|
--- |
|
language: |
|
- en |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 1M<n<10M |
|
tags: |
|
- sentence-transformers |
|
task_categories: |
|
- feature-extraction |
|
- sentence-similarity |
|
pretty_name: SQL Questions |
|
dataset_info: |
|
- config_name: mined-negative |
|
features: |
|
- name: query |
|
dtype: string |
|
- name: positive |
|
dtype: string |
|
- name: negative_1 |
|
dtype: string |
|
- name: negative_2 |
|
dtype: string |
|
- name: negative_3 |
|
dtype: string |
|
- name: negative_4 |
|
dtype: string |
|
- name: negative_5 |
|
dtype: string |
|
- name: negative_6 |
|
dtype: string |
|
- name: negative_7 |
|
dtype: string |
|
- name: negative_8 |
|
dtype: string |
|
- name: negative_9 |
|
dtype: string |
|
- name: negative_10 |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 6646432 |
|
num_examples: 5254 |
|
download_size: 2124847 |
|
dataset_size: 6646432 |
|
- config_name: pair |
|
features: |
|
- name: query |
|
dtype: string |
|
- name: positive |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1010333 |
|
num_examples: 5269 |
|
download_size: 461323 |
|
dataset_size: 1010333 |
|
- config_name: triplet |
|
features: |
|
- name: query |
|
dtype: string |
|
- name: positive |
|
dtype: string |
|
- name: negative |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 15730842 |
|
num_examples: 52608 |
|
download_size: 1119260 |
|
dataset_size: 15730842 |
|
configs: |
|
- config_name: mined-negative |
|
data_files: |
|
- split: train |
|
path: mined-negative/train-* |
|
- config_name: pair |
|
data_files: |
|
- split: train |
|
path: pair/train-* |
|
- config_name: triplet |
|
data_files: |
|
- split: train |
|
path: triplet/train-* |
|
--- |
|
|
|
# Dataset card for SQL Questions |
|
|
|
This dataset is a reformatting of the [`sql_questions_triplets`](https://huggingface.co/datasets/sergeyvi4ev/sql_questions_triplets) dataset by [@sergeyvi4ev](https://huggingface.co/sergeyvi4ev), such that the dataset can be directly used to train Sentence Transformer models. |
|
|
|
## Dataset Subsets |
|
|
|
### `pair` subset |
|
|
|
* Columns: "query", "positive" |
|
* Column types: `str`, `str` |
|
* Examples: |
|
```python |
|
{ |
|
'query': 'How many zip codes are under Barre, VT?', |
|
'positive': '"Barre, VT" is the CBSA_name', |
|
} |
|
``` |
|
* Collection strategy: Reading the SQL Questions dataset and selecting all query-positive pairs. |
|
* Deduplified: Yes |
|
|
|
### `triplet` subset |
|
|
|
* Columns: "query", "positive", "negative" |
|
* Column types: `str`, `str`, `str` |
|
* Examples: |
|
```python |
|
{ |
|
'query': 'How many zip codes are under Barre, VT?', |
|
'positive': '"Barre, VT" is the CBSA_name', |
|
'negative': "coordinates refers to latitude, longitude; latitude = '18.090875; longitude = '-66.867756'" |
|
} |
|
``` |
|
* Collection strategy: Reading the SQL Questions dataset and selecting all possible triplet pairs. |
|
* Deduplified: No |
|
|
|
### `mined-negative` subset |
|
|
|
* Columns: "query", "positive", "negative_1", "negative_2", "negative_3", "negative_4", "negative_5", "negative_6", "negative_7", "negative_8", "negative_9", "negative_10" |
|
* Column types: `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str`, `str` |
|
* Examples: |
|
```python |
|
{ |
|
"query": "How many zip codes are under Barre, VT?", |
|
"positive": "\"Barre, VT\" is the CBSA_name", |
|
"negative_1": "coordinates refers to latitude, longitude; latitude = '18.090875; longitude = '-66.867756'", |
|
"negative_2": "name of county refers to county", |
|
"negative_3": "median age over 40 refers to median_age > 40", |
|
"negative_4": "\"PHILLIPS\" is the county; 'Montana' is the name of state", |
|
"negative_5": "name of the CBSA officer refers to CBSA_name; position of the CBSA officer refers to CBSA_type;", |
|
"negative_6": "population greater than 10000 in 2010 refers to population_2010 > 10000;", |
|
"negative_7": "postal points refer to zip_code; under New York-Newark-Jersey City, NY-NJ-PA refers to CBSA_name = 'New York-Newark-Jersey City, NY-NJ-PA';", |
|
"negative_8": "the largest water area refers to MAX(water_area);", |
|
"negative_9": "\"Wisconsin\" is the state; largest land area refers to Max(land_area); full name refers to first_name, last_name; postal code refers to zip_code", |
|
"negative_10": "\"Alabama\" and \"Illinois\" are both state; Ratio = Divide (Count(state = 'Alabama'), Count(state = 'Illinois'))" |
|
} |
|
``` |
|
* Collection strategy: Reading the SQL Questions dataset, filtering away the 15 samples that did not have 10 negative pairs, and formatting them in the described columns. |
|
* Deduplified: No |