=pdf # TODO Apply this to other collection types if isinstance(l.py_object,str) and isinstance(r.py_object, str): return MiniObject(l.py_object + r.py_object) raise Exception('TypeError') def is_integer(arg): return isinstance(arg, int) and not isinstance(arg, bool) def slice(string, start, end): if not isinstance(string.py_object, str): raise Exception('TypeError') py_string = string.py_object if is_integer(start.py_object): py_start = start.py_object elif start.py_object == None: py_start = 0 else: raise Exception('TypeError') if is_integer(end.py_object): py_end = end.py_object elif end.py_object == None: py_end = len(py_string) else: raise Exception('TypeError') return MiniObject(py_string[py_start:py_end]) def _assert(pattern, environment): def assert_internal(*arguments): if len(arguments) == 0: raise Exception("ArgumentError: assert expects 1 or more arguments, received none") if len(arguments) == 1: description = 'assertion failed' assertion = arguments else: description = arguments[0].py_object assertion = arguments[1:] if not isinstance(assertion[-1].py_object, bool): raise Exception("TypeError: `assert` expected Boolean assertion but received {} {}".format(type(assertion[-1].py_object), assertion[-1])) if assertion[-1] is TRUE: return None if assertion[-1] is FALSE: raise Exception("AssertionError: {}".format(description)) assert False # Execute in nested scope return py_to_mini(assert_internal).py_object(pattern, nest(environment)) def throws(pattern, environment): if cons_collection_len(pattern) != 2: raise Exception("throws? expects 2 argument, received {}".format(len(pattern))) expression = car(pattern) exception = evaluate(car(cdr(pattern)), environment) if not isinstance(exception.py_object, str): raise Exception('throws? expects a string as the second argument') try: evaluate(expression, environment) return FALSE except Exception as e: if ':' in e.message: exception_type, message = e.message.split(':',1) else: exception_type = e.message if exception_type == exception.py_object: return TRUE raise def _not(argument): if not isinstance(argument, Boolean): raise Exception('TypeError: Expected Boolean but received {}'.format(type(argument))) if argument == TRUE: return FALSE if argument == FALSE: return TRUE assert False def evaluate_expressions(expressions, environment): result = NIL while expressions != NIL: result = evaluate(car(expressions), environment) expressions = cdr(expressions) return result def cons_collection_len(cons_collection): result = 0 while cons_collection != NIL: result += 1 cons_collection = cdr(cons_collection) return result def define(pattern, environment): if cons_collection_len(pattern) < 2: raise Exception('DefineError: `define` expected two arguments, received {}'.format(cons_collection_len(pattern))) head = car(pattern) body = cdr(pattern) if isinstance(head.py_object, Identifier): identifier = head.py_object.symbol if is_defined(head, environment) == TRUE: raise Exception('AlreadyDefinedError: the identifier {} is already defined'.format(identifier)) environment[identifier] = evaluate_expressions(body, environment) return NIL elif isinstance(head.py_object, MiniPair): raise Exception('NotImplementedError: Defining patterns is not yet implemented') else: raise Exception("DefineError") def defined_p(pattern, environment): if cons_collection_len(pattern) != 1: raise Exception("ArgumentError: `defined?` expects 1 argument, received {}".format(len(pattern))) if not isinstance(car(pattern).py_object, Identifier): raise Exception("TypeError: Expected Identifier but got {}".format(type(car(pattern).py_object))) return is_defined(car(pattern), environment) def is_defined(identifier, environment): assert isinstance(identifier, MiniObject) assert isinstance(environment, MiniObject) identifier_symbol = identifier_to_symbol(identifier) parent_symbol = create_symbol('__parent__') while True: if cons_dict_has_key(environment, identifier_symbol) == TRUE: return TRUE elif cons_dict_has_key(environment, parent_symbol) == TRUE: environment = cons_dict_get(environment, parent_symbol) else: return FALSE def _if(pattern, environment): if not cons_collection_len(pattern) in [2,3]: raise Exception("ArgumentError") condition = car(pattern) if_result_true = car(cdr(pattern)) if_result_false = car(cdr(cdr(pattern))) result = evaluate(condition, environment) if result is TRUE: return evaluate(if_result_true, environment) if result is FALSE: return evaluate(if_result_false, environment) raise Exception("TypeError: `if` expects boolean, received {}".format(type(result))) def nest(environment): isinstance(environment,MiniEnvironment) result = MiniEnvironment() result['__parent__'] = environment return result # This is vau from John N. Shutt's seminal paper # https://www.wpi.edu/Pubs/ETD/Available/etd-090110-124904/unrestricted/jshutt.pdf # While Greek letters are appropriate for an academic, theoretical context, they make for # poor variable names, so this is tentatively named `operative` def operative(pattern, defining_environment): argument_list_identifier = None argument_identifiers = None calling_environment_identifier = car(cdr(pattern)).py_object.symbol if isinstance(car(pattern).py_object, Identifier): argument_list_identifier = car(pattern).py_object.symbol if calling_environment_identifier == argument_list_identifier: raise Exception("ArgumentError: Argument list identifier `{}` may not be the same as calling environment identifier".format(ai)) elif car(pattern).py_object == None or isinstance(car(pattern).py_object, MiniPair): if not all([isinstance(arg.py_object, Identifier) for arg in cons_collection_to_py_collection(car(pattern))]): raise Exception("ArgumentError: Unexpected {} {}".format(type(arg),arg)) argument_identifiers = [ai.py_object.symbol for ai in cons_collection_to_py_collection(car(pattern))] existing = set() for ai in argument_identifiers: if ai in existing: raise Exception("ArgumentError: Argument `{}` already defined".format(ai)) if calling_environment_identifier == ai: raise Exception("ArgumentError: Argument `{}` may not be the same as calling environment identifier".format(ai)) existing.add(ai) else: raise Exception("ArgumentError: `operative` expected identifier or cons-list as first argument, received {}".format(type(car(pattern).py_object))) if not isinstance(car(cdr(pattern)).py_object,Identifier): raise Exception("ArgumentError: The second argument to `operative` should be an identifer") def result(calling_pattern, calling_environment): local_environment = nest(defining_environment) assert (argument_list_identifier == None) != (argument_identifiers == None) if argument_list_identifier != None: local_environment[argument_list_identifier] = calling_pattern if argument_identifiers != None: if not cons_collection_len(calling_pattern) == len(argument_identifiers): raise Exception("ArgumentError: operative expected {} arguments, received {}".format(len(argument_identifiers),len(calling_pattern))) calling_pattern = list(cons_collection_to_py_collection(calling_pattern)) for i in range(len(argument_identifiers)): local_environment[argument_identifiers[i]] = calling_pattern[i] local_environment[calling_environment_identifier] = calling_environment return evaluate_expressions(cdr(cdr(pattern)), local_environment) return MiniObject(MiniApplicative(result)) def read_file(filename): assert isinstance(filename, MiniObject) with open(filename.py_object, 'r') as f: return f.read() def write_file(filename, string): assert isinstance(filename, MiniObject) assert isinstance(string, MiniObject) with open(filename.py_object, 'w') as f: f.write(string.py_object) def add(l,r): if isinstance(l, MiniObject) and isinstance(r, MiniObject): l = l.py_object r = r.py_object if is_number(l) and is_number(r): return l + r raise Excepion('TypeError') def subtract(l,r): if isinstance(l, MiniObject) and isinstance(r, MiniObject): l = l.py_object r = r.py_object if is_number(l) and is_number(r): return l - r raise Excepion('TypeError') def multiply(l,r): if isinstance(l, MiniObject) and isinstance(r, MiniObject): l = l.py_object r = r.py_object if is_number(l) and is_number(r): return l * r raise Excepion('TypeError') def divide(l,r): if isinstance(l, MiniObject) and isinstance(r, MiniObject): l = l.py_object r = r.py_object if is_number(l) and is_number(r): if isinstance(l,int) and isinstance(r,int) and l % r != 0: l = float(l) return l / r raise Excepion('TypeError') def idivide(l,r): if isinstance(l, MiniObject) and isinstance(r, MiniObject): l = l.py_object r = r.py_object if is_number(l) and is_number(r): return l // r raise Excepion('TypeError') def mod(l,r): if isinstance(l, MiniObject) and isinstance(r, MiniObject): l = l.py_object r = r.py_object if is_number(l) and is_number(r): return l % r raise Excepion('TypeError') def eq(l,r): assert isinstance(l,MiniObject) assert isinstance(r,MiniObject) return l.py_object == r.py_object def lt(l,r): assert isinstance(l,MiniObject) assert isinstance(r,MiniObject) if is_number(l.py_object) and is_number(r.py_object): return l.py_object < r.py_object if isinstance(l.py_object,str) and isinstance(r.py_object,str): return l.py_object < r.py_object if isinstance(l.py_object,MiniSymbol) and isinstance(r.py_object,MiniSymbol): return l.py_object.string < r.py_object.string raise TypeError('`<` expected number or string, received {} and {}'.format(l.py_object, r.py_object)) def gt(l,r): assert isinstance(l,MiniObject) assert isinstance(r,MiniObject) if is_number(l.py_object) and is_number(r.py_object): return l.py_object > r.py_object if isinstance(l.py_object,str) and isinstance(r.py_object,str): return l.py_object > r.py_object if isinstance(l.py_object,MiniSymbol) and isinstance(r.py_object,MiniSymbol): return l.py_object.string > r.py_object.string raise TypeError('`>` expected number or string, received {} and {}'.format(l.py_object, r.py_object)) def le(l,r): return lt(l,r) or eq(l,r) def ge(l,r): return gt(l,r) or eq(l,r) def cons(l,r): return MiniObject(MiniPair(l,r)) def car(p): return p.py_object.car def cdr(p): return p.py_object.cdr def is_cons_list(mini_object): assert isinstance(mini_object,MiniObject) if eq(mini_object,NIL) or isinstance(mini_object.py_object,MiniPair): return TRUE return FALSE def cons_dict_set(dictionary,key,value): assert isinstance(dictionary,MiniObject) assert isinstance(key,MiniObject) assert isinstance(value,MiniObject) if eq(dictionary,NIL): return cons(cons(key,value),cons(NIL,NIL)) current_node_key = car(car(dictionary)) if lt(key,current_node_key): return cons( car(dictionary), cons( cons_dict_set(car(cdr(dictionary)), key, value), cdr(cdr(dictionary)))) if gt(key,current_node_key): return cons( car(dictionary), cons( car(cdr(dictionary)), cons_dict_set(cdr(cdr(dictionary)), key, value))) if eq(key,current_node_key): return cons(cons(key,value), cdr(dictionary)) assert False def cons_dict_get(dictionary,key): assert isinstance(dictionary, MiniObject) assert isinstance(key, MiniObject) if eq(dictionary,NIL): raise Exception('KeyError: Dictionary does not contain key "{}"'.format(key)) current_node_key = car(car(dictionary)) if lt(key, current_node_key): return cons_dict_get(car(cdr(dictionary)), key) if gt(key, current_node_key): return cons_dict_get(cdr(cdr(dictionary)), key) if eq(key, current_node_key): return cdr(car(dictionary)) def cons_dict_has_key(dictionary,key): assert isinstance(dictionary, MiniObject) assert isinstance(key, MiniObject) if eq(dictionary,NIL): return FALSE current_node_key = car(car(dictionary)) if lt(key, current_node_key): return cons_dict_has_key(car(cdr(dictionary)), key) if gt(key, current_node_key): return cons_dict_has_key(cdr(cdr(dictionary)), key) if eq(key, current_node_key): return TRUE def identifier_to_symbol(identifier): assert isinstance(identifier, MiniObject) if not isinstance(identifier.py_object, Identifier): raise Exception('`identifier->symbol` expected identifier, received {}'.format(type(identifier.py_object))) return create_symbol(identifier.py_object.symbol) def read(string): assert isinstance(string,MiniObject) if not isinstance(string.py_object,str): raise Exception("TypeError: `read` expected string, got {}".format(type(strin.py_object))) result = parse_all(string.py_object) assert cdr(result) == NIL return car(result) builtins = { # Builtin constants 'true' : TRUE, 'false' : FALSE, 'nil' : NIL, # Builtin comparison functions '=' : py_to_mini(eq), '<' : py_to_mini(lt), '>' : py_to_mini(gt), '<=' : py_to_mini(le), '>=' : py_to_mini(ge), # Builtin conversion functions 'identifier->symbol' : py_to_mini(identifier_to_symbol), # Builtin type test functions 'cons-list?' : py_to_mini(is_cons_list), 'identifier?' : py_to_mini(is_identifier), # Builtin general functions 'evaluate' : py_to_mini(evaluate), 'evaluate-expressions' : py_to_mini(evaluate_expressions), 'print' : py_to_mini(print), 'prompt' : py_to_mini(raw_input), 'read-file' : py_to_mini(read_file), 'write-file' : py_to_mini(write_file), 'read' : py_to_mini(read), 'wrap' : py_to_mini(wrap), 'unwrap' : py_to_mini(unwrap), # Builtin number functions '+' : py_to_mini(add), '-' : py_to_mini(subtract), '*' : py_to_mini(multiply), '/' : py_to_mini(divide), '//' : py_to_mini(idivide), 'mod' : py_to_mini(mod), # Builtin pair functions 'cons' : py_to_mini(cons), 'car' : py_to_mini(car), 'cdr' : py_to_mini(cdr), # Builtin cons dictionary functions 'cons-dict-set' : py_to_mini(cons_dict_set), 'cons-dict-get' : py_to_mini(cons_dict_get), # Builtin string functions 'concatenate' : py_to_mini(concatenate), 'length' : py_to_mini(length), 'slice' : py_to_mini(slice), # Builtin boolean functions 'not' : py_to_mini(_not), # Builtin special forms 'assert' : MiniObject(MiniApplicative(_assert)), 'define' : MiniObject(MiniApplicative(define)), 'defined?' : MiniObject(MiniApplicative(defined_p)), 'if' : MiniObject(MiniApplicative(_if)), 'operative' : MiniObject(MiniApplicative(operative)), 'throws?' : MiniObject(MiniApplicative(throws)), } builtins = dict_to_environment(builtins) if __name__ == '__main__': import os.path import sys arguments = sys.argv[1:] predefineds = nest(builtins) predefineds_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'predefineds.mini') with open(predefineds_filename, 'r') as predefineds_file: predefineds_source = predefineds_file.read() try: evaluate_expressions(parse_all(predefineds_source), predefineds) except: traceback.print_exc() if len(arguments) == 0: environment = nest(predefineds) while True: source = raw_input('>>> ') try: print(evaluate_expressions(parse_all(source), environment)) except: traceback.print_exc() else: filename = arguments[0] arguments = arguments[1:] environment = nest(predefineds) environment['__file__'] = MiniObject(os.path.join(os.path.realpath(filename))) environment['__arguments__'] = create_cons_collection(map(MiniObject,arguments)) with open(filename,'r') as f: source = f.read() try: print(evaluate_expressions(parse_all(source), environment)) except: traceback.print_exc()
kerkeslager/sandbox
mini/mini.py
Python
mit
27,970
from PyQt4.QtCore import QSettings __author__ = 'Igor Maculan <[email protected]>' config = QSettings('pushbullet','qpushbullet')
n3wtron/qpushbullet
qpushbullet/__init__.py
Python
gpl-3.0
131
# This flexes PR#170 which is caused by a suspected JIT bug. Said bug for # some reason breaks exception matching. There is now a workaround that seems # to do the trick most of the time. try: int("foo") except ValueError: pass
DarioGT/OMS-PluginXML
org.modelsphere.sms/lib/jython-2.2.1/Lib/test/bugs/pr170.py
Python
gpl-3.0
245
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import jmespath from jsonschema import Draft4Validator import pytest import botocore.session from botocore.exceptions import UnknownServiceError from botocore.utils import ArgumentGenerator WAITER_SCHEMA = { "type": "object", "properties": { "version": {"type": "number"}, "waiters": { "type": "object", "additionalProperties": { "type": "object", "properties": { "type": { "type": "string", "enum": ["api"] }, "operation": {"type": "string"}, "description": {"type": "string"}, "delay": { "type": "number", "minimum": 0, }, "maxAttempts": { "type": "integer", "minimum": 1 }, "acceptors": { "type": "array", "items": { "type": "object", "properties": { "state": { "type": "string", "enum": ["success", "retry", "failure"] }, "matcher": { "type": "string", "enum": [ "path", "pathAll", "pathAny", "status", "error" ] }, "argument": {"type": "string"}, "expected": { "oneOf": [ {"type": "string"}, {"type": "number"}, {"type": "boolean"} ] } }, "required": [ "state", "matcher", "expected" ], "additionalProperties": False } } }, "required": ["operation", "delay", "maxAttempts", "acceptors"], "additionalProperties": False } } }, "additionalProperties": False } def _waiter_configs(): session = botocore.session.get_session() validator = Draft4Validator(WAITER_SCHEMA) for service_name in session.get_available_services(): client = session.create_client(service_name, 'us-east-1') try: # We use the loader directly here because we need the entire # json document, not just the portions exposed (either # internally or externally) by the WaiterModel class. loader = session.get_component('data_loader') waiter_model = loader.load_service_model( service_name, 'waiters-2') except UnknownServiceError: # The service doesn't have waiters continue yield validator, waiter_model, client @pytest.mark.parametrize("validator, waiter_model, client", _waiter_configs()) def test_lint_waiter_configs(validator, waiter_model, client): _validate_schema(validator, waiter_model) for waiter_name in client.waiter_names: _lint_single_waiter(client, waiter_name, client.meta.service_model) def _lint_single_waiter(client, waiter_name, service_model): try: waiter = client.get_waiter(waiter_name) # The 'acceptors' property is dynamic and will create # the acceptor configs when first accessed. This is still # considered a failure to construct the waiter which is # why it's in this try/except block. # This catches things like: # * jmespath expression compiles # * matcher has a known value acceptors = waiter.config.acceptors except Exception as e: raise AssertionError("Could not create waiter '%s': %s" % (waiter_name, e)) operation_name = waiter.config.operation # Needs to reference an existing operation name. if operation_name not in service_model.operation_names: raise AssertionError("Waiter config references unknown " "operation: %s" % operation_name) # Needs to have at least one acceptor. if not waiter.config.acceptors: raise AssertionError("Waiter config must have at least " "one acceptor state: %s" % waiter.name) op_model = service_model.operation_model(operation_name) for acceptor in acceptors: _validate_acceptor(acceptor, op_model, waiter.name) if not waiter.name.isalnum(): raise AssertionError( "Waiter name %s is not alphanumeric." % waiter_name ) def _validate_schema(validator, waiter_json): errors = list(e.message for e in validator.iter_errors(waiter_json)) if errors: raise AssertionError('\n'.join(errors)) def _validate_acceptor(acceptor, op_model, waiter_name): if acceptor.matcher.startswith('path'): expression = acceptor.argument # The JMESPath expression should have the potential to match something # in the response shape. output_shape = op_model.output_shape assert output_shape is not None, ( "Waiter '%s' has JMESPath expression with no output shape: %s" % (waiter_name, op_model)) # We want to check if the JMESPath expression makes sense. # To do this, we'll generate sample output and evaluate the # JMESPath expression against the output. We'll then # check a few things about this returned search result. search_result = _search_jmespath_expression(expression, op_model) if search_result is None: raise AssertionError( f"JMESPath expression did not match anything for waiter " f"'{waiter_name}': {expression}" ) if acceptor.matcher in ['pathAll', 'pathAny']: assert isinstance(search_result, list), ( f"Attempted to use '{acceptor.matcher}' matcher in waiter " f"'{waiter_name}' with non list result in JMESPath expression: " f"{expression}" ) def _search_jmespath_expression(expression, op_model): arg_gen = ArgumentGenerator(use_member_names=True) sample_output = arg_gen.generate_skeleton(op_model.output_shape) search_result = jmespath.search(expression, sample_output) return search_result
boto/botocore
tests/functional/test_waiter_config.py
Python
apache-2.0
7,458
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class RouteFilterRulePaged(Paged): """ A paging container for iterating over a list of :class:`RouteFilterRule <azure.mgmt.network.v2017_06_01.models.RouteFilterRule>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[RouteFilterRule]'} } def __init__(self, *args, **kwargs): super(RouteFilterRulePaged, self).__init__(*args, **kwargs)
lmazuel/azure-sdk-for-python
azure-mgmt-network/azure/mgmt/network/v2017_06_01/models/route_filter_rule_paged.py
Python
mit
967
#! /usr/bin/env python import eris.server as server if __name__ == "__main__": server.run()
jedisct1/eris
eris-server.py
Python
bsd-2-clause
95
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.image_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import colorsys import math import os import time import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_image_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.platform import test class RGBToHSVTest(test_util.TensorFlowTestCase): def testBatch(self): # Build an arbitrary RGB image np.random.seed(7) batch_size = 5 shape = (batch_size, 2, 7, 3) for nptype in [np.float32, np.float64]: inp = np.random.rand(*shape).astype(nptype) # Convert to HSV and back, as a batch and individually with self.test_session(use_gpu=True) as sess: batch0 = constant_op.constant(inp) batch1 = image_ops.rgb_to_hsv(batch0) batch2 = image_ops.hsv_to_rgb(batch1) split0 = array_ops.unstack(batch0) split1 = list(map(image_ops.rgb_to_hsv, split0)) split2 = list(map(image_ops.hsv_to_rgb, split1)) join1 = array_ops.stack(split1) join2 = array_ops.stack(split2) batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2]) # Verify that processing batch elements together is the same as separate self.assertAllClose(batch1, join1) self.assertAllClose(batch2, join2) self.assertAllClose(batch2, inp) def testRGBToHSVRoundTrip(self): data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] for nptype in [np.float32, np.float64]: rgb_np = np.array(data, dtype=nptype).reshape([2, 2, 3]) / 255. with self.test_session(use_gpu=True): hsv = image_ops.rgb_to_hsv(rgb_np) rgb = image_ops.hsv_to_rgb(hsv) rgb_tf = rgb.eval() self.assertAllClose(rgb_tf, rgb_np) class GrayscaleToRGBTest(test_util.TensorFlowTestCase): def _RGBToGrayscale(self, images): is_batch = True if len(images.shape) == 3: is_batch = False images = np.expand_dims(images, axis=0) out_shape = images.shape[0:3] + (1,) out = np.zeros(shape=out_shape, dtype=np.uint8) for batch in xrange(images.shape[0]): for y in xrange(images.shape[1]): for x in xrange(images.shape[2]): red = images[batch, y, x, 0] green = images[batch, y, x, 1] blue = images[batch, y, x, 2] gray = 0.2989 * red + 0.5870 * green + 0.1140 * blue out[batch, y, x, 0] = int(gray) if not is_batch: out = np.squeeze(out, axis=0) return out def _TestRGBToGrayscale(self, x_np): y_np = self._RGBToGrayscale(x_np) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.rgb_to_grayscale(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testBasicRGBToGrayscale(self): # 4-D input with batch dimension. x_np = np.array( [[1, 2, 3], [4, 10, 1]], dtype=np.uint8).reshape([1, 1, 2, 3]) self._TestRGBToGrayscale(x_np) # 3-D input with no batch dimension. x_np = np.array([[1, 2, 3], [4, 10, 1]], dtype=np.uint8).reshape([1, 2, 3]) self._TestRGBToGrayscale(x_np) def testBasicGrayscaleToRGB(self): # 4-D input with batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 1, 2, 1]) y_np = np.array( [[1, 1, 1], [2, 2, 2]], dtype=np.uint8).reshape([1, 1, 2, 3]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.grayscale_to_rgb(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) # 3-D input with no batch dimension. x_np = np.array([[1, 2]], dtype=np.uint8).reshape([1, 2, 1]) y_np = np.array([[1, 1, 1], [2, 2, 2]], dtype=np.uint8).reshape([1, 2, 3]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.grayscale_to_rgb(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testShapeInference(self): # Shape inference works and produces expected output where possible rgb_shape = [7, None, 19, 3] gray_shape = rgb_shape[:-1] + [1] with self.test_session(use_gpu=True): rgb_tf = array_ops.placeholder(dtypes.uint8, shape=rgb_shape) gray = image_ops.rgb_to_grayscale(rgb_tf) self.assertEqual(gray_shape, gray.get_shape().as_list()) with self.test_session(use_gpu=True): gray_tf = array_ops.placeholder(dtypes.uint8, shape=gray_shape) rgb = image_ops.grayscale_to_rgb(gray_tf) self.assertEqual(rgb_shape, rgb.get_shape().as_list()) # Shape inference does not break for unknown shapes with self.test_session(use_gpu=True): rgb_tf_unknown = array_ops.placeholder(dtypes.uint8) gray_unknown = image_ops.rgb_to_grayscale(rgb_tf_unknown) self.assertFalse(gray_unknown.get_shape()) with self.test_session(use_gpu=True): gray_tf_unknown = array_ops.placeholder(dtypes.uint8) rgb_unknown = image_ops.grayscale_to_rgb(gray_tf_unknown) self.assertFalse(rgb_unknown.get_shape()) class AdjustGamma(test_util.TensorFlowTestCase): def test_adjust_gamma_one(self): """Same image should be returned for gamma equal to one""" with self.test_session(): x_data = np.random.uniform(0, 255, (8, 8)) x_np = np.array(x_data, dtype=np.float32) x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_gamma(x, gamma=1) y_tf = y.eval() y_np = x_np self.assertAllClose(y_tf, y_np, 1e-6) def test_adjust_gamma_zero(self): """White image should be returned for gamma equal to zero""" with self.test_session(): x_data = np.random.uniform(0, 255, (8, 8)) x_np = np.array(x_data, dtype=np.float32) x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_gamma(x, gamma=0) y_tf = y.eval() dtype = x.dtype.as_numpy_dtype y_np = np.array([dtypes.dtype_range[dtype][1]] * x_np.size) y_np = y_np.reshape((8, 8)) self.assertAllClose(y_tf, y_np, 1e-6) def test_adjust_gamma_less_one(self): """Verifying the output with expected results for gamma correction with gamma equal to half""" with self.test_session(): x_np = np.arange(0, 255, 4, np.uint8).reshape(8, 8) y = image_ops.adjust_gamma(x_np, gamma=0.5) y_tf = np.trunc(y.eval()) y_np = np.array( [[0, 31, 45, 55, 63, 71, 78, 84], [90, 95, 100, 105, 110, 115, 119, 123], [127, 131, 135, 139, 142, 146, 149, 153], [156, 159, 162, 165, 168, 171, 174, 177], [180, 183, 186, 188, 191, 194, 196, 199], [201, 204, 206, 209, 211, 214, 216, 218], [221, 223, 225, 228, 230, 232, 234, 236], [238, 241, 243, 245, 247, 249, 251, 253]], dtype=np.float32) self.assertAllClose(y_tf, y_np, 1e-6) def test_adjust_gamma_greater_one(self): """Verifying the output with expected results for gamma correction with gamma equal to two""" with self.test_session(): x_np = np.arange(0, 255, 4, np.uint8).reshape(8, 8) y = image_ops.adjust_gamma(x_np, gamma=2) y_tf = np.trunc(y.eval()) y_np = np.array( [[0, 0, 0, 0, 1, 1, 2, 3], [4, 5, 6, 7, 9, 10, 12, 14], [16, 18, 20, 22, 25, 27, 30, 33], [36, 39, 42, 45, 49, 52, 56, 60], [64, 68, 72, 76, 81, 85, 90, 95], [100, 105, 110, 116, 121, 127, 132, 138], [144, 150, 156, 163, 169, 176, 182, 189], [196, 203, 211, 218, 225, 233, 241, 249]], dtype=np.float32) self.assertAllClose(y_tf, y_np, 1e-6) class AdjustHueTest(test_util.TensorFlowTestCase): def testAdjustNegativeHue(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = -0.25 y_data = [0, 13, 1, 54, 226, 59, 8, 234, 150, 255, 39, 1] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testAdjustPositiveHue(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) delta = 0.25 y_data = [13, 0, 11, 226, 54, 221, 234, 8, 92, 1, 217, 255] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_hue(x, delta) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def _adjustHueNp(self, x_np, delta_h): self.assertEqual(x_np.shape[-1], 3) x_v = x_np.reshape([-1, 3]) y_v = np.ndarray(x_v.shape, dtype=x_v.dtype) channel_count = x_v.shape[0] for i in xrange(channel_count): r = x_v[i][0] g = x_v[i][1] b = x_v[i][2] h, s, v = colorsys.rgb_to_hsv(r, g, b) h += delta_h h = math.fmod(h + 10.0, 1.0) r, g, b = colorsys.hsv_to_rgb(h, s, v) y_v[i][0] = r y_v[i][1] = g y_v[i][2] = b return y_v.reshape(x_np.shape) def _adjustHueTf(self, x_np, delta_h): with self.test_session(use_gpu=True): x = constant_op.constant(x_np) y = image_ops.adjust_hue(x, delta_h) y_tf = y.eval() return y_tf def testAdjustRandomHue(self): x_shapes = [ [2, 2, 3], [4, 2, 3], [2, 4, 3], [2, 5, 3], [1000, 1, 3], ] test_styles = [ 'all_random', 'rg_same', 'rb_same', 'gb_same', 'rgb_same', ] for x_shape in x_shapes: for test_style in test_styles: x_np = np.random.rand(*x_shape) * 255. delta_h = np.random.rand() * 2.0 - 1.0 if test_style == 'all_random': pass elif test_style == 'rg_same': x_np[..., 1] = x_np[..., 0] elif test_style == 'rb_same': x_np[..., 2] = x_np[..., 0] elif test_style == 'gb_same': x_np[..., 2] = x_np[..., 1] elif test_style == 'rgb_same': x_np[..., 1] = x_np[..., 0] x_np[..., 2] = x_np[..., 0] else: raise AssertionError('Invalid test style: %s' % (test_style)) y_np = self._adjustHueNp(x_np, delta_h) y_tf = self._adjustHueTf(x_np, delta_h) self.assertAllClose(y_tf, y_np, rtol=2e-5, atol=1e-5) def testInvalidShapes(self): fused = False if not fused: # The tests are known to pass with the fused adjust_hue. We will enable # them when the fused implementation is the default. return x_np = np.random.rand(2, 3) * 255. delta_h = np.random.rand() * 2.0 - 1.0 fused = False with self.assertRaisesRegexp(ValueError, 'Shape must be at least rank 3'): self._adjustHueTf(x_np, delta_h) x_np = np.random.rand(4, 2, 4) * 255. delta_h = np.random.rand() * 2.0 - 1.0 with self.assertRaisesOpError('input must have 3 channels'): self._adjustHueTf(x_np, delta_h) class AdjustHueBenchmark(test.Benchmark): def _benchmarkAdjustHue(self, device, cpu_count): image_shape = [299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with session.Session('', graph=ops.Graph(), config=config) as sess: with ops.device(device): inputs = variables.Variable( random_ops.random_uniform( image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) delta = constant_op.constant(0.1, dtype=dtypes.float32) outputs = image_ops.adjust_hue(inputs, delta) run_op = control_flow_ops.group(outputs) sess.run(variables.global_variables_initializer()) for i in xrange(warmup_rounds + benchmark_rounds): if i == warmup_rounds: start = time.time() sess.run(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = '%s' % (cpu_count) if cpu_count is not None else '_all' print('benchmarkAdjustHue_299_299_3_cpu%s step_time: %.2f us' % (tag, step_time * 1e6)) self.report_benchmark( name='benchmarkAdjustHue_299_299_3_cpu%s' % (tag), iters=benchmark_rounds, wall_time=step_time) def benchmarkAdjustHueCpu1(self): self._benchmarkAdjustHue('/cpu:0', 1) def benchmarkAdjustHueCpuAll(self): self._benchmarkAdjustHue('/cpu:0', None) def benchmarkAdjustHueGpu(self): self._benchmarkAdjustHue(test.gpu_device_name(), None) class AdjustSaturationBenchmark(test.Benchmark): def _benchmarkAdjustSaturation(self, device, cpu_count): image_shape = [299, 299, 3] warmup_rounds = 100 benchmark_rounds = 1000 config = config_pb2.ConfigProto() if cpu_count is not None: config.inter_op_parallelism_threads = 1 config.intra_op_parallelism_threads = cpu_count with session.Session('', graph=ops.Graph(), config=config) as sess: with ops.device(device): inputs = variables.Variable( random_ops.random_uniform( image_shape, dtype=dtypes.float32) * 255, trainable=False, dtype=dtypes.float32) delta = constant_op.constant(0.1, dtype=dtypes.float32) outputs = image_ops.adjust_saturation(inputs, delta) run_op = control_flow_ops.group(outputs) sess.run(variables.global_variables_initializer()) for _ in xrange(warmup_rounds): sess.run(run_op) start = time.time() for _ in xrange(benchmark_rounds): sess.run(run_op) end = time.time() step_time = (end - start) / benchmark_rounds tag = '%s' % (cpu_count) if cpu_count is not None else '_all' print('benchmarkAdjustSaturation_599_599_3_cpu%s step_time: %.2f us' % (tag, step_time * 1e6)) self.report_benchmark( name='benchmarkAdjustSaturation_599_599_3_cpu%s' % (tag), iters=benchmark_rounds, wall_time=step_time) def benchmarkAdjustSaturationCpu1(self): self._benchmarkAdjustSaturation('/cpu:0', 1) def benchmarkAdjustSaturationCpuAll(self): self._benchmarkAdjustSaturation('/cpu:0', None) def benchmarkAdjustSaturationGpu(self): self._benchmarkAdjustSaturation(test.gpu_device_name(), None) class ResizeBilinearBenchmark(test.Benchmark): def _benchmarkResize(self, image_size, num_channels): batch_size = 1 num_ops = 1000 img = variables.Variable( random_ops.random_normal( [batch_size, image_size[0], image_size[1], num_channels]), name='img') deps = [] for _ in xrange(num_ops): with ops.control_dependencies(deps): resize_op = image_ops.resize_bilinear( img, [299, 299], align_corners=False) deps = [resize_op] benchmark_op = control_flow_ops.group(*deps) with session.Session() as sess: sess.run(variables.global_variables_initializer()) results = self.run_op_benchmark( sess, benchmark_op, name=('resize_bilinear_%s_%s_%s' % (image_size[0], image_size[1], num_channels))) print('%s : %.2f ms/img' % (results['name'], 1000 * results['wall_time'] / (batch_size * num_ops))) def benchmarkSimilar3Channel(self): self._benchmarkResize((183, 229), 3) def benchmarkScaleUp3Channel(self): self._benchmarkResize((141, 186), 3) def benchmarkScaleDown3Channel(self): self._benchmarkResize((749, 603), 3) def benchmarkSimilar1Channel(self): self._benchmarkResize((183, 229), 1) def benchmarkScaleUp1Channel(self): self._benchmarkResize((141, 186), 1) def benchmarkScaleDown1Channel(self): self._benchmarkResize((749, 603), 1) class ResizeBicubicBenchmark(test.Benchmark): def _benchmarkResize(self, image_size, num_channels): batch_size = 1 num_ops = 1000 img = variables.Variable( random_ops.random_normal( [batch_size, image_size[0], image_size[1], num_channels]), name='img') deps = [] for _ in xrange(num_ops): with ops.control_dependencies(deps): resize_op = image_ops.resize_bicubic( img, [299, 299], align_corners=False) deps = [resize_op] benchmark_op = control_flow_ops.group(*deps) with session.Session() as sess: sess.run(variables.global_variables_initializer()) results = self.run_op_benchmark( sess, benchmark_op, min_iters=20, name=('resize_bicubic_%s_%s_%s' % (image_size[0], image_size[1], num_channels))) print('%s : %.2f ms/img' % (results['name'], 1000 * results['wall_time'] / (batch_size * num_ops))) def benchmarkSimilar3Channel(self): self._benchmarkResize((183, 229), 3) def benchmarkScaleUp3Channel(self): self._benchmarkResize((141, 186), 3) def benchmarkScaleDown3Channel(self): self._benchmarkResize((749, 603), 3) def benchmarkSimilar1Channel(self): self._benchmarkResize((183, 229), 1) def benchmarkScaleUp1Channel(self): self._benchmarkResize((141, 186), 1) def benchmarkScaleDown1Channel(self): self._benchmarkResize((749, 603), 1) def benchmarkSimilar4Channel(self): self._benchmarkResize((183, 229), 4) def benchmarkScaleUp4Channel(self): self._benchmarkResize((141, 186), 4) def benchmarkScaleDown4Channel(self): self._benchmarkResize((749, 603), 4) class ResizeAreaBenchmark(test.Benchmark): def _benchmarkResize(self, image_size, num_channels): batch_size = 1 num_ops = 1000 img = variables.Variable( random_ops.random_normal([batch_size, image_size[0], image_size[1], num_channels]), name='img') deps = [] for _ in xrange(num_ops): with ops.control_dependencies(deps): resize_op = image_ops.resize_area(img, [299, 299], align_corners=False) deps = [resize_op] benchmark_op = control_flow_ops.group(*deps) with session.Session() as sess: sess.run(variables.global_variables_initializer()) results = self.run_op_benchmark( sess, benchmark_op, name=('resize_area_%s_%s_%s' % (image_size[0], image_size[1], num_channels))) print('%s : %.2f ms/img' % ( results['name'], 1000*results['wall_time'] / (batch_size * num_ops))) def benchmarkSimilar3Channel(self): self._benchmarkResize((183, 229), 3) def benchmarkScaleUp3Channel(self): self._benchmarkResize((141, 186), 3) def benchmarkScaleDown3Channel(self): self._benchmarkResize((749, 603), 3) def benchmarkSimilar1Channel(self): self._benchmarkResize((183, 229), 1) def benchmarkScaleUp1Channel(self): self._benchmarkResize((141, 186), 1) def benchmarkScaleDown1Channel(self): self._benchmarkResize((749, 603), 1) class AdjustSaturationTest(test_util.TensorFlowTestCase): def testHalfSaturation(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 0.5 y_data = [6, 9, 13, 140, 180, 226, 135, 121, 234, 172, 255, 128] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testTwiceSaturation(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 2.0 y_data = [0, 5, 13, 0, 106, 226, 30, 0, 234, 89, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.adjust_saturation(x, saturation_factor) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def _adjust_saturation(self, image, saturation_factor): image = ops.convert_to_tensor(image, name='image') orig_dtype = image.dtype flt_image = image_ops.convert_image_dtype(image, dtypes.float32) saturation_adjusted_image = gen_image_ops.adjust_saturation( flt_image, saturation_factor) return image_ops.convert_image_dtype(saturation_adjusted_image, orig_dtype) def testHalfSaturationFused(self): x_shape = [2, 2, 3] x_rgb_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_rgb_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 0.5 y_rgb_data = [6, 9, 13, 140, 180, 226, 135, 121, 234, 172, 255, 128] y_np = np.array(y_rgb_data, dtype=np.uint8).reshape(x_shape) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = self._adjust_saturation(x, saturation_factor) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testTwiceSaturationFused(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) saturation_factor = 2.0 y_data = [0, 5, 13, 0, 106, 226, 30, 0, 234, 89, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = self._adjust_saturation(x, saturation_factor) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def _adjustSaturationNp(self, x_np, scale): self.assertEqual(x_np.shape[-1], 3) x_v = x_np.reshape([-1, 3]) y_v = np.ndarray(x_v.shape, dtype=x_v.dtype) channel_count = x_v.shape[0] for i in xrange(channel_count): r = x_v[i][0] g = x_v[i][1] b = x_v[i][2] h, s, v = colorsys.rgb_to_hsv(r, g, b) s *= scale s = min(1.0, max(0.0, s)) r, g, b = colorsys.hsv_to_rgb(h, s, v) y_v[i][0] = r y_v[i][1] = g y_v[i][2] = b return y_v.reshape(x_np.shape) def testAdjustRandomSaturation(self): x_shapes = [ [2, 2, 3], [4, 2, 3], [2, 4, 3], [2, 5, 3], [1000, 1, 3], ] test_styles = [ 'all_random', 'rg_same', 'rb_same', 'gb_same', 'rgb_same', ] with self.test_session(): for x_shape in x_shapes: for test_style in test_styles: x_np = np.random.rand(*x_shape) * 255. scale = np.random.rand() if test_style == 'all_random': pass elif test_style == 'rg_same': x_np[..., 1] = x_np[..., 0] elif test_style == 'rb_same': x_np[..., 2] = x_np[..., 0] elif test_style == 'gb_same': x_np[..., 2] = x_np[..., 1] elif test_style == 'rgb_same': x_np[..., 1] = x_np[..., 0] x_np[..., 2] = x_np[..., 0] else: raise AssertionError('Invalid test style: %s' % (test_style)) y_baseline = self._adjustSaturationNp(x_np, scale) y_fused = self._adjust_saturation(x_np, scale).eval() self.assertAllClose(y_fused, y_baseline, rtol=2e-5, atol=1e-5) class FlipTransposeRotateTest(test_util.TensorFlowTestCase): def testIdempotentLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(image_ops.flip_left_right(x_tf)) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [3, 2, 1]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_left_right(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testRandomFlipLeftRight(self): x_np = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[3, 2, 1], [3, 2, 1]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_left_right(x_tf) count_flipped = 0 count_unflipped = 0 for _ in range(50): y_tf = y.eval() if y_tf[0][0] == 1: self.assertAllEqual(y_tf, x_np) count_unflipped += 1 else: self.assertAllEqual(y_tf, y_np) count_flipped += 1 self.assertGreaterEqual(count_flipped, 1) self.assertGreaterEqual(count_unflipped, 1) def testIdempotentUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(image_ops.flip_up_down(x_tf)) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.flip_up_down(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testRandomFlipUpDown(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[4, 5, 6], [1, 2, 3]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_up_down(x_tf) count_flipped = 0 count_unflipped = 0 for _ in range(50): y_tf = y.eval() if y_tf[0][0] == 1: self.assertAllEqual(y_tf, x_np) count_unflipped += 1 else: self.assertAllEqual(y_tf, y_np) count_flipped += 1 self.assertGreaterEqual(count_flipped, 1) self.assertGreaterEqual(count_unflipped, 1) def testIdempotentTranspose(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose_image(image_ops.transpose_image(x_tf)) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) def testTranspose(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8).reshape([2, 3, 1]) y_np = np.array([[1, 4], [2, 5], [3, 6]], dtype=np.uint8).reshape([3, 2, 1]) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.transpose_image(x_tf) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testPartialShapes(self): p_unknown_rank = array_ops.placeholder(dtypes.uint8) p_unknown_dims = array_ops.placeholder( dtypes.uint8, shape=[None, None, None]) p_unknown_width = array_ops.placeholder(dtypes.uint8, shape=[64, None, 3]) p_wrong_rank = array_ops.placeholder(dtypes.uint8, shape=[None, None]) p_zero_dim = array_ops.placeholder(dtypes.uint8, shape=[64, 0, 3]) for op in [ image_ops.flip_left_right, image_ops.flip_up_down, image_ops.random_flip_left_right, image_ops.random_flip_up_down, image_ops.transpose_image, image_ops.rot90 ]: transformed_unknown_rank = op(p_unknown_rank) self.assertEqual(3, transformed_unknown_rank.get_shape().ndims) transformed_unknown_dims = op(p_unknown_dims) self.assertEqual(3, transformed_unknown_dims.get_shape().ndims) transformed_unknown_width = op(p_unknown_width) self.assertEqual(3, transformed_unknown_width.get_shape().ndims) with self.assertRaisesRegexp(ValueError, 'must be three-dimensional'): op(p_wrong_rank) with self.assertRaisesRegexp(ValueError, 'must be > 0'): op(p_zero_dim) def testRot90GroupOrder(self): image = np.arange(24, dtype=np.uint8).reshape([2, 4, 3]) with self.test_session(use_gpu=True): rotated = image for _ in xrange(4): rotated = image_ops.rot90(rotated) self.assertAllEqual(image, rotated.eval()) def testRot90NumpyEquivalence(self): image = np.arange(24, dtype=np.uint8).reshape([2, 4, 3]) with self.test_session(use_gpu=True): k_placeholder = array_ops.placeholder(dtypes.int32, shape=[]) y_tf = image_ops.rot90(image, k_placeholder) for k in xrange(4): y_np = np.rot90(image, k=k) self.assertAllEqual(y_np, y_tf.eval({k_placeholder: k})) class RandomFlipTest(test_util.TensorFlowTestCase): def testRandomLeftRight(self): x_np = np.array([0, 1], dtype=np.uint8).reshape([1, 2, 1]) num_iterations = 500 hist = [0, 0] with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_left_right(x_tf) for _ in xrange(num_iterations): y_np = y.eval().flatten()[0] hist[y_np] += 1 # Ensure that each entry is observed within 4 standard deviations. four_stddev = 4.0 * np.sqrt(num_iterations / 2.0) self.assertAllClose(hist, [num_iterations / 2.0] * 2, atol=four_stddev) def testRandomUpDown(self): x_np = np.array([0, 1], dtype=np.uint8).reshape([2, 1, 1]) num_iterations = 500 hist = [0, 0] with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.random_flip_up_down(x_tf) for _ in xrange(num_iterations): y_np = y.eval().flatten()[0] hist[y_np] += 1 # Ensure that each entry is observed within 4 standard deviations. four_stddev = 4.0 * np.sqrt(num_iterations / 2.0) self.assertAllClose(hist, [num_iterations / 2.0] * 2, atol=four_stddev) class AdjustContrastTest(test_util.TensorFlowTestCase): def _testContrast(self, x_np, y_np, contrast_factor): with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_contrast(x, contrast_factor) y_tf = y.eval() self.assertAllClose(y_tf, y_np, 1e-6) def testDoubleContrastUint8(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 0, 62, 169, 255, 28, 0, 255, 135, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0) def testDoubleContrastFloat(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.float).reshape(x_shape) / 255. y_data = [ -45.25, -90.75, -92.5, 62.75, 169.25, 333.5, 28.75, -84.75, 349.5, 134.75, 409.25, -116.5 ] y_np = np.array(y_data, dtype=np.float).reshape(x_shape) / 255. self._testContrast(x_np, y_np, contrast_factor=2.0) def testHalfContrastUint8(self): x_shape = [1, 2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [22, 52, 65, 49, 118, 172, 41, 54, 176, 67, 178, 59] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=0.5) def testBatchDoubleContrast(self): x_shape = [2, 1, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 0, 81, 200, 255, 10, 0, 255, 116, 255, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testContrast(x_np, y_np, contrast_factor=2.0) def _adjustContrastNp(self, x_np, contrast_factor): mean = np.mean(x_np, (1, 2), keepdims=True) y_np = mean + contrast_factor * (x_np - mean) return y_np def _adjustContrastTf(self, x_np, contrast_factor): with self.test_session(use_gpu=True): x = constant_op.constant(x_np) y = image_ops.adjust_contrast(x, contrast_factor) y_tf = y.eval() return y_tf def testRandomContrast(self): x_shapes = [ [1, 2, 2, 3], [2, 1, 2, 3], [1, 2, 2, 3], [2, 5, 5, 3], [2, 1, 1, 3], ] for x_shape in x_shapes: x_np = np.random.rand(*x_shape) * 255. contrast_factor = np.random.rand() * 2.0 + 0.1 y_np = self._adjustContrastNp(x_np, contrast_factor) y_tf = self._adjustContrastTf(x_np, contrast_factor) self.assertAllClose(y_tf, y_np, rtol=1e-5, atol=1e-5) class AdjustBrightnessTest(test_util.TensorFlowTestCase): def _testBrightness(self, x_np, y_np, delta): with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_np.shape) y = image_ops.adjust_brightness(x, delta) y_tf = y.eval() self.assertAllClose(y_tf, y_np, 1e-6) def testPositiveDeltaUint8(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [10, 15, 23, 64, 145, 236, 47, 18, 244, 100, 255, 11] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testBrightness(x_np, y_np, delta=10. / 255.) def testPositiveDeltaFloat(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 245, 90, 255, 1] x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) / 255. y_data = [10, 15, 23, 64, 145, 236, 47, 18, 255, 100, 255, 11] y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) / 255. self._testBrightness(x_np, y_np, delta=10. / 255.) def testNegativeDeltaFloat(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 10, 135, 226, 37, 8, 245, 90, 255, 1] x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) / 255. y_data = [0, 0, 3, 0, 125, 216, 27, 0, 235, 80, 245, 0] y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) / 255. self._testBrightness(x_np, y_np, delta=-10. / 255.) def testNegativeDelta(self): x_shape = [2, 2, 3] x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1] x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) y_data = [0, 0, 3, 44, 125, 216, 27, 0, 224, 80, 245, 0] y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) self._testBrightness(x_np, y_np, delta=-10. / 255.) class PerImageWhiteningTest(test_util.TensorFlowTestCase): def _NumpyPerImageWhitening(self, x): num_pixels = np.prod(x.shape) x2 = np.square(x).astype(np.float32) mn = np.mean(x) vr = np.mean(x2) - (mn * mn) stddev = max(math.sqrt(vr), 1.0 / math.sqrt(num_pixels)) y = x.astype(np.float32) y -= mn y /= stddev return y def testBasic(self): x_shape = [13, 9, 3] x_np = np.arange(0, np.prod(x_shape), dtype=np.int32).reshape(x_shape) y_np = self._NumpyPerImageWhitening(x_np) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.per_image_standardization(x) y_tf = y.eval() self.assertAllClose(y_tf, y_np, atol=1e-4) def testUniformImage(self): im_np = np.ones([19, 19, 3]).astype(np.float32) * 249 im = constant_op.constant(im_np) whiten = image_ops.per_image_standardization(im) with self.test_session(use_gpu=True): whiten_np = whiten.eval() self.assertFalse(np.any(np.isnan(whiten_np))) class CropToBoundingBoxTest(test_util.TensorFlowTestCase): def _CropToBoundingBox(self, x, offset_height, offset_width, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: offset_height = ops.convert_to_tensor(offset_height) offset_width = ops.convert_to_tensor(offset_width) target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = array_ops.placeholder(x.dtype, shape=[None] * x.ndim) feed_dict = {x_tensor: x} else: x_tensor = x feed_dict = {} y = image_ops.crop_to_bounding_box(x_tensor, offset_height, offset_width, target_height, target_width) if not use_tensor_inputs: