text
stringlengths 0
2.2M
|
---|
std::vector<int64_t>,
|
std::vector<int64_t>,
|
int64_t,
|
const c10::optional<at::Scalar>&,
|
const c10::optional<at::Scalar>&)>();
|
auto prepacked = conv2d_clamp_prepack_op.call(
|
weight,
|
bias,
|
{stride, stride},
|
{pad, pad},
|
{dilation, dilation},
|
groups,
|
c10::optional<at::Scalar>(),
|
c10::optional<at::Scalar>());
|
BufHandle DummyPrepacked("DummyPrepacked", {1}, kFloat);
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(
|
ResultBuf,
|
"nnc_prepacked_conv2d_clamp_run",
|
{Input, DummyPrepacked},
|
{}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
at::Tensor nnc_result;
|
std::vector<float> input_buf(
|
input.data_ptr<float>(), input.data_ptr<float>() + 1 * 3 * 224 * 224);
|
std::vector<float> result_buf(1 * 16 * 112 * 112, -1.f);
|
#ifdef TORCH_ENABLE_LLVM
|
LLVMCodeGen llvm_codegen(l.root_stmt(), {Input, DummyPrepacked, Result});
|
llvm_codegen.call({input_buf, prepacked.get(), result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref, 1e-03, 1e-03));
|
#endif
|
SimpleIREvaluator ir_eval(l.root_stmt(), {Input, DummyPrepacked, Result});
|
ir_eval.call({input_buf, prepacked.get(), result_buf});
|
nnc_result = at::from_blob(result_buf.data(), {1, 16, 112, 112}, options);
|
ASSERT_TRUE(at::allclose(nnc_result, ref, 1e-03, 1e-03));
|
}
|
#endif // USE_XNNPACK
|
TEST(ExternalCall, BinaryFloat) {
|
using TensorFunc = std::function<at::Tensor(at::Tensor, at::Tensor)>;
|
using Test = std::tuple<
|
std::vector<int64_t>,
|
std::vector<int64_t>,
|
std::vector<int64_t>,
|
TensorFunc,
|
std::string>;
|
std::vector<Test> tests = {};
|
tests.push_back(
|
Test{{100, 200}, {200, 300}, {100, 300}, at::matmul, "nnc_aten_matmul"});
|
tests.push_back(Test{{100, 300}, {300}, {100}, at::mv, "nnc_aten_mv"});
|
tests.push_back(
|
Test{{100, 200}, {200, 300}, {100, 300}, at::mm, "nnc_aten_mm"});
|
for (auto curTest : tests) {
|
std::vector<int64_t> aShape, bShape, resShape;
|
TensorFunc torchFunc;
|
std::string externCallName;
|
std::tie(aShape, bShape, resShape, torchFunc, externCallName) = curTest;
|
auto toExprHandleVec = [](std::vector<int64_t> v) {
|
auto intV = std::vector<int>(v.begin(), v.end());
|
return std::vector<ExprHandle>(intV.begin(), intV.end());
|
};
|
BufHandle A("A", toExprHandleVec(aShape), kFloat);
|
BufHandle B("B", toExprHandleVec(bShape), kFloat);
|
BufHandle ResultBuf("Result", toExprHandleVec(resShape), kFloat);
|
Tensor Result = Tensor(
|
ResultBuf.node(),
|
ExternalCall::make(ResultBuf, externCallName, {A, B}, {}));
|
LoopNest l({Result});
|
l.prepareForCodegen();
|
l.simplify();
|
auto options = at::TensorOptions()
|
.dtype(at::kFloat)
|
.layout(at::kStrided)
|
.device(at::kCPU)
|
.requires_grad(false);
|
at::Tensor a = at::ones(c10::IntArrayRef(aShape), options) * 5.f;
|
at::Tensor b = at::ones(c10::IntArrayRef(bShape), options) * 6.f;
|
at::Tensor ref = torchFunc(a, b);
|
auto prod = [](std::vector<int64_t> v) {
|
// NOLINTNEXTLINE(modernize-use-transparent-functors)
|
return std::accumulate(v.begin(), v.end(), 1, std::multiplies<int64_t>());
|
};
|
at::Tensor nnc_result;
|
std::vector<float> a_buf(prod(aShape), 5.f);
|
std::vector<float> b_buf(prod(bShape), 6.f);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.