text
stringlengths
0
2.2M
#include <stdexcept>
using namespace c10;
// Check that no bytes are wasted and everything is well-aligned.
namespace {
// These structures may cause binary compat warnings on AIX. Suppress the
// warning since we are only using these types for the static assertions below.
#if defined(_AIX)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Waix-compat"
#endif
struct Struct16B {
alignas(16) void* X;
};
struct Struct32B {
alignas(32) void* X;
};
#if defined(_AIX)
#pragma GCC diagnostic pop
#endif
} // namespace
static_assert(
sizeof(SmallVector<void*, 0>) == sizeof(unsigned) * 2 + sizeof(void*),
"wasted space in SmallVector size 0");
static_assert(
alignof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
"wrong alignment for 16-byte aligned T");
static_assert(
alignof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
"wrong alignment for 32-byte aligned T");
static_assert(
sizeof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
"missing padding for 16-byte aligned T");
static_assert(
sizeof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
"missing padding for 32-byte aligned T");
static_assert(
sizeof(SmallVector<void*, 1>) == sizeof(unsigned) * 2 + sizeof(void*) * 2,
"wasted space in SmallVector size 1");
static_assert(
sizeof(SmallVector<char, 0>) == sizeof(void*) * 2 + sizeof(void*),
"1 byte elements have word-sized type for size and capacity");
/// Report that MinSize doesn't fit into this vector's size type. Throws
/// std::length_error or calls report_fatal_error.
[[noreturn]] static void report_size_overflow(size_t MinSize, size_t MaxSize);
static void report_size_overflow(size_t MinSize, size_t MaxSize) {
std::string Reason = "SmallVector unable to grow. Requested capacity (" +
std::to_string(MinSize) +
") is larger than maximum value for size type (" +
std::to_string(MaxSize) + ")";
throw std::length_error(Reason);
}
/// Report that this vector is already at maximum capacity. Throws
/// std::length_error or calls report_fatal_error.
[[noreturn]] static void report_at_maximum_capacity(size_t MaxSize);
static void report_at_maximum_capacity(size_t MaxSize) {
std::string Reason =
"SmallVector capacity unable to grow. Already at maximum size " +
std::to_string(MaxSize);
throw std::length_error(Reason);
}
// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
static size_t getNewCapacity(size_t MinSize, size_t TSize, size_t OldCapacity) {
constexpr size_t MaxSize = std::numeric_limits<Size_T>::max();
// Ensure we can fit the new capacity.
// This is only going to be applicable when the capacity is 32 bit.
if (MinSize > MaxSize)
report_size_overflow(MinSize, MaxSize);
// Ensure we can meet the guarantee of space for at least one more element.
// The above check alone will not catch the case where grow is called with a
// default MinSize of 0, but the current capacity cannot be increased.
// This is only going to be applicable when the capacity is 32 bit.
if (OldCapacity == MaxSize)
report_at_maximum_capacity(MaxSize);
// In theory 2*capacity can overflow if the capacity is 64 bit, but the
// original capacity would never be large enough for this to be a problem.
size_t NewCapacity = 2 * OldCapacity + 1; // Always grow.
return std::min(std::max(NewCapacity, MinSize), MaxSize);
}
// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
void* SmallVectorBase<Size_T>::mallocForGrow(
size_t MinSize,
size_t TSize,
size_t& NewCapacity) {
NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
auto Result = std::malloc(NewCapacity * TSize);
if (Result == nullptr) {
throw std::bad_alloc();
}
return Result;