self.assertTrue(y.get_shape().is_fully_defined()) with self.test_session(use_gpu=True): return y.eval(feed_dict=feed_dict) def _assertReturns(self, x, x_shape, offset_height, offset_width, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._CropToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, offset_height, offset_width, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: try: self._CropToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) except Exception as e: if err_msg not in str(e): raise else: raise AssertionError('Exception not raised: %s' % err_msg) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.crop_to_bounding_box(image, 0, 0, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertReturns(x, x_shape, 0, 0, x, x_shape) def testCrop(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] offset_height, offset_width = [1, 0] y_shape = [2, 3, 1] y = [4, 5, 6, 7, 8, 9] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 1] y_shape = [3, 2, 1] y = [2, 3, 5, 6, 8, 9] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y_shape = [2, 3, 1] y = [1, 2, 3, 4, 5, 6] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y_shape = [3, 2, 1] y = [1, 2, 4, 5, 7, 8] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) def testShapeInference(self): self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([59, 69, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNon3DInput(self): # Input image is not 3D x = [0] * 15 offset_height, offset_width = [0, 0] target_height, target_width = [2, 2] for x_shape in ([1, 3, 5, 1], [3, 5]): self._assertRaises(x, x_shape, offset_height, offset_width, target_height, target_width, "'image' must be three-dimensional") def testZeroLengthInput(self): # Input image has 0-length dimension(s). # Each line is a test configuration: # x_shape, target_height, target_width test_config = (([0, 2, 2], 1, 1), ([2, 0, 2], 1, 1), ([2, 2, 0], 1, 1), ([0, 2, 2], 0, 1), ([2, 0, 2], 1, 0)) offset_height, offset_width = [0, 0] x = [] for x_shape, target_height, target_width in test_config: self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "all dims of 'image.shape' must be > 0", use_tensor_inputs_options=[False]) # Multiple assertion could fail, but the evaluation order is arbitrary. # Match gainst generic pattern. self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, 'assertion failed:', use_tensor_inputs_options=[True]) def testBadParams(self): x_shape = [4, 4, 1] x = np.zeros(x_shape) # Each line is a test configuration: # (offset_height, offset_width, target_height, target_width), err_msg test_config = (([-1, 0, 3, 3], 'offset_height must be >= 0'), ([0, -1, 3, 3], 'offset_width must be >= 0'), ([0, 0, 0, 3], 'target_height must be > 0'), ([0, 0, 3, 0], 'target_width must be > 0'), ([2, 0, 3, 3], 'height must be >= target + offset'), ([0, 2, 3, 3], 'width must be >= target + offset')) for params, err_msg in test_config: self._assertRaises(x, x_shape, *params, err_msg=err_msg) class CentralCropTest(test_util.TensorFlowTestCase): def _assertShapeInference(self, pre_shape, fraction, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.central_crop(image, fraction) if post_shape is None: self.assertEqual(y.get_shape().dims, None) else: self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shape = [13, 9, 3] x_np = np.ones(x_shape, dtype=np.float32) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.central_crop(x, 1.0) y_tf = y.eval() self.assertAllEqual(y_tf, x_np) self.assertEqual(y.op.name, x.op.name) def testCropping(self): x_shape = [4, 8, 1] x_np = np.array([[1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7, 8]], dtype=np.int32).reshape(x_shape) y_np = np.array([[3, 4, 5, 6], [3, 4, 5, 6]]).reshape([2, 4, 1]) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) y = image_ops.central_crop(x, 0.5) y_tf = y.eval() self.assertAllEqual(y_tf, y_np) def testShapeInference(self): # Test no-op fraction=1.0 self._assertShapeInference([50, 60, 3], 1.0, [50, 60, 3]) self._assertShapeInference([None, 60, 3], 1.0, [None, 60, 3]) self._assertShapeInference([50, None, 3], 1.0, [50, None, 3]) self._assertShapeInference([None, None, 3], 1.0, [None, None, 3]) self._assertShapeInference([50, 60, None], 1.0, [50, 60, None]) self._assertShapeInference([None, None, None], 1.0, [None, None, None]) self._assertShapeInference(None, 1.0, None) # TODO(toddw): Currently central_crop() doesn't infer the result shape even # when it's possible. If we change it to do so, we can test as follows: # # self._assertShapeInference([50, 60, 3], 0.5, [25, 30, 3]) # self._assertShapeInference([None, 60, 3], 0.5, [None, 30, 3]) # self._assertShapeInference([50, None, 3], 0.5, [25, None, 3]) # self._assertShapeInference([None, None, 3], 0.5, [None, None, 3]) # self._assertShapeInference([50, 60, None], 0.5, [25, 30, None]) # self._assertShapeInference([None, None, None], 0.5, [None, None, None]) # self._assertShapeInference(None, 0.5, None) def testError(self): x_shape = [13, 9, 3] x_np = np.ones(x_shape, dtype=np.float32) with self.test_session(use_gpu=True): x = constant_op.constant(x_np, shape=x_shape) with self.assertRaises(ValueError): _ = image_ops.central_crop(x, 0.0) with self.assertRaises(ValueError): _ = image_ops.central_crop(x, 1.01) class PadToBoundingBoxTest(test_util.TensorFlowTestCase): def _PadToBoundingBox(self, x, offset_height, offset_width, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: offset_height = ops.convert_to_tensor(offset_height) offset_width = ops.convert_to_tensor(offset_width) target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = array_ops.placeholder(x.dtype, shape=[None] * x.ndim) feed_dict = {x_tensor: x} else: x_tensor = x feed_dict = {} y = image_ops.pad_to_bounding_box(x_tensor, offset_height, offset_width, target_height, target_width) if not use_tensor_inputs: self.assertTrue(y.get_shape().is_fully_defined()) with self.test_session(use_gpu=True): return y.eval(feed_dict=feed_dict) def _assertReturns(self, x, x_shape, offset_height, offset_width, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._PadToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, offset_height, offset_width, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: try: self._PadToBoundingBox(x, offset_height, offset_width, target_height, target_width, use_tensor_inputs) except Exception as e: if err_msg not in str(e): raise else: raise AssertionError('Exception not raised: %s' % err_msg) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.pad_to_bounding_box(image, 0, 0, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) offset_height, offset_width = [0, 0] self._assertReturns(x, x_shape, offset_height, offset_width, x, x_shape) def testPadding(self): x = [1, 2, 3, 4, 5, 6, 7, 8, 9] x_shape = [3, 3, 1] offset_height, offset_width = [1, 0] y = [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] y_shape = [4, 3, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 1] y = [0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9] y_shape = [3, 4, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0] y_shape = [4, 3, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) offset_height, offset_width = [0, 0] y = [1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0] y_shape = [3, 4, 1] self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) def testShapeInference(self): self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNon3DInput(self): # Input image is not 3D x = [0] * 15 offset_height, offset_width = [0, 0] target_height, target_width = [2, 2] for x_shape in ([1, 3, 5, 1], [3, 5]): self._assertRaises(x, x_shape, offset_height, offset_width, target_height, target_width, "'image' must be three-dimensional") def testZeroLengthInput(self): # Input image has 0-length dimension(s). # Each line is a test configuration: # x_shape, target_height, target_width test_config = (([0, 2, 2], 2, 2), ([2, 0, 2], 2, 2), ([2, 2, 0], 2, 2)) offset_height, offset_width = [0, 0] x = [] for x_shape, target_height, target_width in test_config: self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "all dims of 'image.shape' must be > 0", use_tensor_inputs_options=[False]) # The orignal error message does not contain back slashes. However, they # are added by either the assert op or the runtime. If this behaviour # changes in the future, the match string will also needs to be changed. self._assertRaises( x, x_shape, offset_height, offset_width, target_height, target_width, "all dims of \\'image.shape\\' must be > 0", use_tensor_inputs_options=[True]) def testBadParams(self): x_shape = [3, 3, 1] x = np.zeros(x_shape) # Each line is a test configuration: # offset_height, offset_width, target_height, target_width, err_msg test_config = ((-1, 0, 4, 4, 'offset_height must be >= 0'), ( 0,-1, 4, 4, 'offset_width must be >= 0'), ( 2, 0, 4, 4, 'height must be <= target - offset'), ( 0, 2, 4, 4, 'width must be <= target - offset')) for config_item in test_config: self._assertRaises(x, x_shape, *config_item) class SelectDistortedCropBoxTest(test_util.TensorFlowTestCase): def _testSampleDistortedBoundingBox(self, image, bounding_box, min_object_covered, aspect_ratio_range, area_range): original_area = float(np.prod(image.shape)) bounding_box_area = float((bounding_box[3] - bounding_box[1]) * (bounding_box[2] - bounding_box[0])) image_size_np = np.array(image.shape, dtype=np.int32) bounding_box_np = (np.array( bounding_box, dtype=np.float32).reshape([1, 1, 4])) aspect_ratios = [] area_ratios = [] fraction_object_covered = [] num_iter = 1000 with self.test_session(use_gpu=True): image_tf = constant_op.constant(image, shape=image.shape) image_size_tf = constant_op.constant( image_size_np, shape=image_size_np.shape) bounding_box_tf = constant_op.constant( bounding_box_np, dtype=dtypes.float32, shape=bounding_box_np.shape) begin, size, _ = image_ops.sample_distorted_bounding_box( image_size=image_size_tf, bounding_boxes=bounding_box_tf, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range) y = array_ops.strided_slice(image_tf, begin, begin + size) for _ in xrange(num_iter): y_tf = y.eval() crop_height = y_tf.shape[0] crop_width = y_tf.shape[1] aspect_ratio = float(crop_width) / float(crop_height) area = float(crop_width * crop_height) aspect_ratios.append(aspect_ratio) area_ratios.append(area / original_area) fraction_object_covered.append(float(np.sum(y_tf)) / bounding_box_area) # Ensure that each entry is observed within 3 standard deviations. # num_bins = 10 # aspect_ratio_hist, _ = np.histogram(aspect_ratios, # bins=num_bins, # range=aspect_ratio_range) # mean = np.mean(aspect_ratio_hist) # stddev = np.sqrt(mean) # TODO(wicke, shlens, dga): Restore this test so that it is no longer flaky. # TODO(irving): Since the rejection probability is not independent of the # aspect ratio, the aspect_ratio random value is not exactly uniformly # distributed in [min_aspect_ratio, max_aspect_ratio). This test should be # fixed to reflect the true statistical property, then tightened to enforce # a stricter bound. Or, ideally, the sample_distorted_bounding_box Op # be fixed to not use rejection sampling and generate correctly uniform # aspect ratios. # self.assertAllClose(aspect_ratio_hist, # [mean] * num_bins, atol=3.6 * stddev) # The resulting crop will not be uniformly distributed in area. In practice, # we find that the area skews towards the small sizes. Instead, we perform # a weaker test to ensure that the area ratios are merely within the # specified bounds. self.assertLessEqual(max(area_ratios), area_range[1]) self.assertGreaterEqual(min(area_ratios), area_range[0]) # For reference, here is what the distribution of area ratios look like. area_ratio_hist, _ = np.histogram(area_ratios, bins=10, range=area_range) print('area_ratio_hist ', area_ratio_hist) # Ensure that fraction_object_covered is satisfied. # TODO(wicke, shlens, dga): Restore this test so that it is no longer flaky. # self.assertGreaterEqual(min(fraction_object_covered), min_object_covered) def testWholeImageBoundingBox(self): height = 40 width = 50 image_size = [height, width, 1] bounding_box = [0.0, 0.0, 1.0, 1.0] image = np.arange( 0, np.prod(image_size), dtype=np.int32).reshape(image_size) self._testSampleDistortedBoundingBox( image, bounding_box, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) def testWithBoundingBox(self): height = 40 width = 50 x_shape = [height, width, 1] image = np.zeros(x_shape, dtype=np.int32) # Create an object with 1's in a region with area A and require that # the total pixel values >= 0.1 * A. min_object_covered = 0.1 xmin = 2 ymin = 3 xmax = 12 ymax = 13 for x in np.arange(xmin, xmax + 1, 1): for y in np.arange(ymin, ymax + 1, 1): image[x, y] = 1 # Bounding box is specified as (ymin, xmin, ymax, xmax) in # relative coordinates. bounding_box = (float(ymin) / height, float(xmin) / width, float(ymax) / height, float(xmax) / width) self._testSampleDistortedBoundingBox( image, bounding_box=bounding_box, min_object_covered=min_object_covered, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) def testSampleDistortedBoundingBoxShape(self): with self.test_session(use_gpu=True): image_size = constant_op.constant( [40, 50, 1], shape=[3], dtype=dtypes.int32) bounding_box = constant_op.constant( [0.0, 0.0, 1.0, 1.0], shape=[4], dtype=dtypes.float32,) begin, end, bbox_for_drawing = image_ops.sample_distorted_bounding_box( image_size=image_size, bounding_boxes=bounding_box, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0)) # Test that the shapes are correct. self.assertAllEqual([3], begin.get_shape().as_list()) self.assertAllEqual([3], end.get_shape().as_list()) self.assertAllEqual([1, 1, 4], bbox_for_drawing.get_shape().as_list()) class ResizeImagesTest(test_util.TensorFlowTestCase): OPTIONS = [image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.BICUBIC, image_ops.ResizeMethod.AREA] TYPES = [np.uint8, np.int8, np.int16, np.int32, np.int64, np.float32, np.float64] def _assertShapeInference(self, pre_shape, size, post_shape): # Try single image resize single_image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_images(single_image, size) self.assertEqual(y.get_shape().as_list(), post_shape) # Try batch images resize with known batch size images = array_ops.placeholder(dtypes.float32, shape=[99] + pre_shape) y = image_ops.resize_images(images, size) self.assertEqual(y.get_shape().as_list(), [99] + post_shape) # Try batch images resize with unknown batch size images = array_ops.placeholder(dtypes.float32, shape=[None] + pre_shape) y = image_ops.resize_images(images, size) self.assertEqual(y.get_shape().as_list(), [None] + post_shape) def shouldRunOnGPU(self, opt, nptype): if opt == image_ops.ResizeMethod.NEAREST_NEIGHBOR \ and nptype in [np.float32, np.float64]: return True else: return False def testNoOp(self): img_shape = [1, 6, 4, 1] single_shape = [6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100] target_height = 6 target_width = 4 for nptype in self.TYPES: img_np = np.array(data, dtype=nptype).reshape(img_shape) for opt in self.OPTIONS: if test.is_gpu_available() and self.shouldRunOnGPU(opt, nptype): with self.test_session(use_gpu=True) as sess: image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], opt) yshape = array_ops.shape(y) resized, newshape = sess.run([y, yshape]) self.assertAllEqual(img_shape, newshape) self.assertAllClose(resized, img_np, atol=1e-5) # Resizing with a single image must leave the shape unchanged also. with self.test_session(use_gpu=True): img_single = img_np.reshape(single_shape) image = constant_op.constant(img_single, shape=single_shape) y = image_ops.resize_images(image, [target_height, target_width], self.OPTIONS[0]) yshape = array_ops.shape(y) newshape = yshape.eval() self.assertAllEqual(single_shape, newshape) def testTensorArguments(self): img_shape = [1, 6, 4, 1] single_shape = [6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100] new_size = array_ops.placeholder(dtypes.int32, shape=(2)) img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for opt in self.OPTIONS: with self.test_session(use_gpu=True) as sess: image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, new_size, opt) yshape = array_ops.shape(y) resized, newshape = sess.run([y, yshape], {new_size: [6, 4]}) self.assertAllEqual(img_shape, newshape) self.assertAllClose(resized, img_np, atol=1e-5) # Resizing with a single image must leave the shape unchanged also. with self.test_session(use_gpu=True): img_single = img_np.reshape(single_shape) image = constant_op.constant(img_single, shape=single_shape) y = image_ops.resize_images(image, new_size, self.OPTIONS[0]) yshape = array_ops.shape(y) resized, newshape = sess.run([y, yshape], {new_size: [6, 4]}) self.assertAllEqual(single_shape, newshape) self.assertAllClose(resized, img_single, atol=1e-5) # Incorrect shape. with self.assertRaises(ValueError): new_size = constant_op.constant(4) _ = image_ops.resize_images(image, new_size, image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): new_size = constant_op.constant([4]) _ = image_ops.resize_images(image, new_size, image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): new_size = constant_op.constant([1, 2, 3]) _ = image_ops.resize_images(image, new_size, image_ops.ResizeMethod.BILINEAR) # Incorrect dtypes. with self.assertRaises(ValueError): new_size = constant_op.constant([6.0, 4]) _ = image_ops.resize_images(image, new_size, image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): _ = image_ops.resize_images(image, [6, 4.0], image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): _ = image_ops.resize_images(image, [None, 4], image_ops.ResizeMethod.BILINEAR) with self.assertRaises(ValueError): _ = image_ops.resize_images(image, [6, None], image_ops.ResizeMethod.BILINEAR) def testSumTensor(self): img_shape = [1, 6, 4, 1] # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100] # Test size where width is specified as a tensor which is a sum # of two tensors. width_1 = constant_op.constant(1) width_2 = constant_op.constant(3) width = math_ops.add(width_1, width_2) height = constant_op.constant(6) img_np = np.array(data, dtype=np.uint8).reshape(img_shape) for opt in self.OPTIONS: with self.test_session() as sess: image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [height, width], opt) yshape = array_ops.shape(y) resized, newshape = sess.run([y, yshape]) self.assertAllEqual(img_shape, newshape) self.assertAllClose(resized, img_np, atol=1e-5) def testResizeDown(self): # This test is also conducted with int8, so 127 is the maximum # value that can be used. data = [127, 127, 64, 64, 127, 127, 64, 64, 64, 64, 127, 127, 64, 64, 127, 127, 50, 50, 100, 100, 50, 50, 100, 100] expected_data = [127, 64, 64, 127, 50, 100] target_height = 3 target_width = 2 # Test out 3-D and 4-D image shapes. img_shapes = [[1, 6, 4, 1], [6, 4, 1]] target_shapes = [[1, target_height, target_width, 1], [target_height, target_width, 1]] for target_shape, img_shape in zip(target_shapes, img_shapes): for nptype in self.TYPES: img_np = np.array(data, dtype=nptype).reshape(img_shape) for opt in self.OPTIONS: if test.is_gpu_available() and self.shouldRunOnGPU(opt, nptype): with self.test_session(use_gpu=True): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], opt) expected = np.array(expected_data).reshape(target_shape) resized = y.eval() self.assertAllClose(resized, expected, atol=1e-5) def testResizeUp(self): img_shape = [1, 3, 2, 1] data = [64, 32, 32, 64, 50, 100] target_height = 6 target_width = 4 expected_data = {} expected_data[image_ops.ResizeMethod.BILINEAR] = [ 64.0, 48.0, 32.0, 32.0, 48.0, 48.0, 48.0, 48.0, 32.0, 48.0, 64.0, 64.0, 41.0, 61.5, 82.0, 82.0, 50.0, 75.0, 100.0, 100.0, 50.0, 75.0, 100.0, 100.0] expected_data[image_ops.ResizeMethod.NEAREST_NEIGHBOR] = [ 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0] expected_data[image_ops.ResizeMethod.AREA] = [ 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 32.0, 32.0, 64.0, 64.0, 32.0, 32.0, 64.0, 64.0, 50.0, 50.0, 100.0, 100.0, 50.0, 50.0, 100.0, 100.0] for nptype in self.TYPES: for opt in [ image_ops.ResizeMethod.BILINEAR, image_ops.ResizeMethod.NEAREST_NEIGHBOR, image_ops.ResizeMethod.AREA]: if test.is_gpu_available() and self.shouldRunOnGPU(opt, nptype): with self.test_session(use_gpu=True): img_np = np.array(data, dtype=nptype).reshape(img_shape) image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images( image, [target_height, target_width], opt) resized = y.eval() expected = np.array(expected_data[opt]).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1e-05) def testResizeUpBicubic(self): img_shape = [1, 6, 6, 1] data = [128, 128, 64, 64, 128, 128, 64, 64, 64, 64, 128, 128, 64, 64, 128, 128, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100, 50, 50, 100, 100] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 8 target_width = 8 expected_data = [128, 135, 96, 55, 64, 114, 134, 128, 78, 81, 68, 52, 57, 118, 144, 136, 55, 49, 79, 109, 103, 89, 83, 84, 74, 70, 95, 122, 115, 69, 49, 55, 100, 105, 75, 43, 50, 89, 105, 100, 57, 54, 74, 96, 91, 65, 55, 58, 70, 69, 75, 81, 80, 72, 69, 70, 105, 112, 75, 36, 45, 92, 111, 105] with self.test_session(use_gpu=True): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], image_ops.ResizeMethod.BICUBIC) resized = y.eval() expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) self.assertAllClose(resized, expected, atol=1) def testResizeDownArea(self): img_shape = [1, 6, 6, 1] data = [128, 64, 32, 16, 8, 4, 4, 8, 16, 32, 64, 128, 128, 64, 32, 16, 8, 4, 5, 10, 15, 20, 25, 30, 30, 25, 20, 15, 10, 5, 5, 10, 15, 20, 25, 30] img_np = np.array(data, dtype=np.uint8).reshape(img_shape) target_height = 4 target_width = 4 expected_data = [73, 33, 23, 39, 73, 33, 23, 39, 14, 16, 19, 21, 14, 16, 19, 21] with self.test_session(use_gpu=True): image = constant_op.constant(img_np, shape=img_shape) y = image_ops.resize_images(image, [target_height, target_width], image_ops.ResizeMethod.AREA) expected = np.array(expected_data).reshape( [1, target_height, target_width, 1]) resized = y.eval() self.assertAllClose(resized, expected, atol=1) def testCompareNearestNeighbor(self): if test.is_gpu_available(): input_shape = [1, 5, 6, 3] target_height = 8 target_width = 12 for nptype in [np.float32, np.float64]: for align_corners in [True, False]: img_np = np.arange( 0, np.prod(input_shape), dtype=nptype).reshape(input_shape) with self.test_session(use_gpu=True): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images( image, new_size, image_ops.ResizeMethod.NEAREST_NEIGHBOR, align_corners=align_corners) gpu_val = out_op.eval() with self.test_session(use_gpu=False): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images( image, new_size, image_ops.ResizeMethod.NEAREST_NEIGHBOR, align_corners=align_corners) cpu_val = out_op.eval() self.assertAllClose(cpu_val, gpu_val, rtol=1e-5, atol=1e-5) def testCompareBilinear(self): if test.is_gpu_available(): input_shape = [1, 5, 6, 3] target_height = 8 target_width = 12 for nptype in [np.float32, np.float64]: for align_corners in [True, False]: img_np = np.arange( 0, np.prod(input_shape), dtype=nptype).reshape(input_shape) value = {} for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu): image = constant_op.constant(img_np, shape=input_shape) new_size = constant_op.constant([target_height, target_width]) out_op = image_ops.resize_images( image, new_size, image_ops.ResizeMethod.BILINEAR, align_corners=align_corners) value[use_gpu] = out_op.eval() self.assertAllClose(value[True], value[False], rtol=1e-5, atol=1e-5) def testShapeInference(self): self._assertShapeInference([50, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([55, 66, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 60, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 66, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, 69, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([55, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([59, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([None, None, 3], [55, 66], [55, 66, 3]) self._assertShapeInference([50, 60, None], [55, 66], [55, 66, None]) self._assertShapeInference([55, 66, None], [55, 66], [55, 66, None]) self._assertShapeInference([59, 69, None], [55, 66], [55, 66, None]) self._assertShapeInference([50, 69, None], [55, 66], [55, 66, None]) self._assertShapeInference([59, 60, None], [55, 66], [55, 66, None]) self._assertShapeInference([None, None, None], [55, 66], [55, 66, None]) class ResizeImageWithCropOrPadTest(test_util.TensorFlowTestCase): def _ResizeImageWithCropOrPad(self, x, target_height, target_width, use_tensor_inputs): if use_tensor_inputs: target_height = ops.convert_to_tensor(target_height) target_width = ops.convert_to_tensor(target_width) x_tensor = array_ops.placeholder(x.dtype, shape=[None] * x.ndim) feed_dict = {x_tensor: x} else: x_tensor = x feed_dict = {} y = image_ops.resize_image_with_crop_or_pad(x_tensor, target_height, target_width) if not use_tensor_inputs: self.assertTrue(y.get_shape().is_fully_defined()) with self.test_session(use_gpu=True): return y.eval(feed_dict=feed_dict) def _assertReturns(self, x, x_shape, y, y_shape, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] target_height, target_width, _ = y_shape x = np.array(x).reshape(x_shape) y = np.array(y).reshape(y_shape) for use_tensor_inputs in use_tensor_inputs_options: y_tf = self._ResizeImageWithCropOrPad(x, target_height, target_width, use_tensor_inputs) self.assertAllClose(y, y_tf) def _assertRaises(self, x, x_shape, target_height, target_width, err_msg, use_tensor_inputs_options=None): use_tensor_inputs_options = use_tensor_inputs_options or [False, True] x = np.array(x).reshape(x_shape) for use_tensor_inputs in use_tensor_inputs_options: try: self._ResizeImageWithCropOrPad(x, target_height, target_width, use_tensor_inputs) except Exception as e: if err_msg not in str(e): raise else: raise AssertionError('Exception not raised: %s' % err_msg) def _assertShapeInference(self, pre_shape, height, width, post_shape): image = array_ops.placeholder(dtypes.float32, shape=pre_shape) y = image_ops.resize_image_with_crop_or_pad(image, height, width) self.assertEqual(y.get_shape().as_list(), post_shape) def testNoOp(self): x_shape = [10, 10, 10] x = np.random.uniform(size=x_shape) self._assertReturns(x, x_shape, x, x_shape) def testPad(self): # Pad even along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 1, 2, 3, 4, 0, 0, 5, 6, 7, 8, 0] y_shape = [2, 6, 1] self._assertReturns(x, x_shape, y, y_shape) # Pad odd along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 1, 2, 3, 4, 0, 0, 0, 5, 6, 7, 8, 0, 0] y_shape = [2, 7, 1] self._assertReturns(x, x_shape, y, y_shape) # Pad even along row. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0] y_shape = [4, 4, 1] self._assertReturns(x, x_shape, y, y_shape) # Pad odd along row. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0] y_shape = [5, 4, 1] self._assertReturns(x, x_shape, y, y_shape) def testCrop(self): # Crop even along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [2, 3, 6, 7] y_shape = [2, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop odd along col. x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] x_shape = [2, 6, 1] y = [2, 3, 4, 8, 9, 10] y_shape = [2, 3, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop even along row. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [4, 2, 1] y = [3, 4, 5, 6] y_shape = [2, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop odd along row. x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] x_shape = [8, 2, 1] y = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] y_shape = [5, 2, 1] self._assertReturns(x, x_shape, y, y_shape) def testCropAndPad(self): # Pad along row but crop along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [2, 4, 1] y = [0, 0, 2, 3, 6, 7, 0, 0] y_shape = [4, 2, 1] self._assertReturns(x, x_shape, y, y_shape) # Crop along row but pad along col. x = [1, 2, 3, 4, 5, 6, 7, 8] x_shape = [4, 2, 1] y = [0, 3, 4, 0, 0, 5, 6, 0] y_shape = [2, 4, 1] self._assertReturns(x, x_shape, y, y_shape) def testShapeInference(self): self._assertShapeInference([50, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 60, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 66, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, 69, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([55, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([59, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([None, None, 3], 55, 66, [55, 66, 3]) self._assertShapeInference([50, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([55, 66, None], 55, 66, [55, 66, None]) self._assertShapeInference([59, 69, None], 55, 66, [55, 66, None]) self._assertShapeInference([50, 69, None], 55, 66, [55, 66, None]) self._assertShapeInference([59, 60, None], 55, 66, [55, 66, None]) self._assertShapeInference([None, None, None], 55, 66, [55, 66, None]) self._assertShapeInference(None, 55, 66, [55, 66, None]) def testNon3DInput(self): # Input image is not 3D x = [0] * 15 target_height, target_width = [4, 4] for x_shape in ([1, 3, 5, 1], [3, 5]): self._assertRaises(x, x_shape, target_height, target_width, "'image' must be three-dimensional") def testZeroLengthInput(self): # Input image has 0-length dimension(s). target_height, target_width = [1, 1] x = [] for x_shape in ([0, 2, 2], [2, 0, 2], [2, 2, 0]): self._assertRaises( x, x_shape, target_height, target_width, "all dims of 'image.shape' must be > 0", use_tensor_inputs_options=[False]) # The orignal error message does not contain back slashes. However, they # are added by either the assert op or the runtime. If this behaviour # changes in the future, the match string will also needs to be changed. self._assertRaises( x, x_shape, target_height, target_width, "all dims of \\'image.shape\\' must be > 0", use_tensor_inputs_options=[True]) def testBadParams(self): x_shape = [4, 4, 1] x = np.zeros(x_shape) # target_height <= 0 target_height, target_width = [0, 5] self._assertRaises(x, x_shape, target_height, target_width, 'target_height must be > 0') # target_width <= 0 target_height, target_width = [5, 0] self._assertRaises(x, x_shape, target_height, target_width, 'target_width must be > 0') def _SimpleColorRamp(): """Build a simple color ramp RGB image.""" w, h = 256, 200 i = np.arange(h)[:, None] j = np.arange(w) image = np.empty((h, w, 3), dtype=np.uint8) image[:, :, 0] = i image[:, :, 1] = j image[:, :, 2] = (i + j) >> 1 return image class JpegTest(test_util.TensorFlowTestCase): # TODO(irving): Add self.assertAverageLess or similar to test_util def averageError(self, image0, image1): self.assertEqual(image0.shape, image1.shape) image0 = image0.astype(int) # Avoid overflow return np.abs(image0 - image1).sum() / np.prod(image0.shape) def testExisting(self): # Read a real jpeg and verify shape path = ('tensorflow/core/lib/jpeg/testdata/' 'jpeg_merge_test1.jpg') with self.test_session(use_gpu=True) as sess: jpeg0 = io_ops.read_file(path) image0 = image_ops.decode_jpeg(jpeg0) image1 = image_ops.decode_jpeg(image_ops.encode_jpeg(image0)) jpeg0, image0, image1 = sess.run([jpeg0, image0, image1]) self.assertEqual(len(jpeg0), 3771) self.assertEqual(image0.shape, (256, 128, 3)) self.assertLess(self.averageError(image0, image1), 1.4) def testCmyk(self): # Confirm that CMYK reads in as RGB base = 'tensorflow/core/lib/jpeg/testdata' rgb_path = os.path.join(base, 'jpeg_merge_test1.jpg') cmyk_path = os.path.join(base, 'jpeg_merge_test1_cmyk.jpg') shape = 256, 128, 3 for channels in 3, 0: with self.test_session(use_gpu=True) as sess: rgb = image_ops.decode_jpeg( io_ops.read_file(rgb_path), channels=channels) cmyk = image_ops.decode_jpeg( io_ops.read_file(cmyk_path), channels=channels) rgb, cmyk = sess.run([rgb, cmyk]) self.assertEqual(rgb.shape, shape) self.assertEqual(cmyk.shape, shape) error = self.averageError(rgb, cmyk) self.assertLess(error, 4) def testSynthetic(self): with self.test_session(use_gpu=True) as sess: # Encode it, then decode it, then encode it image0 = constant_op.constant(_SimpleColorRamp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0, dct_method='INTEGER_ACCURATE') image2 = image_ops.decode_jpeg( image_ops.encode_jpeg(image1), dct_method='INTEGER_ACCURATE') jpeg0, image0, image1, image2 = sess.run([jpeg0, image0, image1, image2]) # The decoded-encoded image should be similar to the input self.assertLess(self.averageError(image0, image1), 0.6) # We should be very close to a fixpoint self.assertLess(self.averageError(image1, image2), 0.02) # Smooth ramps compress well (input size is 153600) self.assertGreaterEqual(len(jpeg0), 5000) self.assertLessEqual(len(jpeg0), 6000) def testSyntheticFasterAlgorithm(self): with self.test_session(use_gpu=True) as sess: # Encode it, then decode it, then encode it image0 = constant_op.constant(_SimpleColorRamp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0, dct_method='INTEGER_FAST') image2 = image_ops.decode_jpeg( image_ops.encode_jpeg(image1), dct_method='INTEGER_FAST') jpeg0, image0, image1, image2 = sess.run([jpeg0, image0, image1, image2]) # The decoded-encoded image should be similar to the input, but # note this is worse than the slower algorithm because it is # less accurate. self.assertLess(self.averageError(image0, image1), 0.95) # Repeated compression / decompression will have a higher error # with a lossier algorithm. self.assertLess(self.averageError(image1, image2), 1.05) # Smooth ramps compress well (input size is 153600) self.assertGreaterEqual(len(jpeg0), 5000) self.assertLessEqual(len(jpeg0), 6000) def testDefaultDCTMethodIsIntegerFast(self): with self.test_session(use_gpu=True) as sess: # Compare decoding with both dct_option=INTEGER_FAST and # default. They should be the same. image0 = constant_op.constant(_SimpleColorRamp()) jpeg0 = image_ops.encode_jpeg(image0) image1 = image_ops.decode_jpeg(jpeg0, dct_method='INTEGER_FAST') image2 = image_ops.decode_jpeg(jpeg0) image1, image2 = sess.run([image1, image2]) # The images should be the same. self.assertAllClose(image1, image2) def testShape(self): with self.test_session(use_gpu=True) as sess: jpeg = constant_op.constant('nonsense') for channels in 0, 1, 3: image = image_ops.decode_jpeg(jpeg, channels=channels) self.assertEqual(image.get_shape().as_list(), [None, None, channels or None]) class PngTest(test_util.TensorFlowTestCase): def testExisting(self): # Read some real PNGs, converting to different channel numbers prefix = 'tensorflow/core/lib/png/testdata/' inputs = (1, 'lena_gray.png'), (4, 'lena_rgba.png') for channels_in, filename in inputs: for channels in 0, 1, 3, 4: with self.test_session(use_gpu=True) as sess: png0 = io_ops.read_file(prefix + filename) image0 = image_ops.decode_png(png0, channels=channels) png0, image0 = sess.run([png0, image0]) self.assertEqual(image0.shape, (26, 51, channels or channels_in)) if channels == channels_in: image1 = image_ops.decode_png(image_ops.encode_png(image0)) self.assertAllEqual(image0, image1.eval()) def testSynthetic(self): with self.test_session(use_gpu=True) as sess: # Encode it, then decode it image0 = constant_op.constant(_SimpleColorRamp()) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0) png0, image0, image1 = sess.run([png0, image0, image1]) # PNG is lossless self.assertAllEqual(image0, image1) # Smooth ramps compress well, but not too well self.assertGreaterEqual(len(png0), 400) self.assertLessEqual(len(png0), 750) def testSyntheticUint16(self): with self.test_session(use_gpu=True) as sess: # Encode it, then decode it image0 = constant_op.constant(_SimpleColorRamp(), dtype=dtypes.uint16) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0, dtype=dtypes.uint16) png0, image0, image1 = sess.run([png0, image0, image1]) # PNG is lossless self.assertAllEqual(image0, image1) # Smooth ramps compress well, but not too well self.assertGreaterEqual(len(png0), 800) self.assertLessEqual(len(png0), 1500) def testSyntheticTwoChannel(self): with self.test_session(use_gpu=True) as sess: # Strip the b channel from an rgb image to get a two-channel image. gray_alpha = _SimpleColorRamp()[:, :, 0:2] image0 = constant_op.constant(gray_alpha) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0) png0, image0, image1 = sess.run([png0, image0, image1]) self.assertEqual(2, image0.shape[-1]) self.assertAllEqual(image0, image1) def testSyntheticTwoChannelUint16(self): with self.test_session(use_gpu=True) as sess: # Strip the b channel from an rgb image to get a two-channel image. gray_alpha = _SimpleColorRamp()[:, :, 0:2] image0 = constant_op.constant(gray_alpha, dtype=dtypes.uint16) png0 = image_ops.encode_png(image0, compression=7) image1 = image_ops.decode_png(png0, dtype=dtypes.uint16) png0, image0, image1 = sess.run([png0, image0, image1]) self.assertEqual(2, image0.shape[-1]) self.assertAllEqual(image0, image1) def testShape(self): with self.test_session(use_gpu=True): png = constant_op.constant('nonsense') for channels in 0, 1, 3: image = image_ops.decode_png(png, channels=channels) self.assertEqual(image.get_shape().as_list(), [None, None, channels or None]) class GifTest(test_util.TensorFlowTestCase): def testValid(self): # Read some real GIFs prefix = 'tensorflow/core/lib/gif/testdata/' filename = 'scan.gif' WIDTH = 20 HEIGHT = 40 STRIDE = 5 shape = (12, HEIGHT, WIDTH, 3) with self.test_session(use_gpu=True) as sess: gif0 = io_ops.read_file(prefix + filename) image0 = image_ops.decode_gif(gif0) gif0, image0 = sess.run([gif0, image0]) self.assertEqual(image0.shape, shape) for frame_idx, frame in enumerate(image0): gt = np.zeros(shape[1:], dtype=np.uint8) start = frame_idx * STRIDE end = (frame_idx + 1) * STRIDE print(frame_idx) if end <= WIDTH: gt[:, start:end, :] = 255 else: start -= WIDTH end -= WIDTH gt[start:end, :, :] = 255 self.assertAllClose(frame, gt) def testInValid(self): # Read some real GIFs prefix = 'tensorflow/core/lib/gif/testdata/' filename = 'optimized.gif' with self.test_session(use_gpu=True) as sess: gif0 = io_ops.read_file(prefix + filename) image0 = image_ops.decode_gif(gif0) with self.assertRaises(errors.InvalidArgumentError): gif0, image0 = sess.run([gif0, image0]) def testShape(self): with self.test_session(use_gpu=True) as sess: gif = constant_op.constant('nonsense') image = image_ops.decode_gif(gif) self.assertEqual(image.get_shape().as_list(), [None, None, None, 3]) class ConvertImageTest(test_util.TensorFlowTestCase): def _convert(self, original, original_dtype, output_dtype, expected): x_np = np.array(original, dtype=original_dtype.as_numpy_dtype()) y_np = np.array(expected, dtype=output_dtype.as_numpy_dtype()) with self.test_session(use_gpu=True): image = constant_op.constant(x_np) y = image_ops.convert_image_dtype(image, output_dtype) self.assertTrue(y.dtype == output_dtype) self.assertAllClose(y.eval(), y_np, atol=1e-5) def testNoConvert(self): # Make sure converting to the same data type creates only an identity op with self.test_session(use_gpu=True): image = constant_op.constant([1], dtype=dtypes.uint8) image_ops.convert_image_dtype(image, dtypes.uint8) y = image_ops.convert_image_dtype(image, dtypes.uint8) self.assertEquals(y.op.type, 'Identity') self.assertEquals(y.op.inputs[0], image) def testConvertBetweenInteger(self): # Make sure converting to between integer types scales appropriately with self.test_session(use_gpu=True): self._convert([0, 255], dtypes.uint8, dtypes.int16, [0, 255 * 128]) self._convert([0, 32767], dtypes.int16, dtypes.uint8, [0, 255]) def testConvertBetweenFloat(self): # Make sure converting to between float types does nothing interesting with self.test_session(use_gpu=True): self._convert([-1.0, 0, 1.0, 200000], dtypes.float32, dtypes.float64, [-1.0, 0, 1.0, 200000]) self._convert([-1.0, 0, 1.0, 200000], dtypes.float64, dtypes.float32, [-1.0, 0, 1.0, 200000]) def testConvertBetweenIntegerAndFloat(self): # Make sure converting from and to a float type scales appropriately with self.test_session(use_gpu=True): self._convert([0, 1, 255], dtypes.uint8, dtypes.float32, [0, 1.0 / 255.0, 1]) self._convert([0, 1.1 / 255.0, 1], dtypes.float32, dtypes.uint8, [0, 1, 255]) def testConvertBetweenInt16AndInt8(self): with self.test_session(use_gpu=True): # uint8, uint16 self._convert([0, 255 * 256], dtypes.uint16, dtypes.uint8, [0, 255]) self._convert([0, 255], dtypes.uint8, dtypes.uint16, [0, 255 * 256]) # int8, uint16 self._convert([0, 127 * 2 * 256], dtypes.uint16, dtypes.int8, [0, 127]) self._convert([0, 127], dtypes.int8, dtypes.uint16, [0, 127 * 2 * 256]) # int16, uint16 self._convert([0, 255 * 256], dtypes.uint16, dtypes.int16, [0, 255 * 128]) self._convert([0, 255 * 128], dtypes.int16, dtypes.uint16, [0, 255 * 256]) class TotalVariationTest(test_util.TensorFlowTestCase): """Tests the function total_variation() in image_ops. We test a few small handmade examples, as well as some larger examples using an equivalent numpy implementation of the total_variation() function. We do NOT test for overflows and invalid / edge-case arguments. """ def _test(self, x_np, y_np): """Test that the TensorFlow implementation of total_variation(x_np) calculates the values in y_np. Note that these may be float-numbers so we only test for approximate equality within some narrow error-bound. """ # Create a TensorFlow session. with self.test_session(use_gpu=True): # Add a constant to the TensorFlow graph that holds the input. x_tf = constant_op.constant(x_np, shape=x_np.shape) # Add ops for calculating the total variation using TensorFlow. y = image_ops.total_variation(images=x_tf) # Run the TensorFlow session to calculate the result. y_tf = y.eval() # Assert that the results are as expected within # some small error-bound in case they are float-values. self.assertAllClose(y_tf, y_np) def _total_variation_np(self, x_np): """Calculate the total variation of x_np using numpy. This implements the same function as TensorFlow but using numpy instead. Args: x_np: Numpy array with 3 or 4 dimensions. """ dim = len(x_np.shape) if dim == 3: # Calculate differences for neighboring pixel-values using slices. dif1 = x_np[1:, :, :] - x_np[:-1, :, :] dif2 = x_np[:, 1:, :] - x_np[:, :-1, :] # Sum for all axis. sum_axis = None elif dim == 4: # Calculate differences for neighboring pixel-values using slices. dif1 = x_np[:, 1:, :, :] - x_np[:, :-1, :, :] dif2 = x_np[:, :, 1:, :] - x_np[:, :, :-1, :] # Only sum for the last 3 axis. sum_axis = (1, 2, 3) else: # This should not occur in this test-code. pass tot_var = np.sum(np.abs(dif1), axis=sum_axis) + \ np.sum(np.abs(dif2), axis=sum_axis) return tot_var def _test_tensorflow_vs_numpy(self, x_np): """Test the TensorFlow implementation against a numpy implementation. Args: x_np: Numpy array with 3 or 4 dimensions. """ # Calculate the y-values using the numpy implementation. y_np = self._total_variation_np(x_np) self._test(x_np, y_np) def _generateArray(self, shape): """Generate an array of the given shape for use in testing. The numbers are calculated as the cumulative sum, which causes the difference between neighboring numbers to vary.""" # Flattened length of the array. flat_len = np.prod(shape) a = np.array(range(flat_len), dtype=int) a = np.cumsum(a) a = a.reshape(shape) return a def testTotalVariationNumpy(self): """Test the TensorFlow implementation against a numpy implementation. The two implementations are very similar so it is possible that both have the same bug, which would not be detected by this test. It is therefore necessary to test with manually crafted data as well.""" # Generate a test-array. # This is an 'image' with 100x80 pixels and 3 color channels. a = self._generateArray(shape=(100, 80, 3)) # Test the TensorFlow implementation vs. numpy implementation. # We use a numpy implementation to check the results that are # calculated using TensorFlow are correct. self._test_tensorflow_vs_numpy(a) self._test_tensorflow_vs_numpy(a + 1) self._test_tensorflow_vs_numpy(-a) self._test_tensorflow_vs_numpy(1.1 * a) # Expand to a 4-dim array. b = a[np.newaxis, :] # Combine several variations of the image into a single 4-dim array. multi = np.vstack((b, b + 1, -b, 1.1 * b)) # Test that the TensorFlow function can also handle 4-dim arrays. self._test_tensorflow_vs_numpy(multi) def testTotalVariationHandmade(self): """Test the total variation for a few handmade examples.""" # We create an image that is 2x2 pixels with 3 color channels. # The image is very small so we can check the result by hand. # Red color channel. # The following are the sum of absolute differences between the pixels. # sum row dif = (4-1) + (7-2) = 3 + 5 = 8 # sum col dif = (2-1) + (7-4) = 1 + 3 = 4 r = [[1, 2], [4, 7]] # Blue color channel. # sum row dif = 18 + 29 = 47 # sum col dif = 7 + 18 = 25 g = [[11, 18], [29, 47]] # Green color channel. # sum row dif = 120 + 193 = 313 # sum col dif = 47 + 120 = 167 b = [[73, 120], [193, 313]] # Combine the 3 color channels into a single 3-dim array. # The shape is (2, 2, 3) corresponding to (height, width and color). a = np.dstack((r, g, b)) # Total variation for this image. # Sum of all pixel differences = 8 + 4 + 47 + 25 + 313 + 167 = 564 tot_var = 564 # Calculate the total variation using TensorFlow and assert it is correct. self._test(a, tot_var) # If we add 1 to all pixel-values then the total variation is unchanged. self._test(a + 1, tot_var) # If we negate all pixel-values then the total variation is unchanged. self._test(-a, tot_var) # Scale the pixel-values by a float. This scales the total variation as well. b = 1.1 * a self._test(b, 1.1 * tot_var) # Scale by another float. c = 1.2 * a self._test(c, 1.2 * tot_var) # Combine these 3 images into a single array of shape (3, 2, 2, 3) # where the first dimension is for the image-number. multi = np.vstack((a[np.newaxis, :], b[np.newaxis, :], c[np.newaxis, :])) # Check that TensorFlow correctly calculates the total variation # for each image individually and returns the correct array. self._test(multi, tot_var * np.array([1.0, 1.1, 1.2])) if __name__ == '__main__': googletest.main()
strint/tensorflow
tensorflow/python/ops/image_ops_test.py
Python
apache-2.0
100,652
import logging from bs4 import BeautifulSoup as BS class ResponseParser(object): #def __init__(self): # print('nothing') """ Attempt to write a generic parser for the perverted, non-uniformed html tables. Works with the following URLs """ def generic_parse(self, html_code): ### TODO write data to backend instead into debug messages soup = BS(html_code) tables = soup.find_all('table') for table in tables: table_name = table.get('summary') logging.debug('Table Name is ""%s"', table_name) # TODO parse thead and tfoot for description trs = table.find('thead').find_all('tr') logging.debug('More captions: ') for tr in trs: ths = tr.find_all('th') for th in ths: logging.debug(' ** TH: %s', th.contents[0].strip()) trs = table.find('tbody').find_all('tr') for tr in trs: th = tr.find('th') logging.debug('- TH: %s',th.contents[0].strip()) tds = tr.find_all('td') for td in tds: logging.debug(' ** TD: %s', td.contents[0].strip()) def parse_average_age(self, html_code): self.generic_parse(html_code)
UlmApi/bw-srdb-parser
lib/ResponseParser.py
Python
mit
1,327
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from docutils import nodes from docutils.parsers.rst import Directive from sphinx import addnodes from sphinx.domains import Domain from sphinx.domains import Index from sphinx.domains import ObjType from sphinx.roles import XRefRole from sphinx.util import logging from sphinx.util import ws_re from sphinx.util.docfields import DocFieldTransformer from sphinx.util.docfields import Field from sphinx.util.docfields import TypedField from sphinx.util.nodes import make_refnode logger = logging.getLogger(__name__) class BBRefTargetDirective(Directive): """ A directive that can be a target for references. Attributes: @cvar ref_type: same as directive name @cvar indextemplates: templates for main index entries, if any """ has_content = False name_annotation = None required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = {} domain = 'bb' doc_field_types = [] def get_field_type_map(self): # This is the same as DocFieldTransformer.preprocess_fieldtype which got removed in # Sphinx 4.0 typemap = {} for fieldtype in self.doc_field_types: for name in fieldtype.names: typemap[name] = fieldtype, False if fieldtype.is_typed: for name in fieldtype.typenames: typemap[name] = fieldtype, True return typemap def run(self): self.env = env = self.state.document.settings.env # normalize whitespace in fullname like XRefRole does fullname = ws_re.sub(' ', self.arguments[0].strip()) targetname = '{}-{}'.format(self.ref_type, fullname) # keep the target; this may be used to generate a BBIndex later targets = env.domaindata['bb']['targets'].setdefault(self.ref_type, {}) targets[fullname] = env.docname, targetname # make up the descriptor: a target and potentially an index descriptor node = nodes.target('', '', ids=[targetname]) ret = [node] # add the target to the document self.state.document.note_explicit_target(node) # append the index node if necessary entries = [] for tpl in self.indextemplates: colon = tpl.find(':') if colon != -1: indextype = tpl[:colon].strip() indexentry = tpl[colon + 1:].strip() % (fullname,) else: indextype = 'single' indexentry = tpl % (fullname,) entries.append( (indextype, indexentry, targetname, targetname, None)) if entries: inode = addnodes.index(entries=entries) ret.insert(0, inode) # if the node has content, set up a signature and parse the content if self.has_content: descnode = addnodes.desc() descnode['domain'] = 'bb' descnode['objtype'] = self.ref_type descnode['noindex'] = True signode = addnodes.desc_signature(fullname, '') if self.name_annotation: annotation = "{} ".format(self.name_annotation) signode += addnodes.desc_annotation(annotation, annotation) signode += addnodes.desc_name(fullname, fullname) descnode += signode contentnode = addnodes.desc_content() self.state.nested_parse(self.content, 0, contentnode) DocFieldTransformer(self).transform_all(contentnode) descnode += contentnode ret.append(descnode) return ret @classmethod def resolve_ref(cls, domain, env, fromdocname, builder, typ, target, node, contnode): """ Resolve a reference to a directive of this class """ targets = domain.data['targets'].get(cls.ref_type, {}) try: todocname, targetname = targets[target] except KeyError: env.warn(fromdocname, "Missing BB reference: bb:{}:{}".format(cls.ref_type, target), node.line) return None return make_refnode(builder, fromdocname, todocname, targetname, contnode, target) def make_ref_target_directive(ref_type, indextemplates=None, **kwargs): """ Create and return a L{BBRefTargetDirective} subclass. """ class_vars = dict(ref_type=ref_type, indextemplates=indextemplates) class_vars.update(kwargs) return type("BB{}RefTargetDirective".format(ref_type.capitalize()), (BBRefTargetDirective,), class_vars) class BBIndex(Index): """ A Buildbot-specific index. @cvar name: same name as the directive and xref role @cvar localname: name of the index document """ def generate(self, docnames=None): content = {} idx_targets = self.domain.data['targets'].get(self.name, {}) for name, (docname, targetname) in idx_targets.items(): letter = name[0].upper() content.setdefault(letter, []).append( (name, 0, docname, targetname, '', '', '')) content = [(l, sorted(content[l], key=lambda tup: tup[0].lower())) for l in sorted(content.keys())] return (content, False) @classmethod def resolve_ref(cls, domain, env, fromdocname, builder, typ, target, node, contnode): """ Resolve a reference to an index to the document containing the index, using the index's C{localname} as the content of the link. """ # indexes appear to be automatically generated at doc DOMAIN-NAME todocname = "bb-{}".format(target) node = nodes.reference('', '', internal=True) node['refuri'] = builder.get_relative_uri(fromdocname, todocname) node['reftitle'] = cls.localname node.append(nodes.emphasis(cls.localname, cls.localname)) return node def make_index(name, localname): """ Create and return a L{BBIndex} subclass, for use in the domain's C{indices} """ return type("BB{}Index".format(name.capitalize()), (BBIndex,), dict(name=name, localname=localname)) class BBDomain(Domain): name = 'bb' label = 'Buildbot' object_types = { 'cfg': ObjType('cfg', 'cfg'), 'sched': ObjType('sched', 'sched'), 'chsrc': ObjType('chsrc', 'chsrc'), 'step': ObjType('step', 'step'), 'reporter': ObjType('reporter', 'reporter'), 'configurator': ObjType('configurator', 'configurator'), 'worker': ObjType('worker', 'worker'), 'cmdline': ObjType('cmdline', 'cmdline'), 'msg': ObjType('msg', 'msg'), 'event': ObjType('event', 'event'), 'rtype': ObjType('rtype', 'rtype'), 'rpath': ObjType('rpath', 'rpath'), 'raction': ObjType('raction', 'raction'), } directives = { 'cfg': make_ref_target_directive('cfg', indextemplates=[ 'single: Buildmaster Config; %s', 'single: %s (Buildmaster Config)', ]), 'sched': make_ref_target_directive('sched', indextemplates=[ 'single: Schedulers; %s', 'single: %s Scheduler', ]), 'chsrc': make_ref_target_directive('chsrc', indextemplates=[ 'single: Change Sources; %s', 'single: %s Change Source', ]), 'step': make_ref_target_directive('step', indextemplates=[ 'single: Build Steps; %s', 'single: %s Build Step', ]), 'reporter': make_ref_target_directive('reporter', indextemplates=[ 'single: Reporter Targets; %s', 'single: %s Reporter Target', ]), 'configurator': make_ref_target_directive('configurator', indextemplates=[ 'single: Configurators; %s', 'single: %s Configurators', ]), 'worker': make_ref_target_directive('worker', indextemplates=[ 'single: Build Workers; %s', 'single: %s Build Worker', ]), 'cmdline': make_ref_target_directive('cmdline', indextemplates=[ 'single: Command Line Subcommands; %s', 'single: %s Command Line Subcommand', ]), 'msg': make_ref_target_directive('msg', indextemplates=[ 'single: Message Schema; %s', ], has_content=True, name_annotation='routing key:', doc_field_types=[ TypedField('key', label='Keys', names=('key',), typenames=('type',), can_collapse=True), Field('var', label='Variable', names=('var',)), ]), 'event': make_ref_target_directive('event', indextemplates=[ 'single: event; %s', ], has_content=True, name_annotation='event:', doc_field_types=[ ]), 'rtype': make_ref_target_directive('rtype', indextemplates=[ 'single: Resource Type; %s', ], has_content=True, name_annotation='resource type:', doc_field_types=[ TypedField('attr', label='Attributes', names=('attr',), typenames=('type',), can_collapse=True), ]), 'rpath': make_ref_target_directive('rpath', indextemplates=[ 'single: Resource Path; %s', ], name_annotation='path:', has_content=True, doc_field_types=[ TypedField('pathkey', label='Path Keys', names=('pathkey',), typenames=('type',), can_collapse=True), ]), 'raction': make_ref_target_directive('raction', indextemplates=[ 'single: Resource Action; %s', ], name_annotation='POST with method:', has_content=True, doc_field_types=[ TypedField('body', label='Body keys', names=('body',), typenames=('type',), can_collapse=True), ]), } roles = { 'cfg': XRefRole(), 'sched': XRefRole(), 'chsrc': XRefRole(), 'step': XRefRole(), 'reporter': XRefRole(), 'configurator': XRefRole(), 'worker': XRefRole(), 'cmdline': XRefRole(), 'msg': XRefRole(), 'event': XRefRole(), 'rtype': XRefRole(), 'rpath': XRefRole(), 'index': XRefRole() } initial_data = { 'targets': {}, # type -> target -> (docname, targetname) } indices = [ make_index("cfg", "Buildmaster Configuration Index"), make_index("sched", "Scheduler Index"), make_index("chsrc", "Change Source Index"), make_index("step", "Build Step Index"), make_index("reporter", "Reporter Target Index"), make_index("configurator", "Configurator Target Index"), make_index("worker", "Build Worker Index"), make_index("cmdline", "Command Line Index"), make_index("msg", "MQ Routing Key Index"), make_index("event", "Data API Event Index"), make_index("rtype", "REST/Data API Resource Type Index"), make_index("rpath", "REST/Data API Path Index"), make_index("raction", "REST/Data API Actions Index"), ] def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): if typ == 'index': for idx in self.indices: if idx.name == target: break else: raise KeyError("no index named '{}'".format(target)) return idx.resolve_ref(self, env, fromdocname, builder, typ, target, node, contnode) elif typ in self.directives: dir = self.directives[typ] return dir.resolve_ref(self, env, fromdocname, builder, typ, target, node, contnode) def merge_domaindata(self, docnames, otherdata): for typ in self.object_types: if typ not in otherdata['targets']: continue if typ not in self.data['targets']: self.data['targets'][typ] = otherdata['targets'][typ] continue self_data = self.data['targets'][typ] other_data = otherdata['targets'][typ] for target_name, target_data in other_data.items(): if target_name in self_data: # for some reason we end up with multiple references to the same things in # multiple domains. If both instances point to the same location, ignore it, # otherwise issue a warning. if other_data[target_name] == self_data[target_name]: continue self_path = '{0}#{1}'.format(self.env.doc2path(self_data[target_name][0]), self_data[target_name][1]) other_path = '{0}#{1}'.format(self.env.doc2path(other_data[target_name][0]), other_data[target_name][1]) logger.warning(('Duplicate index {} reference {} in {}, ' 'other instance in {}').format(typ, target_name, self_path, other_path)) else: self_data[target_name] = target_data def setup(app): app.add_domain(BBDomain) return {'parallel_read_safe': True, 'parallel_write_safe': True}
anish/buildbot
master/docs/bbdocs/ext.py
Python
gpl-2.0
17,319
from base import * DEBUG = True TEMPLATE_DEBUG = DEBUG DATABASES = { "default": { "ENGINE": "django.db.backends.postgresql_psycopg2", "NAME": "bakehouse", "USER": "", "PASSWORD": "", "HOST": "localhost", "PORT": "", } } BROKER_URL = 'amqp://guest:guest@localhost:5672/' GITHUB_PRIVATE_KEY = '/tmp/tmp_rsa'
rollstudio/djangodash-2013
bakehouse/settings/patrick_local.py
Python
mit
366
# Copyright (c) 2013 Alan McIntyre import urllib import hashlib import hmac import warnings from datetime import datetime import common class TradeAccountInfo(object): '''An instance of this class will be returned by a successful call to TradeAPI.getInfo.''' def __init__(self, info): funds = info.get(u'funds') for c in common.all_currencies: setattr(self, "balance_%s" % c, funds.get(unicode(c), 0)) self.open_orders = info.get(u'open_orders') self.server_time = datetime.fromtimestamp(info.get(u'server_time')) self.transaction_count = info.get(u'transaction_count') rights = info.get(u'rights') self.info_rights = (rights.get(u'info') == 1) self.withdraw_rights = (rights.get(u'withdraw') == 1) self.trade_rights = (rights.get(u'trade') == 1) class TransactionHistoryItem(object): '''A list of instances of this class will be returned by a successful call to TradeAPI.transHistory.''' def __init__(self, transaction_id, info): self.transaction_id = transaction_id items = ("type", "amount", "currency", "desc", "status", "timestamp") for n in items: setattr(self, n, info.get(n)) self.timestamp = datetime.fromtimestamp(self.timestamp) class TradeHistoryItem(object): '''A list of instances of this class will be returned by a successful call to TradeAPI.tradeHistory.''' def __init__(self, transaction_id, info): self.transaction_id = transaction_id items = ("pair", "type", "amount", "rate", "order_id", "is_your_order", "timestamp") for n in items: setattr(self, n, info.get(n)) self.timestamp = datetime.fromtimestamp(self.timestamp) class OrderItem(object): '''A list of instances of this class will be returned by a successful call to TradeAPI.orderList.''' def __init__(self, order_id, info): self.order_id = int(order_id) for n in ("pair", "type", "amount", "rate", "timestamp_created", "status"): setattr(self, n, info.get(n)) self.timestamp_created = datetime.fromtimestamp(self.timestamp_created) class TradeResult(object): '''An instance of this class will be returned by a successful call to TradeAPI.trade.''' def __init__(self, info): self.received = info.get(u"received") self.remains = info.get(u"remains") self.order_id = info.get(u"order_id") funds = info.get(u'funds') for c in common.all_currencies: setattr(self, "balance_%s" % c, funds.get(unicode(c), 0)) class CancelOrderResult(object): '''An instance of this class will be returned by a successful call to TradeAPI.cancelOrder.''' def __init__(self, info): self.order_id = info.get(u"order_id") funds = info.get(u'funds') for c in common.all_currencies: setattr(self, "balance_%s" % c, funds.get(unicode(c), 0)) def setHistoryParams(params, from_number, count_number, from_id, end_id, order, since, end): if from_number is not None: params["from"] = "%d" % from_number if count_number is not None: params["count"] = "%d" % count_number if from_id is not None: params["from_id"] = "%d" % from_id if end_id is not None: params["end_id"] = "%d" % end_id if order is not None: if order not in ("ASC", "DESC"): raise Exception("Unexpected order parameter: %r" % order) params["order"] = order if since is not None: params["since"] = "%d" % since if end is not None: params["end"] = "%d" % end class TradeAPI(object): def __init__(self, key, secret = None, nonce = 1, handler=None): self.key = key self.handler = handler if self.handler is None: #warnings.warn("Using TradeAPI without a key handler will be deprecated soon.") self.secret = secret self.nonce = nonce else: # When a handler is given, use it to obtain the secret. self.secret = handler.getSecret(key) def next_nonce(self): # If the handler is available, use that for if self.handler is not None: return self.handler.getNextNonce(self.key) n = self.nonce self.nonce += 1 return n def _post(self, params): params["nonce"] = self.next_nonce() encoded_params = urllib.urlencode(params) # Hash the params string to produce the Sign header value H = hmac.new(self.secret, digestmod=hashlib.sha512) H.update(encoded_params) sign = H.hexdigest() headers = {"Key":self.key, "Sign":sign} result = common.makeJSONRequest("/tapi", headers, encoded_params) success = result.get(u'success') if not success: if "method" in params: raise Exception("%s call failed with error: %s" \ % (params["method"], result.get(u'error'))) raise Exception("Call failed with error: %s" % result.get(u'error')) if u'return' not in result: raise Exception("Response does not contain a 'return' item.") return result.get(u'return') def getInfo(self): params = {"method":"getInfo"} return TradeAccountInfo(self._post(params)) def transHistory(self, from_number = None, count_number = None, from_id = None, end_id = None, order = "DESC", since = None, end = None): params = {"method":"TransHistory"} setHistoryParams(params, from_number, count_number, from_id, end_id, order, since, end) orders = self._post(params) result = [] for k, v in orders.items(): result.append(TransactionHistoryItem(int(k), v)) # We have to sort items here because the API returns a dict if "ASC" == order: result.sort(key=lambda a: a.transaction_id, reverse=False) elif "DESC" == order: result.sort(key=lambda a: a.transaction_id, reverse=True) return result def tradeHistory(self, from_number = None, count_number = None, from_id = None, end_id = None, order = None, since = None, end = None, pair = None): params = {"method":"TradeHistory"} setHistoryParams(params, from_number, count_number, from_id, end_id, order, since, end) if pair is not None: common.validatePair(pair) params["pair"] = pair orders = self._post(params) result = [] for k, v in orders.items(): result.append(TradeHistoryItem(k, v)) return result def orderList(self, from_number = None, count_number = None, from_id = None, end_id = None, order = None, since = None, end = None, pair = None, active = None): params = {"method":"OrderList"} setHistoryParams(params, from_number, count_number, from_id, end_id, order, since, end) if pair is not None: common.validatePair(pair) params["pair"] = pair if active is not None: if active not in (0, 1, True, False): raise Exception("Unexpected active parameter: %r" % active) params["active"] = int(active) orders = self._post(params) result = [] for k, v in orders.items(): result.append(OrderItem(k, v)) return result def trade(self, pair, trade_type, rate, amount): common.validatePair(pair) if trade_type not in ("buy", "sell"): raise Exception("Unrecognized trade type: %r" % trade_type) params = {"method":"Trade", "pair":pair, "type":trade_type, "rate":common.formatCurrency(rate, pair), "amount":common.formatCurrency(amount, pair)} return TradeResult(self._post(params)) def cancelOrder(self, order_id): params = {"method":"CancelOrder", "order_id":order_id} return CancelOrderResult(self._post(params))
dashscar/btc-e_Trade_bot
btceapi/btceapi/trade.py
Python
mit
8,660
import json from decimal import Decimal from jwt.algorithms import Algorithm from jwt.api_jws import PyJWS from jwt.exceptions import ( DecodeError, InvalidAlgorithmError, InvalidSignatureError, InvalidTokenError ) from jwt.utils import base64url_decode, force_bytes, force_unicode import pytest from .compat import string_types, text_type try: from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.serialization import ( load_pem_private_key, load_pem_public_key, load_ssh_public_key ) has_crypto = True except ImportError: has_crypto = False @pytest.fixture def jws(): return PyJWS() @pytest.fixture def payload(): """ Creates a sample jws claimset for use as a payload during tests """ return force_bytes('hello world') class TestJWS: def test_register_algo_does_not_allow_duplicate_registration(self, jws): jws.register_algorithm('AAA', Algorithm()) with pytest.raises(ValueError): jws.register_algorithm('AAA', Algorithm()) def test_register_algo_rejects_non_algorithm_obj(self, jws): with pytest.raises(TypeError): jws.register_algorithm('AAA123', {}) def test_unregister_algo_removes_algorithm(self, jws): supported = jws.get_algorithms() assert 'none' in supported assert 'HS256' in supported jws.unregister_algorithm('HS256') supported = jws.get_algorithms() assert 'HS256' not in supported def test_unregister_algo_throws_error_if_not_registered(self, jws): with pytest.raises(KeyError): jws.unregister_algorithm('AAA') def test_algo_parameter_removes_alg_from_algorithms_list(self, jws): assert 'none' in jws.get_algorithms() assert 'HS256' in jws.get_algorithms() jws = PyJWS(algorithms=['HS256']) assert 'none' not in jws.get_algorithms() assert 'HS256' in jws.get_algorithms() def test_override_options(self): jws = PyJWS(options={'verify_signature': False}) assert not jws.options['verify_signature'] def test_non_object_options_dont_persist(self, jws, payload): token = jws.encode(payload, 'secret') jws.decode(token, 'secret', options={'verify_signature': False}) assert jws.options['verify_signature'] def test_options_must_be_dict(self, jws): pytest.raises(TypeError, PyJWS, options=object()) pytest.raises(TypeError, PyJWS, options=('something')) def test_encode_decode(self, jws, payload): secret = 'secret' jws_message = jws.encode(payload, secret) decoded_payload = jws.decode(jws_message, secret) assert decoded_payload == payload def test_decode_fails_when_alg_is_not_on_method_algorithms_param(self, jws, payload): secret = 'secret' jws_token = jws.encode(payload, secret, algorithm='HS256') jws.decode(jws_token, secret) with pytest.raises(InvalidAlgorithmError): jws.decode(jws_token, secret, algorithms=['HS384']) def test_decode_works_with_unicode_token(self, jws): secret = 'secret' unicode_jws = text_type( 'eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9' '.eyJoZWxsbyI6ICJ3b3JsZCJ9' '.tvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') jws.decode(unicode_jws, secret) def test_decode_missing_segments_throws_exception(self, jws): secret = 'secret' example_jws = ('eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9' '.eyJoZWxsbyI6ICJ3b3JsZCJ9' '') # Missing segment with pytest.raises(DecodeError) as context: jws.decode(example_jws, secret) exception = context.value assert str(exception) == 'Not enough segments' def test_decode_invalid_token_type_is_none(self, jws): example_jws = None example_secret = 'secret' with pytest.raises(DecodeError) as context: jws.decode(example_jws, example_secret) exception = context.value assert 'Invalid token type' in str(exception) def test_decode_invalid_token_type_is_int(self, jws): example_jws = 123 example_secret = 'secret' with pytest.raises(DecodeError) as context: jws.decode(example_jws, example_secret) exception = context.value assert 'Invalid token type' in str(exception) def test_decode_with_non_mapping_header_throws_exception(self, jws): secret = 'secret' example_jws = ('MQ' # == 1 '.eyJoZWxsbyI6ICJ3b3JsZCJ9' '.tvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') with pytest.raises(DecodeError) as context: jws.decode(example_jws, secret) exception = context.value assert str(exception) == 'Invalid header string: must be a json object' def test_encode_algorithm_param_should_be_case_sensitive(self, jws, payload): jws.encode(payload, 'secret', algorithm='HS256') with pytest.raises(NotImplementedError) as context: jws.encode(payload, None, algorithm='hs256') exception = context.value assert str(exception) == 'Algorithm not supported' def test_decode_algorithm_param_should_be_case_sensitive(self, jws): example_jws = ('eyJhbGciOiJoczI1NiIsInR5cCI6IkpXVCJ9' # alg = hs256 '.eyJoZWxsbyI6IndvcmxkIn0' '.5R_FEPE7SW2dT9GgIxPgZATjFGXfUDOSwo7TtO_Kd_g') with pytest.raises(InvalidAlgorithmError) as context: jws.decode(example_jws, 'secret') exception = context.value assert str(exception) == 'Algorithm not supported' def test_bad_secret(self, jws, payload): right_secret = 'foo' bad_secret = 'bar' jws_message = jws.encode(payload, right_secret) with pytest.raises(DecodeError) as excinfo: # Backward compat for ticket #315 jws.decode(jws_message, bad_secret) assert 'Signature verification failed' == str(excinfo.value) with pytest.raises(InvalidSignatureError) as excinfo: jws.decode(jws_message, bad_secret) assert 'Signature verification failed' == str(excinfo.value) def test_decodes_valid_jws(self, jws, payload): example_secret = 'secret' example_jws = ( b'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.' b'aGVsbG8gd29ybGQ.' b'gEW0pdU4kxPthjtehYdhxB9mMOGajt1xCKlGGXDJ8PM') decoded_payload = jws.decode(example_jws, example_secret) assert decoded_payload == payload # 'Control' Elliptic Curve jws created by another library. # Used to test for regressions that could affect both # encoding / decoding operations equally (causing tests # to still pass). @pytest.mark.skipif(not has_crypto, reason="Can't run without cryptography library") def test_decodes_valid_es384_jws(self, jws): example_payload = {'hello': 'world'} with open('tests/keys/testkey_ec.pub', 'r') as fp: example_pubkey = fp.read() example_jws = ( b'eyJhbGciOiJFUzM4NCIsInR5cCI6IkpXVCJ9' b'.eyJoZWxsbyI6IndvcmxkIn0' b'.AGtlemKghaIaYh1yeeekFH9fRuNY7hCaw5hUgZ5aG1N' b'2F8FIbiKLaZKr8SiFdTimXFVTEmxpBQ9sRmdsDsnrM-1' b'HAG0_zxxu0JyINOFT2iqF3URYl9HZ8kZWMeZAtXmn6Cw' b'PXRJD2f7N-f7bJ5JeL9VT5beI2XD3FlK3GgRvI-eE-2Ik') decoded_payload = jws.decode(example_jws, example_pubkey) json_payload = json.loads(force_unicode(decoded_payload)) assert json_payload == example_payload # 'Control' RSA jws created by another library. # Used to test for regressions that could affect both # encoding / decoding operations equally (causing tests # to still pass). @pytest.mark.skipif(not has_crypto, reason="Can't run without cryptography library") def test_decodes_valid_rs384_jws(self, jws): example_payload = {'hello': 'world'} with open('tests/keys/testkey_rsa.pub', 'r') as fp: example_pubkey = fp.read() example_jws = ( b'eyJhbGciOiJSUzM4NCIsInR5cCI6IkpXVCJ9' b'.eyJoZWxsbyI6IndvcmxkIn0' b'.yNQ3nI9vEDs7lEh-Cp81McPuiQ4ZRv6FL4evTYYAh1X' b'lRTTR3Cz8pPA9Stgso8Ra9xGB4X3rlra1c8Jz10nTUju' b'O06OMm7oXdrnxp1KIiAJDerWHkQ7l3dlizIk1bmMA457' b'W2fNzNfHViuED5ISM081dgf_a71qBwJ_yShMMrSOfxDx' b'mX9c4DjRogRJG8SM5PvpLqI_Cm9iQPGMvmYK7gzcq2cJ' b'urHRJDJHTqIdpLWXkY7zVikeen6FhuGyn060Dz9gYq9t' b'uwmrtSWCBUjiN8sqJ00CDgycxKqHfUndZbEAOjcCAhBr' b'qWW3mSVivUfubsYbwUdUG3fSRPjaUPcpe8A') decoded_payload = jws.decode(example_jws, example_pubkey) json_payload = json.loads(force_unicode(decoded_payload)) assert json_payload == example_payload def test_load_verify_valid_jws(self, jws, payload): example_secret = 'secret' example_jws = ( b'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.' b'aGVsbG8gd29ybGQ.' b'SIr03zM64awWRdPrAM_61QWsZchAtgDV3pphfHPPWkI' ) decoded_payload = jws.decode(example_jws, key=example_secret) assert decoded_payload == payload def test_allow_skip_verification(self, jws, payload): right_secret = 'foo' jws_message = jws.encode(payload, right_secret) decoded_payload = jws.decode(jws_message, verify=False) assert decoded_payload == payload def test_verify_false_deprecated(self, jws, recwarn): example_jws = ( b'eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9' b'.eyJoZWxsbyI6ICJ3b3JsZCJ9' b'.tvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') pytest.deprecated_call(jws.decode, example_jws, verify=False) def test_decode_with_optional_algorithms(self, jws): example_secret = 'secret' example_jws = ( b'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.' b'aGVsbG8gd29ybGQ.' b'SIr03zM64awWRdPrAM_61QWsZchAtgDV3pphfHPPWkI' ) pytest.deprecated_call(jws.decode, example_jws, key=example_secret) def test_decode_no_algorithms_verify_signature_false(self, jws): example_secret = 'secret' example_jws = ( b'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.' b'aGVsbG8gd29ybGQ.' b'SIr03zM64awWRdPrAM_61QWsZchAtgDV3pphfHPPWkI' ) try: pytest.deprecated_call( jws.decode, example_jws, key=example_secret, options={'verify_signature': False}, ) except pytest.fail.Exception: pass else: assert False, "Unexpected DeprecationWarning raised." def test_load_no_verification(self, jws, payload): right_secret = 'foo' jws_message = jws.encode(payload, right_secret) decoded_payload = jws.decode(jws_message, key=None, verify=False) assert decoded_payload == payload def test_no_secret(self, jws, payload): right_secret = 'foo' jws_message = jws.encode(payload, right_secret) with pytest.raises(DecodeError): jws.decode(jws_message) def test_verify_signature_with_no_secret(self, jws, payload): right_secret = 'foo' jws_message = jws.encode(payload, right_secret) with pytest.raises(DecodeError) as exc: jws.decode(jws_message) assert 'Signature verification' in str(exc.value) def test_verify_signature_with_no_algo_header_throws_exception(self, jws, payload): example_jws = ( b'e30' b'.eyJhIjo1fQ' b'.KEh186CjVw_Q8FadjJcaVnE7hO5Z9nHBbU8TgbhHcBY' ) with pytest.raises(InvalidAlgorithmError): jws.decode(example_jws, 'secret') def test_invalid_crypto_alg(self, jws, payload): with pytest.raises(NotImplementedError): jws.encode(payload, 'secret', algorithm='HS1024') @pytest.mark.skipif(has_crypto, reason='Scenario requires cryptography to not be installed') def test_missing_crypto_library_better_error_messages(self, jws, payload): with pytest.raises(NotImplementedError) as excinfo: jws.encode(payload, 'secret', algorithm='RS256') assert 'cryptography' in str(excinfo.value) def test_unicode_secret(self, jws, payload): secret = '\xc2' jws_message = jws.encode(payload, secret) decoded_payload = jws.decode(jws_message, secret) assert decoded_payload == payload def test_nonascii_secret(self, jws, payload): secret = '\xc2' # char value that ascii codec cannot decode jws_message = jws.encode(payload, secret) decoded_payload = jws.decode(jws_message, secret) assert decoded_payload == payload def test_bytes_secret(self, jws, payload): secret = b'\xc2' # char value that ascii codec cannot decode jws_message = jws.encode(payload, secret) decoded_payload = jws.decode(jws_message, secret) assert decoded_payload == payload def test_decode_invalid_header_padding(self, jws): example_jws = ( 'aeyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9' '.eyJoZWxsbyI6ICJ3b3JsZCJ9' '.tvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') example_secret = 'secret' with pytest.raises(DecodeError) as exc: jws.decode(example_jws, example_secret) assert 'header padding' in str(exc.value) def test_decode_invalid_header_string(self, jws): example_jws = ( 'eyJhbGciOiAiSFMyNTbpIiwgInR5cCI6ICJKV1QifQ==' '.eyJoZWxsbyI6ICJ3b3JsZCJ9' '.tvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') example_secret = 'secret' with pytest.raises(DecodeError) as exc: jws.decode(example_jws, example_secret) assert 'Invalid header' in str(exc.value) def test_decode_invalid_payload_padding(self, jws): example_jws = ( 'eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9' '.aeyJoZWxsbyI6ICJ3b3JsZCJ9' '.tvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') example_secret = 'secret' with pytest.raises(DecodeError) as exc: jws.decode(example_jws, example_secret) assert 'Invalid payload padding' in str(exc.value) def test_decode_invalid_crypto_padding(self, jws): example_jws = ( 'eyJhbGciOiAiSFMyNTYiLCAidHlwIjogIkpXVCJ9' '.eyJoZWxsbyI6ICJ3b3JsZCJ9' '.aatvagLDLoaiJKxOKqpBXSEGy7SYSifZhjntgm9ctpyj8') example_secret = 'secret' with pytest.raises(DecodeError) as exc: jws.decode(example_jws, example_secret) assert 'Invalid crypto padding' in str(exc.value) def test_decode_with_algo_none_should_fail(self, jws, payload): jws_message = jws.encode(payload, key=None, algorithm=None) with pytest.raises(DecodeError): jws.decode(jws_message) def test_decode_with_algo_none_and_verify_false_should_pass(self, jws, payload): jws_message = jws.encode(payload, key=None, algorithm=None) jws.decode(jws_message, verify=False) def test_get_unverified_header_returns_header_values(self, jws, payload): jws_message = jws.encode(payload, key='secret', algorithm='HS256', headers={'kid': 'toomanysecrets'}) header = jws.get_unverified_header(jws_message) assert 'kid' in header assert header['kid'] == 'toomanysecrets' def test_get_unverified_header_fails_on_bad_header_types(self, jws, payload): # Contains a bad kid value (int 123 instead of string) example_jws = ( 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6MTIzfQ' '.eyJzdWIiOiIxMjM0NTY3ODkwIn0' '.vs2WY54jfpKP3JGC73Vq5YlMsqM5oTZ1ZydT77SiZSk') with pytest.raises(InvalidTokenError) as exc: jws.get_unverified_header(example_jws) assert 'Key ID header parameter must be a string' == str(exc.value) @pytest.mark.skipif(not has_crypto, reason='Not supported without cryptography library') def test_encode_decode_with_rsa_sha256(self, jws, payload): # PEM-formatted RSA key with open('tests/keys/testkey_rsa', 'r') as rsa_priv_file: priv_rsakey = load_pem_private_key(force_bytes(rsa_priv_file.read()), password=None, backend=default_backend()) jws_message = jws.encode(payload, priv_rsakey, algorithm='RS256') with open('tests/keys/testkey_rsa.pub', 'r') as rsa_pub_file: pub_rsakey = load_ssh_public_key(force_bytes(rsa_pub_file.read()), backend=default_backend()) jws.decode(jws_message, pub_rsakey) # string-formatted key with open('tests/keys/testkey_rsa', 'r') as rsa_priv_file: priv_rsakey = rsa_priv_file.read() jws_message = jws.encode(payload, priv_rsakey, algorithm='RS256') with open('tests/keys/testkey_rsa.pub', 'r') as rsa_pub_file: pub_rsakey = rsa_pub_file.read() jws.decode(jws_message, pub_rsakey) @pytest.mark.skipif(not has_crypto, reason='Not supported without cryptography library') def test_encode_decode_with_rsa_sha384(self, jws, payload): # PEM-formatted RSA key with open('tests/keys/testkey_rsa', 'r') as rsa_priv_file: priv_rsakey = load_pem_private_key(force_bytes(rsa_priv_file.read()), password=None, backend=default_backend()) jws_message = jws.encode(payload, priv_rsakey, algorithm='RS384') with open('tests/keys/testkey_rsa.pub', 'r') as rsa_pub_file: pub_rsakey = load_ssh_public_key(force_bytes(rsa_pub_file.read()), backend=default_backend()) jws.decode(jws_message, pub_rsakey) # string-formatted key with open('tests/keys/testkey_rsa', 'r') as rsa_priv_file: priv_rsakey = rsa_priv_file.read() jws_message = jws.encode(payload, priv_rsakey, algorithm='RS384') with open('tests/keys/testkey_rsa.pub', 'r') as rsa_pub_file: pub_rsakey = rsa_pub_file.read() jws.decode(jws_message, pub_rsakey) @pytest.mark.skipif(not has_crypto, reason='Not supported without cryptography library') def test_encode_decode_with_rsa_sha512(self, jws, payload): # PEM-formatted RSA key with open('tests/keys/testkey_rsa', 'r') as rsa_priv_file: priv_rsakey = load_pem_private_key(force_bytes(rsa_priv_file.read()), password=None, backend=default_backend()) jws_message = jws.encode(payload, priv_rsakey, algorithm='RS512') with open('tests/keys/testkey_rsa.pub', 'r') as rsa_pub_file: pub_rsakey = load_ssh_public_key(force_bytes(rsa_pub_file.read()), backend=default_backend()) jws.decode(jws_message, pub_rsakey) # string-formatted key with open('tests/keys/testkey_rsa', 'r') as rsa_priv_file: priv_rsakey = rsa_priv_file.read() jws_message = jws.encode(payload, priv_rsakey, algorithm='RS512') with open('tests/keys/testkey_rsa.pub', 'r') as rsa_pub_file: pub_rsakey = rsa_pub_file.read() jws.decode(jws_message, pub_rsakey) def test_rsa_related_algorithms(self, jws): jws = PyJWS() jws_algorithms = jws.get_algorithms() if has_crypto: assert 'RS256' in jws_algorithms assert 'RS384' in jws_algorithms assert 'RS512' in jws_algorithms assert 'PS256' in jws_algorithms assert 'PS384' in jws_algorithms assert 'PS512' in jws_algorithms else: assert 'RS256' not in jws_algorithms assert 'RS384' not in jws_algorithms assert 'RS512' not in jws_algorithms assert 'PS256' not in jws_algorithms assert 'PS384' not in jws_algorithms assert 'PS512' not in jws_algorithms @pytest.mark.skipif(not has_crypto, reason="Can't run without cryptography library") def test_encode_decode_with_ecdsa_sha256(self, jws, payload): # PEM-formatted EC key with open('tests/keys/testkey_ec', 'r') as ec_priv_file: priv_eckey = load_pem_private_key(force_bytes(ec_priv_file.read()), password=None, backend=default_backend()) jws_message = jws.encode(payload, priv_eckey, algorithm='ES256') with open('tests/keys/testkey_ec.pub', 'r') as ec_pub_file: pub_eckey = load_pem_public_key(force_bytes(ec_pub_file.read()), backend=default_backend()) jws.decode(jws_message, pub_eckey) # string-formatted key with open('tests/keys/testkey_ec', 'r') as ec_priv_file: priv_eckey = ec_priv_file.read() jws_message = jws.encode(payload, priv_eckey, algorithm='ES256') with open('tests/keys/testkey_ec.pub', 'r') as ec_pub_file: pub_eckey = ec_pub_file.read() jws.decode(jws_message, pub_eckey) @pytest.mark.skipif(not has_crypto, reason="Can't run without cryptography library") def test_encode_decode_with_ecdsa_sha384(self, jws, payload): # PEM-formatted EC key with open('tests/keys/testkey_ec', 'r') as ec_priv_file: priv_eckey = load_pem_private_key(force_bytes(ec_priv_file.read()), password=None, backend=default_backend()) jws_message = jws.encode(payload, priv_eckey, algorithm='ES384') with open('tests/keys/testkey_ec.pub', 'r') as ec_pub_file: pub_eckey = load_pem_public_key(force_bytes(ec_pub_file.read()), backend=default_backend()) jws.decode(jws_message, pub_eckey) # string-formatted key with open('tests/keys/testkey_ec', 'r') as ec_priv_file: priv_eckey = ec_priv_file.read() jws_message = jws.encode(payload, priv_eckey, algorithm='ES384') with open('tests/keys/testkey_ec.pub', 'r') as ec_pub_file: pub_eckey = ec_pub_file.read() jws.decode(jws_message, pub_eckey) @pytest.mark.skipif(not has_crypto, reason="Can't run without cryptography library") def test_encode_decode_with_ecdsa_sha512(self, jws, payload): # PEM-formatted EC key with open('tests/keys/testkey_ec', 'r') as ec_priv_file: priv_eckey = load_pem_private_key(force_bytes(ec_priv_file.read()), password=None, backend=default_backend()) jws_message = jws.encode(payload, priv_eckey, algorithm='ES521') with open('tests/keys/testkey_ec.pub', 'r') as ec_pub_file: pub_eckey = load_pem_public_key(force_bytes(ec_pub_file.read()), backend=default_backend()) jws.decode(jws_message, pub_eckey) # string-formatted key with open('tests/keys/testkey_ec', 'r') as ec_priv_file: priv_eckey = ec_priv_file.read() jws_message = jws.encode(payload, priv_eckey, algorithm='ES521') with open('tests/keys/testkey_ec.pub', 'r') as ec_pub_file: pub_eckey = ec_pub_file.read() jws.decode(jws_message, pub_eckey) def test_ecdsa_related_algorithms(self, jws): jws = PyJWS() jws_algorithms = jws.get_algorithms() if has_crypto: assert 'ES256' in jws_algorithms assert 'ES384' in jws_algorithms assert 'ES521' in jws_algorithms else: assert 'ES256' not in jws_algorithms assert 'ES384' not in jws_algorithms assert 'ES521' not in jws_algorithms def test_skip_check_signature(self, jws): token = ("eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9" ".eyJzb21lIjoicGF5bG9hZCJ9" ".4twFt5NiznN84AWoo1d7KO1T_yoc0Z6XOpOVswacPZA") jws.decode(token, 'secret', options={'verify_signature': False}) def test_decode_options_must_be_dict(self, jws, payload): token = jws.encode(payload, 'secret') with pytest.raises(TypeError): jws.decode(token, 'secret', options=object()) with pytest.raises(TypeError): jws.decode(token, 'secret', options='something') def test_custom_json_encoder(self, jws, payload): class CustomJSONEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, Decimal): return 'it worked' return super(CustomJSONEncoder, self).default(o) data = { 'some_decimal': Decimal('2.2') } with pytest.raises(TypeError): jws.encode(payload, 'secret', headers=data) token = jws.encode(payload, 'secret', headers=data, json_encoder=CustomJSONEncoder) header = force_bytes(force_unicode(token).split('.')[0]) header = json.loads(force_unicode(base64url_decode(header))) assert 'some_decimal' in header assert header['some_decimal'] == 'it worked' def test_encode_headers_parameter_adds_headers(self, jws, payload): headers = {'testheader': True} token = jws.encode(payload, 'secret', headers=headers) if not isinstance(token, string_types): token = token.decode() header = token[0:token.index('.')].encode() header = base64url_decode(header) if not isinstance(header, text_type): header = header.decode() header_obj = json.loads(header) assert 'testheader' in header_obj assert header_obj['testheader'] == headers['testheader'] def test_encode_fails_on_invalid_kid_types(self, jws, payload): with pytest.raises(InvalidTokenError) as exc: jws.encode(payload, 'secret', headers={'kid': 123}) assert 'Key ID header parameter must be a string' == str(exc.value) with pytest.raises(InvalidTokenError) as exc: jws.encode(payload, 'secret', headers={'kid': None}) assert 'Key ID header parameter must be a string' == str(exc.value)
cloudera/hue
desktop/core/ext-py/PyJWT-1.7.1/tests/test_api_jws.py
Python
apache-2.0
26,697
from django import forms from django.core.validators import validate_email from django.db.models import Q from django.utils.translation import ugettext_lazy as _ from .utils import get_user_model class PasswordRecoveryForm(forms.Form): username_or_email = forms.CharField() error_messages = { 'not_found': _("Sorry, this user doesn't exist."), } def __init__(self, *args, **kwargs): self.case_sensitive = kwargs.pop('case_sensitive', True) search_fields = kwargs.pop('search_fields', ('username', 'email')) super(PasswordRecoveryForm, self).__init__(*args, **kwargs) message = ("No other fields than email are supported " "by default") if len(search_fields) not in (1, 2): raise ValueError(message) for field in search_fields: if field not in ['username', 'email']: raise ValueError(message) labels = { 'username': _('Username'), 'email': _('Email'), 'both': _('Username or Email'), } User = get_user_model() # noqa if getattr(User, 'USERNAME_FIELD', 'username') == 'email': self.label_key = 'email' elif len(search_fields) == 1: self.label_key = search_fields[0] else: self.label_key = 'both' self.fields['username_or_email'].label = labels[self.label_key] def clean_username_or_email(self): username = self.cleaned_data['username_or_email'] cleaner = getattr(self, 'get_user_by_%s' % self.label_key) self.cleaned_data['user'] = cleaner(username) return username def get_user_by_username(self, username): key = 'username__%sexact' % ('' if self.case_sensitive else 'i') User = get_user_model() try: user = User._default_manager.get(**{key: username}) except User.DoesNotExist: raise forms.ValidationError(self.error_messages['not_found'], code='not_found') return user def get_user_by_email(self, email): validate_email(email) key = 'email__%sexact' % ('' if self.case_sensitive else 'i') User = get_user_model() try: user = User._default_manager.get(**{key: email}) except User.DoesNotExist: raise forms.ValidationError(self.error_messages['not_found'], code='not_found') return user def get_user_by_both(self, username): key = '__%sexact' key = key % '' if self.case_sensitive else key % 'i' f = lambda field: Q(**{field + key: username}) filters = f('username') | f('email') User = get_user_model() try: user = User._default_manager.get(filters) except User.DoesNotExist: raise forms.ValidationError(self.error_messages['not_found'], code='not_found') except User.MultipleObjectsReturned: raise forms.ValidationError(_("Unable to find user.")) return user class PasswordResetForm(forms.Form): password1 = forms.CharField( label=_('New password'), widget=forms.PasswordInput, ) password2 = forms.CharField( label=_('New password (confirm)'), widget=forms.PasswordInput, ) error_messages = { 'password_mismatch': _("The two passwords didn't match."), } def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super(PasswordResetForm, self).__init__(*args, **kwargs) def clean_password2(self): password1 = self.cleaned_data.get('password1', '') password2 = self.cleaned_data['password2'] if not password1 == password2: raise forms.ValidationError( self.error_messages['password_mismatch'], code='password_mismatch') return password2 def save(self, commit=True): self.user.set_password(self.cleaned_data['password1']) if commit: get_user_model()._default_manager.filter(pk=self.user.pk).update( password=self.user.password, ) return self.user
xsunfeng/cir
password_reset/forms.py
Python
mit
4,276
#!/usr/bin/env python3 import numpy as np import cv2 import argparse import glob from os.path import splitext, basename debug = False debug_dir = '.' def get_output_path(out_dir, file_ext): imgs = glob.glob('{}/*.{}'.format(out_dir, file_ext)) if len(imgs) == 0: next_num = 0 else: nums = [int(splitext(basename(i))[0]) for i in imgs] next_num = 1 + max(nums) return '{}/{}.{}'.format(out_dir, str(next_num).zfill(5), file_ext) def write_img(img, path): cv2.imwrite(path, img) print('wrote to {}'.format(path)) def write_segment_img(img, out_dir, file_ext): path = get_output_path(out_dir, file_ext) write_img(img, path) def write_debug_img(img, key): global debug_dir path = '{}/{}.png'.format(debug_dir, key) write_img(img, path) def process_contour(contour, img): area_contour = cv2.contourArea(contour) area_img = img.shape[0] * img.shape[1] area_ratio = area_contour / area_img if area_ratio < 0.1: return None # dice min area (rotated rect) rect_min_area = cv2.minAreaRect(contour) rect_min_points = cv2.boxPoints(rect_min_area) # bounding rect of the *min area rect* rrb = cv2.boundingRect(rect_min_points) rrb_tl = rrb[0:2] rrb_br = tuple([sum(x) for x in zip(rrb_tl, rrb[2:4])]) # crop to bounding rect cropped = img[rrb_tl[1]:rrb_br[1], rrb_tl[0]:rrb_br[0]] if debug: write_debug_img(cropped, 'cropped') # straighten image angle = rect_min_area[2] keep = angle > -45. # if the angle is less than -45 we need to swap w/h rrb_width = rrb_br[0] - rrb_tl[0] rrb_height = rrb_br[1] - rrb_tl[1] width = rrb_width if keep else rrb_height height = rrb_height if keep else rrb_width angle += (0 if keep else 90) center = (width / 2, height / 2) dsize = (width, height) matrix = cv2.getRotationMatrix2D(center, angle, 1.0) if 0 in cropped.shape: return None straight = cv2.warpAffine(cropped, matrix, dsize) if debug: write_debug_img(straight, 'straight') # crop based on nonzero values nonzero = straight.nonzero() if len(nonzero[0]) == 0 or len(nonzero[1]) == 0: return None y_start = min(nonzero[0]) y_end = max(nonzero[0]) x_start = min(nonzero[1]) x_end = max(nonzero[1]) straight_crop = straight[y_start:y_end, x_start:x_end] if debug: write_debug_img(straight_crop, 'straight_crop') square = np.zeros(img.shape[0:2]) y_len = y_end - y_start x_len = x_end - x_start y_start_sq = int((square.shape[0] - y_len) / 2) y_end_sq = y_start_sq + y_len x_start_sq = int((square.shape[1] - x_len) / 2) x_end_sq = x_start_sq + x_len square[y_start_sq:y_end_sq, x_start_sq:x_end_sq] = straight_crop if debug: write_debug_img(square, 'square') if 0 in square.shape: return return square def get_segmented(img, threshold): global debug img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if debug: write_debug_img(img_gray, '01-gray') blur_size = (img_gray.shape[0], img_gray.shape[1]) coeff = 0.012 blur_size = tuple([max(1, int(d * coeff)) for d in img_gray.shape[0:2]]) blurred = cv2.blur(img_gray, blur_size) if debug: write_debug_img(blurred, '02-blurred') # white dice on black # retval, threshold = cv2.threshold(blurred, 150, 255, cv2.THRESH_BINARY) # black dice on white retval, threshold = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY_INV) if debug: write_debug_img(threshold, '03-threshold') threshold, contours, hierarchy = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) if debug: cimg = np.zeros(threshold.shape) cv2.drawContours(cimg, contours, -1, 255) write_debug_img(cimg, '04-contours') processed = [process_contour(c, threshold) for c in contours] return [p for p in processed if p is not None] def process(in_path, out_dir, file_ext, threshold=127): img = cv2.imread(in_path) if img is None: print("couldn't read image: {}".format()) return for i, segment in enumerate(get_segmented(img, threshold)): write_segment_img(segment, out_dir, file_ext) def main(): parser = argparse.ArgumentParser() parser.add_argument('in_path', help='path to input image', type=str) parser.add_argument('out_dir', help='directory to output results', type=str) parser.add_argument('--ext', help='output file extension', type=str, default='png') parser.add_argument('--threshold', help='threshold 0-255', type=int, default=160) parser.add_argument('--debug', help='if True then output debug images', type=bool, default=False) parser.add_argument('--debug_dir', help='output dir for debug images', type=str, default='.') args = parser.parse_args() global debug, debug_dir debug = args.debug debug_dir = args.debug_dir process(args.in_path, args.out_dir, args.ext, args.threshold, args.resize) if __name__ == '__main__': main()
acarabott/ten-sided-dice-dataset
04-processing/segment.py
Python
mit
5,087
from django.db import models import mixins import query class ArticleManager(models.Manager, mixins.ArticleManagerMixin): def get_query_set(self): return query.ArticleQuerySet(self.model, using=self._db) class ImageManager(models.Manager, mixins.ImageManagerMixin): def get_query_set(self): return query.ImageQuerySet(self.model, using=self._db)
megaprojectske/megaprojects.co.ke
megaprojects/articles/managers.py
Python
apache-2.0
377
# -*- coding: utf-8 -*- # # Copyright 2013, Not All Rights Reserved. # Author: Windriver # Email: [email protected] # Created: 2013-09-26 01:13 # # Description: from evernote.edam.userstore import UserStore from evernote.edam.notestore import NoteStore import thrift.protocol.TBinaryProtocol as TBinaryProtocol import thrift.transport.THttpClient as THttpClient print "代码演示了如何调用中文Evernote(印象笔记)的API来访问开发者自己的笔记。"\ "主要难点是理解Thrift RPC的使用,以及UserStore和NoteStore这两个核心概念" print "获得了UserStore和NoteStore之后,事情就变得好办了。"\ "可参考:http://dev.yinxiang.com/documentation/reference/" # 开发者Token和note_store_url使用你从官方获得的 # 链接:http://dev.yinxiang.com/documentation/cloud/chapters/Authentication.php#devtoken # user_store_url是通用的 dev_token = "Filled it with your own token" user_store_url = "https://app.yinxiang.com/edam/user" note_store_url = "https://app.yinxiang.com/shard/s9/notestore" # 建立 UserStore 的 Client user_store_client = THttpClient.THttpClient(user_store_url) user_store_proto = TBinaryProtocol.TBinaryProtocol(user_store_client) user_store = UserStore.Client(user_store_proto, user_store_proto) print "\n输出用户的信息:" user = user_store.getUser(dev_token) print user.username, user.id # 建立 NoteStore 的 Client note_store_client = THttpClient.THttpClient(note_store_url) note_store_proto = TBinaryProtocol.TBinaryProtocol(note_store_client) note_store = NoteStore.Client(note_store_proto, note_store_proto) print "\n输出各个笔记本的信息:" notebooks = note_store.listNotebooks(dev_token) for notebook in notebooks: print notebook.name, notebook.serviceCreated
Windriver/codelab
evernote/visit_my_evernote.py
Python
apache-2.0
1,795
# Choregraphe bezier export in Python. from naoqi import ALProxy names = list() times = list() keys = list() names.append("LShoulderPitch") times.append([ 2.00000, 4.00000]) keys.append([ [ 1.39626, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 1.39626, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("LShoulderRoll") times.append([ 2.00000, 4.00000]) keys.append([ [ 0.34907, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 0.34907, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("LElbowYaw") times.append([ 2.00000, 4.00000]) keys.append([ [ -1.39626, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ -1.39626, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("LElbowRoll") times.append([ 2.00000, 4.00000]) keys.append([ [ -1.04720, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ -1.04720, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("LWristYaw") times.append([ 2.00000, 4.00000]) keys.append([ [ -0.00000, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ -0.00000, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("LHand") times.append([ 2.00000, 4.00000]) keys.append([ [ 0.00000, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 0.00000, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("RShoulderPitch") times.append([ 2.00000, 4.00000]) keys.append([ [ 0.82030, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 1.39626, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("RShoulderRoll") times.append([ 2.00000, 4.00000]) keys.append([ [ -0.03840, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ -0.34907, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("RElbowYaw") times.append([ 2.00000, 4.00000]) keys.append([ [ 1.51669, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 1.39626, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("RElbowRoll") times.append([ 2.00000, 4.00000]) keys.append([ [ 1.56207, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 1.04720, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("RWristYaw") times.append([ 2.00000, 4.00000]) keys.append([ [ -1.45910, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 0.00000, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) names.append("RHand") times.append([ 2.00000, 4.00000]) keys.append([ [ 0.01745, [ 3, -0.66667, 0.00000], [ 3, 0.66667, 0.00000]], [ 0.00000, [ 3, -0.66667, 0.00000], [ 3, 0.00000, 0.00000]]]) try: # uncomment the following line and modify the IP if you use this script outside Choregraphe. # motion = ALProxy("ALMotion", IP, 9559) motion = ALProxy("ALMotion") motion.angleInterpolationBezier(names, times, keys); except BaseException, err: print err
Rctue/nao-lib
gestures/HappyGesture_4.py
Python
gpl-2.0
2,776
# =============================================================================== # Copyright 2015 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from envisage.ui.tasks.preferences_pane import PreferencesPane from traits.api import Str from traitsui.api import View, FileEditor, VGroup, Item # ============= standard library imports ======================== import os # ============= local library imports ========================== from pychron.paths import paths from pychron.envisage.tasks.base_preferences_helper import BasePreferencesHelper class LDEOFurnacePreferences(BasePreferencesHelper): preferences_path = "pychron.ldeofurnace" class LDEOFurnacePreferencesPane(PreferencesPane): category = "LDEO Furnace" model_factory = LDEOFurnacePreferences def traits_view(self): v = View() return v class LDEOFurnaceControlPreferences(BasePreferencesHelper): preferences_path = "pychron.ldeofurnace.control" canvas_path = Str canvas_config_path = Str valves_path = Str class LDEOFurnaceControlPreferencesPane(PreferencesPane): category = "LDEO Furnace" model_factory = LDEOFurnaceControlPreferences def traits_view(self): p_grp = VGroup( Item( "canvas_path", label="Canvas Path", editor=FileEditor( root_path=os.path.join(paths.canvas2D_dir, "canvas.xml") ), ), Item("canvas_config_path", label="Config Path", editor=FileEditor()), Item( "valves_path", label="Valves Path", editor=FileEditor( root_path=os.path.join(paths.extraction_line_dir, "valves.xml") ), ), show_border=True, label="Paths", ) v = View(p_grp) return v # ============= EOF =============================================
USGSDenverPychron/pychron
pychron/furnace/tasks/ldeo/preferences.py
Python
apache-2.0
2,603
from sympy.integrals.transforms import (mellin_transform, inverse_mellin_transform, laplace_transform, inverse_laplace_transform, fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform, cosine_transform, inverse_cosine_transform, hankel_transform, inverse_hankel_transform, LaplaceTransform, FourierTransform, SineTransform, CosineTransform, InverseLaplaceTransform, InverseFourierTransform, InverseSineTransform, InverseCosineTransform, IntegralTransformError) from sympy import ( gamma, exp, oo, Heaviside, symbols, Symbol, re, factorial, pi, cos, S, Abs, And, Or, sin, sqrt, I, log, tan, hyperexpand, meijerg, EulerGamma, erf, erfc, besselj, bessely, besseli, besselk, exp_polar, polar_lift, unpolarify, Function, expint, expand_mul, combsimp, trigsimp, atan, sinh, cosh, Ne, periodic_argument, atan2, Abs) from sympy.utilities.pytest import XFAIL, slow, skip, raises from sympy.matrices import Matrix, eye from sympy.abc import x, s, a, b, c, d nu, beta, rho = symbols('nu beta rho') def test_undefined_function(): from sympy import Function, MellinTransform f = Function('f') assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) assert mellin_transform(f(x) + exp(-x), x, s) == \ (MellinTransform(f(x), x, s) + gamma(s), (0, oo), True) assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s) # TODO test derivative and other rules when implemented def test_free_symbols(): from sympy import Function f = Function('f') assert mellin_transform(f(x), x, s).free_symbols == set([s]) assert mellin_transform(f(x)*a, x, s).free_symbols == set([s, a]) def test_as_integral(): from sympy import Function, Integral f = Function('f') assert mellin_transform(f(x), x, s).rewrite('Integral') == \ Integral(x**(s - 1)*f(x), (x, 0, oo)) assert fourier_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) assert laplace_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-s*x), (x, 0, oo)) assert str(inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))" assert str(inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) # NOTE this is stuck in risch because meijerint cannot handle it @slow @XFAIL def test_mellin_transform_fail(): skip("Risch takes forever.") MT = mellin_transform bpos = symbols('b', positive=True) bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S(1)/2), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S(1)/2)/(2*sqrt(pi)), (-1, -S(1)/2), True) @slow def test_mellin_transform(): from sympy import Max, Min MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (-1/(nu + s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(-beta) < 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, -re(beta) + 1), re(-beta) < 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) # TODO also the conditions should be simplified assert MT(abs(1 - x)**(-rho), x, s) == ( cos(pi*(rho/2 - s))*gamma(s)*gamma(rho - s)/(cos(pi*rho/2)*gamma(rho)), (0, re(rho)), And(re(rho) - 1 < 0, re(rho) < 1)) mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), True) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(-re(a), 0), Min(1 - re(a), 1)), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S(1)/2), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x)/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)/(x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S(1)/2)/(sqrt(pi)*s), (-S(1)/2, 0), True) @slow def test_mellin_transform_bessel(): from sympy import Max MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(-2*s + S(1)/2)*gamma(a/2 + s + S(1)/2)/( gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( -re(a)/2 - S(1)/2, S(1)/4), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S(1)/2)/( gamma(-a/2 - s + S(1)/2)*gamma(a - 2*s + 1)), ( -re(a)/2, S(1)/4), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S(1)/2), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S(1)/2) / (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)), (S(1)/2 - re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S(1)/2), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S(1)/2), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), S(3)/4), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S(1)/2 - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s) / (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)), (Max(-re(a)/2, re(a)/2), S(1)/4), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S(1)/2), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S(1)/2), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk( a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)* gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (gamma(s)*gamma( a + s)*gamma(-s + S(1)/2)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S(1)/2), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ re(a)/2 - re(b)/2), S(1)/2), True) # TODO products of besselk are a mess mt = MT(exp(-x/2)*besselk(a, x/2), x, s) mt0 = combsimp((trigsimp(combsimp(mt[0].expand(func=True))))) assert mt0 == 2*pi**(S(3)/2)*cos(pi*s)*gamma(-s + S(1)/2)/( (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1)) assert mt[1:] == ((Max(-re(a), re(a)), oo), True) # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done # TODO various strange products of special orders @slow def test_expint(): from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) assert inverse_mellin_transform(gamma(s)/s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma(s/2 + S(1)/2)/( 2*s*gamma(-s/2 + 1)), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S(1)/2)), (0, 1), True) assert inverse_mellin_transform( -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)), s, u, (0, 1)).expand() == Ci(sqrt(u)) # TODO LT of Si, Shi, Chi is a mess ... assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True) assert laplace_transform(expint(a, x), x, s) == \ (lerchphi(s*polar_lift(-1), 1, a), 0, S(0) < re(a)) assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True) assert laplace_transform(expint(2, x), x, s) == \ ((s - log(s + 1))/s**2, 0, True) assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \ Heaviside(u)*Ci(u) assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \ Heaviside(x)*E1(x) assert inverse_laplace_transform((s - log(s + 1))/s**2, s, x).rewrite(expint).expand() == \ (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand() @slow def test_inverse_mellin_transform(): from sympy import (sin, simplify, Max, Min, expand, powsimp, exp_polar, cos, cot) IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 nu = symbols('nu', real=True, finite=True) assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) + b**2 + x)/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi/(s*sin(2*pi*s)), s, x, (-S(1)/2, 0)) == log(sqrt(x) + 1) assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) # TODO def mysimp(expr): from sympy import expand, logcombine, powsimp return expand( powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1)] # test passing cot assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S(1)/2)/(sqrt(pi)*s), s, x, (-S(1)/2, 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, S(3)/4))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S(1)/2 - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, S(1)/4))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S(1)/2 - 2*s) / (gamma(S(1)/2 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, S(1)/4))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S(1)/2))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S(1)/2))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S(1)/2))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S(1)/2))) == \ besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) # TODO more # for coverage assert IMT(pi/cos(pi*s), s, x, (0, S(1)/2)) == sqrt(x)/(x + 1) @slow def test_laplace_transform(): from sympy import fresnels, fresnelc LT = laplace_transform a, b, c, = symbols('a b c', positive=True) t = symbols('t') w = Symbol("w") f = Function("f") # Test unevaluated form assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w) assert inverse_laplace_transform( f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0) # test a bug spos = symbols('s', positive=True) assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), True) # basic tests from wikipedia assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \ ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True) assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True) assert LT(Heaviside(t), t, s) == (1/s, 0, True) assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True) assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True) assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \ == exp(-b)/(s**2 - 1) assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1) assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2) assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a) assert LT(log(t/a), t, s) == ((log(a*s) + EulerGamma)/s/-1, 0, True) assert LT(erf(t), t, s) == ((erfc(s/2))*exp(s**2/4)/s, 0, True) assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True) assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True) # TODO would be nice to have these come out better assert LT( exp(-a*t)*sin(b*t), t, s) == (b/(b**2 + (a + s)**2), -a, True) assert LT(exp(-a*t)*cos(b*t), t, s) == \ ((a + s)/(b**2 + (a + s)**2), -a, True) assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True) assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True) # TODO general order works, but is a *mess* # TODO besseli also works, but is an even greater mess # test a bug in conditions processing # TODO the auxiliary condition should be recognised/simplified assert LT(exp(t)*cos(t), t, s)[:-1] in [ ((s - 1)/(s**2 - 2*s + 2), -oo), ((s - 1)/((s - 1)**2 + 1), -oo), ] # Fresnel functions assert laplace_transform(fresnels(t), t, s) == \ ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 - cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True) assert laplace_transform(fresnelc(t), t, s) == ( (sin(s**2/(2*pi))*fresnelc(s/pi)/s - cos(s**2/(2*pi))*fresnels(s/pi)/s + sqrt(2)*cos(s**2/(2*pi) + pi/4)/(2*s), 0, True)) assert LT(Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]]), t, s) ==\ Matrix([ [(1/(s - 1), 1, True), ((s + 1)**(-2), 0, True)], [((s + 1)**(-2), 0, True), (1/(s - 1), 1, True)] ]) def test_issue_8368_7173(): LT = laplace_transform # hyperbolic assert LT(sinh(x), x, s) == (1/(s**2 - 1), 1, True) assert LT(cosh(x), x, s) == (s/(s**2 - 1), 1, True) assert LT(sinh(x + 3), x, s) == ( (-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 1, True) assert LT(sinh(x)*cosh(x), x, s) == (1/(s**2 - 4), 2, Ne(s/2, 1)) # trig (make sure they are not being rewritten in terms of exp) assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True) def test_inverse_laplace_transform(): from sympy import sinh, cosh, besselj, besseli, simplify, factor_terms ILT = inverse_laplace_transform a, b, c, = symbols('a b c', positive=True, finite=True) t = symbols('t') def simp_hyp(expr): return factor_terms(expand_mul(expr)).rewrite(sin) # just test inverses of all of the above assert ILT(1/s, s, t) == Heaviside(t) assert ILT(1/s**2, s, t) == t*Heaviside(t) assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24 assert ILT(exp(-a*s)/s, s, t) == Heaviside(t - a) assert ILT(exp(-a*s)/(s + b), s, t) == exp(b*(a - t))*Heaviside(-a + t) assert ILT(a/(s**2 + a**2), s, t) == sin(a*t)*Heaviside(t) assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t) # TODO is there a way around simp_hyp? assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t) assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t) assert ILT(a/((s + b)**2 + a**2), s, t) == exp(-b*t)*sin(a*t)*Heaviside(t) assert ILT( (s + b)/((s + b)**2 + a**2), s, t) == exp(-b*t)*cos(a*t)*Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) # TODO can we make erf(t) work? assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t) assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\ Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]]) def test_fourier_transform(): from sympy import simplify, expand, expand_complex, factor, expand_trig FT = fourier_transform IFT = inverse_fourier_transform def simp(x): return simplify(expand_trig(expand_complex(expand(x)))) def sinc(x): return sin(pi*x)/(pi*x) k = symbols('k', real=True) f = Function("f") # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) a = symbols('a', positive=True) b = symbols('b', positive=True) posk = symbols('posk', positive=True) # Test unevaluated form assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) assert inverse_fourier_transform( f(k), k, x) == InverseFourierTransform(f(k), k, x) # basic examples from wikipedia assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a # TODO IFT is a *mess* assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a # TODO IFT assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k) # NOTE: the ift comes out in pieces assert IFT(1/(a + 2*pi*I*x), x, posk, noconds=False) == (exp(-a*posk), True) assert IFT(1/(a + 2*pi*I*x), x, -posk, noconds=False) == (0, True) assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), noconds=False) == (0, True) # TODO IFT without factoring comes out as meijer g assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k)**2 assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ b/(b**2 + (a + 2*I*pi*k)**2) assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) # TODO IFT (comes out as meijer G) # TODO besselj(n, x), n an integer > 0 actually can be done... # TODO are there other common transforms (no distributions!)? def test_sine_transform(): from sympy import EulerGamma t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) assert inverse_sine_transform( f(w), w, t) == InverseSineTransform(f(w), w, t) assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert sine_transform( (1/sqrt(t))**3, t, w) == sqrt(w)*gamma(S(1)/4)/(2*gamma(S(5)/4)) assert sine_transform(t**(-a), t, w) == 2**( -a + S(1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) assert inverse_sine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S(1)/2), w, t) == t**(-a) assert sine_transform( exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) assert inverse_sine_transform( sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert sine_transform( log(t)/t, t, w) == -sqrt(2)*sqrt(pi)*(log(w**2) + 2*EulerGamma)/4 assert sine_transform( t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**(S(3)/2)) assert inverse_sine_transform( sqrt(2)*w*exp(-w**2/(4*a))/(4*a**(S(3)/2)), w, t) == t*exp(-a*t**2) def test_cosine_transform(): from sympy import Si, Ci t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform( f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert cosine_transform(1/( a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a) assert cosine_transform(t**( -a), t, w) == 2**(-a + S(1)/2)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) assert inverse_cosine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + S(1)/2)/gamma(a/2), w, t) == t**(-a) assert cosine_transform( exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) assert inverse_cosine_transform( sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( t)), t, w) == a*exp(-a**2/(2*w))/(2*w**(S(3)/2)) assert cosine_transform(1/(a + t), t, w) == sqrt(2)*( (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi) assert inverse_cosine_transform(sqrt(2)*meijerg(((S(1)/2, 0), ()), ( (S(1)/2, 0, 0), (S(1)/2,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( ((S(1)/2,), ()), ((0, 0), (S(1)/2,)), a**2*w**2/4)/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S(1)/2,), ()), ((0, 0), (S(1)/2,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) def test_hankel_transform(): from sympy import gamma, sqrt, exp r = Symbol("r") k = Symbol("k") nu = Symbol("nu") m = Symbol("m") a = symbols("a") assert hankel_transform(1/r, r, k, 0) == 1/k assert inverse_hankel_transform(1/k, k, r, 0) == 1/r assert hankel_transform( 1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) assert inverse_hankel_transform( 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) assert hankel_transform(1/r**m, r, k, nu) == ( 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)) assert inverse_hankel_transform(2**(-m + 1)*k**( m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( 3)/2)*gamma(nu + S(3)/2)/sqrt(pi) assert inverse_hankel_transform( 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(3)/2)*gamma( nu + S(3)/2)/sqrt(pi), k, r, nu) == r**nu*exp(-a*r) def test_issue_7181(): assert mellin_transform(1/(1 - x), x, s) != None def test_issue_8882(): # This is the original test. # from sympy import diff, Integral, integrate # r = Symbol('r') # psi = 1/r*sin(r)*exp(-(a0*r)) # h = -1/2*diff(psi, r, r) - 1/r*psi # f = 4*pi*psi*h*r**2 # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True # To save time, only the critical part is included. F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \ sin(s*atan(sqrt(1/a**2)/2))*gamma(s) raises(IntegralTransformError, lambda: inverse_mellin_transform(F, s, x, (-1, oo), **{'as_meijerg': True, 'needeval': True})) def test_issue_7173(): assert laplace_transform(sinh(a*x)*cosh(a*x), x, s) == \ (a/(s**2 - 4*a**2), 0, And(Or(Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) < pi/2, Abs(periodic_argument(exp_polar(I*pi)*polar_lift(a), oo)) <= pi/2), Or(Abs(periodic_argument(a, oo)) < pi/2, Abs(periodic_argument(a, oo)) <= pi/2))) def test_issue_8514(): from sympy import simplify, refine a, b, c, = symbols('a b c', positive=True) t = symbols('t', positive=True) ft = simplify(inverse_laplace_transform(1/(a*s**2+b*s+c),s, t)) assert ft == ((exp(t*(exp(I*atan2(0, -4*a*c + b**2)/2) - exp(-I*atan2(0, -4*a*c + b**2)/2))* sqrt(refine(Abs(4*a*c - b**2)))/(4*a))*exp(t*cos(atan2(0, -4*a*c + b**2)/2) *sqrt(refine(Abs(4*a*c - b**2)))/a) + I*sin(t*sin(atan2(0, -4*a*c + b**2)/2) *sqrt(refine(Abs(4*a*c - b**2)))/(2*a)) - cos(t*sin(atan2(0, -4*a*c + b**2)/2) *sqrt(refine(Abs(4*a*c - b**2)))/(2*a)))*exp(-t*(b + cos(atan2(0, -4*a*c + b**2)/2) *sqrt(refine(Abs(4*a*c - b**2))))/(2*a))/sqrt(-4*a*c + b**2))
kaichogami/sympy
sympy/integrals/tests/test_transforms.py
Python
bsd-3-clause
33,356
from setuptools import setup, find_packages import os name = "revot" version = "0.1" def read(*rnames): return open(os.path.join(os.path.dirname(__file__), *rnames)).read() setup( name=name, version=version, description="revot software", long_description=read('README'), # Get strings from http://www.python.org/pypi?%3Aaction=list_classifiers classifiers=[], keywords="", author="", author_email='', url='', license='', package_dir={'': '.'}, packages=find_packages('.'), include_package_data=True, zip_safe=False, install_requires=[ 'Babel==2.1.1', 'Flask==0.10.1', 'Flask-Babel==0.9', 'Flask-Bootstrap==3.3.5.6', 'Flask-Mail==0.9.1', 'Flask-Moment==0.5.1', 'Flask-SQLAlchemy==2.0', 'Flask-Script==2.0.5', 'Flask-WTF==0.12', 'Jinja2==2.8', 'MarkupSafe==0.23', 'Pygments==2.0.2', 'SQLAlchemy==1.0.8', 'Sphinx==1.3.1', 'WTForms==2.0.2', 'Werkzeug==0.10.4', 'alabaster==0.7.6', 'amqp==1.4.7', 'anyjson==0.3.3', 'argparse==1.2.1', 'billiard==3.3.0.20', 'blinker==1.4', 'celery==3.1.18', 'docutils==0.12', 'dominate==2.1.16', 'flask-nav==0.4', 'itsdangerous==0.24', 'kombu==3.0.26', 'python-dateutil==2.4.2', 'pytz==2015.6', 'redis==2.10.3', 'six==1.10.0', 'snowballstemmer==1.2.0', 'speaklater==1.3', 'sphinx-rtd-theme==0.1.9', 'visitor==0.1.2', 'wsgiref==0.1.2', 'Flask-Login==0.3.2', 'hmac' ], entry_points=""" [console_scripts] flask-ctl = revot.script:run [paste.app_factory] main = revot.script:make_app debug = revot.script:make_debug """, )
iskracat/revot
setup.py
Python
apache-2.0
1,864
# -*- coding: utf-8 -*- # # odmlviz documentation build configuration file, created by # sphinx-quickstart on Mon Aug 17 13:22:00 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../../src')) sys.path.insert(0, os.path.abspath('../../../../python-odml/')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinxcontrib.exceltable' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'odmlviz' copyright = u'2015, Jana Pick' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['.static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'odmlvizdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'odmlviz.tex', u'odmlviz Documentation', u'Jana Pick', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'odmlviz', u'odmlviz Documentation', [u'Jana Pick'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'odmlviz', u'odmlviz Documentation', u'Jana Pick', 'odmlviz', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
j-pick/python-odmlviz
doc/source/conf.py
Python
bsd-2-clause
8,318
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import division import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter, MaxNLocator import numpy as np from matplotlib.ticker import MultipleLocator, FormatStrFormatter from matplotlib.finance import quotes_historical_yahoo_ochl from matplotlib.dates import YearLocator, MonthLocator, DateFormatter, WeekdayLocator, MONDAY import datetime __version__ = '0.0.1' __license__ = 'MIT' __author__ = 'Joshua Guo ([email protected])' ''' Python to plot using matplotlib and numpy ''' def main(): # tick_lables_plot() # major_minor_use() stock_year_plot() # stock_month_plot() def tick_lables_plot(): ''' Basic demo showing how to set tick labels to values of a series. Using ax.set_xticks causes the tick labels to be set on the currently chosen ticks. However, you may want to allow matplotlib to dynamically choose the number of ticks and their spacing. In this case it may be better to determine the tick label from the value at the tick. The following example shows how to do this. NB: The MaxNLocator is used here to ensure that the tick values take integer values. ''' fig = plt.figure() ax = fig.add_subplot(111) xs = range(26) ys = range(26) labels = list('abcdefghijklmnopqrstuvwxyz') def format_fn(tick_val, tick_pos): if int(tick_val) in xs: return labels[int(tick_val)] else: return '' # Locators determine where the ticks are and formatters control the formatting of ticks. ax.xaxis.set_major_formatter(FuncFormatter(format_fn)) ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.plot(xs, ys) plt.show() def major_minor_use(): ''' Demonstrate how to use major and minor tickers. ''' majorLocator = MultipleLocator(20) majorFormatter = FormatStrFormatter('%d') minorLocator = MultipleLocator(5) t = np.arange(0.0, 100.0, 0.1) s = np.sin(0.1*np.pi*t)*np.exp(-t*0.01) fig, ax = plt.subplots() plt.plot(t, s) ax.xaxis.set_major_locator(majorLocator) ax.xaxis.set_major_formatter(majorFormatter) # for the minor ticks, use no labels; default NullFormatter ax.xaxis.set_minor_locator(minorLocator) plt.show() def stock_year_plot(): ''' Show how to make date plots in matplotlib using date tick locators and formatters. ''' date1 = datetime.date(1995, 1, 1) date2 = datetime.date(2004, 4, 12) years = YearLocator() # every year months = MonthLocator() # every month yearsFmt = DateFormatter('%Y') quotes = quotes_historical_yahoo_ochl('INTC', date1, date2) if len(quotes) == 0: print('Found no quotes') raise SystemExit dates = [q[0] for q in quotes] opens = [q[1] for q in quotes] fig, ax = plt.subplots() ax.plot_date(dates, opens, '-') # format the ticks ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) ax.autoscale_view() # format the coords message box def price(x): return '$%1.2f' % x ax.fmt_xdata = DateFormatter('%Y-%m-%d') ax.fmt_ydata = price ax.grid(True) fig.autofmt_xdate() plt.show() def stock_month_plot(): ''' Show how to make date plots in matplotlib using date tick locators and formatters. ''' date1 = datetime.date(2002, 1, 5) date2 = datetime.date(2003, 12, 1) # every monday mondays = WeekdayLocator(MONDAY) # every 3rd month months = MonthLocator(range(1, 13), bymonthday=1, interval=3) monthsFmt = DateFormatter("%b '%y") quotes = quotes_historical_yahoo_ochl('INTC', date1, date2) if len(quotes) == 0: print('Found no quotes') raise SystemExit dates = [q[0] for q in quotes] opens = [q[1] for q in quotes] fig, ax = plt.subplots() ax.plot_date(dates, opens, '-') ax.xaxis.set_major_locator(months) ax.xaxis.set_major_formatter(monthsFmt) ax.xaxis.set_minor_locator(mondays) ax.autoscale_view() #ax.xaxis.grid(False, 'major') #ax.xaxis.grid(True, 'minor') ax.grid(True) fig.autofmt_xdate() plt.show() if __name__ == '__main__': main()
JoshuaMichaelKing/MyLearning
learn-python2.7/matplotlib/plot_demos.py
Python
mit
4,309
# -*- coding: utf-8 -*- """The Elastic Search output module CLI arguments helper.""" from __future__ import unicode_literals import getpass import os from uuid import uuid4 from plaso.cli.helpers import interface from plaso.cli.helpers import manager from plaso.cli.helpers import server_config from plaso.cli import logger from plaso.lib import errors from plaso.output import elastic class ElasticSearchServerArgumentsHelper(server_config.ServerArgumentsHelper): """Elastic Search server CLI arguments helper.""" _DEFAULT_SERVER = '127.0.0.1' _DEFAULT_PORT = 9200 class ElasticSearchOutputArgumentsHelper(interface.ArgumentsHelper): """Elastic Search output module CLI arguments helper.""" NAME = 'elastic' CATEGORY = 'output' DESCRIPTION = 'Argument helper for the Elastic Search output modules.' _DEFAULT_INDEX_NAME = uuid4().hex _DEFAULT_DOCUMENT_TYPE = 'plaso_event' _DEFAULT_FLUSH_INTERVAL = 1000 _DEFAULT_RAW_FIELDS = False @classmethod def AddArguments(cls, argument_group): """Adds command line arguments the helper supports to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group. """ argument_group.add_argument( '--index_name', dest='index_name', type=str, action='store', default=cls._DEFAULT_INDEX_NAME, help=( 'Name of the index in ElasticSearch.')) argument_group.add_argument( '--doc_type', dest='document_type', type=str, action='store', default=cls._DEFAULT_DOCUMENT_TYPE, help=( 'Name of the document type that will be used in ElasticSearch.')) argument_group.add_argument( '--flush_interval', dest='flush_interval', type=int, action='store', default=cls._DEFAULT_FLUSH_INTERVAL, help=( 'Events to queue up before bulk insert to ElasticSearch.')) argument_group.add_argument( '--raw_fields', dest='raw_fields', action='store_true', default=cls._DEFAULT_RAW_FIELDS, help=( 'Export string fields that will not be analyzed by Lucene.')) argument_group.add_argument( '--elastic_user', dest='elastic_user', action='store', default=None, help='Username to use for Elasticsearch authentication.') argument_group.add_argument( '--elastic_password', dest='elastic_password', action='store', default=None, help=( 'Password to use for Elasticsearch authentication. WARNING: use ' 'with caution since this can expose the password to other users ' 'on the system. The password can also be set with the environment ' 'variable PLASO_ELASTIC_PASSWORD. ')) argument_group.add_argument( '--use_ssl', dest='use_ssl', action='store_true', help='Enforces use of ssl.') argument_group.add_argument( '--ca_certificates_file_path', dest='ca_certificates_file_path', action='store', type=str, default=None, help=( 'Path to a file containing a list of root certificates to trust.')) argument_group.add_argument( '--elastic_url_prefix', dest='elastic_url_prefix', type=str, action='store', default=None, help='URL prefix for elastic search.') ElasticSearchServerArgumentsHelper.AddArguments(argument_group) # pylint: disable=arguments-differ @classmethod def ParseOptions(cls, options, output_module): """Parses and validates options. Args: options (argparse.Namespace): parser options. output_module (OutputModule): output module to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation. """ elastic_output_modules = ( elastic.ElasticsearchOutputModule, elastic.ElasticsearchOutputModule) if not isinstance(output_module, elastic_output_modules): raise errors.BadConfigObject( 'Output module is not an instance of ElasticsearchOutputModule') index_name = cls._ParseStringOption( options, 'index_name', default_value=cls._DEFAULT_INDEX_NAME) document_type = cls._ParseStringOption( options, 'document_type', default_value=cls._DEFAULT_DOCUMENT_TYPE) flush_interval = cls._ParseNumericOption( options, 'flush_interval', default_value=cls._DEFAULT_FLUSH_INTERVAL) raw_fields = getattr(options, 'raw_fields', cls._DEFAULT_RAW_FIELDS) elastic_user = cls._ParseStringOption(options, 'elastic_user') elastic_password = cls._ParseStringOption(options, 'elastic_password') use_ssl = getattr(options, 'use_ssl', False) ca_certificates_path = cls._ParseStringOption( options, 'ca_certificates_file_path') elastic_url_prefix = cls._ParseStringOption(options, 'elastic_url_prefix') if elastic_password is None: elastic_password = os.getenv('PLASO_ELASTIC_PASSWORD', None) if elastic_password is not None: logger.warning( 'Note that specifying your Elasticsearch password via ' '--elastic_password or the environment PLASO_ELASTIC_PASSWORD can ' 'expose the password to other users on the system.') if elastic_user is not None and elastic_password is None: elastic_password = getpass.getpass('Enter your Elasticsearch password: ') ElasticSearchServerArgumentsHelper.ParseOptions(options, output_module) output_module.SetIndexName(index_name) output_module.SetDocumentType(document_type) output_module.SetFlushInterval(flush_interval) output_module.SetRawFields(raw_fields) output_module.SetUsername(elastic_user) output_module.SetPassword(elastic_password) output_module.SetUseSSL(use_ssl) output_module.SetCACertificatesPath(ca_certificates_path) output_module.SetURLPrefix(elastic_url_prefix) manager.ArgumentHelperManager.RegisterHelper(ElasticSearchOutputArgumentsHelper)
rgayon/plaso
plaso/cli/helpers/elastic_output.py
Python
apache-2.0
6,071
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from lxml import etree from oslo.serialization import jsonutils import webob from nova.api.openstack.compute.contrib import flavor_disabled from nova.compute import flavors from nova import test from nova.tests.unit.api.openstack import fakes FAKE_FLAVORS = { 'flavor 1': { "flavorid": '1', "name": 'flavor 1', "memory_mb": '256', "root_gb": '10', "swap": 512, "vcpus": 1, "ephemeral_gb": 1, "disabled": False, }, 'flavor 2': { "flavorid": '2', "name": 'flavor 2', "memory_mb": '512', "root_gb": '20', "swap": None, "vcpus": 1, "ephemeral_gb": 1, "disabled": True, }, } def fake_flavor_get_by_flavor_id(flavorid, ctxt=None): return FAKE_FLAVORS['flavor %s' % flavorid] def fake_get_all_flavors_sorted_list(context=None, inactive=False, filters=None, sort_key='flavorid', sort_dir='asc', limit=None, marker=None): return [ fake_flavor_get_by_flavor_id(1), fake_flavor_get_by_flavor_id(2) ] class FlavorDisabledTestV21(test.NoDBTestCase): base_url = '/v2/fake/flavors' content_type = 'application/json' prefix = "OS-FLV-DISABLED:" def setUp(self): super(FlavorDisabledTestV21, self).setUp() ext = ('nova.api.openstack.compute.contrib' '.flavor_disabled.Flavor_disabled') self.flags(osapi_compute_extension=[ext]) fakes.stub_out_nw_api(self.stubs) self.stubs.Set(flavors, "get_all_flavors_sorted_list", fake_get_all_flavors_sorted_list) self.stubs.Set(flavors, "get_flavor_by_flavor_id", fake_flavor_get_by_flavor_id) def _make_request(self, url): req = webob.Request.blank(url) req.headers['Accept'] = self.content_type res = req.get_response(fakes.wsgi_app_v21(init_only=('flavors'))) return res def _get_flavor(self, body): return jsonutils.loads(body).get('flavor') def _get_flavors(self, body): return jsonutils.loads(body).get('flavors') def assertFlavorDisabled(self, flavor, disabled): self.assertEqual(str(flavor.get('%sdisabled' % self.prefix)), disabled) def test_show(self): url = self.base_url + '/1' res = self._make_request(url) self.assertEqual(res.status_int, 200) self.assertFlavorDisabled(self._get_flavor(res.body), 'False') def test_detail(self): url = self.base_url + '/detail' res = self._make_request(url) self.assertEqual(res.status_int, 200) flavors = self._get_flavors(res.body) self.assertFlavorDisabled(flavors[0], 'False') self.assertFlavorDisabled(flavors[1], 'True') class FlavorDisabledTestV2(FlavorDisabledTestV21): def _make_request(self, url): req = webob.Request.blank(url) req.headers['Accept'] = self.content_type res = req.get_response(fakes.wsgi_app()) return res class FlavorDisabledXmlTest(FlavorDisabledTestV2): content_type = 'application/xml' prefix = '{%s}' % flavor_disabled.Flavor_disabled.namespace def _get_flavor(self, body): return etree.XML(body) def _get_flavors(self, body): return etree.XML(body).getchildren()
luzheqi1987/nova-annotation
nova/tests/unit/api/openstack/compute/contrib/test_flavor_disabled.py
Python
apache-2.0
4,015
import cProfile import ProfilingTest import pstats import os print "starting profiling" path = 'ProfilingTest.stats' cProfile.run('ProfilingTest.run()', path) p = pstats.Stats(path) p.sort_stats('cumulative').print_stats(10) p.sort_stats('time').print_stats(10) os.system("gprof2dot -f pstats {0} | dot -Tsvg -o callgraph.svg".format(path)) os.system("rsvg-convert -h 2000 callgraph.svg > callgraph.png".format(path))
lcameron05/PCWG
Profiling.py
Python
mit
425
from sys import stdin import string def reversewords(line): line.reverse() print " ".join(line) map((lambda l: reversewords(string.split(l.strip()))), stdin.readlines())
aqibmushtaq/codeeval
reverse-words/reverse.py
Python
mit
180
#!/usr/bin/python # -- Content-Encoding: UTF-8 -- """ Tests the pooled server :license: Apache License 2.0 """ # JSON-RPC library from jsonrpclib import ServerProxy from jsonrpclib.SimpleJSONRPCServer import PooledJSONRPCServer from jsonrpclib.threadpool import ThreadPool # Standard library import random import threading import unittest # ------------------------------------------------------------------------------ def add(a, b): return a+b class PooledServerTests(unittest.TestCase): """ These tests verify that the pooled server works correctly """ def test_default_pool(self, pool=None): """ Tests the default pool """ # Setup server server = PooledJSONRPCServer(("localhost", 0), thread_pool=pool) server.register_function(add) # Serve in a thread thread = threading.Thread(target=server.serve_forever) thread.daemon = True thread.start() # Find its port port = server.socket.getsockname()[1] # Make the client client = ServerProxy("http://localhost:{0}".format(port)) # Check calls for _ in range(10): a, b = random.random(), random.random() result = client.add(a, b) self.assertEqual(result, a+b) # Close server server.server_close() thread.join() def test_custom_pool(self): """ Tests the ability to have a custom pool """ # Setup the pool pool = ThreadPool(2) pool.start() self.test_default_pool(pool)
CloudI/CloudI
src/service_api/python/jsonrpclib/tests/test_server.py
Python
mit
1,597
def _mask_border_keypoints(image, keypoints, dist): """Removes keypoints that are within dist pixels from the image border.""" width = image.shape[0] height = image.shape[1] keypoints_filtering_mask = ((dist - 1 < keypoints[:, 0]) & (keypoints[:, 0] < width - dist + 1) & (dist - 1 < keypoints[:, 1]) & (keypoints[:, 1] < height - dist + 1)) return keypoints_filtering_mask def pairwise_hamming_distance(array1, array2): """**Experimental function**. Calculate hamming dissimilarity measure between two sets of vectors. Parameters ---------- array1 : (P1, D) array P1 vectors of size D. array2 : (P2, D) array P2 vectors of size D. Returns ------- distance : (P1, P2) array of dtype float 2D ndarray with value at an index (i, j) representing the hamming distance in the range [0, 1] between ith vector in array1 and jth vector in array2. """ distance = (array1[:, None] != array2[None]).mean(axis=2) return distance
almarklein/scikit-image
skimage/feature/util.py
Python
bsd-3-clause
1,135
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import sys from py4j.java_gateway import get_method from pyflink.java_gateway import get_gateway from pyflink.table.table_schema import TableSchema from pyflink.table.window import GroupWindow from pyflink.util.utils import to_jarray if sys.version > '3': xrange = range __all__ = ['Table', 'GroupedTable', 'GroupWindowedTable', 'OverWindowedTable', 'WindowGroupedTable'] class Table(object): """ A :class:`Table` is the core component of the Table API. Similar to how the batch and streaming APIs have DataSet and DataStream, the Table API is built around :class:`Table`. Use the methods of :class:`Table` to transform data. Example: :: >>> env = StreamExecutionEnvironment.get_execution_environment() >>> env.set_parallelism(1) >>> t_env = StreamTableEnvironment.create(env) >>> ... >>> t_env.register_table_source("source", ...) >>> t = t_env.scan("source") >>> t.select(...) >>> ... >>> t_env.register_table_sink("result", ...) >>> t.insert_into("result") >>> env.execute() Operations such as :func:`~pyflink.table.Table.join`, :func:`~pyflink.table.Table.select`, :func:`~pyflink.table.Table.where` and :func:`~pyflink.table.Table.group_by` take arguments in an expression string. Please refer to the documentation for the expression syntax. """ def __init__(self, j_table): self._j_table = j_table def select(self, fields): """ Performs a selection operation. Similar to a SQL SELECT statement. The field expressions can contain complex expressions. Example: :: >>> tab.select("key, value + 'hello'") :param fields: Expression string. :return: The result :class:`Table`. """ return Table(self._j_table.select(fields)) def alias(self, fields): """ Renames the fields of the expression result. Use this to disambiguate fields before joining to operations. Example: :: >>> tab.alias("a, b") :param fields: Field list expression string. :return: The result :class:`Table`. """ return Table(get_method(self._j_table, "as")(fields)) def filter(self, predicate): """ Filters out elements that don't pass the filter predicate. Similar to a SQL WHERE clause. Example: :: >>> tab.filter("name = 'Fred'") :param predicate: Predicate expression string. :return: The result :class:`Table`. """ return Table(self._j_table.filter(predicate)) def where(self, predicate): """ Filters out elements that don't pass the filter predicate. Similar to a SQL WHERE clause. Example: :: >>> tab.where("name = 'Fred'") :param predicate: Predicate expression string. :return: The result :class:`Table`. """ return Table(self._j_table.where(predicate)) def group_by(self, fields): """ Groups the elements on some grouping keys. Use this before a selection with aggregations to perform the aggregation on a per-group basis. Similar to a SQL GROUP BY statement. Example: :: >>> tab.group_by("key").select("key, value.avg") :param fields: Group keys. :return: The grouped :class:`Table`. """ return GroupedTable(self._j_table.groupBy(fields)) def distinct(self): """ Removes duplicate values and returns only distinct (different) values. Example: :: >>> tab.select("key, value").distinct() :return: The result :class:`Table`. """ return Table(self._j_table.distinct()) def join(self, right, join_predicate=None): """ Joins two :class:`Table`. Similar to a SQL join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. You can use where and select clauses after a join to further specify the behaviour of the join. .. note:: Both tables must be bound to the same :class:`TableEnvironment` . Example: :: >>> left.join(right).where("a = b && c > 3").select("a, b, d") >>> left.join(right, "a = b") :param right: Right table. :param join_predicate: Optional, the join predicate expression string. :return: The result :class:`Table`. """ if join_predicate is not None: return Table(self._j_table.join(right._j_table, join_predicate)) else: return Table(self._j_table.join(right._j_table)) def left_outer_join(self, right, join_predicate=None): """ Joins two :class:`Table`. Similar to a SQL left outer join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. .. note:: Both tables must be bound to the same :class:`TableEnvironment` and its :class:`TableConfig` must have null check enabled (default). Example: :: >>> left.left_outer_join(right).select("a, b, d") >>> left.left_outer_join(right, "a = b").select("a, b, d") :param right: Right table. :param join_predicate: Optional, the join predicate expression string. :return: The result :class:`Table`. """ if join_predicate is None: return Table(self._j_table.leftOuterJoin(right._j_table)) else: return Table(self._j_table.leftOuterJoin(right._j_table, join_predicate)) def right_outer_join(self, right, join_predicate): """ Joins two :class:`Table`. Similar to a SQL right outer join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. .. note:: Both tables must be bound to the same :class:`TableEnvironment` and its :class:`TableConfig` must have null check enabled (default). Example: :: >>> left.right_outer_join(right, "a = b").select("a, b, d") :param right: Right table. :param join_predicate: The join predicate expression string. :return: The result :class:`Table`. """ return Table(self._j_table.rightOuterJoin(right._j_table, join_predicate)) def full_outer_join(self, right, join_predicate): """ Joins two :class:`Table`. Similar to a SQL full outer join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. .. note:: Both tables must be bound to the same :class:`TableEnvironment` and its :class:`TableConfig` must have null check enabled (default). Example: :: >>> left.full_outer_join(right, "a = b").select("a, b, d") :param right: Right table. :param join_predicate: The join predicate expression string. :return: The result :class:`Table`. """ return Table(self._j_table.fullOuterJoin(right._j_table, join_predicate)) def minus(self, right): """ Minus of two :class:`Table` with duplicate records removed. Similar to a SQL EXCEPT clause. Minus returns records from the left table that do not exist in the right table. Duplicate records in the left table are returned exactly once, i.e., duplicates are removed. Both tables must have identical field types. .. note:: Both tables must be bound to the same :class:`TableEnvironment`. Example: :: >>> left.minus(right) :param right: Right table. :return: The result :class:`Table`. """ return Table(self._j_table.minus(right._j_table)) def minus_all(self, right): """ Minus of two :class:`Table`. Similar to a SQL EXCEPT ALL. Similar to a SQL EXCEPT ALL clause. MinusAll returns the records that do not exist in the right table. A record that is present n times in the left table and m times in the right table is returned (n - m) times, i.e., as many duplicates as are present in the right table are removed. Both tables must have identical field types. .. note:: Both tables must be bound to the same :class:`TableEnvironment`. Example: :: >>> left.minus_all(right) :param right: Right table. :return: The result :class:`Table`. """ return Table(self._j_table.minusAll(right._j_table)) def union(self, right): """ Unions two :class:`Table` with duplicate records removed. Similar to a SQL UNION. The fields of the two union operations must fully overlap. .. note:: Both tables must be bound to the same :class:`TableEnvironment`. Example: :: >>> left.union(right) :param right: Right table. :return: The result :class:`Table`. """ return Table(self._j_table.union(right._j_table)) def union_all(self, right): """ Unions two :class:`Table`. Similar to a SQL UNION ALL. The fields of the two union operations must fully overlap. .. note:: Both tables must be bound to the same :class:`TableEnvironment`. Example: :: >>> left.union_all(right) :param right: Right table. :return: The result :class:`Table`. """ return Table(self._j_table.unionAll(right._j_table)) def intersect(self, right): """ Intersects two :class:`Table` with duplicate records removed. Intersect returns records that exist in both tables. If a record is present in one or both tables more than once, it is returned just once, i.e., the resulting table has no duplicate records. Similar to a SQL INTERSECT. The fields of the two intersect operations must fully overlap. .. note:: Both tables must be bound to the same :class:`TableEnvironment`. Example: :: >>> left.intersect(right) :param right: Right table. :return: The result :class:`Table`. """ return Table(self._j_table.intersect(right._j_table)) def intersect_all(self, right): """ Intersects two :class:`Table`. IntersectAll returns records that exist in both tables. If a record is present in both tables more than once, it is returned as many times as it is present in both tables, i.e., the resulting table might have duplicate records. Similar to an SQL INTERSECT ALL. The fields of the two intersect operations must fully overlap. .. note:: Both tables must be bound to the same :class:`TableEnvironment`. Example: :: >>> left.intersect_all(right) :param right: Right table. :return: The result :class:`Table`. """ return Table(self._j_table.intersectAll(right._j_table)) def order_by(self, fields): """ Sorts the given :class:`Table`. Similar to SQL ORDER BY. The resulting Table is sorted globally sorted across all parallel partitions. Example: :: >>> tab.order_by("name.desc") :param fields: Order fields expression string, :return: The result :class:`Table`. """ return Table(self._j_table.orderBy(fields)) def offset(self, offset): """ Limits a sorted result from an offset position. Similar to a SQL OFFSET clause. Offset is technically part of the Order By operator and thus must be preceded by it. :func:`~pyflink.table.Table.offset` can be combined with a subsequent :func:`~pyflink.table.Table.fetch` call to return n rows after skipping the first o rows. Example: :: # skips the first 3 rows and returns all following rows. >>> tab.order_by("name.desc").offset(3) # skips the first 10 rows and returns the next 5 rows. >>> tab.order_by("name.desc").offset(10).fetch(5) :param offset: Number of records to skip. :return: The result :class:`Table`. """ return Table(self._j_table.offset(offset)) def fetch(self, fetch): """ Limits a sorted result to the first n rows. Similar to a SQL FETCH clause. Fetch is technically part of the Order By operator and thus must be preceded by it. :func:`~pyflink.table.Table.offset` can be combined with a preceding :func:`~pyflink.table.Table.fetch` call to return n rows after skipping the first o rows. Example: Returns the first 3 records. :: >>> tab.order_by("name.desc").fetch(3) Skips the first 10 rows and returns the next 5 rows. :: >>> tab.order_by("name.desc").offset(10).fetch(5) :param fetch: The number of records to return. Fetch must be >= 0. :return: The result :class:`Table`. """ return Table(self._j_table.fetch(fetch)) def window(self, window): """ Defines group window on the records of a table. A group window groups the records of a table by assigning them to windows defined by a time or row interval. For streaming tables of infinite size, grouping into windows is required to define finite groups on which group-based aggregates can be computed. For batch tables of finite size, windowing essentially provides shortcuts for time-based groupBy. .. note:: Computing windowed aggregates on a streaming table is only a parallel operation if additional grouping attributes are added to the :func:`~pyflink.table.GroupWindowedTable.group_by` clause. If the :func:`~pyflink.table.GroupWindowedTable.group_by` only references a GroupWindow alias, the streamed table will be processed by a single task, i.e., with parallelism 1. Example: :: >>> tab.window(Tumble.over("10.minutes").on("rowtime").alias("w")) \\ ... .group_by("w") \\ ... .select("a.sum as a, w.start as b, w.end as c, w.rowtime as d") :param window: A :class:`pyflink.table.window.GroupWindow` created from :class:`pyflink.table.window.Tumble`, :class:`pyflink.table.window.Session` or :class:`pyflink.table.window.Slide`. :return: A :class:`GroupWindowedTable`. """ # type: (GroupWindow) -> GroupWindowedTable return GroupWindowedTable(self._j_table.window(window._java_window)) def over_window(self, *over_windows): """ Defines over-windows on the records of a table. An over-window defines for each record an interval of records over which aggregation functions can be computed. Example: :: >>> table.window(Over.partition_by("c").order_by("rowTime") \\ ... .preceding("10.seconds").alias("ow")) \\ ... .select("c, b.count over ow, e.sum over ow") .. note:: Computing over window aggregates on a streaming table is only a parallel operation if the window is partitioned. Otherwise, the whole stream will be processed by a single task, i.e., with parallelism 1. .. note:: Over-windows for batch tables are currently not supported. :param over_windows: :class:`OverWindow`s created from :class:`Over`. :return: A :class:`OverWindowedTable`. """ gateway = get_gateway() window_array = to_jarray(gateway.jvm.OverWindow, [item._java_over_window for item in over_windows]) return OverWindowedTable(self._j_table.window(window_array)) def add_columns(self, fields): """ Adds additional columns. Similar to a SQL SELECT statement. The field expressions can contain complex expressions, but can not contain aggregations. It will throw an exception if the added fields already exist. Example: :: >>> tab.add_columns("a + 1 as a1, concat(b, 'sunny') as b1") :param fields: Column list string. :return: The result :class:`Table`. """ return Table(self._j_table.addColumns(fields)) def add_or_replace_columns(self, fields): """ Adds additional columns. Similar to a SQL SELECT statement. The field expressions can contain complex expressions, but can not contain aggregations. Existing fields will be replaced if add columns name is the same as the existing column name. Moreover, if the added fields have duplicate field name, then the last one is used. Example: :: >>> tab.add_or_replace_columns("a + 1 as a1, concat(b, 'sunny') as b1") :param fields: Column list string. :return: The result :class:`Table`. """ return Table(self._j_table.addOrReplaceColumns(fields)) def rename_columns(self, fields): """ Renames existing columns. Similar to a field alias statement. The field expressions should be alias expressions, and only the existing fields can be renamed. Example: :: >>> tab.rename_columns("a as a1, b as b1") :param fields: Column list string. :return: The result :class:`Table`. """ return Table(self._j_table.renameColumns(fields)) def drop_columns(self, fields): """ Drops existing columns. The field expressions should be field reference expressions. Example: :: >>> tab.drop_columns("a, b") :param fields: Column list string. :return: The result :class:`Table`. """ return Table(self._j_table.dropColumns(fields)) def insert_into(self, table_path, *table_path_continued): """ Writes the :class:`Table` to a :class:`TableSink` that was registered under the specified name. For the path resolution algorithm see :func:`~TableEnvironment.use_database`. Example: :: >>> tab.insert_into("sink") :param table_path: The first part of the path of the registered :class:`TableSink` to which the :class:`Table` is written. This is to ensure at least the name of the :class:`Table` is provided. :param table_path_continued: The remaining part of the path of the registered :class:`TableSink` to which the :class:`Table` is written. """ gateway = get_gateway() j_table_path = to_jarray(gateway.jvm.String, table_path_continued) self._j_table.insertInto(table_path, j_table_path) def get_schema(self): """ Returns the :class:`TableSchema` of this table. :return: The schema of this table. """ return TableSchema(j_table_schema=self._j_table.getSchema()) def print_schema(self): """ Prints the schema of this table to the console in a tree format. """ self._j_table.printSchema() def __str__(self): return self._j_table.toString() class GroupedTable(object): """ A table that has been grouped on a set of grouping keys. """ def __init__(self, java_table): self._j_table = java_table def select(self, fields): """ Performs a selection operation on a grouped table. Similar to an SQL SELECT statement. The field expressions can contain complex expressions and aggregations. Example: :: >>> tab.group_by("key").select("key, value.avg + ' The average' as average") :param fields: Expression string that contains group keys and aggregate function calls. :return: The result :class:`Table`. """ return Table(self._j_table.select(fields)) class GroupWindowedTable(object): """ A table that has been windowed for :class:`pyflink.table.window.GroupWindow`. """ def __init__(self, java_group_windowed_table): self._j_table = java_group_windowed_table def group_by(self, fields): """ Groups the elements by a mandatory window and one or more optional grouping attributes. The window is specified by referring to its alias. If no additional grouping attribute is specified and if the input is a streaming table, the aggregation will be performed by a single task, i.e., with parallelism 1. Aggregations are performed per group and defined by a subsequent :func:`~pyflink.table.WindowGroupedTable.select` clause similar to SQL SELECT-GROUP-BY query. Example: :: >>> tab.window(group_window.alias("w")).group_by("w, key").select("key, value.avg") :param fields: Group keys. :return: A :class:`WindowGroupedTable`. """ return WindowGroupedTable(self._j_table.groupBy(fields)) class WindowGroupedTable(object): """ A table that has been windowed and grouped for :class:`pyflink.table.window.GroupWindow`. """ def __init__(self, java_window_grouped_table): self._j_table = java_window_grouped_table def select(self, fields): """ Performs a selection operation on a window grouped table. Similar to an SQL SELECT statement. The field expressions can contain complex expressions and aggregations. Example: :: >>> window_grouped_table.select("key, window.start, value.avg as valavg") :param fields: Expression string. :return: The result :class:`Table`. """ return Table(self._j_table.select(fields)) class OverWindowedTable(object): """ A table that has been windowed for :class:`pyflink.table.window.OverWindow`. Unlike group windows, which are specified in the GROUP BY clause, over windows do not collapse rows. Instead over window aggregates compute an aggregate for each input row over a range of its neighboring rows. """ def __init__(self, java_over_windowed_table): self._j_table = java_over_windowed_table def select(self, fields): """ Performs a selection operation on a over windowed table. Similar to an SQL SELECT statement. The field expressions can contain complex expressions and aggregations. Example: :: >>> over_windowed_table.select("c, b.count over ow, e.sum over ow") :param fields: Expression string. :return: The result :class:`Table`. """ return Table(self._j_table.select(fields))
shaoxuan-wang/flink
flink-python/pyflink/table/table.py
Python
apache-2.0
24,237
from netfields import MACAddressField from django.db import models from django.utils.translation import ugettext_lazy as _ from django.conf import settings from nodeshot.core.base.models import BaseAccessLevel from choices import INTERFACE_TYPE_CHOICES from django_hstore.fields import DictionaryField, ReferencesField from nodeshot.core.base.managers import HStoreAccessLevelManager as InterfaceManager class Interface(BaseAccessLevel): """ Interface model """ device = models.ForeignKey('net.Device') type = models.IntegerField(_('type'), choices=INTERFACE_TYPE_CHOICES, blank=True) name = models.CharField(_('name'), max_length=10, blank=True, null=True) mac = MACAddressField(_('mac address'), max_length=17, unique=True, default=None, null=True, blank=True) mtu = models.IntegerField(_('MTU'), blank=True, null=True, default=1500, help_text=_('Maximum Trasmission Unit')) tx_rate = models.IntegerField(_('TX Rate'), null=True, default=None, blank=True) rx_rate = models.IntegerField(_('RX Rate'), null=True, default=None, blank=True) # extra data data = DictionaryField(_('extra data'), null=True, blank=True, help_text=_('store extra attributes in JSON string')) shortcuts = ReferencesField(null=True, blank=True) objects = InterfaceManager() class Meta: app_label = 'net' def __unicode__(self): return '%s %s' % (self.get_type_display(), self.mac) def save(self, *args, **kwargs): """ Custom save method does the following: * save shortcuts if HSTORE is enabled """ if 'node' not in self.shortcuts: self.shortcuts['node'] = self.device.node if 'user' not in self.shortcuts and self.device.node.user: self.shortcuts['user'] = self.device.node.user if 'layer' not in self.shortcuts and 'nodeshot.core.layers' in settings.INSTALLED_APPS: self.shortcuts['layer'] = self.device.node.layer super(Interface, self).save(*args, **kwargs) @property def owner(self): if 'user' not in self.shortcuts: if self.device or self.device_id: self.save() else: raise Exception('Instance does not have a device set yet') return self.shortcuts['user'] @property def node(self): if 'node' not in self.shortcuts: if self.device or self.device_id: self.save() else: raise Exception('Instance does not have a device set yet') return self.shortcuts['node'] @property def layer(self): if 'nodeshot.core.layers' not in settings.INSTALLED_APPS: return False if 'layer' not in self.shortcuts: if self.device or self.device_id: self.save() else: raise Exception('Instance does not have a device set yet') return self.shortcuts['layer'] @property def ip_addresses(self): try: addresses = self.data.get('ip_addresses', '') # self.data might be none, hence self.data['ip_addresses'] will raise an exception except AttributeError: addresses = '' return addresses.replace(' ', '').split(',') if addresses else [] @ip_addresses.setter def ip_addresses(self, value): """ :param value: a list of ip addresses """ if not isinstance(value, list): raise ValueError('ip_addresses value must be a list') # in soem cases self.data might be none, so let's instantiate an empty dict if self.data is None: self.data = {} # update field self.data['ip_addresses'] = ', '.join(value) if 'grappelli' in settings.INSTALLED_APPS: @staticmethod def autocomplete_search_fields(): return ('mac__icontains', 'data__icontains')
SCORE42/nodeshot
nodeshot/networking/net/models/interface.py
Python
gpl-3.0
3,968
import math, re from wsgiref.simple_server import make_server from pyramid.config import Configurator from pyramid.response import Response from pyramid.view import view_defaults, view_config from jinja2 import Environment, Template from pymongo import MongoClient client = MongoClient() db = client.blog db.authenticate("blog", "harderpass123") MAX_POST_LENGTH = 200 MAX_PER_PAGE = 10 REGEX_POST_LENGTH = re.compile(".{1,%d}[^ ]*" % MAX_POST_LENGTH); def get_post(id): if type(id) == int or id.isdigit(): post = db.posts.find_one({"id": int(id)}) return post def get_latest(): return db.posts.find_one(sort=[("id", -1)]) def get_count(): return db.posts.count() @view_config(route_name="index", renderer="template.jinja2") def index(request): posts = [] post_count = get_count() page_count = int(math.ceil(post_count/MAX_PER_PAGE)) current_page = 1 offset = 0 if request.matchdict["offset"].isdigit() and int(request.matchdict["offset"]) > 0: current_page = int(request.matchdict["offset"]) offset = MAX_PER_PAGE*(current_page-1) if post_count > 0: current_id = get_latest()["id"]-offset while len(posts) < MAX_PER_PAGE and current_id > 0: post = get_post(current_id) posts.append(post) current_id -= 1 for post in posts: if post and "text" in post: if len(post["text"]) > MAX_POST_LENGTH or "\n" in post["text"]: post["text"] = "%s..." % re.match(REGEX_POST_LENGTH, post["text"].split("\n", 1)[0]).group(0) return dict(header_text="Blog", posts=posts, page_count=page_count, current_page=current_page) @view_config(route_name="post", renderer="template.jinja2") def post(request): id = request.matchdict["id"] post = get_post(id) return dict(header_text="Blog", post=post) if __name__ == '__main__': config = Configurator() config.include('pyramid_jinja2') config.add_static_view(name="static", path="static") config.add_route("post", "/post/{id}") config.add_route("index", "/{offset:.*}") config.scan() app = config.make_wsgi_app() server = make_server('127.0.0.1', 8081, app) server.serve_forever()
jesopo/python-blog
blog.py
Python
gpl-3.0
2,242
# -*- coding: utf-8 -*- # This code was generously pilfered from https://bitbucket.org/Jeffrey/gevent-websocket # written by Jeffrey Gelens (http://noppo.pro/) and licensed under the Apache License, Version 2.0 import six import struct from socket import error as socket_error from django.core.handlers.wsgi import logger from .utf8validator import Utf8Validator from .exceptions import WebSocketError, FrameTooLargeException class WebSocket(object): __slots__ = ('_closed', 'stream', 'utf8validator', 'utf8validate_last') OPCODE_CONTINUATION = 0x00 OPCODE_TEXT = 0x01 OPCODE_BINARY = 0x02 OPCODE_CLOSE = 0x08 OPCODE_PING = 0x09 OPCODE_PONG = 0x0a def __init__(self, wsgi_input): self._closed = False self.stream = Stream(wsgi_input) self.utf8validator = Utf8Validator() def __del__(self): try: self.close() except: # close() may fail if __init__ didn't complete pass def _decode_bytes(self, bytestring): """ Internal method used to convert the utf-8 encoded bytestring into unicode. If the conversion fails, the socket will be closed. """ if not bytestring: return u'' try: return bytestring.decode('utf-8') except UnicodeDecodeError: self.close(1007) raise def _encode_bytes(self, text): """ :returns: The utf-8 byte string equivalent of `text`. """ if isinstance(text, six.binary_type): return text if not isinstance(text, six.text_type): text = six.text_type(text or '') return text.encode('utf-8') def _is_valid_close_code(self, code): """ :returns: Whether the returned close code is a valid hybi return code. """ if code < 1000: return False if 1004 <= code <= 1006: return False if 1012 <= code <= 1016: return False if code == 1100: # not sure about this one but the autobahn fuzzer requires it. return False if 2000 <= code <= 2999: return False return True def get_file_descriptor(self): """Return the file descriptor for the given websocket""" return self.stream.fileno @property def closed(self): return self._closed def handle_close(self, header, payload): """ Called when a close frame has been decoded from the stream. :param header: The decoded `Header`. :param payload: The bytestring payload associated with the close frame. """ if not payload: self.close(1000, None) return if len(payload) < 2: raise WebSocketError('Invalid close frame: {0} {1}'.format(header, payload)) code = struct.unpack('!H', str(payload[:2]))[0] payload = payload[2:] if payload: validator = Utf8Validator() val = validator.validate(payload) if not val[0]: raise UnicodeError if not self._is_valid_close_code(code): raise WebSocketError('Invalid close code {0}'.format(code)) self.close(code, payload) def handle_ping(self, header, payload): self.send_frame(payload, self.OPCODE_PONG) def handle_pong(self, header, payload): pass def read_frame(self): """ Block until a full frame has been read from the socket. This is an internal method as calling this will not cleanup correctly if an exception is called. Use `receive` instead. :return: The header and payload as a tuple. """ header = Header.decode_header(self.stream) if header.flags: raise WebSocketError if not header.length: return header, '' try: payload = self.stream.read(header.length) except socket_error: payload = '' except Exception: # TODO log out this exception payload = '' if len(payload) != header.length: raise WebSocketError('Unexpected EOF reading frame payload') if header.mask: payload = header.unmask_payload(payload) return header, payload def validate_utf8(self, payload): # Make sure the frames are decodable independently self.utf8validate_last = self.utf8validator.validate(payload) if not self.utf8validate_last[0]: raise UnicodeError("Encountered invalid UTF-8 while processing " "text message at payload octet index " "{0:d}".format(self.utf8validate_last[3])) def read_message(self): """ Return the next text or binary message from the socket. This is an internal method as calling this will not cleanup correctly if an exception is called. Use `receive` instead. """ opcode = None message = "" while True: header, payload = self.read_frame() f_opcode = header.opcode if f_opcode in (self.OPCODE_TEXT, self.OPCODE_BINARY): # a new frame if opcode: raise WebSocketError("The opcode in non-fin frame is expected to be zero, got {0!r}".format(f_opcode)) # Start reading a new message, reset the validator self.utf8validator.reset() self.utf8validate_last = (True, True, 0, 0) opcode = f_opcode elif f_opcode == self.OPCODE_CONTINUATION: if not opcode: raise WebSocketError("Unexpected frame with opcode=0") elif f_opcode == self.OPCODE_PING: self.handle_ping(header, payload) continue elif f_opcode == self.OPCODE_PONG: self.handle_pong(header, payload) continue elif f_opcode == self.OPCODE_CLOSE: self.handle_close(header, payload) return else: raise WebSocketError("Unexpected opcode={0!r}".format(f_opcode)) if opcode == self.OPCODE_TEXT: self.validate_utf8(payload) message += payload if header.fin: break if opcode == self.OPCODE_TEXT: self.validate_utf8(message) return message else: return bytearray(message) def receive(self): """ Read and return a message from the stream. If `None` is returned, then the socket is considered closed/errored. """ if self._closed: raise WebSocketError("Connection is already closed") try: return self.read_message() except UnicodeError as e: logger.info('websocket.receive: UnicodeError {}'.format(e)) self.close(1007) except WebSocketError as e: logger.info('websocket.receive: WebSocketError {}'.format(e)) self.close(1002) except Exception as e: logger.info('websocket.receive: Unknown error {}'.format(e)) raise e def flush(self): """ Flush a websocket. In this implementation intentionally it does nothing. """ pass def send_frame(self, message, opcode): """ Send a frame over the websocket with message as its payload """ if self._closed: raise WebSocketError("Connection is already closed") if opcode == self.OPCODE_TEXT: message = self._encode_bytes(message) elif opcode == self.OPCODE_BINARY: message = six.binary_type(message) header = Header.encode_header(True, opcode, '', len(message), 0) try: self.stream.write(header + message) except socket_error: raise WebSocketError("Socket is dead") def send(self, message, binary=False): """ Send a frame over the websocket with message as its payload """ if binary is None: binary = not isinstance(message, six.string_types) opcode = self.OPCODE_BINARY if binary else self.OPCODE_TEXT try: self.send_frame(message, opcode) except WebSocketError, e: logger.info('Socket is dead {}'.format(e)) #raise WebSocketError("Socket is dead %s" % e.message) def close(self, code=1000, message=''): """ Close the websocket and connection, sending the specified code and message. The underlying socket object is _not_ closed, that is the responsibility of the initiator. """ try: message = self._encode_bytes(message) self.send_frame( struct.pack('!H%ds' % len(message), code, message), opcode=self.OPCODE_CLOSE) except WebSocketError: # Failed to write the closing frame but it's ok because we're # closing the socket anyway. logger.debug("Failed to write closing frame -> closing socket") finally: logger.debug("Closed WebSocket") self._closed = True self.stream = None class Stream(object): """ Wraps the handler's socket/rfile attributes and makes it in to a file like object that can be read from/written to by the lower level websocket api. """ __slots__ = ('read', 'write', 'fileno') def __init__(self, wsgi_input): if six.PY2: self.read = wsgi_input._sock.recv self.write = wsgi_input._sock.sendall else: self.read = wsgi_input.raw._sock.recv self.write = wsgi_input.raw._sock.sendall self.fileno = wsgi_input.fileno() class Header(object): __slots__ = ('fin', 'mask', 'opcode', 'flags', 'length') FIN_MASK = 0x80 OPCODE_MASK = 0x0f MASK_MASK = 0x80 LENGTH_MASK = 0x7f RSV0_MASK = 0x40 RSV1_MASK = 0x20 RSV2_MASK = 0x10 # bitwise mask that will determine the reserved bits for a frame header HEADER_FLAG_MASK = RSV0_MASK | RSV1_MASK | RSV2_MASK def __init__(self, fin=0, opcode=0, flags=0, length=0): self.mask = '' self.fin = fin self.opcode = opcode self.flags = flags self.length = length def mask_payload(self, payload): payload = bytearray(payload) mask = bytearray(self.mask) for i in xrange(self.length): payload[i] ^= mask[i % 4] return str(payload) # it's the same operation unmask_payload = mask_payload def __repr__(self): return ("<Header fin={0} opcode={1} length={2} flags={3} at " "0x{4:x}>").format(self.fin, self.opcode, self.length, self.flags, id(self)) @classmethod def decode_header(cls, stream): """ Decode a WebSocket header. :param stream: A file like object that can be 'read' from. :returns: A `Header` instance. """ read = stream.read data = read(2) if len(data) != 2: raise WebSocketError("Unexpected EOF while decoding header") first_byte, second_byte = struct.unpack('!BB', data) header = cls( fin=first_byte & cls.FIN_MASK == cls.FIN_MASK, opcode=first_byte & cls.OPCODE_MASK, flags=first_byte & cls.HEADER_FLAG_MASK, length=second_byte & cls.LENGTH_MASK) has_mask = second_byte & cls.MASK_MASK == cls.MASK_MASK if header.opcode > 0x07: if not header.fin: raise WebSocketError('Received fragmented control frame: {0!r}'.format(data)) # Control frames MUST have a payload length of 125 bytes or less if header.length > 125: raise FrameTooLargeException('Control frame cannot be larger than 125 bytes: {0!r}'.format(data)) if header.length == 126: # 16 bit length data = read(2) if len(data) != 2: raise WebSocketError('Unexpected EOF while decoding header') header.length = struct.unpack('!H', data)[0] elif header.length == 127: # 64 bit length data = read(8) if len(data) != 8: raise WebSocketError('Unexpected EOF while decoding header') header.length = struct.unpack('!Q', data)[0] if has_mask: mask = read(4) if len(mask) != 4: raise WebSocketError('Unexpected EOF while decoding header') header.mask = mask return header @classmethod def encode_header(cls, fin, opcode, mask, length, flags): """ Encodes a WebSocket header. :param fin: Whether this is the final frame for this opcode. :param opcode: The opcode of the payload, see `OPCODE_*` :param mask: Whether the payload is masked. :param length: The length of the frame. :param flags: The RSV* flags. :return: A bytestring encoded header. """ first_byte = opcode second_byte = 0 extra = '' if fin: first_byte |= cls.FIN_MASK if flags & cls.RSV0_MASK: first_byte |= cls.RSV0_MASK if flags & cls.RSV1_MASK: first_byte |= cls.RSV1_MASK if flags & cls.RSV2_MASK: first_byte |= cls.RSV2_MASK # now deal with length complexities if length < 126: second_byte += length elif length <= 0xffff: second_byte += 126 extra = struct.pack('!H', length) elif length <= 0xffffffffffffffff: second_byte += 127 extra = struct.pack('!Q', length) else: raise FrameTooLargeException if mask: second_byte |= cls.MASK_MASK extra += mask return chr(first_byte) + chr(second_byte) + extra
dalou/django-flow
django_flow/redis_ws/websocket.py
Python
bsd-3-clause
14,168
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the NiBabel package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # module imports from .py3k import asbytes from .filename_parser import types_filenames, splitext_addext from . import volumeutils as vu from . import spm2analyze as spm2 from . import nifti1 from .freesurfer import MGHImage from .fileholders import FileHolderError from .spatialimages import ImageFileError from .imageclasses import class_map, ext_map def load(filename): ''' Load file given filename, guessing at file type Parameters ---------- filename : string specification of file to load Returns ------- img : ``SpatialImage`` Image of guessed type ''' froot, ext, trailing = splitext_addext(filename, ('.gz', '.bz2')) try: img_type = ext_map[ext] except KeyError: raise ImageFileError('Cannot work out file type of "%s"' % filename) if ext in ('.nii', '.mnc', '.mgh', '.mgz'): klass = class_map[img_type]['class'] else: # might be nifti pair or analyze of some sort files_types = (('image','.img'), ('header','.hdr')) filenames = types_filenames(filename, files_types) hdr = nifti1.Nifti1Header.from_fileobj( vu.allopen(filenames['header']), check=False) if hdr['magic'] in (asbytes('ni1'), asbytes('n+1')): # allow goofy nifti single magic for pair klass = nifti1.Nifti1Pair else: klass = spm2.Spm2AnalyzeImage return klass.from_filename(filename) def save(img, filename): ''' Save an image to file adapting format to `filename` Parameters ---------- img : ``SpatialImage`` image to save filename : str filename (often implying filenames) to which to save `img`. Returns ------- None ''' try: img.to_filename(filename) except ImageFileError: pass else: return froot, ext, trailing = splitext_addext(filename, ('.gz', '.bz2')) img_type = ext_map[ext] klass = class_map[img_type]['class'] converted = klass.from_image(img) converted.to_filename(filename) def read_img_data(img, prefer='scaled'): """ Read data from image associated with files Parameters ---------- img : ``SpatialImage`` Image with valid image file in ``img.file_map``. Unlike the ``img.get_data()`` method, this function returns the data read from the image file, as specified by the *current* image header and *current* image files. prefer : str, optional Can be 'scaled' - in which case we return the data with the scaling suggested by the format, or 'unscaled', in which case we return, if we can, the raw data from the image file, without the scaling applied. Returns ------- arr : ndarray array as read from file, given parameters in header Notes ----- Summary: please use the ``get_data`` method of `img` instead of this function unless you are sure what you are doing. In general, you will probably prefer ``prefer='scaled'``, because this gives the data as the image format expects to return it. Use `prefer` == 'unscaled' with care; the modified Analyze-type formats such as SPM formats, and nifti1, specify that the image data array is given by the raw data on disk, multiplied by a scalefactor and maybe with the addition of a constant. This function, with ``unscaled`` returns the data on the disk, without these format-specific scalings applied. Please use this funciton only if you absolutely need the unscaled data, and the magnitude of the data, as given by the scalefactor, is not relevant to your application. The Analyze-type formats have a single scalefactor +/- offset per image on disk. If you do not care about the absolute values, and will be removing the mean from the data, then the unscaled values will have preserved intensity ratios compared to the mean-centered scaled data. However, this is not necessarily true of other formats with more complicated scaling - such as MINC. """ image_fileholder = img.file_map['image'] try: fileobj = image_fileholder.get_prepare_fileobj() except FileHolderError: raise ImageFileError('No image file specified for this image') if prefer not in ('scaled', 'unscaled'): raise ValueError('Invalid string "%s" for "prefer"' % prefer) hdr = img.get_header() if prefer == 'unscaled': try: return hdr.raw_data_from_fileobj(fileobj) except AttributeError: pass return hdr.data_from_fileobj(fileobj)
ME-ICA/me-ica
meica.libs/nibabel/loadsave.py
Python
lgpl-2.1
5,048
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import pipes import sys from telemetry.core import util util.AddDirToPythonPath(util.GetChromiumSrcDir(), 'build', 'android') from pylib.device import device_errors # pylint: disable=F0401 def _QuoteIfNeeded(arg): # Properly escape "key=valueA valueB" to "key='valueA valueB'" # Values without spaces, or that seem to be quoted are left untouched. # This is required so CommandLine.java can parse valueB correctly rather # than as a separate switch. params = arg.split('=', 1) if len(params) != 2: return arg key, values = params if ' ' not in values: return arg if values[0] in '"\'' and values[-1] == values[0]: return arg return '%s=%s' % (key, pipes.quote(values)) class SetUpCommandLineFlags(object): """A context manager for setting up the android command line flags. This provides a readable way of using the android command line backend class. Example usage: with android_command_line_backend.SetUpCommandLineFlags( device, backend_settings, startup_args): # Something to run while the command line flags are set appropriately. """ def __init__(self, device, backend_settings, startup_args): self._android_command_line_backend = _AndroidCommandLineBackend( device, backend_settings, startup_args) def __enter__(self): self._android_command_line_backend.SetUpCommandLineFlags() def __exit__(self, *args): self._android_command_line_backend.RestoreCommandLineFlags() class _AndroidCommandLineBackend(object): """The backend for providing command line flags on android. There are command line flags that Chromium accept in order to enable particular features or modify otherwise default functionality. To set the flags for Chrome on Android, specific files on the device must be updated with the flags to enable. This class provides a wrapper around this functionality. """ def __init__(self, device, backend_settings, startup_args): self._device = device self._backend_settings = backend_settings self._startup_args = startup_args self._saved_command_line_file_contents = None @property def command_line_file(self): return self._backend_settings.GetCommandLineFile(self._device.IsUserBuild()) def SetUpCommandLineFlags(self): args = [self._backend_settings.pseudo_exec_name] args.extend(self._startup_args) content = ' '.join(_QuoteIfNeeded(arg) for arg in args) try: # Save the current command line to restore later, except if it appears to # be a Telemetry created one. This is to prevent a common bug where # --host-resolver-rules borks people's browsers if something goes wrong # with Telemetry. self._saved_command_line_file_contents = self._ReadFile() if '--host-resolver-rules' in self._saved_command_line_file_contents: self._saved_command_line_file_contents = None except device_errors.CommandFailedError: self._saved_command_line_file_contents = None try: self._WriteFile(content) except device_errors.CommandFailedError as exc: logging.critical(exc) logging.critical('Cannot set Chrome command line. ' 'Fix this by flashing to a userdebug build.') sys.exit(1) def RestoreCommandLineFlags(self): if self._saved_command_line_file_contents is None: self._RemoveFile() else: self._WriteFile(self._saved_command_line_file_contents) def _ReadFile(self): return self._device.ReadFile(self.command_line_file, as_root=True) def _WriteFile(self, contents): self._device.WriteFile(self.command_line_file, contents, as_root=True) def _RemoveFile(self): self._device.RunShellCommand(['rm', '-f', self.command_line_file], as_root=True, check_return=True)
SaschaMester/delicium
tools/telemetry/telemetry/internal/backends/android_command_line_backend.py
Python
bsd-3-clause
3,990
import re import json import os import logging from logging.handlers import RotatingFileHandler from logging import Formatter from ngram import NGram from hashlib import md5 from flask import Flask, send_from_directory, send_file, render_template, request, redirect import imgur from memegenerator import gen_meme APP_ROOT = os.path.dirname(__file__) MEME_PATH = os.path.join(APP_ROOT, 'static/memes/') TEMPLATES_PATH = os.path.join(APP_ROOT, 'templates/memes/') IMAGE_EXTENSIONS = ('png', 'jpeg', 'jpg', 'gif') SUPPORTED_EXTENSIONS = IMAGE_EXTENSIONS + ('json',) ERROR_BACKGROUND = 'blank-colored-background' app = Flask(__name__) # Logging handler = RotatingFileHandler('urlmeme.log', maxBytes=10000, backupCount=1) handler.setFormatter(Formatter('%(asctime)s %(levelname)s: %(message)s')) handler.setLevel(logging.INFO) app.logger.setLevel(logging.INFO) app.logger.addHandler(handler) # Maps meme's file name to its common names with open(os.path.join(APP_ROOT, 'memes.json')) as data_file: MEMES = json.load(data_file) def replace_underscore(string): return re.sub(r'_', ' ', string) def tokenize(string): return re.sub(r' ', '', string.lower()) def parse_meme_url(path): """ Given a URL path, returns a named tuple representing the meme in question (meme_name, top_text, bottom_text, extension) """ ext = 'jpg' # Default extension if path.endswith(tuple('.%s' % e for e in SUPPORTED_EXTENSIONS)): path, ext = os.path.splitext(path) ext = ext[1:] path = replace_underscore(path) path_parts = path.split('/')[:3] while(len(path_parts) < 3): path_parts.append('') path_parts.append(ext) return tuple(path_parts) def guess_meme_image(meme_name): ''' Guess which meme image they mean by finding the alias with greatest ngram similarity ''' meme_name = tokenize(meme_name) best = '' best_score = None for guess_image, names in MEMES.items(): for guess in names: guess = tokenize(guess) score = NGram.compare(guess, meme_name) if best_score is None or score > best_score: best_score = score best = guess_image app.logger.debug('New best meme for "%s": "%s" (Score: %s)', meme_name, guess, score) app.logger.info('Picked meme "%s" for name "%s" (Score: %s)', best, meme_name, best_score) return best def derive_meme_path(meme_image, top, bottom, ext): """ Generate a hash filename for this meme image """ token = "%s|%s|%s" % (meme_image, top, bottom) meme_id = md5(token.encode('utf-8')).hexdigest() file_path = '%s.%s' % (meme_id, ext) return MEME_PATH + file_path def meme_image_path(meme_image, top, bottom, ext): file_path = derive_meme_path(meme_image, top, bottom, ext) app.logger.debug('Looking for file: "%s"', file_path) try: open(file_path) app.logger.info('Found meme in cache: "%s"', file_path) except IOError: app.logger.info('Generating "%s"', file_path) meme_path = os.path.join(TEMPLATES_PATH, meme_image) gen_meme(meme_path + '.jpg', top, bottom, file_path) return file_path def error_image_response(top, bottom, status=500): app.logger.error('Sending error response: %s, %s (%s)', top, bottom, status) image_path = meme_image_path(ERROR_BACKGROUND, top, bottom, 'jpg') return send_file(image_path), status @app.route("/") def help(): return render_template('help.html', base_url=request.base_url) @app.route('/favicon.ico') def favicon(): path = os.path.join(app.root_path, 'static') mimetype = 'image/vnd.microsoft.icon' return send_from_directory(path, 'favicon.ico', mimetype=mimetype) @app.route('/<path:path>') def meme(path): app.logger.info('New request for meme: "%s"', path) meme_name, top, bottom, ext = parse_meme_url(path) meme_image = guess_meme_image(meme_name) app.logger.info('Meme: "%s" / "%s" / "%s" . "%s"', meme_image, top, bottom, ext) if ext == 'json': app.logger.info('Serving JSON') return json.dumps({'image': meme_image, 'top': top, 'bottom': bottom}) elif ext in IMAGE_EXTENSIONS: image_path = meme_image_path(meme_image, top, bottom, ext) host = request.args.get('host', None) if host == 'imgur': try: imgur_url = imgur.upload(image_path) app.logger.info('Uploaded: "%s" as "%s"', image_path, imgur_url) app.logger.info('Redirecting to: "%s"', imgur_url) return redirect(imgur_url, code=301) except imgur.ImgurException as e: return error_image_response('Error uploading "%s" to Imgur:', image_path, e.message) app.logger.info('Serving: "%s"', image_path) return send_file(image_path) if __name__ == "__main__": """ Only runs in dev """ app.logger.setLevel(logging.DEBUG) app.run(debug=True)
monu27mr/gret
url.py
Python
mit
4,989
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Run regression test suite. This module calls down into individual test cases via subprocess. It will forward all unrecognized arguments onto the individual test scripts. Functional tests are disabled on Windows by default. Use --force to run them anyway. For a description of arguments recognized by test scripts, see `test/functional/test_framework/test_framework.py:BitcoinTestFramework.main`. """ import argparse from collections import deque import configparser import datetime import os import time import shutil import signal import sys import subprocess import tempfile import re import logging # Formatting. Default colors to empty strings. BOLD, BLUE, RED, GREY = ("", ""), ("", ""), ("", ""), ("", "") try: # Make sure python thinks it can write unicode to its stdout "\u2713".encode("utf_8").decode(sys.stdout.encoding) TICK = "✓ " CROSS = "✖ " CIRCLE = "○ " except UnicodeDecodeError: TICK = "P " CROSS = "x " CIRCLE = "o " if os.name == 'posix': # primitive formatting on supported # terminal via ANSI escape sequences: BOLD = ('\033[0m', '\033[1m') BLUE = ('\033[0m', '\033[0;34m') RED = ('\033[0m', '\033[0;31m') GREY = ('\033[0m', '\033[1;30m') TEST_EXIT_PASSED = 0 TEST_EXIT_SKIPPED = 77 BASE_SCRIPTS= [ # Scripts that are run by the travis build process. # Longest test should go first, to favor running tests in parallel 'wallet-hd.py', 'walletbackup.py', # vv Tests less than 5m vv 'p2p-fullblocktest.py', 'fundrawtransaction.py', 'p2p-compactblocks.py', 'segwit.py', # vv Tests less than 2m vv 'wallet.py', 'wallet-accounts.py', 'p2p-segwit.py', 'wallet-dump.py', 'listtransactions.py', # vv Tests less than 60s vv 'sendheaders.py', 'zapwallettxes.py', 'importmulti.py', 'mempool_limit.py', 'merkle_blocks.py', 'receivedby.py', 'abandonconflict.py', 'bip68-112-113-p2p.py', 'rawtransactions.py', 'address_types.py', 'reindex.py', # vv Tests less than 30s vv 'keypool-topup.py', 'zmq_test.py', 'bitcoin_cli.py', 'mempool_resurrect_test.py', 'txn_doublespend.py --mineblock', 'txn_clone.py', 'txn_clone.py --segwit', 'getchaintips.py', 'rest.py', 'mempool_spendcoinbase.py', 'mempool_reorg.py', 'mempool_persist.py', 'multiwallet.py', 'httpbasics.py', 'multi_rpc.py', 'proxy_test.py', 'signrawtransactions.py', 'disconnect_ban.py', 'decodescript.py', 'blockchain.py', 'deprecated_rpc.py', 'disablewallet.py', 'net.py', 'keypool.py', 'p2p-mempool.py', 'prioritise_transaction.py', 'invalidblockrequest.py', 'invalidtxrequest.py', 'p2p-versionbits-warning.py', 'preciousblock.py', 'importprunedfunds.py', 'signmessages.py', 'nulldummy.py', 'import-rescan.py', 'mining.py', 'bumpfee.py', 'rpcnamedargs.py', 'listsinceblock.py', 'p2p-leaktests.py', 'wallet-encryption.py', 'bipdersig-p2p.py', 'bip65-cltv-p2p.py', 'uptime.py', 'resendwallettransactions.py', 'minchainwork.py', 'p2p-fingerprint.py', 'uacomment.py', 'p2p-acceptblock.py', 'feature_logging.py', 'node_network_limited.py', 'conf_args.py', # Don't append tests at the end to avoid merge conflicts # Put them in a random line within the section that fits their approximate run-time ] EXTENDED_SCRIPTS = [ # These tests are not run by the travis build process. # Longest test should go first, to favor running tests in parallel 'pruning.py', # vv Tests less than 20m vv 'smartfees.py', # vv Tests less than 5m vv 'maxuploadtarget.py', 'mempool_packages.py', 'dbcrash.py', # vv Tests less than 2m vv 'bip68-sequence.py', 'getblocktemplate_longpoll.py', 'p2p-timeouts.py', # vv Tests less than 60s vv 'bip9-softforks.py', 'p2p-feefilter.py', 'rpcbind_test.py', # vv Tests less than 30s vv 'assumevalid.py', 'example_test.py', 'txn_doublespend.py', 'txn_clone.py --mineblock', 'notifications.py', 'invalidateblock.py', 'replace-by-fee.py', ] # Place EXTENDED_SCRIPTS first since it has the 3 longest running tests ALL_SCRIPTS = EXTENDED_SCRIPTS + BASE_SCRIPTS NON_SCRIPTS = [ # These are python files that live in the functional tests directory, but are not test scripts. "combine_logs.py", "create_cache.py", "test_runner.py", ] def main(): # Parse arguments and pass through unrecognised args parser = argparse.ArgumentParser(add_help=False, usage='%(prog)s [test_runner.py options] [script options] [scripts]', description=__doc__, epilog=''' Help text and arguments for individual test script:''', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--combinedlogslen', '-c', type=int, default=0, help='print a combined log (of length n lines) from all test nodes and test framework to the console on failure.') parser.add_argument('--coverage', action='store_true', help='generate a basic coverage report for the RPC interface') parser.add_argument('--exclude', '-x', help='specify a comma-separated-list of scripts to exclude.') parser.add_argument('--extended', action='store_true', help='run the extended test suite in addition to the basic tests') parser.add_argument('--force', '-f', action='store_true', help='run tests even on platforms where they are disabled by default (e.g. windows).') parser.add_argument('--help', '-h', '-?', action='store_true', help='print help text and exit') parser.add_argument('--jobs', '-j', type=int, default=4, help='how many test scripts to run in parallel. Default=4.') parser.add_argument('--keepcache', '-k', action='store_true', help='the default behavior is to flush the cache directory on startup. --keepcache retains the cache from the previous testrun.') parser.add_argument('--quiet', '-q', action='store_true', help='only print results summary and failure logs') parser.add_argument('--tmpdirprefix', '-t', default=tempfile.gettempdir(), help="Root directory for datadirs") args, unknown_args = parser.parse_known_args() # args to be passed on always start with two dashes; tests are the remaining unknown args tests = [arg for arg in unknown_args if arg[:2] != "--"] passon_args = [arg for arg in unknown_args if arg[:2] == "--"] # Read config generated by configure. config = configparser.ConfigParser() configfile = os.path.abspath(os.path.dirname(__file__)) + "/../config.ini" config.read_file(open(configfile)) passon_args.append("--configfile=%s" % configfile) # Set up logging logging_level = logging.INFO if args.quiet else logging.DEBUG logging.basicConfig(format='%(message)s', level=logging_level) # Create base test directory tmpdir = "%s/bitcoin_test_runner_%s" % (args.tmpdirprefix, datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) os.makedirs(tmpdir) logging.debug("Temporary test directory at %s" % tmpdir) enable_wallet = config["components"].getboolean("ENABLE_WALLET") enable_utils = config["components"].getboolean("ENABLE_UTILS") enable_bitcoind = config["components"].getboolean("ENABLE_BITCOIND") if config["environment"]["EXEEXT"] == ".exe" and not args.force: # https://github.com/bitcoin/bitcoin/commit/d52802551752140cf41f0d9a225a43e84404d3e9 # https://github.com/bitcoin/bitcoin/pull/5677#issuecomment-136646964 print("Tests currently disabled on Windows by default. Use --force option to enable") sys.exit(0) if not (enable_wallet and enable_utils and enable_bitcoind): print("No functional tests to run. Wallet, utils, and bitcoind must all be enabled") print("Rerun `configure` with -enable-wallet, -with-utils and -with-daemon and rerun make") sys.exit(0) # Build list of tests if tests: # Individual tests have been specified. Run specified tests that exist # in the ALL_SCRIPTS list. Accept the name with or without .py extension. tests = [re.sub("\.py$", "", t) + ".py" for t in tests] test_list = [] for t in tests: if t in ALL_SCRIPTS: test_list.append(t) else: print("{}WARNING!{} Test '{}' not found in full test list.".format(BOLD[1], BOLD[0], t)) else: # No individual tests have been specified. # Run all base tests, and optionally run extended tests. test_list = BASE_SCRIPTS if args.extended: # place the EXTENDED_SCRIPTS first since the three longest ones # are there and the list is shorter test_list = EXTENDED_SCRIPTS + test_list # Remove the test cases that the user has explicitly asked to exclude. if args.exclude: tests_excl = [re.sub("\.py$", "", t) + ".py" for t in args.exclude.split(',')] for exclude_test in tests_excl: if exclude_test in test_list: test_list.remove(exclude_test) else: print("{}WARNING!{} Test '{}' not found in current test list.".format(BOLD[1], BOLD[0], exclude_test)) if not test_list: print("No valid test scripts specified. Check that your test is in one " "of the test lists in test_runner.py, or run test_runner.py with no arguments to run all tests") sys.exit(0) if args.help: # Print help for test_runner.py, then print help of the first script (with args removed) and exit. parser.print_help() subprocess.check_call([(config["environment"]["SRCDIR"] + '/test/functional/' + test_list[0].split()[0])] + ['-h']) sys.exit(0) check_script_list(config["environment"]["SRCDIR"]) if not args.keepcache: shutil.rmtree("%s/test/cache" % config["environment"]["BUILDDIR"], ignore_errors=True) run_tests(test_list, config["environment"]["SRCDIR"], config["environment"]["BUILDDIR"], config["environment"]["EXEEXT"], tmpdir, args.jobs, args.coverage, passon_args, args.combinedlogslen) def run_tests(test_list, src_dir, build_dir, exeext, tmpdir, jobs=1, enable_coverage=False, args=[], combined_logs_len=0): # Warn if bitcoind is already running (unix only) try: if subprocess.check_output(["pidof", "bitcoind"]) is not None: print("%sWARNING!%s There is already a bitcoind process running on this system. Tests may fail unexpectedly due to resource contention!" % (BOLD[1], BOLD[0])) except (OSError, subprocess.SubprocessError): pass # Warn if there is a cache directory cache_dir = "%s/test/cache" % build_dir if os.path.isdir(cache_dir): print("%sWARNING!%s There is a cache directory here: %s. If tests fail unexpectedly, try deleting the cache directory." % (BOLD[1], BOLD[0], cache_dir)) #Set env vars if "BITCOIND" not in os.environ: os.environ["BITCOIND"] = build_dir + '/src/bitcoind' + exeext os.environ["BITCOINCLI"] = build_dir + '/src/bitcoin-cli' + exeext tests_dir = src_dir + '/test/functional/' flags = ["--srcdir={}/src".format(build_dir)] + args flags.append("--cachedir=%s" % cache_dir) if enable_coverage: coverage = RPCCoverage() flags.append(coverage.flag) logging.debug("Initializing coverage directory at %s" % coverage.dir) else: coverage = None if len(test_list) > 1 and jobs > 1: # Populate cache try: subprocess.check_output([tests_dir + 'create_cache.py'] + flags + ["--tmpdir=%s/cache" % tmpdir]) except Exception as e: print(e.output) raise e #Run Tests job_queue = TestHandler(jobs, tests_dir, tmpdir, test_list, flags) time0 = time.time() test_results = [] max_len_name = len(max(test_list, key=len)) for _ in range(len(test_list)): test_result, testdir, stdout, stderr = job_queue.get_next() test_results.append(test_result) if test_result.status == "Passed": logging.debug("\n%s%s%s passed, Duration: %s s" % (BOLD[1], test_result.name, BOLD[0], test_result.time)) elif test_result.status == "Skipped": logging.debug("\n%s%s%s skipped" % (BOLD[1], test_result.name, BOLD[0])) else: print("\n%s%s%s failed, Duration: %s s\n" % (BOLD[1], test_result.name, BOLD[0], test_result.time)) print(BOLD[1] + 'stdout:\n' + BOLD[0] + stdout + '\n') print(BOLD[1] + 'stderr:\n' + BOLD[0] + stderr + '\n') if combined_logs_len and os.path.isdir(testdir): # Print the final `combinedlogslen` lines of the combined logs print('{}Combine the logs and print the last {} lines ...{}'.format(BOLD[1], combined_logs_len, BOLD[0])) print('\n============') print('{}Combined log for {}:{}'.format(BOLD[1], testdir, BOLD[0])) print('============\n') combined_logs, _ = subprocess.Popen([os.path.join(tests_dir, 'combine_logs.py'), '-c', testdir], universal_newlines=True, stdout=subprocess.PIPE).communicate() print("\n".join(deque(combined_logs.splitlines(), combined_logs_len))) print_results(test_results, max_len_name, (int(time.time() - time0))) if coverage: coverage.report_rpc_coverage() logging.debug("Cleaning up coverage data") coverage.cleanup() # Clear up the temp directory if all subdirectories are gone if not os.listdir(tmpdir): os.rmdir(tmpdir) all_passed = all(map(lambda test_result: test_result.was_successful, test_results)) sys.exit(not all_passed) def print_results(test_results, max_len_name, runtime): results = "\n" + BOLD[1] + "%s | %s | %s\n\n" % ("TEST".ljust(max_len_name), "STATUS ", "DURATION") + BOLD[0] test_results.sort(key=lambda result: result.name.lower()) all_passed = True time_sum = 0 for test_result in test_results: all_passed = all_passed and test_result.was_successful time_sum += test_result.time test_result.padding = max_len_name results += str(test_result) status = TICK + "Passed" if all_passed else CROSS + "Failed" results += BOLD[1] + "\n%s | %s | %s s (accumulated) \n" % ("ALL".ljust(max_len_name), status.ljust(9), time_sum) + BOLD[0] results += "Runtime: %s s\n" % (runtime) print(results) class TestHandler: """ Trigger the test scripts passed in via the list. """ def __init__(self, num_tests_parallel, tests_dir, tmpdir, test_list=None, flags=None): assert(num_tests_parallel >= 1) self.num_jobs = num_tests_parallel self.tests_dir = tests_dir self.tmpdir = tmpdir self.test_list = test_list self.flags = flags self.num_running = 0 # In case there is a graveyard of zombie bitcoinds, we can apply a # pseudorandom offset to hopefully jump over them. # (625 is PORT_RANGE/MAX_NODES) self.portseed_offset = int(time.time() * 1000) % 625 self.jobs = [] def get_next(self): while self.num_running < self.num_jobs and self.test_list: # Add tests self.num_running += 1 t = self.test_list.pop(0) portseed = len(self.test_list) + self.portseed_offset portseed_arg = ["--portseed={}".format(portseed)] log_stdout = tempfile.SpooledTemporaryFile(max_size=2**16) log_stderr = tempfile.SpooledTemporaryFile(max_size=2**16) test_argv = t.split() testdir = "{}/{}_{}".format(self.tmpdir, re.sub(".py$", "", test_argv[0]), portseed) tmpdir_arg = ["--tmpdir={}".format(testdir)] self.jobs.append((t, time.time(), subprocess.Popen([self.tests_dir + test_argv[0]] + test_argv[1:] + self.flags + portseed_arg + tmpdir_arg, universal_newlines=True, stdout=log_stdout, stderr=log_stderr), testdir, log_stdout, log_stderr)) if not self.jobs: raise IndexError('pop from empty list') while True: # Return first proc that finishes time.sleep(.5) for j in self.jobs: (name, time0, proc, testdir, log_out, log_err) = j if os.getenv('TRAVIS') == 'true' and int(time.time() - time0) > 20 * 60: # In travis, timeout individual tests after 20 minutes (to stop tests hanging and not # providing useful output. proc.send_signal(signal.SIGINT) if proc.poll() is not None: log_out.seek(0), log_err.seek(0) [stdout, stderr] = [l.read().decode('utf-8') for l in (log_out, log_err)] log_out.close(), log_err.close() if proc.returncode == TEST_EXIT_PASSED and stderr == "": status = "Passed" elif proc.returncode == TEST_EXIT_SKIPPED: status = "Skipped" else: status = "Failed" self.num_running -= 1 self.jobs.remove(j) return TestResult(name, status, int(time.time() - time0)), testdir, stdout, stderr print('.', end='', flush=True) class TestResult(): def __init__(self, name, status, time): self.name = name self.status = status self.time = time self.padding = 0 def __repr__(self): if self.status == "Passed": color = BLUE glyph = TICK elif self.status == "Failed": color = RED glyph = CROSS elif self.status == "Skipped": color = GREY glyph = CIRCLE return color[1] + "%s | %s%s | %s s\n" % (self.name.ljust(self.padding), glyph, self.status.ljust(7), self.time) + color[0] @property def was_successful(self): return self.status != "Failed" def check_script_list(src_dir): """Check scripts directory. Check that there are no scripts in the functional tests directory which are not being run by pull-tester.py.""" script_dir = src_dir + '/test/functional/' python_files = set([t for t in os.listdir(script_dir) if t[-3:] == ".py"]) missed_tests = list(python_files - set(map(lambda x: x.split()[0], ALL_SCRIPTS + NON_SCRIPTS))) if len(missed_tests) != 0: print("%sWARNING!%s The following scripts are not being run: %s. Check the test lists in test_runner.py." % (BOLD[1], BOLD[0], str(missed_tests))) if os.getenv('TRAVIS') == 'true': # On travis this warning is an error to prevent merging incomplete commits into master sys.exit(1) class RPCCoverage(): """ Coverage reporting utilities for test_runner. Coverage calculation works by having each test script subprocess write coverage files into a particular directory. These files contain the RPC commands invoked during testing, as well as a complete listing of RPC commands per `bitcoin-cli help` (`rpc_interface.txt`). After all tests complete, the commands run are combined and diff'd against the complete list to calculate uncovered RPC commands. See also: test/functional/test_framework/coverage.py """ def __init__(self): self.dir = tempfile.mkdtemp(prefix="coverage") self.flag = '--coveragedir=%s' % self.dir def report_rpc_coverage(self): """ Print out RPC commands that were unexercised by tests. """ uncovered = self._get_uncovered_rpc_commands() if uncovered: print("Uncovered RPC commands:") print("".join((" - %s\n" % i) for i in sorted(uncovered))) else: print("All RPC commands covered.") def cleanup(self): return shutil.rmtree(self.dir) def _get_uncovered_rpc_commands(self): """ Return a set of currently untested RPC commands. """ # This is shared from `test/functional/test-framework/coverage.py` reference_filename = 'rpc_interface.txt' coverage_file_prefix = 'coverage.' coverage_ref_filename = os.path.join(self.dir, reference_filename) coverage_filenames = set() all_cmds = set() covered_cmds = set() if not os.path.isfile(coverage_ref_filename): raise RuntimeError("No coverage reference found") with open(coverage_ref_filename, 'r') as f: all_cmds.update([i.strip() for i in f.readlines()]) for root, dirs, files in os.walk(self.dir): for filename in files: if filename.startswith(coverage_file_prefix): coverage_filenames.add(os.path.join(root, filename)) for filename in coverage_filenames: with open(filename, 'r') as f: covered_cmds.update([i.strip() for i in f.readlines()]) return all_cmds - covered_cmds if __name__ == '__main__': main()
laudaa/bitcoin
test/functional/test_runner.py
Python
mit
21,842
# Copyright (c) 2015 Tanium Inc # # Generated from console.wsdl version 0.0.1 # # from .base import BaseType class PluginSchedule(BaseType): _soap_tag = 'plugin_schedule' def __init__(self): BaseType.__init__( self, simple_properties={'id': int, 'name': str, 'plugin_name': str, 'plugin_bundle': str, 'plugin_server': str, 'start_hour': int, 'end_hour': int, 'start_date': int, 'end_date': int, 'run_on_days': str, 'run_interval_seconds': int, 'enabled': int, 'deleted_flag': int, 'input': str, 'last_run_time': str, 'last_exit_code': int, 'last_run_text': str}, complex_properties={'arguments': PluginArgumentList, 'user': User, 'last_run_sql': PluginSql}, list_properties={}, ) self.id = None self.name = None self.plugin_name = None self.plugin_bundle = None self.plugin_server = None self.start_hour = None self.end_hour = None self.start_date = None self.end_date = None self.run_on_days = None self.run_interval_seconds = None self.enabled = None self.deleted_flag = None self.input = None self.last_run_time = None self.last_exit_code = None self.last_run_text = None self.arguments = None self.user = None self.last_run_sql = None from plugin_argument_list import PluginArgumentList from user import User from plugin_sql import PluginSql
tanium/pytan
lib/taniumpy/object_types/plugin_schedule.py
Python
mit
1,932
from __future__ import division # allows floating point division from integers import globalVars as gv import datetime import os # Resistance is in ohms per 100 feet # for 0 to 40 gauge wire wireResistance = {0: 0.009827, 1: 0.01239, 2: 0.01563, 3: 0.01970, 4: 0.02485, 5: 0.03133, 6: 0.03951, 7: 0.04982, 8: 0.06282, 9: 0.07921, 10: 0.09989, 11: 0.1260, 12: 0.1588, 13: 0.2003, 14: 0.2525, 15: 0.3184, 16: 0.4016, 17: 0.5064, 18: 0.6385, 19: 0.8051, 20: 1.015, 21: 1.280, 22: 1.614, 23: 2.036, 24: 2.567, 25: 3.237, 26: 4.081, 27: 5.147, 28: 6.490, 29: 8.183, 30: 10.32, 31: 13.01, 32: 16.41, 33: 20.69, 34: 26.09, 35: 32.90, 36: 41.48, 37: 52.31, 38: 65.96, 39: 83.18, 40: 104.90} def computeWireResistance(wireGauge, wireLength): if (wireGauge <= 40) and (wireGauge >= 0) and (wireLength >= 0): # ohms per meter res = wireLength * wireResistance[wireGauge] / 30.48 res = float(float(res) * 1000) / 1000 return res else: return -1 voltage = gv.voltage amperage = gv.amperage gauge = gv.gauge def design(): # By Ohms Law goalResistance = float(voltage/amperage) # Get how many meters are needed wireLength = goalResistance/computeWireResistance(gauge, 1) # print gv.printableWidth # print gv.printableLength printableLength = str(gv.printableLength) printableWidth = str(gv.printableWidth) nHoles = int(float(round((int(float(printableLength))-30)/10.5))) print nHoles # Make dateString and add it to the directory string date = datetime.date.today().strftime("%m_%d_%Y") printerDir = gv.printerDir+"Printer_"+date+"/" filename = os.path.join(printerDir, 'Parts', 'Heated Bed Wire Diagram.svg') print filename svg = open(filename, 'w') svg.write('<svg width="'+printableWidth+'mm" height="'+printableLength+'mm">') svg.write('<circle cx="15mm" cy="15mm" r="1.5mm" fill="white" stroke="black" stroke-width=".5mm" />') svg.write('<circle cx="'+str(int(float(printableWidth))-15)+'mm" cy="15mm" r="1.5mm" fill="white" stroke="black" stroke-width=".5mm" />') for x in range(1,nHoles): svg.write('<circle cx="15mm" cy="'+str(15+(10.5*x))+'mm" r="1.5mm" fill="white" stroke="black" stroke-width=".5mm" />') svg.write('<circle cx="'+str(int(float(printableWidth))-15)+'mm" cy="'+str(15+(10.5*x))+'mm" r="1.5mm" fill="white" stroke="black" stroke-width=".5mm" />') svg.write('<text x = "30mm" y = "30mm" fill = "black" font-size = "50">'+str(round(wireLength, 1))+' Meters of Wire Needed</text>') svg.write('</svg>') svg.close()
masterperson40/retr3d
old/heatedbed.py
Python
gpl-3.0
2,664
# utility functions import fcntl, os, subprocess class PipeException(Exception): def __init__(self, message, errno): self.errno = errno message = '%s: %d, %s' % (message, errno, os.strerror(errno)) Exception.__init__(self, message) class Lock(object): """advisory lock""" def __init__(self, filename): """lock using filename for synchronization""" self.filename = filename + '.lock' self.fd = None self.lock() def __del__(self): self.unlock() def lock(self): if self.fd: return self.fd = open(self.filename, 'w') fcntl.lockf(self.fd, fcntl.LOCK_EX) def unlock(self): if not self.fd: return fcntl.lockf(self.fd, fcntl.LOCK_UN) self.fd = None try: os.remove(self.filename) except OSError: # harmless race pass def canonifymac(mac): return ':'.join(['%02x' % int(field, 16) for field in mac.split(':')]) def checkpid(pid): """return True if pid is live""" try: os.kill(pid, 0) return True except OSError: return False def runcmd(args, cwd=None): # TODO: stdin handling if type(args) == str: args = args.split(' ') try: proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, cwd=cwd) stdout = proc.stdout.read() stderr = proc.stderr.read() proc.wait() if proc.returncode: print ' '.join(args) errmsg = stderr.strip() print errmsg raise PipeException('%s failed (errmsg: %s)' % (args[0], errmsg), proc.returncode) return stdout except (OSError, IOError), inst: raise PipeException('could not run %s' % args[0], inst.errno) def modprobe(modname): """attempt to load kernel module modname""" try: runcmd(['modprobe', '-q', modname]) return True except PipeException: return False
YongMan/Xen-4.3.1
tools/python/xen/remus/util.py
Python
gpl-2.0
2,139
# -*- coding:utf-8 -*- # 206. Reverse Linked List QuestionEditorial Solution My Submissions # Difficulty: Easy # Reverse a singly linked list. # # click to show more hints. # # Hint: # A linked list can be reversed either iteratively or recursively. Could you implement both? # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def reverseList(self, head): """ :type head: ListNode :rtype: ListNode """ if head is None: return head cur = head.next pre = head head.next = None while cur is not None: tmp = cur.next cur.next = pre pre = cur cur = tmp return pre if __name__ == '__main__': head = ListNode(1) head.next = ListNode(2) head.next.next = ListNode(3) head.next.next.next = ListNode(4) s = Solution() new_list = s.reverseList(head) print new_list.val
Baz2013/blog_demo
leetcode/easy/reverse_linked_list.py
Python
gpl-3.0
1,048
# -*- coding: utf-8 -*- # # Copyright (c) 2020, the cclib development team # # This file is part of cclib (http://cclib.github.io) and is distributed under # the terms of the BSD 3-Clause License. """Run data tests for cclib.""" import importlib import logging import os import sys import unittest import cclib __filedir__ = os.path.realpath(os.path.dirname(__file__)) # We need this in Python3 for importing things from the same directory # within the unit test files. sys.path.insert(1, os.path.join(__filedir__, 'data')) parser_names = [ "ADF", "DALTON", "FChk", "GAMESS", "GAMESSUK", "Gaussian", "Jaguar", "Molpro", "Molcas", "MOPAC", "NWChem", "ORCA", "Psi4", "QChem", "Turbomole", ] all_parsers = {name: getattr(cclib.parser, name) for name in parser_names} # Not used currently, but keeping in a list to keep track of which parsers # are in the legacy bin. legacy_parser_names = ["Psi3"] module_names = [ "SP", "SPun", "GeoOpt", "Basis", "Core", # Basic calculations. "MP", "CC", "CI", "TD", "TDun", # Post-SCF calculations. "BOMD", "NMR", "Polar", "Scan", "vib" # Other property calculations. ] all_modules = {tn: importlib.import_module('.data.test' + tn, package='test') for tn in module_names} def gettestdata(): """Return a dict of the test file data.""" testdatadir = os.path.dirname(os.path.realpath(__file__)) with open(testdatadir + '/testdata') as testdatafile: lines = testdatafile.readlines() # Remove blank lines and those starting with '#'. lines = [line for line in lines if (line.strip() and line[0] != '#')] # Remove comment at end of lines (everything after a '#'). lines = [line.split('#')[0] for line in lines] # Transform remaining lines into dictionaries. cols = [line.split() for line in lines] labels = ('module', 'parser', 'class', 'subdir', 'files') testdata = [dict(zip(labels, (c[0], c[1], c[2], c[3], c[4:]))) for c in cols] return testdata def get_program_dir(parser_name): """Return a directory name given a parser name. In at least one case (GAMESS-UK) the directory is named differently. """ if parser_name == "GAMESSUK": return "GAMESS-UK" return parser_name def getdatafile(parser, subdir, files, stream=None, loglevel=logging.ERROR, datatype=None): """Returns a parsed logfile. Inputs: parser - a logfile parser class (subclass of LogFile) subdir - subdirectory containing data files (program version) files - data filename(s) stream - where to log to (sys.stdout by default) loglevel - what level to log at datatype - ccData or child class Outputs: data - the resulting data object logfile - the parser object used for parsing """ # Convert any string into the parser object we will be using. if isinstance(parser, str): parser = all_parsers[parser] datadir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data")) programdir = os.path.join(get_program_dir(parser.__name__), subdir) inputs = [os.path.join(datadir, programdir, fn) for fn in files] # We should be able to pass a list of length one here, but for some reason # this does not work with some parsers and we get errors. if len(inputs) == 1: inputs = inputs[0] stream = stream or sys.stdout logfile = parser(inputs, logstream=stream, loglevel=loglevel, datatype=datatype or cclib.parser.data.ccData) data = logfile.parse() return data, logfile def ccdata_getattribute_with_coverage(self, attr): """A bookkeeping version of __getattribute__ for ccData objects.""" if attr != '_attrlist' and attr in self._attrlist: if not hasattr(self, 'coverage'): self.coverage = {} self.coverage[attr] = self.coverage.get(attr, 0) + 1 return object.__getattribute__(self, attr) class DataSuite: """Suite containing data (logfile) tests in cclib. This is supposed to represent a single run of the entire data test suite in cclib or a subset of it. The main functions are to load data, run test cases in the data/ subdirectory, and do some basic bookkeeping. """ def __init__(self, parsers, modules, terse=False, silent=False, loglevel=logging.ERROR, stream=sys.stdout): self.parsers = parsers self.modules = modules self.terse = terse or silent self.silent = silent self.loglevel = loglevel self.stream = stream # Load the test data and filter with parsers and modules. self.testdata = gettestdata() self.testdata = [td for td in self.testdata if td['parser'] in self.parsers] self.testdata = [td for td in self.testdata if td['module'] in self.modules] # We want to gather the unit tests and results in several lists/dicts, # in order to easily generate summaries at the end. self.errors = [] self.failures = [] self.alltests = [] self.perpackage = {p: [0, 0, 0, 0] for p in self.parsers} def testall(self): """Run all unittests in all modules. Run unit tests for all or a subset of parsers and modules. Arguments: stream - stream used for all output """ stream_test = self.stream if self.terse: devnull = open(os.devnull, 'w') stream_test = devnull for td in self.testdata: module = self.modules[td['module']] parser = self.parsers[td['parser']] test = getattr(module, td['class']) description = '' if not self.silent: print("", file=stream_test) description = "%s/%s: %s" % (td['subdir'], ",".join(td['files']), test.__doc__) print("*** %s ***" % description, file=self.stream) test.data, test.logfile = getdatafile( parser, td['subdir'], td['files'], stream=self.stream, loglevel=self.loglevel, datatype=test.datatype if hasattr(test, 'datatype') else None ) # By overriding __getattribute__ temporarily with a custom method, we collect # coverage information for data attributes while the tests are run. This slightly # hacky approach is very convenient since it is self-contained and we don't # need to worry about it when writing the actual test cases. test.data.__class__.__getattribute__ = ccdata_getattribute_with_coverage # Here we actually run the tests for this line in testdata. myunittest = unittest.makeSuite(test) results = unittest.TextTestRunner(stream=stream_test, verbosity=2).run(myunittest) # We don't want to collect coverage stats beyond this point, so set __getattribute__ # back to its original value. Note that we are setting the class method. test.data.__class__.__getattribute__ = object.__getattribute__ self.perpackage[td['parser']][0] += results.testsRun self.perpackage[td['parser']][1] += len(results.errors) self.perpackage[td['parser']][2] += len(results.failures) self.perpackage[td['parser']][3] += len(getattr(results, 'skipped', [])) self.alltests.append(test) self.errors.extend([description + "\n" + "".join(map(str, e)) for e in results.errors]) self.failures.extend([description + "\n" + "".join(map(str, f)) for f in results.failures]) if self.terse: devnull.close() return self.errors or self.failures def summary(self): """Prints a summary of the suite after it has been run.""" if self.errors: print("\n********* SUMMARY OF ERRORS *********\n", file=self.stream) print("\n".join(self.errors), file=self.stream) if self.failures: print("\n********* SUMMARY OF FAILURES *********\n", file=self.stream) print("\n".join(self.failures), file=self.stream) print("\n********* SUMMARY PER PACKAGE ****************", file=self.stream) names = sorted(self.perpackage.keys()) total = [0, 0, 0, 0] print(" "*14, "\t".join(["Total", "Passed", "Failed", "Errors", "Skipped"]), file=self.stream) fmt = "%3d\t%3d\t%3d\t%3d\t%3d" for name in names: l = self.perpackage[name] args = (l[0], l[0]-l[1]-l[2]-l[3], l[2], l[1], l[3]) print(name.ljust(15), fmt % args, file=self.stream) for i in range(4): total[i] += l[i] print("\n********* SUMMARY OF EVERYTHING **************", file=self.stream) print("TOTAL: %d\tPASSED: %d\tFAILED: %d\tERRORS: %d\tSKIPPED: %d" \ %(total[0], total[0]-(total[1]+total[2]+total[3]), total[2], total[1], total[3]), file=self.stream) def visualtests(self, stream=sys.stdout): """These are not formal tests -- but they should be eyeballed.""" parsers_to_test = { 'ADF2013.01' : getdatafile('ADF', "basicADF2013.01", ["dvb_gopt.adfout"])[0], 'DALTON2015' : getdatafile('DALTON', "basicDALTON-2015", ["dvb_gopt_ks.out"])[0], 'Firefly8.0' : getdatafile('GAMESS', "basicFirefly8.0", ["dvb_gopt_a.out"])[0], 'Gaussian16' : getdatafile('Gaussian', "basicGaussian16", ["dvb_gopt.out"])[0], 'GAMESS-US2018' : getdatafile('GAMESS', "basicGAMESS-US2018", ["dvb_gopt_a.out"])[0], 'Jaguar8.0' : getdatafile('Jaguar', "basicJaguar8.3", ["dvb_gopt_ks.out"])[0], 'Molpro2012' : getdatafile('Molpro', "basicMolpro2012", ["dvb_gopt.out", "dvb_gopt.log"])[0], # Note that it doesn't make sense to put MOPAC here, as it # is a semiempirical-only program. 'NWChem6.5' : getdatafile('NWChem', "basicNWChem6.5", ["dvb_gopt_ks.out"])[0], 'ORCA4.2' : getdatafile('ORCA', "basicORCA4.2", ["dvb_gopt.out"])[0], 'Psi4-1.3.1' : getdatafile('Psi4', "basicPsi4-1.3.1", ["dvb_gopt_rks.out"])[0], 'QChem5.4' : getdatafile('QChem', "basicQChem5.4", ["dvb_gopt.out"])[0], } parser_names = sorted(parsers_to_test.keys()) output = [parsers_to_test[pn] for pn in parser_names] print("\n*** Visual tests ***", file=self.stream) print("MO energies of optimised dvb", file=self.stream) print(" ", "".join(["%-12s" % pn for pn in parser_names]), file=self.stream) print("HOMO", " ".join(["%+9.4f" % out.moenergies[0][out.homos[0]] for out in output]), file=self.stream) print("LUMO", " ".join(["%+9.4f" % out.moenergies[0][out.homos[0]+1] for out in output]), file=self.stream) print("H-L ", " ".join(["%9.4f" % (out.moenergies[0][out.homos[0]+1]-out.moenergies[0][out.homos[0]],) for out in output]), file=self.stream) def test_all(parsers, modules, terse, silent, loglevel, summary, visual_tests): parsers = parsers or all_parsers modules = modules or all_modules data_suite = DataSuite(parsers, modules, terse=terse, silent=silent, loglevel=loglevel) errors_or_failures = data_suite.testall() if summary and not silent: data_suite.summary() if visual_tests and not silent: data_suite.visualtests() if errors_or_failures: sys.exit(1) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--debug", action="store_true") parser.add_argument("--terse", action="store_true") parser.add_argument("--silent", action="store_true") parser.add_argument( "parser_or_module", nargs="*", help="Limit the test to the packages/parsers passed as arguments. " "No arguments implies all parsers." ) args = parser.parse_args() loglevel = logging.DEBUG if args.debug else logging.ERROR # No matching parsers/modules implies all of them. parsers = {p: all_parsers[p] for p in parser_names if p in args.parser_or_module} or None modules = {m: all_modules[m] for m in module_names if m in args.parser_or_module} or None test_all(parsers, modules, terse=args.terse, silent=args.silent, loglevel=loglevel, summary=True, visual_tests=True)
cclib/cclib
test/test_data.py
Python
bsd-3-clause
12,415
# Copyright 2011 Cloudscaling Group, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import pprint import re import socket import sys import types import uuid import eventlet import greenlet from oslo.config import cfg import six from six import moves from oslo.log.openstack.common import excutils from oslo.log.openstack.common.gettextutils import _, _LE, _LI from oslo.log.openstack.common import importutils from oslo.log.openstack.common import jsonutils from oslo.log.openstack.common.rpc import common as rpc_common zmq = importutils.try_import('eventlet.green.zmq') # for convenience, are not modified. pformat = pprint.pformat Timeout = eventlet.timeout.Timeout LOG = rpc_common.LOG RemoteError = rpc_common.RemoteError RPCException = rpc_common.RPCException zmq_opts = [ cfg.StrOpt('rpc_zmq_bind_address', default='*', help='ZeroMQ bind address. Should be a wildcard (*), ' 'an ethernet interface, or IP. ' 'The "host" option should point or resolve to this ' 'address.'), # The module.Class to use for matchmaking. cfg.StrOpt( 'rpc_zmq_matchmaker', default=('oslo.log.openstack.common.rpc.' 'matchmaker.MatchMakerLocalhost'), help='MatchMaker driver', ), # The following port is unassigned by IANA as of 2012-05-21 cfg.IntOpt('rpc_zmq_port', default=9501, help='ZeroMQ receiver listening port'), cfg.IntOpt('rpc_zmq_contexts', default=1, help='Number of ZeroMQ contexts, defaults to 1'), cfg.IntOpt('rpc_zmq_topic_backlog', help='Maximum number of ingress messages to locally buffer ' 'per topic. Default is unlimited.'), cfg.StrOpt('rpc_zmq_ipc_dir', default='/var/run/openstack', help='Directory for holding IPC sockets'), cfg.StrOpt('rpc_zmq_host', default=socket.gethostname(), help='Name of this node. Must be a valid hostname, FQDN, or ' 'IP address. Must match "host" option, if running Nova.') ] CONF = cfg.CONF CONF.register_opts(zmq_opts) ZMQ_CTX = None # ZeroMQ Context, must be global. matchmaker = None # memorized matchmaker object def _serialize(data): """Serialization wrapper. We prefer using JSON, but it cannot encode all types. Error if a developer passes us bad data. """ try: return jsonutils.dumps(data, ensure_ascii=True) except TypeError: with excutils.save_and_reraise_exception(): LOG.error(_LE("JSON serialization failed.")) def _deserialize(data): """Deserialization wrapper.""" LOG.debug("Deserializing: %s", data) return jsonutils.loads(data) class ZmqSocket(object): """A tiny wrapper around ZeroMQ. Simplifies the send/recv protocol and connection management. Can be used as a Context (supports the 'with' statement). """ def __init__(self, addr, zmq_type, bind=True, subscribe=None): self.sock = _get_ctxt().socket(zmq_type) self.addr = addr self.type = zmq_type self.subscriptions = [] # Support failures on sending/receiving on wrong socket type. self.can_recv = zmq_type in (zmq.PULL, zmq.SUB) self.can_send = zmq_type in (zmq.PUSH, zmq.PUB) self.can_sub = zmq_type in (zmq.SUB, ) # Support list, str, & None for subscribe arg (cast to list) do_sub = { list: subscribe, str: [subscribe], type(None): [] }[type(subscribe)] for f in do_sub: self.subscribe(f) str_data = {'addr': addr, 'type': self.socket_s(), 'subscribe': subscribe, 'bind': bind} LOG.debug("Connecting to %(addr)s with %(type)s", str_data) LOG.debug("-> Subscribed to %(subscribe)s", str_data) LOG.debug("-> bind: %(bind)s", str_data) try: if bind: self.sock.bind(addr) else: self.sock.connect(addr) except Exception: raise RPCException(_("Could not open socket.")) def socket_s(self): """Get socket type as string.""" t_enum = ('PUSH', 'PULL', 'PUB', 'SUB', 'REP', 'REQ', 'ROUTER', 'DEALER') return dict(map(lambda t: (getattr(zmq, t), t), t_enum))[self.type] def subscribe(self, msg_filter): """Subscribe.""" if not self.can_sub: raise RPCException("Cannot subscribe on this socket.") LOG.debug("Subscribing to %s", msg_filter) try: self.sock.setsockopt(zmq.SUBSCRIBE, msg_filter) except Exception: return self.subscriptions.append(msg_filter) def unsubscribe(self, msg_filter): """Unsubscribe.""" if msg_filter not in self.subscriptions: return self.sock.setsockopt(zmq.UNSUBSCRIBE, msg_filter) self.subscriptions.remove(msg_filter) def close(self): if self.sock is None or self.sock.closed: return # We must unsubscribe, or we'll leak descriptors. if self.subscriptions: for f in self.subscriptions: try: self.sock.setsockopt(zmq.UNSUBSCRIBE, f) except Exception: pass self.subscriptions = [] try: # Default is to linger self.sock.close() except Exception: # While this is a bad thing to happen, # it would be much worse if some of the code calling this # were to fail. For now, lets log, and later evaluate # if we can safely raise here. LOG.error(_LE("ZeroMQ socket could not be closed.")) self.sock = None def recv(self, **kwargs): if not self.can_recv: raise RPCException(_("You cannot recv on this socket.")) return self.sock.recv_multipart(**kwargs) def send(self, data, **kwargs): if not self.can_send: raise RPCException(_("You cannot send on this socket.")) self.sock.send_multipart(data, **kwargs) class ZmqClient(object): """Client for ZMQ sockets.""" def __init__(self, addr): self.outq = ZmqSocket(addr, zmq.PUSH, bind=False) def cast(self, msg_id, topic, data, envelope): msg_id = msg_id or 0 if not envelope: self.outq.send(map(bytes, (msg_id, topic, 'cast', _serialize(data)))) return rpc_envelope = rpc_common.serialize_msg(data[1], envelope) zmq_msg = moves.reduce(lambda x, y: x + y, rpc_envelope.items()) self.outq.send(map(bytes, (msg_id, topic, 'impl_zmq_v2', data[0]) + zmq_msg)) def close(self): self.outq.close() class RpcContext(rpc_common.CommonRpcContext): """Context that supports replying to a rpc.call.""" def __init__(self, **kwargs): self.replies = [] super(RpcContext, self).__init__(**kwargs) def deepcopy(self): values = self.to_dict() values['replies'] = self.replies return self.__class__(**values) def reply(self, reply=None, failure=None, ending=False): if ending: return self.replies.append(reply) @classmethod def marshal(self, ctx): ctx_data = ctx.to_dict() return _serialize(ctx_data) @classmethod def unmarshal(self, data): return RpcContext.from_dict(_deserialize(data)) class InternalContext(object): """Used by ConsumerBase as a private context for - methods.""" def __init__(self, proxy): self.proxy = proxy self.msg_waiter = None def _get_response(self, ctx, proxy, topic, data): """Process a curried message and cast the result to topic.""" LOG.debug("Running func with context: %s", ctx.to_dict()) data.setdefault('version', None) data.setdefault('args', {}) try: result = proxy.dispatch( ctx, data['version'], data['method'], data.get('namespace'), **data['args']) return ConsumerBase.normalize_reply(result, ctx.replies) except greenlet.GreenletExit: # ignore these since they are just from shutdowns pass except rpc_common.ClientException as e: LOG.debug("Expected exception during message handling (%s)" % e._exc_info[1]) return {'exc': rpc_common.serialize_remote_exception(e._exc_info, log_failure=False)} except Exception: LOG.error(_LE("Exception during message handling")) return {'exc': rpc_common.serialize_remote_exception(sys.exc_info())} def reply(self, ctx, proxy, msg_id=None, context=None, topic=None, msg=None): """Reply to a casted call.""" # NOTE(ewindisch): context kwarg exists for Grizzly compat. # this may be able to be removed earlier than # 'I' if ConsumerBase.process were refactored. if type(msg) is list: payload = msg[-1] else: payload = msg response = ConsumerBase.normalize_reply( self._get_response(ctx, proxy, topic, payload), ctx.replies) LOG.debug("Sending reply") _multi_send(_cast, ctx, topic, { 'method': '-process_reply', 'args': { 'msg_id': msg_id, # Include for Folsom compat. 'response': response } }, _msg_id=msg_id) class ConsumerBase(object): """Base Consumer.""" def __init__(self): self.private_ctx = InternalContext(None) @classmethod def normalize_reply(self, result, replies): # TODO(ewindisch): re-evaluate and document this method. if isinstance(result, types.GeneratorType): return list(result) elif replies: return replies else: return [result] def process(self, proxy, ctx, data): data.setdefault('version', None) data.setdefault('args', {}) # Method starting with - are # processed internally. (non-valid method name) method = data.get('method') if not method: LOG.error(_LE("RPC message did not include method.")) return # Internal method # uses internal context for safety. if method == '-reply': self.private_ctx.reply(ctx, proxy, **data['args']) return proxy.dispatch(ctx, data['version'], data['method'], data.get('namespace'), **data['args']) class ZmqBaseReactor(ConsumerBase): """A consumer class implementing a centralized casting broker (PULL-PUSH). Used for RoundRobin requests. """ def __init__(self, conf): super(ZmqBaseReactor, self).__init__() self.proxies = {} self.threads = [] self.sockets = [] self.subscribe = {} self.pool = eventlet.greenpool.GreenPool(conf.rpc_thread_pool_size) def register(self, proxy, in_addr, zmq_type_in, in_bind=True, subscribe=None): LOG.info(_LI("Registering reactor")) if zmq_type_in not in (zmq.PULL, zmq.SUB): raise RPCException("Bad input socktype") # Items push in. inq = ZmqSocket(in_addr, zmq_type_in, bind=in_bind, subscribe=subscribe) self.proxies[inq] = proxy self.sockets.append(inq) LOG.info(_LI("In reactor registered")) def consume_in_thread(self): @excutils.forever_retry_uncaught_exceptions def _consume(sock): LOG.info(_LI("Consuming socket")) while True: self.consume(sock) for k in self.proxies.keys(): self.threads.append( self.pool.spawn(_consume, k) ) def wait(self): for t in self.threads: t.wait() def close(self): for s in self.sockets: s.close() for t in self.threads: t.kill() class ZmqProxy(ZmqBaseReactor): """A consumer class implementing a topic-based proxy. Forwards to IPC sockets. """ def __init__(self, conf): super(ZmqProxy, self).__init__(conf) pathsep = set((os.path.sep or '', os.path.altsep or '', '/', '\\')) self.badchars = re.compile(r'[%s]' % re.escape(''.join(pathsep))) self.topic_proxy = {} def consume(self, sock): ipc_dir = CONF.rpc_zmq_ipc_dir data = sock.recv(copy=False) topic = data[1].bytes if topic.startswith('fanout~'): sock_type = zmq.PUB topic = topic.split('.', 1)[0] elif topic.startswith('zmq_replies'): sock_type = zmq.PUB else: sock_type = zmq.PUSH if topic not in self.topic_proxy: def publisher(waiter): LOG.info(_LI("Creating proxy for topic: %s"), topic) try: # The topic is received over the network, # don't trust this input. if self.badchars.search(topic) is not None: emsg = _("Topic contained dangerous characters.") LOG.warn(emsg) raise RPCException(emsg) out_sock = ZmqSocket("ipc://%s/zmq_topic_%s" % (ipc_dir, topic), sock_type, bind=True) except RPCException: waiter.send_exception(*sys.exc_info()) return self.topic_proxy[topic] = eventlet.queue.LightQueue( CONF.rpc_zmq_topic_backlog) self.sockets.append(out_sock) # It takes some time for a pub socket to open, # before we can have any faith in doing a send() to it. if sock_type == zmq.PUB: eventlet.sleep(.5) waiter.send(True) while(True): data = self.topic_proxy[topic].get() out_sock.send(data, copy=False) wait_sock_creation = eventlet.event.Event() eventlet.spawn(publisher, wait_sock_creation) try: wait_sock_creation.wait() except RPCException: LOG.error(_LE("Topic socket file creation failed.")) return try: self.topic_proxy[topic].put_nowait(data) except eventlet.queue.Full: LOG.error(_LE("Local per-topic backlog buffer full for topic " "%(topic)s. Dropping message.") % {'topic': topic}) def consume_in_thread(self): """Runs the ZmqProxy service.""" ipc_dir = CONF.rpc_zmq_ipc_dir consume_in = "tcp://%s:%s" % \ (CONF.rpc_zmq_bind_address, CONF.rpc_zmq_port) consumption_proxy = InternalContext(None) try: os.makedirs(ipc_dir) except os.error: if not os.path.isdir(ipc_dir): with excutils.save_and_reraise_exception(): LOG.error(_LE("Required IPC directory does not exist at" " %s") % (ipc_dir, )) try: self.register(consumption_proxy, consume_in, zmq.PULL) except zmq.ZMQError: if os.access(ipc_dir, os.X_OK): with excutils.save_and_reraise_exception(): LOG.error(_LE("Permission denied to IPC directory at" " %s") % (ipc_dir, )) with excutils.save_and_reraise_exception(): LOG.error(_LE("Could not create ZeroMQ receiver daemon. " "Socket may already be in use.")) super(ZmqProxy, self).consume_in_thread() def unflatten_envelope(packenv): """Unflattens the RPC envelope. Takes a list and returns a dictionary. i.e. [1,2,3,4] => {1: 2, 3: 4} """ i = iter(packenv) h = {} try: while True: k = six.next(i) h[k] = six.next(i) except StopIteration: return h class ZmqReactor(ZmqBaseReactor): """A consumer class implementing a consumer for messages. Can also be used as a 1:1 proxy """ def __init__(self, conf): super(ZmqReactor, self).__init__(conf) def consume(self, sock): # TODO(ewindisch): use zero-copy (i.e. references, not copying) data = sock.recv() LOG.debug("CONSUMER RECEIVED DATA: %s", data) proxy = self.proxies[sock] if data[2] == 'cast': # Legacy protocol packenv = data[3] ctx, msg = _deserialize(packenv) request = rpc_common.deserialize_msg(msg) ctx = RpcContext.unmarshal(ctx) elif data[2] == 'impl_zmq_v2': packenv = data[4:] msg = unflatten_envelope(packenv) request = rpc_common.deserialize_msg(msg) # Unmarshal only after verifying the message. ctx = RpcContext.unmarshal(data[3]) else: LOG.error(_LE("ZMQ Envelope version unsupported or unknown.")) return self.pool.spawn_n(self.process, proxy, ctx, request) class Connection(rpc_common.Connection): """Manages connections and threads.""" def __init__(self, conf): self.topics = [] self.reactor = ZmqReactor(conf) def create_consumer(self, topic, proxy, fanout=False): # Register with matchmaker. _get_matchmaker().register(topic, CONF.rpc_zmq_host) # Subscription scenarios if fanout: sock_type = zmq.SUB subscribe = ('', fanout)[type(fanout) == str] topic = 'fanout~' + topic.split('.', 1)[0] else: sock_type = zmq.PULL subscribe = None topic = '.'.join((topic.split('.', 1)[0], CONF.rpc_zmq_host)) if topic in self.topics: LOG.info(_LI("Skipping topic registration. Already registered.")) return # Receive messages from (local) proxy inaddr = "ipc://%s/zmq_topic_%s" % \ (CONF.rpc_zmq_ipc_dir, topic) LOG.debug("Consumer is a zmq.%s", ['PULL', 'SUB'][sock_type == zmq.SUB]) self.reactor.register(proxy, inaddr, sock_type, subscribe=subscribe, in_bind=False) self.topics.append(topic) def close(self): _get_matchmaker().stop_heartbeat() for topic in self.topics: _get_matchmaker().unregister(topic, CONF.rpc_zmq_host) self.reactor.close() self.topics = [] def wait(self): self.reactor.wait() def consume_in_thread(self): _get_matchmaker().start_heartbeat() self.reactor.consume_in_thread() def _cast(addr, context, topic, msg, timeout=None, envelope=False, _msg_id=None): timeout_cast = timeout or CONF.rpc_cast_timeout payload = [RpcContext.marshal(context), msg] with Timeout(timeout_cast, exception=rpc_common.Timeout): try: conn = ZmqClient(addr) # assumes cast can't return an exception conn.cast(_msg_id, topic, payload, envelope) except zmq.ZMQError: raise RPCException("Cast failed. ZMQ Socket Exception") finally: if 'conn' in vars(): conn.close() def _call(addr, context, topic, msg, timeout=None, envelope=False): # timeout_response is how long we wait for a response timeout = timeout or CONF.rpc_response_timeout # The msg_id is used to track replies. msg_id = uuid.uuid4().hex # Replies always come into the reply service. reply_topic = "zmq_replies.%s" % CONF.rpc_zmq_host LOG.debug("Creating payload") # Curry the original request into a reply method. mcontext = RpcContext.marshal(context) payload = { 'method': '-reply', 'args': { 'msg_id': msg_id, 'topic': reply_topic, # TODO(ewindisch): safe to remove mcontext in I. 'msg': [mcontext, msg] } } LOG.debug("Creating queue socket for reply waiter") # Messages arriving async. # TODO(ewindisch): have reply consumer with dynamic subscription mgmt with Timeout(timeout, exception=rpc_common.Timeout): try: msg_waiter = ZmqSocket( "ipc://%s/zmq_topic_zmq_replies.%s" % (CONF.rpc_zmq_ipc_dir, CONF.rpc_zmq_host), zmq.SUB, subscribe=msg_id, bind=False ) LOG.debug("Sending cast") _cast(addr, context, topic, payload, envelope) LOG.debug("Cast sent; Waiting reply") # Blocks until receives reply msg = msg_waiter.recv() LOG.debug("Received message: %s", msg) LOG.debug("Unpacking response") if msg[2] == 'cast': # Legacy version raw_msg = _deserialize(msg[-1])[-1] elif msg[2] == 'impl_zmq_v2': rpc_envelope = unflatten_envelope(msg[4:]) raw_msg = rpc_common.deserialize_msg(rpc_envelope) else: raise rpc_common.UnsupportedRpcEnvelopeVersion( _("Unsupported or unknown ZMQ envelope returned.")) responses = raw_msg['args']['response'] # ZMQError trumps the Timeout error. except zmq.ZMQError: raise RPCException("ZMQ Socket Error") except (IndexError, KeyError): raise RPCException(_("RPC Message Invalid.")) finally: if 'msg_waiter' in vars(): msg_waiter.close() # It seems we don't need to do all of the following, # but perhaps it would be useful for multicall? # One effect of this is that we're checking all # responses for Exceptions. for resp in responses: if isinstance(resp, types.DictType) and 'exc' in resp: raise rpc_common.deserialize_remote_exception(CONF, resp['exc']) return responses[-1] def _multi_send(method, context, topic, msg, timeout=None, envelope=False, _msg_id=None): """Wraps the sending of messages. Dispatches to the matchmaker and sends message to all relevant hosts. """ conf = CONF LOG.debug("%(msg)s" % {'msg': ' '.join(map(pformat, (topic, msg)))}) queues = _get_matchmaker().queues(topic) LOG.debug("Sending message(s) to: %s", queues) # Don't stack if we have no matchmaker results if not queues: LOG.warn(_("No matchmaker results. Not casting.")) # While not strictly a timeout, callers know how to handle # this exception and a timeout isn't too big a lie. raise rpc_common.Timeout(_("No match from matchmaker.")) # This supports brokerless fanout (addresses > 1) for queue in queues: (_topic, ip_addr) = queue _addr = "tcp://%s:%s" % (ip_addr, conf.rpc_zmq_port) if method.__name__ == '_cast': eventlet.spawn_n(method, _addr, context, _topic, msg, timeout, envelope, _msg_id) return return method(_addr, context, _topic, msg, timeout, envelope) def create_connection(conf, new=True): return Connection(conf) def multicall(conf, *args, **kwargs): """Multiple calls.""" return _multi_send(_call, *args, **kwargs) def call(conf, *args, **kwargs): """Send a message, expect a response.""" data = _multi_send(_call, *args, **kwargs) return data[-1] def cast(conf, *args, **kwargs): """Send a message expecting no reply.""" _multi_send(_cast, *args, **kwargs) def fanout_cast(conf, context, topic, msg, **kwargs): """Send a message to all listening and expect no reply.""" # NOTE(ewindisch): fanout~ is used because it avoid splitting on . # and acts as a non-subtle hint to the matchmaker and ZmqProxy. _multi_send(_cast, context, 'fanout~' + str(topic), msg, **kwargs) def notify(conf, context, topic, msg, envelope): """Send notification event. Notifications are sent to topic-priority. This differs from the AMQP drivers which send to topic.priority. """ # NOTE(ewindisch): dot-priority in rpc notifier does not # work with our assumptions. topic = topic.replace('.', '-') cast(conf, context, topic, msg, envelope=envelope) def cleanup(): """Clean up resources in use by implementation.""" global ZMQ_CTX if ZMQ_CTX: ZMQ_CTX.term() ZMQ_CTX = None global matchmaker matchmaker = None def _get_ctxt(): if not zmq: raise ImportError("Failed to import eventlet.green.zmq") global ZMQ_CTX if not ZMQ_CTX: ZMQ_CTX = zmq.Context(CONF.rpc_zmq_contexts) return ZMQ_CTX def _get_matchmaker(*args, **kwargs): global matchmaker if not matchmaker: mm = CONF.rpc_zmq_matchmaker if mm.endswith('matchmaker.MatchMakerRing'): mm.replace('matchmaker', 'matchmaker_ring') LOG.warn(_('rpc_zmq_matchmaker = %(orig)s is deprecated; use' ' %(new)s instead') % dict( orig=CONF.rpc_zmq_matchmaker, new=mm)) matchmaker = importutils.import_object(mm, *args, **kwargs) return matchmaker
citrix-openstack-build/oslo.log
oslo/log/openstack/common/rpc/impl_zmq.py
Python
apache-2.0
26,437
import sys import requests from bs4 import BeautifulSoup # Google Search Class class googleSearch(): def __init__(self, query): self.query = "http://google.com/search?q=" + "+".join(query.split()) + "&num=100&start=" self.page = 1 self.content = requests.get(self.query).text self.websiteList = self.returnWebsiteList(0) + self.returnWebsiteList(100) + self.returnWebsiteList(200) def getWebsiteList(self): return self.websiteList def cleanURL(self, url): return url.replace("https://", "").replace("http://", "") def returnWebsiteList(self, startResult): # PRODUCTION CODE storeURL = [] # Parse raw HTML into BeautifulSoup object soup = BeautifulSoup(self.content, 'html.parser') # storeURL = [] # # Return Google raw HTML # rawPageData = open('data/google.txt', 'r').read() # # Parse raw HTML into BeautifulSoup object # soup = BeautifulSoup(rawPageData, 'html.parser') # Loop over cite tags in HTML for cite in soup.find_all("cite"): # Extract text from cite tags text = self.cleanURL(cite.text) if "..." in text: storeURL.append(text.split("/")[0]) else: storeURL.append(text) return storeURL
tomarrell/Email-Scraper
lib/googleSearch.py
Python
gpl-3.0
1,172
# Set default logging handler to avoid "No handler found" warnings. #import logging #import logging.config # #try: # Python 2.7+ # from logging import NullHandler #except ImportError: # class NullHandler(logging.Handler): # def emit(self, record): # pass # #log = logging.getLogger(__name__) #try: # logging.config.fileConfig('settings/logging.conf') #except: # pass # #log.addHandler(NullHandler())
SPRACE/python-odl
odl/__init__.py
Python
gpl-3.0
431
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'FormText' db.create_table(u'landing_formtext', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=50)), ('text', self.gf('django.db.models.fields.TextField')(max_length=200)), )) db.send_create_signal(u'landing', ['FormText']) def backwards(self, orm): # Deleting model 'FormText' db.delete_table(u'landing_formtext') models = { u'landing.formtext': { 'Meta': {'object_name': 'FormText'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'text': ('django.db.models.fields.TextField', [], {'max_length': '200'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'landing.function': { 'Meta': {'object_name': 'Function'}, 'description': ('django.db.models.fields.TextField', [], {'max_length': '200'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'landing.landingregister': { 'Meta': {'object_name': 'LandingRegister'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '250'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '10'}) }, u'landing.mainimage': { 'Description': ('django.db.models.fields.TextField', [], {'max_length': '200'}), 'Meta': {'object_name': 'MainImage'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}) }, u'landing.product': { 'Meta': {'object_name': 'Product'}, 'description': ('django.db.models.fields.TextField', [], {'max_length': '200'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'landing.slogan': { 'Meta': {'object_name': 'Slogan'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slogan': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'landing.testimonial': { 'Meta': {'object_name': 'Testimonial'}, 'description': ('django.db.models.fields.TextField', [], {'max_length': '200'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['landing']
andresfcardenas/marketing-platform
landing/migrations/0003_auto__add_formtext.py
Python
bsd-3-clause
3,656
__author__ = 'oier' import json from flask import Flask, make_response app = Flask(__name__) import seaborn as sns import numpy as np import pandas as pd import os from datetime import datetime import matplotlib.pyplot as plt import sys from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from io import StringIO from sklearn import linear_model from models import InputForm, ValueSelector from flask import Flask, render_template, request from compute import compute, load_data, line_plot @app.route('/') def index(): return 'Hello World!' def form_values(request): data = load_data() form = ValueSelector(request) form.value.choices = [(k,i) for k,i in enumerate(data.columns)] return(form) @app.route('/blood', methods=['GET', 'POST']) def blood(): form = form_values(request.form) if request.method == 'POST':# and form.validate(): result = line_plot(form.value.data) else: print("False") result = None return render_template('plot.html', form=form, result=result) @app.route('/vib1', methods=['GET', 'POST']) def vib1(): #form = InputForm(request.form) form = form_values(request.form) if request.method == 'POST' and form.validate(): result = compute(form.A.data, form.b.data, form.w.data, form.T.data) else: result = None return render_template('view_plain.html', form=form, result=result) if __name__ == '__main__': app.run()
oiertwo/vampyr
flask/index.py
Python
mit
1,592
import os import sys from _pydevd_bundle.pydevd_constants import IS_PYCHARM IS_PY36_OR_GREATER = sys.version_info >= (3, 6) frame_eval_func = None stop_frame_eval = None dummy_trace_dispatch = None show_frame_eval_warning = False clear_thread_local_info = None # "NO" means we should not use frame evaluation, 'YES' we should use it (and fail if not there) and unspecified uses if possible. use_frame_eval = os.environ.get('PYDEVD_USE_FRAME_EVAL', None) if use_frame_eval == 'NO': pass elif use_frame_eval == 'YES': # Fail if unable to use from _pydevd_frame_eval.pydevd_frame_eval_cython_wrapper import frame_eval_func, stop_frame_eval, dummy_trace_dispatch, clear_thread_local_info elif use_frame_eval is None: # Try to use if possible if IS_PY36_OR_GREATER: try: from _pydevd_frame_eval.pydevd_frame_eval_cython_wrapper import frame_eval_func, stop_frame_eval, dummy_trace_dispatch, clear_thread_local_info except ImportError: from _pydev_bundle.pydev_monkey import log_error_once dirname = os.path.dirname(os.path.dirname(__file__)) if not IS_PYCHARM: log_error_once("warning: Debugger speedups using cython not found. Run '\"%s\" \"%s\" build_ext --inplace' to build." % ( sys.executable, os.path.join(dirname, 'setup_cython.py'))) else: show_frame_eval_warning = True else: raise RuntimeError('Unexpected value for PYDEVD_USE_FRAME_EVAL: %s (accepted: YES, NO)' % (use_frame_eval,))
Elizaveta239/PyDev.Debugger
_pydevd_frame_eval/pydevd_frame_eval_main.py
Python
epl-1.0
1,550
from __future__ import (absolute_import, division, print_function) import unittest import numpy as np from mantid.simpleapi import logger import AbinsModules class AbinsKpointsDataTest(unittest.TestCase): _good_data_1 = {"k_vectors": np.asarray([[0.2, 0.1, 0.2], [0.1, 0.0, 0.2], [0.2, 0.2, 0.2]]), "weights": np.asarray([0.3, 0.2, 0.5]), "frequencies": np.asarray([[1.0, 2.0, 34.0, 4.9, 1.0, 2.0], [11.0, 12.0, 134.0, 14.9, 11.0, 12.0], [1.0, 2.0, 34.0, 4.9, 1.0, 2.0]]), # 6 frequencies for one k-point "atomic_displacements": np.asarray([[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 111.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 221.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0], [1.0, 1.0, 41.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 31.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 41.0], [1.0, 1.0, 1.0]]] # 12 atomic displacements for each k-point ]).astype(complex), "unit_cell": np.asarray([[ 7.44, 0. , 0. ], [ 0. , 9.55, 0. ], [ 0. , 0. , 6.92]]) } # data with soft phonons _good_data_2 = {"k_vectors": np.asarray([[0.2, 0.1, 0.2], [0.1, 0.0, 0.2], [0.2, 0.2, 0.2]]), "weights": np.asarray([0.3, 0.2, 0.5]), "frequencies": np.asarray([[-10.0, -2.0, -3.0, 4.9, 1.0, 2.0], [11.0, 12.0, 134.0, 14.9, 11.0, 12.0], [1.0, 2.0, 34.0, 4.9, 1.0, 2.0]]), # 6 frequencies for one k-point "atomic_displacements": np.asarray([[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 121.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 131.0], [1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 221.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0], [1.0, 1.0, 41.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 31.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 41.0], [1.0, 1.0, 1.0]]] # 12 atomic displacements for each k-point ]).astype(complex), "unit_cell": np.asarray([[7.44, 0., 0.], [0., 9.55, 0.], [0., 0., 6.92]]) } def setUp(self): self.tester = AbinsModules.KpointsData(num_k=3, num_atoms=2) # tests for append method def test_no_dict(self): # Case no dict to append with self.assertRaises(ValueError): wrong_dict = ["k_vectors", 2, "freq"] self.tester.set(items=wrong_dict) def test_missing_key(self): # missing atomic_displacements items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"]} with self.assertRaises(ValueError): self.tester.set(items=items) def test_wrong_value(self): # value should be a numpy array with real numbers items = {"k_vectors": "wrong_value", "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"], "atomic_displacements": self._good_data_1["atomic_displacements"]} with self.assertRaises(ValueError): self.tester.set(items=items) def test_wrong_weight(self): # negative weight (weight should be represented as a positive real number) items = {"k_vectors": self._good_data_1["k_vectors"], "weights": np.asarray([-0.1, 0.3, 0.2]), "frequencies": self._good_data_1["frequencies"], "atomic_displacements": self._good_data_1["atomic_displacements"]} with self.assertRaises(ValueError): self.tester.set(items=items) def test_wrong_freq(self): # frequencies as a string wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": "Wrong_freq", "atomic_displacements": self._good_data_1["atomic_displacements"]} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) # complex frequencies wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"].astype(complex), "atomic_displacements": self._good_data_1["atomic_displacements"]} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) # frequencies as 2D arrays but with a bad shape wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": np.asarray([[1.0, 2.0, 34.0], [4.9, 1.0, 1.0]]), "atomic_displacements": self._good_data_1["atomic_displacements"]} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) def test_wrong_displacements(self): # displacements as a number wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"], "atomic_displacements": 1} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) # wrong size of the second dimension wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"], "atomic_displacements": np.asarray([[[[1., 1., 11.], [1., 1., 1., 1.0], [1.0, 1.0, 1.0], [1., 1.0, 1.0], [1., 1., 11.], [1., 1., 11.]], [[1., 1.0, 1.0], [1., 1., 11.], [1., 1., 11.], [1., 1.0, 1.0], [1., 1., 11.], [1., 1., 11.]]], self._good_data_1["atomic_displacements"][0, 0], self._good_data_1["atomic_displacements"][0, 1]] )} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) # displacements as numpy arrays with integers wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"], "atomic_displacements": self._good_data_1["atomic_displacements"].astype(int)} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) # displacements as a 1D array wrong_items = {"k_vectors": self._good_data_1["k_vectors"], "weights": self._good_data_1["weights"], "frequencies": self._good_data_1["frequencies"], "atomic_displacements": np.ravel(self._good_data_1["atomic_displacements"])} with self.assertRaises(ValueError): self.tester.set(items=wrong_items) def test_set_good_case(self): self._set_good_case_core(data=self._good_data_1) self._set_good_case_core(data=self._good_data_2) def _set_good_case_core(self, data): self.tester.set(items=data) collected_data = self.tester.extract() for k in range(data["frequencies"].shape[0]): indices = data["frequencies"][k] > AbinsModules.AbinsConstants.ACOUSTIC_PHONON_THRESHOLD temp_f = data["frequencies"][k] self.assertEqual(True, np.allclose(temp_f[indices], collected_data["frequencies"][str(k)])) temp_a = data["atomic_displacements"][k] self.assertEqual(True, np.allclose(temp_a[:, indices], collected_data["atomic_displacements"][str(k)])) self.assertEqual(True, np.allclose(data["k_vectors"][k], collected_data["k_vectors"][str(k)])) self.assertEqual(data["weights"][k], collected_data["weights"][str(k)]) # tests for set method def test_set_wrong_dict(self): with self.assertRaises(ValueError): self.tester.set([1, 2234, 8]) # tests for constructor def test_constructor_assertions(self): with self.assertRaises(ValueError): # noinspection PyUnusedLocal poor_tester = AbinsModules.KpointsData(num_k=0.1, num_atoms=2) with self.assertRaises(ValueError): # noinspection PyUnusedLocal poor_tester = AbinsModules.KpointsData(num_k=1, num_atoms=-2) if __name__ == "__main__": unittest.main()
dymkowsk/mantid
scripts/test/AbinsKpointsDataTest.py
Python
gpl-3.0
11,416
import six class AbstractIter(six.Iterator): def __init__(self, node, filter_=None, stop=None, maxlevel=None): """ Iterate over tree starting at `node`. Base class for all iterators. Keyword Args: filter_: function called with every `node` as argument, `node` is returned if `True`. stop: stop iteration at `node` if `stop` function returns `True` for `node`. maxlevel (int): maximum descending in the node hierarchy. """ self.node = node self.filter_ = filter_ self.stop = stop self.maxlevel = maxlevel self.__iter = None def __init(self): node = self.node maxlevel = self.maxlevel filter_ = self.filter_ or AbstractIter.__default_filter stop = self.stop or AbstractIter.__default_stop children = [] if AbstractIter._abort_at_level(1, maxlevel) else AbstractIter._get_children([node], stop) return self._iter(children, filter_, stop, maxlevel) @staticmethod def __default_filter(node): return True @staticmethod def __default_stop(node): return False def __iter__(self): return self def __next__(self): if self.__iter is None: self.__iter = self.__init() return next(self.__iter) @staticmethod def _iter(children, filter_, stop, maxlevel): raise NotImplementedError() # pragma: no cover @staticmethod def _abort_at_level(level, maxlevel): return maxlevel is not None and level > maxlevel @staticmethod def _get_children(children, stop): return [child for child in children if not stop(child)]
c0fec0de/anytree
anytree/iterators/abstractiter.py
Python
apache-2.0
1,704
# -*- coding: utf-8 -*- ''' Created on 10 Jul 2015 @author: Kimon Tsitsikas Copyright © 2015 Kimon Tsitsikas, Delmic This file is part of Odemis. Odemis is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Odemis is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Odemis. If not, see http://www.gnu.org/licenses/. ''' from __future__ import division, print_function import logging import numpy from odemis.driver import blinkstick import os import unittest from unittest.case import skip logger = logging.getLogger().setLevel(logging.DEBUG) # Test using the hardware # Export TEST_NOHW=1 to force using only the simulator and skipping test cases # needing real hardware TEST_NOHW = (os.environ.get("TEST_NOHW", "0") != "0") # Default to Hw testing CLASS = blinkstick.WhiteLed KWARGS = dict(name="test", role="light", max_power=1.0, inversed=True) class TestStatic(unittest.TestCase): """ Tests which don't need a component ready """ def test_creation(self): """ Doesn't even try to do anything, just create and delete components """ if TEST_NOHW: self.skipTest("Cannot test without hardware present") dev = CLASS(**KWARGS) dev.terminate() def test_scan(self): """ Test scanning for the device """ devices = CLASS.scan() if not TEST_NOHW: self.assertGreater(len(devices), 0) for name, kwargs in devices: print("opening", name) d = CLASS(name, "test", **kwargs) d.terminate() class TestWhiteLed(unittest.TestCase): """ Tests which need a component ready """ def setUp(self): if TEST_NOHW: self.skipTest("Cannot test without hardware present") self.dev = CLASS(**KWARGS) def tearDown(self): self.dev.terminate() def test_power_va(self): # Set power value min and max and mean self.dev.power.value = self.dev.power.range[0] self.assertEqual(self.dev.power.value, list(self.dev.power.range[0])) self.dev.power.value = self.dev.power.range[1] self.assertEqual(self.dev.power.value, list(self.dev.power.range[1])) h = numpy.mean(self.dev.power.range) self.dev.power.value = [h] self.assertAlmostEqual(self.dev.power.value[0], h, delta=1 / 256) if __name__ == "__main__": unittest.main()
delmic/odemis
src/odemis/driver/test/blinkstick_test.py
Python
gpl-2.0
2,773
# (c) 2012-2014, Michael DeHaan <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type from itertools import chain from ansible import constants as C from ansible.errors import AnsibleError from ansible.module_utils._text import to_native, to_text from ansible.module_utils.common._collections_compat import Mapping, MutableMapping from ansible.utils.display import Display from ansible.utils.vars import combine_vars display = Display() def to_safe_group_name(name, replacer="_", force=False, silent=False): # Converts 'bad' characters in a string to underscores (or provided replacer) so they can be used as Ansible hosts or groups warn = '' if name: # when deserializing we might not have name yet invalid_chars = C.INVALID_VARIABLE_NAMES.findall(name) if invalid_chars: msg = 'invalid character(s) "%s" in group name (%s)' % (to_text(set(invalid_chars)), to_text(name)) if C.TRANSFORM_INVALID_GROUP_CHARS not in ('never', 'ignore') or force: name = C.INVALID_VARIABLE_NAMES.sub(replacer, name) if not (silent or C.TRANSFORM_INVALID_GROUP_CHARS == 'silently'): display.vvvv('Replacing ' + msg) warn = 'Invalid characters were found in group names and automatically replaced, use -vvvv to see details' else: if C.TRANSFORM_INVALID_GROUP_CHARS == 'never': display.vvvv('Not replacing %s' % msg) warn = True warn = 'Invalid characters were found in group names but not replaced, use -vvvv to see details' if warn: display.warning(warn) return name class Group: ''' a group of ansible hosts ''' # __slots__ = [ 'name', 'hosts', 'vars', 'child_groups', 'parent_groups', 'depth', '_hosts_cache' ] def __init__(self, name=None): self.depth = 0 self.name = to_safe_group_name(name) self.hosts = [] self._hosts = None self.vars = {} self.child_groups = [] self.parent_groups = [] self._hosts_cache = None self.priority = 1 def __repr__(self): return self.get_name() def __str__(self): return self.get_name() def __getstate__(self): return self.serialize() def __setstate__(self, data): return self.deserialize(data) def serialize(self): parent_groups = [] for parent in self.parent_groups: parent_groups.append(parent.serialize()) self._hosts = None result = dict( name=self.name, vars=self.vars.copy(), parent_groups=parent_groups, depth=self.depth, hosts=self.hosts, ) return result def deserialize(self, data): self.__init__() self.name = data.get('name') self.vars = data.get('vars', dict()) self.depth = data.get('depth', 0) self.hosts = data.get('hosts', []) self._hosts = None parent_groups = data.get('parent_groups', []) for parent_data in parent_groups: g = Group() g.deserialize(parent_data) self.parent_groups.append(g) def _walk_relationship(self, rel, include_self=False, preserve_ordering=False): ''' Given `rel` that is an iterable property of Group, consitituting a directed acyclic graph among all groups, Returns a set of all groups in full tree A B C | / | / | / | / D -> E | / vertical connections | / are directed upward F Called on F, returns set of (A, B, C, D, E) ''' seen = set([]) unprocessed = set(getattr(self, rel)) if include_self: unprocessed.add(self) if preserve_ordering: ordered = [self] if include_self else [] ordered.extend(getattr(self, rel)) while unprocessed: seen.update(unprocessed) new_unprocessed = set([]) for new_item in chain.from_iterable(getattr(g, rel) for g in unprocessed): new_unprocessed.add(new_item) if preserve_ordering: if new_item not in seen: ordered.append(new_item) new_unprocessed.difference_update(seen) unprocessed = new_unprocessed if preserve_ordering: return ordered return seen def get_ancestors(self): return self._walk_relationship('parent_groups') def get_descendants(self, **kwargs): return self._walk_relationship('child_groups', **kwargs) @property def host_names(self): if self._hosts is None: self._hosts = set(self.hosts) return self._hosts def get_name(self): return self.name def add_child_group(self, group): added = False if self == group: raise Exception("can't add group to itself") # don't add if it's already there if group not in self.child_groups: # prepare list of group's new ancestors this edge creates start_ancestors = group.get_ancestors() new_ancestors = self.get_ancestors() if group in new_ancestors: raise AnsibleError("Adding group '%s' as child to '%s' creates a recursive dependency loop." % (to_native(group.name), to_native(self.name))) new_ancestors.add(self) new_ancestors.difference_update(start_ancestors) added = True self.child_groups.append(group) # update the depth of the child group.depth = max([self.depth + 1, group.depth]) # update the depth of the grandchildren group._check_children_depth() # now add self to child's parent_groups list, but only if there # isn't already a group with the same name if self.name not in [g.name for g in group.parent_groups]: group.parent_groups.append(self) for h in group.get_hosts(): h.populate_ancestors(additions=new_ancestors) self.clear_hosts_cache() return added def _check_children_depth(self): depth = self.depth start_depth = self.depth # self.depth could change over loop seen = set([]) unprocessed = set(self.child_groups) while unprocessed: seen.update(unprocessed) depth += 1 to_process = unprocessed.copy() unprocessed = set([]) for g in to_process: if g.depth < depth: g.depth = depth unprocessed.update(g.child_groups) if depth - start_depth > len(seen): raise AnsibleError("The group named '%s' has a recursive dependency loop." % to_native(self.name)) def add_host(self, host): added = False if host.name not in self.host_names: self.hosts.append(host) self._hosts.add(host.name) host.add_group(self) self.clear_hosts_cache() added = True return added def remove_host(self, host): removed = False if host.name in self.host_names: self.hosts.remove(host) self._hosts.remove(host.name) host.remove_group(self) self.clear_hosts_cache() removed = True return removed def set_variable(self, key, value): if key == 'ansible_group_priority': self.set_priority(int(value)) else: if key in self.vars and isinstance(self.vars[key], MutableMapping) and isinstance(value, Mapping): self.vars = combine_vars(self.vars, {key: value}) else: self.vars[key] = value def clear_hosts_cache(self): self._hosts_cache = None for g in self.get_ancestors(): g._hosts_cache = None def get_hosts(self): if self._hosts_cache is None: self._hosts_cache = self._get_hosts() return self._hosts_cache def _get_hosts(self): hosts = [] seen = {} for kid in self.get_descendants(include_self=True, preserve_ordering=True): kid_hosts = kid.hosts for kk in kid_hosts: if kk not in seen: seen[kk] = 1 if self.name == 'all' and kk.implicit: continue hosts.append(kk) return hosts def get_vars(self): return self.vars.copy() def set_priority(self, priority): try: self.priority = int(priority) except TypeError: # FIXME: warn about invalid priority pass
2ndQuadrant/ansible
lib/ansible/inventory/group.py
Python
gpl-3.0
9,635
''' ResourceManagementHandler Module that allows users to access the ResourceManagementDB remotely. ''' from DIRAC import gConfig, S_OK, gLogger from DIRAC.Core.DISET.RequestHandler import RequestHandler from DIRAC.ResourceStatusSystem.Utilities import Synchronizer from DIRAC.ResourceStatusSystem.Service.ResourceStatusHandler import convert from DIRAC.ResourceStatusSystem.DB.ResourceManagementDB import ResourceManagementDB __RCSID__ = '$Id: $' def initializeResourceManagementHandler(_serviceInfo): ''' Handler initialization, where we set the ResourceManagementDB as global db. ''' global db db = ResourceManagementDB() syncObject = Synchronizer.Synchronizer() gConfig.addListenerToNewVersionEvent(syncObject.sync) return S_OK() ################################################################################ class ResourceManagementHandler(RequestHandler): ''' The ResourceManagementHandler exposes the DB front-end functions through a XML-RPC server, functionalities inherited from :class:`DIRAC.Core.DISET.Reques\ tHandler.RequestHandler` According to the ResourceManagementDB philosophy, only functions of the type: - insert - select - delete - addOrModify are exposed. If you need anything more complicated, either look for it on the :class:`ResourceManagementClient`, or code it yourself. This way the DB and the Service are kept clean and tidied. To can use this service on this way, but you MUST NOT DO IT. Use it through the :class:`ResourceManagementClient`. If offers in the worst case as good perfor\ mance as the :class:`ResourceManagementHandler`, if not better. >>> from DIRAC.Core.DISET.RPCClient import RPCCLient >>> server = RPCCLient("ResourceStatus/ResourceManagement") ''' def __init__(self, *args, **kwargs): super(ResourceManagementHandler, self).__init__(*args, **kwargs) @staticmethod def __logResult(methodName, result): ''' Method that writes to log error messages ''' if not result['OK']: gLogger.error('%s : %s' % (methodName, result['Message'])) @staticmethod def setDatabase(database): ''' This method let us inherit from this class and overwrite the database object without having problems with the global variables. :Parameters: **database** - `MySQL` database used by this handler :return: None ''' global db db = database types_insert = [basestring, dict] def export_insert(self, table, params): ''' This method is a bridge to access :class:`ResourceManagementDB` remotely. It does not add neither processing nor validation. If you need to know more about this method, you must keep reading on the database documentation. :Parameters: **table** - `string` or `dict` should contain the table from which querying if it's a `dict` the query comes from a client prior to v6r18 **params** - `dict` arguments for the mysql query. Currently it is being used only for column selection. For example: meta = { 'columns' : [ 'Name' ] } will return only the 'Name' column. :return: S_OK() || S_ERROR() ''' if isinstance(table, dict): # for backward compatibility: conversion is needed params, table = convert(table, params) gLogger.info('insert: %s %s' % (table, params)) # remove unnecessary key generated by locals() del params['self'] res = db.insert(table, params) self.__logResult('insert', res) return res types_select = [[basestring, dict], dict] def export_select(self, table, params): ''' This method is a bridge to access :class:`ResourceManagementDB` remotely. It does not add neither processing nor validation. If you need to know more\ about this method, you must keep reading on the database documentation. :Parameters: **table** - `string` or `dict` should contain the table from which querying if it's a `dict` the query comes from a client prior to v6r18 **params** - `dict` arguments for the mysql query. Currently it is being used only for column selection. For example: meta = { 'columns' : [ 'Name' ] } will return only the 'Name' column. :return: S_OK() || S_ERROR() ''' if isinstance(table, dict): # for backward compatibility: conversion is needed params, table = convert(table, params) gLogger.info('select: %s %s' % (table, params)) res = db.select(table, params) self.__logResult('select', res) return res types_delete = [[basestring, dict], dict] def export_delete(self, table, params): ''' This method is a bridge to access :class:`ResourceManagementDB` remotely.\ It does not add neither processing nor validation. If you need to know more \ about this method, you must keep reading on the database documentation. :Parameters: **table** - `string` or `dict` should contain the table from which querying if it's a `dict` the query comes from a client prior to v6r18 **params** - `dict` arguments for the mysql query. Currently it is being used only for column selection. For example: meta = { 'columns' : [ 'Name' ] } will return only the 'Name' column. :return: S_OK() || S_ERROR() ''' if isinstance(table, dict): # for backward compatibility: conversion is needed params, table = convert(table, params) gLogger.info('delete: %s %s' % (table, params)) res = db.delete(table, params) self.__logResult('delete', res) return res types_addOrModify = [[basestring, dict], dict] def export_addOrModify(self, table, params): ''' This method is a bridge to access :class:`ResourceManagementDB` remotely. It does not add neither processing nor validation. If you need to know more about this method, you must keep reading on the database documentation. :Parameters: **table** - `string` or `dict` should contain the table from which querying if it's a `dict` the query comes from a client prior to v6r18 **params** - `dict` arguments for the mysql query. Currently it is being used only for column selection. For example: meta = { 'columns' : [ 'Name' ] } will return only the 'Name' column. :return: S_OK() || S_ERROR() ''' if isinstance(table, dict): # for backward compatibility: conversion is needed params, table = convert(table, params) gLogger.info('addOrModify: %s %s' % (table, params)) res = db.addOrModify(table, params) self.__logResult('addOrModify', res) return res ################################################################################ # EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF
andresailer/DIRAC
ResourceStatusSystem/Service/ResourceManagementHandler.py
Python
gpl-3.0
6,815
from django.conf.urls.defaults import * from django.conf import settings from ella import newman # make sure to import ella error handlers from ella.core.urls import handler404, handler500 # register ella's admin newman.autodiscover() urlpatterns = patterns('',) if settings.DEBUG: # only use these urls in DEBUG mode, otherwise they should be handled by your web server from os.path import dirname, join, normpath import django, ella # static files from both admin apps ADMIN_ROOTS = ( normpath(join(dirname(ella.__file__), 'newman', 'media')), normpath(join(dirname(django.__file__), 'contrib', 'admin', 'media')), ) # serve static files urlpatterns += patterns('', # newman specific files first (r'^%s/(?P<path>.*)$' % settings.NEWMAN_MEDIA_PREFIX.strip('/'), 'ella.utils.views.fallback_serve', {'document_roots': ADMIN_ROOTS}), # rest of the static files (r'^%s/(?P<path>.*)$' % settings.MEDIA_URL.strip('/'), 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT, 'show_indexes': True}), ) # actual URL mappings urlpatterns += patterns('', (r'^newman/', include(newman.site.urls)), (r'^', include('ella.core.urls')), )
ella/ellablog
ellablog/urls.py
Python
bsd-3-clause
1,254
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import test_util from tensorflow.python.ops import linalg_ops from tensorflow.python.ops.linalg import linalg as linalg_lib from tensorflow.python.ops.linalg import linear_operator_addition from tensorflow.python.platform import test linalg = linalg_lib rng = np.random.RandomState(0) add_operators = linear_operator_addition.add_operators # pylint: disable=unused-argument class _BadAdder(linear_operator_addition._Adder): """Adder that will fail if used.""" def can_add(self, op1, op2): raise AssertionError("BadAdder.can_add called!") def _add(self, op1, op2, operator_name, hints): raise AssertionError("This line should not be reached") # pylint: enable=unused-argument class LinearOperatorAdditionCorrectnessTest(test.TestCase): """Tests correctness of addition with combinations of a few Adders. Tests here are done with the _DEFAULT_ADDITION_TIERS, which means add_operators should reduce all operators resulting in one single operator. This shows that we are able to correctly combine adders using the tiered system. All Adders should be tested separately, and there is no need to test every Adder within this class. """ def test_one_operator_is_returned_unchanged(self): op_a = linalg.LinearOperatorDiag([1., 1.]) op_sum = add_operators([op_a]) self.assertEqual(1, len(op_sum)) self.assertIs(op_sum[0], op_a) def test_at_least_one_operators_required(self): with self.assertRaisesRegex(ValueError, "must contain at least one"): add_operators([]) def test_attempting_to_add_numbers_raises(self): with self.assertRaisesRegex(TypeError, "contain only LinearOperator"): add_operators([1, 2]) @test_util.run_deprecated_v1 def test_two_diag_operators(self): op_a = linalg.LinearOperatorDiag( [1., 1.], is_positive_definite=True, name="A") op_b = linalg.LinearOperatorDiag( [2., 2.], is_positive_definite=True, name="B") with self.cached_session(): op_sum = add_operators([op_a, op_b]) self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertIsInstance(op, linalg_lib.LinearOperatorDiag) self.assertAllClose([[3., 0.], [0., 3.]], op.to_dense()) # Adding positive definite operators produces positive def. self.assertTrue(op.is_positive_definite) # Real diagonal ==> self-adjoint. self.assertTrue(op.is_self_adjoint) # Positive definite ==> non-singular self.assertTrue(op.is_non_singular) # Enforce particular name for this simple case self.assertEqual("Add/B__A/", op.name) @test_util.run_deprecated_v1 def test_three_diag_operators(self): op1 = linalg.LinearOperatorDiag( [1., 1.], is_positive_definite=True, name="op1") op2 = linalg.LinearOperatorDiag( [2., 2.], is_positive_definite=True, name="op2") op3 = linalg.LinearOperatorDiag( [3., 3.], is_positive_definite=True, name="op3") with self.cached_session(): op_sum = add_operators([op1, op2, op3]) self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertTrue(isinstance(op, linalg_lib.LinearOperatorDiag)) self.assertAllClose([[6., 0.], [0., 6.]], op.to_dense()) # Adding positive definite operators produces positive def. self.assertTrue(op.is_positive_definite) # Real diagonal ==> self-adjoint. self.assertTrue(op.is_self_adjoint) # Positive definite ==> non-singular self.assertTrue(op.is_non_singular) @test_util.run_deprecated_v1 def test_diag_tril_diag(self): op1 = linalg.LinearOperatorDiag( [1., 1.], is_non_singular=True, name="diag_a") op2 = linalg.LinearOperatorLowerTriangular( [[2., 0.], [0., 2.]], is_self_adjoint=True, is_non_singular=True, name="tril") op3 = linalg.LinearOperatorDiag( [3., 3.], is_non_singular=True, name="diag_b") with self.cached_session(): op_sum = add_operators([op1, op2, op3]) self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertIsInstance(op, linalg_lib.LinearOperatorLowerTriangular) self.assertAllClose([[6., 0.], [0., 6.]], op.to_dense()) # The diag operators will be self-adjoint (because real and diagonal). # The TriL operator has the self-adjoint hint set. self.assertTrue(op.is_self_adjoint) # Even though op1/2/3 are non-singular, this does not imply op is. # Since no custom hint was provided, we default to None (unknown). self.assertEqual(None, op.is_non_singular) @test_util.run_deprecated_v1 def test_matrix_diag_tril_diag_uses_custom_name(self): op0 = linalg.LinearOperatorFullMatrix( [[-1., -1.], [-1., -1.]], name="matrix") op1 = linalg.LinearOperatorDiag([1., 1.], name="diag_a") op2 = linalg.LinearOperatorLowerTriangular( [[2., 0.], [1.5, 2.]], name="tril") op3 = linalg.LinearOperatorDiag([3., 3.], name="diag_b") with self.cached_session(): op_sum = add_operators([op0, op1, op2, op3], operator_name="my_operator") self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertIsInstance(op, linalg_lib.LinearOperatorFullMatrix) self.assertAllClose([[5., -1.], [0.5, 5.]], op.to_dense()) self.assertEqual("my_operator", op.name) def test_incompatible_domain_dimensions_raises(self): op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3)) op2 = linalg.LinearOperatorDiag(rng.rand(2, 4)) with self.assertRaisesRegex(ValueError, "must.*same domain dimension"): add_operators([op1, op2]) def test_incompatible_range_dimensions_raises(self): op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3)) op2 = linalg.LinearOperatorDiag(rng.rand(3, 3)) with self.assertRaisesRegex(ValueError, "must.*same range dimension"): add_operators([op1, op2]) def test_non_broadcastable_batch_shape_raises(self): op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3)) op2 = linalg.LinearOperatorDiag(rng.rand(4, 3, 3)) with self.assertRaisesRegex(ValueError, "Incompatible shapes"): add_operators([op1, op2]) class LinearOperatorOrderOfAdditionTest(test.TestCase): """Test that the order of addition is done as specified by tiers.""" def test_tier_0_additions_done_in_tier_0(self): diag1 = linalg.LinearOperatorDiag([1.]) diag2 = linalg.LinearOperatorDiag([1.]) diag3 = linalg.LinearOperatorDiag([1.]) addition_tiers = [ [linear_operator_addition._AddAndReturnDiag()], [_BadAdder()], ] # Should not raise since all were added in tier 0, and tier 1 (with the # _BadAdder) was never reached. op_sum = add_operators([diag1, diag2, diag3], addition_tiers=addition_tiers) self.assertEqual(1, len(op_sum)) self.assertIsInstance(op_sum[0], linalg.LinearOperatorDiag) def test_tier_1_additions_done_by_tier_1(self): diag1 = linalg.LinearOperatorDiag([1.]) diag2 = linalg.LinearOperatorDiag([1.]) tril = linalg.LinearOperatorLowerTriangular([[1.]]) addition_tiers = [ [linear_operator_addition._AddAndReturnDiag()], [linear_operator_addition._AddAndReturnTriL()], [_BadAdder()], ] # Should not raise since all were added by tier 1, and the # _BadAdder) was never reached. op_sum = add_operators([diag1, diag2, tril], addition_tiers=addition_tiers) self.assertEqual(1, len(op_sum)) self.assertIsInstance(op_sum[0], linalg.LinearOperatorLowerTriangular) def test_tier_1_additions_done_by_tier_1_with_order_flipped(self): diag1 = linalg.LinearOperatorDiag([1.]) diag2 = linalg.LinearOperatorDiag([1.]) tril = linalg.LinearOperatorLowerTriangular([[1.]]) addition_tiers = [ [linear_operator_addition._AddAndReturnTriL()], [linear_operator_addition._AddAndReturnDiag()], [_BadAdder()], ] # Tier 0 could convert to TriL, and this converted everything to TriL, # including the Diags. # Tier 1 was never used. # Tier 2 was never used (therefore, _BadAdder didn't raise). op_sum = add_operators([diag1, diag2, tril], addition_tiers=addition_tiers) self.assertEqual(1, len(op_sum)) self.assertIsInstance(op_sum[0], linalg.LinearOperatorLowerTriangular) @test_util.run_deprecated_v1 def test_cannot_add_everything_so_return_more_than_one_operator(self): diag1 = linalg.LinearOperatorDiag([1.]) diag2 = linalg.LinearOperatorDiag([2.]) tril5 = linalg.LinearOperatorLowerTriangular([[5.]]) addition_tiers = [ [linear_operator_addition._AddAndReturnDiag()], ] # Tier 0 (the only tier) can only convert to Diag, so it combines the two # diags, but the TriL is unchanged. # Result should contain two operators, one Diag, one TriL. op_sum = add_operators([diag1, diag2, tril5], addition_tiers=addition_tiers) self.assertEqual(2, len(op_sum)) found_diag = False found_tril = False with self.cached_session(): for op in op_sum: if isinstance(op, linalg.LinearOperatorDiag): found_diag = True self.assertAllClose([[3.]], op.to_dense()) if isinstance(op, linalg.LinearOperatorLowerTriangular): found_tril = True self.assertAllClose([[5.]], op.to_dense()) self.assertTrue(found_diag and found_tril) def test_intermediate_tier_is_not_skipped(self): diag1 = linalg.LinearOperatorDiag([1.]) diag2 = linalg.LinearOperatorDiag([1.]) tril = linalg.LinearOperatorLowerTriangular([[1.]]) addition_tiers = [ [linear_operator_addition._AddAndReturnDiag()], [_BadAdder()], [linear_operator_addition._AddAndReturnTriL()], ] # tril cannot be added in tier 0, and the intermediate tier 1 with the # BadAdder will catch it and raise. with self.assertRaisesRegex(AssertionError, "BadAdder.can_add called"): add_operators([diag1, diag2, tril], addition_tiers=addition_tiers) class AddAndReturnScaledIdentityTest(test.TestCase): def setUp(self): self._adder = linear_operator_addition._AddAndReturnScaledIdentity() @test_util.run_deprecated_v1 def test_identity_plus_identity(self): id1 = linalg.LinearOperatorIdentity(num_rows=2) id2 = linalg.LinearOperatorIdentity(num_rows=2, batch_shape=[3]) hints = linear_operator_addition._Hints( is_positive_definite=True, is_non_singular=True) self.assertTrue(self._adder.can_add(id1, id2)) operator = self._adder.add(id1, id2, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorScaledIdentity) with self.cached_session(): self.assertAllClose(2 * linalg_ops.eye(num_rows=2, batch_shape=[3]), operator.to_dense()) self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertEqual("my_operator", operator.name) @test_util.run_deprecated_v1 def test_identity_plus_scaled_identity(self): id1 = linalg.LinearOperatorIdentity(num_rows=2, batch_shape=[3]) id2 = linalg.LinearOperatorScaledIdentity(num_rows=2, multiplier=2.2) hints = linear_operator_addition._Hints( is_positive_definite=True, is_non_singular=True) self.assertTrue(self._adder.can_add(id1, id2)) operator = self._adder.add(id1, id2, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorScaledIdentity) with self.cached_session(): self.assertAllClose(3.2 * linalg_ops.eye(num_rows=2, batch_shape=[3]), operator.to_dense()) self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertEqual("my_operator", operator.name) @test_util.run_deprecated_v1 def test_scaled_identity_plus_scaled_identity(self): id1 = linalg.LinearOperatorScaledIdentity( num_rows=2, multiplier=[2.2, 2.2, 2.2]) id2 = linalg.LinearOperatorScaledIdentity(num_rows=2, multiplier=-1.0) hints = linear_operator_addition._Hints( is_positive_definite=True, is_non_singular=True) self.assertTrue(self._adder.can_add(id1, id2)) operator = self._adder.add(id1, id2, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorScaledIdentity) with self.cached_session(): self.assertAllClose(1.2 * linalg_ops.eye(num_rows=2, batch_shape=[3]), operator.to_dense()) self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertEqual("my_operator", operator.name) class AddAndReturnDiagTest(test.TestCase): def setUp(self): self._adder = linear_operator_addition._AddAndReturnDiag() @test_util.run_deprecated_v1 def test_identity_plus_identity_returns_diag(self): id1 = linalg.LinearOperatorIdentity(num_rows=2) id2 = linalg.LinearOperatorIdentity(num_rows=2, batch_shape=[3]) hints = linear_operator_addition._Hints( is_positive_definite=True, is_non_singular=True) self.assertTrue(self._adder.can_add(id1, id2)) operator = self._adder.add(id1, id2, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorDiag) with self.cached_session(): self.assertAllClose(2 * linalg_ops.eye(num_rows=2, batch_shape=[3]), operator.to_dense()) self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertEqual("my_operator", operator.name) @test_util.run_deprecated_v1 def test_diag_plus_diag(self): diag1 = rng.rand(2, 3, 4) diag2 = rng.rand(4) op1 = linalg.LinearOperatorDiag(diag1) op2 = linalg.LinearOperatorDiag(diag2) hints = linear_operator_addition._Hints( is_positive_definite=True, is_non_singular=True) self.assertTrue(self._adder.can_add(op1, op2)) operator = self._adder.add(op1, op2, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorDiag) with self.cached_session(): self.assertAllClose( linalg.LinearOperatorDiag(diag1 + diag2).to_dense(), operator.to_dense()) self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertEqual("my_operator", operator.name) class AddAndReturnTriLTest(test.TestCase): def setUp(self): self._adder = linear_operator_addition._AddAndReturnTriL() @test_util.run_deprecated_v1 def test_diag_plus_tril(self): diag = linalg.LinearOperatorDiag([1., 2.]) tril = linalg.LinearOperatorLowerTriangular([[10., 0.], [30., 0.]]) hints = linear_operator_addition._Hints( is_positive_definite=True, is_non_singular=True) self.assertTrue(self._adder.can_add(diag, diag)) self.assertTrue(self._adder.can_add(diag, tril)) operator = self._adder.add(diag, tril, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorLowerTriangular) with self.cached_session(): self.assertAllClose([[11., 0.], [30., 2.]], operator.to_dense()) self.assertTrue(operator.is_positive_definite) self.assertTrue(operator.is_non_singular) self.assertEqual("my_operator", operator.name) class AddAndReturnMatrixTest(test.TestCase): def setUp(self): self._adder = linear_operator_addition._AddAndReturnMatrix() @test_util.run_deprecated_v1 def test_diag_plus_diag(self): diag1 = linalg.LinearOperatorDiag([1., 2.]) diag2 = linalg.LinearOperatorDiag([-1., 3.]) hints = linear_operator_addition._Hints( is_positive_definite=False, is_non_singular=False) self.assertTrue(self._adder.can_add(diag1, diag2)) operator = self._adder.add(diag1, diag2, "my_operator", hints) self.assertIsInstance(operator, linalg.LinearOperatorFullMatrix) with self.cached_session(): self.assertAllClose([[0., 0.], [0., 5.]], operator.to_dense()) self.assertFalse(operator.is_positive_definite) self.assertFalse(operator.is_non_singular) self.assertEqual("my_operator", operator.name) if __name__ == "__main__": test.main()
frreiss/tensorflow-fred
tensorflow/python/kernel_tests/linalg/linear_operator_addition_test.py
Python
apache-2.0
16,884
def main(request, response): cookie = request.cookies.first("COOKIE_NAME", None) response_headers = [("Content-Type", "text/javascript"), ("Access-Control-Allow-Credentials", "true")] origin = request.headers.get("Origin", None) if origin: response_headers.append(("Access-Control-Allow-Origin", origin)) cookie_value = ''; if cookie: cookie_value = cookie.value; return (200, response_headers, "postMessage('"+cookie_value+"');")
saneyuki/servo
tests/wpt/web-platform-tests/workers/modules/resources/credentials.py
Python
mpl-2.0
502
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark import since, SparkContext from pyspark.ml.common import _java2py, _py2java from pyspark.ml.wrapper import _jvm class ChiSquareTest(object): """ .. note:: Experimental Conduct Pearson's independence test for every feature against the label. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed. All label and feature values must be categorical. The null hypothesis is that the occurrence of the outcomes is statistically independent. :param dataset: DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value. :param featuresCol: Name of features column in dataset, of type `Vector` (`VectorUDT`). :param labelCol: Name of label column in dataset, of any numerical type. :return: DataFrame containing the test result for every feature against the label. This DataFrame will contain a single Row with the following fields: - `pValues: Vector` - `degreesOfFreedom: Array[Int]` - `statistics: Vector` Each of these fields has one value per feature. >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.stat import ChiSquareTest >>> dataset = [[0, Vectors.dense([0, 0, 1])], ... [0, Vectors.dense([1, 0, 1])], ... [1, Vectors.dense([2, 1, 1])], ... [1, Vectors.dense([3, 1, 1])]] >>> dataset = spark.createDataFrame(dataset, ["label", "features"]) >>> chiSqResult = ChiSquareTest.test(dataset, 'features', 'label') >>> chiSqResult.select("degreesOfFreedom").collect()[0] Row(degreesOfFreedom=[3, 1, 0]) .. versionadded:: 2.2.0 """ @staticmethod @since("2.2.0") def test(dataset, featuresCol, labelCol): """ Perform a Pearson's independence test using dataset. """ sc = SparkContext._active_spark_context javaTestObj = _jvm().org.apache.spark.ml.stat.ChiSquareTest args = [_py2java(sc, arg) for arg in (dataset, featuresCol, labelCol)] return _java2py(sc, javaTestObj.test(*args)) class Correlation(object): """ .. note:: Experimental Compute the correlation matrix for the input dataset of Vectors using the specified method. Methods currently supported: `pearson` (default), `spearman`. .. note:: For Spearman, a rank correlation, we need to create an RDD[Double] for each column and sort it in order to retrieve the ranks and then join the columns back into an RDD[Vector], which is fairly costly. Cache the input Dataset before calling corr with `method = 'spearman'` to avoid recomputing the common lineage. :param dataset: A dataset or a dataframe. :param column: The name of the column of vectors for which the correlation coefficient needs to be computed. This must be a column of the dataset, and it must contain Vector objects. :param method: String specifying the method to use for computing correlation. Supported: `pearson` (default), `spearman`. :return: A dataframe that contains the correlation matrix of the column of vectors. This dataframe contains a single row and a single column of name '$METHODNAME($COLUMN)'. >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.stat import Correlation >>> dataset = [[Vectors.dense([1, 0, 0, -2])], ... [Vectors.dense([4, 5, 0, 3])], ... [Vectors.dense([6, 7, 0, 8])], ... [Vectors.dense([9, 0, 0, 1])]] >>> dataset = spark.createDataFrame(dataset, ['features']) >>> pearsonCorr = Correlation.corr(dataset, 'features', 'pearson').collect()[0][0] >>> print(str(pearsonCorr).replace('nan', 'NaN')) DenseMatrix([[ 1. , 0.0556..., NaN, 0.4004...], [ 0.0556..., 1. , NaN, 0.9135...], [ NaN, NaN, 1. , NaN], [ 0.4004..., 0.9135..., NaN, 1. ]]) >>> spearmanCorr = Correlation.corr(dataset, 'features', method='spearman').collect()[0][0] >>> print(str(spearmanCorr).replace('nan', 'NaN')) DenseMatrix([[ 1. , 0.1054..., NaN, 0.4 ], [ 0.1054..., 1. , NaN, 0.9486... ], [ NaN, NaN, 1. , NaN], [ 0.4 , 0.9486... , NaN, 1. ]]) .. versionadded:: 2.2.0 """ @staticmethod @since("2.2.0") def corr(dataset, column, method="pearson"): """ Compute the correlation matrix with specified method using dataset. """ sc = SparkContext._active_spark_context javaCorrObj = _jvm().org.apache.spark.ml.stat.Correlation args = [_py2java(sc, arg) for arg in (dataset, column, method)] return _java2py(sc, javaCorrObj.corr(*args)) if __name__ == "__main__": import doctest import pyspark.ml.stat from pyspark.sql import SparkSession globs = pyspark.ml.stat.__dict__.copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder \ .master("local[2]") \ .appName("ml.stat tests") \ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark failure_count, test_count = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() if failure_count: exit(-1)
wangyixiaohuihui/spark2-annotation
python/pyspark/ml/stat.py
Python
apache-2.0
6,611
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Tests for TF Agents ppo_agent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from absl.testing import parameterized from absl.testing.absltest import mock import numpy as np from six.moves import range import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import import tensorflow_probability as tfp from tf_agents.agents.ppo import ppo_agent from tf_agents.drivers import dynamic_episode_driver from tf_agents.environments import random_tf_environment from tf_agents.networks import actor_distribution_network from tf_agents.networks import actor_distribution_rnn_network from tf_agents.networks import network from tf_agents.networks import sequential from tf_agents.networks import utils as network_utils from tf_agents.networks import value_network from tf_agents.networks import value_rnn_network from tf_agents.policies import random_tf_policy from tf_agents.replay_buffers import tf_uniform_replay_buffer from tf_agents.specs import distribution_spec from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts from tf_agents.trajectories import trajectory from tf_agents.utils import common from tf_agents.utils import nest_utils from tf_agents.utils import test_utils FLAGS = flags.FLAGS class DummyActorNet(network.DistributionNetwork): def __init__(self, input_spec, action_spec, preprocessing_layers=None, name=None): output_spec = self._get_normal_distribution_spec(action_spec) super(DummyActorNet, self).__init__( input_spec, (), output_spec=output_spec, name='DummyActorNet') self._action_spec = action_spec self._flat_action_spec = tf.nest.flatten(self._action_spec)[0] self._dummy_layers = (preprocessing_layers or []) + [ tf.keras.layers.Dense( self._flat_action_spec.shape.num_elements() * 2, kernel_initializer=tf.constant_initializer([[2.0, 1.0], [1.0, 1.0] ]), bias_initializer=tf.constant_initializer([5.0, 5.0]), activation=None, ) ] def _get_normal_distribution_spec(self, sample_spec): is_multivariate = sample_spec.shape.ndims > 0 param_properties = tfp.distributions.Normal.parameter_properties() input_param_spec = { # pylint: disable=g-complex-comprehension name: tensor_spec.TensorSpec( shape=properties.shape_fn(sample_spec.shape), dtype=sample_spec.dtype) for name, properties in param_properties.items() } def distribution_builder(*args, **kwargs): if is_multivariate: # For backwards compatibility, and because MVNDiag does not support # `param_static_shapes`, even when using MVNDiag the spec # continues to use the terms 'loc' and 'scale'. Here we have to massage # the construction to use 'scale' for kwarg 'scale_diag'. Since they # have the same shape and dtype expectationts, this is okay. kwargs = kwargs.copy() kwargs['scale_diag'] = kwargs['scale'] del kwargs['scale'] return tfp.distributions.MultivariateNormalDiag(*args, **kwargs) else: return tfp.distributions.Normal(*args, **kwargs) return distribution_spec.DistributionSpec( distribution_builder, input_param_spec, sample_spec=sample_spec) def call(self, inputs, step_type=None, network_state=()): del step_type hidden_state = tf.cast(tf.nest.flatten(inputs), tf.float32)[0] # Calls coming from agent.train() have a time dimension. Direct loss calls # may not have a time dimension. In order to make BatchSquash work, we need # to specify the outer dimension properly. has_time_dim = nest_utils.get_outer_rank(inputs, self.input_tensor_spec) == 2 outer_rank = 2 if has_time_dim else 1 batch_squash = network_utils.BatchSquash(outer_rank) hidden_state = batch_squash.flatten(hidden_state) for layer in self._dummy_layers: hidden_state = layer(hidden_state) actions, stdevs = tf.split(hidden_state, 2, axis=1) actions = batch_squash.unflatten(actions) stdevs = batch_squash.unflatten(stdevs) actions = tf.nest.pack_sequence_as(self._action_spec, [actions]) stdevs = tf.nest.pack_sequence_as(self._action_spec, [stdevs]) return self.output_spec.build_distribution( loc=actions, scale=stdevs), network_state def create_sequential_actor_net(ndims: int): def create_dist(loc_and_scale): return { 'my_action': tfp.bijectors.Tanh()( tfp.distributions.MultivariateNormalDiag( loc=loc_and_scale[..., :ndims], scale_diag=0.01 + tf.math.softplus(loc_and_scale[..., ndims:]), validate_args=True, name='my_action_normal', )) } return sequential.Sequential([ tf.keras.layers.Dense(4), tf.keras.layers.Dense(ndims * 2), tf.keras.layers.Lambda(create_dist) ]) class DummyValueNet(network.Network): def __init__(self, observation_spec, preprocessing_layers=None, name=None, outer_rank=1): super(DummyValueNet, self).__init__(observation_spec, (), 'DummyValueNet') self._outer_rank = outer_rank self._dummy_layers = (preprocessing_layers or []) + [ tf.keras.layers.Dense( 1, kernel_initializer=tf.constant_initializer([2, 1]), bias_initializer=tf.constant_initializer([5])) ] def call(self, inputs, step_type=None, network_state=()): del step_type hidden_state = tf.cast(tf.nest.flatten(inputs), tf.float32)[0] batch_squash = network_utils.BatchSquash(self._outer_rank) hidden_state = batch_squash.flatten(hidden_state) for layer in self._dummy_layers: hidden_state = layer(hidden_state) value_pred = tf.squeeze(batch_squash.unflatten(hidden_state), axis=-1) return value_pred, network_state def _compute_returns_fn(rewards, discounts, next_state_return=0.0): """Python implementation of computing discounted returns.""" returns = np.zeros_like(rewards) for t in range(len(returns) - 1, -1, -1): returns[t] = rewards[t] + discounts[t] * next_state_return next_state_return = returns[t] return returns def _create_joint_actor_value_networks(observation_spec, action_spec): shared_layers = [ tf.keras.layers.Dense( tf.nest.flatten(observation_spec)[0].shape.num_elements(), kernel_initializer=tf.constant_initializer([[3.0, 1.0], [1.0, 1.0]]), bias_initializer=tf.constant_initializer([5.0, 5.0]), activation=None, ) ] actor_net = DummyActorNet(observation_spec, action_spec, shared_layers) value_net = DummyValueNet(observation_spec, shared_layers) return actor_net, value_net def _default(): return tf.distribute.get_strategy() def _one_device(): return tf.distribute.OneDeviceStrategy('/cpu:0') def _mirrored(): return tf.distribute.MirroredStrategy() class PPOAgentTest(parameterized.TestCase, test_utils.TestCase): def setUp(self): super(PPOAgentTest, self).setUp() tf.compat.v1.enable_resource_variables() self._obs_spec = tensor_spec.TensorSpec([2], tf.float32) self._time_step_spec = ts.time_step_spec(self._obs_spec) self._action_spec = tensor_spec.BoundedTensorSpec([1], tf.float32, -1, 1) # Ensure that there are 4 CPU devices available for the mirrored strategy. physical_devices = tf.config.list_physical_devices('CPU') try: tf.config.set_logical_device_configuration(physical_devices[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ]) logical_devices = tf.config.list_logical_devices('CPU') assert len(logical_devices) == 4 except RuntimeError: # Cannot modify logical devices once initialized. pass def testCreateAgent(self): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=DummyValueNet(self._obs_spec), check_numerics=True) agent.initialize() @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testComputeAdvantagesNoGae(self, strategy_fn): with strategy_fn().scope(): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, use_gae=False) agent.initialize() rewards = tf.constant([[1.0] * 9, [1.0] * 9]) discounts = tf.constant([[1.0, 1.0, 1.0, 1.0, 0.0, 0.9, 0.9, 0.9, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.9, 0.9, 0.9, 0.0]]) returns = tf.constant([[5.0, 4.0, 3.0, 2.0, 1.0, 3.439, 2.71, 1.9, 1.0], [3.0, 4.0, 7.0, 2.0, -1.0, 5.439, 2.71, -2.9, 1.0]]) value_preds = tf.constant([ [3.0] * 10, [3.0] * 10, ]) # One extra for final time_step. expected_advantages = returns - value_preds[:, :-1] advantages = agent.compute_advantages(rewards, returns, discounts, value_preds) self.assertAllClose(expected_advantages, advantages) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testComputeAdvantagesWithGae(self, strategy_fn): gae_lambda = 0.95 with strategy_fn().scope(): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet( self._obs_spec, self._action_spec, ), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, use_gae=True, lambda_value=gae_lambda) agent.initialize() rewards = tf.constant([[1.0] * 9, [1.0] * 9]) discounts = tf.constant([[1.0, 1.0, 1.0, 1.0, 0.0, 0.9, 0.9, 0.9, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.9, 0.9, 0.9, 0.0]]) returns = tf.constant([[5.0, 4.0, 3.0, 2.0, 1.0, 3.439, 2.71, 1.9, 1.0], [5.0, 4.0, 3.0, 2.0, 1.0, 3.439, 2.71, 1.9, 1.0]]) value_preds = tf.constant([[3.0] * 10, [3.0] * 10]) # One extra for final time_step. gae_vals = tf.constant([[ 2.0808625, 1.13775, 0.145, -0.9, -2.0, 0.56016475, -0.16355, -1.01, -2.0 ], [ 2.0808625, 1.13775, 0.145, -0.9, -2.0, 0.56016475, -0.16355, -1.01, -2.0 ]]) advantages = agent.compute_advantages(rewards, returns, discounts, value_preds) self.assertAllClose(gae_vals, advantages) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testSequencePreprocess(self, strategy_fn): with strategy_fn().scope(): counter = common.create_variable('test_train_counter') batch_size = 2 n_time_steps = 3 agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet( self._obs_spec, self._action_spec, ), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, num_epochs=1, use_gae=False, use_td_lambda_return=False, compute_value_and_advantage_in_train=False, train_step_counter=counter) agent.initialize() observations = tf.constant( [ [[1, 2], [3, 4], [5, 6]], [[1, 2], [3, 4], [5, 6]], ], dtype=tf.float32) mid_time_step_val = ts.StepType.MID.tolist() time_steps = ts.TimeStep( step_type=tf.constant( [[mid_time_step_val] * n_time_steps] * batch_size, dtype=tf.int32), reward=tf.constant([[1] * n_time_steps] * batch_size, dtype=tf.float32), discount=tf.constant( [[1] * n_time_steps] * batch_size, dtype=tf.float32), observation=observations) actions = tf.constant([[[0], [1], [1]], [[0], [1], [1]]], dtype=tf.float32) old_action_distribution_parameters = { 'loc': tf.constant( [[[0.0]] * n_time_steps] * batch_size, dtype=tf.float32), 'scale': tf.constant( [[[1.0]] * n_time_steps] * batch_size, dtype=tf.float32), } value_preds = tf.constant([[9., 15., 21.], [9., 15., 21.]], dtype=tf.float32) policy_info = { 'dist_params': old_action_distribution_parameters, 'value_prediction': value_preds, } experience = trajectory.Trajectory(time_steps.step_type, observations, actions, policy_info, time_steps.step_type, time_steps.reward, time_steps.discount) returned_experience = agent.preprocess_sequence(experience) self.evaluate(tf.compat.v1.initialize_all_variables()) self.assertAllClose(observations, returned_experience.observation) self.assertAllClose(actions, returned_experience.action) expected_value_preds = tf.constant([[9., 15., 21.], [9., 15., 21.]], dtype=tf.float32) (_, _, next_time_steps) = trajectory.to_transition(experience) expected_returns, expected_advantages = agent.compute_return_and_advantage( next_time_steps, expected_value_preds) self.assertAllClose(old_action_distribution_parameters, returned_experience.policy_info['dist_params']) self.assertEqual((batch_size, n_time_steps), returned_experience.policy_info['return'].shape) self.assertAllClose(expected_returns, returned_experience.policy_info['return'][:, :-1]) self.assertEqual((batch_size, n_time_steps), returned_experience.policy_info['advantage'].shape) self.assertAllClose(expected_advantages, returned_experience.policy_info['advantage'][:, :-1]) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testSequencePreprocessNotBatched(self, strategy_fn): with strategy_fn().scope(): counter = common.create_variable('test_train_counter') n_time_steps = 3 agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet( self._obs_spec, self._action_spec, ), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, num_epochs=1, use_gae=False, use_td_lambda_return=False, compute_value_and_advantage_in_train=False, train_step_counter=counter) agent.initialize() observations = tf.constant([[1, 2], [3, 4], [5, 6]], dtype=tf.float32) mid_time_step_val = ts.StepType.MID.tolist() time_steps = ts.TimeStep( step_type=tf.constant( [mid_time_step_val] * n_time_steps, dtype=tf.int32), reward=tf.constant([1] * n_time_steps, dtype=tf.float32), discount=tf.constant([1] * n_time_steps, dtype=tf.float32), observation=observations) actions = tf.constant([[0], [1], [1]], dtype=tf.float32) old_action_distribution_parameters = { 'loc': tf.constant([[0.0]] * n_time_steps, dtype=tf.float32), 'scale': tf.constant([[1.0]] * n_time_steps, dtype=tf.float32), } value_preds = tf.constant([9., 15., 21.], dtype=tf.float32) policy_info = { 'dist_params': old_action_distribution_parameters, 'value_prediction': value_preds, } experience = trajectory.Trajectory(time_steps.step_type, observations, actions, policy_info, time_steps.step_type, time_steps.reward, time_steps.discount) returned_experience = agent.preprocess_sequence(experience) self.evaluate(tf.compat.v1.initialize_all_variables()) self.assertAllClose(observations, returned_experience.observation) self.assertAllClose(actions, returned_experience.action) self.assertAllClose(old_action_distribution_parameters, returned_experience.policy_info['dist_params']) self.assertEqual(n_time_steps, returned_experience.policy_info['return'].shape) self.assertAllClose([40.4821, 30.79], returned_experience.policy_info['return'][:-1]) self.assertEqual(n_time_steps, returned_experience.policy_info['advantage'].shape) self.assertAllClose([31.482101, 15.790001], returned_experience.policy_info['advantage'][:-1]) @parameterized.named_parameters( ('DefaultOneEpochValueInTrain', _default, 1, True, True), ('DefaultFiveEpochsValueInCollect', _default, 5, False, False), ('DefaultIncompEpisodesReturnNonZeroLoss', _default, 1, False, True), ('OneDeviceOneEpochValueInTrain', _one_device, 1, True, True), ('OneDeviceFiveEpochsValueInCollect', _one_device, 5, False, False), ('OneDeviceIncompEpisodesReturnNonZeroLoss', _one_device, 1, False, True), ('MirroredOneEpochValueInTrain', _mirrored, 1, True, True), ('MirroredFiveEpochsValueInCollect', _mirrored, 5, False, False), ('MirroredIncompEpisodesReturnNonZeroLoss', _mirrored, 1, False, True)) def testTrain(self, strategy_fn, num_epochs, use_td_lambda_return, compute_value_and_advantage_in_train): # Mock the build_train_op to return an op for incrementing this counter. with strategy_fn().scope(): counter = common.create_variable('test_train_counter') agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet( self._obs_spec, self._action_spec, ), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, num_epochs=num_epochs, use_gae=use_td_lambda_return, use_td_lambda_return=use_td_lambda_return, compute_value_and_advantage_in_train=( compute_value_and_advantage_in_train), train_step_counter=counter) agent.initialize() observations = tf.constant( [ [[1, 2], [3, 4], [5, 6]], [[1, 2], [3, 4], [5, 6]], ], dtype=tf.float32) mid_time_step_val = ts.StepType.MID.tolist() time_steps = ts.TimeStep( step_type=tf.constant([[mid_time_step_val] * 3] * 2, dtype=tf.int32), reward=tf.constant([[1] * 3] * 2, dtype=tf.float32), discount=tf.constant([[1] * 3] * 2, dtype=tf.float32), observation=observations) actions = tf.constant([[[0], [1], [1]], [[0], [1], [1]]], dtype=tf.float32) action_distribution_parameters = { 'loc': tf.constant([[[0.0]] * 3] * 2, dtype=tf.float32), 'scale': tf.constant([[[1.0]] * 3] * 2, dtype=tf.float32), } value_preds = tf.constant([[9., 15., 21.], [9., 15., 21.]], dtype=tf.float32) policy_info = { 'dist_params': action_distribution_parameters, } if not compute_value_and_advantage_in_train: policy_info['value_prediction'] = value_preds experience = trajectory.Trajectory(time_steps.step_type, observations, actions, policy_info, time_steps.step_type, time_steps.reward, time_steps.discount) if not compute_value_and_advantage_in_train: experience = agent._preprocess(experience) if tf.executing_eagerly(): loss = lambda: agent.train(experience) else: loss = agent.train(experience) # Assert that counter starts out at zero. self.evaluate(tf.compat.v1.initialize_all_variables()) self.assertEqual(0, self.evaluate(counter)) loss_type = self.evaluate(loss) loss_numpy = loss_type.loss # Assert that loss is not zero as we are training in a non-episodic env. self.assertNotEqual( loss_numpy, 0.0, msg=('Loss is exactly zero, looks like no training ' 'was performed due to incomplete episodes.')) # Assert that train_op ran increment_counter num_epochs times. self.assertEqual(num_epochs, self.evaluate(counter)) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testGetEpochLoss(self, strategy_fn): with strategy_fn().scope(): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, normalize_rewards=False, value_pred_loss_coef=1.0, policy_l2_reg=1e-4, value_function_l2_reg=1e-4, entropy_regularization=0.1, importance_ratio_clipping=10, ) agent.initialize() observations = tf.constant([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) actions = tf.constant([[0], [1], [0], [1]], dtype=tf.float32) returns = tf.constant([1.9, 1.0, 1.9, 1.0], dtype=tf.float32) sample_action_log_probs = tf.constant([0.9, 0.3, 0.9, 0.3], dtype=tf.float32) advantages = tf.constant([1.9, 1.0, 1.9, 1.0], dtype=tf.float32) weights = tf.constant([1.0, 1.0, 0.0, 0.0], dtype=tf.float32) sample_action_distribution_parameters = { 'loc': tf.constant([[9.0], [15.0], [9.0], [15.0]], dtype=tf.float32), 'scale': tf.constant([[8.0], [12.0], [8.0], [12.0]], dtype=tf.float32), } train_step = tf.compat.v1.train.get_or_create_global_step() loss_info = agent.get_loss( time_steps, actions, sample_action_log_probs, returns, advantages, sample_action_distribution_parameters, weights, train_step, debug_summaries=False) self.evaluate(tf.compat.v1.global_variables_initializer()) total_loss, extra_loss_info = self.evaluate(loss_info) (policy_gradient_loss, value_estimation_loss, l2_regularization_loss, entropy_reg_loss, kl_penalty_loss) = extra_loss_info # Check loss values are as expected. Factor of 2/4 is because four timesteps # were included in the data, but two were masked out. Reduce_means in losses # will divide by 4, but computed loss values are for first 2 timesteps. expected_pg_loss = -0.0164646133 * 2 / 4 expected_ve_loss = 123.205 * 2 / 4 expected_l2_loss = 1e-4 * 12 * 2 / 4 expected_ent_loss = -0.370111 * 2 / 4 expected_kl_penalty_loss = 0.0 self.assertAllClose( expected_pg_loss + expected_ve_loss + expected_l2_loss + expected_ent_loss + expected_kl_penalty_loss, total_loss, atol=0.001, rtol=0.001) self.assertAllClose(expected_pg_loss, policy_gradient_loss) self.assertAllClose(expected_ve_loss, value_estimation_loss) self.assertAllClose( expected_l2_loss, l2_regularization_loss, atol=0.001, rtol=0.001) self.assertAllClose(expected_ent_loss, entropy_reg_loss) self.assertAllClose(expected_kl_penalty_loss, kl_penalty_loss) @parameterized.named_parameters( ('DefaultIsZero', _default, 0), ('DefaultNotZero', _default, 1), ('OneDeviceIsZero', _one_device, 0), ('OneDeviceNotZero', _one_device, 1), ('MirroredIsZero', _mirrored, 0), ('MirroredNotZero', _mirrored, 1)) def testL2RegularizationLoss(self, strategy_fn, not_zero): l2_reg = 1e-4 * not_zero with strategy_fn().scope(): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, policy_l2_reg=l2_reg, value_function_l2_reg=l2_reg, ) agent.initialize() # Call other loss functions to make sure trainable variables are # constructed. observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) actions = tf.constant([[0], [1]], dtype=tf.float32) returns = tf.constant([1.9, 1.0], dtype=tf.float32) sample_action_log_probs = tf.constant([[0.9], [0.3]], dtype=tf.float32) advantages = tf.constant([1.9, 1.0], dtype=tf.float32) current_policy_distribution, unused_network_state = DummyActorNet( self._obs_spec, self._action_spec)(time_steps.observation, time_steps.step_type, ()) weights = tf.ones_like(advantages) agent.policy_gradient_loss(time_steps, actions, sample_action_log_probs, advantages, current_policy_distribution, weights) agent.value_estimation_loss(time_steps, returns, weights) # Now request L2 regularization loss. # Value function weights are [2, 1], actor net weights are [2, 1, 1, 1]. expected_loss = l2_reg * ((2**2 + 1) + (2**2 + 1 + 1 + 1)) # Make sure the network is built before we try to get variables. agent.policy.action( tensor_spec.sample_spec_nest(self._time_step_spec, outer_dims=(2,))) loss = agent.l2_regularization_loss() self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(loss) self.assertAllClose(loss_, expected_loss) @parameterized.named_parameters( ('DefaultIsZero', _default, 0), ('DefaultNotZero', _default, 1), ('OneDeviceIsZero', _one_device, 0), ('OneDeviceNotZero', _one_device, 1), ('MirroredIsZero', _mirrored, 0), ('MirroredNotZero', _mirrored, 1)) def testL2RegularizationLossWithSharedVariables(self, strategy_fn, not_zero): policy_l2_reg = 4e-4 * not_zero value_function_l2_reg = 2e-4 * not_zero shared_vars_l2_reg = 1e-4 * not_zero with strategy_fn().scope(): actor_net, value_net = _create_joint_actor_value_networks( self._obs_spec, self._action_spec) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, normalize_observations=False, policy_l2_reg=policy_l2_reg, value_function_l2_reg=value_function_l2_reg, shared_vars_l2_reg=shared_vars_l2_reg, ) agent.initialize() # Call other loss functions to make sure trainable variables are # constructed. observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) actions = tf.constant([[0], [1]], dtype=tf.float32) returns = tf.constant([1.9, 1.0], dtype=tf.float32) sample_action_log_probs = tf.constant([[0.9], [0.3]], dtype=tf.float32) advantages = tf.constant([1.9, 1.0], dtype=tf.float32) current_policy_distribution, unused_network_state = DummyActorNet( self._obs_spec, self._action_spec)(time_steps.observation, time_steps.step_type, ()) weights = tf.ones_like(advantages) agent.policy_gradient_loss(time_steps, actions, sample_action_log_probs, advantages, current_policy_distribution, weights) agent.value_estimation_loss(time_steps, returns, weights) # Now request L2 regularization loss. # Value function weights are [2, 1], actor net weights are [2, 1, 1, 1], # shared weights are [3, 1, 1, 1]. expected_loss = value_function_l2_reg * (2**2 + 1) + policy_l2_reg * ( 2**2 + 1 + 1 + 1) + shared_vars_l2_reg * (3**2 + 1 + 1 + 1) # Make sure the network is built before we try to get variables. agent.policy.action( tensor_spec.sample_spec_nest(self._time_step_spec, outer_dims=(2,))) loss = agent.l2_regularization_loss() self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(loss) self.assertAllClose(loss_, expected_loss) @parameterized.named_parameters( ('DefaultIsZero', _default, 0), ('DefaultNotZero', _default, 1), ('OneDeviceIsZero', _one_device, 0), ('OneDeviceNotZero', _one_device, 1), ('MirroredIsZero', _mirrored, 0), ('MirroredNotZero', _mirrored, 1)) def testEntropyRegularizationLoss(self, strategy_fn, not_zero): ent_reg = 0.1 * not_zero with strategy_fn().scope(): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, entropy_regularization=ent_reg, ) agent.initialize() # Call other loss functions to make sure trainable variables are # constructed. observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) actions = tf.constant([[0], [1]], dtype=tf.float32) returns = tf.constant([1.9, 1.0], dtype=tf.float32) sample_action_log_probs = tf.constant([[0.9], [0.3]], dtype=tf.float32) advantages = tf.constant([1.9, 1.0], dtype=tf.float32) weights = tf.ones_like(advantages) current_policy_distribution, unused_network_state = DummyActorNet( self._obs_spec, self._action_spec)(time_steps.observation, time_steps.step_type, ()) agent.policy_gradient_loss(time_steps, actions, sample_action_log_probs, advantages, current_policy_distribution, weights) agent.value_estimation_loss(time_steps, returns, weights) # Now request entropy regularization loss. # Action stdevs should be ~1.0, and mean entropy ~3.70111. expected_loss = -3.70111 * ent_reg loss = agent.entropy_regularization_loss(time_steps, current_policy_distribution, weights) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(loss) self.assertAllClose(loss_, expected_loss) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testValueEstimationLoss(self, strategy_fn): with strategy_fn().scope(): agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=DummyValueNet(self._obs_spec), value_pred_loss_coef=1.0, normalize_observations=False, ) agent.initialize() observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) returns = tf.constant([1.9, 1.0], dtype=tf.float32) weights = tf.ones_like(returns) expected_loss = 123.205 loss = agent.value_estimation_loss(time_steps, returns, weights) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(loss) self.assertAllClose(loss_, expected_loss) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testPolicyGradientLoss(self, strategy_fn): with strategy_fn().scope(): actor_net = DummyActorNet(self._obs_spec, self._action_spec) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), normalize_observations=False, normalize_rewards=False, actor_net=actor_net, value_net=DummyValueNet(self._obs_spec), importance_ratio_clipping=10.0, ) agent.initialize() observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) actions = tf.constant([[0], [1]], dtype=tf.float32) sample_action_log_probs = tf.constant([0.9, 0.3], dtype=tf.float32) advantages = tf.constant([1.9, 1.0], dtype=tf.float32) weights = tf.ones_like(advantages) current_policy_distribution, unused_network_state = actor_net( time_steps.observation, time_steps.step_type, ()) expected_loss = -0.0164646133 loss = agent.policy_gradient_loss(time_steps, actions, sample_action_log_probs, advantages, current_policy_distribution, weights) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(loss) self.assertAllClose(loss_, expected_loss) def testKlPenaltyLoss(self): actor_net = actor_distribution_network.ActorDistributionNetwork( self._time_step_spec.observation, self._action_spec, fc_layer_params=None) value_net = value_network.ValueNetwork( self._time_step_spec.observation, fc_layer_params=None) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, kl_cutoff_factor=5.0, adaptive_kl_target=0.1, kl_cutoff_coef=100, ) agent.kl_cutoff_loss = mock.MagicMock( return_value=tf.constant(3.0, dtype=tf.float32)) agent.adaptive_kl_loss = mock.MagicMock( return_value=tf.constant(4.0, dtype=tf.float32)) observations = tf.constant([[1, 2], [3, 4]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=2) action_distribution_parameters = { 'loc': tf.constant([[1.0], [1.0]], dtype=tf.float32), 'scale': tf.constant([[1.0], [1.0]], dtype=tf.float32), } current_policy_distribution, unused_network_state = DummyActorNet( self._obs_spec, self._action_spec)(time_steps.observation, time_steps.step_type, ()) weights = tf.ones_like(time_steps.discount) expected_kl_penalty_loss = 7.0 kl_penalty_loss = agent.kl_penalty_loss(time_steps, action_distribution_parameters, current_policy_distribution, weights) self.evaluate(tf.compat.v1.global_variables_initializer()) kl_penalty_loss_ = self.evaluate(kl_penalty_loss) self.assertEqual(expected_kl_penalty_loss, kl_penalty_loss_) @parameterized.named_parameters( ('DefaultIsZero', _default, 0), ('DefaultNotZero', _default, 1), ('OneDeviceIsZero', _one_device, 0), ('OneDeviceNotZero', _one_device, 1), ('MirroredIsZero', _mirrored, 0), ('MirroredNotZero', _mirrored, 1)) def testKlCutoffLoss(self, strategy_fn, not_zero): kl_cutoff_coef = 30.0 * not_zero with strategy_fn().scope(): actor_net = actor_distribution_network.ActorDistributionNetwork( self._time_step_spec.observation, self._action_spec, fc_layer_params=None) value_net = value_network.ValueNetwork( self._time_step_spec.observation, fc_layer_params=None) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, kl_cutoff_factor=5.0, adaptive_kl_target=0.1, kl_cutoff_coef=kl_cutoff_coef, ) agent.initialize() kl_divergence = tf.constant([[1.5, -0.5, 6.5, -1.5, -2.3]], dtype=tf.float32) expected_kl_cutoff_loss = kl_cutoff_coef * (.24**2) # (0.74 - 0.5) ^ 2 loss = agent.kl_cutoff_loss(kl_divergence) self.evaluate(tf.compat.v1.global_variables_initializer()) loss_ = self.evaluate(loss) self.assertAllClose([loss_], [expected_kl_cutoff_loss]) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testAdaptiveKlLoss(self, strategy_fn): with strategy_fn().scope(): actor_net = actor_distribution_network.ActorDistributionNetwork( self._time_step_spec.observation, self._action_spec, fc_layer_params=None) value_net = value_network.ValueNetwork( self._time_step_spec.observation, fc_layer_params=None) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, initial_adaptive_kl_beta=1.0, adaptive_kl_target=10.0, adaptive_kl_tolerance=0.5, ) agent.initialize() # Initialize variables self.evaluate(tf.compat.v1.global_variables_initializer()) # Loss should not change if data kl is target kl. loss_1 = agent.adaptive_kl_loss([10.0]) loss_2 = agent.adaptive_kl_loss([10.0]) self.assertEqual(self.evaluate(loss_1), self.evaluate(loss_2)) # If data kl is low, kl penalty should decrease between calls. loss_1 = self.evaluate(agent.adaptive_kl_loss([1.0])) adaptive_kl_beta_update_fn = common.function(agent.update_adaptive_kl_beta) self.evaluate(adaptive_kl_beta_update_fn([1.0])) loss_2 = self.evaluate(agent.adaptive_kl_loss([1.0])) self.assertGreater(loss_1, loss_2) # # # If data kl is low, kl penalty should increase between calls. loss_1 = self.evaluate(agent.adaptive_kl_loss([100.0])) self.evaluate(adaptive_kl_beta_update_fn([100.0])) loss_2 = self.evaluate(agent.adaptive_kl_loss([100.0])) self.assertLess(loss_1, loss_2) @parameterized.named_parameters(('Default', _default), ('OneDevice', _one_device), ('Mirrored', _mirrored)) def testUpdateAdaptiveKlBeta(self, strategy_fn): with strategy_fn().scope(): actor_net = actor_distribution_network.ActorDistributionNetwork( self._time_step_spec.observation, self._action_spec, fc_layer_params=None) value_net = value_network.ValueNetwork( self._time_step_spec.observation, fc_layer_params=None) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, initial_adaptive_kl_beta=1.0, adaptive_kl_target=10.0, adaptive_kl_tolerance=0.5, ) agent.initialize() self.evaluate(tf.compat.v1.global_variables_initializer()) # When KL is target kl, beta should not change. update_adaptive_kl_beta_fn = common.function(agent.update_adaptive_kl_beta) beta_0 = update_adaptive_kl_beta_fn([10.0]) expected_beta_0 = 1.0 self.assertEqual(expected_beta_0, self.evaluate(beta_0)) # When KL is large, beta should increase. beta_1 = update_adaptive_kl_beta_fn([100.0]) expected_beta_1 = 1.5 self.assertEqual(expected_beta_1, self.evaluate(beta_1)) # When KL is small, beta should decrease. beta_2 = update_adaptive_kl_beta_fn([1.0]) expected_beta_2 = 1.0 self.assertEqual(expected_beta_2, self.evaluate(beta_2)) def testPolicy(self): value_net = value_network.ValueNetwork( self._time_step_spec.observation, fc_layer_params=None) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=DummyActorNet(self._obs_spec, self._action_spec), value_net=value_net) observations = tf.constant([[1, 2]], dtype=tf.float32) time_steps = ts.restart(observations, batch_size=1) action_step = agent.policy.action(time_steps) actions = action_step.action self.assertEqual(actions.shape.as_list(), [1, 1]) self.evaluate(tf.compat.v1.global_variables_initializer()) _ = self.evaluate(actions) def testRNNTrain(self): actor_net = actor_distribution_rnn_network.ActorDistributionRnnNetwork( self._time_step_spec.observation, self._action_spec, input_fc_layer_params=None, output_fc_layer_params=None, lstm_size=(20,)) value_net = value_rnn_network.ValueRnnNetwork( self._time_step_spec.observation, input_fc_layer_params=None, output_fc_layer_params=None, lstm_size=(10,)) global_step = tf.compat.v1.train.get_or_create_global_step() agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, optimizer=tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, num_epochs=1, train_step_counter=global_step, ) # Use a random env, policy, and replay buffer to collect training data. random_env = random_tf_environment.RandomTFEnvironment( self._time_step_spec, self._action_spec, batch_size=1) collection_policy = random_tf_policy.RandomTFPolicy( self._time_step_spec, self._action_spec, info_spec=agent.collect_policy.info_spec) replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer( collection_policy.trajectory_spec, batch_size=1, max_length=7) collect_driver = dynamic_episode_driver.DynamicEpisodeDriver( random_env, collection_policy, observers=[replay_buffer.add_batch], num_episodes=1) # In graph mode: finish building the graph so the optimizer # variables are created. if not tf.executing_eagerly(): _, _ = agent.train(experience=replay_buffer.gather_all()) # Initialize. self.evaluate(agent.initialize()) self.evaluate(tf.compat.v1.global_variables_initializer()) # Train one step. self.assertEqual(0, self.evaluate(global_step)) self.evaluate(collect_driver.run()) self.evaluate(agent.train(experience=replay_buffer.gather_all())) self.assertEqual(1, self.evaluate(global_step)) @parameterized.named_parameters([ ('ValueCalculationInTrain', True), ('ValueCalculationInCollect', False), ]) def testStatelessValueNetTrain(self, compute_value_and_advantage_in_train): counter = common.create_variable('test_train_counter') actor_net = actor_distribution_rnn_network.ActorDistributionRnnNetwork( self._time_step_spec.observation, self._action_spec, input_fc_layer_params=None, output_fc_layer_params=None, lstm_size=(20,)) value_net = value_network.ValueNetwork( self._time_step_spec.observation, fc_layer_params=None) agent = ppo_agent.PPOAgent( self._time_step_spec, self._action_spec, optimizer=tf.compat.v1.train.AdamOptimizer(), actor_net=actor_net, value_net=value_net, num_epochs=1, train_step_counter=counter, compute_value_and_advantage_in_train=compute_value_and_advantage_in_train ) observations = tf.constant( [ [[1, 2], [3, 4], [5, 6]], [[1, 2], [3, 4], [5, 6]], ], dtype=tf.float32) mid_time_step_val = ts.StepType.MID.tolist() time_steps = ts.TimeStep( step_type=tf.constant([[mid_time_step_val] * 3] * 2, dtype=tf.int32), reward=tf.constant([[1] * 3] * 2, dtype=tf.float32), discount=tf.constant([[1] * 3] * 2, dtype=tf.float32), observation=observations) actions = tf.constant([[[0], [1], [1]], [[0], [1], [1]]], dtype=tf.float32) action_distribution_parameters = { 'loc': tf.constant([[[0.0]] * 3] * 2, dtype=tf.float32), 'scale': tf.constant([[[1.0]] * 3] * 2, dtype=tf.float32), } value_preds = tf.constant([[9., 15., 21.], [9., 15., 21.]], dtype=tf.float32) policy_info = { 'dist_params': action_distribution_parameters, } if not compute_value_and_advantage_in_train: policy_info['value_prediction'] = value_preds experience = trajectory.Trajectory(time_steps.step_type, observations, actions, policy_info, time_steps.step_type, time_steps.reward, time_steps.discount) if not compute_value_and_advantage_in_train: experience = agent._preprocess(experience) if tf.executing_eagerly(): loss = lambda: agent.train(experience) else: loss = agent.train(experience) self.evaluate(tf.compat.v1.initialize_all_variables()) loss_type = self.evaluate(loss) loss_numpy = loss_type.loss # Assert that loss is not zero as we are training in a non-episodic env. self.assertNotEqual( loss_numpy, 0.0, msg=('Loss is exactly zero, looks like no training ' 'was performed due to incomplete episodes.')) def testAgentDoesNotFailWhenNestedObservationActionAndDebugSummaries(self): summary_writer = tf.compat.v2.summary.create_file_writer( FLAGS.test_tmpdir, flush_millis=10000) summary_writer.set_as_default() nested_obs_spec = (self._obs_spec, self._obs_spec, { 'a': self._obs_spec, 'b': self._obs_spec, }) nested_time_spec = ts.time_step_spec(nested_obs_spec) nested_act_spec = (self._action_spec, { 'c': self._action_spec, 'd': self._action_spec }) class NestedActorNet(network.DistributionNetwork): def __init__(self, dummy_model): output_spec = (dummy_model.output_spec, { 'c': dummy_model.output_spec, 'd': dummy_model.output_spec, }) super(NestedActorNet, self).__init__( dummy_model.input_tensor_spec, (), output_spec=output_spec, name='NestedActorNet') self.dummy_model = dummy_model def call(self, inputs, network_state, *args, **kwargs): dummy_ans, _ = self.dummy_model( inputs, network_state=network_state, *args, **kwargs) return (dummy_ans, {'c': dummy_ans, 'd': dummy_ans}), () dummy_model = DummyActorNet(nested_obs_spec, self._action_spec) agent = ppo_agent.PPOAgent( nested_time_spec, nested_act_spec, tf.compat.v1.train.AdamOptimizer(), actor_net=NestedActorNet(dummy_model), value_net=DummyValueNet(nested_obs_spec), compute_value_and_advantage_in_train=False, debug_summaries=True) observations = tf.constant( [ [[1, 2], [3, 4], [5, 6]], [[1, 2], [3, 4], [5, 6]], ], dtype=tf.float32) observations = (observations, observations, { 'a': observations, 'b': observations, }) time_steps = ts.TimeStep( step_type=tf.constant([[1] * 3] * 2, dtype=tf.int32), reward=tf.constant([[1] * 3] * 2, dtype=tf.float32), discount=tf.constant([[1] * 3] * 2, dtype=tf.float32), observation=observations) actions = tf.constant([[[0], [1], [1]], [[0], [1], [1]]], dtype=tf.float32) actions = (actions, { 'c': actions, 'd': actions, }) action_distribution_parameters = { 'loc': tf.constant([[[0.0]] * 3] * 2, dtype=tf.float32), 'scale': tf.constant([[[1.0]] * 3] * 2, dtype=tf.float32), } action_distribution_parameters = (action_distribution_parameters, { 'c': action_distribution_parameters, 'd': action_distribution_parameters, }) value_preds = tf.constant([[9., 15., 21.], [9., 15., 21.]], dtype=tf.float32) policy_info = { 'dist_params': action_distribution_parameters, 'value_prediction': value_preds, } experience = trajectory.Trajectory(time_steps.step_type, observations, actions, policy_info, time_steps.step_type, time_steps.reward, time_steps.discount) experience = agent._preprocess(experience) agent.train(experience) @parameterized.named_parameters(('FeedTrajectory', False), ('FeedTransition', True)) def testTrainWithNonLegacyActorNetwork(self, feed_transition): if not tf.executing_eagerly(): self.skipTest('Skipping test: sequential networks not supported in TF1') num_epochs = 5 counter = common.create_variable('test_train_counter') action_spec = { 'my_action': tensor_spec.BoundedTensorSpec([1], tf.float32, -1, 1) } agent = ppo_agent.PPOAgent( self._time_step_spec, action_spec, tf.compat.v1.train.AdamOptimizer(), # action_spec == TensorSpec([1], tf.float32) actor_net=create_sequential_actor_net(ndims=1), value_net=DummyValueNet(self._obs_spec), normalize_observations=False, num_epochs=num_epochs, initial_adaptive_kl_beta=1.0, adaptive_kl_target=10.0, adaptive_kl_tolerance=0.5, check_numerics=True, compute_value_and_advantage_in_train=False, train_step_counter=counter) agent.initialize() experience = _create_experience_trajectory_my_action() experience = agent._preprocess(experience) if feed_transition: experience = trajectory.to_transition(experience) loss = lambda: agent.train(experience) # Assert that counter starts out at zero. self.evaluate(tf.compat.v1.initialize_all_variables()) self.assertEqual(0, self.evaluate(counter)) loss_type = self.evaluate(loss) loss_numpy = loss_type.loss # Assert that loss is not zero as we are training in a non-episodic env. self.assertNotEqual( loss_numpy, 0.0, msg=('Loss is exactly zero, looks like no training ' 'was performed due to incomplete episodes.')) # Assert that train_op ran increment_counter num_epochs times. self.assertEqual(num_epochs, self.evaluate(counter)) def _create_experience_trajectory_my_action() -> trajectory.Trajectory: observations = tf.constant( [ [[1, 2], [3, 4], [5, 6]], [[1, 2], [3, 4], [5, 6]], ], dtype=tf.float32) mid_time_step_val = ts.StepType.MID.tolist() time_steps = ts.TimeStep( step_type=tf.constant([[mid_time_step_val] * 3] * 2, dtype=tf.int32), reward=tf.constant([[1] * 3] * 2, dtype=tf.float32), discount=tf.constant([[1] * 3] * 2, dtype=tf.float32), observation=observations) actions = { 'my_action': tf.constant([[[0.1], [0.9], [0.1]], [[0.9], [0.1], [0.9]]], dtype=tf.float32) } action_distribution_parameters = { 'my_action': { 'bijector': {}, 'distribution': { 'loc': tf.constant([[[0.0]] * 3] * 2, dtype=tf.float32), 'scale_diag': tf.constant([[[1.0]] * 3] * 2, dtype=tf.float32) } } } value_preds = tf.constant([[0.9, 1.5, 2.1], [0.9, 1.5, 2.1]], dtype=tf.float32) policy_info = { 'dist_params': action_distribution_parameters, } policy_info['value_prediction'] = value_preds experience = trajectory.Trajectory(time_steps.step_type, observations, actions, policy_info, time_steps.step_type, time_steps.reward, time_steps.discount) return experience if __name__ == '__main__': tf.test.main()
tensorflow/agents
tf_agents/agents/ppo/ppo_agent_test.py
Python
apache-2.0
53,941
#!/usr/bin/env python """ jsonxs uses a path expression string to get and set values in JSON and Python datastructures. For example: >>> d = { ... 'feed': { ... 'id': 'my_feed', ... 'url': 'http://example.com/feed.rss', ... 'tags': ['devel', 'example', 'python'], ... 'short.desc': 'A feed', ... 'list': [ ... { ... 'uuid': 'e9b48a2' ... } ... ] ... } ... } # Get the value for a path expression >>> jsonxs(d, 'feed.tags[-1]') 'python' # Access paths with special chars in them >>> jsonxs(d, 'feed.short\.desc') 'A feed' # Return default value if path not found >>> jsonxs(d, 'feed.long\.desc', default='N/A') 'N/A' # Set the value for a path expression >>> jsonxs(d, 'feed.id', ACTION_SET, 'your_feed') >>> d['feed']['id'] 'your_feed' # Replace a value in a list >>> jsonxs(d, 'feed.tags[-1]', ACTION_SET, 'javascript') >>> d['feed']['tags'] ['devel', 'example', 'javascript'] # Create a new key in a dict >>> jsonxs(d, 'feed.author', ACTION_SET, 'Ferry Boender') >>> d['feed']['author'] 'Ferry Boender' # Delete a value from a list >>> jsonxs(d, 'feed.tags[0]', ACTION_DEL) >>> d['feed']['tags'] ['example', 'javascript'] # Delete a key/value pair from a dictionary >>> jsonxs(d, 'feed.url', ACTION_DEL) >>> 'url' in d['feed'] False # Append a value to a list >>> jsonxs(d, 'feed.tags', ACTION_APPEND, 'programming') >>> d['feed']['tags'] ['example', 'javascript', 'programming'] # Insert a value to a list >>> jsonxs(d, 'feed.tags[1]', ACTION_INSERT, 'tech') >>> d['feed']['tags'] ['example', 'tech', 'javascript', 'programming'] # Create a dict value >>> jsonxs(d, 'feed.details', ACTION_MKDICT) >>> d['feed']['details'] == {} True # Add a key / value to newly created dict >>> jsonxs(d, 'feed.list[0].uuid', ACTION_SET, 'aeaeae') # Create a list value >>> jsonxs(d, 'feed.details.users', ACTION_MKLIST) >>> d['feed']['details']['users'] == [] True # Fill the newly created list >>> jsonxs(d, 'feed.details.users', ACTION_APPEND, 'fboender') >>> jsonxs(d, 'feed.details.users', ACTION_APPEND, 'ppeterson') >>> d['feed']['details']['users'] ['fboender', 'ppeterson'] """ ACTION_GET = 'get' ACTION_SET = 'set' ACTION_DEL = 'del' ACTION_APPEND = 'append' ACTION_INSERT = 'insert' ACTION_MKDICT = 'mkdict' ACTION_MKLIST = 'mklist' def tokenize(expr): """ Parse a string expression into a set of tokens that can be used as a path into a Python datastructure. """ tokens = [] escape = False cur_token = '' for c in expr: if escape == True: cur_token += c escape = False else: if c == '\\': # Next char will be escaped escape = True continue elif c == '[': # Next token is of type index (list) if len(cur_token) > 0: tokens.append(cur_token) cur_token = '' elif c == ']': # End of index token. Next token defaults to a key (dict) if len(cur_token) > 0: tokens.append(int(cur_token)) cur_token = '' elif c == '.': # End of key token. Next token defaults to a key (dict) if len(cur_token) > 0: tokens.append(cur_token) cur_token = '' else: # Append char to token name cur_token += c if len(cur_token) > 0: tokens.append(cur_token) return tokens def jsonxs(data, expr, action=ACTION_GET, value=None, default=None): """ Get, set, delete values in a JSON structure. `expr` is a JSONpath-like expression pointing to the desired value. `action` determines the action to perform. See the module-level `ACTION_*` constants. `value` should be given if action is `ACTION_SET`. If `default` is set and `expr` isn't found, return `default` instead. This will override all exceptions. """ tokens = tokenize(expr) # Walk through the list of tokens to reach the correct path in the data # structure. try: prev_path = None cur_path = data for token in tokens: prev_path = cur_path if type(cur_path) is not list: if not token in cur_path: if action in [ACTION_SET, ACTION_MKDICT, ACTION_MKLIST]: # When setting values or creating dicts/lists, the key can be # missing from the data struture continue cur_path = cur_path[token] except Exception: if default is not None: return default else: raise # Perform action the user requested. if action == ACTION_GET: return cur_path elif action == ACTION_DEL: del prev_path[token] elif action == ACTION_SET: prev_path[token] = value elif action == ACTION_APPEND: prev_path[token].append(value) elif action == ACTION_INSERT: prev_path.insert(token, value) elif action == ACTION_MKDICT: prev_path[token] = {} elif action == ACTION_MKLIST: prev_path[token] = [] else: raise ValueError("Invalid action: {}".format(action)) if __name__ == "__main__": import doctest doctest.testmod()
fboender/jsonxs
jsonxs/jsonxs.py
Python
mit
5,644
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2018 David Arroyo Menéndez # Author: David Arroyo Menéndez <[email protected]> # Maintainer: David Arroyo Menéndez <[email protected]> # This file is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # This file is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with GNU Emacs; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301 USA, # -*- coding: iso-8859-15 -*- from __future__ import division # want 3 / 2 == 1.5 import re, math, random # regexes, math functions, random numbers import matplotlib.pyplot as plt # pyplot from collections import defaultdict, Counter from functools import partial # # functions for working with vectors # def vector_add(v, w): """adds two vectors componentwise""" return [v_i + w_i for v_i, w_i in zip(v,w)] def vector_subtract(v, w): """subtracts two vectors componentwise""" return [v_i - w_i for v_i, w_i in zip(v,w)] def vector_sum(vectors): return reduce(vector_add, vectors) def scalar_multiply(c, v): return [c * v_i for v_i in v] # this isn't right if you don't from __future__ import division def vector_mean(vectors): """compute the vector whose i-th element is the mean of the i-th elements of the input vectors""" n = len(vectors) return scalar_multiply(1/n, vector_sum(vectors)) def dot(v, w): """v_1 * w_1 + ... + v_n * w_n""" return sum(v_i * w_i for v_i, w_i in zip(v, w)) def sum_of_squares(v): """v_1 * v_1 + ... + v_n * v_n""" return dot(v, v) def magnitude(v): return math.sqrt(sum_of_squares(v)) def squared_distance(v, w): return sum_of_squares(vector_subtract(v, w)) def distance(v, w): return math.sqrt(squared_distance(v, w)) # # functions for working with matrices # def shape(A): num_rows = len(A) num_cols = len(A[0]) if A else 0 return num_rows, num_cols def get_row(A, i): return A[i] def get_column(A, j): return [A_i[j] for A_i in A] def make_matrix(num_rows, num_cols, entry_fn): """returns a num_rows x num_cols matrix whose (i,j)-th entry is entry_fn(i, j)""" return [[entry_fn(i, j) for j in range(num_cols)] for i in range(num_rows)] def is_diagonal(i, j): """1's on the 'diagonal', 0's everywhere else""" return 1 if i == j else 0 identity_matrix = make_matrix(5, 5, is_diagonal) # user 0 1 2 3 4 5 6 7 8 9 # friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9 ##### # DELETE DOWN # def matrix_add(A, B): if shape(A) != shape(B): raise ArithmeticError("cannot add matrices with different shapes") num_rows, num_cols = shape(A) def entry_fn(i, j): return A[i][j] + B[i][j] return make_matrix(num_rows, num_cols, entry_fn) def make_graph_dot_product_as_vector_projection(plt): v = [2, 1] w = [math.sqrt(.25), math.sqrt(.75)] c = dot(v, w) vonw = scalar_multiply(c, w) o = [0,0] plt.arrow(0, 0, v[0], v[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("v", v, xytext=[v[0] + 0.1, v[1]]) plt.arrow(0 ,0, w[0], w[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("w", w, xytext=[w[0] - 0.1, w[1]]) plt.arrow(0, 0, vonw[0], vonw[1], length_includes_head=True) plt.annotate(u"(v•w)w", vonw, xytext=[vonw[0] - 0.1, vonw[1] + 0.1]) plt.arrow(v[0], v[1], vonw[0] - v[0], vonw[1] - v[1], linestyle='dotted', length_includes_head=True) plt.scatter(*zip(v,w,o),marker='.') plt.axis('equal') plt.show()
davidam/python-examples
ai/linear_algebra.py
Python
gpl-3.0
4,600
import json import xbmc import time import urllib2 from quasar.addon import ADDON from quasar.config import QUASARD_HOST from quasar.provider import closing def library_thread(): trakt_sync = int(ADDON.getSetting("trakt_sync")) if trakt_sync > 0: limit = trakt_sync * 3600 count = limit - int(ADDON.getSetting("library_update_delay")) while not xbmc.abortRequested: # trakt_sync hours passed - Update Library if count >= limit: count = 0 try: urllib2.urlopen(QUASARD_HOST + "/library/movie/watchlist/add?updating=true") urllib2.urlopen(QUASARD_HOST + "/library/movie/collection/add?updating=true") urllib2.urlopen(QUASARD_HOST + "/library/show/watchlist/add?updating=true") urllib2.urlopen(QUASARD_HOST + "/library/show/collection/add?updating=true") with closing(urllib2.urlopen(QUASARD_HOST + "/library/userlists")) as response: data = json.loads(response.read()) for userlist in data: urllib2.urlopen(QUASARD_HOST + "/library/movie/list/add/%d?updating=true" % userlist['IDs']['trakt']) urllib2.urlopen(QUASARD_HOST + "/library/show/list/add/%d?updating=true" % userlist['IDs']['trakt']) urllib2.urlopen(QUASARD_HOST + "/library/update") except: pass time.sleep(5) count += 5 else: limit = int(ADDON.getSetting("library_update_frequency")) * 3600 count = limit - int(ADDON.getSetting("library_update_delay")) while not xbmc.abortRequested: # library_update_frequency hours passed - Update Library if count >= limit: count = 0 try: urllib2.urlopen(QUASARD_HOST + "/library/update") except: pass time.sleep(5) count += 5
felipenaselva/felipe.repository
plugin.video.quasar/resources/site-packages/quasar/library.py
Python
gpl-2.0
2,059
# -*- coding: utf-8 -*- """ jinja.constants ~~~~~~~~~~~~~~~ Various constants. :copyright: (c) 2017 by the Jinja Team. :license: BSD, see LICENSE for more details. """ #: list of lorem ipsum words used by the lipsum() helper function LOREM_IPSUM_WORDS = u'''\ a ac accumsan ad adipiscing aenean aliquam aliquet amet ante aptent arcu at auctor augue bibendum blandit class commodo condimentum congue consectetuer consequat conubia convallis cras cubilia cum curabitur curae cursus dapibus diam dictum dictumst dignissim dis dolor donec dui duis egestas eget eleifend elementum elit enim erat eros est et etiam eu euismod facilisi facilisis fames faucibus felis fermentum feugiat fringilla fusce gravida habitant habitasse hac hendrerit hymenaeos iaculis id imperdiet in inceptos integer interdum ipsum justo lacinia lacus laoreet lectus leo libero ligula litora lobortis lorem luctus maecenas magna magnis malesuada massa mattis mauris metus mi molestie mollis montes morbi mus nam nascetur natoque nec neque netus nibh nisi nisl non nonummy nostra nulla nullam nunc odio orci ornare parturient pede pellentesque penatibus per pharetra phasellus placerat platea porta porttitor posuere potenti praesent pretium primis proin pulvinar purus quam quis quisque rhoncus ridiculus risus rutrum sagittis sapien scelerisque sed sem semper senectus sit sociis sociosqu sodales sollicitudin suscipit suspendisse taciti tellus tempor tempus tincidunt torquent tortor tristique turpis ullamcorper ultrices ultricies urna ut varius vehicula vel velit venenatis vestibulum vitae vivamus viverra volutpat vulputate'''
wildchildyn/autism-website
yanni_env/lib/python3.6/site-packages/jinja2/constants.py
Python
gpl-3.0
1,626
#!/usr/bin/python ''' Copyright(c)2009 Internet Archive. Software license AGPL version 3. This file is part of IA Bookserver. IA Bookserver is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. IA Bookserver is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with IA Bookserver. If not, see <http://www.gnu.org/licenses/>. ''' ''' This script downloads, installs, and configures the OPDS crawler. ''' import commands import os crawler_dir = '/crawler' warc_dir = crawler_dir + '/data' def cmd(description, command): print description (ret, out) = commands.getstatusoutput(command) print out assert 0 == ret print 'installing build-essential, swig, and svn' (ret, out) = commands.getstatusoutput("""DEBIAN_FRONTEND=noninteractive apt-get --force-yes -qq install build-essential subversion swig1.3""") print out assert 0 == ret print 'installing warc-tools' if not os.path.exists('/tmp/warc-tools'): (ret, out) = commands.getstatusoutput('svn checkout http://warc-tools.googlecode.com/svn/trunk/ /tmp/warc-tools') print out assert 0==ret print 'patching warc-tools makefile' (ret, out) = commands.getstatusoutput("""wget -q -O /tmp/warc-tools/makefile 'http://home.us.archive.org/~rkumar/git/gitweb.cgi?p=bookserver/.git;a=blob_plain;f=aggregator/install/warc-tools-makefile-64bit'"""); print out assert 0==ret print 'building and installing warc-tools' (ret, out) = commands.getstatusoutput("""make -C /tmp/warc-tools install"""); print out assert 0==ret print 'installing python-feedparser, python-lxml, python-simplejson, and curl' (ret, out) = commands.getstatusoutput("""DEBIAN_FRONTEND=noninteractive apt-get --force-yes -qq install python-feedparser python-lxml python-simplejson curl""") print out assert 0==ret cmd('installing greenlet', """DEBIAN_FRONTEND=noninteractive apt-get --force-yes -qq install python-codespeak-lib""") cmd('installing eventlet', 'easy_install eventlet') cmd('installing python-xml', 'DEBIAN_FRONTEND=noninteractive apt-get --force-yes -qq install python-xml') cmd('installing opensearch.py', 'easy_install opensearch') if not os.path.exists(warc_dir): print 'making warc_dir ' + warc_dir os.makedirs(warc_dir)
internetarchive/bookserver
aggregator/install/install_crawler.py
Python
agpl-3.0
2,701